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SUMMARY

The recent improvement of additive manufacturing has allowed designers to
achieve a level of complexity and customizability that is difficult or impossible to
accomplish using traditional manufacturing processes. As a result, much research has
been conducted on developing new methods to utilize the larger design space brought
by additive manufacturing. One such research area is in the design of mesoscale lattice
structures. Mesoscale lattice structures are a type of cellular structure with support
element sizes on the order of magnitude of centimeters. These types of structures
are engineered for high performance and have applications in industries where both
low weight and high strength are desired. However, due to the small size of their
struts, these structures can easily have hundreds to thousands of individual struts.
As a result, design poses a unique challenge. Current methods approach design of
mesoscale lattice structures as a topological optimization problem, treating each strut
diameter in the structure as a design variable. For structures with a fewer number
struts, these optimization methods can converge, but will generally be very time-
consuming. For structures with a large number of struts, the optimization problem
becomes too large for current algorithms to solve.

In previous research, a new, highly efficient design method for mesoscale lattice
structures was presented that eliminates the need for global size or topological opti-
mization. This method, termed the Size, Matching and Scaling method, used a unique
combination of a solid-body finite element analysis and a library of pre-defined lattice
configurations, termed the unit-cell library, to generate lattice topologies. The results
from this method were highly promising: design time was significantly reduced when

compared to optimization methods. Furthermore, lattices designed using the SMS
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method had performance results that were either comparable or better than their op-
timized counterparts. However, the method developed was highly conceptual, lacking
a true systematic methodology for generating topologies and suffering from some gaps
in implementation.

In this research, we present a modified Size Matching and Scaling (SMS) design
method. Firstly, we introduce and outline the modified methodology. This method-
ology particularly includes an optimization step for determining strut diameters that
replaces the manual search used in the original method. Secondly, we expand and
explore the unit-cell library in an attempt to improve the performance of lattices
generated using the SMS method. In particular, we optimize several unit-cell config-
urations and compare their performance in the context of the SMS method. Finally,
we test the updated SMS methodology and unit-cell library using various design ex-
amples.

Results from the various example problems indicate that optimization is not only
a viable systematic method for determining diameter values, but is actually preferred
to the manual, iterative process used in the original method. Furthermore, vari-
ous optimization algorithms and approaches yield different results. Between the two
optimization algorithms utilized in this method: constrained optimization and least-
squares minimization, constrained minimization converges faster, but least-squares
minimization yields slightly improved performance results. In addition to these algo-
rithms, a one-variable approach using an untested, simplifying assumption, dubbed
the “28% approach,” was tested. Results indicate that this assumption was incorrect
and cannot be utilized. Finally, results from the expanded unit-cell library indicate
that the best unit-cell configuration is still the same original unit-cell configuration
utilized in the first SMS method. The addition of more unit-cell does not improve
the performance of structures generated using the SMS method. In fact, both per-

formance and design time worsen when additional configurations are utilized.
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CHAPTER 1

INTRODUCTION, BACKGROUND AND MOTIVATION

1.1 Introduction

The challenges facing designers today have reached an unprecedented level. The
demands for lighter, stronger, and more customizable parts have necessitated the
research and development of new technologies, tools, and methodologies that can
satisfy the new demands of the modern world. In particular, the introduction and
continual improvement of one technology, additive manufacturing, has dramatically
changed the way engineers pursue design and manufacturing. This new and promising
technology has eliminated many barriers to manufacturing and has allowed designers
to achieve a level of complexity and customizability difficult or impossible to achieve
using traditional, “removal manufacturing” processes. As a result, much research has
been conducted on developing new methods to utilize the larger design space brought
by additive manufacturing. One such research area is in the design of mesoscale lattice
structures. Mesoscale lattice structures are a type of cellular structure with support
element sizes on the order of magnitude of centimeters. These types of structures are
engineered for high performance and have applications in industries where both low
weight and high strength are desired. Such structures will be the focus of this work.
In particular, this research will present a design method for the design of mesoscale

truss structures.

1.2 Background
1.2.1 Additive Manufacturing

Additive manufacturing (AM), once referred to as Rapid Prototyping (RP), can be

defined as a collection of automated processes that fabricate 3-D objects from a series



of nominally 2-D cross-sectional layers of specialized materials [33]. Typically, all
parts designed with AM technologies begin with a 3-D CAD model representation of
the component. This model is then typically converted into an STL file and sent to
the AM machine, which builds the part layer-by-layer.

Currently, many technologies exist that fit into the broad definition of AM. These
technologies are supported by several, distinct process categories. These categories in-
clude: photopolymerization processes, powder bed fusion processes, extrusion-based
systems, printing processes, sheet lamination processes, beam deposition processes,
and direct write technologies [42]. Each of these processes has its own distinct set of
advantages and disadvantages regarding characteristics such as manufacturing speed
and layer resolution. Of these different processes, two particular manufacturing tech-
nologies are most commonly used: stereolithography (SLA) and selective laser sinter-

ing (SLS). These two processes will be briefly outlined in the following sections.
1.2.1.1 Stereolithography

Stereolithography (SLA) is a type of photopolymerization processes that makes use of
a liquid vat filled with resins filled with curable photopolymers. These photopolymers
react to certain wavelengths of light, with the most common photopolymers reacting
within the ultraviolet wavelengths. Once irradiated, the resin undergoes a chemical
reaction to become solid called photopolymerization [42]. In SLA, a platform is
suspended in the resin vat. During the manufacture of a component, the platform
begins at the top of the vat. A scanning laser then traces the 2-D cross-section of the
part, curing the exposed resin. After the cross-section is traced, the platform moves
down an incremental amount and the laser cures the next cross-section. This process
continues until the part is complete. Because SLA uses photopolymers as the main
material for manufacture, components built using SLA must be some sort of plastic

material.



Figure 1: A specialized Invisalign®) brace (left), that is constructed using a mold
generated by SLA, and Phonax hearing aid (right) built using SLA processes [2, 4].
Although initially used primarily as a prototyping technology, SLA has begun
to be more frequently used in manufacturing applications, particularly where mass-
customization is required. For instance, Align Technologies, developers of the Invisalign®)
braces technology, uses stereolithography to develop molds for their customized braces
[57]. Also, hearing-aid manufacturing companies such as Siemens, Phonak, and Widex
use stereolithography machines to mass-produce customized hearing-aid shells [30].

Figure 1 shows examples of these products manufactured in SLA machines.
1.2.1.2  Selective Laser Sintering

Selective laser sintering (SLS) or melting (SLM) technologies were the first AM tech-
nologies to use the powder bed fusion (PBF) process [42]. The principal driving fea-
ture of these methods is the melting and fusion of powder to form part cross-sections.
In the SLS process, a build platform exists containing a thin layer of powder. An
infrared heater heats the powder bed to just below the melting point of the powder.
Then, a laser beam traces the cross-section of the part, heating the powder to its
melting point and fusing the powder. The platform bed then lowers an incremental
amount. Rollers spread a uniform layer of powder along the platform bed, and the

melting process is repeated. This step continues until the part is complete.



Figure 2: An exhaust manifold manufactured using SLS [5].

Because SLS uses a powder bed instead of a photopolymer vat, it can build both
plastic and metal components. As a result, SLS can be used in industries where metal
parts are required. For instance, the Boeing Company uses laser sintering to build
over 80 separate components for their F-18 military jet [58]. The motorsports industry
uses additive manufacturing SLS techongy to manufacture items as diverse as elec-
trical housings and aerodynamic elements [57]. An example of an SLS-manufactured

exhaust manifold is shown in Figure 2.
1.2.1.3 The Advantages of Additive Manufacturing

AM has several key advantages that can make it more desirable than removal, or sub-
tractive manufacturing technologies, such as computer numerical controlled (CNC)

machining. These advantages are listed below [42]:

e Design Intuition: AM processes follow the concept of What You See Is What
You Get (WYSIWYG); since AM generally begin with a 3-D CAD model, the
design intent of the desired component is apparent. Furthermore, transition
between the CAD model and the AM processes is automated and generally
seamless. This eliminates confusion that may occur between the design and the

manufacture of a component.



e Process Planning: Because AM processes are robust in nature, any part can
generally be made in one step, regardless of size or complexity. On the other
hand, removal manufacturing such as CNC machining requires lengthy planning
and multiple machining steps. These steps also generally increase in number as
part complexity increases. Also, a small change in the part design may change
the entire process planning of the part. All these issues do not exist for AM

processes.

e Build Time: Because part complexity and process planning are reduced in
AM, many components can be built in a much smaller time frame than if they

were machined using traditional processes.

e Customizability: AM processes allow for the quick manufacture of specific
components without the need for a change of the manufacture process. Varia-
tions and customization of components that can significantly change the man-
ufacturing process and process planning of traditional subtractive technologies
do not affect the AM process at all; only the CAD model needs to be changed
for the customization to be reflected in the final component. As a result of this
property, AM processes have begun to be exclusively used in industries where

high customization is a necessity.

e Complexity: One of the key disadvantages that traditional machining pro-
cesses have is the inability to manufacture components of very high complexity.
This drawback occurs because these machining processes generally have ac-
cessibility constraints that can prevent the access of certain regions in a part
geometry. Because AM processes build layer-by-layer, these accessibility con-
straints do not exist. As a result, subtractive machining processes may need to
manufacture multiple pieces and assemble a component that could otherwise be

built as one part in additive manufacturing,.



1.2.2 Design for Additive Manufacturing

The great potential of additive manufacturing removes nearly all limits in the man-
ufacturing of parts. However, because of the enormous freedom conferred by AM,
the challenge of AM is not the manufacturing of the part itself, but the design of
component [56]. The principal challenge in the design for additive manufacturing
(DFAM) is to develop new methods for exploring large, complex, design spaces [19].
These larger design spaces are brought on by an increased complexity in three areas:
shape, material, and hierarchy [18]. Shape complexity encompasses the ability of AM
to produce virtually any shape and geometry. Material complexity encompasses the
ability of AM to process different materials on different layers of a structure, allowing
complex material composition. Hierarchical complexity deals with the ability of AM
to fabricate on multiple structural scales, from the microstructure to the part-scale
macrostructure. This thesis focuses primarily on developing methods that enable de-
signers to utilize the design space conferred by shape complexity. In particular, we

focus on the design of cellular structures.
1.2.3 Cellular Structures

Cellular structures in the context of manufacturing are structures, such as foams,
honeycombs, and lattices, that contain material only where it is needed for specific
application. Advantages of these structures over their solid-body counterparts in-
clude good energy absorption characteristics, strong thermal and acoustic insulation
properties, and, most importantly, a high strength to low mass correlation [25]. As
a result, cellular structures have increasing application and use in industries where
weight minimization is critical, such as the aerospace and racing industries [31]. Some
examples of human-made cellular structures are shown in Figure 3.

(Classification of cellular structures can be divided into two categories: those pro-

duced using stochastic processes and those designed using deterministic processes.



Figure 3: Examples of human-made cellular structures: a honeycomb lattice (left)
and metallic foam (right) [1, 3].

Stochastic cellular structures are cellular structures generated with processes that
cannot be entirely controlled, such as foaming. As a result, the topology of these
structures cannot be explicitly defined. The principal advantage of these structures
is that their design and manufacture is relatively autonomous, simple, and fast [25].
Stochastic cellular structures have strength that scales roughly to p'®, where p is the
volumetric density of the structure’s material [21].

Deterministic cellular structures, on the other hand, are structures that are de-
signed with lattices specifically meant to support specific loading and boundary con-
ditions. In their research, Wallach and Gibson propose that, because their lattices
are highly specialized, deterministic cellular structures will have higher strength than
stochastic cellular structures [50]. In their work, Deshpande et al. found confirm this
statement, determining that the strength of deterministic cellular structures scale to
their volumetric density, p [21]. Therefore, a designed lattice structure with a volumet-
ric density of p = 0.1 will be roughly three times stronger than its stochastic counter-
part. It is theorized that this difference in strength occurs because stochastic cellular
structures are dominated primarily by bending whereas deterministic structures are
dominated by compression and tension, thus resulting in higher failure stresses [20].

Because designed cellular structure have such a significant strength advantage, much



74 VYA
w3
VAVA VA Vi VA Tk

Figure 4: Example of a meso-scale truss structure. The structure pictured is roughly
10 in long.

research has gone into developing synthesis methods for these structures.
1.2.4 Meso-Scale Truss Structures

In this work, the particular focus will be on a specific subset of cellular structures:
mesoscale truss structures (MSTS)-structures with strut diameters in the range of 0.1
to 10 mm and strut lengths on the order of centimeters. An example of a meso-scale
truss structure is shown in Figure 4. It is important to note that Figure 4 contains a
uniformly-generated, or stochastically generated, lattice. The focus of this work, on

the other hand, will be deterministic MSTS.

