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SUMMARY

The recent improvement of additive manufacturing has allowed designers to

achieve a level of complexity and customizability that is difficult or impossible to

accomplish using traditional manufacturing processes. As a result, much research has

been conducted on developing new methods to utilize the larger design space brought

by additive manufacturing. One such research area is in the design of mesoscale lattice

structures. Mesoscale lattice structures are a type of cellular structure with support

element sizes on the order of magnitude of centimeters. These types of structures

are engineered for high performance and have applications in industries where both

low weight and high strength are desired. However, due to the small size of their

struts, these structures can easily have hundreds to thousands of individual struts.

As a result, design poses a unique challenge. Current methods approach design of

mesoscale lattice structures as a topological optimization problem, treating each strut

diameter in the structure as a design variable. For structures with a fewer number

struts, these optimization methods can converge, but will generally be very time-

consuming. For structures with a large number of struts, the optimization problem

becomes too large for current algorithms to solve.

In previous research, a new, highly efficient design method for mesoscale lattice

structures was presented that eliminates the need for global size or topological opti-

mization. This method, termed the Size, Matching and Scaling method, used a unique

combination of a solid-body finite element analysis and a library of pre-defined lattice

configurations, termed the unit-cell library, to generate lattice topologies. The results

from this method were highly promising: design time was significantly reduced when

compared to optimization methods. Furthermore, lattices designed using the SMS

xvii



method had performance results that were either comparable or better than their op-

timized counterparts. However, the method developed was highly conceptual, lacking

a true systematic methodology for generating topologies and suffering from some gaps

in implementation.

In this research, we present a modified Size Matching and Scaling (SMS) design

method. Firstly, we introduce and outline the modified methodology. This method-

ology particularly includes an optimization step for determining strut diameters that

replaces the manual search used in the original method. Secondly, we expand and

explore the unit-cell library in an attempt to improve the performance of lattices

generated using the SMS method. In particular, we optimize several unit-cell config-

urations and compare their performance in the context of the SMS method. Finally,

we test the updated SMS methodology and unit-cell library using various design ex-

amples.

Results from the various example problems indicate that optimization is not only

a viable systematic method for determining diameter values, but is actually preferred

to the manual, iterative process used in the original method. Furthermore, vari-

ous optimization algorithms and approaches yield different results. Between the two

optimization algorithms utilized in this method: constrained optimization and least-

squares minimization, constrained minimization converges faster, but least-squares

minimization yields slightly improved performance results. In addition to these algo-

rithms, a one-variable approach using an untested, simplifying assumption, dubbed

the “28% approach,” was tested. Results indicate that this assumption was incorrect

and cannot be utilized. Finally, results from the expanded unit-cell library indicate

that the best unit-cell configuration is still the same original unit-cell configuration

utilized in the first SMS method. The addition of more unit-cell does not improve

the performance of structures generated using the SMS method. In fact, both per-

formance and design time worsen when additional configurations are utilized.
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CHAPTER I

INTRODUCTION, BACKGROUND AND MOTIVATION

1.1 Introduction

The challenges facing designers today have reached an unprecedented level. The

demands for lighter, stronger, and more customizable parts have necessitated the

research and development of new technologies, tools, and methodologies that can

satisfy the new demands of the modern world. In particular, the introduction and

continual improvement of one technology, additive manufacturing, has dramatically

changed the way engineers pursue design and manufacturing. This new and promising

technology has eliminated many barriers to manufacturing and has allowed designers

to achieve a level of complexity and customizability difficult or impossible to achieve

using traditional, “removal manufacturing” processes. As a result, much research has

been conducted on developing new methods to utilize the larger design space brought

by additive manufacturing. One such research area is in the design of mesoscale lattice

structures. Mesoscale lattice structures are a type of cellular structure with support

element sizes on the order of magnitude of centimeters. These types of structures are

engineered for high performance and have applications in industries where both low

weight and high strength are desired. Such structures will be the focus of this work.

In particular, this research will present a design method for the design of mesoscale

truss structures.

1.2 Background

1.2.1 Additive Manufacturing

Additive manufacturing (AM), once referred to as Rapid Prototyping (RP), can be

defined as a collection of automated processes that fabricate 3-D objects from a series
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of nominally 2-D cross-sectional layers of specialized materials [33]. Typically, all

parts designed with AM technologies begin with a 3-D CAD model representation of

the component. This model is then typically converted into an STL file and sent to

the AM machine, which builds the part layer-by-layer.

Currently, many technologies exist that fit into the broad definition of AM. These

technologies are supported by several, distinct process categories. These categories in-

clude: photopolymerization processes, powder bed fusion processes, extrusion-based

systems, printing processes, sheet lamination processes, beam deposition processes,

and direct write technologies [42]. Each of these processes has its own distinct set of

advantages and disadvantages regarding characteristics such as manufacturing speed

and layer resolution. Of these different processes, two particular manufacturing tech-

nologies are most commonly used: stereolithography (SLA) and selective laser sinter-

ing (SLS). These two processes will be briefly outlined in the following sections.

1.2.1.1 Stereolithography

Stereolithography (SLA) is a type of photopolymerization processes that makes use of

a liquid vat filled with resins filled with curable photopolymers. These photopolymers

react to certain wavelengths of light, with the most common photopolymers reacting

within the ultraviolet wavelengths. Once irradiated, the resin undergoes a chemical

reaction to become solid called photopolymerization [42]. In SLA, a platform is

suspended in the resin vat. During the manufacture of a component, the platform

begins at the top of the vat. A scanning laser then traces the 2-D cross-section of the

part, curing the exposed resin. After the cross-section is traced, the platform moves

down an incremental amount and the laser cures the next cross-section. This process

continues until the part is complete. Because SLA uses photopolymers as the main

material for manufacture, components built using SLA must be some sort of plastic

material.
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Figure 1: A specialized Invisalign R© brace (left), that is constructed using a mold
generated by SLA, and Phonax hearing aid (right) built using SLA processes [2, 4].

Although initially used primarily as a prototyping technology, SLA has begun

to be more frequently used in manufacturing applications, particularly where mass-

customization is required. For instance, Align Technologies, developers of the Invisalign R©

braces technology, uses stereolithography to develop molds for their customized braces

[57]. Also, hearing-aid manufacturing companies such as Siemens, Phonak, and Widex

use stereolithography machines to mass-produce customized hearing-aid shells [30].

Figure 1 shows examples of these products manufactured in SLA machines.

1.2.1.2 Selective Laser Sintering

Selective laser sintering (SLS) or melting (SLM) technologies were the first AM tech-

nologies to use the powder bed fusion (PBF) process [42]. The principal driving fea-

ture of these methods is the melting and fusion of powder to form part cross-sections.

In the SLS process, a build platform exists containing a thin layer of powder. An

infrared heater heats the powder bed to just below the melting point of the powder.

Then, a laser beam traces the cross-section of the part, heating the powder to its

melting point and fusing the powder. The platform bed then lowers an incremental

amount. Rollers spread a uniform layer of powder along the platform bed, and the

melting process is repeated. This step continues until the part is complete.
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Figure 2: An exhaust manifold manufactured using SLS [5].

Because SLS uses a powder bed instead of a photopolymer vat, it can build both

plastic and metal components. As a result, SLS can be used in industries where metal

parts are required. For instance, the Boeing Company uses laser sintering to build

over 80 separate components for their F-18 military jet [58]. The motorsports industry

uses additive manufacturing SLS techongy to manufacture items as diverse as elec-

trical housings and aerodynamic elements [57]. An example of an SLS-manufactured

exhaust manifold is shown in Figure 2.

1.2.1.3 The Advantages of Additive Manufacturing

AM has several key advantages that can make it more desirable than removal, or sub-

tractive manufacturing technologies, such as computer numerical controlled (CNC)

machining. These advantages are listed below [42]:

• Design Intuition: AM processes follow the concept of What You See Is What

You Get (WYSIWYG); since AM generally begin with a 3-D CAD model, the

design intent of the desired component is apparent. Furthermore, transition

between the CAD model and the AM processes is automated and generally

seamless. This eliminates confusion that may occur between the design and the

manufacture of a component.
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• Process Planning: Because AM processes are robust in nature, any part can

generally be made in one step, regardless of size or complexity. On the other

hand, removal manufacturing such as CNC machining requires lengthy planning

and multiple machining steps. These steps also generally increase in number as

part complexity increases. Also, a small change in the part design may change

the entire process planning of the part. All these issues do not exist for AM

processes.

• Build Time: Because part complexity and process planning are reduced in

AM, many components can be built in a much smaller time frame than if they

were machined using traditional processes.

• Customizability: AM processes allow for the quick manufacture of specific

components without the need for a change of the manufacture process. Varia-

tions and customization of components that can significantly change the man-

ufacturing process and process planning of traditional subtractive technologies

do not affect the AM process at all; only the CAD model needs to be changed

for the customization to be reflected in the final component. As a result of this

property, AM processes have begun to be exclusively used in industries where

high customization is a necessity.

• Complexity: One of the key disadvantages that traditional machining pro-

cesses have is the inability to manufacture components of very high complexity.

This drawback occurs because these machining processes generally have ac-

cessibility constraints that can prevent the access of certain regions in a part

geometry. Because AM processes build layer-by-layer, these accessibility con-

straints do not exist. As a result, subtractive machining processes may need to

manufacture multiple pieces and assemble a component that could otherwise be

built as one part in additive manufacturing.

5



1.2.2 Design for Additive Manufacturing

The great potential of additive manufacturing removes nearly all limits in the man-

ufacturing of parts. However, because of the enormous freedom conferred by AM,

the challenge of AM is not the manufacturing of the part itself, but the design of

component [56]. The principal challenge in the design for additive manufacturing

(DFAM) is to develop new methods for exploring large, complex, design spaces [19].

These larger design spaces are brought on by an increased complexity in three areas:

shape, material, and hierarchy [18]. Shape complexity encompasses the ability of AM

to produce virtually any shape and geometry. Material complexity encompasses the

ability of AM to process different materials on different layers of a structure, allowing

complex material composition. Hierarchical complexity deals with the ability of AM

to fabricate on multiple structural scales, from the microstructure to the part-scale

macrostructure. This thesis focuses primarily on developing methods that enable de-

signers to utilize the design space conferred by shape complexity. In particular, we

focus on the design of cellular structures.

1.2.3 Cellular Structures

Cellular structures in the context of manufacturing are structures, such as foams,

honeycombs, and lattices, that contain material only where it is needed for specific

application. Advantages of these structures over their solid-body counterparts in-

clude good energy absorption characteristics, strong thermal and acoustic insulation

properties, and, most importantly, a high strength to low mass correlation [25]. As

a result, cellular structures have increasing application and use in industries where

weight minimization is critical, such as the aerospace and racing industries [31]. Some

examples of human-made cellular structures are shown in Figure 3.

Classification of cellular structures can be divided into two categories: those pro-

duced using stochastic processes and those designed using deterministic processes.

6



Figure 3: Examples of human-made cellular structures: a honeycomb lattice (left)
and metallic foam (right) [1, 3].

Stochastic cellular structures are cellular structures generated with processes that

cannot be entirely controlled, such as foaming. As a result, the topology of these

structures cannot be explicitly defined. The principal advantage of these structures

is that their design and manufacture is relatively autonomous, simple, and fast [25].

Stochastic cellular structures have strength that scales roughly to ρ1.5, where ρ is the

volumetric density of the structure’s material [21].

Deterministic cellular structures, on the other hand, are structures that are de-

signed with lattices specifically meant to support specific loading and boundary con-

ditions. In their research, Wallach and Gibson propose that, because their lattices

are highly specialized, deterministic cellular structures will have higher strength than

stochastic cellular structures [50]. In their work, Deshpande et al. found confirm this

statement, determining that the strength of deterministic cellular structures scale to

their volumetric density, ρ [21]. Therefore, a designed lattice structure with a volumet-

ric density of ρ = 0.1 will be roughly three times stronger than its stochastic counter-

part. It is theorized that this difference in strength occurs because stochastic cellular

structures are dominated primarily by bending whereas deterministic structures are

dominated by compression and tension, thus resulting in higher failure stresses [20].

Because designed cellular structure have such a significant strength advantage, much
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Figure 4: Example of a meso-scale truss structure. The structure pictured is roughly
10 in long.

research has gone into developing synthesis methods for these structures.

1.2.4 Meso-Scale Truss Structures

In this work, the particular focus will be on a specific subset of cellular structures:

mesoscale truss structures (MSTS)–structures with strut diameters in the range of 0.1

to 10 mm and strut lengths on the order of centimeters. An example of a meso-scale

truss structure is shown in Figure 4. It is important to note that Figure 4 contains a

uniformly-generated, or stochastically generated, lattice. The focus of this work, on

the other hand, will be deterministic MSTS.

1.3 Motivation

1.3.1 Design of Meso-Scale Truss Structures

The advantages conferred by deterministic cellular structures, and in particular meso-

scale truss structures, make them highly desirable as a design option for components

that require high strength and low weight. However, although the introduction of AM

has allowed these structures to be manufactured with relative ease, their inherent
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design complexity limits their use in industry. Depending on their size and scale,

components designed with MSTS can contain upwards of hundreds of thousands of

individual struts. If just the diameter of each strut is considered a design variable,

then the design of MSTS will have as many design variables as struts. If the problem is

expanded to consider the lattice topology as well, then the number of design variables

grows even larger. This large number of design variables poses the main prohibitive

barrier to the design and manufacture of MSTS [18].

In order to address the large quantity of design variables posed by MSTS, de-

signers currently use synthesis methods that utilize search heuristics specializing in

the optimization of a large number of design variables. Although these methods are

documented to have success, they suffer from three key drawbacks:

• Incorrect/Non-Optimal Solutions: The large design spaces present in the

design of MSTS will often contain several local minima. The presence of these

local minima force the optimization problem to be highly dependent on the

starting point of optimization. Since a good starting point is usually impossible

to determine, optimization routines will often converge to a local solution rather

than the global solution.

• Repeatability: Most multi-variable optimization algorithms, such as genetic

algorithms, are highly stochastic. Due to the probabilistic nature of these algo-

rithms, design methods using these algorithms will generally not return identical

design results, even when provided the exact same initial design conditions. In

industries where consistency is desired, these methods will not only reduce the

repeatability of design results, but may reduce their performance as well.

• High Computational Complexity/Long Design Times: The design time
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of multi-variable optimization routines often scale exponentially with the num-

ber of design variables. For truss structures with struts numbering in the hun-

dreds, these optimizations may converge, but will be the main bottleneck in the

design of truss structure. For structures that are larger or considerably more

complex (≥1000 struts), these methods will either converge within an infeasible

time frame or simply not converge at all.

In order for MSTS, and deterministic cellular structures in general, to become a

feasible design principle for designers, the issue of topological optimization must be

thoroughly addressed.

1.3.2 The Unit-Cell Approach

Since it is known that the design of MSTS is bottlenecked by the need for topological

optimization, designers have devoted much research directly into either improving

these optimization methods or developing more efficient methods. However, these

direct considerations of optimization may only alleviate some of the issues plaguing

topological optimization rather than eliminate them.

In his research, Graf presented a novel, alternative approach to design of deter-

ministic cellular structures [27]. The key feature of this method is that it attempts

to completely avoid the need for any topological or shape optimization in the design

of MSTS. In particular, Graf proposed a “unit-cell” approach to the design of MSTS:

one that uses alternative sources of information in lieu of topological optimization.

1.3.2.1 Approach

Topological optimization of truss structures can be considered to consist of two fun-

damental tasks: the determination of the loading distribution of a specific loading

condition in a structure and then the determination of the topology required to sup-

port this load distribution. If topological optimization is to be bypassed, then the

10



information required to accomplish these two functions must be derived from other

sources of information.

The unit-cell approach proposes that the first function, the stress distribution,

can be derived from a finite element stress analysis of the target truss structure as

a solid-body. The second function, topology generation, can be accomplished by

dividing the target truss structure into local, uniformly shaped regions, or “unit-

cells.” By looking at these regions individually and comparing them with the stress

distribution from the solid body finite element analysis, a topology can be determined

for that region. This localized topology is designated by scanning a library of highly

optimized configurations, or “unit-cell library,” selecting the configuration best-suited

for the given stress condition, and then assigning that configuration to the region.

Once all the regions are mapped, a topology can be developed. It is important to

note that lattice topologies generated using the unit-cell approach are normalized

such that diameters in the lattice are valued between zero and one. In order for the

normalized topologies to be specialized for a particular loading or boundary condition,

real diameter values must be assigned to these topologies based on the loading and

boundary conditions of the truss structure. In particular, two specific diameter values

need to be determined in order for all remaining diameters to be assigned: the smallest

diameter in the structure, Dmin, and the largest diameter in the structure, Dmax.

Once these values are determined, the remaining diameters in the topology can be

appropriately sized and the truss structure will be completed.

1.3.2.2 Implementation

In his work, Graf developed a rough design method, termed the “Size, Matching,

and Scaling,” or SMS, method for the design of mesoscale truss structures. This

method utilized the unit-cell approach to develop lattice topologies and implemented

post-processing steps to assign real diameter values against the supplied boundary
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conditions [27]. A more detailed description of the method and its results is provided

in Chapter 2.

1.3.2.3 Drawbacks

Graf’s SMS method was highly successful in generating topologies for MSTS. How-

ever, the implementation of this method contained two key design issues that limited

its use. Both these issues must be addressed in order for the unit-cell approach to be

a viable alternative for designers.

The first critical issue with the unit-cell approach is the utilization of the lattice

topology after it has been generated, particularly in regards to the determination of

diameter values. Graf’s SMS method lacked a systematic step for assigning optimal

diameter values to lattice topologies. In order to avoid the need for optimization, he

used a critical, untested assumption to simplify the diameter determination process.

He then performed a manual search of the design space to determine the correct

diameter values.

The second issue revolves around the use and implementation of the library of

pre-configured unit-cells, or “unit-cell library.” In particular, Graf’s implementation

contains only one unit-cell configuration. With just one entry in the library, Graf was

able to prove that the unit-cell approach is effective in generating topologies. However,

without at least one other entry in the library, the unit-cell approach cannot compare

entries to determine the best possible solution. This lack of depth not only limits the

potential of the unit-cell approach, but also over-simplifies the topological mapping

and selection of unit-cells to the truss structure.

1.4 Research Questions and Hypotheses

The original SMS method was developed specifically to remove the need for optimiza-

tion in the design of MSTS. However, because optimization was avoided, the method
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could not generate optimal values of Dmin and Dmax without performing an exhaus-

tive, manual search of both Dmin and Dmax. This brute force search of the design

space proved to be the principal drawback in the SMS method. This drawback forms

the basis of the first research question:

Research Question 1: Can an optimization method for the design of

mesoscale truss structures be developed to determine strut diameters for topolo-

gies designed using the unit-cell approach?

It is believed that optimization of diameter values cannot be entirely avoided in

the design of MSTS. If, however, the main advantages of the unit-cell approach are

used in conjunction with optimization rather than in competition with it, then it may

be possible to develop a truly systematic design method that can generate MSTS

topologies without the need for the optimization of several thousand strut diameter

values. Instead, only two critical diameter values need be optimized in order for all

remaining diameters to be assigned: Dmin and Dmax. Such a method will not only be

significantly less computationally complex than current optimization methods, but

will also be able to generate MSTS without the need for a manual search of diameter

values. This concept gives rise to the proposed answer to the first research question:

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-

strained optimization of two diameter values: a minimum allowable diameter

and a maximum allowable diameter, against volume and stiffness constraints,

a systematic design method can be developed for the design of mesoscale truss

structures. By exploring various optimization approaches and selecting the

best method, design time can be minimized and structural performance can be

maximized.
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In order to properly test and validate Hypothesis 1, the following tasks will be

completed:

• A modified Size, Matching, and Scaling (SMS) method will be developed com-

bining the unit-cell approach with optimization methods. The first portion of

the SMS method will utilize the primary driving concepts of the unit-cell ap-

proach to generate a normalized topology for MSTS. The second portion of the

SMS method will utilize optimization routines to determine the minimum and

maximum diameter values necessary to optimize structure volume and stiffness.

In particular, an additional step will be added to the SMS method. In this step,

the critical diameters values will be determined using different two-variable op-

timization methods.

• The modified SMS method will be tested using example problems of varying size

and complexity in order to validate the method in two and three dimensions.

Two of the example problems will be repeated examples from the previous

iteration of the SMS method. The results from these two examples will be

compared to results from previous research in order to verify accuracy.

• For each example problem, different optimization approaches will be used to

determine the minimum and maximum diameter values for the target structure.

The results from these methods will be compared to determine the approach

with the best performance.

• In addition to the proposed optimization methods, a manual grid-search will be

performed similar to the method that was used originally in the previous SMS

method. The results from this grid-search will be compared to results from

the proposed optimizations to determine the difference in both design time and

structural performance
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With the proposed Size, Matching, and Scaling method, large-scale optimization

can effectively be reduced into an optimization of just two variables. However, the pos-

sibility of further reducing the optimization problem may exist. In previous research,

Graf used an untested assumption in order to simplify the diameter determination

process. While performing an exhaustive search of all possible Dmin and Dmax for a

simple MSTS example, Graf noted that, for a specific target volume, a truss struc-

ture designed using the unit-cell approach would have the highest structural stiffness

when the minimum diameter value was roughly 28% of the maximum diameter value.

When repeated with other target volumes, this 28% value appeared to hold true.

Graf therefore used the assumption that the best structural performance of a MSTS

designed using the unit-cell approach has the property,

Dmin = 0.28×Dmax (1)

The consequence of this assumption was that the minimum and maximum diam-

eters were no longer independent of one another. Therefore, instead of determining

two diameters, only one diameter, Dmax, need be determined. Since only one de-

sign variable was necessary, Graf simply performed an exhaustive, iterative search of

all possible values of Dmax, selecting manually the value that would best satisfy the

desired volume while maintaining the highest possible structural stiffness.

Although very useful in implementation, the assumption suffered from one major

flaw: it was made without proper verification. The assumption was tested on a very

small subset of design problems and was not compared to any optimization routines

to determine whether the values returned were indeed the best possible solutions.

Therefore, until the assumption is verified, it should not be used. However, the

discovery made by Graf does present the possibility of a relationship existing between

the minimum and maximum diameters. In particular, the research question can be

asked:
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Research Question 2: Can the two-variable optimization proposed in Hy-

pothesis 1 be simplified in order to decrease analysis time?

It is believed that Equation (1) can be validated against optimization and that a

relationship can be found between Dmin and Dmax at or near the 28% value discovered

by Graf. This assumption can then be extended to any truss structure designed

using the SMS method and can simplify and subsequently speed up the diameter

determination process. This belief is the key component of the answer to the second

research question:

Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-

mum diameter values for meso-scale truss structures designed using the Size,

Matching, and Scaling method, a direct relationship between these two values

can be determined and exploited. This relationship will allow for one of the

two diameter values to be expressed as a function of the other. Consequently,

the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.

To validate this second hypothesis, both the one-variable optimization and the

two-variable optimizations proposed in Hypothesis 1 must be tested and then com-

pared. The following tasks will be completed:

• For each of the example problems used to test the SMS method, the two-variable

optimization routines outlined in Hypothesis 1 will be tested. The design times

and resultant diameter values will be recorded.

• Concurrent with the two-variable optimizations, a one-variable optimization

will be conducted using the 28% value assumed by Graf in order to measure the

design time using this method and the accuracy of its results.
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• The values of the minimum and maximum diameters returned by both the 28%

assumption and the two-variable optimizations will be compared to determine

whether a relationship between them exists and whether this relationship is at

or near the 28% estimated by Graf.

• The design times of the 28% assumption will be compared with those of the

two-variable optimizations in order to assess if there is a reduced design time

and whether the reduction is significant.

The final research question is related to the unit-cell library. In the original

SMS method, the unit-cell library that was used contained only one optimized unit-

cell entry and provided the bare minimum required for the unit-cell approach to

successfully generate a topology.

However, in order for the unit-cell library to be fully utilized, it must contain

several unit-cell configurations. The SMS method can then scan these entries and

select the best possible configuration for a given stress concentration. This larger

selection profile should ultimately improve the performance of structures designed

using the SMS method. However, it is possible that the SMS method may select the

same unit-cell configuration regardless of the unit-cell library entries. Furthermore, a

larger unit-cell library may result in slower design times. For each additional entry in

the unit-cell library, the SMS method must scan this extra entry once for each unit-

cell region in a truss structure. Therefore, the design time can grow exponentially

for both large design problems and a large unit-cell library. Therefore, it is unknown

whether an expanded library will have an overall positive or negative impact on the

methodology. This uncertainty brings about the third research question:
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Research Question 3: Will the expansion of the unit-cell library to include

additional unit-cell configurations improve the performance of structures de-

signed using the SMS method? If so, will the added benefit justify an increased

overall design time?

It is believed that the true strength of the unit-cell library arises from a method-

ology’s ability to compare multiple unit-cell configurations from the library and select

the best possible configuration. Therefore, in general, a larger unit-cell library should

allow the SMS method to locate better unit-cells for any given design scenario. Al-

though a larger library and more expansive mapping algorithm will result in an in-

creased design time, it is believed that the additional design time will be outweighed

by the added benefit conferred by the addition of unit-cell configurations, particularly

configurations that are well-documented and thoroughly tested. This idea is the basis

for the third and final hypothesis:

Hypothesis 3: The addition of unit-cell configurations, such as the Cantley

and octet configurations, will provide the SMS method with more options for

the generation of the lattice topology. This, in turn, will allow for the placement

of unit-cell structures that are better-suited for specific loading conditions,

thereby improving structural stiffness. Although the design time will be slightly

increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

Hypothesis 3 will be tested in the following manner:

• Two versions of the unit-cell library will be created. The first unit-cell library

will be identical to the library used by the unit-cell approach and will contain
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just one unit-cell configuration. The second unit-cell library will be filled with

additional unit-cell configurations, particularly those that are well-documented

in literature, such as the Cantley and octet trusses.

• Examples will be explored using the first iteration of the unit-cell library. The

topologies generated using this library will only have one unit-cell type and will

thus have a fairly homogeneous topology.

• The same examples will then be solved using the larger library. The topologies

generated using this second library will be investigated to determine whether

there is a topological difference. If there is a difference in the topologies of

the structures, both the design time and structural performance of the two

resultant topologies will be compared and assessed to determine whether there

is an improvement in performance.

The three research questions and hypothesis outlined above compose the main

arguments of this thesis and provide the framework for this research; This thesis is

written with the mindset of answering these research questions.

1.5 Thesis Organization

1.5.1 Thesis Chapters

The remaining chapters of this thesis are organized to best present the research con-

ducted. They are summarized below:

• In Chapter 2, a literature survey will be performed covering all research relevant

to the SMS method. This survey will include a review of previous research in

the design and analysis of cellular structures. It will also include a review of

some topological optimization algorithms. Finally, it will review the driving

research behind the SMS method and the unit-cell approach. After the review

has been completed, a gap analysis will be conducted on the existing research.
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• In Chapter 3, the modified SMS method will be presented in its entirety. This

includes a problem formulation for the method and a detail presentation of each

of the steps of method. Additionally, the primary deliverables of each of these

steps and the assumptions taken in each step will provided. A comparison of

the modified method and the original method will also be provided, including

limitations and guidelines for use.

• In Chapter 4, the modified unit-cell library will be outlined. This will include

a presentation of each entry in the library, a description of the mapping and

selection process for the new library, and an outline of the optimization process

for the unit-cell configurations in the unit-cell library.

• In Chapter 5, the SMS method will be tested against 2-D and 3-D examples of

varying complexity in order validate the method and compare design results.

These examples will attempt to validate or refute the three hypotheses proposed

in this chapter.

• In Chapter 6, the research results will be summarized and conclusions will be

drawn. Future work for the method will be outlined.

1.5.2 Connection Between Thesis Chapters and Research Questions

Table 1 presents the research questions and their relation to the remaining chapters

of the thesis. As can be seen from Table 1, the bulk of the research questions will be

answered in Chapter 5: Design Examples.
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CHAPTER II

LITERATURE REVIEW

In this chapter, a literature review of research relevant to the SMS method will be

conducted. The review is divided into six separate categories. Section 2.1 outlines

methods for analyzing cellular, and in particular, truss structures. Section 2.2 outlines

current approaches to lattice design in cellular structures. Section 2.3 outlines some

of the algorithms used in the design methods of Section 2.2. This review will set

the groundwork for the material in Section 2.4: the original SMS method and 2.5

a description of some documented unit-cells to be utilized in the unit-cell library.

Finally, in Section 2.6, gaps in the original SMS method will be outlined.

2.1 Methods for Lattice Structure Analysis

The critical task in the analysis of cellular structures is the determination of the as-

sumptions and limitations that can be utilized in order to develop accurate models

of these cellular structures. Current analysis methods for cellular structures are de-

veloped for the specific analysis of certain types of cellular structures. For instance,

Wang and McDowell have developed a comprehensive review of the analytical mod-

elling, mechanics, and characteristics of metal honeycombs [51]. Asbhy et al. have

performed extensive research on the analysis and design of metal foams [10]. How-

ever, the methods presented in this section focus primarily on the analysis of truss

structures as a subset of cellular structures. A portion of these analyses are provided.

The analysis of truss structures initially used the assumption that struts in a

lattice structure only undergo axial loading and that joints are pin-pin joints. In

their work, Wallach and Gibson use this assumption to theoretically analyze sheets

of lattices under axial loading conditions [50]. When compared with experimental
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In the unit truss approach, a unit truss is used as a new unit cell for mechanics analysis of 
cellular structures, including lightweight structures, and compliant mechanisms. A unit truss 
consists of a central node and a set of half-struts that are connected to the node. Every two 
neighboring unit trusses share a common strut. An example of unit trusses is shown in Figure 3. 

Unit Truss 1 Unit Truss 2 Unit Truss 3  

Figure 3. Series of three unit truss structures that are connected between each node.   
 
Unit trusses can be parameterized, analyzed, patterned, and manufactured to support the 

desired design. In a unit truss, the strain and stress around the nodes (displayed in Figure 4), are 
usually complicated due to considerable inter-strut interactions and large bending moments [1]. 
The unit truss is leveraged from the ground truss approach and homogenization method [5, 6].  
The constitutive equations of 2-D and 3-D unit trusses are shown in Equations 7-9. The  linear 
elasticity of a unit truss is represented by eK , while U  and F  represent the nodal displacements 
and forces. Unit trusses can have any number of incident struts and they are special finite 
elements for analyzing large cellular structures.  
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Figure 4. Unit truss nodal degrees of freedom for a unit truss node with five attached struts.  
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Figure 5: The unit-cell approach to lattice analysis

results, this theoretical framework returned comparable results, with percent errors

ranging from between 3% and 27%. Chiras et al. have extended this assumption to

lattice sheets undergoing bending and shear loading [17].

In their research, Johnston et al. propose a more general analytical model of

lattice behavior by considering an assumption of beam-like characteristics for lattice

struts. The model uses vertices and the set of half-struts connecting these vertices

and lumps them together into discrete “unit-trusses” [31]. These elements are then

analyzed using a method similar to the finite-element approach. Wang et al. have

applied this unit-truss approach successfully to lattice design [52, 55]. The unit-truss

representation is shown in Figure 5.

2.2 Methods for Lattice Design

In this section, an overview of current synthesis methods for cellular structures is

provided.

2.2.1 Size, Shape, and Topological Design

Design synthesis methods for cellular materials can be divided into three different

types of optimization tasks: shape, size, and topological optimization. Before these

three optimizations are discussed, it should be noted that these terms can have differ-

ent definitions depending on the research and context in question. It is also important

to note that the three terms are becoming increasingly hard to decipher in research
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Figure 6: An interpretation of size (top), shape (middle), and topology (bottom)
optimization [13].

[7]. The definitions that this research uses follow those from Bendsøe and Sigmund

[13].

Shape optimization can be defined as the development of the geometric dimen-

sions of a body [38, 9]. Methods for shape optimization are generally performed

using the same process: through the use of control vertices of parameteric curves and

surfaces. Size optimization, on the other hand, can be the defined as the determina-

tion of individual cross-sectional areas of struts [11]. Like shape optimizationn, Size

optimization is performed using the same basic method, with feature dimensions as

design variables. Topological optimization, as defined by Rozvany, can be defined as

the determination of the spatial sequence or connectivity of members [43]. It con-

tains both elements of both size and shape optimization. In this research, size and

shape optimization will not be discussed in detail. Instead “topological optimization”

will be the primary term used for the design and optimization of mesoscale lattice

structures. Figure 6 shows Bendsøe and Sigmund’s interpretation of size, shape, and

topology optimization [13].
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method can easily be applied to practical problems of lattice design. This method does 

not consider the possibility of buckling in struts within the lattice structure. This does not, 

however, prove to be a limitation for design. A 10mm lattice strut of SL5510, a common 

stereolithography material, with a circular cross section of 1mm has a critical Euler 

buckling load of approximately 59N. For the types of structures considered during this 

work, the loading conditions are such that the risk of buckling is small.  In deference to 

its increased accuracy, the FEA unit-truss analysis method developed by Johnston et al. 

will be utilized throughout this work. 