1.3 Motivation
1.3.1 Design of Meso-Scale Truss Structures

The advantages conferred by deterministic cellular structures, and in particular meso-
scale truss structures, make them highly desirable as a design option for components
that require high strength and low weight. However, although the introduction of AM

has allowed these structures to be manufactured with relative ease, their inherent



design complexity limits their use in industry. Depending on their size and scale,
components designed with MSTS can contain upwards of hundreds of thousands of
individual struts. If just the diameter of each strut is considered a design variable,
then the design of MSTS will have as many design variables as struts. If the problem is
expanded to consider the lattice topology as well, then the number of design variables
grows even larger. This large number of design variables poses the main prohibitive
barrier to the design and manufacture of MSTS [18].

In order to address the large quantity of design variables posed by MSTS, de-
signers currently use synthesis methods that utilize search heuristics specializing in
the optimization of a large number of design variables. Although these methods are

documented to have success, they suffer from three key drawbacks:

e Incorrect/Non-Optimal Solutions: The large design spaces present in the
design of MSTS will often contain several local minima. The presence of these
local minima force the optimization problem to be highly dependent on the
starting point of optimization. Since a good starting point is usually impossible
to determine, optimization routines will often converge to a local solution rather

than the global solution.

e Repeatability: Most multi-variable optimization algorithms, such as genetic
algorithms, are highly stochastic. Due to the probabilistic nature of these algo-
rithms, design methods using these algorithms will generally not return identical
design results, even when provided the exact same initial design conditions. In
industries where consistency is desired, these methods will not only reduce the

repeatability of design results, but may reduce their performance as well.

¢ High Computational Complexity /Long Design Times: The design time



of multi-variable optimization routines often scale exponentially with the num-
ber of design variables. For truss structures with struts numbering in the hun-
dreds, these optimizations may converge, but will be the main bottleneck in the
design of truss structure. For structures that are larger or considerably more
complex (>1000 struts), these methods will either converge within an infeasible

time frame or simply not converge at all.

In order for MSTS, and deterministic cellular structures in general, to become a
feasible design principle for designers, the issue of topological optimization must be

thoroughly addressed.
1.3.2 The Unit-Cell Approach

Since it is known that the design of MSTS is bottlenecked by the need for topological
optimization, designers have devoted much research directly into either improving
these optimization methods or developing more efficient methods. However, these
direct considerations of optimization may only alleviate some of the issues plaguing
topological optimization rather than eliminate them.

In his research, Graf presented a novel, alternative approach to design of deter-
ministic cellular structures [27]. The key feature of this method is that it attempts
to completely avoid the need for any topological or shape optimization in the design
of MSTS. In particular, Graf proposed a “unit-cell” approach to the design of MSTS:

one that uses alternative sources of information in lieu of topological optimization.
1.3.2.1 Approach

Topological optimization of truss structures can be considered to consist of two fun-
damental tasks: the determination of the loading distribution of a specific loading
condition in a structure and then the determination of the topology required to sup-

port this load distribution. If topological optimization is to be bypassed, then the
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information required to accomplish these two functions must be derived from other
sources of information.

The unit-cell approach proposes that the first function, the stress distribution,
can be derived from a finite element stress analysis of the target truss structure as
a solid-body. The second function, topology generation, can be accomplished by
dividing the target truss structure into local, uniformly shaped regions, or “unit-
cells.” By looking at these regions individually and comparing them with the stress
distribution from the solid body finite element analysis, a topology can be determined
for that region. This localized topology is designated by scanning a library of highly
optimized configurations, or “unit-cell library,” selecting the configuration best-suited
for the given stress condition, and then assigning that configuration to the region.
Once all the regions are mapped, a topology can be developed. It is important to
note that lattice topologies generated using the unit-cell approach are normalized
such that diameters in the lattice are valued between zero and one. In order for the
normalized topologies to be specialized for a particular loading or boundary condition,
real diameter values must be assigned to these topologies based on the loading and
boundary conditions of the truss structure. In particular, two specific diameter values
need to be determined in order for all remaining diameters to be assigned: the smallest
diameter in the structure, D,,;,, and the largest diameter in the structure, D,,q;.
Once these values are determined, the remaining diameters in the topology can be

appropriately sized and the truss structure will be completed.
1.3.2.2  Implementation

In his work, Graf developed a rough design method, termed the “Size, Matching,
and Scaling,” or SMS, method for the design of mesoscale truss structures. This
method utilized the unit-cell approach to develop lattice topologies and implemented

post-processing steps to assign real diameter values against the supplied boundary
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conditions [27]. A more detailed description of the method and its results is provided

in Chapter 2.

1.3.2.8 Drawbacks

Graf’s SMS method was highly successful in generating topologies for MSTS. How-
ever, the implementation of this method contained two key design issues that limited
its use. Both these issues must be addressed in order for the unit-cell approach to be
a viable alternative for designers.

The first critical issue with the unit-cell approach is the utilization of the lattice
topology after it has been generated, particularly in regards to the determination of
diameter values. Graf’s SMS method lacked a systematic step for assigning optimal
diameter values to lattice topologies. In order to avoid the need for optimization, he
used a critical, untested assumption to simplify the diameter determination process.
He then performed a manual search of the design space to determine the correct
diameter values.

The second issue revolves around the use and implementation of the library of
pre-configured unit-cells, or “unit-cell library.” In particular, Graf’s implementation
contains only one unit-cell configuration. With just one entry in the library, Graf was
able to prove that the unit-cell approach is effective in generating topologies. However,
without at least one other entry in the library, the unit-cell approach cannot compare
entries to determine the best possible solution. This lack of depth not only limits the
potential of the unit-cell approach, but also over-simplifies the topological mapping

and selection of unit-cells to the truss structure.

1.4 Research Questions and Hypotheses

The original SMS method was developed specifically to remove the need for optimiza-

tion in the design of MSTS. However, because optimization was avoided, the method
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could not generate optimal values of D,,;, and D,,,, without performing an exhaus-
tive, manual search of both D,,;, and D,,.,. This brute force search of the design
space proved to be the principal drawback in the SMS method. This drawback forms

the basis of the first research question:

Research Question 1: Can an optimization method for the design of

mesoscale truss structures be developed to determine strut diameters for topolo-

gies designed using the unit-cell approach?

It is believed that optimization of diameter values cannot be entirely avoided in
the design of MSTS. If, however, the main advantages of the unit-cell approach are
used in conjunction with optimization rather than in competition with it, then it may
be possible to develop a truly systematic design method that can generate MSTS
topologies without the need for the optimization of several thousand strut diameter
values. Instead, only two critical diameter values need be optimized in order for all
remaining diameters to be assigned: D,,;, and D,,,,. Such a method will not only be
significantly less computationally complex than current optimization methods, but
will also be able to generate MSTS without the need for a manual search of diameter

values. This concept gives rise to the proposed answer to the first research question:

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-
strained optimization of two diameter values: a minimum allowable diameter
and a maximum allowable diameter, against volume and stiffness constraints,
a systematic design method can be developed for the design of mesoscale truss
structures. By exploring various optimization approaches and selecting the

best method, design time can be minimized and structural performance can be

maximized.
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In order to properly test and validate Hypothesis 1, the following tasks will be

completed:

e A modified Size, Matching, and Scaling (SMS) method will be developed com-
bining the unit-cell approach with optimization methods. The first portion of
the SMS method will utilize the primary driving concepts of the unit-cell ap-
proach to generate a normalized topology for MSTS. The second portion of the
SMS method will utilize optimization routines to determine the minimum and
maximum diameter values necessary to optimize structure volume and stiffness.
In particular, an additional step will be added to the SMS method. In this step,
the critical diameters values will be determined using different two-variable op-

timization methods.

e The modified SMS method will be tested using example problems of varying size
and complexity in order to validate the method in two and three dimensions.
Two of the example problems will be repeated examples from the previous
iteration of the SMS method. The results from these two examples will be

compared to results from previous research in order to verify accuracy.

e For each example problem, different optimization approaches will be used to
determine the minimum and maximum diameter values for the target structure.
The results from these methods will be compared to determine the approach

with the best performance.

e In addition to the proposed optimization methods, a manual grid-search will be
performed similar to the method that was used originally in the previous SMS
method. The results from this grid-search will be compared to results from
the proposed optimizations to determine the difference in both design time and

structural performance
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With the proposed Size, Matching, and Scaling method, large-scale optimization
can effectively be reduced into an optimization of just two variables. However, the pos-
sibility of further reducing the optimization problem may exist. In previous research,
Graf used an untested assumption in order to simplify the diameter determination
process. While performing an exhaustive search of all possible D,,;, and D,,,, for a
simple MSTS example, Graf noted that, for a specific target volume, a truss struc-
ture designed using the unit-cell approach would have the highest structural stiffness
when the minimum diameter value was roughly 28% of the maximum diameter value.
When repeated with other target volumes, this 28% value appeared to hold true.
Graf therefore used the assumption that the best structural performance of a MSTS

designed using the unit-cell approach has the property,

Dinin = 0.28 X Dyras (1)

The consequence of this assumption was that the minimum and maximum diam-
eters were no longer independent of one another. Therefore, instead of determining
two diameters, only one diameter, D,,.., need be determined. Since only one de-
sign variable was necessary, Graf simply performed an exhaustive, iterative search of
all possible values of D4, selecting manually the value that would best satisfy the
desired volume while maintaining the highest possible structural stiffness.

Although very useful in implementation, the assumption suffered from one major
flaw: it was made without proper verification. The assumption was tested on a very
small subset of design problems and was not compared to any optimization routines
to determine whether the values returned were indeed the best possible solutions.
Therefore, until the assumption is verified, it should not be used. However, the
discovery made by Graf does present the possibility of a relationship existing between

the minimum and maximum diameters. In particular, the research question can be

asked:
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Research Question 2: Can the two-variable optimization proposed in Hy-

pothesis 1 be simplified in order to decrease analysis time?

It is believed that Equation (1) can be validated against optimization and that a
relationship can be found between D,,;, and D,,,, at or near the 28% value discovered
by Graf. This assumption can then be extended to any truss structure designed
using the SMS method and can simplify and subsequently speed up the diameter
determination process. This belief is the key component of the answer to the second

research question:

Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-
mum diameter values for meso-scale truss structures designed using the Size,
Matching, and Scaling method, a direct relationship between these two values
can be determined and exploited. This relationship will allow for one of the
two diameter values to be expressed as a function of the other. Consequently,
the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.

To validate this second hypothesis, both the one-variable optimization and the
two-variable optimizations proposed in Hypothesis 1 must be tested and then com-

pared. The following tasks will be completed:

e For each of the example problems used to test the SMS method, the two-variable
optimization routines outlined in Hypothesis 1 will be tested. The design times

and resultant diameter values will be recorded.

e Concurrent with the two-variable optimizations, a one-variable optimization
will be conducted using the 28% value assumed by Graf in order to measure the

design time using this method and the accuracy of its results.
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e The values of the minimum and maximum diameters returned by both the 28%
assumption and the two-variable optimizations will be compared to determine
whether a relationship between them exists and whether this relationship is at

or near the 28% estimated by Graf.

e The design times of the 28% assumption will be compared with those of the
two-variable optimizations in order to assess if there is a reduced design time

and whether the reduction is significant.

The final research question is related to the unit-cell library. In the original
SMS method, the unit-cell library that was used contained only one optimized unit-
cell entry and provided the bare minimum required for the unit-cell approach to
successfully generate a topology.

However, in order for the unit-cell library to be fully utilized, it must contain
several unit-cell configurations. The SMS method can then scan these entries and
select the best possible configuration for a given stress concentration. This larger
selection profile should ultimately improve the performance of structures designed
using the SMS method. However, it is possible that the SMS method may select the
same unit-cell configuration regardless of the unit-cell library entries. Furthermore, a
larger unit-cell library may result in slower design times. For each additional entry in
the unit-cell library, the SMS method must scan this extra entry once for each unit-
cell region in a truss structure. Therefore, the design time can grow exponentially
for both large design problems and a large unit-cell library. Therefore, it is unknown
whether an expanded library will have an overall positive or negative impact on the

methodology. This uncertainty brings about the third research question:
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Research Question 3: Will the expansion of the unit-cell library to include
additional unit-cell configurations improve the performance of structures de-

signed using the SMS method? If so, will the added benefit justify an increased

overall design time?

It is believed that the true strength of the unit-cell library arises from a method-
ology’s ability to compare multiple unit-cell configurations from the library and select
the best possible configuration. Therefore, in general, a larger unit-cell library should
allow the SMS method to locate better unit-cells for any given design scenario. Al-
though a larger library and more expansive mapping algorithm will result in an in-
creased design time, it is believed that the additional design time will be outweighed
by the added benefit conferred by the addition of unit-cell configurations, particularly
configurations that are well-documented and thoroughly tested. This idea is the basis

for the third and final hypothesis:

Hypothesis 3: The addition of unit-cell configurations, such as the Cantley
and octet configurations, will provide the SMS method with more options for
the generation of the lattice topology. This, in turn, will allow for the placement
of unit-cell structures that are better-suited for specific loading conditions,
thereby improving structural stiffness. Although the design time will be slightly
increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

Hypothesis 3 will be tested in the following manner:

e Two versions of the unit-cell library will be created. The first unit-cell library

will be identical to the library used by the unit-cell approach and will contain
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just one unit-cell configuration. The second unit-cell library will be filled with
additional unit-cell configurations, particularly those that are well-documented

in literature, such as the Cantley and octet trusses.

e Examples will be explored using the first iteration of the unit-cell library. The
topologies generated using this library will only have one unit-cell type and will

thus have a fairly homogeneous topology.

e The same examples will then be solved using the larger library. The topologies
generated using this second library will be investigated to determine whether
there is a topological difference. If there is a difference in the topologies of
the structures, both the design time and structural performance of the two
resultant topologies will be compared and assessed to determine whether there

is an improvement in performance.

The three research questions and hypothesis outlined above compose the main
arguments of this thesis and provide the framework for this research; This thesis is

written with the mindset of answering these research questions.

1.5 Thesis Organization

1.5.1 Thesis Chapters

The remaining chapters of this thesis are organized to best present the research con-

ducted. They are summarized below:

e In Chapter 2, a literature survey will be performed covering all research relevant
to the SMS method. This survey will include a review of previous research in
the design and analysis of cellular structures. It will also include a review of
some topological optimization algorithms. Finally, it will review the driving
research behind the SMS method and the unit-cell approach. After the review

has been completed, a gap analysis will be conducted on the existing research.
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e In Chapter 3, the modified SMS method will be presented in its entirety. This
includes a problem formulation for the method and a detail presentation of each
of the steps of method. Additionally, the primary deliverables of each of these
steps and the assumptions taken in each step will provided. A comparison of
the modified method and the original method will also be provided, including

limitations and guidelines for use.

e In Chapter 4, the modified unit-cell library will be outlined. This will include
a presentation of each entry in the library, a description of the mapping and
selection process for the new library, and an outline of the optimization process

for the unit-cell configurations in the unit-cell library.

e In Chapter 5, the SMS method will be tested against 2-D and 3-D examples of
varying complexity in order validate the method and compare design results.
These examples will attempt to validate or refute the three hypotheses proposed

in this chapter.

e In Chapter 6, the research results will be summarized and conclusions will be

drawn. Future work for the method will be outlined.
1.5.2 Connection Between Thesis Chapters and Research Questions

Table 1 presents the research questions and their relation to the remaining chapters
of the thesis. As can be seen from Table 1, the bulk of the research questions will be

answered in Chapter 5: Design Examples.
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CHAPTER 11

LITERATURE REVIEW

In this chapter, a literature review of research relevant to the SMS method will be
conducted. The review is divided into six separate categories. Section 2.1 outlines
methods for analyzing cellular, and in particular, truss structures. Section 2.2 outlines
current approaches to lattice design in cellular structures. Section 2.3 outlines some
of the algorithms used in the design methods of Section 2.2. This review will set
the groundwork for the material in Section 2.4: the original SMS method and 2.5
a description of some documented unit-cells to be utilized in the unit-cell library.

Finally, in Section 2.6, gaps in the original SMS method will be outlined.

2.1 Methods for Lattice Structure Analysis

The critical task in the analysis of cellular structures is the determination of the as-
sumptions and limitations that can be utilized in order to develop accurate models
of these cellular structures. Current analysis methods for cellular structures are de-
veloped for the specific analysis of certain types of cellular structures. For instance,
Wang and McDowell have developed a comprehensive review of the analytical mod-
elling, mechanics, and characteristics of metal honeycombs [51]. Asbhy et al. have
performed extensive research on the analysis and design of metal foams [10]. How-
ever, the methods presented in this section focus primarily on the analysis of truss
structures as a subset of cellular structures. A portion of these analyses are provided.

The analysis of truss structures initially used the assumption that struts in a
lattice structure only undergo axial loading and that joints are pin-pin joints. In
their work, Wallach and Gibson use this assumption to theoretically analyze sheets

of lattices under axial loading conditions [50]. When compared with experimental
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Unit Truss1 ~ Unit Truss 2 ' Unit Truss 3
Figure 5: The unit-cell approach to lattice analysis

results, this theoretical framework returned comparable results, with percent errors
ranging from between 3% and 27%. Chiras et al. have extended this assumption to
lattice sheets undergoing bending and shear loading [17].

In their research, Johnston et al. propose a more general analytical model of
lattice behavior by considering an assumption of beam-like characteristics for lattice
struts. The model uses vertices and the set of half-struts connecting these vertices
and lumps them together into discrete “unit-trusses” [31]. These elements are then
analyzed using a method similar to the finite-element approach. Wang et al. have
applied this unit-truss approach successfully to lattice design [52, 55]. The unit-truss

representation is shown in Figure 5.

2.2 Methods for Lattice Design

In this section, an overview of current synthesis methods for cellular structures is

provided.
2.2.1 Size, Shape, and Topological Design

Design synthesis methods for cellular materials can be divided into three different
types of optimization tasks: shape, size, and topological optimization. Before these
three optimizations are discussed, it should be noted that these terms can have differ-
ent definitions depending on the research and context in question. It is also important

to note that the three terms are becoming increasingly hard to decipher in research
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TSN

Figure 6: An interpretation of size (top), shape (middle), and topology (bottom)
optimization [13].

[7]. The definitions that this research uses follow those from Bendsge and Sigmund
[13].

Shape optimization can be defined as the development of the geometric dimen-
sions of a body [38, 9]. Methods for shape optimization are generally performed
using the same process: through the use of control vertices of parameteric curves and
surfaces. Size optimization, on the other hand, can be the defined as the determina-
tion of individual cross-sectional areas of struts [11]. Like shape optimizationn, Size
optimization is performed using the same basic method, with feature dimensions as
design variables. Topological optimization, as defined by Rozvany, can be defined as
the determination of the spatial sequence or connectivity of members [43]. It con-
tains both elements of both size and shape optimization. In this research, size and
shape optimization will not be discussed in detail. Instead “topological optimization”
will be the primary term used for the design and optimization of mesoscale lattice
structures. Figure 6 shows Bendsge and Sigmund’s interpretation of size, shape, and

topology optimization [13].
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Figure 7: A truss designed using the Michell approach.

2.2.2 The Michell Analytical Approach

Topological design methods for cellular structures date as far back as 1904, when
George Michell theorized the existence of an analytically optimum truss structure for
any given loading condition [35]. An example of a Michell truss is shown in Figure 7.

The Michell analytical formulation became the base for nearly all analytical ap-
proaches to truss design. Since then, several extensions of the Michell truss have been
developed, including those encompassing multi-material design, non-linear behavior,
and for structures containing pre-defined lattices [22, 47, 44]. However, the Michell
approach to truss design does not lend itself to well to manufacture and is generally

restricted to two-dimensional scenarios [61]. It is therefore very limited in application.
2.2.3 Optimization Approaches

Since the development of the Michell approach to truss design, two broad topological
optimization approaches have been introduced: the homogenization (continuum) ap-
proach and ground truss (discrete) approach. It is important to note that topology
optimization is intrinsically a discrete optimization problem [49]. However, because
discrete optimization can be highly unstable, both approaches use continuous design

variables to characterize the discrete problem [60].
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Figure 8: An example of the homogenization approach to lattice design [13].

2.2.3.1 The Homogenization Approach

The homogenization approach uses a continuum mechanics approach to topology
design [12]. In the homogenization approach, a representation based on composite
materials is used. A material density function, p, models an infinite number of peri-
odically distributed microstructures with small holes, or voids. From the macroscopic
perspective these voids allow any point in a structure to be fully occupied, partially
occupied, or unoccupied by a material; areas in the structure that have densities
at or near a value of 1 are filled with material while areas with densities near zero
contain no material. Other microstructure representations have been developed as
well, including the micro-microstructure, rank laminate composite, and free mixture
representations [12]. An example of the homogenization approach is shown in Figure

8.
2.2.3.2  The Ground-Truss Approach

In the ground truss approach, the optimum topology is a subset of a ground truss: a
complete graph of all the struts among all the nodes in a cellular structure. Here, the
cross-sections of the truss members become the design variables of the optimization
problem. These cross-sections are sized against the specific loading conditions of
the structure. Cross-sections that tend toward values of zero are removed from the

structure to obtain the optimum [23]. It is important to note that the ground-truss
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Figure 9: An example of the ground truss approach to lattice design [13].

approach is inherently a sizing optimization problem. However, the problem becomes
a topological optimization problem when struts are removed from the structure [14].
For the ground truss approach, the design problem for a typical single load situation
is formulated as minimizing compliance and volume subject to static equilibrium and
stress constraints [9]. Further research has gone into expanding the ground-truss
approach to include the nodes of the ground structure as design variables in addition
to the cross-sectional areas of the struts [7, 59]. This is done to reduce the dependency
of the ground-truss approach on the initial lattice configuration [7]. An example of

the ground truss approach is shown in Figure 9.
2.2.3.3  Comparison Between the Ground-Truss and Homogenization Approaches

Both approaches to topology design have their own sets of advantages and disad-
vantages. For instance, the homogenization approach allows for true topology op-
timization without the need to remesh the finite-element model [12]. Furthermore,
implementation of optimization routines may be simpler [48]. However, because the
homogenization approach is a continuum approach and topology optimization is dis-
crete problem, ambiguities can arise in the definition of material allocation. Research
has been conducted to alleviate this issue, but the problem has not been completely
solved [28, 62].

The ground structure approach, on the other hand, is a more discrete approach
and does not suffer from the ambiguity problems of the homogenization approach.

However, the ground structure approach is highly dependent on the starting lattice
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topology of the structure [7]. As a result, this approach is generally faster than the
homogenization approach, but cannot generate results as accurate as the homoge-

nization method [53].

2.3 Multi-variable Optimization Algorithms

Regardless of whether a continuum or discrete approach is used for the design of cel-
lular structures, an optimization still must be conducted. Optimization algorithms
vary widely depending on the type of design problem and task. For instance, Rao
recently divided optimization techniques into three categories: mathematical program-
ming techniques, stochastic process techniques, and statistical methods [40]. However,
Rao also recognizes that new optimization techniques cannot be classified cleanly into
any of these three categories and has specified a new class of techniques: modern and
non-traditional optimization techniques. This classification incorporates algorithms
such as genetic algorithms, particle swarm optimization, and neural networks [40].
However, the optimization algorithms that are of particular interest in the topolog-
ical optimization of truss structures are those that are specialized to solve design
spaces that are nonlinear and constrained. These optimization algorithms can be
classified into two broad categories: indirect methods and direct methods [16, 45].
Direct methods, such as mathematical programming, generally require some form
of gradient calculation. Although these methods are fairly robust, they can also be
time-consuming because the gradient calculation is inherently complex [45]. Indirect
methods, on the other hand, do not use gradients to determine optimality. Instead,
the use other criteria to guide optimization. For instance, a typical indirect approach
may use “penalty-functions” that make the objective function less optimal as the so-
lution approaches a constraint [16]. The Michell truss, which requires that all struts
in compression and tension have identical stress, is also an example of an indirect

optimality criterion [61]. In many cases, these indirect optimality criterion, such as
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uniform stress, are equivalent to more direct criterion, such as compliance, and as
such provide the same solution [38].