Section 2.1.3: Optimal Lattice Structures 

Near the turn of the last century, Australian engineer George Michell published 

what would eventually become Michell’s theorem [21]. This theory defines the existence 

of an analytically optimal truss structure under certain loading conditions. One such 

analytically optimal truss structure is illustrated in Figure 2-3. 

 

Figure 2-3: One of Michell's 1904 solutions, from [27] 

Much attention has been given to Michell trusses, such as extensions to consider 

designs with multiple materials [11], non-linear situations [28], or designs with pre-

Figure 7: A truss designed using the Michell approach.

2.2.2 The Michell Analytical Approach

Topological design methods for cellular structures date as far back as 1904, when

George Michell theorized the existence of an analytically optimum truss structure for

any given loading condition [35]. An example of a Michell truss is shown in Figure 7.

The Michell analytical formulation became the base for nearly all analytical ap-

proaches to truss design. Since then, several extensions of the Michell truss have been

developed, including those encompassing multi-material design, non-linear behavior,

and for structures containing pre-defined lattices [22, 47, 44]. However, the Michell

approach to truss design does not lend itself to well to manufacture and is generally

restricted to two-dimensional scenarios [61]. It is therefore very limited in application.

2.2.3 Optimization Approaches

Since the development of the Michell approach to truss design, two broad topological

optimization approaches have been introduced: the homogenization (continuum) ap-

proach and ground truss (discrete) approach. It is important to note that topology

optimization is intrinsically a discrete optimization problem [49]. However, because

discrete optimization can be highly unstable, both approaches use continuous design

variables to characterize the discrete problem [60].
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Figure 8: An example of the homogenization approach to lattice design [13].

2.2.3.1 The Homogenization Approach

The homogenization approach uses a continuum mechanics approach to topology

design [12]. In the homogenization approach, a representation based on composite

materials is used. A material density function, ρ, models an infinite number of peri-

odically distributed microstructures with small holes, or voids. From the macroscopic

perspective these voids allow any point in a structure to be fully occupied, partially

occupied, or unoccupied by a material; areas in the structure that have densities

at or near a value of 1 are filled with material while areas with densities near zero

contain no material. Other microstructure representations have been developed as

well, including the micro-microstructure, rank laminate composite, and free mixture

representations [12]. An example of the homogenization approach is shown in Figure

8.

2.2.3.2 The Ground-Truss Approach

In the ground truss approach, the optimum topology is a subset of a ground truss: a

complete graph of all the struts among all the nodes in a cellular structure. Here, the

cross-sections of the truss members become the design variables of the optimization

problem. These cross-sections are sized against the specific loading conditions of

the structure. Cross-sections that tend toward values of zero are removed from the

structure to obtain the optimum [23]. It is important to note that the ground-truss
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Figure 9: An example of the ground truss approach to lattice design [13].

approach is inherently a sizing optimization problem. However, the problem becomes

a topological optimization problem when struts are removed from the structure [14].

For the ground truss approach, the design problem for a typical single load situation

is formulated as minimizing compliance and volume subject to static equilibrium and

stress constraints [9]. Further research has gone into expanding the ground-truss

approach to include the nodes of the ground structure as design variables in addition

to the cross-sectional areas of the struts [7, 59]. This is done to reduce the dependency

of the ground-truss approach on the initial lattice configuration [7]. An example of

the ground truss approach is shown in Figure 9.

2.2.3.3 Comparison Between the Ground-Truss and Homogenization Approaches

Both approaches to topology design have their own sets of advantages and disad-

vantages. For instance, the homogenization approach allows for true topology op-

timization without the need to remesh the finite-element model [12]. Furthermore,

implementation of optimization routines may be simpler [48]. However, because the

homogenization approach is a continuum approach and topology optimization is dis-

crete problem, ambiguities can arise in the definition of material allocation. Research

has been conducted to alleviate this issue, but the problem has not been completely

solved [28, 62].

The ground structure approach, on the other hand, is a more discrete approach

and does not suffer from the ambiguity problems of the homogenization approach.

However, the ground structure approach is highly dependent on the starting lattice
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topology of the structure [7]. As a result, this approach is generally faster than the

homogenization approach, but cannot generate results as accurate as the homoge-

nization method [53].

2.3 Multi-variable Optimization Algorithms

Regardless of whether a continuum or discrete approach is used for the design of cel-

lular structures, an optimization still must be conducted. Optimization algorithms

vary widely depending on the type of design problem and task. For instance, Rao

recently divided optimization techniques into three categories: mathematical program-

ming techniques, stochastic process techniques, and statistical methods [40]. However,

Rao also recognizes that new optimization techniques cannot be classified cleanly into

any of these three categories and has specified a new class of techniques: modern and

non-traditional optimization techniques. This classification incorporates algorithms

such as genetic algorithms, particle swarm optimization, and neural networks [40].

However, the optimization algorithms that are of particular interest in the topolog-

ical optimization of truss structures are those that are specialized to solve design

spaces that are nonlinear and constrained. These optimization algorithms can be

classified into two broad categories: indirect methods and direct methods [16, 45].

Direct methods, such as mathematical programming, generally require some form

of gradient calculation. Although these methods are fairly robust, they can also be

time-consuming because the gradient calculation is inherently complex [45]. Indirect

methods, on the other hand, do not use gradients to determine optimality. Instead,

the use other criteria to guide optimization. For instance, a typical indirect approach

may use “penalty-functions” that make the objective function less optimal as the so-

lution approaches a constraint [16]. The Michell truss, which requires that all struts

in compression and tension have identical stress, is also an example of an indirect

optimality criterion [61]. In many cases, these indirect optimality criterion, such as
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uniform stress, are equivalent to more direct criterion, such as compliance, and as

such provide the same solution [38].

In this research, three particular optimization algorithms are either discussed

or utilized: Particle Swarm Optimization (PSO), Least-Squares Minimization, and

Active-set programming.

2.3.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic optimization method that can

be either an indirect or direct method, depending on the problem definition. It

is an extension of genetic algorithms (GA) that specifically performs parametric and

limited topological optimization of structures and compliant mechanisms. The driving

concept of PSO is the movement of birds in a flock, where individuals adjust their

movement according to their experience and other individuals’ experiences in the

flock during search for food [32]. The optimization is considered stochastic because

the behavior of the swarm is governed by psuedo-random numbers used to create

initial values for the swarm. It combines local search with global search, and enables

cooperative behavior among individuals, as well as the competition modelled in GA.

Hence, PSO often converges more quickly than GA and is less sensitive to local

minima [53].It is important to note that PSO was not used directly in this research,

but was used in previous research regarding the SMS method [27].

2.3.2 Least-Squares Minimization

In least-squares minimization the achievement of target values of goals can be for-

mulated as a regression problem, which has similarities to formulations in inverse

design and parameter estimation [36]. For cellular material design, the number of

design variables far exceeds the number of objectives, which is similar to fitting a

low order polynomial model to a large data set. In particular, some iterative meth-

ods have been developed to solve nonlinear problems, such as the Gauss-Newton and
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Levenburg-Marquardt methods [39]. In this research, the Levenburg-Marquardt (LM)

is used because of its robustness and reliability in non-linear problems. In this re-

search, the MATLAB nonlinear least-squares solver lsqnonlin is used as the primary

least-squares solver.

2.3.3 Active-Set

The active-set algorithm is a mathematical programming algorithm that is particu-

larly well-suited for the optimization of large-scale optimization problems [26]. As the

name suggests, active-set methods aim to predict which of the inequality constraints

are active in a given minimization function. By determining which set of constraints

are active and which are not, this algorithm can reduce complexity and, subsequently,

optimization time. In this research, the MATLAB function, fmincon is used as the

active-set solver. In particular, the implementation of the active-set method in MAT-

LAB is coupled with Sequential Quadratic Programming (SQP) methods, which are

highly efficient non-linear programming methods, to solve the quadratic program-

ming problem at every iteration [6]. The implementation also uses solutions to the

Karush-Kuhn-Tucker (KKT) equations in order to enforce active constraints.

2.3.4 Other Topological Optimization Algorithms

In addition to the three algorithms listed above, other synthesis methods have been

explored. Recently, an exploratory framework was developed that can minimize the

risk of structural failure by integrating a topology optimization method and a relia-

bility assessment technique [37]. In this method, a Genetic Algorithm (GA) method

is used as the optimization routine and Latin hypercube sampling is conducted for

the estimation of reliability constraints. In general, GA’s have become more widely

used in the synthesis of structural components because their evolutionary nature is

well suited for exploring complex design spaces typical to cellular materials [56].
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2.4 The Original SMS Method

Although the algorithms used in the design of the mesoscale truss structures differ

greatly, these methods all share a common similarity: they all perform some form of

a multivariable, topological optimization. Depending on the size and complexity of

the structure and the design parameters, the number of design variables used in the

topological optimization can be prohibitively large. For instance, it is not uncommon

for structures designed using the ground truss approach to have design variables num-

bering in the hundreds of thousands. Consequently, these topological optimizations

can be computationally expensive and time-consuming and are generally the primary

bottleneck in the design of truss structures. These optimizations provide the primary

motivation for the development of the SMS method. In particular, the SMS method

attempted to answer the research question: Can a design method for mesoscale truss

structures be developed that does not require a time-consuming, global optimization of

diameter values?

2.4.1 Approach

The original Size, Matching, and Scaling method attempted to remove the need for

topological optimization by combining information from two different sources: a finite-

element analysis and a library of truss configurations specialized for specific loading

conditions, termed the “unit-cell library.” From the solid-body FEA, the SMS method

would find the relative stress distribution throughout the structure. Using this stress

distribution values, the method would then use the unit-cell library to assign a lattice

topology. The original SMS methodology is shown in Figure 10.

The library that was used in this iteration of the SMS method contained only one

entry: a cube containing struts along each edge and diagonal trusses connecting the

corners of each face of the cube. This unit-cell configuration is shown in Figure 11.

The configuration shown in Figure 11 was then optimized intuitively by Graf for 6
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Figure 4-1: Unit-Cell Library Approach 

Section 4.2: Problem Definition 

The problem definition begins the design process, and serves as a guide 

throughout. It consists of two parts; the main component of the problem definition is the 

“bounding geometry” of the problem. This is the volume, or area in the case of two-

dimensional trusses, that the structure is allowed to occupy. For simple problems, such 

geometry can be represented through an analytical definition, although complex problems 

may be parametrically modeled. This serves as a limit, rather than a requirement, as it is 

quite likely that the final lattice will only fill a portion of the bounding geometry.  

The second part of the problem definition contains the expected loads and 

boundary conditions that will be applied to the structure. Since they will motivate the 

Ambiguity Resolution

Problem 

Solid Model 

Topology 

Final 

Unit-Cell Model 

Model Correlation

Figure 10: The original SMS method [27].

stress directions and placed into the unit-cell library. The original unit-cell library

that was used is shown in Figure 12.

2.4.2 Results

This original implementation was validated against two multi-variable topological op-

timization routines utilizing the ground truss approach: particle swarm optimization

(PSO) and least-squares minimization (LM) [27]. When compared to the PSO and

LM optimization routines, the SMS method was able to formulate a design consider-

ably faster than either of the optimization methods. When the performance results

between the PSO, LM, and SMS methods were compared, the results were highly

comparable. This research was ultimately able to validate the SMS method as a

viable alternative to optimization.
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Figure 11: The crossed configuration used in the original unit-cell library [27].March 26, 2011 16:3 International Journal of Computer Integrated Manufacturing IJCIM

International Journal of Computer Integrated Manufacturing 9

XX-axial (σxx) YY-axial (σyy) ZZ-axial (σzz)

XY-shear (τxy) YZ-shear (τyz) XZ-shear (τxz)

Figure 7. The unit-cell library.

in a two-part mold.

4.6.1 Mapping Process

As can be seen from Fig. 7, there exists a specific configuration for each of the six stress
conditions: σxx, σyy, σzz, τxy, τxz, τyz. For each of these stress values, the corresponding
library configuration is scaled to the stress value and then mapped to the region. There-
fore each unit-cell region will actually contain some combination of all six of the library
configurations in Fig. 7.

4.7 Step 5: Ambiguity Resolution

In this step, ambiguities arising from overlapping struts or nodes are resolved. For ex-
ample, some struts that are shared among adjacent unit-cell regions will have different
size values determined by each unit-cell. In this case, the largest diameter is selected for
each strut and all smaller overlapping struts are removed.

4.8 Step 6: Diameter Sizing

In the previous steps, the topology of the lattice structure was generated. However, the
strut diameters for this structure are normalized to be between 0 and 1 and are therefore
unadjusted for the provided loading magnitudes and target volume. In order to satisfy
these values, the normalized diameter values must be replaced with real diameter values.
This procedure, called diameter sizing, is accomplished through the use of three critical
diameter values: a maximum allowable diameter, Dmax, a minimum allowable diameter,
Dmin, and a cutoff diameter, Dcutoff .

Figure 12: The original unit-cell library [27].
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the theoretical values, although Chiras et al. focus primarily on the mechanics of the 

physical samples and provide considerable information concerning the construction and 

quality of the experiment samples. Wallach and Gibson’s work is more concerned with 

the theoretical analysis, which models the elastic properties of the structure with percent 

errors ranging from 3% to 27% (depending on the direction analyzed). Little discussion is 

given as to whether these models are acceptable, or where errors may arise.  

Both Wallach and Gibson [31] and Chiras et al. [6] consider lattice structures 

comprised of a sheet of unit-cells that is one unit-cell thick. Deshpande et al. [10] 

consider a more general approach for an analysis of an “octet-truss” lattice, a unit-cell 

that is shown in Figure 2-2.  
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Figure 2-2: Octet-truss unit cell 

This more general method, although still based on an assumption of axial strut 

loading, results in effective mechanical properties for individual unit-cells. By 

analytically combining unit-cells, any arbitrary combination of cells can be analyzed in a 

method similar to that utilized for finite element analysis. Johnston et al. [19] provide a 

more comprehensive analysis, considering an assumption of beam-type behavior for each 

lattice strut. Their unit-truss lattice model is able to simulate unit-cells under compression 

with a relative error of under 10%. Wang et al. [33] illustrate that the unit-truss analysis 

Figure 13: The octet configuration.

2.5 Unit-Cells

In addition to the “crossed” unit-cell configuration outlined by Graf, other unit-cell

configurations have been researched. These configurations are outlined in this section.

2.5.1 The Octet Configuration

The octet configuration, shown in Figure 13, is a configuration that attempts to

prevent the elastic buckling of struts. By eliminating failure due to bending, the

structure can then allow the strength and structure of the truss to be stretching-

dominated. Analytical and FE results have indicated that this structure performs

favorably against metallic foams [20].

2.5.2 The Cantley Configuration

The Cantley configuration, developed by Richard Cantley, is “a molded plastic truss

work includ[ing] an upper grid and a lower grid, with a plurality of interconnecting

members interconnecting the grids.” The configuration, shown in Figure 14, is specifi-

cally designed to be created in a two-part plastic mold [15]. In particular, the Cantley
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Figure 14: The Cantley configuration.

features a single configuration that can be repeated to create a lattice sheet.

2.6 Gap Analysis

Although the SMS approach to truss design was very promising, the actual method

developed was highly conceptual and suffered from gaps in implementation. In par-

ticular, two key issues needed to be further explored:

1. The SMS method lacked a true systematic methodology. In particular, the

allocation of diameter values to lattice topologies lacked a robust and repeat-

able implementation. Additionally, the assumptions driving the allocation of

diameter values were not sufficiently explored.

2. The unit-cell library utilized by the method contained only one unit-cell config-

uration. In order to maximize usage of the unit-cell library, more than one entry

must exist in the library. Furthermore, the unit-cell selection process must be

re-evaluated in order to select the best configuration for a given stress condition.

These two issues form the primary motivation for the modification and improve-

ment of the SMS method. In order for the method to be a viable alternative for the

design of truss structures, these issues must be addressed.
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2.7 Summary

In this chapter, research related to the design of mesoscale truss structures and the

Size, Matching, and Scaling method was presented. Through this review, it can be

seen that the problem of design and optimization cellular structures is not a new

problem: much research has been conducted on the issue as far back as the turn of

the last century. Several approaches, both analytical and optimization-based, have

been presented and heavily studied. Several individual algorithms well-suited for

the optimization of the large design-spaces present in the design of mesoscale lattice

structures have been presented. These algorithms can range from traditional math-

ematical programming methods such as least-squares minimization and active-set

optimization, to modern, non-traditional means, such as particle swarm optimization

and genetic algorithms.

However, regardless of the optimization method or approach used, optimization is

still required. It can be seen that this optimization is by far the most time-consuming

and complex part of the design process. In his research, Graf attempted to circumvent

the need for optimization by using a novel approach, the “unit-cell approach,” for the

design of mesoscale lattice structures. The method that was developed, the original

“Size, Matching, and Scaling” method, showed highly promising results: stiffness and

strength characteristics were comparable while design time was drastically reduced.

However, the method suffered from key drawbacks relating to the implementation

of the method. In particular, the determination of diameter values lacked a reliable

and systematic method. Furthermore, the library that was utilized in the generation

of lattice topologies was not sufficiently explored. In order for the Size, Matching,

and Scaling method to become a viable alternative for designers, these issues must be

addressed. As a result, these issues form the key components of the research questions

outlined in Chapter 1. In order to address these issues, both the SMS method and

the unit-cell library must be modified. In the following Chapters 3 and 4, the method
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and library will be modified and tested in order to address the research questions

outlined in Chapter 1.
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CHAPTER III

THE MODIFIED SMS METHOD

In this section, the improved Size, Matching, and Scaling Method will be presented.

The modified method attempts to resolve technical and conceptual issues that arose

during the first implementation of the method. In particular, this design method

attempts to utilize the unique features of the unit-cell approach to generate a nor-

malized structural topology. By combining this topology with an optimization of the

minimum and maximum diameter values of the structure, the SMS method will be

able to design successfully an MSTS without the need for a rigorous, global topological

optimization.

3.1 Problem Formulation

In order to develop the SMS method, the inputs, outputs, constraints, and objectives

must all be properly elicited. However, before this process can occur, the general de-

sign problem for mesoscale truss structures must first be formulated. This formulation

can then be adapted for the specific characteristics of the SMS method.

3.1.1 General Problem Formulation

In the design of meso-scale truss structures, each design problem will differ depending

on the loading conditions, geometric properties, and desired performance. However,

these problems have core similarities and can thus be characterized by a general

problem formulation. This formulation can be approached as a multi-objective design

problem with elements of both size and topological optimization. In order to clearly

formulate the design problem at hand, the Compromise Decision Support Problem

(cDSP) method is used [46]. The general qualitative formulation for the design and
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Table 2: Qualitative formulation of the meso-scale truss structure design problem.

Given: Starting optimization ground structure, loading and
boundary conditions

Find: Strut diameter sizes

Satisfy: Upper and lower diameter bounds, maximum volume con-
straint, maximum stress constraint

Minimize: Compliance, deviation from target volume

Table 3: Mathematical cDSP formulation of the meso-scale truss structure design
problem.

Given: pBG, pF , pM , i

Find: Di ∈ {0, [DLB, DUB]} (a)

Satisfy: σi ≤ σmax (b)

V ≤ Vmax (c)

Minimize: Z = (Wd × d)2 + (WV × V )2 (d)

optimization of MSTS using the ground structure approach is provided in Table 2.

The mathematical equivalent of Table 2 is provided in Table 3.

In Table 3, the symbols pBG, pF and pM represent the initial geometric, loading,

and material properties, respectively. The symbol Di represents the diameter value

of each of the i struts in the truss structure. DLB and DUB represent the lower

and upper bounds for Di, respectively. The symbol σi represents the axial stress

value in each i strut. The symbols V and d represent the volume and deformation

of the structure and Wd and WV represent weighting variables for d and V in the

minimization function, Z.

As can be seen in Tables 2 and 3, the ground structure problem formulation

requires that there be a starting topology in order to perform optimization. The

topology of this structure is generally provided by the designer and contains a large

number of struts, each with the same starting diameter value. These diameter values

must be optimized in order to generate the optimal structure topology. As can be seen

in (a) of Table 3, the diameter values can either be within the specified upper and lower

diameter bounds, or zero. If all diameter values remain within the diameter bounds,
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then the optimization problem becomes a size optimization problem. However, in

most cases, diameter values will drop below the specified lower bounds. In this

case, the diameter values become zero and the strut is essentially deleted from the

structure. This scenario changes the optimization from a size optimization problem to

a topological optimization problem as well, since the actual topology of the structure

has changed. In the minimization function, (d) of Table 3, the volume, V , is calculated

simply as the sum of the volumes of all the struts in the structures, which are assumed

to be cylinders:

V =
∑

π × D2
i

4
× li (2)

Here, li represents the length of each of the i struts in the structure. It is important

to note that there may be overlapping volumes in locations where struts meet that

are not subtracted from the overall volume. In order to simplify the design problem,

it is assumed that these overlapping regions have a negligible contribution to the net

volume of the structure.

Although the volume of the structure can be determined directly using Equation

2, the deformation, d, does not have a set equation. This lack of an equation occurs

because the deformation does not represent a specific metric, but instead represents

any value that is directly proportional to the stiffness of the structure. In most cases,

d is represented by the net displacement of the structure or the displacement of a

particular point on the structure. However, d can also be represented by other values

directly proportional to stiffness, such as compliance, strain energy, or work.

3.1.2 SMS Problem Formulation

Tables 2 and 3 are formulations for design methods that require a global optimization

of strut diameter sizes in order to perform size or topological optimization. Because

the SMS method is also a size/topological design problem, it will have a problem
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Table 4: Qualitative cDSP formulation for the SMS design problem.

Given: Bounding dimensions and unit-cell distribution within the
bounding dimensions, loading and boundary conditions,
material properties, unit-cell library configurations

Find: Lattice topology in each unit-cell region, strut diameter
values

Satisfy: Upper and lower diameter bounds, target volume, maxi-
mum stress constraint

Minimize: Compliance

Table 5: Mathematical cDSP formulation for the SMS problem.

Given: pBG, pF , pM , pUC , SLj,k, i, k

Find: Di,k = [Sui,j × SLj,k × (Dmax −Dmin)] +Dmin (a)

Dmin, Dmax (b)

Sui,j =
∑
σn−σmin

i,j

σmax
i,j −σi,j

min (c)

Satisfy: DLB ≤ Dmin ≤ Dmax ≤ DUB (d)

σi ≤ σmax (e)

Minimize: Z = (Wd × d)2 +
(
WV × V−Vt

Vt

)2
(f)

formulation similar to the general formulations. However, the SMS method uses the

unit-cell approach for topology generation and does not require a global optimization.

Therefore, the problem formulations presented in Figures 2 and 3 must be modified

to reflect the unique characteristics of the SMS method. The modified qualitative for-

mulation is presented in Table 4. The modified quantitative formulation is presented

in Table 5.

In Table 5, the symbols i, j, and k represent each unit-cell region in the structure,

each unit-cell configuration in the unit-cell library, and the strut number in each of

the j configurations in the library, respectively; n symbolizes the nodes from the

solid-body analysis.

As seen in Tables 4 and 5, the SMS formulation contains key differences from the

general formulation. Firstly, it can be seen that more information is provided ini-

tially to the SMS method. The general optimization problem only requires a starting
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topology and loading conditions; the SMS method, on the other hand, requires addi-

tional sources of information, particularly from the unit-cell library and finite-element

analysis. Secondly, instead of starting topology, the SMS method requires only the

bounding dimensions of the structure and information regarding the distribution of

unit-cell regions across the structure. The most significant change, however, is shown

in (a) of Table 5. Here, the determination of the strut diameters, Di,k, differs consid-

erably. It can be seen that four values must be known before Di,k can be determined:

minimum and maximum diameter values, Dmin and Dmax, a stress scaling factor, Sui,j,

and a unit-cell scaling factor, SLj,k. Furthermore, it can be seen that the two scaling

factors, SLj,k and Sui,j, are provided by external sources of information: the unit-cell li-

brary and the solid-body stress analysis. Therefore, only two-values, Dmin and Dmax,

need to be determined through optimization.

The optimization of Dmin and Dmax is performed using the minimization function,

Z, shown in (f) of Table 5. The equation has two contributing components, the

structural deflection, d, and the structural volume, V , of the truss structure. In

particular, the minimization function is formulated to minimize the deflection of the

structure and the deviation of the structural volume from a target volume, Vt. Both

components also have a weighting value associated with them, Wd and WV , in order

to adjust the relative importance of each component. Both these components are

formulated in a least-squares format.

In order to successfully optimize both Dmin and Dmax, both the deflection, vol-

ume, and associated stresses must be calculated at any given time for any value of

Dmin and Dmax. These values are calculated using a finite-element analysis of the

truss structure. In implementation, the finite-element package that was utilized was

developed in MATLAB by Honqqing Vincent Wang in satisfaction of his doctoral

dissertation [54]. The finite-element package assumes that each truss element in the

truss structure has beam-like behavior.
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When compared with the general problem formulation in Table 3, the principal ad-

vantage of the SMS method becomes apparent. Whereas the formulation for the SMS

indicates that only Dmin and Dmax need to be determined, the general formulation

requires that every diameter be determined individually through optimization.

3.2 SMS Method Overview

With the design problem formulated, the SMS method can be developed. This method

can be divided into seven discrete tasks that are completed in six individual steps.

These steps are summarized in Figure 15.

For each step outlined in Figure 15, there exists a specific output, or deliverable,

from that step, shown in the hexagonal boxes under each step. The deliverable from

each step is used in the subsequent step as the primary input. The only exception to

this rule occurs in Step (3). This step requires two inputs from both Steps (2a) and

(2b). In addition, it can be seen that the unit-cell library is utilized in the fourth step

of the SMS method. The unit-cell library is explained in more detail in Chapeter 4.

3.3 Detailed Description of Each Step of the SMS Method

In the following sections, each step of the SMS method will be outlined. The descrip-

tion of the steps of the SMS method will be provided in the following format:

• Detailed description of the step: In this section, the actual step will be

discussed in detail.

• Primary deliverable of the step: The ultimate deliverable, or result, of the

step will be discussed.

• Additional information: Any notable information about the step that does

not describe the actual proceedings of the step will be discussed. This section

can include information such as assumptions made in the step, limitations of

the step, and the storage format of data.
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Figure 15: Summary of the SMS design methodology
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3.4 Step 1: Specification of Initial Conditions

3.4.1 Method

In the first step of the SMS method, all initial properties are specified for the target

truss structure. These properties encompass a large number of parameters and depend

uniquely on the design task. Generally, the larger and more complex the design task is,

the more initial parameters are required to fully characterize the design problem. All

initial conditions fall broadly into two categories: geometric properties and analytic

properties. Geometric properties are all values and characteristics relating to the

dimensions of the target structure and unit-cells. Analytic properties encompass all

values that are needed to perform stress analysis.

3.4.1.1 Geometric Properties

The geometric properties for the design problem include all parameters that char-

acterize the size and shape of the target truss structure. Specifically, they relate to

all values that specify either the bounding geometry or the unit-cell characteristics of

the target structure. Depending on the complexity of the component in considera-

tion, there can be a high variability in the number of these parameters. For simple

and highly symmetric structures, such as beams or columns, only a small number of

parameters, such as the length and cross-sectional shape, need to be specified. More

complex and specialized structures will require the actual component to be designed

manually, with each dimension of the part clearly defined.

Specification of the unit-cell properties requires definition of the size, shape, and

distribution of the unit-cells composing the target structure. These properties are

based largely on the designer’s preferences and are generally not independent of one

another. For instance, specifying a larger unit-cell size will result in a lattice structure

with fewer and longer struts, but will also result in fewer unit-cells distributed across
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the structure. It is also important to note that there are restrictions in the specifi-

cation of unit-cell properties. For example, only one unit-cell size can be determined

for the entire structure. Also, unit-cells can only maintain a rectangular prism shape.

Components with more complex or curved geometries, such as cylinders and spheres,

must be approximated using these rectangular prisms.

3.4.1.2 Analytical Properties

The analytical properties of the truss structure relate to the specification of all param-

eters that will be needed in the finite element analysis of the truss structure. These

values include material properties, such as the Poisson’s ratio and Young’s Modulus of

Elasticity, as well as the necessary loading and boundary conditions. The properties

specified here will be used in the structural analysis of both the truss structure and

the solid-body representation.

3.4.2 Primary Deliverable

The primary deliverable in this step of the SMS method is a compilation of all geo-

metric dimensions, material properties, and loading conditions of the structure. Ulti-

mately, at the end of this step, the design problem should be clearly and unambigu-

ously defined. The values defined in this step will be used throughout the remaining

steps of the SMS method. After the primary deliverables have been defined, the SMS

method should be able to run autonomously without intervention from the designer.

The actual data storage format for the deliverable of this step currently is a series

of variables stored in files that can be accessed by any of the steps in the SMS method.

As mentioned in the step, the number and type of variables differs greatly with the

type of design problem. However, there will always be variables that are commonly

defined for any design problem, such as loading and fixity conditions and material

properties.
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3.4.3 Additional Information

This first step of the SMS method is ideally the only step where the designer must

input design values. Therefore, the method assumes that the structural values are

clearly, correctly, and unambiguously defined. An incorrect value will either cause

the SMS method to incorrectly design the truss structure or result in a failure of the

method. The first step can alternatively be thought of as the “problem definition”

task of the design process and can be considered external to the actual SMS method

itself, as no work is actually done in this step save for the definition of several variables

and values.

3.5 Step 2a: Generation of a Ground Structure

3.5.1 Method

For this step of the design methodology, the ground, or base, structure of the meso-

scale truss structure is created. The ground structure is simply the bounding geom-

etry of the truss structure with the unit-cell divisions clearly defined. The structure

does not contain any struts or material, but instead represents a hypothetical space

containing the bounding dimensions of the target structure. This space is divided

into several identically sized, cuboid, meso-scale regions. By dividing the structure in

this way, each cuboid region can be isolated and analyzed independently from other

regions. These regions are delimited by nodes at the vertices of each region. Further-

more, these nodes also serve as the end and starting points for struts when the base

structure is filled with struts.

3.5.2 Primary Deliverable

At the end of this step, the ground structure should be successfully generated. This

includes not only each and every node number and coordinate in the geometry, but

also the set of nodes associated with each unit-cell region in the structure. Because
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the unit-regions are cuboid in shape, there must exist eight nodes for each of the

unit-cell regions. Furthermore, these nodes must be defined in a certain manner such

that the orientation of the local coordinate system of the region is known relative

to the global coordinate system of the structure. More information is provided in

Chapter 4.

3.5.3 Additional Information

The determination of the ground geometry should ideally be an autonomous step

where the geometric and unit-cell information entered in the first step is converted

seamlessly into a geometry. However, in its current implementation, the SMS method

is unable to generate a base geometry without manual guidance. This is because the

generation of a base geometry is inherently a difficult one. The process for determining

the base geometry is very similar to the mapped meshing process in the finite element

method. Because the shapes of the unit-cell regions must be hexahedral, a free mesh

using tetrahedrons is insufficient and a mapped mesh is required. This mapped mesh

generally requires manual involvement in defining mesh sizes. As a result, the meshing

(and the base geometry generation process) is usually one of the most time-consuming

aspects of the finite-element approach [34]. Much work has been developed attempting

a free mesh-approach for the development of truss structures [24]. However, this

approach was not implemented in this work and a manual, 3-D mapped approach

was used for all design problems.

The ability to define the size of unit-cell regions in the ground geometry brings

about the possibility of there being and “optimal” unit-cell size and distribution: one

that will maximize the performance of the truss structure. Because the generation of

base lattices is entirely manual at this stage of research, it is not possible to optimize

the unit-cell size. However, it is believe that the unit-cell size will have an impact on

structural performance. This concept will be a topic of future work.
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It should also be noted that, because the ground structure requires that the struc-

ture be divided into uniformly-sized hexahedral regions, any structure with shapes

that cannot be divided cleanly into these regions, such as tetrahedrons and highly

curved surfaces, must be approximated using hexahedra. Furthermore, the completed

structure must not have any overlapping regions or nodes. The existence of these over-

lapping regions or nodes will not necessarily halt the SMS method, but will cause the

method to return a truss structure design that has an undesired performance due to

unknown interactions between the adjacent unit-cell regions.