In this research, three particular optimization algorithms are either discussed
or utilized: Particle Swarm Optimization (PSO), Least-Squares Minimization, and

Active-set programming.
2.3.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic optimization method that can
be either an indirect or direct method, depending on the problem definition. It
is an extension of genetic algorithms (GA) that specifically performs parametric and
limited topological optimization of structures and compliant mechanisms. The driving
concept of PSO is the movement of birds in a flock, where individuals adjust their
movement according to their experience and other individuals’ experiences in the
flock during search for food [32]. The optimization is considered stochastic because
the behavior of the swarm is governed by psuedo-random numbers used to create
initial values for the swarm. It combines local search with global search, and enables
cooperative behavior among individuals, as well as the competition modelled in GA.
Hence, PSO often converges more quickly than GA and is less sensitive to local
minima [53].It is important to note that PSO was not used directly in this research,

but was used in previous research regarding the SMS method [27].
2.3.2 Least-Squares Minimization

In least-squares minimization the achievement of target values of goals can be for-
mulated as a regression problem, which has similarities to formulations in inverse
design and parameter estimation [36]. For cellular material design, the number of
design variables far exceeds the number of objectives, which is similar to fitting a
low order polynomial model to a large data set. In particular, some iterative meth-

ods have been developed to solve nonlinear problems, such as the Gauss-Newton and
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Levenburg-Marquardt methods [39]. In this research, the Levenburg-Marquardt (LM)
is used because of its robustness and reliability in non-linear problems. In this re-
search, the MATLAB nonlinear least-squares solver lsgnonlin is used as the primary

least-squares solver.
2.3.3 Active-Set

The active-set algorithm is a mathematical programming algorithm that is particu-
larly well-suited for the optimization of large-scale optimization problems [26]. As the
name suggests, active-set methods aim to predict which of the inequality constraints
are active in a given minimization function. By determining which set of constraints
are active and which are not, this algorithm can reduce complexity and, subsequently,
optimization time. In this research, the MATLAB function, fmincon is used as the
active-set solver. In particular, the implementation of the active-set method in MAT-
LAB is coupled with Sequential Quadratic Programming (SQP) methods, which are
highly efficient non-linear programming methods, to solve the quadratic program-
ming problem at every iteration [6]. The implementation also uses solutions to the

Karush-Kuhn-Tucker (KKT) equations in order to enforce active constraints.
2.3.4 Other Topological Optimization Algorithms

In addition to the three algorithms listed above, other synthesis methods have been
explored. Recently, an exploratory framework was developed that can minimize the
risk of structural failure by integrating a topology optimization method and a relia-
bility assessment technique [37]. In this method, a Genetic Algorithm (GA) method
is used as the optimization routine and Latin hypercube sampling is conducted for
the estimation of reliability constraints. In general, GA’s have become more widely
used in the synthesis of structural components because their evolutionary nature is

well suited for exploring complex design spaces typical to cellular materials [56].
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2.4 The Original SMS Method

Although the algorithms used in the design of the mesoscale truss structures differ
greatly, these methods all share a common similarity: they all perform some form of
a multivariable, topological optimization. Depending on the size and complexity of
the structure and the design parameters, the number of design variables used in the
topological optimization can be prohibitively large. For instance, it is not uncommon
for structures designed using the ground truss approach to have design variables num-
bering in the hundreds of thousands. Consequently, these topological optimizations
can be computationally expensive and time-consuming and are generally the primary
bottleneck in the design of truss structures. These optimizations provide the primary
motivation for the development of the SMS method. In particular, the SMS method
attempted to answer the research question: Can a design method for mesoscale truss
structures be developed that does not require a time-consuming, global optimization of

diameter values?
2.4.1 Approach

The original Size, Matching, and Scaling method attempted to remove the need for
topological optimization by combining information from two different sources: a finite-
element analysis and a library of truss configurations specialized for specific loading
conditions, termed the “unit-cell library.” From the solid-body FEA, the SMS method
would find the relative stress distribution throughout the structure. Using this stress
distribution values, the method would then use the unit-cell library to assign a lattice
topology. The original SMS methodology is shown in Figure 10.

The library that was used in this iteration of the SMS method contained only one
entry: a cube containing struts along each edge and diagonal trusses connecting the
corners of each face of the cube. This unit-cell configuration is shown in Figure 11.

The configuration shown in Figure 11 was then optimized intuitively by Graf for 6
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Figure 10: The original SMS method [27].

stress directions and placed into the unit-cell library. The original unit-cell library

that was used is shown in Figure 12.
2.4.2 Results

This original implementation was validated against two multi-variable topological op-
timization routines utilizing the ground truss approach: particle swarm optimization
(PSO) and least-squares minimization (LM) [27]. When compared to the PSO and
LM optimization routines, the SMS method was able to formulate a design consider-
ably faster than either of the optimization methods. When the performance results
between the PSO, LM, and SMS methods were compared, the results were highly
comparable. This research was ultimately able to validate the SMS method as a

viable alternative to optimization.
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Figure 11: The crossed configuration used in the original unit-cell library [27].
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Figure 12: The original unit-cell library [27].
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Figure 13: The octet configuration.

2.5 Unat-Cells

In addition to the “crossed” unit-cell configuration outlined by Graf, other unit-cell

configurations have been researched. These configurations are outlined in this section.
2.5.1 The Octet Configuration

The octet configuration, shown in Figure 13, is a configuration that attempts to
prevent the elastic buckling of struts. By eliminating failure due to bending, the
structure can then allow the strength and structure of the truss to be stretching-
dominated. Analytical and FE results have indicated that this structure performs

favorably against metallic foams [20].
2.5.2 The Cantley Configuration

The Cantley configuration, developed by Richard Cantley, is “a molded plastic truss
work includ[ing] an upper grid and a lower grid, with a plurality of interconnecting
members interconnecting the grids.” The configuration, shown in Figure 14, is specifi-

cally designed to be created in a two-part plastic mold [15]. In particular, the Cantley
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Figure 14: The Cantley configuration.

features a single configuration that can be repeated to create a lattice sheet.

2.6 Gap Analysis

Although the SMS approach to truss design was very promising, the actual method
developed was highly conceptual and suffered from gaps in implementation. In par-

ticular, two key issues needed to be further explored:

1. The SMS method lacked a true systematic methodology. In particular, the
allocation of diameter values to lattice topologies lacked a robust and repeat-
able implementation. Additionally, the assumptions driving the allocation of

diameter values were not sufficiently explored.

2. The unit-cell library utilized by the method contained only one unit-cell config-
uration. In order to maximize usage of the unit-cell library, more than one entry
must exist in the library. Furthermore, the unit-cell selection process must be

re-evaluated in order to select the best configuration for a given stress condition.

These two issues form the primary motivation for the modification and improve-
ment of the SMS method. In order for the method to be a viable alternative for the

design of truss structures, these issues must be addressed.
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2.7 Summary

In this chapter, research related to the design of mesoscale truss structures and the
Size, Matching, and Scaling method was presented. Through this review, it can be
seen that the problem of design and optimization cellular structures is not a new
problem: much research has been conducted on the issue as far back as the turn of
the last century. Several approaches, both analytical and optimization-based, have
been presented and heavily studied. Several individual algorithms well-suited for
the optimization of the large design-spaces present in the design of mesoscale lattice
structures have been presented. These algorithms can range from traditional math-
ematical programming methods such as least-squares minimization and active-set
optimization, to modern, non-traditional means, such as particle swarm optimization
and genetic algorithms.

However, regardless of the optimization method or approach used, optimization is
still required. It can be seen that this optimization is by far the most time-consuming
and complex part of the design process. In his research, Graf attempted to circumvent
the need for optimization by using a novel approach, the “unit-cell approach,” for the
design of mesoscale lattice structures. The method that was developed, the original
“Size, Matching, and Scaling” method, showed highly promising results: stiffness and
strength characteristics were comparable while design time was drastically reduced.

However, the method suffered from key drawbacks relating to the implementation
of the method. In particular, the determination of diameter values lacked a reliable
and systematic method. Furthermore, the library that was utilized in the generation
of lattice topologies was not sufficiently explored. In order for the Size, Matching,
and Scaling method to become a viable alternative for designers, these issues must be
addressed. As a result, these issues form the key components of the research questions
outlined in Chapter 1. In order to address these issues, both the SMS method and

the unit-cell library must be modified. In the following Chapters 3 and 4, the method
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and library will be modified and tested in order to address the research questions

outlined in Chapter 1.
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CHAPTER II1

THE MODIFIED SMS METHOD

In this section, the improved Size, Matching, and Scaling Method will be presented.
The modified method attempts to resolve technical and conceptual issues that arose
during the first implementation of the method. In particular, this design method
attempts to utilize the unique features of the unit-cell approach to generate a nor-
malized structural topology. By combining this topology with an optimization of the
minimum and maximum diameter values of the structure, the SMS method will be
able to design successfully an MSTS without the need for a rigorous, global topological

optimization.

3.1 Problem Formulation

In order to develop the SMS method, the inputs, outputs, constraints, and objectives
must all be properly elicited. However, before this process can occur, the general de-
sign problem for mesoscale truss structures must first be formulated. This formulation

can then be adapted for the specific characteristics of the SMS method.
3.1.1 General Problem Formulation

In the design of meso-scale truss structures, each design problem will differ depending
on the loading conditions, geometric properties, and desired performance. However,
these problems have core similarities and can thus be characterized by a general
problem formulation. This formulation can be approached as a multi-objective design
problem with elements of both size and topological optimization. In order to clearly
formulate the design problem at hand, the Compromise Decision Support Problem

(¢cDSP) method is used [46]. The general qualitative formulation for the design and
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Table 2: Qualitative formulation of the meso-scale truss structure design problem.

Given: Starting optimization ground structure, loading and
boundary conditions

Find: Strut diameter sizes

Satisfy: Upper and lower diameter bounds, maximum volume con-

straint, maximum stress constraint

Minimize: Compliance, deviation from target volume

Table 3: Mathematical cDSP formulation of the meso-scale truss structure design
problem.

Given: pP<, pt, pM, i

Find: D; € {0, [Drp, Dusl} (2)

Satisfy: 0 < Omag (b)
V < Vinae (c)

Minimize: Z = (W, x d)* + (Wy x V)? (d)

optimization of MSTS using the ground structure approach is provided in Table 2.
The mathematical equivalent of Table 2 is provided in Table 3.

In Table 3, the symbols p?%, p'" and pM represent the initial geometric, loading,
and material properties, respectively. The symbol D; represents the diameter value
of each of the ¢ struts in the truss structure. Dpp and Dyp represent the lower
and upper bounds for D;, respectively. The symbol o; represents the axial stress
value in each ¢ strut. The symbols V' and d represent the volume and deformation
of the structure and W, and Wy represent weighting variables for d and V' in the
minimization function, Z.

As can be seen in Tables 2 and 3, the ground structure problem formulation
requires that there be a starting topology in order to perform optimization. The
topology of this structure is generally provided by the designer and contains a large
number of struts, each with the same starting diameter value. These diameter values
must be optimized in order to generate the optimal structure topology. As can be seen
in (a) of Table 3, the diameter values can either be within the specified upper and lower

diameter bounds, or zero. If all diameter values remain within the diameter bounds,
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then the optimization problem becomes a size optimization problem. However, in
most cases, diameter values will drop below the specified lower bounds. In this
case, the diameter values become zero and the strut is essentially deleted from the
structure. This scenario changes the optimization from a size optimization problem to
a topological optimization problem as well, since the actual topology of the structure
has changed. In the minimization function, (d) of Table 3, the volume, V', is calculated
simply as the sum of the volumes of all the struts in the structures, which are assumed

to be cylinders:

V = Z T X &2 X (2)
4

Here, I; represents the length of each of the ¢ struts in the structure. It is important
to note that there may be overlapping volumes in locations where struts meet that
are not subtracted from the overall volume. In order to simplify the design problem,
it is assumed that these overlapping regions have a negligible contribution to the net

volume of the structure.
Although the volume of the structure can be determined directly using Equation
2, the deformation, d, does not have a set equation. This lack of an equation occurs
because the deformation does not represent a specific metric, but instead represents
any value that is directly proportional to the stiffness of the structure. In most cases,
d is represented by the net displacement of the structure or the displacement of a
particular point on the structure. However, d can also be represented by other values

directly proportional to stiffness, such as compliance, strain energy, or work.
3.1.2 SMS Problem Formulation

Tables 2 and 3 are formulations for design methods that require a global optimization
of strut diameter sizes in order to perform size or topological optimization. Because

the SMS method is also a size/topological design problem, it will have a problem

40



Table 4: Qualitative cDSP formulation for the SMS design problem.
Given: Bounding dimensions and unit-cell distribution within the
bounding dimensions, loading and boundary conditions,

material properties, unit-cell library configurations

Find: Lattice topology in each unit-cell region, strut diameter
values
Satisfy: Upper and lower diameter bounds, target volume, maxi-

mum stress constraint
Minimize: Compliance

Table 5: Mathematical cDSP formulation for the SMS problem.

Given: pBG7 pFa pMa pUC7 Sﬁk) ia k

Find: Di,k = [S;fj X Sjl:k X (Dmam — Dmm)] + Dmm (a)
Dmin7 Dmax (b)

w Zo'nfo'?jin

Sty = T g, jn (c)

SatiSfy: DLB S szn S Dma:c S DUB (d>
0; S Omax (e)

2
Minimize: Z = (W, x d)” + (WV X V‘_/tVt> (f)

formulation similar to the general formulations. However, the SMS method uses the
unit-cell approach for topology generation and does not require a global optimization.
Therefore, the problem formulations presented in Figures 2 and 3 must be modified
to reflect the unique characteristics of the SMS method. The modified qualitative for-
mulation is presented in Table 4. The modified quantitative formulation is presented
in Table 5.

In Table 5, the symbols ¢, j, and k represent each unit-cell region in the structure,
each unit-cell configuration in the unit-cell library, and the strut number in each of
the j configurations in the library, respectively; n symbolizes the nodes from the
solid-body analysis.