3.6 Step 2b: Solid Body Analysis

3.6.1 Method

In this step, a stress analysis must be performed on a solid-body structure of the

bounding dimensions of target structure using the loading and fixity conditions spec-

ified in Step 1. The ultimate goal of this step is to obtain the relative stress distri-

bution across the solid-body structure and extrapolate this knowledge to determine

the relative stress distribution of the truss structure. The solid-body analysis is per-

formed using a finite-element analysis program. Once the analysis is complete, the

von Mises stress distribution of the structure is obtained. The primary deliverables

from this analysis are stress values of all the FEA nodes in the FEA program. In

particular, the stress values in the axial and shear directions are taken for each node.

It is important to note that stress might not be the only metric that can be

used to determine the relative material distribution throughout the truss structure.

Other components, such as strain or strain energy, are directly proportional to the

stress distribution and could also be feasibly used to determine lattice topology. An

example of the stress distributions, strain energy distribution, and strain are shown

for a cantilever beam problem In Figure 16. As can be seen, the distribution is very

similar for all the different metrics. Therefore, these could all be potentially used.
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Strain Distribution Stress DistributionStrain Energy 

Distribution

Figure 16: Comparison of the finite-element strain, strain energy, and stress distri-
butions for a 3-D cantilever beam.

However, it is important to note that, currently, the method takes values for each

of the stress directions, σxx, σyy, σzz, τxy, τxz, τyz. Because strain energy is element-

specific and does not have a direction, there is only one value of strain energy per

element. Therefore, the library as it is cannot be used because each topology is

optimized for a certain stress direction and strain energy does not have directional

components. Furthermore, because von Mises stress is a nodal value and strain energy

is an element value, a finer mesh might be required to use strain energy, because there

are roughly 8 times as many nodes as there are elements in the cantilever beam. On

the other hand, strain alone can most likely be used interchangeably with stress

because it can be broken into six directional components and it is node-specific as

opposed to element-specific.
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Table 6: Example of the nodal coordinates from a solid-body FEA.

 LIST ALL SELECTED NODES.   DSYS=      0
 SORT TABLE ON  THXY  THYZ  THXZ

   NODE        X                   Y                   Z
       1     0.00000000000       0.00000000000       0.00000000000    
       2     50.0000000000       0.00000000000       0.00000000000    
       3     2.50000000000       0.00000000000       0.00000000000    
       4     5.00000000000       0.00000000000       0.00000000000    
       5     7.50000000000       0.00000000000       0.00000000000    
       6     10.0000000000       0.00000000000       0.00000000000    
       7     12.5000000000       0.00000000000       0.00000000000    
       8     15.0000000000       0.00000000000       0.00000000000    
       9     17.5000000000       0.00000000000       0.00000000000    
      10     20.0000000000       0.00000000000       0.00000000000    
      11     22.5000000000       0.00000000000       0.00000000000    
      12     25.0000000000       0.00000000000       0.00000000000    
      13     27.5000000000       0.00000000000       0.00000000000    
      14     30.0000000000       0.00000000000       0.00000000000    
      15     32.5000000000       0.00000000000       0.00000000000    
      16     35.0000000000       0.00000000000       0.00000000000    
      17     37.5000000000       0.00000000000       0.00000000000    
      18     40.0000000000       0.00000000000       0.00000000000    
      19     42.5000000000       0.00000000000       0.00000000000    
      20     45.0000000000       0.00000000000       0.00000000000    

   NODE        X                   Y                   Z
      21     47.5000000000       0.00000000000       0.00000000000    
      22     50.0000000000       10.0000000000       0.00000000000    
      23     50.0000000000       2.50000000000       0.00000000000    
      24     50.0000000000       5.00000000000       0.00000000000    
      25     50.0000000000       7.50000000000       0.00000000000    
      26     0.00000000000       10.0000000000       0.00000000000    
      27     47.5000000000       10.0000000000       0.00000000000    
      28     45.0000000000       10.0000000000       0.00000000000    
      29     42.5000000000       10.0000000000       0.00000000000    
      30     40.0000000000       10.0000000000       0.00000000000    
      31     37.5000000000       10.0000000000       0.00000000000    
      32     35.0000000000       10.0000000000       0.00000000000    
      33     32.5000000000       10.0000000000       0.00000000000    
      34     30.0000000000       10.0000000000       0.00000000000    
      35     27.5000000000       10.0000000000       0.00000000000    
      36     25.0000000000       10.0000000000       0.00000000000    
      37     22.5000000000       10.0000000000       0.00000000000    
      38     20.0000000000       10.0000000000       0.00000000000    
      39     17.5000000000       10.0000000000       0.00000000000    
      40     15.0000000000       10.0000000000       0.00000000000    

   NODE        X                   Y                   Z
      41     12.5000000000       10.0000000000       0.00000000000    
      42     10.0000000000       10.0000000000       0.00000000000    
      43     7.50000000000       10.0000000000       0.00000000000    
      44     5.00000000000       10.0000000000       0.00000000000    
      45     2.50000000000       10.0000000000       0.00000000000    
      46     0.00000000000       7.50000000000       0.00000000000    
      47     0.00000000000       5.00000000000       0.00000000000    
      48     0.00000000000       2.50000000000       0.00000000000    
      49     2.50000000000       2.50000000000       0.00000000000    
      50     2.50000000000       5.00000000000       0.00000000000    
      51     2.50000000000       7.50000000000       0.00000000000    
      52     5.00000000000       2.50000000000       0.00000000000    
      53     5.00000000000       5.00000000000       0.00000000000    
      54     5.00000000000       7.50000000000       0.00000000000    
      55     7.50000000000       2.50000000000       0.00000000000    
      56     7.50000000000       5.00000000000       0.00000000000    
      57     7.50000000000       7.50000000000       0.00000000000    
      58     10.0000000000       2.50000000000       0.00000000000    
      59     10.0000000000       5.00000000000       0.00000000000    
      60     10.0000000000       7.50000000000       0.00000000000    

   NODE        X                   Y                   Z
      61     12.5000000000       2.50000000000       0.00000000000    

Table 7: Example of the stress values from a solid-body FEA.

 PRINT S    NODAL SOLUTION PER NODE
 
  ***** POST1 NODAL STRESS LISTING *****                                       
 
  LOAD STEP=     1  SUBSTEP=     1                                             
   TIME=    1.0000      LOAD CASE=   0                                         
 
  THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES                         
 
    NODE    SX          SY          SZ          SXY         SYZ         SXZ     
       1  -1.8124    -0.69913    -0.63678    -0.18155    -0.93638E-02-0.13439    
       2 -0.27010E-02-0.51930E-02-0.30358E-02-0.24652E-03 0.31510E-03-0.44166E-02
       3  -1.5162     0.31273E-01 0.63280E-01-0.83728E-01 0.11385E-01-0.76378E-01
       4  -1.2550    -0.25043E-01-0.24116E-01 0.11092E-01-0.60209E-02-0.27931E-01
       5  -1.2287     0.13232E-01 0.12453E-01 0.10636E-01 0.13295E-02-0.34261E-01
       6  -1.1853     0.22893E-02 0.78830E-03 0.68094E-02-0.60613E-04-0.35813E-01
       7  -1.1219     0.12600E-02 0.12287E-02 0.38301E-02 0.10793E-03-0.36752E-01
       8  -1.0501     0.47512E-04 0.95568E-04 0.30708E-02 0.91482E-05-0.37088E-01
       9 -0.97568    -0.29720E-04 0.78344E-04 0.30126E-02 0.97315E-05-0.37298E-01
      10 -0.90080    -0.24599E-04 0.37313E-04 0.30852E-02 0.11869E-04-0.37451E-01
      11 -0.82565     0.24546E-04 0.12629E-03 0.31384E-02 0.24186E-04-0.37669E-01
      12 -0.74988     0.67928E-04 0.29527E-03 0.32021E-02 0.44602E-04-0.38113E-01
      13 -0.67278     0.12300E-03 0.59830E-03 0.33461E-02 0.74573E-04-0.38995E-01
      14 -0.59325     0.19778E-03 0.10643E-02 0.36521E-02 0.11033E-03-0.40565E-01
      15 -0.50983     0.28309E-03 0.16336E-02 0.41886E-02 0.13745E-03-0.43007E-01
      16 -0.42110     0.34841E-03 0.20825E-02 0.49584E-02 0.12441E-03-0.46187E-01
      17 -0.32664     0.31673E-03 0.18860E-02 0.57883E-02 0.25265E-04-0.49251E-01
      18 -0.22879     0.53820E-04 0.24909E-03 0.62276E-02-0.19829E-03-0.50206E-01
      19 -0.13483    -0.67270E-03-0.36409E-02 0.55479E-02-0.50909E-03-0.45921E-01
      20 -0.58693E-01-0.22615E-02-0.10001E-01 0.32781E-02-0.67437E-03-0.33339E-01
      21 -0.15259E-01-0.43795E-02-0.15558E-01 0.66918E-03-0.23612E-03-0.14613E-01
      22 -0.27010E-02-0.51930E-02-0.30358E-02 0.24652E-03-0.31510E-03-0.44166E-02
      23 -0.80748E-03-0.55061E-02-0.76870E-03 0.24552E-03-0.21998E-03-0.37089E-02
      24 -0.15512E-02-0.66365E-02-0.17376E-02-0.13265E-13 0.39622E-14-0.30478E-02
      25 -0.80748E-03-0.55061E-02-0.76870E-03-0.24552E-03 0.21998E-03-0.37089E-02
      26  -1.8124    -0.69913    -0.63678     0.18155     0.93638E-02-0.13439    
      27 -0.15259E-01-0.43795E-02-0.15558E-01-0.66918E-03 0.23612E-03-0.14613E-01
      28 -0.58693E-01-0.22615E-02-0.10001E-01-0.32781E-02 0.67437E-03-0.33339E-01
      29 -0.13483    -0.67270E-03-0.36409E-02-0.55479E-02 0.50909E-03-0.45921E-01
      30 -0.22879     0.53820E-04 0.24909E-03-0.62276E-02 0.19829E-03-0.50206E-01
      31 -0.32664     0.31673E-03 0.18860E-02-0.57883E-02-0.25265E-04-0.49251E-01
      32 -0.42110     0.34841E-03 0.20825E-02-0.49584E-02-0.12441E-03-0.46187E-01
      33 -0.50983     0.28309E-03 0.16336E-02-0.41886E-02-0.13745E-03-0.43007E-01
      34 -0.59325     0.19778E-03 0.10643E-02-0.36521E-02-0.11033E-03-0.40565E-01
      35 -0.67278     0.12300E-03 0.59830E-03-0.33461E-02-0.74573E-04-0.38995E-01
      36 -0.74988     0.67928E-04 0.29527E-03-0.32021E-02-0.44602E-04-0.38113E-01
      37 -0.82565     0.24546E-04 0.12629E-03-0.31384E-02-0.24186E-04-0.37669E-01
 
  ***** POST1 NODAL STRESS LISTING *****                                       
 
  LOAD STEP=     1  SUBSTEP=     1                                             
   TIME=    1.0000      LOAD CASE=   0                                         
 
  THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES                         
 
    NODE    SX          SY          SZ          SXY         SYZ         SXZ     
      38 -0.90080    -0.24599E-04 0.37313E-04-0.30852E-02-0.11869E-04-0.37451E-01
      39 -0.97568    -0.29720E-04 0.78344E-04-0.30126E-02-0.97315E-05-0.37298E-01
      40  -1.0501     0.47512E-04 0.95568E-04-0.30708E-02-0.91482E-05-0.37088E-01
      41  -1.1219     0.12600E-02 0.12287E-02-0.38301E-02-0.10793E-03-0.36752E-01
      42  -1.1853     0.22893E-02 0.78830E-03-0.68094E-02 0.60613E-04-0.35813E-01
      43  -1.2287     0.13232E-01 0.12453E-01-0.10636E-01-0.13295E-02-0.34261E-01
      44  -1.2550    -0.25043E-01-0.24116E-01-0.11092E-01 0.60209E-02-0.27931E-01
      45  -1.5162     0.31273E-01 0.63280E-01 0.83728E-01-0.11385E-01-0.76378E-01
      46  -1.6408    -0.68383    -0.57821     0.11263    -0.36394E-02-0.18009    
      47  -1.6735    -0.67643    -0.58331    -0.60531E-13 0.35987E-14-0.19451    
      48  -1.6408    -0.68383    -0.57821    -0.11263     0.36394E-02-0.18009    
      49  -1.5085    -0.59911E-01 0.56125E-01-0.60907E-01-0.20628E-03-0.11076    
      50  -1.5004    -0.14785     0.52138E-01-0.59097E-13-0.59347E-14-0.11448    
      51  -1.5085    -0.59911E-01 0.56125E-01 0.60907E-01 0.20628E-03-0.11076    
      52  -1.3477    -0.78847E-02-0.23924E-01 0.27035E-02-0.28864E-03-0.33080E-01

3.6.2 Primary Deliverable

The primary deliverable resulting from the solid body analysis should be the Cartesian

coordinates and stress values in the three axial and three shear directions for each

finite-element node in the solid-body. An example of the data returned from an

ANSYS 11 analysis is shown in Tables 6 and 7.

As can be seen in Table 7, six stress values are of particular interest for use in the

SMS method: three axial stresses, σxx, σyy, σzz, and three shear stresses, τxy, τxz, τyz.

3.6.3 Additional Information

In order for the solid-body analysis to be appropriate for usage for this step, several

criteria must be satisfied:

• The bounding dimensions and shape of the structure must be identical to the

ground structure.

• The loading and fixity conditions must be identical to the ground structure.
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• The number of finite-element nodes in the structure must be equal to or greater

than the number of unit-cell regions in the target structure. In general, the

more finite-element nodes that are present in the structure (i.e. the finer the

meshing of the finite element structure), the better the approximation of the

average stress in the structure. However, a finer mesh will result in a longer

analysis and design time, so a trade-off must be made.

3.7 Step 3: Stress Normalization and Matching

3.7.1 Method

In this step of the design method, the deliverables from Steps 2a and 2b are combined

determine the stress concentrations in each of the unit-cell regions composing the base

geometry. Specifically, three sequential operations are performed on the nodal results

in sequential order: unit-cell correlation, averaging, and finally normalization. These

three operations are explained below.

3.7.1.1 Unit-Cell Correlation

In order to utilize the solid-body results to create the truss-structure, the stress

results must be correlated, or “mapped,” to the appropriate unit-cell region of the

base geometry. Essentially, the solid-body nodes are checked to find which unit-cell

region they fall into. If one of these nodes falls into the region enclosed by a unit-

cell region, then the stress values of that node are included in the calculation of the

stresses in the unit-cell region.

Once the mapping process is complete, then each unit-cell region will contain an

array of FEA nodes that will be included in the calculation of the stress distribution

in the unit-cell. If, for some reason, a unit-cell region contains no FEA nodes, then it

is assumed that that particular region has zero stress in all directions. Also, if there

is a scenario where a FEA node exists on the border between multiple unit-cells, it

will be included in each of these respective unit-cells.
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3.7.1.2 Averaging

Once the correlation procedure is completed, each unit-cell region will contain a set

of FEA nodes. In order to determine the overall stress in each unit-cell region, the

stress values of all the FEA nodes in the array will be averaged. As seen in Table 7,

each node contains six stress values. Each of these six stress values is averaged for all

nodes present in the unit-cell region. It is important to note that only the absolute

value of the stresses are averaged since only the magnitude, not the direction of these

stress values is important for determining the overall stress of the unit-cell region.

3.7.1.3 Normalization

The final operation is the normalization of the stress results to between zero and one.

The exact stress values returned by the nodal FEA solution are relevant only for a

solid-body structure. The exact value therefore cannot be used in the SMS method

because they will not match the stress values in an equivalent truss structure. Instead,

it is more important to know the relative distribution of stresses in the solid-body

analysis than the stress values themselves. Since the actual values are not necessary,

they are normalized to between zero and one. This normalization is performed for

two reasons. First, the normalization removes superfluous stress information from the

analysis, allowing results to be interpreted more easily. In this case, the normalization

allows the largest stress value corresponds to a value of one and the smallest stress near

a value of zero. Second, the normalized values will allow the mapping of specialized

unit-cells to the truss structure to be accomplished much more easily.

3.7.2 Primary Deliverable

The final result of this step of the SMS method should be the ground structure of the

SMS method with each of the unit-cell regions containing the average stress values for

the entire region. It is important to note that each region will contain six stress values,

three axial and three shear: σxx, σyy, σzz, τxy, τxz, τyz. These values are normalized to

53



between zero and one across the entire structure.

3.7.3 Additional Information

In order for this step to be successful, there must exist at least one FEA node per

region in the structure. Thus, it is important to have a finite-element model that is

finely meshed enough so there are a sufficient number of nodes for each region in the

structure. If no nodes exist in the structure, then the method assumes that there is

zero stress in the structure. Therefore, during the fourth step, no topology will be

mapped to the structure and a blank space will exist in the region.

A critical assumption that the method makes in this step is that the average stress

in the region is a good approximation of the overall stress distribution in the region.

However, if there is a region where the stress varies considerably and the average stress

is not representative of the local stresses, then the assumption will not be valid. To

counter the possibility of this issue occurring, it is important to specify an accurate

unit-cell size such that each region only encompasses small stress variations that can

be accurately modelled using an average value.

3.8 Step 4: Topology Generation

3.8.1 Method

With the average, normalized stresses known for each unit-cell region, the unit-cell

library can be used to map specialized unit-cells to the unit-cell region. Each region

in the base structure is scanned. Then, based on the six stress values, a unit-cell

configuration is selected and mapped to the region. This process continues iteratively

across all the unit-cell regions until all the regions are mapped. Once this process is

completed, the topology of the structure will be completed. A more detailed expla-

nation of the selection and mapping process is provided in Chapter 4.
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3.8.2 Primary Deliverable

At the completion of this step, the ground-structure will have a topology specialized

for the anticipated stress distribution of the structure based on the solid-body anal-

ysis. It is important to note that because all the strut diameters lie between zero

and one, the structure at this point essentially contains only topological data for a

normalized loading situation. In this topology, the relative diameter sizes are known

relative to each other; a strut with a diameter value of one is the thickest relative

strut in the structure. Alternatively, a strut with a value at or near zero will be the

thinnest relative strut in the structure; every other strut diameter is known relative

to the other strut values. The normalized diameters must be associated with actual

diameter values based on the loading conditions of the structure.

3.8.3 Additional Information

The success of this step is highly contingent upon the accuracy of the unit-cell library

and of the base configuration. The method assumes that the unit-cell configurations

are all correctly optimized and their directions are correctly oriented with the truss

structure. The step also assumes that the base structure and each unit-cell region is

oriented correctly. If the local coordinate system of both the unit-cell configuration

and the unit-cell region are not oriented in the same direction as the global coordinate

system, then the topology will be mapped incorrectly and the truss structure will

perform sub optimally.

3.9 Step 5: Unessential Strut Removal

3.9.1 Method

In this step, struts that are deemed unessential for the optimal performance of the

structure are removed from the structure. These struts can be classified into two

types of struts: ambiguous struts and dispensable struts.
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3.9.1.1 Ambiguous Struts

Ambiguous struts are those struts that should not exist within the truss structure.

For instance, ambiguous struts can be multiply-defined or overlapping struts in the

structure. These overlapping struts often exist because adjacent unit-cell regions often

have identical struts on their shared planes. To resolve this conflict, the largest strut

of the duplicate struts is kept and the smaller struts are removed. This process ensures

that the remaining strut is adequately large enough to support all the stresses of both

unit-cell regions. Other ambiguous struts can include struts with zero diameter sizes

or that have the same beginning and ending points. The removal of such ambiguous

struts can be considering a “book keeping” step, where the majority of flaws created

during the first four steps are removed from the structure.

3.9.1.2 Unnecessary Struts

Unnecessary struts are those struts that have negligible contribution to the overall

performance of the truss structure. These struts are removed from the structure

in order to reduce the overall normalized volume of the structure. This, in turn,

will improve the results of the final step of the method, when diameter values are

determined for the structure.

The previous iteration of the SMS method used a simple algorithm for the removal

of unnecessary struts. This method used the concept of a cutoff diameter, Dcutoff .

Dcutoff can be defined as a value between Dmin and Dmax where all struts with

diameter values below this value are removed from the structure:

Dcutoff = c× (Dmax −Dmin) +Dmin (3)

where c is a decimal value between zero and one. In the previous SMS method,

c was set as 2.5%, or 0.025. Dcutoff was initially used because it is observed that

some diameter values at or near Dmin are either too small to be fabricated by AM,
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or too small to provide any stiffness or strength to the truss structure. For simple

problems, the implementation of Dcutoff was successful in reducing structure volume

without significantly reducing structural performance. However, in this research, it

was determined that when the use of Dcutoff was scaled to larger, more complex

problems, critical struts for the performance of the structure were removed because

the method did not take into account interactions between these struts and adjacent

struts. Furthermore, the method tended to leave “floating struts” that did not have

any function. Based on these results, it was determined that a “cutoff” approach to

strut removal was ineffective for all problems. However, a sufficient method has not

been determined yet for the removal of dispensable diameters to replace this approach.

3.9.2 Primary Deliverable

The primary resultant deliverable of this step is the normalized topology with all am-

biguous and dispensable struts removed from the structure. The removal of all these

struts will ensure not only an accurate determination of the volume and deflection of

the truss structure, but the elimination of errors involving overlapping struts during

the final step of the SMS method.

3.10 Step 6: Diameter Sizing

3.10.1 Method

In the previous step, the topology of the truss structure was successfully defined.

However, before the structure can be successfully manufactured, the normalized di-

ameter values must be correlated to real diameter values. This assignment of diameter

values is done here in Step 6. Since the topology is already known, then the diam-

eter values relative to each other are also already known. Therefore, only a few key

diameter values are required to determine all other diameter values in the SMS struc-

ture. In particular, as seen in the problem formulation in Figure 5, two key diameter

values must be determined: a maximum allowable diameter, Dmax, and a minimum
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allowable diameter, Dmin. The maximum diameter value corresponds to the thickest

diameter in the structure and the minimum diameter corresponds to the thinnest

strut in the truss-structure. Once the minimum and maximum diameters are found,

then the remaining diameters can be determined using Equation 4 below:

Di,k = [Sui,j × SLj,k × (Dmax −Dmin)] +Dmin (4)

where Sui,j is a scaling factor taken from the unit-cell library, SLj,k is a scaling

factor associated with the solid-body finite element analysis, and Dmin and Dmax are

the minimum and maximum diameters respectively. The two scaling terms, Sui,j and

SLj,k, are already found previous to this step. Therefore, in order for this step to be

completed, only Dmin and Dmax need be determined. Therefore, the design problem

becomes a two-variable design problem with Dmin and Dmax as the primary design

variables.

3.10.1.1 Determination of Dmin and Dmax

To determine the values of Dmin and Dmax in the structure, the problem formulation

provided earlier must be utilized. As the problem formulation states, the target truss-

structure must satisfy a maximum volume constraint while attempting to minimize

compliance. These two goals will have contrasting effects. The volume constraint will

attempt to drive the volume, and thus the strut diameter values, down. Conversely,

the compliance constraint will drive the volume up. By using these constraints with

the current normalized geometry, optimal values of Dmin and Dmax can be found.

The objective function, (e) in Figure 5 can be rewritten as a function of Dmin and

Dmax in Equation 5,

F (Dmin, Dmax) = (Wd × d(Dmin, Dmax))
2 +

(
WV ×

V (Dmin, Dmax)− Vt
Vt

)2

, (5)
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where the volume, V (Dmin, Dmax), and the deformation, d(Dmin, Dmax), are func-

tions of Dmin and Dmax only. It is important to reiterate that deformation, d, does

not correlate to a specific metric, but instead represents any unit of measure directly

proportional to structure compliance, such as tip deflection or work. It is also im-

portant to note that there is no target deflection variable as there is a target volume

variable, Vt, because the target deflection is always set at zero, dt = 0.

With an objective function provided, Dmin and Dmax can be determined by per-

forming a two-variable minimization. Because of the nature of the design problem, the

optimization of Dmin and Dmax is a non-linear, constrained, optimization problem.

In this research, two optimization approaches will be taken to determine Dmin and

Dmax: the Levenburg-Marquardt least squares regression approach and a constrained

minimization approach using the active-set algorithm discussed in Chapter 2. The

Levenburg-Marquardt approach was utilized because it already had documented suc-

cess in previous research on the optimization and design meso-scale truss structures

[18]. The second algorithm, the active-set algorithm, was utilized because it is an

algorithm that is documented to have success in the optimization of multivariable,

non-linear, constrained optimization problems [6]. These two algorithms use different

approaches in the optimization of the design problem and will be compared in order

to determine if there is a difference in design performance when different algorithms

are used.

3.10.1.2 A One-Variable Approach to Determining Dmin and Dmax

In previous research, it was determined that a possible relationship could exist be-

tween Dmin and Dmax. In his research, Graf noted that, for a specific target volume,

any structure designed using the SMS method had the highest strength when an

approximate Dmin/Dmax ratio of 28% was achieved. When the target volume was

varied, this assumption appeared to hold true within a tolerance of ±2%. Figure
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Figure 4-7: Study of the effects of minimum strut diameter on displacement 
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Figure 4-8: Study of the effects of maximum diameter when volume is held constant Figure 17: A survey of the relationship between Dmin and Dmax [27].

17 shows this correlation for a cantilever truss structure designed using the SMS

approach. Here, for a constant Dmin value, the Dmax was varied and the tip dis-

placement was recorded. For a specific volume, the lowest tip placement occurred

when the Dmin/Dmax value reached 28%. The discovery of this relationship had a

significant effect. Using this assumption, the minimum diameter could be expressed

as a function of the maximum diameter:

Dmin = 0.28×Dmax (6)

When Equation 6 is plugged into the diameter determination equation, Equation

4, the equation becomes,

Di,k = [0.72(Sui,j × SLj,k) + 0.28]×Dmax. (7)

Thus, the diameter determination equation can be reduced from a two-variable

equation to a one-variable equation and only Dmax needs to be determined. Since only

60



one diameter value needs to be determined, the optimization problem is dramatically

simplified and should significantly reduce the overall design time for the SMS method.

Although the potential benefits of this approach are great, the issue is that it was

not fully explored before it was used. The assumption was not sufficiently tested

and was not compared against actual optimization routines in order to assess it’s

validity. In this research, the “28% Assumption” will be tested for both stiffness and

design time. In other words, the assumption will be tested to determine under what

circumstances it will be valid and how the assumption will affect the overall process.

3.10.2 Primary Deliverables of the Step

At the completion of this step, the SMS method should be completed. The final truss

structure with correct diameter sizing should be returned.

3.10.3 Additional Information

This sixth and final step is generally the most time-consuming step of the entire

method, generally taking around 90% of the overall design time. The principal as-

sumption that takes place in the determination of diameters is that the struts in the

structure are cylinders. If this assumption is used, the cross-sectional area can be

parameterized using only one value: the diameter value. If the cross-section of the

struts are not cylinders, then this assumption will not be valid.

The optimizations that were performed utilized finite-element analysis software

developed internally and implemented in MATLAB. In the analysis of the truss struc-

ture, this code makes the assumption that all the trusses have beam-like behavior.

Therefore, the struts in the structure can experience bending stresses. This element-

type is in contrast to truss elements that can only experience axial and shear stresses.
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Figure 4-1: Unit-Cell Library Approach 
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Figure 18: A comparison of the original SMS method (left) and the modified SMS
methods (right).

3.11 Comparison Between the Original and Modified SMS
Method

Figure 18 shows the overview of both the original and modified SMS methods. The

major changes between the original and modified SMS method are summarized below:

• As can be seen, the first four steps of the methods are fairly similar: the prob-

lem is defined and the unit-cell approach and unit-cell library are utilized in

these steps. The key differences between the original method and the modified

method lie primarily in the creation of a sixth separate step for determination

of Dmin and Dmax. The original method does not discern between the gener-

ation of topology and the determination of diameter values. Furthermore, the

ambiguity resolution step occurs after the determination of diameters rather

than before. This lack of a sixth step occurs because the original method lacks

a systematic method for the determination of Dmin and Dmax. Instead, a brute-

force approach was taken with the 28% assumption. Although this approach

was somewhat successful in determining the optimal Dmin and Dmax values, the

method was time-consuming and required manual intervention.
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• The cutoff diameter, Dcutoff , is identified as an area of future work for the

SMS method. For the purposes of this thesis, it will still be used. However,

it will be used only in problems where it does not negatively affect structural

performance.

• Various technical issues are addressed in the implementation of the method,

improving both robustness and repeatability of the method.

3.12 Research Questions Revisited

The modified method addresses two of the three research questions discussed in Chap-

ter 1. The hypotheses for the research questions are repeated below:

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-

strained optimization of two diameter values: a minimum allowable diameter

and a maximum allowable diameter, against volume and stiffness constraints,

a systematic design method can be developed for the design of mesoscale truss

structures. By exploring various optimization approaches and selecting the

best method, analysis time can be minimized and structural performance can

be maximized.

Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-

mum diameter values for meso-scale truss structures designed using the Size,

Matching, and Scaling method, a direct relationship between these two values

can be determined and exploited. This relationship will allow for one of the

two diameter values to be expressed as a function of the other. Consequently,

the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.
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It can be seen that both of these hypotheses are addressed in particular by the

addition of a sixth and final step of the SMS method: a diameter determination step

for Dmin and Dmax. By isolating the determination of diameters from the designation

of lattice topology, both hypotheses can be addressed in detail. To validate the first

hypothesis, the diameter determination step will be converted from a brute-force

approach into an optimization approach. In continuation with the first hypothesis,

two different optimization algorithms, an active-set and least-squares minimization

algorithm, will be utilized to characterize the effect of the optimization algorithm on

the diameter determination step.

The second hypothesis, on the other hand, will be addressed by the simultaneous

exploration of the optimal minimum and maximum diameter values returned by two-

variable optimization and the 28% assumption determined by Graf. By looking at

the results of the both the two-variable and one-variable results, the validity of a

one-variable approach will be assessed.

3.13 Summary

In this chapter, the modified Size, Matching, and Scaling method was presented. Each

of the steps of the method, including the process and the deliverables, were presented.

When compared to the original method proposed by Graf, it can be seen that the first

four steps are similar because they utilize the core features of the unit-cell approach.

It can also be seen that the unit-cell library, the key tool in topology generation,

is utilized directly in the fourth step. The key differences, however, occur after the

topology is generated. In particular, the determination of diameter values for the

normalized topology proposed in the revised method is different. Instead of a manual

search of Dmin and Dmax proposed by Graf, an optimization approach is used. This

optimization is in direct contrast with Graf’s conception for the SMS method: to

avoid optimization entirely. The driving concept for this method, on the other hand,
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is to utilize optimization in conjunction with the unit-cell approach rather than in

spite of it.

The modified SMS method, and in particular the sixth step, will address research

questions 1 and 2 and will determine whether an optimization approach to determin-

ing Dmin and Dmax is valid, and whether this optimization can be reduced from a

two-variable optimization to one-variable. The modified method will be thoroughly

tested in Chapter 5.
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CHAPTER IV

THE MODIFIED UNIT-CELL LIBRARY

In this chapter, the modified unit-cell library will be presented. The unit-cell library

serves as the primary tool used by the SMS method in the generation of lattice topolo-

gies. It is a collection of lattice configurations that have their topologies optimized for

specific stress conditions. These lattice configurations conform to a set of guidelines

that allow them to be connected to one another to form more complex lattices. The

original unit-cell library contained one configuration, specialized for one of six stress

conditions. In total, there were six entries in the library. The new library attempts to

expand the unit-cell library to include additional entries. The following sections will

outline not only the current library, but the mapping and selection process utilized

for the library and the optimization process for the entries in the library themselves.

4.1 The Optimization Process for Unit-Cell Configurations

Before a certain unit-cell configuration can be entered in the unit-cell library, it must

first undergo an optimization process to cater its performance for six separate loading

conditions. Each of these loading conditions is representative of the six stress values

utilized in the SMS method and solid-body stress analysis: the σxx, σyy, and σzz axial

stresses and the τxy, τyz, and τxz shear stresses.

4.1.1 Problem Formulation

The optimization of unit-cell configurations can be considered its own unique design

problem, separate from the SMS method. As a result, a second problem formulation

must be utilized for the optimization of unit-cells. The cDSP problem formulation

for the optimization of unit-cells is shown in Table 8.
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Table 8: Qualitative cDSP formulation for the optimization of unit-cells.

Given: Loading and Fixity Conditions, Starting Lattice Topol-
ogy

Find: Truss Diameters/Lattice Topology (a)

Satisfy: Target Strain Energy (b)

Maximum Stress Value (c)

Minimize: Volume (d)

As Table 8 shows, the problem formulation for the optimization of unit-cells is very

similar to the problem formulation for that of the ground structure approach to lattice

design. Much like for the ground structure approach, both the loading conditions

and starting topology are provided. Furthermore, the truss diameters are the main

design variables. However, there is one key difference between the formulation for

the ground structure approach and the formulation for unit-cell optimization. For

unit-cell optimization, rather than the minimizing both stiffness and volume, only

volume is minimized. Stiffness is no longer a minimization target, but is instead a

constraint. The primary reason that stiffness is set as a constraint instead of an

objective is to force the performance of all optimized unit-cells to be equal. Thus, the

only differing factor between the unit-cell configurations will be the actual volume

of the configurations themselves. This will, in turn, allow the selection process of

unit-cells to be simplified. For the optimization of unit-cells, strain energy is used as

the primary determinant for stiffness. Strain energy can be defined as the potential

energy stored in an element due to deformation. The strain energy, 4U , is calculated

as,

4U =
4F

2
d (8)

where 4F
2

is the average force magnitude of the load and d is the overall displace-

ment of the structure [29]. Strain energy is used as the primary metric for unit-cell
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optimization because it is directly proportional to strain, and therefore the compli-

ance/stiffness of the structure. It is widely used in objective problem formulations for

topological optimization problems [8]. It is preferred over stress, because microscopic

stress values may exist in a truss structure that differ from the macroscopic whole.

These microscopic deviations are not represented in the macroscopic stress values

but can negatively influence the performance of the structure. Therefore, stress may

not be as indicative of the overall structural performance of truss structures as strain

energy. Furthermore, strain energy may be easier to implement in finite element anal-

ysis because of FEA’s heavy reliance on elastic energy principles such as Hamilton’s

Principle and the principle of minimum total potential energy [41].

4.1.2 Process Overview

With the unit-cell optimization problem formulated, the design method can be pre-

sented. An overview of the method is shown in Figure 19. As Figure 19 shows, the

optimization process contains five individual steps. These steps will be summarized

in more detail in the following sections. An example of the unit-cell optimization

process is shown in Appendix A for the Cantley configuration.

4.1.3 Step 1: Insert Initial Unit-Cell Configuration

In the first step, the initial unit-cell configuration must be defined. This includes

definition of all nodes, elements and diameters in the structure. Additionally, starting

diameter values must be specified. For this optimization, a uniform starting value of

“1” was used for all diameters. Although many unique lattice configurations can be

utilized by the SMS method, not all configurations are supported. Theoretically, unit-

cell regions can be any shape and size, as long as the shape can successfully compose

the bounding geometry. However, for the purposes of this research, cuboid regions

were used because division of a structure into these regions can be performed more

easily and because most documented configurations, such as the Cantley truss and
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Figure 19: An overview of the unit-cell optimization process.
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1

2
Cell 
No.

Bounding Nodes

1 [1, 2, 5, 4, 7, 8, 11, 10]

2 [2, 3, 6, 5, 8, 9, 12, 11]

Figure 20: Typical unit-cell regions.

the octet truss, conform easily to the cuboid shape. Two adjacent unit-cell regions

are shown in Figure 20.

As can be seen in Figure 20, each region is characterized by 8 nodes in each of

the corners of the cube. In order for configurations to be capable of being placed

into the unit-cell library, they must conform to such regions. These configurations

are mainly limited in their shape by their interaction with adjacent configurations in

the mesoscale structure. In order to prevent potentially negative interaction between

elements in the mesoscale structure and ensure correct optimization of configurations,

the following set of guidelines should be satisfied:

1. There must be a nodal connection at each of the eight corners of the cuboid

unit-cell region. This constraint will ensure that all unit-cells are connected to

adjacent unit-cell regions via these eight common nodes.

2. The unit-cell configurations cannot be loaded or fixed at any other nodal posi-

tion than the eight corners of the cuboid region. This once again ensures that
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Figure 21: The loading conditions for unit-cell optimization.

interaction between adjacent unit-cell regions remains consistent.

3. No nodes or elements should be defined outside the bounding dimensions of the

cuboid unit-cell region. This constraint is not a strict guideline as it may not

affect the performance of the mesoscale truss structure. However, the interaction

between adjacent unit-cells may be affected by the intersection or overlap of

elements or nodes.

4.1.4 Step 2: Apply Loading Conditions

In the next step, the unit-cell is loaded. For the optimization, there exist six pre-

defined loading conditions, each approximating a particular stress direction. The

loading and fixity conditions are summarized in Figure 21.

It should be noted that these loading conditions must be applied in multiple

directions, especially for the shear cases. For instance, the loading condition for the τxy

scenario is only applicable for the positive XY shear direction. However, it is known

that τxy = τyx = −τxy = −τyx. In order for the unit-cell to be properly optimized
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Table 9: Optimization parameters for unit-cell optimization in ANSYS.
Strain Energy Constraint (mJ) 50
Poisson Ratio 0.3
Elastic Modulus (N/cm)2 1960
Loading Magnitude (N) 10
Element Type BEAM4

for all shear conditions in the XY plane, it must be optimized individually for the

loading conditions simulating each of the these shear directions. These separately

optimized unit-cells must then be combined to form the final optimized unit-cell for

that direction.

4.1.5 Step 3: Optimize Unit Cell

After both the loading conditions and topology have been defined, the structure can

be optimized. As can be seen in the problem formulation in Table 8, the volume

is minimized subject to strain energy and maximum stress constraints. In order to

avoid exceeding a maximum stress, a small force magnitude of 10 N was applied. The

strain energy constraint was set at 0.5 mJ, a value that can be achieved by any of

the configurations in the unit-cell library regardless of the loading condition. The

analysis and optimization of the unit-cells were performed in the software package,

ANSYS 13.0. Table 9 summarizes the numerical constraints and material properties

used in the optimization.

4.1.6 Step 4: Combine Optimized Unit-Cells

As mentioned in Step 2, each stress condition is approximated using loading condi-

tions. Therefore, an optimization must be performed for each of the loading condi-

tions. The results of these optimizations must then be combined to form the final

topology. For instance, for the τxy condition, four separately optimized unit-cells are

returned from optimization and must be combined. The combination of the resultant

configurations is fairly simple: for each strut in the configuration, the strut with the
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Figure 22: Example of the combination of optimized unit-cells for the τxy direction
for the Cantley configuration.

largest diameter is retained and the other diameters are discarded. An example of

this process is shown in Figure 22.

4.1.7 Step 5: Normalize Unit-Cells

After all the unit-cell configurations have been optimized, the diameters must be

normalized to between 0 and 1:

Dnorm
j,k,l = Dj,k,l/D

max
l (9)

where j represents each strut for each of the kth configurations for each of the l

stress directions. As can be seen from Equation 9, the unit-cell configurations are

normalized to the largest diameter value existing in each of the six stress directions.

This ensures that all the unit-cell configurations maintain the same stiffness charac-

teristics relative to one another. Therefore, it is important to note that every time a

new entry is added to the unit-cell library, the entire library must be re-normalized.
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Once all the entries have been optimized, the entries can be stored in a library. The

unit-cell library is currently stored in a list format. For each unit-cell configuration,

there are three specific data structures to store: the nodal coordinates, the elements

within the structure, and the diameter values of each element in the structure.

4.1.8 Element-Type Variation for the Crossed Configuration

For the optimization of unit-cells in ANSYS, it was noted that for the crossed con-

figuration, the beam element type, BEAM4, did not return optimal results. Here,

the optimization tended to overemphasize bending in the structure and returned ap-

parently sub-optimal results for the shear loading cases. In order to adjust for these

results, the element type was replaced with the truss element, LINK188, in order to

ensure that optimization did not skew the results toward bending. This element type

does not recognize bending stress. However, because it does not account for bending,

it cannot be used for all the configurations in the library, as the problem becomes

underconstrained when bending is not considered. The results for the crossed configu-

ration using bar elements were combined with the results from the beam optimization

from the other configuration.

4.2 Unit-Cell Library Overview

In this section, the modified unit-cell library is presented. The current library contains

seven separate entries, each entry with six optimized configurations. In total, there are

42 entries in the library. In the following sections, each entry in the unit-cell library

will be detailed, including a description of the configuration and the presentation of

the optimized versions of each unit cell.
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Figure 23: Summary of the crossed unit-cell configuration.

4.2.1 Crossed

The crossed configuration is the configuration retained from the first unit-cell library

utilized in the SMS method. This configuration features struts along each of the

edges of the unit-cell region. In addition to these struts, there are diagonal struts

connecting the corners of each face of the cube. In total, there are 24 struts in the

structure. The original unit-cell and the optimized configurations are shown in Figure

23.
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Figure 24: Summary of the Cantley unit-cell configuration.

4.2.2 Cantley

The Cantley configuration, as mentioned in Chapter 2, was developed with the in-

tention of developing a lattice structure that can be developed using a two-part mold

for injection molding. However, this structure is also conducive to manufacturing

using AM processes. The Cantley configuration features two parallel struts extend-

ing along the top surface of the unit-cell. A third and fourth strut run along the

middle of the bottom and top of the unit-cell. Diagonal struts connect the top four

corners to the middle of the bottom face of the region. The structure also contains

four vertical struts along the edges of the unit-cell. In total, there are 14 struts in

this configuration. The original and optimized configurations are shown in Figure 24.

76



0
0.5

1

0
0.5

1
0

0.5

1

X

Original Configuration

Y

0
0.5

1

0
0.5

1
0

0.5

1

X

XX-Axial

Y

Z

0
0.5

1

0
0.5

1
0

0.5

1

X

YY-Axial

Y

Z

0
0.5

1

0
0.5

1
0

0.5

1

X

ZZ-Axial

Y

Z
0

0.5
1

0
0.5

1
0

0.5

1

X

XY-Shear

Y

Z

0
0.5

1

0
0.5

1
0

0.5

1

X

XZ-Shear

Y

Z

0
0.5

1

0
0.5

1
0

0.5

1

X

YZ-Shear

Y
Z

Figure 25: Summary of the octet unit-cell configuration.

4.2.3 Octet

The Octet configuration was developed to minimize bending throughout the mesostruc-

ture, allowing the stress and stiffness in the structure to be stretching dominated. It

features eight tetrahedrons connected such that one face from each of the tetrahe-

dron also composes one of the faces of an octahedron at the center of the structure.

The octet configuration contains a total of 36 struts. The original unit-cell and the

optimized configurations are shown in Figure 25.
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Figure 26: Summary of the diagonal unit-cell configuration.

4.2.4 Diagonal

The diagonal configuration is a configuration inspired by the performance of the

crossed configuration. Like the crossed configuration, the diagonal configuration con-

tains struts along each of the edges of the unit-cell region. However, instead of diag-

onal struts crossing along each face of the cube, only four diagonal members extend

through the interior of the unit-cell. The diagonal configuration contains 14 struts.

The original unit-cell and the optimized configurations are shown in Figure 26.
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Figure 27: Summary of the first Paramount unit-cell configuration.

4.2.5 Paramount 1 and 2

Both paramount structures are derivative of the Cantley structure and attempt to

strengthen various aspects of the Cantley structure. Both configurations still contain

the same diagonal struts connecting the top four corners with the midpoint of the

bottom face as the Cantley. The first paramount structure, however, contains struts

along each each of the region and two struts connecting the midpoints of the bottom

edges of the structure. This configuration has a total of 18 individual struts.

The second paramount structure, on the other hand, does not contain any struts

on any of the edges of the unit-cell region. Furthermore, rather than a cross at the

bottom face, two diagonal beams crossing on the bottom face of the unit-cell. This
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Figure 28: Summary of the second Paramount unit-cell configuration.

configuration has a total of 12 struts.

Both Paramount configurations are shown in Figures 27 and 28, respectively.
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Figure 29: Summary of the midpoint unit-cell configuration.

4.2.6 Midpoint

The midpoint configuration is motivated by the performance of the first paramount

structure under shear loading conditions. In particular, the bottom face of the

paramount structure was used as the basis for the midpoint structure. In this struc-

ture, the midpoints of all the edges of the unit-cell are connected to form crosses on

each face of the unit-cell. There are a total of 24 struts in the structure. The original

unit-cell and the optimized configurations are shown in Figure 29.
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Figure 30: The modified unit-cell library.

4.3 Comparison with the Old Unit-Cell Library

The complete unit-cell library is summarized in Figure 30. The entries in this library

form the components of all topologies designed using the SMS method. The original

unit-cell library utilized by Graf is shown in Figure 31.

As can be seen from Figures 30 and 31, the modified library is a far more extensive

selection than the original library. Another difference between the two libraries is in

the optimization process itself. The original library lacked a true methodology for

determining strut diameters. It is unknown what optimization was used and what

loading conditions were applied. However, the results from this library do not match

the results returned using optimization and finite element analysis. Furthermore, the

approach seems to only utilize a binary approach to diameter determination: strut

values are either 1 or 0, no diameter values exist in between these two values. The
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XY-shear (τxy) YZ-shear (τyz) XZ-shear (τxz)

Figure 7. The unit-cell library.

in a two-part mold.

4.6.1 Mapping Process

As can be seen from Fig. 7, there exists a specific configuration for each of the six stress
conditions: σxx, σyy, σzz, τxy, τxz, τyz. For each of these stress values, the corresponding
library configuration is scaled to the stress value and then mapped to the region. There-
fore each unit-cell region will actually contain some combination of all six of the library
configurations in Fig. 7.

4.7 Step 5: Ambiguity Resolution

In this step, ambiguities arising from overlapping struts or nodes are resolved. For ex-
ample, some struts that are shared among adjacent unit-cell regions will have different
size values determined by each unit-cell. In this case, the largest diameter is selected for
each strut and all smaller overlapping struts are removed.

4.8 Step 6: Diameter Sizing

In the previous steps, the topology of the lattice structure was generated. However, the
strut diameters for this structure are normalized to be between 0 and 1 and are therefore
unadjusted for the provided loading magnitudes and target volume. In order to satisfy
these values, the normalized diameter values must be replaced with real diameter values.
This procedure, called diameter sizing, is accomplished through the use of three critical
diameter values: a maximum allowable diameter, Dmax, a minimum allowable diameter,
Dmin, and a cutoff diameter, Dcutoff .

Figure 31: The original unit-cell library.

current library utilizes a more robust and systematic approach for optimizing lattice

diameters.

4.4 Topology Generation Using the Unit-Cell Library

Because the original unit-cell library contained only one unique entry, the “crossed”

configuration, the topology generation process was relatively straightforward and a

selection method was not required. However, because the current library contains

more than one entry in the unit-cell library, a selection process must be developed

to determine which of the current entries is best suited for selection. For the mod-

ified SMS method, the generation of topological configurations is divided into two

sequential tasks. First, a unit-cell configuration must be selected. Then, this config-

uration must be mapped to the unit-cell region of the base lattice. The two tasks are

described in the following sections.
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4.4.1 Unit-Cell Selection

Because several entries exist in the unit-cell library, a selection criterion must be

implemented to estimate the best combination of configurations to maximize the

stiffness of the structure. The only way to assess with certainty the best topology

for a structure is to iteratively test every possible combination of configurations. For

any given unit-cell library, there are:

MN (10)

number of possible combinations of configurations, where M is the number of

configurations in the unit-cell library and N is the number of unit-cell regions in the

structure. Therefore, for a design problem with just 10 unit-cell regions, there are

710 = 282475249 unique topologies that can be generated. Therefore, it is computa-

tionally inefficient to generate topologies in this manner. Instead, a selection heuristic

is developed that will attempt to predict the best predict topology of a design problem

given using information from different sources.

The original selection equation was based purely on the results from the unit-

cell optimization. As mentioned in Section 4.1.1, all configurations were optimized

based on a target stiffness constraint. Therefore, all the optimized configurations were

assumed to perform identically. The only differing component, therefore, between the

configurations was the volume. The structure with the smallest normalized volume

would be selected. Consequently, this smaller normalized volume would then allow

for more freedom in the diameter determination step of the SMS process. This larger

design freedom will ultimately result in a better overall stiffness of the structure.

Selection was performed using Equation 11,

r =
∑

Vσ = Vxx + Vyy + Vzz + Vxy + Vxz + Vyz (11)
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where the rating, r, is determined as the sum of each of the volumes of the six

specialized variants of each configuration after they are scaled against the stress values

from the solid-body analysis. The configuration with the lowest rating was selected.

When Equation 11 was actually implemented, topologies were successfully gen-

erated. However, further investigation determined that these topologies were not

actually the best topologies because the selection method was biased toward one par-

ticular configuration: the diagonal configuration. Furthermore, this selection method

did not take into account the fact that the crossed configuration was not optimized

using the same element types as the other configurations or that overlapping struts

are not counted in the volume of the structure once the six variants are combined.

Therefore, heuristics needed to be added to the rating equation in order to adjust for

these observations. This modified selection equation is shown in Equation 12:

r = Wv × (
∑

Vσ) +Wvn × (Vnet) +Wp × (
∑

P ) (12)

where Vσ, Vnet, and
∑
P are all values calculated by the SMS method and Wv,

Wvn, and Wp are all weighting values that are manually set to vary the importance of∑
Vσ, Vnet, and

∑
P . In particular, two heuristics were added to the rating equation

from Equation 11. The first added heuristic, Vnet, is the net volume of the unit-cells

after all six specialized variants are merged and overlapping struts are removed. The

second heuristic,
∑
P , is a value that attempts to estimate the performance of mul-

tiple instances of a configuration. The optimization of unit-cells discussed in Section

4.1.2 only characterized the performance of a single instance of a configuration under

certain axial and shear loading conditions. However, the configurations in the unit-cell

library were observed to behave differently when multiple instances of the configura-

tion are placed alongside one another. The parameter,
∑
P , attempts to predict the

relative performance of these configurations for multiple adjacent instances.

The value for the heuristic,
∑
P , is determined using values shown in Table 10.

85



Table 10: The performance table used for selection of unit-cell configurations.

Library Survey 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed   7.2219   7.7939    8.2561   42.2065  43.7735   45.5494 

Cantley  52.3657  54.8995   11.8527  282.3490 313.6932  159.0399 

Octet  22.1299  22.7410   23.0924   52.3284  52.2103   52.2435 

Paramount 1   8.8953  10.1965   11.0039  514.0857 228.7971  226.1189 

Diagonal   7.2077   7.9123    8.5831   60.7725  51.6522   57.9218 

Paramount 2  96.9992 112.3950  219.9493  314.9413 326.3808  330.7908 

Midpoint  10.2618  10.7366   11.1471  521.1452 586.0577  605.6265 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed 149.9245 149.9245  149.9245 149.9406 149.9421 149.9437 

Cantley 150.3048 150.0996  149.9253 151.7035 152.3611 153.4423 

Octet 149.9273 149.9273  149.9272 149.9456 149.9455 149.9453 

Paramount 1 149.9248 149.9251  149.9255 155.2938 150.8447 150.8175 

Diagonal 149.9244 149.9245  149.9247 149.9617 149.9524 149.9591 

Paramount 2 149.9713 149.9836  160.4172 151.2174 150.7451 150.7619 

Midpoint 149.9249 149.9252  149.9253 155.5136 156.9949 157.1381 

 

Length  (cm) 15 

Width (cm) 15 

Height (cm) 15 

Elastic Modulus (N/cm) 1960 

Unit-Cell Size (cm) 10 

Total Unit-Cell Number 27 

Target Volume (cm
3
) 150 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed 0.0745 0.0693 0.0375 0.0810 0.0747 0.0752 

Cantley 0.5399 0.4885 0.0539 0.5418 0.5353 0.2626 

Octet 0.2281 0.2023 0.1050 0.1004 0.0891 0.0863 

Paramount 1 0.0917 0.0907 0.0500 0.9865 0.3904 0.3734 

Diagonal 0.0743 0.0704 0.0390 0.1166 0.0881 0.0956 

Paramount 2 1.0000 1.0000 1.0000 0.6043 0.5569 0.5462 

Midpoint 0.1058 0.0955 0.0507 1.0000 1.0000 1.0000 

 

The values in this table, dubbed the “Performance Table,” were determined by using

empirical results from a design example. This design example is provided in Example 2

of Chapter 5. In this example, a cube with a length of 15 cm was divided into 3× 3× 3

unit-cell regions. This cube was then loaded with all six loading conditions simulating

the 6 stress values used in the SMS method: σxx, σyy, σzz, τxy, τyz, and τxz. These

boundary conditions are equivalent to those in Figure 21. Then, for each loading

condition, the SMS method was utilized to generate topologies. However, instead of

using a selection metric to select configurations for the structure, each of configuration

in the unit-cell library was allocated to the cube. Therefore, 6 loading conditions ×

7 configurations = 42 unique topologies were generated for this problem. The strain

energy values from the method were then calculated for each of the topologies. These

values were normalized to between 0 and 1 and placed in the performance table.

A more detailed explanation of the example problem is provided in Example 2 of

Chapter 5.

The value,
∑
P , is calculated using values from Table 10. For a particular con-

figuration,
∑
P is calculated as:

∑
P = Pxx + Pyy + Pzz + Pxy + Pxz + Pyz (13)

As with Equation 11, the configuration with the lowest rating in Equation 12

is the configuration that is selected. It is important to note that each of the three

components of Equation 12 are normalized in order to ensure that one component
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does not dominate the equation. The three weighting values, Wv, Wvn, and Wp, also

ensure that this does not happen. A detailed example of the use of the selection

equation is provided in Appendix B.

4.4.2 Mapping

Once the best possible configuration is determined, it is mapped to the current region.

This process is completed first by adding nodes from the unit-cell configuration that

do not already exist in the unit-cell region. These nodes are added using a 3-D linear

interpolation method. Once the nodes have been added to the structure, the elements

from the unit-cell configuration are copied to the region by matching the nodes from

the configuration with the corresponding nodes in the unit-cell region.

It is important to note that the normalized stress values will only determine the

relative size of the struts for each unit-cell configuration in the library. For example,

a normalized axial stress of 0.75 will correspond to a normalized strut diameter value

of 0.75. Therefore, after the unit-cell mapping is complete, all struts in the structure

will have diameter values between zero and one. A diameter value of 1 implies that

that particular strut is the thickest in the structure; a value near zero implies that

the strut will be very thin or non-existent.

4.5 Research Questions Revisited

The modified unit-cell library addresses the third and final research question presented

in Chapter 1. Hypothesis 3 is repeated below:
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Hypothesis 3: The addition of unit-cell configurations, such as the Cantley

and octet configurations, will provide the SMS method with more options for

the generation of the lattice topology. This, in turn, will allow for the placement

of unit-cell structures that are better-suited for specific loading conditions,

thereby improving structural stiffness. Although the design time will be slightly

increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

The modified unit-cell library and selection process allow for Hypothesis 3 to

be tested by allowing for more than entry to be selected and mapped in the SMS

method. In order to test Hypothesis 3, design examples must be pursued using both

the original library and the modified library. If Hypothesis 3 is indeed correct, the

second library and selection process should result in topologies with superior stiffness

characteristics. This hypothesis will be tested in Chapter 5.

4.6 Summary

In this chapter, the modified unit-cell library was formulated and presented. The li-

brary, as shown in Figure 30, contains seven unique configurations with each configu-

ration containing six “variations” for each of the six stress values from the solid-body

stress analysis for a total of 42 entries. The seven configurations are composed of

some well-documented configurations, such as the octet and Cantley configurations,

and several newly developed configurations, such as the Paramount variations and

the “Crossed” configuration. In addition to the presentation of the current unit-cell

library, the systematic optimization process for optimizing these configurations was

also formulated and outlined. Using this process, any unit-cell configuration that

conforms to certain guidelines can be added to the unit-cell library.

88



Along with the expansion of the unit-cell library, the selection and mapping pro-

cess of the unit-cells was modified. Because the original library contained only one

configuration, the tasks of mapping unit-cell configurations was relatively simple.

However, in order to determine which configuration is best-suited for a specific re-

gion, a selection process was developed using three different selection criteria.

In the following section, both the modified SMS method and unit-cell library will

be validated against various design examples.

89



CHAPTER V

DESIGN EXAMPLES

In order to validate the modified SMS design methodology, it will be applied toward

design examples of varying complexity. The first example is a 2-D simply-loaded

beam, which is a modified version of an example presented in Graf’s thesis. This

example is primarily utilized to test the modified SMS method and compare it to

the results from the first SMS method. The second example, a simple 3-D cube,

will attempt to test the various entries in the unit-cell library in order to gauge

and predict the performance of the various entries of the library. The results from

this example will actually be used in the selection process for both examples 3 and

4. The third example, also a modified version of an example problem from Graf’s

work, is a 3-D cantilever beam. In this example, both the modified SMS method and

unit-cell library will be tested. The fourth and final example, a modified L-bracket,

will combine both the modified method and unit-cell library to a design problem

that is too complex to be solved using optimization. For each example, each step

of the SMS method will be applied and the results of each step will be discussed.

Of particular note is that for each example, the sixth step will be completed using

three different methods: the 28% Assumption as noted by Graf [27], the nonlinear,

constrained minimization optimization approach using the active-set algorithm, and

the least-squares minimization method using the Levenburg-Marquardt algorithm.

These three methods will be evaluated in two ways: level of ability in satisfying

constraints, and overall analysis time. Ultimately, the goal is to determine which

method is most efficient method for sizing diameter values in the truss structure and

determine under what conditions each method can be best utilized. In addition, a
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manual grid search will be performed on Dmin and Dmax for Examples 1, 3, and

4 in order to simulate the approach taken by the original SMS method if the 28%

assumption were not used. The results from this grid search will be compared to

the three proposed optimizations in order to assess whether optimization is indeed a

better approach than the original grid-search. Furthermore, results from Example 1

and 3 will be compared to results from the previous version of the SMS method [27].

All examples are implemented using the ANSYS finite-element analysis tool and the

MATLAB technical computing software distribution.

Another important issue to mention is in the fifth step of the SMS method. As

mentioned in Chapter 3, the removal of unessential struts in topologies lacks a con-

sistent and robust method for unessential strut removal. In previous work, Graf

mentioned used the concept of a “cutoff” diameter to accomplish this task. After the

struts in the structure had been sized, a final sub-step was implemented that removes

small diameters that contribute little to structural performance. To accomplish this

topology alteration, a third diameter was introduced: Dcutoff . Dcutoff is a diameter

between Dmin and Dmax such that any struts that fall below this diameter value are

discarded. In this work, Dcutoff is set as,

0.025× (Dmax −Dmin) +Dmin, (14)

or the lower 2.5% of values between Dmin and Dmax. The Dcutoff method utilized

by Graf proved to be effective for simpler structures. However, as will be seen in

Example 4, it will not be sufficient for more complex examples. The Dcutoff method

will be utilized in all the example problems except Example 4.

Table 11 shows each example problem and its intended relationship with the three

research questions.
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Table 11: Correlation between the example problems and the research questions.
 RQ1: Can a systematic, 

non-iterative method for 

the design mesoscale 

truss structures be 

developed to determine 

strut diameters for 

topologies designed using 

the unit-cell approach? 

RQ2: Can the 

two-variable 

optimization 

proposed in 

Hypothesis 1 be 

simplified in 

order to 

decrease 

analysis time? 

RQ3: Will the expansion of the 

unit-cell library to include 

additional unit-cell 

configurations improve the 

performance of structures 

designed using the SMS 

method? If so, will the added 

benefit justify an increased 

overall design time? 

EX1: 2-D 

Simply-Loaded 

Beam  
   

EX2: 3-D Cube 

   

EX3: 3-D 

Cantilever Beam     

EX4: 3-D 

L-Bracket    

 - Addressed 

 - Not Addressed 
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Figure 32: Problem representation of the 2-D simply-loaded beam design problem.

Table 12: Initial properties for the 2-D simply-loaded beam.
Length (m) 6 Unit-Cells Along Length 24
Height (m) 1 Unit-Cells Along Height 4
Loading Magnitude (kN) 200 Total Unit-Cell Count 96
Elastic Modulus (N/m) 2× 1011 Target Volume (m2) 0.02

5.1 Example 1: 2-D Simply-Loaded Beam

5.1.1 Problem Description

The first example is a 2-D example: a simply-loaded beam. This example is an

extension of a design problem proposed by Graf. The premise of this example is to

reduce the weight of the structure as much as possible without sacrificing stiffness

at the central point load of 200 kN. The beam is 6 m long and 1 m in height. As

seen in Table 11, this example problem exclusively addresses the first and second

research questions related to the determination of diameter values. The definition of

the problem is shown in Figure 32. Table 12 summarizes all the initial geometric and

analytical conditions for the design problem.

5.1.2 Ground Geometry and Solid-Body Analysis

The beam in Figure 32 is divided into the desired number of unit-cells specified in

Table 12. An image of the beam split into the appropriate number of unit cells is

shown in Figure 33. The solid-body stress results for the simply-loaded beam are

shown in Figure 34.
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Figure 33: Ground geometry of the 2-D simply-loaded beam.

Figure 34: Solid-body analysis of the 2-D simply-loaded beam.

5.1.3 Topology Generation

Figures 35 and 36 show the topologies generated by the SMS method before and after

the cutoff diameter is implemented. From Fig. 35 it can be seen that the completed

topology closely matches intuitive understanding of the design problem. Firstly, the

truss structure is symmetric across the beam. Secondly, the struts are thickest at the

loading point, the center of the structure, and at the bottom corners of the structure;

struts are thinnest at the top corners and at the mid-lower portions of the beam.

Additionally, the effect of the cutoff diameter can be seen here: the struts at the top

corners of the beam have been removed.

5.1.4 Diameter Determination

For this problem, three diameter determination problems were explored: the 28% as-

sumption, 1-variable optimization, a two-variable, non-linear, constrained optimiza-

tion, and a non-linear least-squares regression approach. For each of the determina-

tion methods, five separate trials were completed. The average values for Dmin, Dmax,
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Figure 35: Topology of the 2-D simply-loaded beam before the cutoff diameter is
implemented.
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Figure 36: Completed topology for the 2-D simply-loaded beam.

Dcutoff , Dmin/Dmax, design time, volume, and stiffness were taken. For this example,

the displacement of the loaded node was used as the primary metric for stiffness. For

all three methods, the upper and lower bounds for Dmin and Dmax were set to 0.01

m and 10 m, respectively. The results from the five iterations for each of the three

methods are shown in Appendix C.

In order to verify the accuracy of the three diameter sizing methods, a design

space exploration/grid search was also conducted on the normalized topology. This

exploration was performed by iterating both Dmin and Dmax from 0.01 m to 0.05 m

in increments of 0.001 m. The combination that returned the smallest value of the

objective function in Equation 4 was saved. It is also important to note that the

increment size is set to 0.001 m, a relatively coarse value, in order to reduce analysis

time. A finer increment was not necessary because the design exploration is needed

only to gain a rough estimate of where optimal Dmin and Dmax values should lie.

The results of the exploration are plotted in Figure 37. The best values from the
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Figure 37: Plot of the design space for the 2-D simply-loaded beam.

Table 13: Optimal design space exploration for the 2-D cantilever beam.
 

Deflection (m) 0.0118 

Volume (m
2
) 0.202 

Design Time (s) 468.9431 

Dmin  (m) 0.0100 

Dmax (m) 0.0380 

Dcutoff (m) 0.0107 

Dmin/Dmax 26.32 

 

exploration are shown in Table 13.

5.1.4.1 Results Summary

Table 14 summarizes the average values from all three sizing methods. It also includes

the results of the design space exploration for comparison. Table 14 shows that all

three methods are able to attain the target volume of 0.02 m2 and return similar values

for deflection (0.0119 m). These results are in-line with the results returned from the

grid search and from the previous SMS method [27]. All methods also return similar

values for Dmin, Dmax, and Dcutoff . Furthermore, the ratio of Dmin/Dmax are very

close, with values ranging from 27% to 28%. The main differing component between

the three sizing methods is the design times. Because only one variable needs to be

determined, the 28% assumption converges the most quickly at roughly 19 seconds.

This design time is less than half of the second-fastest method: the constrained
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Table 14: Diameter determination results for the 2-D simply-loaded beam.