As seen in Tables 4 and 5, the SMS formulation contains key differences from the
general formulation. Firstly, it can be seen that more information is provided ini-

tially to the SMS method. The general optimization problem only requires a starting

41



topology and loading conditions; the SMS method, on the other hand, requires addi-
tional sources of information, particularly from the unit-cell library and finite-element
analysis. Secondly, instead of starting topology, the SMS method requires only the
bounding dimensions of the structure and information regarding the distribution of
unit-cell regions across the structure. The most significant change, however, is shown
in (a) of Table 5. Here, the determination of the strut diameters, D; x, differs consid-
erably. It can be seen that four values must be known before D, j, can be determined:
minimum and maximum diameter values, D,,;, and D,,.., a stress scaling factor, S;fj,
and a unit-cell scaling factor, S]Lk Furthermore, it can be seen that the two scaling
factors, S ij and S}';, are provided by external sources of information: the unit-cell li-
brary and the solid-body stress analysis. Therefore, only two-values, D,,;,, and D,
need to be determined through optimization.

The optimization of D,,;, and D, is performed using the minimization function,
Z, shown in (f) of Table 5. The equation has two contributing components, the
structural deflection, d, and the structural volume, V', of the truss structure. In
particular, the minimization function is formulated to minimize the deflection of the
structure and the deviation of the structural volume from a target volume, V;. Both
components also have a weighting value associated with them, W, and Wy, in order
to adjust the relative importance of each component. Both these components are
formulated in a least-squares format.

In order to successfully optimize both D,,;, and D,,.., both the deflection, vol-
ume, and associated stresses must be calculated at any given time for any value of
D,nin and D,,,... These values are calculated using a finite-element analysis of the
truss structure. In implementation, the finite-element package that was utilized was
developed in MATLAB by Honqqing Vincent Wang in satisfaction of his doctoral

dissertation [54]. The finite-element package assumes that each truss element in the

truss structure has beam-like behavior.
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When compared with the general problem formulation in Table 3, the principal ad-
vantage of the SMS method becomes apparent. Whereas the formulation for the SMS
indicates that only D,,;, and D,,., need to be determined, the general formulation

requires that every diameter be determined individually through optimization.

3.2 SMS Method Overview

With the design problem formulated, the SMS method can be developed. This method
can be divided into seven discrete tasks that are completed in six individual steps.
These steps are summarized in Figure 15.

For each step outlined in Figure 15, there exists a specific output, or deliverable,
from that step, shown in the hexagonal boxes under each step. The deliverable from
each step is used in the subsequent step as the primary input. The only exception to
this rule occurs in Step (3). This step requires two inputs from both Steps (2a) and
(2b). In addition, it can be seen that the unit-cell library is utilized in the fourth step

of the SMS method. The unit-cell library is explained in more detail in Chapeter 4.

3.3 Detailed Description of Each Step of the SMS Method

In the following sections, each step of the SMS method will be outlined. The descrip-

tion of the steps of the SMS method will be provided in the following format:

e Detailed description of the step: In this section, the actual step will be

discussed in detail.

e Primary deliverable of the step: The ultimate deliverable, or result, of the

step will be discussed.

e Additional information: Any notable information about the step that does
not describe the actual proceedings of the step will be discussed. This section
can include information such as assumptions made in the step, limitations of

the step, and the storage format of data.
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1. Specify Initial Conditions

l—< Design Task >—l
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Geometry Solid Body Model
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v
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< Completed Structure >

Figure 15: Summary of the SMS design methodology
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3.4 Step 1: Specification of Initial Conditions
3.4.1 Method

In the first step of the SMS method, all initial properties are specified for the target
truss structure. These properties encompass a large number of parameters and depend
uniquely on the design task. Generally, the larger and more complex the design task is,
the more initial parameters are required to fully characterize the design problem. All
initial conditions fall broadly into two categories: geometric properties and analytic
properties. Geometric properties are all values and characteristics relating to the
dimensions of the target structure and unit-cells. Analytic properties encompass all

values that are needed to perform stress analysis.
3.4.1.1 Geometric Properties

The geometric properties for the design problem include all parameters that char-
acterize the size and shape of the target truss structure. Specifically, they relate to
all values that specify either the bounding geometry or the unit-cell characteristics of
the target structure. Depending on the complexity of the component in considera-
tion, there can be a high variability in the number of these parameters. For simple
and highly symmetric structures, such as beams or columns, only a small number of
parameters, such as the length and cross-sectional shape, need to be specified. More
complex and specialized structures will require the actual component to be designed
manually, with each dimension of the part clearly defined.

Specification of the unit-cell properties requires definition of the size, shape, and
distribution of the unit-cells composing the target structure. These properties are
based largely on the designer’s preferences and are generally not independent of one
another. For instance, specifying a larger unit-cell size will result in a lattice structure

with fewer and longer struts, but will also result in fewer unit-cells distributed across
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the structure. It is also important to note that there are restrictions in the specifi-
cation of unit-cell properties. For example, only one unit-cell size can be determined
for the entire structure. Also, unit-cells can only maintain a rectangular prism shape.
Components with more complex or curved geometries, such as cylinders and spheres,

must be approximated using these rectangular prisms.
3.4.1.2  Analytical Properties

The analytical properties of the truss structure relate to the specification of all param-
eters that will be needed in the finite element analysis of the truss structure. These
values include material properties, such as the Poisson’s ratio and Young’s Modulus of
Elasticity, as well as the necessary loading and boundary conditions. The properties
specified here will be used in the structural analysis of both the truss structure and

the solid-body representation.
3.4.2 Primary Deliverable

The primary deliverable in this step of the SMS method is a compilation of all geo-
metric dimensions, material properties, and loading conditions of the structure. Ulti-
mately, at the end of this step, the design problem should be clearly and unambigu-
ously defined. The values defined in this step will be used throughout the remaining
steps of the SMS method. After the primary deliverables have been defined, the SMS
method should be able to run autonomously without intervention from the designer.

The actual data storage format for the deliverable of this step currently is a series
of variables stored in files that can be accessed by any of the steps in the SMS method.
As mentioned in the step, the number and type of variables differs greatly with the
type of design problem. However, there will always be variables that are commonly
defined for any design problem, such as loading and fixity conditions and material

properties.
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3.4.3 Additional Information

This first step of the SMS method is ideally the only step where the designer must
input design values. Therefore, the method assumes that the structural values are
clearly, correctly, and unambiguously defined. An incorrect value will either cause
the SMS method to incorrectly design the truss structure or result in a failure of the
method. The first step can alternatively be thought of as the “problem definition”
task of the design process and can be considered external to the actual SMS method
itself, as no work is actually done in this step save for the definition of several variables

and values.

3.5 Step 2a: Generation of a Ground Structure
3.5.1 Method

For this step of the design methodology, the ground, or base, structure of the meso-
scale truss structure is created. The ground structure is simply the bounding geom-
etry of the truss structure with the unit-cell divisions clearly defined. The structure
does not contain any struts or material, but instead represents a hypothetical space
containing the bounding dimensions of the target structure. This space is divided
into several identically sized, cuboid, meso-scale regions. By dividing the structure in
this way, each cuboid region can be isolated and analyzed independently from other
regions. These regions are delimited by nodes at the vertices of each region. Further-
more, these nodes also serve as the end and starting points for struts when the base

structure is filled with struts.
3.5.2 Primary Deliverable

At the end of this step, the ground structure should be successfully generated. This
includes not only each and every node number and coordinate in the geometry, but

also the set of nodes associated with each unit-cell region in the structure. Because
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the unit-regions are cuboid in shape, there must exist eight nodes for each of the
unit-cell regions. Furthermore, these nodes must be defined in a certain manner such
that the orientation of the local coordinate system of the region is known relative
to the global coordinate system of the structure. More information is provided in

Chapter 4.
3.5.3 Additional Information

The determination of the ground geometry should ideally be an autonomous step
where the geometric and unit-cell information entered in the first step is converted
seamlessly into a geometry. However, in its current implementation, the SMS method
is unable to generate a base geometry without manual guidance. This is because the
generation of a base geometry is inherently a difficult one. The process for determining
the base geometry is very similar to the mapped meshing process in the finite element
method. Because the shapes of the unit-cell regions must be hexahedral, a free mesh
using tetrahedrons is insufficient and a mapped mesh is required. This mapped mesh
generally requires manual involvement in defining mesh sizes. As a result, the meshing
(and the base geometry generation process) is usually one of the most time-consuming
aspects of the finite-element approach [34]. Much work has been developed attempting
a free mesh-approach for the development of truss structures [24]. However, this
approach was not implemented in this work and a manual, 3-D mapped approach
was used for all design problems.

The ability to define the size of unit-cell regions in the ground geometry brings
about the possibility of there being and “optimal” unit-cell size and distribution: one
that will maximize the performance of the truss structure. Because the generation of
base lattices is entirely manual at this stage of research, it is not possible to optimize
the unit-cell size. However, it is believe that the unit-cell size will have an impact on

structural performance. This concept will be a topic of future work.
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It should also be noted that, because the ground structure requires that the struc-
ture be divided into uniformly-sized hexahedral regions, any structure with shapes
that cannot be divided cleanly into these regions, such as tetrahedrons and highly
curved surfaces, must be approximated using hexahedra. Furthermore, the completed
structure must not have any overlapping regions or nodes. The existence of these over-
lapping regions or nodes will not necessarily halt the SMS method, but will cause the
method to return a truss structure design that has an undesired performance due to

unknown interactions between the adjacent unit-cell regions.

3.6 Step 2b: Solid Body Analysis
3.6.1 Method

In this step, a stress analysis must be performed on a solid-body structure of the
bounding dimensions of target structure using the loading and fixity conditions spec-
ified in Step 1. The ultimate goal of this step is to obtain the relative stress distri-
bution across the solid-body structure and extrapolate this knowledge to determine
the relative stress distribution of the truss structure. The solid-body analysis is per-
formed using a finite-element analysis program. Once the analysis is complete, the
von Mises stress distribution of the structure is obtained. The primary deliverables
from this analysis are stress values of all the FEA nodes in the FEA program. In
particular, the stress values in the axial and shear directions are taken for each node.

It is important to note that stress might not be the only metric that can be
used to determine the relative material distribution throughout the truss structure.
Other components, such as strain or strain energy, are directly proportional to the
stress distribution and could also be feasibly used to determine lattice topology. An
example of the stress distributions, strain energy distribution, and strain are shown
for a cantilever beam problem In Figure 16. As can be seen, the distribution is very

similar for all the different metrics. Therefore, these could all be potentially used.
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Strain Distribution Strain Energy Stress Distribution
Distribution

Figure 16: Comparison of the finite-element strain, strain energy, and stress distri-
butions for a 3-D cantilever beam.

However, it is important to note that, currently, the method takes values for each
of the stress directions, 04z, 0yy, 0.z, Tay, Tas, Ty-- Because strain energy is element-
specific and does not have a direction, there is only one value of strain energy per
element. Therefore, the library as it is cannot be used because each topology is
optimized for a certain stress direction and strain energy does not have directional
components. Furthermore, because von Mises stress is a nodal value and strain energy
is an element value, a finer mesh might be required to use strain energy, because there
are roughly 8 times as many nodes as there are elements in the cantilever beam. On
the other hand, strain alone can most likely be used interchangeably with stress
because it can be broken into six directional components and it is node-specific as

opposed to element-specific.
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Table 6: Example of the nodal coordinates from a solid-body FEA.
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Table 7: Example of the stress values from a solid-body FEA.
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3.6.2 Primary Deliverable

The primary deliverable resulting from the solid body analysis should be the Cartesian
coordinates and stress values in the three axial and three shear directions for each
finite-element node in the solid-body.
ANSYS 11 analysis is shown in Tables 6 and 7.

As can be seen in Table 7, six stress values are of particular interest for use in the

SMS method: three axial stresses, 0,0y, 0., and three shear stresses, 7., Ts., Ty-.

3.6.3 Additional Information

In order for the solid-body analysis to be appropriate for usage for this step, several

criteria must be satisfied:

e The bounding dimensions and shape of the structure must be identical to the

ground structure.
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An example of the data returned from an

e The loading and fixity conditions must be identical to the ground structure.
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e The number of finite-element nodes in the structure must be equal to or greater
than the number of unit-cell regions in the target structure. In general, the
more finite-element nodes that are present in the structure (i.e. the finer the
meshing of the finite element structure), the better the approximation of the
average stress in the structure. However, a finer mesh will result in a longer

analysis and design time, so a trade-off must be made.