2-D Simply Loaded Beam 

 

28% method 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0103 0.0369 0.0110 28 0.0119  0.0201 18.9443 

2 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0497 

3 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9480 

4 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.8847 

5 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0583 

 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9770 

 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0263 

2 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.2485 

3 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0892 

4 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 40.5302 

5 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.1614 

 0.0100 0.0378 0.0107 26.43 0.0119  0.0201 39.4111 

 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
3
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 110.7300 

2 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.7138 

3 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.4543 

4 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 106.6233 

5 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.1423 

 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.1327 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Design Space 

Exploration 

Deflection (m) 0.0119 0.0119 0.0119 0.0118 

Volume (m
2
)  0.0201 0.0201 0.0201 0.202 

Design Time (s) 18.9770 39.4111 107.1327 468.9431 

Dmin  (m) 0.0103 0.0100 0.0100 0.0100 

Dmax (m) 0.0369 0.0378 0.0378 0.0380 

Dcutoff (m) 0.0110 0.0107 0.0107 0.0107 

Dmin/Dmax 28.00 26.43 26.45 26.32 

Objective Function 

Value 
0.0143 0.0143 0.0143 0.0143 

 

optimization using the active-set algorithm. The least-squares minimization took by

far the longest time to converge, with an average design time of 107 seconds. This

design time is roughly 5.6 times longer than the 28% assumption and 2.7 times slower

than the constrained optimization methods. Although the design space exploration

is able to return nearly identical results for the objective function, it is the slowest

method, taking more than four times longer than the least-squares approach and

more than 24 times longer than the 28% assumption.

5.1.5 Discussion and Conclusion

The first design problem, a simple 2-D beam, was implemented to test the modified

SMS for a simple, intuitive problem in two dimensions. In particular, the design prob-

lem attempted to test the final diameter determination step of the modified method

for a simple design problem. From these results, several important observations can

be made. They are summarized below:

• All three sizing methods are able to return nearly identical results for Dmin and

Dmax and, consequently, are all equally capable of returning accurate results for

the diameter sizes of struts developed using the SMS method.

• When compared to the design space exploration, all three optimization-based
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methods are able to converge to similar results. This result confirms that opti-

mization is a viable approach for determining the diameter values for mesoscale

truss structures design using the SMS method.

• A full design-space exploration, even with a relatively coarse increment value,

is a time-consuming process and is not preferred.

• Between the two-variable methods, the constrained optimization approach ap-

parently converges more quickly than the least-squares regression approach.

These results indicate that, of the two-variable approaches, this approach is

superior for the SMS method in two dimensions.

• The one-variable optimization utilizing the “28% assumption” is able to con-

verge to the same optimal values returned by two-variable optimization and an

iterative search of the design space. Such a result confirms, at least initially,

that this assumption is a viable option.

5.1.6 Research Questions Revisited

The results listed above can be further applied to the research questions and hypothe-

ses presented in Chapter 1. Hypotheses 1 and 2 in particular are addressed. They

are repeated below:

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-

strained optimization of two diameter values: a minimum allowable diameter

and a maximum allowable diameter, against volume and stiffness constraints,

a systematic design method can be developed for the design of mesoscale truss

structures. By exploring various optimization approaches and selecting the

best method, analysis time can be minimized and structural performance can

be maximized.
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The results from this example show that an optimization approach for Dmin and

Dmax does, indeed, return the best diameter values for a two dimensional simply-

loaded beam. The results from both constrained minimization and least squares

regression returned diameter values close to the best values found by the design space

exploration. Furthermore, both methods are considerably faster than design space

exploration, indicating that an optimization approach is superior to an exhaustive

search of all Dmin and Dmax values. Therefore, for the first example, Hypothesis 1

remains valid.

Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-

mum diameter values for meso-scale truss structures designed using the Size,

Matching, and Scaling method, a direct relationship between these two values

can be determined and exploited. This relationship will allow for one of the

two diameter values to be expressed as a function of the other. Consequently,

the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.

The results from this example show that a 28% assumption is able to return

identical results to the values returned by both two-variable optimization methods as

well as the design space exploration. Also, the approach is able to reduce design time

significantly, with a more than two-fold decrease in optimization time. Therefore,

for the 2-D simply-loaded case, it appears that a 1-variable assumption holds and is

appropriate for use. Therefore, for the first example Hypothesis 2 is valid.
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Length (cm) 15

Width (cm) 15

Height (cm) 15

Elastic Modulus (N/cm) 1960

Loading Magnitude (N) 10

Unit-Cell Size (cm) 5

Total Unit-Cell Number 27

Target Volume (cm3) 150
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Figure 38: Base lattice for the unit-cell configuration analysis.

Table 15: Initial geometric and loading values for unit-cell configuration analysis.

Library Survey 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed   7.2219   7.7939    8.2561   42.2065  43.7735   45.5494 

Cantley  52.3657  54.8995   11.8527  282.3490 313.6932  159.0399 

Octet  22.1299  22.7410   23.0924   52.3284  52.2103   52.2435 

Paramount 1   8.8953  10.1965   11.0039  514.0857 228.7971  226.1189 

Diagonal   7.2077   7.9123    8.5831   60.7725  51.6522   57.9218 

Paramount 2  96.9992 112.3950  219.9493  314.9413 326.3808  330.7908 

Midpoint  10.2618  10.7366   11.1471  521.1452 586.0577  605.6265 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed 149.9245 149.9245  149.9245 149.9406 149.9421 149.9437 

Cantley 150.3048 150.0996  149.9253 151.7035 152.3611 153.4423 

Octet 149.9273 149.9273  149.9272 149.9456 149.9455 149.9453 

Paramount 1 149.9248 149.9251  149.9255 155.2938 150.8447 150.8175 

Diagonal 149.9244 149.9245  149.9247 149.9617 149.9524 149.9591 

Paramount 2 149.9713 149.9836  160.4172 151.2174 150.7451 150.7619 

Midpoint 149.9249 149.9252  149.9253 155.5136 156.9949 157.1381 

 

Length  (cm) 15 

Width (cm) 15 

Height (cm) 15 

Elastic Modulus (N/cm) 1960 

Unit-Cell Size (cm) 10 

Total Unit-Cell Number 27 

Target Volume (cm
3
) 150 

 

5.2 Example 2: Unit-Cell Library Analysis

5.2.1 Problem Description

The purpose of the second example problem is to utilize each of the seven unit-cell

configurations in the unit-cell library and test them against general shear and axial

loading conditions in order to gauge and compare their individual performances. In

this problem, a 15 cm×15 cm×15 cm cube is supplied with the same general axial and

shear loading cases provided for the unit-cell optimizations, shown in Figure 21. The

main difference in this example, however, is that the cube is divided into a 3×3×3

configuration of unit-cells in order to test the performance of multiple instances of

the same configuration. The ultimate objective of this example is to provide insight

into the performance of the various configurations when multiple instances are used
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Figure 39: The loading conditions for unit-cell optimization.

and to use this information to improve the selection process for structures developed

using the SMS method.

The base lattice configuration for the problem is shown in Figure 38. Table 15

summarizes the initial geometric and loading values for the problem.

For the example shown in Figure 38, there are six separate loading and boundary

conditions applied to the structure. Each of these loading conditions approximates

the six axial and shear stresses present in the SMS method and are identical to the

loading conditions used for unit-cell optimization shown in Figure 21. These loading

conditions are shown again in Figure 39.

For each of these loading conditions, all of the seven configurations in the library

will be applied. Therefore, for this design example, 42 separate topologies will be

generated using the SMS method. The results will then be compiled. Then, the

strain energies and volumes of the resultant topologies will be compared. These

results will be normalized and plugged directly into the performance table in Table

10 used in Equation 12.
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Figure 40: 3-D and side views of the paramount 1 and octet SMS topologies for the
ZZ loading case.

5.2.2 Results

Because there are 42 separate topologies generated for this problem, not all of them

are shown. Instead, two of the topologies are shown in Figure 40 for the ZZ axial

loading case. After the SMS method was completed for each of the 42 examples,

these 42 topologies were then imported into the ANSYS finite element package and

analyzed for strain energy and volume. The volumes and strain energies were then

taken for each of these values. The resultant values are shown in Tables 16 and 17.

From Table 17, it can be seen that all configurations were able to achieve the

target volumes within the range of 150 cm3 to 160 cm3. However, as Table 16 shows,

the resultant strain energies vary considerably. In the axial directions, the crossed,

diagonal, first paramount, and midpoint configurations all perform well, with strain
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Table 16: Strain energies for the various unit-cell configurations and loading scenar-
ios.

Library Survey 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed   7.2219   7.7939    8.2561   42.2065  43.7735   45.5494 

Cantley  52.3657  54.8995   11.8527  282.3490 313.6932  159.0399 

Octet  22.1299  22.7410   23.0924   52.3284  52.2103   52.2435 

Paramount 1   8.8953  10.1965   11.0039  514.0857 228.7971  226.1189 

Diagonal   7.2077   7.9123    8.5831   60.7725  51.6522   57.9218 

Paramount 2  96.9992 112.3950  219.9493  314.9413 326.3808  330.7908 

Midpoint  10.2618  10.7366   11.1471  521.1452 586.0577  605.6265 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed 149.9245 149.9245  149.9245 149.9406 149.9421 149.9437 

Cantley 150.3048 150.0996  149.9253 151.7035 152.3611 153.4423 

Octet 149.9273 149.9273  149.9272 149.9456 149.9455 149.9453 

Paramount 1 149.9248 149.9251  149.9255 155.2938 150.8447 150.8175 

Diagonal 149.9244 149.9245  149.9247 149.9617 149.9524 149.9591 

Paramount 2 149.9713 149.9836  160.4172 151.2174 150.7451 150.7619 

Midpoint 149.9249 149.9252  149.9253 155.5136 156.9949 157.1381 

 

Length  (cm) 15 

Width (cm) 15 

Height (cm) 15 

Elastic Modulus (N/cm) 1960 

Unit-Cell Size (cm) 10 

Total Unit-Cell Number 27 

Target Volume (cm
3
) 150 

 

Table 17: Resultant volumes for the various unit-cell configurations and loading
scenarios.

Library Survey 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed   7.2219   7.7939    8.2561   42.2065  43.7735   45.5494 

Cantley  52.3657  54.8995   11.8527  282.3490 313.6932  159.0399 

Octet  22.1299  22.7410   23.0924   52.3284  52.2103   52.2435 

Paramount 1   8.8953  10.1965   11.0039  514.0857 228.7971  226.1189 

Diagonal   7.2077   7.9123    8.5831   60.7725  51.6522   57.9218 

Paramount 2  96.9992 112.3950  219.9493  314.9413 326.3808  330.7908 

Midpoint  10.2618  10.7366   11.1471  521.1452 586.0577  605.6265 

 

 XX Axial YY Axial ZZ Axial XY Axial YZ Axial XZ Axial 

Crossed 149.9245 149.9245  149.9245 149.9406 149.9421 149.9437 

Cantley 150.3048 150.0996  149.9253 151.7035 152.3611 153.4423 

Octet 149.9273 149.9273  149.9272 149.9456 149.9455 149.9453 

Paramount 1 149.9248 149.9251  149.9255 155.2938 150.8447 150.8175 

Diagonal 149.9244 149.9245  149.9247 149.9617 149.9524 149.9591 

Paramount 2 149.9713 149.9836  160.4172 151.2174 150.7451 150.7619 

Midpoint 149.9249 149.9252  149.9253 155.5136 156.9949 157.1381 

 

Length  (cm) 15 

Width (cm) 15 

Height (cm) 15 

Elastic Modulus (N/cm) 1960 

Unit-Cell Size (cm) 10 

Total Unit-Cell Number 27 

Target Volume (cm
3
) 150 

 

energies at or below 11 cJ. On the other hand, the cantley, octet, and paramount

2 configurations all perform fairly poorly, with the second paramount performing

the worst of all the configurations. In the shear directions, the results are different.

This time, the crossed, octet, and diagonal configurations all perform well, with av-

erage strain energies less than 100 cJ. The remaining four configurations, the cantley,

paramount 1 and 2, and the midpoint all perform poorly, with the midpoint con-

figuration having the worst performance. If the configurations are ranked for their

performance, it can be seen that the crossed configuration excels in all six directions.

Therefore, given these results, the crossed configuration should be the most preferred.

The only other configuration that could be any competition would be the diagonal

configuration.

The strain energy results from Table 16 are normalized and used for the perfor-

mance table in the second selection method discussed in Section 4.4.1.
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5.2.3 Discussion and Conclusion

In this example, the modified SMS method was utilized with the new unit-cell library

in order to characterize the performance of the various configurations of the unit-cell

library for various axial and shear loading scenarios. From the strain energy results,

conclusions about the performance of each entry in unit-cell library can be drawn:

• It appears that the crossed configuration is the superior configuration for all six

loading scenarios: XX, YY, ZZ axial and XY, YZ, XZ shear.

• The Cantley configuration performs poorly in nearly all directions except the

Z-axial direction. This is due to the asymmetric nature of the configuration and

the lack of trusses in all directions except the Z-direction.

• The octet configuration performs well in the shear directions, surpassed only by

the crossed configuration. However, the axial directions do not perform nearly

as well as other configurations in the library.

• Both paramount configurations perform very poorly in the shear directions.

This is most likely because the configurations are very similar to the Cantley

configuration in that they contain very few struts that resist shear force. How-

ever, the first paramount configuration performs significantly better than its

counterpart in the shear directions.

• The diagonal configuration performs well in both shear and axial directions. As

can be seen, its performance in axial directions is nearly identical to that of the

crossed configuration. However, in shear conditions, it performs slightly worse.

It can therefore be seen that the diagonal configuration is the main competition

for the crossed configuration.

• The midpoint configuration, like the first paramount, performs well in the ax-

ial directions but poorly in the shear directions. According to Table 16, the
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midpoint configuration performs the worst of all the configurations in shear.

The strain energy results were normalized and then utilized directly in the selection

process for future examples utilizing the modified unit-cell library.

5.2.4 Research Questions Revisited

This second example problem specifically addresses the third hypothesis, shown be-

low:

Hypothesis 3: The addition of unit-cell configurations, such as the Cantley

and octet configurations, will provide the SMS method with more options for

the generation of the lattice topology. This, in turn, will allow for the placement

of unit-cell structures that are better-suited for specific loading conditions,

thereby improving structural stiffness. Although the design time will be slightly

increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

Although Hypothesis 3 cannot be directly addressed by this example, the strain

energy energy results from Table 16 can help predict which configurations are best

for selection. If axial stresses dominate the problem, then it is likely that the crossed,

diagonal, paramount 1, or midpoint configurations will be selected. On the other

hand, if shear stresses dominate, then the crossed, octet, and diagonal configurations

are most likely to be selected. However, the crossed configuration appears to perform

the best overall in all directions. Therefore, it is likely that this configuration is the

only one that needs to exist in the library. If so, then Hypothesis 3 will likely be

proved incorrect. More example problems must be pursued, however, to determine if

this statement is true.
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Figure 41: Problem definition of the 3-D cantilever beam example.

Table 18: Initial properties for the 3-D cantilever beam example.
Length (mm) 50 Total Unit-Cell Count 10
Width (mm) 10 Unit-Cells Along Length 5
Height (mm) 20 Unit-Cells Along Height 2
Loading Magnitude (N) 10 Unit-Cells Along Width 1
Elastic Modulus (N/mm) 1960 Target Volume (mm3) 1600

5.3 Example 3: 3-D Cantilever Beam

5.3.1 Problem Description

The third example is a simple, three-dimensional, rectangular cantilever beam. The

beam is fixed at its base and has two vertical point loads supplied on the two upper

corners at the tip of the beam. A physical representation of the design problem is

shown in Figure 41. Ultimately, the primary goal of the first example will be to

test the functionality of the SMS methodology through the use of a simple, intuitive,

example problem in three dimensions. The dimensions, loading magnitudes, and

material properties of the structure are provided in Table 18. In addition to the

physical properties, the truss structure is to have other target unit-cell configuration

properties. These properties are also summarized in Table 18.
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Figure 42: The 3-D cantilever beam structure divided into unit-cell regions.

5.3.2 Ground Geometry and Solid-Body Analysis

The cantilever beam is created with the desired unit-cell divisions provided in Table

18. An image of the cantilever beam split into the appropriate number of unit cells

is shown in Figure 42. In addition to the base lattice generated in Figure 42, a base

lattice was generated where the number of unit-cells was increased from 10 to 40 by

decreasing the size of the unit-cells manually. This base lattice is shown in Figure

43. This “higher resolution” base lattice was generated in order to understand the

impact of unit-cell size on the performance of the structure.

Figure 44 shows the solid-body cantilever beam created in ANSYS with the ap-

propriate bounding and loading conditions applied. Of particular interest is the X-

component (along the beam) of the the stress distribution, also shown in Figure 44.

From the solid-body analysis of the structure, some important observations can

be made. First, it can be seen that highest stresses occur at both the tip of the beam

where the load is applied and the upper base of the beam. In general, the stress
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Figure 43: The base lattice of the cantilever structure with the number of unit-cells
quadrupled.

values decrease moving down from the top to the bottom of the beam and along the

beam from the tip to the base. It can also be seen that the stress distribution for the

beam is symmetrical along the width of the beam.

From these observations, some inferences can be made about the potential shape

topology of the truss structure. First, it can be expected that the largest diameter

values will be along the x-axis (length) of the beam. Furthermore, the symmetrical

distribution of the stress implies that the diameter values will also be symmetrical

along the width of the beam. Finally, it can be expected that the struts will be

thickest at the base of the beam and at the point where the load is applied; the struts

should be thinnest at the lower and middle portions of the beam.

With the unit-cell regions unambiguously defined, the results from the solid-body

analysis can be mapped to the structure. A total of six stress values were determined

for each unit-cell, three associated with tensile stress along the X, Y, and Z directions
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Figure 44: (Left) von Mises solid-body results for the cantilever beam. (Right)
X-component results for the cantilever beam.

and three associated with shear stresses along the XY, XZ, and YZ planes. Once all

the stress values are known, the unit-cell library can be used to determine the location

and sizes of the struts to use in each unit-cell. For this example, both the original

and modified unit-cell library are utilized to generate the topology of the structure.

5.3.3 The Original Unit-Cell Library

The topology generated by the first unit-cell library in step 4 is shown in Figure 45.

Figure 45 shows that the topology matches expectations for the structure. The

thickest struts do indeed occur at the tip and base of the structure. The remaining

struts are thin relative to these struts. Next, the topology in Figure 45 undergoes

topology alteration in order to remove struts that are deemed overlapping or deemed

to have negligible contribution to the performance of the structure. The topology

after Dcutoff is implemented is shown in Figure 46. As can be seen from 46, the

Dcutoff works effectively for the simple cantilever beam: no critical connective or load

bearing struts are removed from the structure. The cutoff diameter is therefore valid

for this example.

The diameter results from the 28% Assumption, the constrained minimization,

109



0

10

20

30

40

50

0

5

10

0

5

10

15

20

X [mm]

Y [mm]

Figure 45: Topology of the cantilever beam before topology alteration.

0

10

20

30

40

50

0

5

10

0

5

10

15

20

X [mm]

Y [mm]

Figure 46: Topology of the cantilever beam after Dcutoff utilized.
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and the least-squares minimization are provided. Once again, for each of the deter-

mination method, five separate trials were completed. The average values for Dmin,

Dmax, Dcutoff , Dmin/Dmax, design time, volume, and stiffness were taken. For this

example, the displacement of the loaded node was used as the primary metric for

stiffness. For all three methods, the upper and lower bounds for Dmin and Dmax were

set to 0.01 mm and 5 mm, respectively. The results from the individual trials for each

of the three optimizations are shown in Appendix D.1.

5.3.3.1 Design Space Exploration/Grid Search
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Figure 47: Plot of the design space for the 3-D cantilever beam.

Table 19: Optimal diameter values for the 3-D cantilever using design space explo-

ration.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

 

DSE 

Deflection (mm) 0.6123 

Volume (mm
3
) 1589 

Design Time (s) 841.35 

Dmin  (mm) 0.4500 

Dmax (mm) 2.9000 

Dcutoff (mm) 0.5112 

Dmin/Dmax 26.32 

  

Because computational complexity is relatively small for the cantilever beam, it is

possible to conduct a design space exploration/grid search within a reasonable time
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frame. The design space was explored by iterating both Dmin and Dmax from 0.1 mm

to 5 mm and storing the values returned by the objective function Equation 4. The

values of 0.1 mm and 5 mm were selected because it was determined that a diameter

value smaller than 0.1 mm would be too small to be realized in AM, and a value

greater than 5 mm would never be necessary in a meso-scale truss structure of this

size and scale. The results of the exploration are plotted in Figure 47.

From the design space analysis, it can be seen that the objective function does

have a well-defined region where the values are minimal. Also, in the design space

there are no glaring local minima that could potentially skew optimization routines.

The diameter values that returned the lowest objective function value are shown in

Table 19. The analysis time, tip displacement, and volume are provided as well.

Based on the information in Table 19, it can be expected that the minimum and

maximum diameters determined by the three sizing methods should be near 0.45 mm

and 2.9 mm, respectively. It can also be expected that the final tip displacement of

the structure should be at or near 0.6123 mm.

5.3.3.2 Results Comparison

Table 20 summarizes the averages values from all three sizing methods. It also includes

the results of the design space exploration for comparison. From Table 20, results

indicate that all three sizing methods return minimum and maximum diameters at

or near 0.7 mm and 2.5 mm, respectively, and a tip displacement near 0.57 mm.

Also, in general, these results correspond to the results returned by the design space

exploration and by the previous SMS method [27], which returned a tip displacement

of 0.5547 mm and a volume of 1615 mm2. The small deviation of Dmin and Dmax

in the design space exploration likely resulted because of the coarse incrementation

of Dmin and Dmax and the rigid constraints set by the exploration. For the design

exploration, a volume greater than 1600 mm2 was a hard constraint and could not
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Table 20: Diameter determination results for the 3-D cantilever beam.
 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Design Space 

Exploration 

Deflection (m) 0.5724 0.5723 0.5723 0.6123 

Volume (m
2
)  1600 1600 1600 1589 

Design Time (s) 2.7572 21.3883 17.6459 841.35 

Dmin  (m) 0.6967 0.6864 0.6860 0.4500 

Dmax (m) 2.4884 2.5073 2.5080 2.9000 

Dcutoff (m) 0.7415 0.7319 0.7316 0.5112 

Dmin/Dmax 28.00 27.38 27.35 26.32 

Objective Function 

Value 
0.3726 0.3725 0.3725 0.8541 

 

  

be violated. Because Dmin and Dmax were incremented with such low resolution,

the achieved volume of 1589 mm2 was the closest the design space could get to 1600

mm2 without exceeding it. Therefore, Dmin and Dmax could not be changed to more

optimal values without violating the volume constraint. Another comparison that

can be made between the design space exploration results and the sizing methods are

the ratios of Dmin and Dmax. As expected from the three sizing methods, the ratios

are all close to 28%. However, the ratio for the design space exploration is 15.5%.

This results suggests that a large range of ratios can lead to satisfactory objective

function results.

The criterion that best reflects the ability of the four diameter sizing tools is

the total analysis time. As can be seen, the 28% assumption converges in under

three seconds and is once again the fastest of all the optimization methods. It is

nearly 8 times faster than constrained optimization and roughly 6.5 faster than least-

squares minimization. In contrast to the first example, the least-squares minimization

converges slightly faster than the constrained optimization, with a 21% faster design

time. Finally, it can be seen that a design space exploration, even for just two

design variables, is a time-consuming and computationally expensive process. Such a

rigorous exploration would likely be infeasible for larger, more comprehensive design

problems.
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Side ViewIsometric View

Tip Deflection (mm) 0.2159

Volume (mm3) 1600

Figure 48: A survey of the 3-D cantilever design problem when the number of
unit-cells is increased from 10 to 40.

5.3.3.3 Unit-Cell Size Exploration

As discussed in Section 5.3.2, a base lattice was generated where the number of unit-

cells was quadrupled. Everything else remained unchanged. Then, the SMS method

was applied to the modified design problem, as shown in Figure 48. The stiffness

results and volumes were then recorded as 0.2150 mm and 1600 mm3, respectively.

As can be seen, the performance of the cantilever beam improves dramatically when

the number of unit-cells is quadrupled. Therefore, it can be seen that there is, indeed,

a change in the performance of the structure when unit-cell sizes are considered.

This observation reveals the possibility of their being an optimal unit-cell size for a

particular structure. The optimization of this unit-cell size could possibly be an area

of future work for the SMS method.

5.3.3.4 Summary

In this section, the second design problem, a 3-D cantilever beam, was designed using

the modified SMS approach and the original unit-cell library. Multiple diameter
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determination techniques were used to determine the best diameter values for Dmin

and Dmax. Based on these results, some key observations can be made:

• Once again, all three sizing methods are able to return identical results for Dmin

and Dmax All three sizing methods are also able to converge to results similar

to those from the design space exploration.

• A full design-space exploration for Dmin and Dmax is time-consuming in the 3-D

case as well and is not preferred. However, results from the exploration verify

the validity of the three optimization-based approaches.

• Between the two two-variable methods, the least-squares approach is able to

converge slightly faster than the constrained optimization approach. These

results suggest that, although the optimization approach may be better for 2-D

design problems, least-squares regression may be better for 3-D examples.

• The one-variable optimization utilizing the “28% assumption” is able to con-

verge to optimal values much faster than either of the two-variable methods.

These results corroborate the idea that a one-variable assumption is both valid

and beneficial for the SMS method.

• A brief exploration of the impact on unit-cell region size and structural perfor-

mance revealed that there is a relationship between the two characteristics of

the truss structure. Given these results, the development of an optimization

method for the unit-cell region size may be an area of future work.

5.3.4 The Modified Unit-Cell Library

In this section, the modified unit-cell library and selection method are used to generate

the topology for the SMS method. The weighting values in Equation 12, Wv, Wvn,

and Wp are varied in order to generate multiple topologies for the cantilever. In total

three separate topologies are generated for this example problem.
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5.3.5 Selection Method 1
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Figure 49: Topology of the first selection variant for the cantilever beam.

Table 21: Diameter determination results for the first selection variant for the can-

tilever beam.

New Library 

10 Crossed 

 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.8548 3.0529 0.9098 28 0.6355 1600 3.7413 

2 0.8548 3.0529 0.9098 28 0.6355 1600 2.9535 

3 0.8548 3.0529 0.9098 28 0.6355 1600 2.8270 

4 0.8548 3.0529 0.9098 28 0.6355 1600 2.8088 

5 0.8548 3.0529 0.9098 28 0.6355 1600 2.7237 

 0.8548 3.0529 0.9098 28 0.6355 1600 3.0109 

As 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5091 4.5520 0.6101 11.18 0.5687 1600 19.5070 

2 0.5091 4.5520 0.6101 11.18 0.5687 1600 18.5713 

3 0.5091 4.5520 0.6101 11.18 0.5687 1600 18.6094 

4 0.5091 4.5520 0.6101 11.18 0.5687 1600 18.7408 

5 0.5091 4.5520 0.6101 11.18 0.5687 1600 18.6269 

 0.5091 4.5520 0.6101 11.18 0.5687 1600 18.8111 

LM 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5087 4.5533 0.6099 11.17 0.5687 1600 22.8426 

2 0.5087 4.5533 0.6099 11.17 0.5687 1600 19.5232 

3 0.5087 4.5533 0.6099 11.17 0.5687 1600 19.1611 

4 0.5087 4.5533 0.6099 11.17 0.5687 1600 19.2381 

5 0.5087 4.5533 0.6099 11.17 0.5687 1600 19.7196 

 0.5087 4.5533 0.6099 11.17 0.5687 1600 20.0815 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.6355 0.5687 0.5687 

Volume (m
2
)  1600 1600 1600 

Design Time (s) 3.0109 18.8111 20.0815 
Dmin  (m) 0.8548 0.5091 0.5087 

Dmax (m) 3.0529 4.5520 4.5533 

Dcutoff (m) 0.9098 0.6101 0.6099 

Dmin/Dmax 28.00 11.18 11.17 

Objective Function 

Value 
0.4039 0.3234 0.3234 

 

The first topology generated using the new library is shown in Figure 49. For this

topology, the weighting values for Wv, Wvn, and Wp were 2, 0 and 1, respectively. As
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can be seen in Figure 49, the topology generated using the new library and selection

method is very similar to the topology generated using the original library. This is

because the new method only selects the crossed configuration for the topology; none

of the other configurations are selected.

The diameter determination results for the topology in Figure 49 are shown in

Table 21. It is important to note that Table 21 contains the average results for each

of the determination methods based on five iterations. The values from the five trials

are shown in Appendix D.2.

From Table 21 it can be seen that the 28% assumption does not return the same

results as the constrained optimization or least-squares minimization. Although the

convergence time is considerably less, the overall deflection values are approximately

10% greater, indicating a significant reduction in structural stiffness. Between the

two-variable optimizations, the constrained optimization approach is able to converge

slightly more quickly, with a 1.27 second, or 6.33% decreased optimization time. Both

of these optimizations are able to converge to the same stiffness value, with equivalent

Dmin and Dmax values. The Dmin/Dmax ratio returned by both optimizations is

around 11%. This results indicates that the 28% assumption is not correct for this

selection method or library.
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5.3.6 Selection Method 2
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Figure 50: Topology of the second selection variant for the cantilever beam for the

cantilever beam.

Table 22: Diameter determination results for the second selection variant for the

cantilever beam.

8 Crossed, 2 Diagonals 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.8898 3.1777 0.9470 28 0.6616 1600 3.1811 

2 0.8898 3.1777 0.9470 28 0.6616 1600 3.0545 

3 0.8898 3.1777 0.9470 28 0.6616 1600 3.1139 

4 0.8898 3.1777 0.9470 28 0.6616 1600 3.1113 

5 0.8898 3.1777 0.9470 28 0.6616 1600 3.1070 

 0.8898 3.1777 0.9470 28 0.6616 1600 3.1136 

As 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.6912 4.0781 0.7759 16.95 0.6328 1600 14.9993 

2 0.6912 4.0781 0.7759 16.95 0.6328 1600 14.7534 

3 0.6912 4.0781 0.7759 16.95 0.6328 1600 14.7202 

4 0.6912 4.0781 0.7759 16.95 0.6328 1600 14.8527 

5 0.6912 4.0781 0.7759 16.95 0.6328 1600 14.6688 

 0.6912 4.0781 0.7759 16.95 0.6328 1600 14.7989 

LM 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.6911 4.0788 0.7758 16.94 0.6328 1600 19.5655 

2 0.6911 4.0788 0.7758 16.94 0.6328 1600 19.2824 

3 0.6911 4.0788 0.7758 16.94 0.6328 1600 19.2985 

4 0.6911 4.0788 0.7758 16.94 0.6328 1600 19.4505 

5 0.6911 4.0788 0.7758 16.94 0.6328 1600 19.5879 

 0.6911 4.0788 0.7758 16.94 0.6328 1600 19.4370 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.6616 0.6328 0.6328 

Volume (m
2
)  1600 1600 1600 

Design Time (s) 3.1136 14.7989 19.4370 

Dmin  (m) 0.8898 0.6912 0.6911 

Dmax (m) 3.1777 4.0781 4.0788 

Dcutoff (m) 0.9470 0.7759 0.7758 

Dmin/Dmax 28.00 16.95 16.94 

Objective Function 

Value 
0.4377 0.4004 0.4004 
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The second topology generated using the new library is shown in Figure 50. For this

topology, the weighting values for Wv, Wvn, and Wp were 1, 0, and 1, respectively.

The topology generated using these weighting values returns a varied topology. Here,

eight of the configurations are designated as the “crossed” configuration and the other

two configurations are designated as the “diagonal” configuration.

The diameter determination results for the topology in Figure 50 are shown in

Table 22. Table 22 contains the average results for each of the determination methods

based on 5 iterations. The actual iteration values are shown in Appendix D.3.

The results from Table 22 show similar trends as the results from the first config-

uration. Here, it can be seen that once again, the 28% assumption returns a solution

much more quickly, but is unable to return the diameter values that result in the best

possible stiffness. The two-variable optimizations, on the other hand, take longer

to converge but are able to return better stiffness results, with a 4.5% increase in

stiffness performance. Both results are identical, but the constrained optimization is

able to converge roughly 4.64 seconds, or 23.9% faster. The Dmin/Dmax is roughly

17%, well below the value of 28% proposed by Graf.

119



5.3.7 Selection Method 3
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Figure 51: Topology of the third selection variant for the cantilever beam.

Table 23: Diameter determination results for the third selection variant for the

cantilever beam.