3.7 Step 3: Stress Normalization and Matching
3.7.1 Method

In this step of the design method, the deliverables from Steps 2a and 2b are combined
determine the stress concentrations in each of the unit-cell regions composing the base
geometry. Specifically, three sequential operations are performed on the nodal results
in sequential order: unit-cell correlation, averaging, and finally normalization. These

three operations are explained below.
3.7.1.1  Unat-Cell Correlation

In order to utilize the solid-body results to create the truss-structure, the stress
results must be correlated, or “mapped,” to the appropriate unit-cell region of the
base geometry. Essentially, the solid-body nodes are checked to find which unit-cell
region they fall into. If one of these nodes falls into the region enclosed by a unit-
cell region, then the stress values of that node are included in the calculation of the
stresses in the unit-cell region.

Once the mapping process is complete, then each unit-cell region will contain an
array of FEA nodes that will be included in the calculation of the stress distribution
in the unit-cell. If, for some reason, a unit-cell region contains no FEA nodes, then it
is assumed that that particular region has zero stress in all directions. Also, if there
is a scenario where a FEA node exists on the border between multiple unit-cells, it

will be included in each of these respective unit-cells.
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3.7.1.2  Averaging

Once the correlation procedure is completed, each unit-cell region will contain a set
of FEA nodes. In order to determine the overall stress in each unit-cell region, the
stress values of all the FEA nodes in the array will be averaged. As seen in Table 7,
each node contains six stress values. Each of these six stress values is averaged for all
nodes present in the unit-cell region. It is important to note that only the absolute
value of the stresses are averaged since only the magnitude, not the direction of these

stress values is important for determining the overall stress of the unit-cell region.
3.7.1.8  Normalization

The final operation is the normalization of the stress results to between zero and one.
The exact stress values returned by the nodal FEA solution are relevant only for a
solid-body structure. The exact value therefore cannot be used in the SMS method
because they will not match the stress values in an equivalent truss structure. Instead,
it is more important to know the relative distribution of stresses in the solid-body
analysis than the stress values themselves. Since the actual values are not necessary,
they are normalized to between zero and one. This normalization is performed for
two reasons. First, the normalization removes superfluous stress information from the
analysis, allowing results to be interpreted more easily. In this case, the normalization
allows the largest stress value corresponds to a value of one and the smallest stress near
a value of zero. Second, the normalized values will allow the mapping of specialized

unit-cells to the truss structure to be accomplished much more easily.
3.7.2 Primary Deliverable

The final result of this step of the SMS method should be the ground structure of the
SMS method with each of the unit-cell regions containing the average stress values for
the entire region. It is important to note that each region will contain six stress values,

three axial and three shear: 0.4, 0y, 02, Tay, Toz, Ty-. These values are normalized to
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between zero and one across the entire structure.
3.7.3 Additional Information

In order for this step to be successful, there must exist at least one FEA node per
region in the structure. Thus, it is important to have a finite-element model that is
finely meshed enough so there are a sufficient number of nodes for each region in the
structure. If no nodes exist in the structure, then the method assumes that there is
zero stress in the structure. Therefore, during the fourth step, no topology will be
mapped to the structure and a blank space will exist in the region.

A critical assumption that the method makes in this step is that the average stress
in the region is a good approximation of the overall stress distribution in the region.
However, if there is a region where the stress varies considerably and the average stress
is not representative of the local stresses, then the assumption will not be valid. To
counter the possibility of this issue occurring, it is important to specify an accurate
unit-cell size such that each region only encompasses small stress variations that can

be accurately modelled using an average value.

3.8 Step 4: Topology Generation
3.8.1 Method

With the average, normalized stresses known for each unit-cell region, the unit-cell
library can be used to map specialized unit-cells to the unit-cell region. Each region
in the base structure is scanned. Then, based on the six stress values, a unit-cell
configuration is selected and mapped to the region. This process continues iteratively
across all the unit-cell regions until all the regions are mapped. Once this process is
completed, the topology of the structure will be completed. A more detailed expla-

nation of the selection and mapping process is provided in Chapter 4.
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3.8.2 Primary Deliverable

At the completion of this step, the ground-structure will have a topology specialized
for the anticipated stress distribution of the structure based on the solid-body anal-
ysis. It is important to note that because all the strut diameters lie between zero
and one, the structure at this point essentially contains only topological data for a
normalized loading situation. In this topology, the relative diameter sizes are known
relative to each other; a strut with a diameter value of one is the thickest relative
strut in the structure. Alternatively, a strut with a value at or near zero will be the
thinnest relative strut in the structure; every other strut diameter is known relative
to the other strut values. The normalized diameters must be associated with actual

diameter values based on the loading conditions of the structure.
3.8.3 Additional Information

The success of this step is highly contingent upon the accuracy of the unit-cell library
and of the base configuration. The method assumes that the unit-cell configurations
are all correctly optimized and their directions are correctly oriented with the truss
structure. The step also assumes that the base structure and each unit-cell region is
oriented correctly. If the local coordinate system of both the unit-cell configuration
and the unit-cell region are not oriented in the same direction as the global coordinate
system, then the topology will be mapped incorrectly and the truss structure will

perform sub optimally.

3.9 Step 5: Unessential Strut Remowval
3.9.1 Method

In this step, struts that are deemed unessential for the optimal performance of the
structure are removed from the structure. These struts can be classified into two

types of struts: ambiguous struts and dispensable struts.
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3.9.1.1  Ambiguous Struts

Ambiguous struts are those struts that should not exist within the truss structure.
For instance, ambiguous struts can be multiply-defined or overlapping struts in the
structure. These overlapping struts often exist because adjacent unit-cell regions often
have identical struts on their shared planes. To resolve this conflict, the largest strut
of the duplicate struts is kept and the smaller struts are removed. This process ensures
that the remaining strut is adequately large enough to support all the stresses of both
unit-cell regions. Other ambiguous struts can include struts with zero diameter sizes
or that have the same beginning and ending points. The removal of such ambiguous
struts can be considering a “book keeping” step, where the majority of flaws created

during the first four steps are removed from the structure.
3.9.1.2  Unnecessary Struts

Unnecessary struts are those struts that have negligible contribution to the overall
performance of the truss structure. These struts are removed from the structure
in order to reduce the overall normalized volume of the structure. This, in turn,
will improve the results of the final step of the method, when diameter values are
determined for the structure.

The previous iteration of the SMS method used a simple algorithm for the removal
of unnecessary struts. This method used the concept of a cutoff diameter, D yorf-
Deytops can be defined as a value between D, and D,,,, where all struts with

diameter values below this value are removed from the structure:

Dcutoff =cX (Dmax - Dmm) + Dm'm (3)

where ¢ is a decimal value between zero and one. In the previous SMS method,
c was set as 2.5%, or 0.025. D u,rs was initially used because it is observed that

some diameter values at or near D,,;, are either too small to be fabricated by AM,
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or too small to provide any stiffness or strength to the truss structure. For simple
problems, the implementation of D, fs Was successful in reducing structure volume
without significantly reducing structural performance. However, in this research, it
was determined that when the use of Dy was scaled to larger, more complex
problems, critical struts for the performance of the structure were removed because
the method did not take into account interactions between these struts and adjacent
struts. Furthermore, the method tended to leave “floating struts” that did not have
any function. Based on these results, it was determined that a “cutoff” approach to
strut removal was ineffective for all problems. However, a sufficient method has not

been determined yet for the removal of dispensable diameters to replace this approach.
3.9.2 Primary Deliverable

The primary resultant deliverable of this step is the normalized topology with all am-
biguous and dispensable struts removed from the structure. The removal of all these
struts will ensure not only an accurate determination of the volume and deflection of
the truss structure, but the elimination of errors involving overlapping struts during

the final step of the SMS method.

3.10 Step 6: Diameter Sizing
3.10.1 Method

In the previous step, the topology of the truss structure was successfully defined.
However, before the structure can be successfully manufactured, the normalized di-
ameter values must be correlated to real diameter values. This assignment of diameter
values is done here in Step 6. Since the topology is already known, then the diam-
eter values relative to each other are also already known. Therefore, only a few key
diameter values are required to determine all other diameter values in the SMS struc-
ture. In particular, as seen in the problem formulation in Figure 5, two key diameter

values must be determined: a maximum allowable diameter, D,,,,, and a minimum
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allowable diameter, D,,;,. The maximum diameter value corresponds to the thickest
diameter in the structure and the minimum diameter corresponds to the thinnest
strut in the truss-structure. Once the minimum and maximum diameters are found,

then the remaining diameters can be determined using Equation 4 below:

D@k = I:S’Zf] X S]L,k X (Dmax - Dmm)] + Dmm (4)

where S}'; is a scaling factor taken from the unit-cell library, Sﬁk is a scaling
factor associated with the solid-body finite element analysis, and D,,;, and D,,,, are
the minimum and maximum diameters respectively. The two scaling terms, S5;'; and
SjL’k, are already found previous to this step. Therefore, in order for this step to be
completed, only D,,;, and D,,., need be determined. Therefore, the design problem

becomes a two-variable design problem with D,,;, and D,,,, as the primary design

variables.
3.10.1.1  Determination of D, and Dz

To determine the values of D,,;,, and D,,,, in the structure, the problem formulation
provided earlier must be utilized. As the problem formulation states, the target truss-
structure must satisfy a maximum volume constraint while attempting to minimize
compliance. These two goals will have contrasting effects. The volume constraint will
attempt to drive the volume, and thus the strut diameter values, down. Conversely,
the compliance constraint will drive the volume up. By using these constraints with
the current normalized geometry, optimal values of D,,;, and D,,,. can be found.
The objective function, (e) in Figure 5 can be rewritten as a function of D,,;, and

D in Equation 5,

V DminaDmax _V ?
F(szna Dmaz) = (Wd X d<Dmin7Dmam))2 + (WV X ( ) t) ) (5)

Vi
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where the volume, V(D,nin, Dmaz), and the deformation, d(Dyin, Diaz ), are func-
tions of D, and D, only. It is important to reiterate that deformation, d, does
not correlate to a specific metric, but instead represents any unit of measure directly
proportional to structure compliance, such as tip deflection or work. It is also im-
portant to note that there is no target deflection variable as there is a target volume
variable, V;, because the target deflection is always set at zero, d; = 0.

With an objective function provided, D,,;, and D, can be determined by per-
forming a two-variable minimization. Because of the nature of the design problem, the
optimization of D,,;, and D,,., is a non-linear, constrained, optimization problem.
In this research, two optimization approaches will be taken to determine D,,;, and
D, ez the Levenburg-Marquardt least squares regression approach and a constrained
minimization approach using the active-set algorithm discussed in Chapter 2. The
Levenburg-Marquardt approach was utilized because it already had documented suc-
cess in previous research on the optimization and design meso-scale truss structures
[18]. The second algorithm, the active-set algorithm, was utilized because it is an
algorithm that is documented to have success in the optimization of multivariable,
non-linear, constrained optimization problems [6]. These two algorithms use different
approaches in the optimization of the design problem and will be compared in order
to determine if there is a difference in design performance when different algorithms

are used.
3.10.1.2 A One-Variable Approach to Determining D,,in and D,z

In previous research, it was determined that a possible relationship could exist be-
tween D,,;, and D,,... In his research, Graf noted that, for a specific target volume,
any structure designed using the SMS method had the highest strength when an
approximate D,/ Dpmas ratio of 28% was achieved. When the target volume was

varied, this assumption appeared to hold true within a tolerance of +2%. Figure
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Figure 17: A survey of the relationship between D,,;,, and Dppeq [27].

17 shows this correlation for a cantilever truss structure designed using the SMS
approach. Here, for a constant D,,;, value, the D,,,, was varied and the tip dis-
placement was recorded. For a specific volume, the lowest tip placement occurred
when the D,in/Dias value reached 28%. The discovery of this relationship had a
significant effect. Using this assumption, the minimum diameter could be expressed

as a function of the maximum diameter:

Diin = 0.28 X Dias (6)

When Equation 6 is plugged into the diameter determination equation, Equation

4, the equation becomes,

Dy = [0.72(S¥; x SH) 4 0.28] X Dinga- (7)

Thus, the diameter determination equation can be reduced from a two-variable

equation to a one-variable equation and only D,,,, needs to be determined. Since only
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one diameter value needs to be determined, the optimization problem is dramatically
simplified and should significantly reduce the overall design time for the SM'S method.

Although the potential benefits of this approach are great, the issue is that it was
not fully explored before it was used. The assumption was not sufficiently tested
and was not compared against actual optimization routines in order to assess it’s
validity. In this research, the “28% Assumption” will be tested for both stiffness and
design time. In other words, the assumption will be tested to determine under what

circumstances it will be valid and how the assumption will affect the overall process.
3.10.2 Primary Deliverables of the Step

At the completion of this step, the SMS method should be completed. The final truss

structure with correct diameter sizing should be returned.
3.10.3 Additional Information

This sixth and final step is generally the most time-consuming step of the entire
method, generally taking around 90% of the overall design time. The principal as-
sumption that takes place in the determination of diameters is that the struts in the
structure are cylinders. If this assumption is used, the cross-sectional area can be
parameterized using only one value: the diameter value. If the cross-section of the
struts are not cylinders, then this assumption will not be valid.