10 Diagonals  

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.8884 3.1727 0.9455 28 0.8258 1600 4.9441 

2 0.8884 3.1727 0.9455 28 0.8258 1600 5.6344 

3 0.8884 3.1727 0.9455 28 0.8258 1600 4.3543 

4 0.8884 3.1727 0.9455 28 0.8258 1600 4.4479 

5 0.8884 3.1727 0.9455 28 0.8258 1600 4.6966 

 0.8884 3.1727 0.9455 28 0.8258 1600 4.8155 

As 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.8230 3.4945 0.8897 23.55 0.8202 1600 16.3545 

2 0.8230 3.4945 0.8897 23.55 0.8202 1600 16.4344 

3 0.8230 3.4945 0.8897 23.55 0.8202 1600 16.4623 

4 0.8230 3.4945 0.8897 23.55 0.8202 1600 15.6281 

5 0.8230 3.4945 0.8897 23.55 0.8202 1600 16.6367 

 0.8230 3.4945 0.8897 23.55 0.8202 1600 16.3032 

LM 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.8229 3.4945 0.8897 23.55 0.8202 1600 31.5467 

2 0.8229 3.4945 0.8897 23.55 0.8202 1600 30.8928 

3 0.8229 3.4945 0.8897 23.55 0.8202 1600 30.4944 

4 0.8229 3.4945 0.8897 23.55 0.8202 1600 31.4502 

5 0.8229 3.4945 0.8897 23.55 0.8202 1600 30.1966 

 0.8229 3.4945 0.8897 23.55 0.8202 1600 30.9161 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.8258 0.8202 0.8202 

Volume (m
2
)  1600 1600 1600 

Design Time (s) 4.8155 16.3032 30.9161 

Dmin  (m) 0.8884 0.8230 0.8229 

Dmax (m) 3.1727 3.4945 3.4945 

Dcutoff (m) 0.9455 0.8897 0.8897 

Dmin/Dmax 28.00 23.55 23.55 

Objective Function 

Value 
0.6819 0.6727 0.6727 
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The third selection variation utilized for this example problem is shown in Figure 51.

Here, the weighting parameters, Wv and Wvn, and Wp were all set to 1. With these

values, the cantilever beam designates 10 diagonal configurations for the topology; no

other configuration is selected.

The diameter determination results for the third topology are shown in Table 23.

Once again, the 28% assumption converges the most quickly, but the two-variable

optimization methods return more optimal results. For this topology, the gap in

stiffness results, however, is not as profound, with only a 0.68 % deviation in results.

This results occurs because the optimal Dmin/Dmax ratio, as determined by the two-

variable optimizations, is roughly 23.5%, a value that is close to the predicted value

of 28%. Between the two-variable methods, the diameter and stiffness results are

virtually identical, save for the optimization time. Here, the constrained optimization

converges much more quickly than the least-squares minimization, with a 14.6 second

reduction in design time.

5.3.8 Results Comparison

In total, there are four separate topologies have been generated for the cantilever beam

using the SMS method and unit-cell libraries: one using the original library and three

using the modified library. In this section, these topologies will be compared. In

particular, the stiffness, design time, and Dmin/Dmax ratios will be compared. Table

24 shows all the stiffness results returned by the four separate topologies.

The results from Table 24 vary significantly. Firstly, it can be seen that the only

time the optimization utilizing the 28% method matches the two variable optimiza-

tions is with the original library. For all the other topologies, the 28% assumption

returns inferior results. This result disproves the idea that a 28% assumption is valid

for all instances of topologies generated using the modified unit-cell library. However,

the 28% assumption may still be valid for topologies generated using the original
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Table 24: Compiled deflection results for the cantilever design problem.Deflection – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 0.5724 0.5723 0.5723 

Selection Variation 1 

   [10 crossed] 
0.6355 0.5687 0.5687 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
0.6616 0.6328 0.6328 

Selection Variation 3 

   [10 diagonal] 
0.8258 0.8202 0.8202 

Design Time - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 2.7572 21.3883 17.6459 

Selection Variation 1 

   [10 crossed] 
3.0109 18.8111 20.0815 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
3.1136 14.7989 19.4370 

Selection Variation 3 

   [10 diagonal] 
4.8155 16.3032 30.9161 

Diameter ratio - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 28.00 27.38 27.35 

Selection Variation 1 

   [10 crossed] 
28.00 11.18 11.17 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
28.00 16.95 16.94 

Selection Variation 3 

   [10 diagonal] 
28.00 23.55 23.55 

  

library, as the 28% remains valid for the topology generated using this assumption.

When directly comparing selection variant 1 (with all 10 unit-cells generated using

the crossed configuration), it can be seen that the stiffness results are better than those

returned by the original unit-cell library, with the exception of the 28% method.

This result shows that the crossed configuration optimized using the new unit-cell

optimization method is superior than the configuration utilizing the original procedure

proposed by Graf.

The results from selection variants 2 and 3 are considerably worse than the results

from selection variant 1 and, on the whole, are also worse than the results from

the original library. When comparing variants 1 and 2, it can be seen that the main

difference is the replacement of the crossed configuration with diagonal unit-cells. For

variant 2, the two unit-cells at the tip of the cantilever are replaced. For variant 3, all

the unit-cells are replaced with the diagonal unit-cell. As a result, the stiffness results

for these topologies appear to be directly proportional to the number of diagonal unit-

cells present in the structure; the more diagonal unit-cells present in the structure,

the worse the stiffness results appear to be.

Table 25 shows the compiled design time results for all the topologies. From Ta-

ble 25, some trends can be observed. First and foremost, it can be seen that for

all four topologies, the 28% assumption converges much more quickly because only
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Table 25: Compiled design time results for the cantilever design problem.

Deflection – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 0.5724 0.5723 0.5723 

Selection Variation 1 

   [10 crossed] 
0.6355 0.5687 0.5687 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
0.6616 0.6328 0.6328 

Selection Variation 3 

   [10 diagonal] 
0.8258 0.8202 0.8202 

Design Time - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 2.7572 21.3883 17.6459 

Selection Variation 1 

   [10 crossed] 
3.0109 18.8111 20.0815 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
3.1136 14.7989 19.4370 

Selection Variation 3 

   [10 diagonal] 
4.8155 16.3032 30.9161 

Diameter ratio - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 28.00 27.38 27.35 

Selection Variation 1 

   [10 crossed] 
28.00 11.18 11.17 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
28.00 16.95 16.94 

Selection Variation 3 

   [10 diagonal] 
28.00 23.55 23.55 

  

one variable needs to be optimized. In addition, it can be seen that, on the whole,

the constrained minimization approach returns results faster than least-squares min-

imization, except for when the original unit-cell library is utilized. In general, it

can be seen that topologies generated using the new unit-cell library converge faster

than than those generated using the original library when constrained minimization

is used. Conversely, when least-squares minimization is used, optimization converges

more slowly than when the original library is used. From these results, no correla-

tion can be established between the speed of convergence and the type of unit-cell

configuration used.

The compiled Dmin/Dmax ratios for all four topologies are shown in Table 26. The

diameter ratios in Table 26 show that the only situation where the 28% assumption

matches the results returned by two-variable optimization is with the original library.

All the configurations generated using the new library do not converge to 28%. The

closest to reach the 28% assumption is variant 3, the configuration generated using

all diagonal configurations. This result is believed to be purely coincidental. When

comparing the three topologies generated using the modified library, it can be seen

that the Dmin/Dmax ratios are all different. Therefore, the optimal Dmin/Dmax ratio

is likely related directly to the topology of the structure and, in particular, the type

of unit-cell used. When the topology is composed entirely of diagonal configurations,
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Table 26: Compiled diameter ratio results for the cantilever design problem.

Deflection – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 0.5724 0.5723 0.5723 

Selection Variation 1 

   [10 crossed] 
0.6355 0.5687 0.5687 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
0.6616 0.6328 0.6328 

Selection Variation 3 

   [10 diagonal] 
0.8258 0.8202 0.8202 

Design Time - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 2.7572 21.3883 17.6459 

Selection Variation 1 

   [10 crossed] 
3.0109 18.8111 20.0815 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
3.1136 14.7989 19.4370 

Selection Variation 3 

   [10 diagonal] 
4.8155 16.3032 30.9161 

Diameter ratio - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 28.00 27.38 27.35 

Selection Variation 1 

   [10 crossed] 
28.00 11.18 11.17 

Selection Variation 2 

   [8 crossed, 2 diagonal] 
28.00 16.95 16.94 

Selection Variation 3 

   [10 diagonal] 
28.00 23.55 23.55 

  
the Dmin/Dmax ratio is higher at 23.5%. When eight of the ten unit-cells are crossed,

the ratio drops to 17%. When all the unit-cells are composed with the crossed con-

figuration, the ratio is around 11%. When comparing the results from the original

configuration with variant 1, it can be seen that, despite the fact that both topologies

are composed entirely with the crossed configuration, the optimal diameter ratios are

very different. This result shows that even the initial optimization of the unit-cells

has a significant impact on the final topological makeup of the structure.

5.3.9 Summary

For the cantilever design problem, the modified unit-cell library was utilized with

the selection method described in Chapter 4. Various weighting values were used to

vary the topologies generated using the SMS method. The results from the diameter

sizing methods were then presented and compared. From these results, several key

observations and trends were recorded:

• For the cantilever problem, the selection method appears to select only either

the crossed configuration or diagonal configurations for the topology of the

structure. Varying the weighting parameters changes the relatively distribu-

tion between these two configurations. These results suggest that these two

configurations are the best two configurations in the unit-cell library.
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• The stiffness results from the modified topologies show that the topology using

only the crossed configuration has the best possible stiffness results. When these

configurations are replaced by the diagonal configuration, the stiffness results

worsen. This implies that, in general, the diagonal configuration returns inferior

results for this example problem

• Regardless of the selection method or library used, it appears that the 28%

assumption will always return diameter values faster than either of the two-

variable methods. However, unless the topologies are generated using the origi-

nal library, these diameter values are not optimal. This indicates that the 28%

assumption is not valid for structures generated using the new library. However,

it may still be valid for structure generated using the original library.

• The optimal Dmin/Dmax ratios for topologies generated using the SMS method

appear to vary based on the topology. In this case, topologies containing

more diagonal entries have higher ratios, whereas structure generated using

the crossed configuration have lower ratios. This trend likely occurs because

the diagonal configuration generally contains fewer struts. This smaller num-

ber of struts allows for a smaller distribution of relative diameter values. This,

in turn, results in larger minimum diameter values relative to the maximum

diameter values and an overall higher Dmin/Dmax ratio.

• For the problem, the unit-cell regions in the base lattice were quadrupled in

order to determine the effect, if any, on structural performance. When the SMS

method was applied and stiffness results were compiled, a change in performance

was, indeed, found. This leads to the idea that there could be an optimal unit-

cell region size for a given SMS structure.
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5.3.10 Research Questions Revisited

In this section, a simple 3-D cantilever problem was presented. For this problem, both

the old and new library were utilized to generate topologies. Furthermore, all three

diameter determination methods were applied to these topologies. Various important

results were discovered. These results can be applied toward the three hypotheses

discussed in Chapter 1:

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-

strained optimization of two diameter values: a minimum allowable diameter

and a maximum allowable diameter, against volume and stiffness constraints,

a systematic design method can be developed for the design of mesoscale truss

structures. By exploring various optimization approaches and selecting the

best method, analysis time can be minimized and structural performance can

be maximized.

The diameter determination results from the original library align well with the

results from the design space exploration. This results corroborates the idea that the

an optimization/minimization approach can be utilized to determine optimal Dmin

and Dmax results. These results are further corroborated by the topologies from

the new library: all the two-variable results are able to return identical results for

Dmin and Dmax. Furthermore, these results are always equal to or better than the

results from the one-variable optimization. Therefore, this example appears to answer

hypothesis 1 in the affirmative.
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Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-

mum diameter values for meso-scale truss structures designed using the Size,

Matching, and Scaling method, a direct relationship between these two values

can be determined and exploited. This relationship will allow for one of the

two diameter values to be expressed as a function of the other. Consequently,

the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.

The diameter determination results from the first and second unit-cell libraries

return different results. Firstly, when using the 28% assumption with the original

unit-cell library, it can be seen that the SMS method can return diameter results

very similar to the results from the two-variable optimizations. In addition, the

overall design time is significantly reduced. These results, combined with the results

from Example 1, suggest that, for the original library, a one-variable assumption is

valid and beneficial for the method, as it reduces the overall design time significantly.

However, when the new library is utilized, the one-variable optimization, though

faster, does not return optimal diameter results. When the two-variable results are

compared for the three topologies generated using the new method, it can be seen

that the optimal Dmin/Dmax ratios are not equal. These results not only imply

that optimal diameter ratios are highly dependently on the make-up of the unit-cell

topology, but are unlikely to conform to a singular value. Therefore, it is unlikely

that topologies generated using the new library will converge to any ratio. Based on

these observations, it can be seen that hypothesis 2 is not valid for the new library,

but may still be valid for the old one.
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Hypothesis 3: The addition of unit-cell configurations, such as the cantley and

octet configurations, will provide the SMS method with more options for the

generation of the lattice topology. This, in turn, will allow for the placement

of unit-cell structures that are better-suited for specific loading conditions,

thereby improving structural stiffness. Although the design time will be slightly

increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

The results from the three topologies generated using the new unit-cell library

show that only two configuration are even considered in the construction in the topol-

ogy of the structure: the crossed and diagonal structures. When the stiffness results

of these three topologies are compared, the topology composed entirely of the crossed

configuration returns the best stiffness results. The other topologies show that, as the

unit-cells are replaced with diagonal configurations, that the stiffness results gradu-

ally worsen. This result implies that more configurations do not improve the results

of the structure and, in fact, can reduce the performance of the structure. When com-

paring design time, it can be seen that results are mixed. The new library actually

causes a reduction in design time for structures utilizing constrained minimization.

However, if least-squares minimization is used, the results are opposite: design time

increases. More information is necessary before a definitive conclusion can be made

about the change in design time when a new library is utilized. The results in from

this example, are counter to the statements made in Hypothesis 3.
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Figure 52: Problem definition of the 3-D L-bracket example.

Table 27: Initial properties for the 3-D specialized L-bracket.
Length (mm) 110 Loading (N/mm2) 0.595
Width (mm) 110 Unit-Cell Size (mm) 10
Height (mm) 40 Total Unit-Cell Count 203
Elastic Modulus (N/mm) 1960 Target Volume (mm3) 10000

5.4 Example 4: 3-D Specialized L-Bracket

5.4.1 Problem Description

The fourth and final design example is a specialized 3-D L-bracket. This bracket is

a simplified version of a proprietary aircraft component. The bracket contains three

vertical walls and one base. Between the three walls are four support beams. The

bracket is fixed along its rear face and a distributed load of 0.595 N/mm2 is supplied

along the bottom face. The objective of this problem is to achieve a target volume of

10,000 mm3 while minimizing the average deflection of the bottom face of the bracket.

The design problem is shown in Fig. 52. Table 27 summarizes the initial conditions

for the design problem. It is important to note that not all initial specifications are

provided. For simplification purposes, only the bounding dimensions, total number
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Figure 53: Base-lattice for the 3-D L-Bracket.

of unit-cells, and unit-cell size are provided.

5.4.2 Ground Geometry and Solid-Body Analysis

The ground geometry for the L-bracket is shown in Figure 53. This geometry was

generated manually using a combination of several bezier-interpolated surfaces.

The solid-body stress analysis for the L-bracket is shown in Figure 54. As can be

seen, the highest stresses in the structure are expected to occur on the four beams

of the L-bracket and in particular on the two rear beams. Furthermore, the stress

distribution appears to be fairly symmetric throughout the structure. Based on these

values, the SMS method should allocate the largest strut diameters along the beams

of the L-bracket. Conversely, the method should allocate the smallest diameters to

the front corners of the bracket.

With the stress values are known, the unit-cell library can be used to determine

the location and sizes of the struts to use in each unit-cell. As with Example 2, both

the original and modified unit-cell library will utilized to generate the topology of the

structure in order to compare the results from the two libraries.
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Figure 54: Solid-body model of the 3-D L-Bracket.

5.4.3 The Original Unit-Cell Library

The topology of the structure generated using the original unit-cell library is shown

in Figure 55. A side view and overhead view are provided in Figure 56. As Figures

55 and 56 show, the thickest struts occur along the beams connecting the rear and

middle faces. The thinnest struts occur on the bottom face near the far corners of

the beam. This resultant topology appears to match intuitive expectations for the

topology of the structure.

For the L-bracket, the cutoff diameter, Dcutoff , was also utilized. The topology

after this cutoff diameter was utilized is shown in Figure 57. As can be seen, the

utilization of this cutoff diameter has unanticipated affects on the topology of the

structure. Because the cutoff diameter indiscriminately removes diameter values that

fall below a certain value, it may remove some struts from the structure that are

critical for the performance of the structure. For instance, in this example, the

cutoff diameter has removed struts that are critical for the correct application of the

loading and boundary conditions. Furthermore, some struts are removed that may
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Figure 55: Completed topology for the 3-D L-Bracket.

0 20 40 60 80 100
0

10

20

30

40

X 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

X

Y

Figure 56: Side-view (left) and overhead view (right) of the completed topology for
the 3-D L-Bracket.
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Figure 57: Topology of the 3-D L-Bracket after the cutoff diameter is implemented.

connect adjacent load-bearing struts to one another. Because these struts are critical

for the satisfactory function of the completed truss structure, an accurate analysis

of the truss structure cannot be made while using a cutoff diameter approach to

topology alteration. Furthermore, when deflection results are compared before and

after the cutoff diameter are implemented, deflection results are actually better before

implementation. Therefore, for this example, the use of Dcutoff was excluded.

The diameter results from the 28% Assumption, the constrained minimization,

and the least-squares minimization were determined. As with Examples 1 and 2, for

each of the determination method, five separate trials were completed. The average

values for Dmin, Dmax, Dcutoff , Dmin/Dmax, design time, volume, and deflection were

taken. For this example, the average displacement of a select number of nodes on the

bottom face was used as the primary metric for deflection. For all three methods,

the upper and lower bounds for Dmin and Dmax were set to 0.01 mm and 5 mm,

respectively. The values from each of the five trials is provided in Appendix E.1

In addition to the three optimization discussed in the previous section, a design
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Figure 58: Plot of the design space for the L-bracket.

Table 28: Design space exploration results for the L-bracket.

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Design Space 

Exploration 

Deflection (mm) 0.2685 0.2358 0.2179 0.2379 

Volume (mm
 3
) 10000 10000 10000 10045 

Design Time (s) 251.1894 816.4605 1105.3 29418.0 

Dmin  (mm) 0.4872 0.1695 0.3000 0.4 

Dmax (mm) 1.7399 3.5878 2.9844 2.4 

Dcutoff (mm) N/A N/A N/A N/A 

Dmin/Dmax 28 4.72 10.05 16.67 

 

Deflection (mm) 0.2379 

Volume (mm
3
) 10045 

Design Time (s) 29418.0 

Dmin  (mm) 0.4 

Dmax (mm) 2.4 

Dcutoff (mm) N/A 

Dmin/Dmax 16.67 

  

space exploration/grid search was conducted. In this example, Dmin and Dmax were

iterated from 0.1 mm to 5 mm and and incremented in steps of 0.1 mm. The results of

the exploration are plotted in Figure 58. The diameter values that returned the lowest

objective function value are shown in Table 28. The analysis time, tip displacement,

and volume are provided as well. Based on the information in Table 28, it can be

expected that the minimum and maximum diameters determined by the three sizing

methods should be near 0.4 mm and 2.4 mm, respectively. It can also be expected

that the final tip displacement of the structure should be at or near 0.2379 m.

5.4.3.1 Results Comparison

The compiled results for all three diameter determination results and the design

space exploration are shown in Table 29 for the L-bracket design problem. From

134



Table 29: Diameter determination results for the L-bracket using the original unit-
cell library.

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Design Space 

Exploration 

Deflection (mm) 0.2685 0.2358 0.2179 0.2379 

Volume (mm
 3
) 10000 10000 10000 10045 

Design Time (s) 251.1894 816.4605 1105.3 29418.0 

Dmin  (mm) 0.4872 0.1695 0.3000 0.4 

Dmax (mm) 1.7399 3.5878 2.9844 2.4 

Dcutoff (mm) N/A N/A N/A N/A 

Dmin/Dmax 28 4.72 10.05 16.67 

Objective Function 

Value 
0.0721 0.0556 0.0475 0.2573 

 

Deflection (mm) 0.2379 

Volume (mm
3
) 10045 

Design Time (s) 29418.0 

Dmin  (mm) 0.4 

Dmax (mm) 2.4 

Dcutoff (mm) N/A 

Dmin/Dmax 16.67 

  

Table 29, it can be seen that all four methods are able to converge to the target

volume of 10,000 mm3. However, beyond this value, the results for the methods

vary widely. Firstly, it can be seen that the Dmin/Dmax ratios differ widely for each

method. These results suggest that a 28% assumption for the diameter ratio would

be incorrect. When deflection results are observed, it is seen that this is, indeed

the case; the 28%, one-diameter optimization returns the worst deflection results of

the four methods. Another interesting observation is that, unlike the other examples

to this point, the two-variable optimizations do not return identical results. Here,

the constrained optimization returns inferior results to the least-square minimization

results, indicating that the least-squares minimization method is superior for this

design problem. When design times are compared, the 28% method, unsurprisingly,

returns results the quickest. The constrained optimization converges the second most

quickly and the least-squares method returns results the slowest.

When the three methods are compared to the design space exploration, the results

align with expectations. Both the two-variable optimizations are able to return better

overall results than the design space exploration and are able to do so much more

quickly than the exploration. These results imply that optimization is the better

method to take in order to determine the ideal Dmin and Dmax values.
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5.4.3.2 Summary

In this section of the design problem, the 3-D L-bracket was designed using the original

unit-cell library. For this topology, the three diameter determination methods and a

design space exploration were performed. From the deflection and design time results,

several conclusions can be drawn:

• Unlike with the previous examples, all three diameter determination methods

return different results for the diameter values, deflection, and design time.

Based on these results, the least-squares minimization returns the best overall

results but with the cost of the slowest design time. The 28% method, on the

other hand, has the opposite effect.

• The design space exploration, even with a coarse increment, takes a long time

to complete and does not return the most optimal results. This result further

confirms the idea that a full, exhaustive exploration used by Graf is not an

ideal systematic method for determining the Dmin and Dmax values. Instead,

two-variable optimization appears to be much better.

• When the Dmin/Dmax ratios are compared, it can be seen that all four methods

return different values. More importantly, it can be seen that none of them,

save for the obvious one-variable optimization, have a Dmin/Dmax near 28%.

This implies that a 28% assumption is invalid for this design problem. However,

interestingly, if the deflection results are compared, there is not a huge deviation

between the 28% method and the two-variable methods. This implies that

several Dmin/Dmax ratios can result in deflections near the optimum.

In the following section, the modified library will be used to generate topologies

for the l-bracket. These results will then be compared to the results from this section.
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5.4.4 The Modified Unit-Cell Library

In this section, topologies created using the modified library will be generated for

the L-bracket problem. In total, four unique topologies were created by varying the

weighting values of the selection equation, Equation 12. The topology and diameter

determination results are provided for each of the weighting values.

5.4.5 Selection Method 1
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Figure 59: Topology for the first selection variant of the L-bracket.
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Table 30: Diameter determination results for the first selection variant of the L-

bracket.

0-0-203 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.6123 2.1868 N/A 28 0.3132 9955 567.71 

2 0.6123 2.1868 N/A 28 0.3132 9955 555.38 

3 0.6123 2.1868 N/A 28 0.3132 9955 563.17 

4 0.6123 2.1868 N/A 28 0.3132 9955 566.93 

5 0.6123 2.1868 N/A 28 0.3132 9955 559.74 

 0.6123 2.1868 N/A 28 0.3132 9955 562.59 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3708 5.0094 N/A 7.40 0.2485 10000 1288.1 

2 0.3708 5.0094 N/A 7.40 0.2485 10000 1287.8 

3 0.3708 5.0094 N/A 7.40 0.2485 10000 1294.9 

4 0.3708 5.0094 N/A 7.40 0.2485 10000 1295.4 

5 0.3708 5.0094 N/A 7.40 0.2485 10000 1367.2 

 0.3708 5.0094 N/A 7.40 0.2485 10000 1306.7 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3954 4.7664 N/A 8.30 0.2476 10000 1642.8 

2 0.3954 4.7664 N/A 8.30 0.2476 10000 1691.4 

3 0.3954 4.7664 N/A 8.30 0.2476 10000 1703.7 

4 0.3954 4.7664 N/A 8.30 0.2476 10000 1685.5 

5 0.3954 4.7664 N/A 8.30 0.2476 10000 1643.5 

 0.3954 4.7664 N/A 8.30 0.2476 10000 1673.4 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3132 0.2485 0.2476 

Volume (m
2
) 9955 10000 10000 

Design Time (s) 562.59 1306.7 1673.4 

Dmin  (m) 0.6123 0.3708 0.3954 

Dmax (m) 2.1868 5.0094 4.7664 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 7.40 8.30 

Objective Function 

Value 
0.3024 0.0618 0.0613 

  

In the first selection variant, the weighting values were set as: Wv = 0, Wnv = 1,

Wp = 1. These weight values resulted in a topological make-up of all 203 unit-cell

regions being composed with diagonal unit-cell configurations. The topology and

diameter determination results are provided in Figure 59 and Table 30. The values

in Table 30 are averaged from five separate runs. These runs are shown in Appendix

E.2.

The compiled results in Table 30 show that all results are, once again, able to reach

the optimal volume value. The 28% method is able to converge in less than half the

time than either of the two-variable minimizations. However, the deflection results

are considerably worse than either of the two-variable optimizations. Between the

two-variable methods, the constrained optimization is able to return 366.7 seconds,

or 21.9% faster. However, the deflection results are slightly worse.
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5.4.6 Selection Method 2
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Figure 60: Topology for the second selection variant of the L-bracket.

Table 31: Diameter determination results for the second selection variant of the

L-bracket.

17-6-180 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5990 2.1393 N/A 28 0.3199 9963 548.65 

2 0.5990 2.1393 N/A 28 0.3199 9963 571.02 

3 0.5990 2.1393 N/A 28 0.3199 9963 574.76 

4 0.5990 2.1393 N/A 28 0.3199 9963 572.89 

5 0.5990 2.1393 N/A 28 0.3199 9963 590.26 

 0.5990 2.1393 N/A 28 0.3199 9963 571.52 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3497 5.1551 N/A 6.78 0.2531 9991 1151.1 

2 0.3497 5.1551 N/A 6.78 0.2531 9991 1195.7 

3 0.3497 5.1551 N/A 6.78 0.2531 9991 1423.2 

4 0.3497 5.1551 N/A 6.78 0.2531 9991 1088.4 

5 0.3497 5.1551 N/A 6.78 0.2531 9991 1091.8 

 0.3497 5.1551 N/A 6.78 0.2531 9991 1190.0 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3884 4.7662 N/A 8.15 0.2509 10002 1512.2 

2 0.3884 4.7662 N/A 8.15 0.2509 10002 1555.3 

3 0.3884 4.7662 N/A 8.15 0.2509 10002 1540.0 

4 0.3884 4.7662 N/A 8.15 0.2509 10002 1553.9 

5 0.3884 4.7662 N/A 8.15 0.2509 10002 1520.3 

 0.3884 4.7662 N/A 8.15 0.2509 10002 1536.3 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3199 0.2531 0.2509 

Volume (m
2
) 9963 9991 10002 

Design Time (s) 571.52 1190.0 1536.3 

Dmin  (m) 0.5990 0.3497 0.3884 

Dmax (m) 2.1393 5.1551 4.7662 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 6.78 8.15 

Objective Function 

Value 
0.2403 0.0722 0.0711 

 

For the second selection variant, the weighting values were set as: Wv = 0, Wnv = 0,

Wp = 1. With these values, the topology generated by the SMS method was as follows.

Here, 17 unit-cells were mapped with the crossed configuration, 6 were mapped with
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the paramount 1 configuration, and the remaining 180 cells were mapped with the

diagonal configuration. The topology and average diameter determination results are

provided in Figure 60 and Table 31. The individual iteration results are shown in

Appendix E.3.

The survey of diameter determination methods shows similar trends to the first

variation. Firstly, the one-variable method is more than twice as fast as the next-

best alternative, but is once again unable to return deflection results at or near the

value of the other two methods. Between the two-variable methods, the constrained

minimization approach converges faster, but the non-linear least squares minimization

returns slightly better results. The Dmin/Dmax varies for each of the methods but

are relatively close between the two-variable methods. However, neither of the ratios

are near the predicted value of 28%, once again implying that the assumption is not

a valid one.

5.4.7 Selection Method 3
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Figure 61: Topology for the third selection variant of the L-bracket.
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Table 32: Diameter determination results for the third selection variant of the L-

bracket.

125-0-78 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5488 1.9599 N/A 28 0.3149 10032 407.48 

2 0.5488 1.9599 N/A 28 0.3149 10032 413.93 

3 0.5488 1.9599 N/A 28 0.3149 10032 382.27 

4 0.5488 1.9599 N/A 28 0.3149 10032 395.72 

5 0.5488 1.9599 N/A 28 0.3149 10032 385.06 

 0.5488 1.9599 N/A 28 0.3149 10032 396.89 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2208 5.8401 N/A 3.78 0.2369 9996 880.90 

2 0.2208 5.8401 N/A 3.78 0.2369 9996 879.46 

3 0.2208 5.8401 N/A 3.78 0.2369 9996 899.07 

4 0.2208 5.8401 N/A 3.78 0.2369 9996 927.57 

5 0.2208 5.8401 N/A 3.78 0.2369 9996 928.28 

 0.2208 5.8401 N/A 3.78 0.2369 9996 903.06 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3131 4.9706 N/A 6.30 0.2301 10002 1167.7 

2 0.3131 4.9706 N/A 6.30 0.2301 10002 1182.4 

3 0.3131 4.9706 N/A 6.30 0.2301 10002 1413.6 

4 0.3131 4.9706 N/A 6.30 0.2301 10002 1426.6 

5 0.3131 4.9706 N/A 6.30 0.2301 10002 1240.3 

 0.3131 4.9706 N/A 6.30 0.2301 10002 1286.1 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3149 0.2369 0.2301 

Volume (m
2
) 10032 9996 10002 

Design Time (s) 396.89 903.06 1286.1 

Dmin  (m) 0.5488 0.2208 0.3131 

Dmax (m) 1.9599 5.8401 4.9706 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.78 6.30 

Objective Function 

Value 
0.2009 0.0577 0.0533 

 

The third selection variant, shown in Figure 61, has weighting values set at: Wv = 1,

Wnv = 0, Wp = 1. With these values, the topology generated contained two con-

figurations: 125 crossed configurations and 78 diagonal configurations. The average

diameter determination results are provided in Table 32. The individual iteration

results are shown in Appendix E.4.

Relative to one another, the diameter determination results follow the same trends

as the first two selection variants: the least-squares minimization returns the best

deflection values but at the cost of a design time more than three times longer than

the fastest method: the 28% assumption. However, the 28% assumption returns

poor deflection results relative to the two diameter determination methods. The

constrained minimization approach utilizing the line-search method returns deflection

results very close to the the least-squares minimization and is able to converge 383.0

seconds, or 29.8% faster.
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5.4.8 Selection Method 4
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Figure 62: Topology for the fourth selection variant of the L-bracket.

Table 33: Diameter determination results for the fourth selection method of the

L-bracket.

202-0-1 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5303 1.8940 N/A 28 0.3234 10046 327.63 

2 0.5303 1.8940 N/A 28 0.3234 10046 325.22 

3 0.5303 1.8940 N/A 28 0.3234 10046 356.46 

4 0.5303 1.8940 N/A 28 0.3234 10046 355.10 

5 0.5303 1.8940 N/A 28 0.3234 10046 321.25 

 0.5303 1.8940 N/A 28 0.3234 10046 337.13 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2036 5.8644 N/A 3.47 0.2154 10002 673.60 

2 0.2036 5.8644 N/A 3.47 0.2154 10002 662.24 

3 0.2036 5.8644 N/A 3.47 0.2154 10002 662.94 

4 0.2036 5.8644 N/A 3.47 0.2154 10002 668.74 

5 0.2036 5.8644 N/A 3.47 0.2154 10002 669.30 

 0.2036 5.8644 N/A 3.47 0.2154 10002 667.36 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2612 5.3264 N/A 4.90 0.2125 10002 829.71 

2 0.2612 5.3264 N/A 4.90 0.2125 10002 837.26 

3 0.2612 5.3264 N/A 4.90 0.2125 10002 813.67 

4 0.2612 5.3264 N/A 4.90 0.2125 10002 806.29 

5 0.2612 5.3264 N/A 4.90 0.2125 10002 811.21 

 0.2612 5.3264 N/A 4.90 0.2125 10002 819.63 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3234 0.2154 0.2125 

Volume (m
2
) 10046 10002 10002 

Design Time (s) 337.13 667.36 819.63 

Dmin  (m) 0.5303 0.2036 0.2612 

Dmax (m) 1.8940 5.8644 5.3264 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.47 4.90 

Objective Function 

Value 
0.3143 0.0468 0.0456 

 

The final selection variant has weighting values set at: Wv = 5, Wnv = 0, Wp =

1. The final topology using these weighting values is dominated with the crossed

configuration. Here, the topology contains 202 crossed configurations and 1 diagonal
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Table 34: Compiled deflection results for the L-bracket.Deflection – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 0.2685 0.2358 0.2179 

Selection Variant1 

   [203 diagonal] 
0.3132 0.2485 0.2476 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
0.3199 0.2531 0.2509 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
0.3149 0.2369 0.2301 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
0.3234 0.2154 0.2125 

Design Time – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 251.2 816.5 1105.3 

Selection Variant1 

   [203 diagonal] 
562.6 1306.7 1673.4 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
571.5 1190.0 1536.3 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
396.9 903.1 1286.1 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
337.1 667.4 819.6 

 

Diameter ratio - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 28 4.72 10.05 

Selection Variant1 

   [203 diagonal] 
28 7.40 8.30 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
28 6.78 8.15 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
28 3.78 6.30 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
28 3.47 4.90 

  

configuration. The topology and average diameter determination results are provided

in Figure 62 and Table 33. The individual iteration results are shown in Appendix

E.5.

As with the three previous selection variants, the diameter determination methods

appear to have similar performances for the fourth selection variant.

5.4.9 Results Comparison

In this section, the results from the five variants of the L-bracket example will be

compared. Table 34 shows the average deflection results returned by the five separate

topologies.

From Table 34, some key observations can be made:

• On the whole, the 28% is worst, and the least-squares best. The constrained

minimization is close to the least squares, but is slightly worse.

• As the number of crossed configurations increases, the deflection also appears

to improve. This results suggests that the crossed configuration is generally the

best configuration for all loading scenarios using the SMS method.

• When comparing the variants from the new library with the original library,

the original library is superior in all cases except for against variant 4, where

nearly all the topology is composed with the crossed configuration from the new
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Table 35: Compiled design time results for the L-bracket.

Deflection – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 0.2685 0.2358 0.2179 

Selection Variant1 

   [203 diagonal] 
0.3132 0.2485 0.2476 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
0.3199 0.2531 0.2509 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
0.3149 0.2369 0.2301 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
0.3234 0.2154 0.2125 

Design Time – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 251.2 816.5 1105.3 

Selection Variant1 

   [203 diagonal] 
562.6 1306.7 1673.4 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
571.5 1190.0 1536.3 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
396.9 903.1 1286.1 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
337.1 667.4 819.6 

 

Diameter ratio - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 28 4.72 10.05 

Selection Variant1 

   [203 diagonal] 
28 7.40 8.30 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
28 6.78 8.15 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
28 3.78 6.30 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
28 3.47 4.90 

  

library. This observation supports two separate ideas. First, it corroborates

the idea that the crossed configuration is the superior configuration and that

the introduction of other unit-cells will only reduce the overall stiffness of the

structure. Second, it shows that the crossed configurations from the second

library are generally superior than their equivalents from the original library.

The compiled design time results for all four topologies are shown in Table 35.

The compiled design time results all follow similar trends, regardless of the type

of topology of the l-bracket. In particular, the following conclusions can be drawn

from Table 35:

• For every variant, the 28%, one variable assumption converges fastest. This

result is as expected, since only one variable need be optimized. However, the

cost of a reduced time is a large drop is overall structural performance, as

indicated in Table 34.

• Between the two variable methods, the optimization time for constrained min-

imization is always significantly shorter than least-squares minimization, indi-

cating that it is consistently the faster of the two-variable methods.

• When comparing the selection variants with the original library, it can be seen

that the optimization time for the original library is considerably shorter for
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Table 36: Compiled diameter ratio results for the L-bracket.

Deflection – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 0.2685 0.2358 0.2179 

Selection Variant1 

   [203 diagonal] 
0.3132 0.2485 0.2476 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
0.3199 0.2531 0.2509 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
0.3149 0.2369 0.2301 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
0.3234 0.2154 0.2125 

Design Time – compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 251.2 816.5 1105.3 

Selection Variant1 

   [203 diagonal] 
562.6 1306.7 1673.4 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
571.5 1190.0 1536.3 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
396.9 903.1 1286.1 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
337.1 667.4 819.6 

 

Diameter ratio - compiled 
 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Original Library 28 4.72 10.05 

Selection Variant1 

   [203 diagonal] 
28 7.40 8.30 

Selection Variant 2 

   [17 crossed, 6 paramount 1, 180 diagonal] 
28 6.78 8.15 

Selection Variant 3 

   [125 crossed, 78 diagonal] 
28 3.78 6.30 

Selection Variant 4 

   [202 crossed, 1 diagonal] 
28 3.47 4.90 

  

the original library except for against variant 4. Because both the original con-

figuration and variant 4 are dominated by the crossed configuration, this result

implies that the newly-optimized crossed configuration has another advantage

over the original configuration in that optimization converges more quickly.

• The design time for variants 1-3 are significantly higher, suggesting that the

introduction of additional configurations into the topology lengthens the over-

all optimization time of the structure. This observation is especially apparent

in variant 2, which converges the most slowly because it is composed of three

separate configurations. Furthermore, if selection variant 1 is compared to vari-

ant 4, it can be seen that, if the topology is composed entirely of diagonal or

crossed configurations, the crossed configuration will still converge faster.

The compiled Dmin/Dmax ratios for all four topologies are shown in Table 36.

From Table 36, the following observations were made:

• None of the diameter determination ratios for the two variable optimizations

are close to the approximated 28% taken by the one-variable approach. This

result disproves the idea that there exists a set ratio between Dmin and Dmax for

the old or new library. Furthermore, this wide variation in Dmin/Dmax ratios

explains why the results from the one-variable optimization are so poor relative

145



to the two-variable optimizations: the ideal ratio is actually much lower for the

L-bracket.

• Between the five different variations of the L-bracket, it can be seen that the

ratios change for the two-variable optimizations. This result suggests that the

Dmin/Dmax ratio is highly dependent on the topology of the structure. It is

therefore unlikely, because the new library contains multiple entries, that a set

ratio will ever exist between Dmin and Dmax.

• The ratios for the constrained minimization are always lower for constrained

optimization than least-squares minimization. Because the stiffness results for

constrained optimization and least-squares minimization are very similar, with

least squares slightly more accurate, it can be inferred that a wide diameter

ratio can result in near optimal results.

5.4.10 Research Questions Revisited

In this example, a three-dimensional l-bracket was designed using the SMS method.

Both the original library and modified unit-cell library were utilized to generate five

unique topologies for the method. Based on the diameter determination values from

step 6 of the SMS method, some key results could be obtained. These results have a

direct impact on the research questions and hypothesis driving this research.

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-

strained optimization of two diameter values: a minimum allowable diameter

and a maximum allowable diameter, against volume and stiffness constraints,

a systematic design method can be developed for the design of mesoscale truss

structures. By exploring various optimization approaches and selecting the

best method, analysis time can be minimized and structural performance can

be maximized.
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As with the cantilever beam, the optimizations appear to be largely successful in

determining the optimal values of Dmin and Dmax for the L-bracket. When compared

to the design space exploration, design time is not only reduced, but results are also

more accurate. This result confirms hypothesis 1 for the L-bracket.

Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-

mum diameter values for meso-scale truss structures designed using the Size,

Matching, and Scaling method, a direct relationship between these two values

can be determined and exploited. This relationship will allow for one of the

two diameter values to be expressed as a function of the other. Consequently,

the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.

The diameter determination results and, in particular, the deflection andDmin/Dmax

ratio results, show that no real relationship exists between Dmin and Dmax, as the

the ratio between the two varies for both the old and new libraries. Furthermore,

results suggest that, for the new library, the Dmin/Dmax changes depending on which

configurations and how many of that configuration are mapped to the topology. Also,

results from the diameter determination indicate that a wide range of diameter ratios

can result in optimal or near-optimal results. All these results show that a set ratio is

unlikely to result in optimal diameter values for all topologies created using the SMS

method.
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Hypothesis 3: The addition of unit-cell configurations, such as the Cantley

and octet configurations, will provide the SMS method with more options for

the generation of the lattice topology. This, in turn, will allow for the placement

of unit-cell structures that are better-suited for specific loading conditions,

thereby improving structural stiffness. Although the design time will be slightly

increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

The four topology variations for the SMS method show that only three of the

seven topologies in the library are even considered in this design example. Further-

more, the optimized topologies show that, in general, the more crossed configurations

that compose the structure, the better it performs. Consequently, selection variant

four, the variant dominated with the crossed configurations performs the best of all

the variants. Furthermore, none of the variants save the fourth one are able to per-

form better than the configuration built using the original library. Even if stiffness is

not considered, it can be seen that topologies generated using configurations besides

the crossed configuration converge more slowly than those configured using only the

crossed topology. Thus, not only is performance reduced, design time is also signif-

icantly increased when new topologies are introduced. Therefore, in this research,

it appears that no advantage occurs when a new library is utilized. Therefore, This

example problem appears to invalidate Hypothesis 3.
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CHAPTER VI

CLOSURE

6.1 Summary

Additive manufacturing as a technology has revolutionized manufacturing and design

as a whole. This technology has allowed designers to achieve a level of complexity

and customizability impossible to achieve using traditional manufacturing processes.

Mechanical structures can now reach a level of complexity surpassing even designer

imagination or capability. Once such classification of structures, mesoscale lattice

structures, are particularly complex and difficult to design, but provide unequalled

benefit for designers who desire structures with high strength-to-weight ratios. Al-

though several design approaches and algorithms have been developed to address

the design of mesoscale truss structures, all require some form of complex, multivari-

able optimization that is both time-consuming and stochastic. In previous research, a

novel approach, termed the “unit-cell” approach, to lattice design, was presented that

did not require massive topological optimization. The method that was developed

utilizing this approach, the SMS method, proved to be highly successful in gener-

ating topologies without optimization. However, the implementation of the method

resulted in some key research issues that must be addressed. These issues form the

three research questions of this thesis. These research questions will be discussed in

earnest in the following sections.

6.2 Research Questions and Hypotheses

In this thesis, three research question and hypothesis pairs were presented. Through-

out the various chapters of this thesis, the modified SMS method was tested and
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results were used to answer these research questions. In the following sections, the

research questions will be discussed one-by-one.

6.2.1 Research Question and Hypothesis 1

The first research question and hypothesis are repeated below:

Research Question 1: Can an optimization method for the design of

mesoscale truss structures be developed to determine strut diameters for topolo-

gies designed using the unit-cell approach?

Hypothesis 1: By utilizing the unit-cell approach and combining it with a con-

strained optimization of two diameter values: a minimum allowable diameter

and a maximum allowable diameter, against volume and stiffness constraints,

a systematic design method can be developed for the design of mesoscale truss

structures. By exploring various optimization approaches and selecting the

best method, design time can be minimized and structural performance can be

maximized.

In order to address this research question, a new SMS method was presented.

In particular, a sixth step was added to the method that deals solely in the deter-

mination of the two most critical diameter values in the truss structure: Dmin and

Dmax. In this sixth step, two optimization routines were used to determine Dmin

and Dmax, one utilizing a constrained minimization approach and one using a non-

linear, least-squares approach. For comparative purposes, a design space exploration

was also completed. This step was then utilized in three of design examples of vary-

ing complexity. For the three design examples, the optimization results were highly
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promising. Both optimizations were able to return the same optimal value, indicating

that both are equally capable of solving the design problem. Furthermore, both of

these optimizations were able to return results equal or better than the design explo-

ration. In terms of design time, the methods were able to return results consistently

faster. Therefore, based on these results, it appears that optimization is not only a

good alternative to a manual exploration of diameter values, but is preferred because

it is able to return more optimal results in less time. Therefore, the results of this

research confirm Hypothesis 1.

According to the results of this research, an optimization approach for diameter

determination is valid and preferred over a manual search of diameter values.

Between the two two-variable optimizations, results indicate that the least-

squares minimization is generally more accurate than constrained minimization.

However, the stiffness from the least-squares minimization are not significantly

better than those of the constrained minimization approach. Furthermore,

design time is significantly increased, usually by 20-30%, in order to attain

this slightly improved performance. Therefore, no obvious choice can be made

between which method is better for determining diameter values. Instead,

the designer must make a choice: whether to sacrifice design time for slightly

improved overall performance.

6.2.2 Research Question and Hypothesis 2

The second research question and hypothesis are listed below:

Research Question 2: Can the two-variable optimization proposed in Hy-

pothesis 1 be simplified in order to decrease analysis time?
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Hypothesis 2: By exploring and analyzing the optimal minimum and maxi-

mum diameter values for meso-scale truss structures designed using the Size,

Matching, and Scaling method, a direct relationship between these two values

can be determined and exploited. This relationship will allow for one of the

two diameter values to be expressed as a function of the other. Consequently,

the two-variable minimizations outlined in Hypothesis 1 can be simplified to a

one-variable minimization problem, thereby reducing overall design time.

In previous research, an assumption was discovered by Graf suggesting that a ratio

between Dmin and Dmax may exist. In particular, it was assumed that a Dmin/Dmax

ratio of 28% would result in the best possible stiffness values. However, this assump-

tion was not sufficiently tested and validated against optimization. In this research,

this 28% assumption was tested alongside the two-variable optimizations. Design

times and stiffness results were compared to test this assumption.

Results from the design examples show that this assumption is able to return

topology results much faster than either of the two-variable methods. Furthermore,

when using a combination of the original unit-cell library and the simpler design

examples (the 3-D cantilever and the 2-D simply-loaded beam), the results from the

one-variable optimization are equivalent to the two-variable optimizations. These

results explain why Graf made the 28% assumption originally. However, it is likely

that this correlation is purely coincidental as the one-variable optimization did not

return optimal results for the more complex example: the 3-D L-bracket.

When the new library is utilized, the diameter ratios are highly varied because

they depend heavily on the topology of the structure and the configurations that are

selected. Therefore, based on this observation, it would be unlikely that the Dmin

and Dmax values for configurations generated using the new library could ever be

expressed using a simple linear relationship, whether it be 28% or not.
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The design results from Examples 4 also reveal that a larger range of diameter

values may result in near-optimal results. For instance, for the five topology variations

presented, the Dmin/Dmax ratios returned by the constrained minimization and least-

squares minimization vary by roughly ±2%. However, stiffness result are very close

between the two results. This indicates that stiffness results do not change within

±2% of the optimal ratio. In summary, the results from this research invalidate

Hypothesis 2.

Diameter determination utilizing the one-variable approach is significantly

faster than the two-variable optimizations. However, stiffness results from both

the original unit-cell library and the modified library do not match the assumed

28% relationship between Dmin and Dmax. Furthermore, results from the new

library indicate that the Dmin/Dmax ratio varies widely with the topological

makeup of the truss structure. Therefore it is unlikely that a set Dmin/Dmax

ratio will ever exist between topologies generated using the SMS method.

6.2.3 Research Question and Hypothesis 3

Research Question 3: Will the expansion of the unit-cell library to include

additional unit-cell configurations improve the performance of structures de-

signed using the SMS method? If so, will the added benefit justify an increased

overall design time?
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Hypothesis 3: The addition of unit-cell configurations, such as the Cantley

and octet configurations, will provide the SMS method with more options for

the generation of the lattice topology. This, in turn, will allow for the placement

of unit-cell structures that are better-suited for specific loading conditions,

thereby improving structural stiffness. Although the design time will be slightly

increased for a larger library, this increased time will be outweighed but the

benefit conferred by improved structural performance.

The original SMS method contained only one entry in the library, the crossed

configuration. As a result, only this entry was selected for all topologies generated

using the SMS method. In this research, a new library was presented that included

an additional six configurations as well as a newly optimized version of the original

configuration. Along with this new library, a selection method was developed that

selected configurations for use based on performance criteria and manual weighting

values. By using the modified library along with the selection method, several differ-

ent topologies were generated and stiffness results were compared.

Results from both examples 3 and 4 show that only three of the seven configura-

tions in the unit-cell library are considered in selection due to their performance: the

diagonal configuration, the crossed configuration, and the paramount 1 configuration.

However, despite the selection of these configurations by the method, stiffness results

indicate that topologies generated solely using the crossed topology perform better.

This result is most evident when comparing the topology variations in the cantilever

and L-bracket examples. In general, the topologies with a larger relative ratio of

crossed configurations perform better. Furthermore, when design times are compared

for this example, overall design time is significantly reduced when the crossed config-

uration is utilized. Therefore, not only is performance better, but design time is as

well. Therefore, from the perspective of this research, Hypothesis 3 is invalidated:
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According to stiffness and design time results, the addition of six more unit-cell

entries to the unit-cell library is not justified. When other configurations be-

sides the crossed unit-cell are selected, both stiffness results worsen and design

times increase. Therefore, in the scope of this research, there appears to be no

added benefit when increasing the size unit-cell library.

This statement can only be made with the caveat that it is only true with the

given library and set of loading conditions. It is highly possible that the reason the

expanded unit-cell library was so ineffective in the generation of topologies is because

the library simply does not have enough configurations such that there is at least one

configuration that can compete with the original “crossed” configuration. By adding

more entries into this library, it is possible to improve the performance of the library.

Furthermore, the library was only tested using a fairly narrow set of design problems:

those that are statically loaded and those that only take into account axial and shear

loading. It is very possible that one of the configurations in the library could excel at

other design problem scenarios, such as fatigue, torsion, or compliant mechanisms.

Another possibility could be to reconsider entirely the way the unit-cell library is

generated and utilized. As results from the design examples indicate, the SMS method

appears to always prefer one type of optimal configuration. Given these results, it

could be beneficial to approach the concept of the unit-cell library in a different

manner. Rather than continually fill the library with more configurations, it may be

possible to create a single configuration that has its topology optimized purely for

each of the six stress conditions used in the unit-cell library. These six configurations

would then be the only configurations used in the unit-cell library. Such a task would

eliminate the need for the continual process of adding configurations to the unit-cell

library as well as the need for a selection heuristic.
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6.3 Future Work

Although several critical research issues have been addressed by this research, there

are still other technical and conceptual improvements that can be incorporated into

the SMS method. These improvements could potentially be research questions for

future research conducted for the SMS method.

6.3.1 Diameter Determination

There are some potential areas for improvement in the diameter determination step

of the SMS method. For instance, the benefit of one variable optimization has already

been shown to reduce design time drastically. Although a linear, direct correlation

between Dmin and Dmax has been disproved in this research, there may still be the

possibility of determining a higher order, nonlinear relationship between these two

values. It is believed that the ratio of Dmin and Dmax may be related to the type of

topology generated by the SMS method. Therefore, if a correlation could be found

based on this observation, then a one variable assumption could still be made.

A second area of improvement in diameter determination is to find a more robust

algorithm for unessential struts. The cutoff diameter concept utilized by Graf and in

this research is shown to work well in simpler examples, such as the cantilever beam

and 2-D simply-loaded beam. However, the use of the same cutoff diameter concept

does not work for the more complex L-bracket example. Instead, the opposite effect

occurs. This issue occurs because the cutoff diameter haphazardly removes important

struts that, although small, are still critical for the performance of the truss structure.

Therefore, it is important to improve the process for removing struts these unessential

struts. Such a process would likely require a more complex algorithm than the simple

removal of small diameters. Instead, a comparison must be made between struts and

their adjacent connections to determine their relative importance.
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6.3.2 Unit-Cell Library

In addition to improvements in the method itself, the unit-cell library and selection

method for unit-cells all have potential regions for improvement. Future work in the

unit-cell library can take one of two directions.

6.3.2.1 The Current Unit-Cell Library Formulation

The first direction is the expansion and modification of the unit-cell library as it is

currently formulated.

One particular region of improvement is in the selection method itself. The current

selection method was created based on empirical understanding of the performance of

the SMS method. Furthermore, this selection algorithm requires manual manipula-

tion of weighting values in order to determine lattice topology. In order to improve the

selection process for unit-cells, a more generalized and autonomous selection method

will be necessary. This selection method must not only take into account several fac-

tors, such as the stress distribution of the solid-body analysis, empirical performance,

and interactions between adjacent unit-cell regions. Another possibility is the idea of

implementing the ability for the configuration to “learn” what types of configurations

excel depending on the preferences of the designer.

A second region of improvement for the unit-cell library is the incorporation of

more unit-cells. Currently, the library contains seven entries. However, the inclusion

of more entries can potentially improve the topologies generated by the SMS method

or allow them to be catered for certain design criterion. Furthermore, an even larger

library could also change the answer to Research Question 3. It is possible that

Hypothesis 3 was invalidated simply because the right entries were not utilized. In

the future, if more entries are added to the library, then it is very possible that

some configurations would result in better selection and performance, thus validating

Hypothesis 3.
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Finally, future work may exist in the optimization of the current configurations. As

mentioned in Chapter 4, the optimization process in ANSYS did not return the best

results when only beam elements were used. For the crossed configuration, when truss

elements were used, the results were improved. This observation warrants further

research into the best type of finite-element necessary to ensure good optimization of

unit-cells. Also, current entries can potentially be further optimized to include higher

order stress or other loading scenarios, such as fatigue loading, torsion, or bending.

This could not only improve performance of configurations in the lattice, but could

also improve the selection and mapping process for unit-cells.

6.3.3 A New Unit-Cell Library Formulation

The second direction for possible improvement is a complete reformulation of the

unit-cell library, as discussed in the answer to Research Question 3. Rather than

start with a set number of configurations and optimize these configurations for the

six separate stress conditions, it may be possible to simply start with a generalized

ground structure and optimize that for those same six configurations. Therefore,

rather than having to select from many different configurations, each stress direction

will only have one, highly-optimized configuration, resulting in a library with only

six entries. All topologies would then be generated using these six configurations.

Such an alternative could vastly simplify the selection and mapping of unit-cells, thus

improving both performance and design time.

6.3.4 Base Lattice Generation

Ideally, the SMS method should be completely autonomous save for the initial spec-

ification of the design problem. However, the current implementation of the method

requires manual interfacing between the user and the method, particularly in the

generation of the base lattice. Currently, the base lattice is generated using a combi-

nation of manual, bezier-interpolated surfaces. Both the dimensions and positions of
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the regions are manually specified. However, the base lattice should ideally be gener-

ated autonomously and the unit-cell regions should be sized and placed automatically

in the structure. Unfortunately, the generation of this lattice is very similar to the

creation of a mapped mesh in finite-element analysis, which is inherently a complex

and time-consuming one. There is no simple or quick solution to this problem.

Another potential area of future work for the base lattice is the optimization of

the size and distribution of unit-cell regions. As mentioned in example problem 3

of Chapter 5, a cursory exploration of the 3-D cantilever problem revealed that the

performance of a structure designed using the SMS method is related to the size of its

unit-cell regions. Therefore, in order to further improve the performance of structures

designed using the SMS method, an area of future work could be the development of

an optimization routine to determine the size of unit-cell regions.

6.3.5 Other Improvements

Other areas of potential work in the SMS method include the addition of other design

concepts, such as stiffening skins that can surround the lattice structures. These

stiffening skins have been documented to improve the stiffness of lattice structures

and would be a critical feature in the development of the SMS method. Another area

of future work for the SMS method is the integration of the method into a CAD or

FEA system in order to provide ease of accessibility for designers.

6.4 Contributions

The research conducted in this thesis and the SMS method in general have significant

contributions in the design of truss structures.

6.4.1 Design with Minimal Optimization

The primary contribution of this method is the development of a systematic design

method for truss structures that does not require lengthy optimization of a large
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number of design variables. As a result, this method removes the primary concern for

designers in the use of mesoscale truss structures in design: design time. As a result,

the SMS method removes significant barrier for entry into the design of mesoscale

truss structures that designers would otherwise face using lengthy, multivariable op-

timization.

6.4.2 Starting Point for Topological Optimization

The SMS has largely been presented in the context of being a competing method

against topological optimization. However, such a mindset may not be correct, as it

may be possible to use the SMS method in conjunction with topological optimization

rather than in competition with it. In particular, the results from the SMS method

may be used as a good starting point for optimization in the ground structure ap-

proach to optimization. In most design cases, the SMS method will likely provide a

starting point much closer to the global optimum than a randomly generated lattice

or an identically sized lattice. Furthermore, if a better method for unessential strut

removal is developed, the topology for the SMS may already have struts removed

from the structure. This fewer number of struts can drastically reduce the overall

optimization time in topological optimization.

6.4.3 Testing Bed for New Lattice Configurations

The introduction of a new systematic method for inputting, optimization, and selec-

tion of unit-cell configurations will give designers the ability to implement and test

new configurations in an efficient manner. Rather simply generating an identically-

sized structure, designers can now create specialized lattices using their customized

lattice configurations. Utilizing the SMS method will allow these designers to delve

deeper into understanding the performance and characteristics of new unit-cell con-

figurations.
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6.5 Closure

In the long term, the goal of this research and subsequent work in this area is to

provide researchers and designers with a package of tools that can generate lattice

structures for use in the design process. The benefits of mesoscale truss structures are

numerous and, thanks to the advent of additive manufacturing, are within the grasp of

modern-era designers. With the SMS method method, designers and manufacturers

have taken another step to the utilizing of the full power of cellular structures. This

method, and others like it, will only help designers to improve and expand their

designs by opening up new and promising avenues of research. Although much future

work is still necessary in the SMS and the design of cellular structures, the potential

benefits are enormous. Continued research will not only test the limits of design

research, but will also change the way manufacturing and design are approached for

years to come.
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APPENDIX A

UNIT-CELL OPTIMIZATION EXAMPLE

Figure 63: Example of unit-cell optimization process, part 1.

Example of the unit-cell optimization process

Unit-cell configurations are optimized using the process outlined in Section 4.1 (p. 63-71). An 
example of this process is shown here. In particular, we will deal with the optimization of the 

“Cantley” unit-cell configuration for the τxy shear direction (see Fig. 23, p. 73).

(1) The process begins with the definition of the “starting,” or “default,” configuration. The 
default configuration for the Cantley configuration is shown below. See function, 

“getDefaultUnitCell.m” for definitions of all seven unit-cell configurations. 

162



Figure 64: Example of unit-cell optimization process, part 2.

Example of the unit-cell optimization process

(2) Next, boundary conditions are applied to the configuration from (1). There are a total of 
six sets of boundary conditions that can be applied to the configuration; each set of 

boundary conditions represents one of the six stress directions used in the SMS method, σxx,
σyy, σzz, τxy, τxz, τyz. Furthermore, each of the six sets of boundary conditions has multiple, 

individual loading conditions. For instance, there exist four separate cases that fall into the τxy
boundary condition: τxy, -τxy, τyx, -τyx. All four of these conditions must be applied to the 

configuration and optimized. The results of these four optimizations will then be combined 
to form the final structure in Step (4). Below, the Cantley configuration is applied with the 

four loading conditions representing the τxy stress. See the script,  “step3a_optimizeXY.m” in 
the “Unit Cell Optimization” folder and the function, “getUnitCellLoads.m” for more details.

Figure 65: Example of unit-cell optimization process, part 3.

Example of the unit-cell optimization process

(3) After the boundary conditions are applied, the configuration can be optimized. Here, the 
strut diameters are optimized to minimize volume while maintaining a strain energy constraint 

of -.5 mJ. Optimizations are performed in the ANSYS software package. The ANSYS code for 
optimization is written in MATLAB in APDL format. Then, ANSYS is run in batch mode via 

MATLAB. After optimization is complete, results are automatically taken from ANSYS back into 
MATLAB. Therefore, the user should never have to manually interface with ANSYS. See 

“writeAPDLOPT_Seobj.m” function and “step3a_optimizeXY.m” script for more details. The 
figures below show the four completed optimizations for the Cantley configuration for τxy. 
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Figure 66: Example of unit-cell optimization process, part 4.

Example of the unit-cell optimization process

(4) After optimization is complete for every loading condition in the set, the configurations 
are combined to form the final configuration. This process is completed by simply comparing 

all the configurations and retaining the largest diameter value existing between them. An 
example of this process for the Cantley is shown below.
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Figure 67: Example of unit-cell optimization process, part 5.

Example of the unit-cell optimization process

(5) In the final step, the diameter values of the configuration are normalized against the largest 
diameter value present in all seven optimized configurations for the τxy stress condition. In this 
case, the largest diameter value present in all the configurations just so happens to be within 
the Cantley configuration (1.38). The diameters are normalized to this value, as shown below.  

The completed configuration can then be stored in the unit-cell library. See the 
“UCLIBRARY_UNNORM_COMPILED.txt” and “UCLIBRARY_NORM.txt” files for the diameter 

values of all the configurations before and after normalization. See the 
“step6_NormalizeUCLibrary.m” script for the normalization process.
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Figure 68: Example of unit-cell optimization process, part 6.

Notes

If desired, a cutoff diameter can be implemented in the unit-cell library to remove struts 
from the unit-cell library below a certain value. This can be accomplished using the 

“step5_RemoveCutoffs.m” script. If no cutoff is required, then a cutoff of 0 should be used.

For more information on the optimization of unit-cell configurations, consult the 
“Procedure.txt” file in the “Unit-Cell Optimization” folder.
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APPENDIX B

SELECTION EQUATION EXAMPLE

Figure 69: Example of use of the rating equation, part 1.

Example of use of the selection equation

Configurations are selected for the SMS method using the rating equation:

r = Wv*(ΣVσ) + Wvn *(Vnet)+ Wp*(P)

An example of use of the rating equation is provided here. For the cantilever beam problem 
(Example 3), the focus will be the unit-cell region in the top, left corner. The following 
numerical values are the actual values calculated in MATLAB. Each value in the rating 
equation will be addressed individually and combined to form the overall rating. In 

particular, we will calculate the rating value of the “crossed” configuration for the region in 
question.
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Figure 70: Example of use of the rating equation, part 2.

(a) Average stress values are taken for each of 
the six primary stress directions (σxx, σyy, σzz,

τxy, τxz , τyz) and normalized.

(b) Diameter values for each of the six variants 
(xx, yy, zz, xy, xz, yz) are taken from the unit-cell 

library. These values are already normalized.

(c) Volumes are calculated for each of the variants by multiplying the normalized stress values 
from (a), labeled “w”, with the diameter values from (b), labeled “d”, and then calculating the 
volume of each strut as a cylinder. Then, all the volumes are summed to find the net volume:

(1) Calculation of “ΣVσ”

Vxx = Σ(wxx * π * dxx
2/4) = 0.1267

Similarly, Vyy = 0.1240, Vzz = 0.1134, Vxy  = 0.6943, Vyz = 0.6961, Vxz = 0.6933
ΣVσ = Vxx + Vyy + Vzz + Vxy + Vyz + Vxz  = 2.4478

Figure 71: Example of use of the rating equation, part 3.

(d) The net volume is simply calculated by combining all the variants and removing overlapping 
struts. Then, the net volume is calculated by summing the volumes of each remaining strut as 

cylinder (see “mapUnitCells2Region2.m” function). 

(f) Weighting values are manually set in order to vary the importance of the three 
attributes.

(e) Pxx, Pyy, Pzz, Pxy, Pxz, Pyz are directly found using the Performance Table. ΣP is the sum of all 
these values. For the crossed configuration:

Vnet = 0.1386

Wv = 1, Wvn = 1, Wp = 1

(2) Calculation of “Vnet” and “ΣP”

Pxx = 0.0745, Pyy = 0.0693, Pzz = 0.0375, Pxy = 0.0810, Pyz = 0.0747, Pxz = 0.0752
ΣP = Pxx + Pyy + Pzz + Pxy + Pyz + Pxz = 0.4122
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Figure 72: Example of use of the rating equation, part 4.

(g) With the individual volumes (ΣVσ ), the net volume (Vnet), and the performance value (ΣP) 
known, the rating values of the configuration can be calculated for the region.

(h) For the unit-cell region, a rating is calculated for each of the seven configurations:

(i) The configurations with the lowest rating is selected and mapped to the region. Mapping is 
completed by first adding extra nodes to the region using linear interpolation. Once this step is 
completed, struts can be mapped very easily to the structure (see “mapUnitCells2Region2.m” 

function). Varying the weighting values will change the type of configuration selected.

r(selected) = min(r) = diagonal configuration

(3) Ratings Calculation

r(crossed) = (1*0.1386) + (1*0.4122) + (1*2.4478) = 2.9986

r(crossed) = 2.9986
r(Cantley) = 5.8787

r(octet) = 7.3686
r(paramount 1) = 4.4428 
r(paramount 2) = 9.1128

r(diagonal) = 2.7069
r(midpoint) = 6.8149

168



APPENDIX C

INDIVIDUAL OPTIMIZATIONS TRIALS FOR THE 2-D

SIMPLY-LOADED BEAM

Table 37: Individual trial results using the 28% assumption for the 2-D simply-

loaded beam.