The optimizations that were performed utilized finite-element analysis software
developed internally and implemented in MATLAB. In the analysis of the truss struc-
ture, this code makes the assumption that all the trusses have beam-like behavior.
Therefore, the struts in the structure can experience bending stresses. This element-

type is in contrast to truss elements that can only experience axial and shear stresses.
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Figure 18: A comparison of the original SMS method (left) and the modified SMS
methods (right).

3.11 Comparison Between the Original and Modified SMS
Method
Figure 18 shows the overview of both the original and modified SMS methods. The

major changes between the original and modified SMS method are summarized below:

e As can be seen, the first four steps of the methods are fairly similar: the prob-
lem is defined and the unit-cell approach and unit-cell library are utilized in
these steps. The key differences between the original method and the modified
method lie primarily in the creation of a sixth separate step for determination
of D,in and D,,4,. The original method does not discern between the gener-
ation of topology and the determination of diameter values. Furthermore, the
ambiguity resolution step occurs after the determination of diameters rather
than before. This lack of a sixth step occurs because the original method lacks
a systematic method for the determination of D,,;, and D,,.,. Instead, a brute-
force approach was taken with the 28% assumption. Although this approach
was somewhat successful in determining the optimal D,,;, and D,,., values, the

method was time-consuming and required manual intervention.
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e The cutoff diameter, D.yorf, is identified as an area of future work for the
SMS method. For the purposes of this thesis, it will still be used. However,
it will be used only in problems where it does not negatively affect structural

performance.

e Various technical issues are addressed in the implementation of the method,

improving both robustness and repeatability of the method.

3.12 Research Questions Reuvisited

The modified method addresses two of the three research questions discussed in Chap-

ter 1. The hypotheses for the research questions are repeated below:

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-
strained optimization of two diameter values: a minimum allowable diameter
and a maximum allowable diameter, against volume and stiffness constraints,
a systematic design method can be developed for the design of mesoscale truss
structures. By exploring various optimization approaches and selecting the

best method, analysis time can be minimized and structural performance can

be maximized.

Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-
mum diameter values for meso-scale truss structures designed using the Size,
Matching, and Scaling method, a direct relationship between these two values
can be determined and exploited. This relationship will allow for one of the
two diameter values to be expressed as a function of the other. Consequently,

the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.
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It can be seen that both of these hypotheses are addressed in particular by the
addition of a sixth and final step of the SMS method: a diameter determination step
for D,,in and D,,... By isolating the determination of diameters from the designation
of lattice topology, both hypotheses can be addressed in detail. To validate the first
hypothesis, the diameter determination step will be converted from a brute-force
approach into an optimization approach. In continuation with the first hypothesis,
two different optimization algorithms, an active-set and least-squares minimization
algorithm, will be utilized to characterize the effect of the optimization algorithm on
the diameter determination step.

The second hypothesis, on the other hand, will be addressed by the simultaneous
exploration of the optimal minimum and maximum diameter values returned by two-
variable optimization and the 28% assumption determined by Graf. By looking at
the results of the both the two-variable and one-variable results, the validity of a

one-variable approach will be assessed.

3.13 Summary

In this chapter, the modified Size, Matching, and Scaling method was presented. Each
of the steps of the method, including the process and the deliverables, were presented.
When compared to the original method proposed by Graf, it can be seen that the first
four steps are similar because they utilize the core features of the unit-cell approach.
It can also be seen that the unit-cell library, the key tool in topology generation,
is utilized directly in the fourth step. The key differences, however, occur after the
topology is generated. In particular, the determination of diameter values for the
normalized topology proposed in the revised method is different. Instead of a manual
search of D,,;, and D,,., proposed by Graf, an optimization approach is used. This
optimization is in direct contrast with Graf’s conception for the SMS method: to

avoid optimization entirely. The driving concept for this method, on the other hand,
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is to utilize optimization in conjunction with the unit-cell approach rather than in
spite of it.

The modified SMS method, and in particular the sixth step, will address research
questions 1 and 2 and will determine whether an optimization approach to determin-
ing D,,;n and D, is valid, and whether this optimization can be reduced from a
two-variable optimization to one-variable. The modified method will be thoroughly

tested in Chapter 5.
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CHAPTER IV

THE MODIFIED UNIT-CELL LIBRARY

In this chapter, the modified unit-cell library will be presented. The unit-cell library
serves as the primary tool used by the SMS method in the generation of lattice topolo-
gies. It is a collection of lattice configurations that have their topologies optimized for
specific stress conditions. These lattice configurations conform to a set of guidelines
that allow them to be connected to one another to form more complex lattices. The
original unit-cell library contained one configuration, specialized for one of six stress
conditions. In total, there were six entries in the library. The new library attempts to
expand the unit-cell library to include additional entries. The following sections will
outline not only the current library, but the mapping and selection process utilized

for the library and the optimization process for the entries in the library themselves.

4.1 The Optimization Process for Unit-Cell Configurations

Before a certain unit-cell configuration can be entered in the unit-cell library, it must
first undergo an optimization process to cater its performance for six separate loading
conditions. Each of these loading conditions is representative of the six stress values
utilized in the SM'S method and solid-body stress analysis: the 0,,, 0y, and o, axial

stresses and the 7,,, 7., and 7,, shear stresses.
4.1.1 Problem Formulation

The optimization of unit-cell configurations can be considered its own unique design
problem, separate from the SMS method. As a result, a second problem formulation
must be utilized for the optimization of unit-cells. The ¢cDSP problem formulation

for the optimization of unit-cells is shown in Table 8.
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Table 8: Qualitative cDSP formulation for the optimization of unit-cells.

Given: Loading and Fixity Conditions, Starting Lattice Topol-

ogy
Find: Truss Diameters/Lattice Topology a)
Satisfy: Target Strain Energy

o
~

Maximum Stress Value

N N N N
o
~—

2

Minimize: Volume

As Table 8 shows, the problem formulation for the optimization of unit-cells is very
similar to the problem formulation for that of the ground structure approach to lattice
design. Much like for the ground structure approach, both the loading conditions
and starting topology are provided. Furthermore, the truss diameters are the main
design variables. However, there is one key difference between the formulation for
the ground structure approach and the formulation for unit-cell optimization. For
unit-cell optimization, rather than the minimizing both stiffness and volume, only
volume is minimized. Stiffness is no longer a minimization target, but is instead a
constraint. The primary reason that stiffness is set as a constraint instead of an
objective is to force the performance of all optimized unit-cells to be equal. Thus, the
only differing factor between the unit-cell configurations will be the actual volume
of the configurations themselves. This will, in turn, allow the selection process of
unit-cells to be simplified. For the optimization of unit-cells, strain energy is used as
the primary determinant for stiffness. Strain energy can be defined as the potential
energy stored in an element due to deformation. The strain energy, AU, is calculated
as,

AF

AU = = (8)

where % is the average force magnitude of the load and d is the overall displace-

ment of the structure [29]. Strain energy is used as the primary metric for unit-cell
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optimization because it is directly proportional to strain, and therefore the compli-
ance/stiffness of the structure. It is widely used in objective problem formulations for
topological optimization problems [8]. It is preferred over stress, because microscopic
stress values may exist in a truss structure that differ from the macroscopic whole.
These microscopic deviations are not represented in the macroscopic stress values
but can negatively influence the performance of the structure. Therefore, stress may
not be as indicative of the overall structural performance of truss structures as strain
energy. Furthermore, strain energy may be easier to implement in finite element anal-
ysis because of FEA’s heavy reliance on elastic energy principles such as Hamilton’s

Principle and the principle of minimum total potential energy [41].
4.1.2 Process Overview

With the unit-cell optimization problem formulated, the design method can be pre-
sented. An overview of the method is shown in Figure 19. As Figure 19 shows, the
optimization process contains five individual steps. These steps will be summarized
in more detail in the following sections. An example of the unit-cell optimization

process is shown in Appendix A for the Cantley configuration.
4.1.3 Step 1: Insert Initial Unit-Cell Configuration

In the first step, the initial unit-cell configuration must be defined. This includes
definition of all nodes, elements and diameters in the structure. Additionally, starting
diameter values must be specified. For this optimization, a uniform starting value of
“1” was used for all diameters. Although many unique lattice configurations can be
utilized by the SMS method, not all configurations are supported. Theoretically, unit-
cell regions can be any shape and size, as long as the shape can successfully compose
the bounding geometry. However, for the purposes of this research, cuboid regions
were used because division of a structure into these regions can be performed more

easily and because most documented configurations, such as the Cantley truss and
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Figure 19: An overview of the unit-cell optimization process.
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Figure 20: Typical unit-cell regions.

the octet truss, conform easily to the cuboid shape. Two adjacent unit-cell regions
are shown in Figure 20.

As can be seen in Figure 20, each region is characterized by 8 nodes in each of
the corners of the cube. In order for configurations to be capable of being placed
into the unit-cell library, they must conform to such regions. These configurations
are mainly limited in their shape by their interaction with adjacent configurations in
the mesoscale structure. In order to prevent potentially negative interaction between
elements in the mesoscale structure and ensure correct optimization of configurations,

the following set of guidelines should be satisfied:

1. There must be a nodal connection at each of the eight corners of the cuboid
unit-cell region. This constraint will ensure that all unit-cells are connected to

adjacent unit-cell regions via these eight common nodes.

2. The unit-cell configurations cannot be loaded or fixed at any other nodal posi-

tion than the eight corners of the cuboid region. This once again ensures that
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Figure 21: The loading conditions for unit-cell optimization.

interaction between adjacent unit-cell regions remains consistent.

3. No nodes or elements should be defined outside the bounding dimensions of the
cuboid unit-cell region. This constraint is not a strict guideline as it may not
affect the performance of the mesoscale truss structure. However, the interaction
between adjacent unit-cells may be affected by the intersection or overlap of

elements or nodes.
4.1.4 Step 2: Apply Loading Conditions

In the next step, the unit-cell is loaded. For the optimization, there exist six pre-
defined loading conditions, each approximating a particular stress direction. The
loading and fixity conditions are summarized in Figure 21.

It should be noted that these loading conditions must be applied in multiple
directions, especially for the shear cases. For instance, the loading condition for the 7,
scenario is only applicable for the positive XY shear direction. However, it is known

that 7., = Ty = —Tsy = —Tye. In order for the unit-cell to be properly optimized
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Table 9: Optimization parameters for unit-cell optimization in ANSYS.

Strain Energy Constraint (mJ) 50
Poisson Ratio 0.3
Elastic Modulus (N/cm)? 1960
Loading Magnitude (N) 10
Element Type BEAMA4

for all shear conditions in the XY plane, it must be optimized individually for the
loading conditions simulating each of the these shear directions. These separately
optimized unit-cells must then be combined to form the final optimized unit-cell for

that direction.
4.1.5 Step 3: Optimize Unit Cell

After both the loading conditions and topology have been defined, the structure can
be optimized. As can be seen in the problem formulation in Table 8, the volume
is minimized subject to strain energy and maximum stress constraints. In order to
avoid exceeding a maximum stress, a small force magnitude of 10 N was applied. The
strain energy constraint was set at 0.5 mJ, a value that can be achieved by any of
the configurations in the unit-cell library regardless of the loading condition. The
analysis and optimization of the unit-cells were performed in the software package,
ANSYS 13.0. Table 9 summarizes the numerical constraints and material properties

used in the optimization.
4.1.6 Step 4: Combine Optimized Unit-Cells

As mentioned in Step 2, each stress condition is approximated using loading condi-
tions. Therefore, an optimization must be performed for each of the loading condi-
tions. The results of these optimizations must then be combined to form the final
topology. For instance, for the 7., condition, four separately optimized unit-cells are
returned from optimization and must be combined. The combination of the resultant

configurations is fairly simple: for each strut in the configuration, the strut with the
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Figure 22: Example of the combination of optimized unit-cells for the 7, direction
for the Cantley configuration.
largest diameter is retained and the other diameters are discarded. An example of

this process is shown in Figure 22.
4.1.7 Step 5: Normalize Unit-Cells

After all the unit-cell configurations have been optimized, the diameters must be

normalized to between 0 and 1:

e = Dt/ D" 9)

where j represents each strut for each of the & configurations for each of the [
stress directions. As can be seen from Equation 9, the unit-cell configurations are
normalized to the largest diameter value existing in each of the six stress directions.
This ensures that all the unit-cell configurations maintain the same stiffness charac-
teristics relative to one another. Therefore, it is important to note that every time a

new entry is added to the unit-cell library, the entire library must be re-normalized.
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Once all the entries have been optimized, the entries can be stored in a library. The
unit-cell library is currently stored in a list format. For each unit-cell configuration,
there are three specific data structures to store: the nodal coordinates, the elements

within the structure, and the diameter values of each element in the structure.
4.1.8 Element-Type Variation for the Crossed Configuration

For the optimization of unit-cells in ANSYS, it was noted that for the crossed con-
figuration, the beam element type, BEAM4, did not return optimal results. Here,
the optimization tended to overemphasize bending in the structure and returned ap-
parently sub-optimal results for the shear loading cases. In order to adjust for these
results, the element type was replaced with the truss element, LINK188, in order to
ensure that optimization did not skew the results toward bending. This element type
does not recognize bending stress. However, because it does not account for bending,
it cannot be used for all the configurations in the library, as the problem becomes
underconstrained when bending is not considered. The results for the crossed configu-
ration using bar elements were combined with the results from the beam optimization

from the other configuration.

4.2 Unat-Cell Library Overview

In this section, the modified unit-cell library is presented. The current library contains
seven separate entries, each entry with six optimized configurations. In total, there are
42 entries in the library. In the following sections, each entry in the unit-cell library
will be detailed, including a description of the configuration and the presentation of

the optimized versions of each unit cell.
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Figure 23: Summary of the crossed unit-cell configuration.

4.2.1 Crossed

The crossed configuration is the configuration retained from the first unit-cell library
utilized in the SMS method. This configuration features struts along each of the
edges of the unit-cell region. In addition to these struts, there are diagonal struts
connecting the corners of each face of the cube. In total, there are 24 struts in the
structure. The original unit-cell and the optimized configurations are shown in Figure

23.
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Figure 24: Summary of the Cantley unit-cell configuration.

4.2.2 Cantley

The Cantley configuration, as mentioned in Chapter 2, was developed with the in-
tention of developing a lattice structure that can be developed using a two-part mold
for injection molding. However, this structure is also conducive to manufacturing
using AM processes. The Cantley configuration features two parallel struts extend-
ing along the top surface of the unit-cell. A third and fourth strut run along the
middle of the bottom and top of the unit-cell. Diagonal struts connect the top four
corners to the middle of the bottom face of the region. The structure also contains
four vertical struts along the edges of the unit-cell. In total, there are 14 struts in

this configuration. The original and optimized configurations are shown in Figure 24.
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Figure 25: Summary of the octet unit-cell configuration.

4.2.3 Octet

The Octet configuration was developed to minimize bending throughout the mesostruc-
ture, allowing the stress and stiffness in the structure to be stretching dominated. It
features eight tetrahedrons connected such that one face from each of the tetrahe-
dron also composes one of the faces of an octahedron at the center of the structure.
The octet configuration contains a total of 36 struts. The original unit-cell and the

optimized configurations are shown in Figure 25.
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Figure 26: Summary of the diagonal unit-cell configuration.

4.2.4 Diagonal

The diagonal configuration is a configuration inspired by the performance of the
crossed configuration. Like the crossed configuration, the diagonal configuration con-
tains struts along each of the edges of the unit-cell region. However, instead of diag-
onal struts crossing along each face of the cube, only four diagonal members extend
through the interior of the unit-cell. The diagonal configuration contains 14 struts.

The original unit-cell and the optimized configurations are shown in Figure 26.
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Figure 27: Summary of the first Paramount unit-cell configuration.

4.2.5 Paramount 1 and 2

Both paramount structures are derivative of the Cantley structure and attempt to
strengthen various aspects of the Cantley structure. Both configurations still contain
the same diagonal struts connecting the top four corners with the midpoint of the
bottom face as the Cantley. The first paramount structure, however, contains struts
along each each of the region and two struts connecting the midpoints of the bottom
edges of the structure. This configuration has a total of 18 individual struts.

The second paramount structure, on the other hand, does not contain any struts
on any of the edges of the unit-cell region. Furthermore, rather than a cross at the

bottom face, two diagonal beams crossing on the bottom face of the unit-cell. This
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Figure 28: Summary of the second Paramount unit-cell configuration.

configuration has a total of 12 struts.

Both Paramount configurations are shown in Figures 27 and 28, respectively.
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Figure 29: Summary of the midpoint unit-cell configuration.

4.2.6 Midpoint

The midpoint configuration is motivated by the performance of the first paramount
structure under shear loading conditions. In particular, the bottom face of the
paramount structure was used as the basis for the midpoint structure. In this struc-
ture, the midpoints of all the edges of the unit-cell are connected to form crosses on
each face of the unit-cell. There are a total of 24 struts in the structure. The original

unit-cell and the optimized configurations are shown in Figure 29.
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Figure 30: The modified unit-cell library.

4.3 Comparison with the Old Unit-Cell Library

The complete unit-cell library is summarized in Figure 30. The entries in this library
form the components of all topologies designed using the SMS method. The original
unit-cell library utilized by Graf is shown in Figure 31.

As can be seen from Figures 30 and 31, the modified library is a far more extensive
selection than the original library. Another difference between the two libraries is in
the optimization process itself. The original library lacked a true methodology for
determining strut diameters. It is unknown what optimization was used and what
loading conditions were applied. However, the results from this library do not match
the results returned using optimization and finite element analysis. Furthermore, the
approach seems to only utilize a binary approach to diameter determination: strut

values are either 1 or 0, no diameter values exist in between these two values. The
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Figure 31: The original unit-cell library.

current library utilizes a more robust and systematic approach for optimizing lattice

diameters.

4.4 Topology Generation Using the Unat-Cell Library

Because the original unit-cell library contained only one unique entry, the “crossed”
configuration, the topology generation process was relatively straightforward and a
selection method was not required. However, because the current library contains
more than one entry in the unit-cell library, a selection process must be developed
to determine which of the current entries is best suited for selection. For the mod-
ified SMS method, the generation of topological configurations is divided into two
sequential tasks. First, a unit-cell configuration must be selected. Then, this config-
uration must be mapped to the unit-cell region of the base lattice. The two tasks are

described in the following sections.
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4.4.1 Unit-Cell Selection

Because several entries exist in the unit-cell library, a selection criterion must be
implemented to estimate the best combination of configurations to maximize the
stiffness of the structure. The only way to assess with certainty the best topology
for a structure is to iteratively test every possible combination of configurations. For

any given unit-cell library, there are:

MY (10)

number of possible combinations of configurations, where M is the number of
configurations in the unit-cell library and N is the number of unit-cell regions in the
structure. Therefore, for a design problem with just 10 unit-cell regions, there are
710 = 282475249 unique topologies that can be generated. Therefore, it is computa-
tionally inefficient to generate topologies in this manner. Instead, a selection heuristic
is developed that will attempt to predict the best predict topology of a design problem
given using information from different sources.

The original selection equation was based purely on the results from the unit-
cell optimization. As mentioned in Section 4.1.1, all configurations were optimized
based on a target stiffness constraint. Therefore, all the optimized configurations were
assumed to perform identically. The only differing component, therefore, between the
configurations was the volume. The structure with the smallest normalized volume
would be selected. Consequently, this smaller normalized volume would then allow
for more freedom in the diameter determination step of the SMS process. This larger
design freedom will ultimately result in a better overall stiffness of the structure.

Selection was performed using Equation 11,

rzzvaznx—f_‘/g/y'f—v;z'f_‘/xy'f_‘/xz_’_%z (1]-)
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where the rating, r, is determined as the sum of each of the volumes of the six
specialized variants of each configuration after they are scaled against the stress values
from the solid-body analysis. The configuration with the lowest rating was selected.

When Equation 11 was actually implemented, topologies were successfully gen-
erated. However, further investigation determined that these topologies were not
actually the best topologies because the selection method was biased toward one par-
ticular configuration: the diagonal configuration. Furthermore, this selection method
did not take into account the fact that the crossed configuration was not optimized
using the same element types as the other configurations or that overlapping struts
are not counted in the volume of the structure once the six variants are combined.
Therefore, heuristics needed to be added to the rating equation in order to adjust for

these observations. This modified selection equation is shown in Equation 12:

r=Wo x (Y V) 4 W x (Vi) + W, x (3 P) (12)

where V,, Ve, and Y P are all values calculated by the SMS method and W,,
Won, and W, are all weighting values that are manually set to vary the importance of
>V, Vier, and > P. In particular, two heuristics were added to the rating equation
from Equation 11. The first added heuristic, V.., is the net volume of the unit-cells
after all six specialized variants are merged and overlapping struts are removed. The
second heuristic, Y P, is a value that attempts to estimate the performance of mul-
tiple instances of a configuration. The optimization of unit-cells discussed in Section
4.1.2 only characterized the performance of a single instance of a configuration under
certain axial and shear loading conditions. However, the configurations in the unit-cell
library were observed to behave differently when multiple instances of the configura-
tion are placed alongside one another. The parameter, > P, attempts to predict the
relative performance of these configurations for multiple adjacent instances.

The value for the heuristic, Y P, is determined using values shown in Table 10.
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Table 10: The performance table used for selection of unit-cell configurations.

XX Axial  YY Axial ZZ Axial XY Axial YZ Axial XZ Axial

Crossed 0.0745 0.0693 0.0375 0.0810 0.0747 0.0752
Cantley 0.5399 0.4885 0.0539 0.5418 0.5353 0.2626
Octet 0.2281 0.2023 0.1050 0.1004 0.0891 0.0863
Paramount 1 0.0917 0.0907 0.0500 0.9865 0.3904 0.3734
Diagonal 0.0743 0.0704 0.0390 0.1166 0.0881 0.0956
Paramount 2 1.0000 1.0000 1.0000 0.6043 0.5569 0.5462
Midpoint 0.1058 0.0955 0.0507 1.0000 1.0000 1.0000

The values in this table, dubbed the “Performance Table,” were determined by using
empirical results from a design example. This design example is provided in Example 2
of Chapter 5. In this example, a cube with a length of 15 cm was divided into 3 x 3 x 3
unit-cell regions. This cube was then loaded with all six loading conditions simulating
the 6 stress values used in the SMS method: 0.4, 04y, 0.2, Tay, Ty, and 7,,. These
boundary conditions are equivalent to those in Figure 21. Then, for each loading
condition, the SMS method was utilized to generate topologies. However, instead of
using a selection metric to select configurations for the structure, each of configuration
in the unit-cell library was allocated to the cube. Therefore, 6 loading conditions x
7 configurations = 42 unique topologies were generated for this problem. The strain
energy values from the method were then calculated for each of the topologies. These
values were normalized to between 0 and 1 and placed in the performance table.
A more detailed explanation of the example problem is provided in Example 2 of
Chapter 5.

The value, Y P, is calculated using values from Table 10. For a particular con-

figuration, > P is calculated as:

As with Equation 11, the configuration with the lowest rating in Equation 12
is the configuration that is selected. It is important to note that each of the three

components of Equation 12 are normalized in order to ensure that one component
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does not dominate the equation. The three weighting values, W,, W,,, and W, also
ensure that this does not happen. A detailed example of the use of the selection

equation is provided in Appendix B.
4.4.2 Mapping

Once the best possible configuration is determined, it is mapped to the current region.
This process is completed first by adding nodes from the unit-cell configuration that
do not already exist in the unit-cell region. These nodes are added using a 3-D linear
interpolation method. Once the nodes have been added to the structure, the elements
from the unit-cell configuration are copied to the region by matching the nodes from
the configuration with the corresponding nodes in the unit-cell region.

It is important to note that the normalized stress values will only determine the
relative size of the struts for each unit-cell configuration in the library. For example,
a normalized axial stress of 0.75 will correspond to a normalized strut diameter value
of 0.75. Therefore, after the unit-cell mapping is complete, all struts in the structure
will have diameter values between zero and one. A diameter value of 1 implies that
that particular strut is the thickest in the structure; a value near zero implies that

the strut will be very thin or non-existent.

4.5 Research Questions Revisited

The modified unit-cell library addresses the third and final research question presented

in Chapter 1. Hypothesis 3 is repeated below:
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Hypothesis 3: The addition of unit-cell configurations, such as the Cantley
and octet configurations, will provide the SMS method with more options for
the generation of the lattice topology. This, in turn, will allow for the placement
of unit-cell structures that are better-suited for specific loading conditions,
thereby improving structural stiffness. Although the design time will be slightly
increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

The modified unit-cell library and selection process allow for Hypothesis 3 to
be tested by allowing for more than entry to be selected and mapped in the SMS
method. In order to test Hypothesis 3, design examples must be pursued using both
the original library and the modified library. If Hypothesis 3 is indeed correct, the
second library and selection process should result in topologies with superior stiffness

characteristics. This hypothesis will be tested in Chapter 5.

4.6  Summary

In this chapter, the modified unit-cell library was formulated and presented. The li-
brary, as shown in Figure 30, contains seven unique configurations with each configu-
ration containing six “variations” for each of the six stress values from the solid-body
stress analysis for a total of 42 entries. The seven configurations are composed of
some well-documented configurations, such as the octet and Cantley config