2-D Simply Loaded Beam 
 

28% method 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0103 0.0369 0.0110 28 0.0119  0.0201 18.9443 

2 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0497 

3 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9480 

4 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.8847 

5 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0583 

 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9770 

 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0263 

2 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.2485 

3 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0892 

4 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 40.5302 

5 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.1614 

 0.0100 0.0378 0.0107 26.43 0.0119  0.0201 39.4111 

 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 110.7300 

2 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.7138 

3 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.4543 

4 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 106.6233 

5 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.1423 

 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.1327 

 

 28% Assumption Constrained Optimization Least-Squares Minimization 

Deflection (m) 0.0119 0.0119 0.0119 

Volume (m
2
)  0.0201 0.0201 0.0201 

Design Time (s) 18.9770 39.4111 107.1327 

Dmin  (m) 0.0103 0.0100 0.0100 

Dmax (m) 0.0369 0.0378 0.0378 

Dcutoff (m) 0.0110 0.0107 0.0107 

Dmin/Dmax 28.00 26.43 26.45 

 

Table 38: Individual trial results using constrained minimization for the 2-D simply-

loaded beam.

2-D Simply Loaded Beam 
 

28% method 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0103 0.0369 0.0110 28 0.0119  0.0201 18.9443 

2 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0497 

3 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9480 

4 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.8847 

5 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0583 

 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9770 

 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0263 

2 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.2485 

3 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0892 

4 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 40.5302 

5 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.1614 

 0.0100 0.0378 0.0107 26.43 0.0119  0.0201 39.4111 

 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 110.7300 

2 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.7138 

3 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.4543 

4 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 106.6233 

5 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.1423 

 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.1327 

 

 28% Assumption Constrained Optimization Least-Squares Minimization 

Deflection (m) 0.0119 0.0119 0.0119 

Volume (m
2
)  0.0201 0.0201 0.0201 

Design Time (s) 18.9770 39.4111 107.1327 

Dmin  (m) 0.0103 0.0100 0.0100 

Dmax (m) 0.0369 0.0378 0.0378 

Dcutoff (m) 0.0110 0.0107 0.0107 

Dmin/Dmax 28.00 26.43 26.45 

 

Table 39: Individual trial results using least-squares minimization for the 2-D

simply-loaded beam.

2-D Simply Loaded Beam 
 

28% method 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0103 0.0369 0.0110 28 0.0119  0.0201 18.9443 

2 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0497 

3 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9480 

4 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.8847 

5 0.0103 0.0369 0.0110 28 0.0119 0.0201 19.0583 

 0.0103 0.0369 0.0110 28 0.0119 0.0201 18.9770 

 

Run Dmin 

(m) 

Dmax 

(m) 

Dcutoff 

(m) 

Dmin/Dmax Deflection 

(m) 

Volume 

(m
2
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0263 

2 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.2485 

3 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.0892 

4 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 40.5302 

5 0.0100 0.0378 0.0107 26.43 0.0119 0.0201 39.1614 

 0.0100 0.0378 0.0107 26.43 0.0119  0.0201 39.4111 

 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 110.7300 

2 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.7138 

3 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.4543 

4 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 106.6233 

5 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 105.1423 

 0.0100 0.0378 0.0107 26.45 0.0119 0.0201 107.1327 

 

 28% Assumption Constrained Optimization Least-Squares Minimization 

Deflection (m) 0.0119 0.0119 0.0119 

Volume (m
2
)  0.0201 0.0201 0.0201 

Design Time (s) 18.9770 39.4111 107.1327 

Dmin  (m) 0.0103 0.0100 0.0100 

Dmax (m) 0.0369 0.0378 0.0378 

Dcutoff (m) 0.0110 0.0107 0.0107 

Dmin/Dmax 28.00 26.43 26.45 
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APPENDIX D

INDIVIDUAL OPTIMIZATIONS TRIALS FOR THE 3-D

CANTILEVER BEAM

D.1 Old Library

Table 40: Individual trial results using the 28% assumption and the original library

for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

  

Table 41: Individual trial results using constrained minimization and the original

library for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 
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Table 42: Individual trial results using least-squares minimization and the original

library for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

  

D.2 Selection Variant 1 - 10 Crossed Configurations

Table 43: Individual trial results using the 28% assumption and selection variant 1

for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

  

Table 44: Individual trial results using constrained minimization and selection vari-

ant 1 for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 
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Table 45: Individual trial results using least-squares minimization and selection

variant 1 for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

  

D.3 Selection Variant 2 - 8 Crossed, 2 Diagonal Configu-
rations

Table 46: Individual trial results using the 28% assumption and selection variant 2

for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

  

Table 47: Individual trial results using constrained minimization and selection vari-

ant 2 for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 
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Table 48: Individual trial results using least-squares minimization and selection

variant 2 for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

  

D.4 Selection Variant 3 - 10 Diagonal Configurations

Table 49: Individual trial results using the 28% assumption and selection variant 3

for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 

  

Table 50: Individual trial results using constrained minimization and selection vari-

ant 3 for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 
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Table 51: Individual trial results using least-squares minimization and selection

variant 3 for the cantilever beam.

Old Library 

28% 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6967 2.4884 0.7415 28 0.5724 1600 2.7358 

2 0.6967 2.4884 0.7415 28 0.5724 1600 2.7565 

3 0.6967 2.4884 0.7415 28 0.5724 1600 2.7617 

4 0.6967 2.4884 0.7415 28 0.5724 1600 2.6376 

5 0.6967 2.4884 0.7415 28 0.5724 1600 2.7704 

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.2625 

2 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.9841 

3 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.9210 

4 0.6864 2.5073 0.7319 0.2738 0.5723 1600 22.4093 

5 0.6864 2.5073 0.7319 0.2738 0.5723 1600 20.3646 

 0.6864 2.5073 0.7319 0.2738 0.5723 1600 21.3883 

LM 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
2
) 

Design Time 

(s) 

1 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6796 

2 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.3704 

3 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6098 

4 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6256 

5 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.9440 

 0.6860 2.5080 0.7316 0.2735 0.5723 1600 17.6459 
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APPENDIX E

INDIVIDUAL OPTIMIZATIONS TRIALS FOR THE 3-D

L-BRACKET

E.1 Old Library

Table 52: Individual trial results using the 28% assumption and the original library

for the L-bracket.

3-D L-Bracket – OLD LIBRARY 

28% - old library 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.4462 2.7663 0.5042 16.13 0.2869 10001 267.6296 

2        

3        

4        

5        

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

28% - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.4872 1.7399 N/A 28 0.2685 10000 256.4006 

2 0.4872 1.7399 N/A 28 0.2685 10000 249.0863 

3 0.4872 1.7399 N/A 28 0.2685 10000 247.0695 

4 0.4872 1.7399 N/A 28 0.2685 10000 256.8973 

5 0.4872 1.7399 N/A 28 0.2685 10000 246.4932 

 0.4872 1.7399 N/A 28 0.2685 10000 251.1894 

As- old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.1695 3.5878 N/A 4.72 0.2358 10000 812.0288 

2 0.1695 3.5878 N/A 4.72 0.2358 10000 806.6286 

3 0.1695 3.5878 N/A 4.72 0.2358 10000 816.8155 

4 0.1695 3.5878 N/A 4.72 0.2358 10000 826.5960 

5 0.1695 3.5878 N/A 4.72 0.2358 10000 820.2335 

 0.1695 3.5878 N/A 4.72 0.2358 10000 816.4605 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3000 2.9844 N/A 10.05 0.2179 10000 1102.5 

2 0.3000 2.9844 N/A 10.05 0.2179 10000 1106.4 

3 0.3000 2.9844 N/A 10.05 0.2179 10000 1113.3 

4 0.3000 2.9844 N/A 10.05 0.2179 10000 1102.9 

5 0.3000 2.9844 N/A 10.05 0.2179 10000 1101.6 

 0.3000 2.9844 N/A 10.05 0.2179 10000 1105.3 

 

Table 53: Individual trial results using constrained minimization and the original

library for the L-bracket.

3-D L-Bracket – OLD LIBRARY 

28% - old library 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.4462 2.7663 0.5042 16.13 0.2869 10001 267.6296 

2        

3        

4        

5        

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

28% - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.4872 1.7399 N/A 28 0.2685 10000 256.4006 

2 0.4872 1.7399 N/A 28 0.2685 10000 249.0863 

3 0.4872 1.7399 N/A 28 0.2685 10000 247.0695 

4 0.4872 1.7399 N/A 28 0.2685 10000 256.8973 

5 0.4872 1.7399 N/A 28 0.2685 10000 246.4932 

 0.4872 1.7399 N/A 28 0.2685 10000 251.1894 

As- old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.1695 3.5878 N/A 4.72 0.2358 10000 812.0288 

2 0.1695 3.5878 N/A 4.72 0.2358 10000 806.6286 

3 0.1695 3.5878 N/A 4.72 0.2358 10000 816.8155 

4 0.1695 3.5878 N/A 4.72 0.2358 10000 826.5960 

5 0.1695 3.5878 N/A 4.72 0.2358 10000 820.2335 

 0.1695 3.5878 N/A 4.72 0.2358 10000 816.4605 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3000 2.9844 N/A 10.05 0.2179 10000 1102.5 

2 0.3000 2.9844 N/A 10.05 0.2179 10000 1106.4 

3 0.3000 2.9844 N/A 10.05 0.2179 10000 1113.3 

4 0.3000 2.9844 N/A 10.05 0.2179 10000 1102.9 

5 0.3000 2.9844 N/A 10.05 0.2179 10000 1101.6 

 0.3000 2.9844 N/A 10.05 0.2179 10000 1105.3 
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Table 54: Individual trial results using least-squares minimization and the original

library for the L-bracket.

3-D L-Bracket – OLD LIBRARY 

28% - old library 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.4462 2.7663 0.5042 16.13 0.2869 10001 267.6296 

2        

3        

4        

5        

 0.6967 2.4884 0.7415 28 0.5724 1600 2.7572 

28% - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.4872 1.7399 N/A 28 0.2685 10000 256.4006 

2 0.4872 1.7399 N/A 28 0.2685 10000 249.0863 

3 0.4872 1.7399 N/A 28 0.2685 10000 247.0695 

4 0.4872 1.7399 N/A 28 0.2685 10000 256.8973 

5 0.4872 1.7399 N/A 28 0.2685 10000 246.4932 

 0.4872 1.7399 N/A 28 0.2685 10000 251.1894 

As- old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.1695 3.5878 N/A 4.72 0.2358 10000 812.0288 

2 0.1695 3.5878 N/A 4.72 0.2358 10000 806.6286 

3 0.1695 3.5878 N/A 4.72 0.2358 10000 816.8155 

4 0.1695 3.5878 N/A 4.72 0.2358 10000 826.5960 

5 0.1695 3.5878 N/A 4.72 0.2358 10000 820.2335 

 0.1695 3.5878 N/A 4.72 0.2358 10000 816.4605 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3000 2.9844 N/A 10.05 0.2179 10000 1102.5 

2 0.3000 2.9844 N/A 10.05 0.2179 10000 1106.4 

3 0.3000 2.9844 N/A 10.05 0.2179 10000 1113.3 

4 0.3000 2.9844 N/A 10.05 0.2179 10000 1102.9 

5 0.3000 2.9844 N/A 10.05 0.2179 10000 1101.6 

 0.3000 2.9844 N/A 10.05 0.2179 10000 1105.3 

 

E.2 Selection Variant 1 - 203 Diagonal Configurations

Table 55: Individual trial results using the 28% assumption and selection variant 1

for the L-bracket.

0-0-203 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.6123 2.1868 N/A 28 0.3132 9955 567.71 

2 0.6123 2.1868 N/A 28 0.3132 9955 555.38 

3 0.6123 2.1868 N/A 28 0.3132 9955 563.17 

4 0.6123 2.1868 N/A 28 0.3132 9955 566.93 

5 0.6123 2.1868 N/A 28 0.3132 9955 559.74 

 0.6123 2.1868 N/A 28 0.3132 9955 562.59 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3708 5.0094 N/A 7.40 0.2485 10000 1288.1 

2 0.3708 5.0094 N/A 7.40 0.2485 10000 1287.8 

3 0.3708 5.0094 N/A 7.40 0.2485 10000 1294.9 

4 0.3708 5.0094 N/A 7.40 0.2485 10000 1295.4 

5 0.3708 5.0094 N/A 7.40 0.2485 10000 1367.2 

 0.3708 5.0094 N/A 7.40 0.2485 10000 1306.7 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3954 4.7664 N/A 8.30 0.2476 10000 1642.8 

2 0.3954 4.7664 N/A 8.30 0.2476 10000 1691.4 

3 0.3954 4.7664 N/A 8.30 0.2476 10000 1703.7 

4 0.3954 4.7664 N/A 8.30 0.2476 10000 1685.5 

5 0.3954 4.7664 N/A 8.30 0.2476 10000 1643.5 

 0.3954 4.7664 N/A 8.30 0.2476 10000 1673.4 

 

  

Table 56: Individual trial results using constrained minimization and selection vari-

ant 1 for the L-bracket.

0-0-203 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.6123 2.1868 N/A 28 0.3132 9955 567.71 

2 0.6123 2.1868 N/A 28 0.3132 9955 555.38 

3 0.6123 2.1868 N/A 28 0.3132 9955 563.17 

4 0.6123 2.1868 N/A 28 0.3132 9955 566.93 

5 0.6123 2.1868 N/A 28 0.3132 9955 559.74 

 0.6123 2.1868 N/A 28 0.3132 9955 562.59 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3708 5.0094 N/A 7.40 0.2485 10000 1288.1 

2 0.3708 5.0094 N/A 7.40 0.2485 10000 1287.8 

3 0.3708 5.0094 N/A 7.40 0.2485 10000 1294.9 

4 0.3708 5.0094 N/A 7.40 0.2485 10000 1295.4 

5 0.3708 5.0094 N/A 7.40 0.2485 10000 1367.2 

 0.3708 5.0094 N/A 7.40 0.2485 10000 1306.7 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3954 4.7664 N/A 8.30 0.2476 10000 1642.8 

2 0.3954 4.7664 N/A 8.30 0.2476 10000 1691.4 

3 0.3954 4.7664 N/A 8.30 0.2476 10000 1703.7 

4 0.3954 4.7664 N/A 8.30 0.2476 10000 1685.5 

5 0.3954 4.7664 N/A 8.30 0.2476 10000 1643.5 

 0.3954 4.7664 N/A 8.30 0.2476 10000 1673.4 
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Table 57: Individual trial results using least-squares minimization and selection

variant 1 for the L-bracket.

0-0-203 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.6123 2.1868 N/A 28 0.3132 9955 567.71 

2 0.6123 2.1868 N/A 28 0.3132 9955 555.38 

3 0.6123 2.1868 N/A 28 0.3132 9955 563.17 

4 0.6123 2.1868 N/A 28 0.3132 9955 566.93 

5 0.6123 2.1868 N/A 28 0.3132 9955 559.74 

 0.6123 2.1868 N/A 28 0.3132 9955 562.59 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3708 5.0094 N/A 7.40 0.2485 10000 1288.1 

2 0.3708 5.0094 N/A 7.40 0.2485 10000 1287.8 

3 0.3708 5.0094 N/A 7.40 0.2485 10000 1294.9 

4 0.3708 5.0094 N/A 7.40 0.2485 10000 1295.4 

5 0.3708 5.0094 N/A 7.40 0.2485 10000 1367.2 

 0.3708 5.0094 N/A 7.40 0.2485 10000 1306.7 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3954 4.7664 N/A 8.30 0.2476 10000 1642.8 

2 0.3954 4.7664 N/A 8.30 0.2476 10000 1691.4 

3 0.3954 4.7664 N/A 8.30 0.2476 10000 1703.7 

4 0.3954 4.7664 N/A 8.30 0.2476 10000 1685.5 

5 0.3954 4.7664 N/A 8.30 0.2476 10000 1643.5 

 0.3954 4.7664 N/A 8.30 0.2476 10000 1673.4 

 

  E.3 Selection Variant 2 - 17 Crossed, 6 Paramount 1, 180
Diagonal Configurations

Table 58: Individual trial results using the 28% assumption and selection variant 2

for the L-bracket.

17-6-180 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5990 2.1393 N/A 28 0.3199 9963 548.65 

2 0.5990 2.1393 N/A 28 0.3199 9963 571.02 

3 0.5990 2.1393 N/A 28 0.3199 9963 574.76 

4 0.5990 2.1393 N/A 28 0.3199 9963 572.89 

5 0.5990 2.1393 N/A 28 0.3199 9963 590.26 

 0.5990 2.1393 N/A 28 0.3199 9963 571.52 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3497 5.1551 N/A 6.78 0.2531 9991 1151.1 

2 0.3497 5.1551 N/A 6.78 0.2531 9991 1195.7 

3 0.3497 5.1551 N/A 6.78 0.2531 9991 1423.2 

4 0.3497 5.1551 N/A 6.78 0.2531 9991 1088.4 

5 0.3497 5.1551 N/A 6.78 0.2531 9991 1091.8 

 0.3497 5.1551 N/A 6.78 0.2531 9991 1190.0 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3884 4.7662 N/A 8.15 0.2509 10002 1512.2 

2 0.3884 4.7662 N/A 8.15 0.2509 10002 1555.3 

3 0.3884 4.7662 N/A 8.15 0.2509 10002 1540.0 

4 0.3884 4.7662 N/A 8.15 0.2509 10002 1553.9 

5 0.3884 4.7662 N/A 8.15 0.2509 10002 1520.3 

 0.3884 4.7662 N/A 8.15 0.2509 10002 1536.3 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3199 0.2531 0.2509 

Volume (m
2
) 9963 9991 10002 

Design Time (s) 571.52 1190.0 1536.3 

Dmin  (m) 0.5990 0.3497 0.3884 

Dmax (m) 2.1393 5.1551 4.7662 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 6.78 8.15 

 

  

Table 59: Individual trial results using constrained minimization and selection vari-

ant 2 for the L-bracket.

17-6-180 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5990 2.1393 N/A 28 0.3199 9963 548.65 

2 0.5990 2.1393 N/A 28 0.3199 9963 571.02 

3 0.5990 2.1393 N/A 28 0.3199 9963 574.76 

4 0.5990 2.1393 N/A 28 0.3199 9963 572.89 

5 0.5990 2.1393 N/A 28 0.3199 9963 590.26 

 0.5990 2.1393 N/A 28 0.3199 9963 571.52 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3497 5.1551 N/A 6.78 0.2531 9991 1151.1 

2 0.3497 5.1551 N/A 6.78 0.2531 9991 1195.7 

3 0.3497 5.1551 N/A 6.78 0.2531 9991 1423.2 

4 0.3497 5.1551 N/A 6.78 0.2531 9991 1088.4 

5 0.3497 5.1551 N/A 6.78 0.2531 9991 1091.8 

 0.3497 5.1551 N/A 6.78 0.2531 9991 1190.0 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3884 4.7662 N/A 8.15 0.2509 10002 1512.2 

2 0.3884 4.7662 N/A 8.15 0.2509 10002 1555.3 

3 0.3884 4.7662 N/A 8.15 0.2509 10002 1540.0 

4 0.3884 4.7662 N/A 8.15 0.2509 10002 1553.9 

5 0.3884 4.7662 N/A 8.15 0.2509 10002 1520.3 

 0.3884 4.7662 N/A 8.15 0.2509 10002 1536.3 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3199 0.2531 0.2509 

Volume (m
2
) 9963 9991 10002 

Design Time (s) 571.52 1190.0 1536.3 

Dmin  (m) 0.5990 0.3497 0.3884 

Dmax (m) 2.1393 5.1551 4.7662 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 6.78 8.15 
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Table 60: Individual trial results using least-squares minimization and selection

variant 2 for the L-bracket.

17-6-180 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5990 2.1393 N/A 28 0.3199 9963 548.65 

2 0.5990 2.1393 N/A 28 0.3199 9963 571.02 

3 0.5990 2.1393 N/A 28 0.3199 9963 574.76 

4 0.5990 2.1393 N/A 28 0.3199 9963 572.89 

5 0.5990 2.1393 N/A 28 0.3199 9963 590.26 

 0.5990 2.1393 N/A 28 0.3199 9963 571.52 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3497 5.1551 N/A 6.78 0.2531 9991 1151.1 

2 0.3497 5.1551 N/A 6.78 0.2531 9991 1195.7 

3 0.3497 5.1551 N/A 6.78 0.2531 9991 1423.2 

4 0.3497 5.1551 N/A 6.78 0.2531 9991 1088.4 

5 0.3497 5.1551 N/A 6.78 0.2531 9991 1091.8 

 0.3497 5.1551 N/A 6.78 0.2531 9991 1190.0 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3884 4.7662 N/A 8.15 0.2509 10002 1512.2 

2 0.3884 4.7662 N/A 8.15 0.2509 10002 1555.3 

3 0.3884 4.7662 N/A 8.15 0.2509 10002 1540.0 

4 0.3884 4.7662 N/A 8.15 0.2509 10002 1553.9 

5 0.3884 4.7662 N/A 8.15 0.2509 10002 1520.3 

 0.3884 4.7662 N/A 8.15 0.2509 10002 1536.3 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3199 0.2531 0.2509 

Volume (m
2
) 9963 9991 10002 

Design Time (s) 571.52 1190.0 1536.3 

Dmin  (m) 0.5990 0.3497 0.3884 

Dmax (m) 2.1393 5.1551 4.7662 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 6.78 8.15 

 

  

E.4 Selection Variant 3 - 125 Crossed, 78 Diagonal Con-
figurations

Table 61: Individual trial results using the 28% assumption and selection variant 3

for the L-bracket.

125-0-78 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5488 1.9599 N/A 28 0.3149 10032 407.48 

2 0.5488 1.9599 N/A 28 0.3149 10032 413.93 

3 0.5488 1.9599 N/A 28 0.3149 10032 382.27 

4 0.5488 1.9599 N/A 28 0.3149 10032 395.72 

5 0.5488 1.9599 N/A 28 0.3149 10032 385.06 

 0.5488 1.9599 N/A 28 0.3149 10032 396.89 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2208 5.8401 N/A 3.78 0.2369 9996 880.90 

2 0.2208 5.8401 N/A 3.78 0.2369 9996 879.46 

3 0.2208 5.8401 N/A 3.78 0.2369 9996 899.07 

4 0.2208 5.8401 N/A 3.78 0.2369 9996 927.57 

5 0.2208 5.8401 N/A 3.78 0.2369 9996 928.28 

 0.2208 5.8401 N/A 3.78 0.2369 9996 903.06 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3131 4.9706 N/A 6.30 0.2301 10002 1167.7 

2 0.3131 4.9706 N/A 6.30 0.2301 10002 1182.4 

3 0.3131 4.9706 N/A 6.30 0.2301 10002 1413.6 

4 0.3131 4.9706 N/A 6.30 0.2301 10002 1426.6 

5 0.3131 4.9706 N/A 6.30 0.2301 10002 1240.3 

 0.3131 4.9706 N/A 6.30 0.2301 10002 1286.1 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3149 0.2369 0.2301 

Volume (m
2
) 10032 9996 10002 

Design Time (s) 396.89 903.06 1286.1 

Dmin  (m) 0.5488 0.2208 0.3131 

Dmax (m) 1.9599 5.8401 4.9706 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.78 6.30 

 

  

Table 62: Individual trial results using constrained minimization and selection vari-

ant 3 for the L-bracket.

125-0-78 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5488 1.9599 N/A 28 0.3149 10032 407.48 

2 0.5488 1.9599 N/A 28 0.3149 10032 413.93 

3 0.5488 1.9599 N/A 28 0.3149 10032 382.27 

4 0.5488 1.9599 N/A 28 0.3149 10032 395.72 

5 0.5488 1.9599 N/A 28 0.3149 10032 385.06 

 0.5488 1.9599 N/A 28 0.3149 10032 396.89 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2208 5.8401 N/A 3.78 0.2369 9996 880.90 

2 0.2208 5.8401 N/A 3.78 0.2369 9996 879.46 

3 0.2208 5.8401 N/A 3.78 0.2369 9996 899.07 

4 0.2208 5.8401 N/A 3.78 0.2369 9996 927.57 

5 0.2208 5.8401 N/A 3.78 0.2369 9996 928.28 

 0.2208 5.8401 N/A 3.78 0.2369 9996 903.06 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3131 4.9706 N/A 6.30 0.2301 10002 1167.7 

2 0.3131 4.9706 N/A 6.30 0.2301 10002 1182.4 

3 0.3131 4.9706 N/A 6.30 0.2301 10002 1413.6 

4 0.3131 4.9706 N/A 6.30 0.2301 10002 1426.6 

5 0.3131 4.9706 N/A 6.30 0.2301 10002 1240.3 

 0.3131 4.9706 N/A 6.30 0.2301 10002 1286.1 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3149 0.2369 0.2301 

Volume (m
2
) 10032 9996 10002 

Design Time (s) 396.89 903.06 1286.1 

Dmin  (m) 0.5488 0.2208 0.3131 

Dmax (m) 1.9599 5.8401 4.9706 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.78 6.30 
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Table 63: Individual trial results using least-squares minimization and selection

variant 3 for the L-bracket.

125-0-78 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5488 1.9599 N/A 28 0.3149 10032 407.48 

2 0.5488 1.9599 N/A 28 0.3149 10032 413.93 

3 0.5488 1.9599 N/A 28 0.3149 10032 382.27 

4 0.5488 1.9599 N/A 28 0.3149 10032 395.72 

5 0.5488 1.9599 N/A 28 0.3149 10032 385.06 

 0.5488 1.9599 N/A 28 0.3149 10032 396.89 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2208 5.8401 N/A 3.78 0.2369 9996 880.90 

2 0.2208 5.8401 N/A 3.78 0.2369 9996 879.46 

3 0.2208 5.8401 N/A 3.78 0.2369 9996 899.07 

4 0.2208 5.8401 N/A 3.78 0.2369 9996 927.57 

5 0.2208 5.8401 N/A 3.78 0.2369 9996 928.28 

 0.2208 5.8401 N/A 3.78 0.2369 9996 903.06 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.3131 4.9706 N/A 6.30 0.2301 10002 1167.7 

2 0.3131 4.9706 N/A 6.30 0.2301 10002 1182.4 

3 0.3131 4.9706 N/A 6.30 0.2301 10002 1413.6 

4 0.3131 4.9706 N/A 6.30 0.2301 10002 1426.6 

5 0.3131 4.9706 N/A 6.30 0.2301 10002 1240.3 

 0.3131 4.9706 N/A 6.30 0.2301 10002 1286.1 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3149 0.2369 0.2301 

Volume (m
2
) 10032 9996 10002 

Design Time (s) 396.89 903.06 1286.1 

Dmin  (m) 0.5488 0.2208 0.3131 

Dmax (m) 1.9599 5.8401 4.9706 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.78 6.30 

 

  

E.5 Selection Variant 4 - 202 Crossed, 1 Diagonal Config-
urations

Table 64: Individual trial results using the 28% assumption and selection variant 4

for the L-bracket.

202-0-1 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5303 1.8940 N/A 28 0.3234 10046 327.63 

2 0.5303 1.8940 N/A 28 0.3234 10046 325.22 

3 0.5303 1.8940 N/A 28 0.3234 10046 356.46 

4 0.5303 1.8940 N/A 28 0.3234 10046 355.10 

5 0.5303 1.8940 N/A 28 0.3234 10046 321.25 

 0.5303 1.8940 N/A 28 0.3234 10046 337.13 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2036 5.8644 N/A 3.47 0.2154 10002 673.60 

2 0.2036 5.8644 N/A 3.47 0.2154 10002 662.24 

3 0.2036 5.8644 N/A 3.47 0.2154 10002 662.94 

4 0.2036 5.8644 N/A 3.47 0.2154 10002 668.74 

5 0.2036 5.8644 N/A 3.47 0.2154 10002 669.30 

 0.2036 5.8644 N/A 3.47 0.2154 10002 667.36 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2612 5.3264 N/A 4.90 0.2125 10002 829.71 

2 0.2612 5.3264 N/A 4.90 0.2125 10002 837.26 

3 0.2612 5.3264 N/A 4.90 0.2125 10002 813.67 

4 0.2612 5.3264 N/A 4.90 0.2125 10002 806.29 

5 0.2612 5.3264 N/A 4.90 0.2125 10002 811.21 

 0.2612 5.3264 N/A 4.90 0.2125 10002 819.63 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3234 0.2154 0.2125 

Volume (m
2
) 10046 10002 10002 

Design Time (s) 337.13 667.36 819.63 

Dmin  (m) 0.5303 0.2036 0.2612 

Dmax (m) 1.8940 5.8644 5.3264 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.47 4.90 

 

  

Table 65: Individual trial results using constrained minimization and selection vari-

ant 4 for the L-bracket.

202-0-1 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5303 1.8940 N/A 28 0.3234 10046 327.63 

2 0.5303 1.8940 N/A 28 0.3234 10046 325.22 

3 0.5303 1.8940 N/A 28 0.3234 10046 356.46 

4 0.5303 1.8940 N/A 28 0.3234 10046 355.10 

5 0.5303 1.8940 N/A 28 0.3234 10046 321.25 

 0.5303 1.8940 N/A 28 0.3234 10046 337.13 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2036 5.8644 N/A 3.47 0.2154 10002 673.60 

2 0.2036 5.8644 N/A 3.47 0.2154 10002 662.24 

3 0.2036 5.8644 N/A 3.47 0.2154 10002 662.94 

4 0.2036 5.8644 N/A 3.47 0.2154 10002 668.74 

5 0.2036 5.8644 N/A 3.47 0.2154 10002 669.30 

 0.2036 5.8644 N/A 3.47 0.2154 10002 667.36 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2612 5.3264 N/A 4.90 0.2125 10002 829.71 

2 0.2612 5.3264 N/A 4.90 0.2125 10002 837.26 

3 0.2612 5.3264 N/A 4.90 0.2125 10002 813.67 

4 0.2612 5.3264 N/A 4.90 0.2125 10002 806.29 

5 0.2612 5.3264 N/A 4.90 0.2125 10002 811.21 

 0.2612 5.3264 N/A 4.90 0.2125 10002 819.63 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3234 0.2154 0.2125 

Volume (m
2
) 10046 10002 10002 

Design Time (s) 337.13 667.36 819.63 

Dmin  (m) 0.5303 0.2036 0.2612 

Dmax (m) 1.8940 5.8644 5.3264 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.47 4.90 
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Table 66: Individual trial results using least-squares minimization and selection

variant 4 for the L-bracket.

202-0-1 

28% 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.5303 1.8940 N/A 28 0.3234 10046 327.63 

2 0.5303 1.8940 N/A 28 0.3234 10046 325.22 

3 0.5303 1.8940 N/A 28 0.3234 10046 356.46 

4 0.5303 1.8940 N/A 28 0.3234 10046 355.10 

5 0.5303 1.8940 N/A 28 0.3234 10046 321.25 

 0.5303 1.8940 N/A 28 0.3234 10046 337.13 

As 

Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2036 5.8644 N/A 3.47 0.2154 10002 673.60 

2 0.2036 5.8644 N/A 3.47 0.2154 10002 662.24 

3 0.2036 5.8644 N/A 3.47 0.2154 10002 662.94 

4 0.2036 5.8644 N/A 3.47 0.2154 10002 668.74 

5 0.2036 5.8644 N/A 3.47 0.2154 10002 669.30 

 0.2036 5.8644 N/A 3.47 0.2154 10002 667.36 

LM - old library – no cutoff 
Run Dmin 

(mm) 

Dmax 

(mm) 

Dcutoff 

(mm) 

Dmin/Dmax Deflection 

(mm) 

Volume 

(mm
3
) 

Design Time 

(s) 

1 0.2612 5.3264 N/A 4.90 0.2125 10002 829.71 

2 0.2612 5.3264 N/A 4.90 0.2125 10002 837.26 

3 0.2612 5.3264 N/A 4.90 0.2125 10002 813.67 

4 0.2612 5.3264 N/A 4.90 0.2125 10002 806.29 

5 0.2612 5.3264 N/A 4.90 0.2125 10002 811.21 

 0.2612 5.3264 N/A 4.90 0.2125 10002 819.63 

 

 28% 

Assumption 

Constrained 

Optimization 

Least-Squares 

Minimization 

Deflection (m) 0.3234 0.2154 0.2125 

Volume (m
2
) 10046 10002 10002 

Design Time (s) 337.13 667.36 819.63 

Dmin  (m) 0.5303 0.2036 0.2612 

Dmax (m) 1.8940 5.8644 5.3264 

Dcutoff (m) N/A N/A N/A 

Dmin/Dmax 28 3.47 4.90 
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