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Traditional CFD results have a number of freestream inputs. In the physical

world, these input conditions often have some uncertainty associated with them.

However, this uncertainty is often omitted from the CFD results. The effects of

uncertainty in CFD can be determined through application of Uncertainty

Quantification (UQ). The primary objective of the present work is to determine

the effect of uncertainty in freestream turbulence intensity (FSTI) on the

coefficients of lift, drag, and moment for four different airfoils: S809, NACA

0012, SC1095, and RC(4)-10. In this work, the Monte Carlo method is used to

calculate the sensitivities of the aerodynamic coefficients to Gaussian

distributions of uncertainty in FSTI over a range of angles of attack (AOA) at

various Reynolds numbers and Mach numbers. However, the Monte Carlo

method would require hundreds of thousands of CFD calculations in order to



converge to the correct results. A surrogate surface is therefore generated using a

parametric study using the in-house flow solver OVERTURNS. Rather than run

a separate CFD run for each Monte Carlo run, all of the results can be attained

virtually instantaneously via the surrogate surface.

The UQ analysis shows how varying these parameters affects the sensitivies of

the aerodynamic coefficients to uncertainty in FSTI. In most cases, the response

is nearly Gaussian and the mean response is not too different from the discrete

FSTI response without uncertainty. However, the output standard deviation for

drag and pitching moment can become large when the transition location

changes rapidly with changing FSTI.
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Chapter 1

Introduction

1.1 Motivation

The field of computational fluid dynamics (CFD) has witnessed advances in 

several different areas, including advanced mesh generation techniques, increased 

solution accuracy, and reduced computational costs. However, while CFD is able 

to provide quantitative data through numerical simulation, the effect of uncertain-

ties in the input quantities is often omitted. Therefore, reliability tests often resort 

to physical tests rather than CFD. Yet, it is possible to provide this information 

through numerical simulation via uncertainty quantification (UQ). UQ is the sci-

ence of determining how uncertainties in inputs propagate through a system and 

affect the final results. It draws heavily from statistics and can be applied to CFD 

to provide additional information to augment solution results, such as confidence
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intervals and statistical variance. This information can aid in sensitivity analysis,

design, and reliability analysis.

UQ can be defined within the framework of Verification and Validation (V&V).

Verification is the process of determining whether the equations modeling a system

are being solved correctly. This field essentially deals with the mathematics of the

model. When applied to CFD, verification traditionally deals with mesh refinement

and/or use of high order methods. On the other hand, validation compares how

well the model compares against the real world. The UQ analysis presented in this

work falls under the validation regime, as it attempts to take physical uncertainties

into account for CFD simulations.

The need for UQ in CFD stems from uncertainties present in the real world

that are essentially ignored by traditional CFD analysis. While these uncertainties

may be small in magnitude, they may lead to varying results. The use of UQ allows

for improved decision-making, more accurate validation, and more robust designs.

In terms of decision-making, UQ can determine how confident one can be that the

results obtained from a CFD simulation are correct, given certain uncertainties in

the input. UQ can also be used in validation to bridge the gap between experiments

and simulations by accounting for the physical uncertainties which are absent from

the simulations. Finally, UQ can be utilized to determine the trade offs between

an optimal design with high sensitivity to certain parameters and a sub-optimal

design that is not as sensitive to those parameters. All of these benefits can be

primarily achieved by determining the true mean and quantifying the variance

present for quantities of interest.

Application of Uncertainty Quantification to Turbulence Intensity 2



CHAPTER 1. INTRODUCTION

One particular area where UQ can be utilized is boundary layer transition

modeling in CFD. The transition from laminar to turbulent flow is a very signifi-

cant phenomenon, especially for rotorcraft. This transition results in an increase

in viscous drag over various rotorcraft components, as well as an increase in heat

transfer, and possible flow separation. It is therefore desirable to design airfoils

and aircraft which promote laminar flow and delay the onset of transition.

Transition is highly dependent on a number of factors, including the freestream

turbulence intensity (FSTI), stream-wise pressure gradient, surface curvature and

roughness, and compressibility. It is therefore important to determine how uncer-

tainties in these quantities propagate and how sensitive aerodynamic quantities

such as lift, drag, and moment are to these uncertainties. Determining this sen-

sitivity will allow for better decision-making, validation, and design. The present

work will focus on the effect of uncertainty in FSTI specifically.

Drag is subject to strong non-linear effects; this makes UQ extremely impor-

tant when applied to quantities affecting drag, like FSTI. As mentioned previously,

UQ can be used to determine the sensitivity of lift, drag, and moment to input

quantities such as FSTI. In addition, UQ can be used to calculate the expected

aerodynamic coefficients, given specified uncertainty in the input. Since the aero-

dynamic quantities are not necessarily linear as FSTI varies, it cannot be assumed

that the expected quantities are equivalent to the values obtained using the ex-

pected FSTI. UQ can therefore be used to determine how valid such an assump-

tion would be as well as calculate more accurate values of lift, drag, and moment,

given the input uncertainty. This is achieved in the present work by applying the

Application of Uncertainty Quantification to Turbulence Intensity 3
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UQ techniques (to be described later) to determine the true means and expected

standard deviations for the coefficients of lift, drag, and moment, given a specific

uncertainty distribution in FSTI.

1.2 Boundary Layer Transition

When air flows over a surface, a boundary layer forms over the surface. The

boundary layer is a thin region in contact with the surface and is formed due

to presence of friction and viscosity. The friction/viscosity present between the

surface and the air slows the air down and prevents it from moving at freestream

conditions. The boundary layer is defined as the region extending up to the point

where the flow velocity is equal to 99% of the freestream velocity. It may initially

be in a laminar state. However, as the air moves over the surface, the boundary

layer may transition from laminar flow to turbulent flow. For a description of

laminar and turbulent flow, see section 1.2.1 below. There are a number of factors

that may contribute to the transition from laminar to turbulent flow, including

freestream turbulence intensity, surface roughness, surface curvature, vibrations,

and adverse pressure gradients. In order to minimize drag, it is desirable to delay

the onset of boundary layer transition.

1.2.1 Laminar, Turbulent, and Transitional Flow

Laminar flow is a term used in fluid dynamics to describe a flow in which the

fluid moves in parallel layers. There is no lateral mixing, cross-currents, eddies,
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or swirls present in this flow as the layers flow without any interaction with each

other. The flow can be characterized as “smooth.” Typically, laminar flow occurs

at low flow velocities.

On the other hand, turbulent flow is characterized as “rough”, with irregu-

lar/chaotic flow paths. The turbulence is due to the inertial forces from the veloc-

ity of the flow dominating the viscous forces of the flow. Turbulent flows contain

unsteady vortices of varying sizes, resulting in the rotationality of the flow. The

flow creates eddies, which are made up of smaller eddies, which in turn are made up

of even smaller eddies, and so on. Thus, in turbulent flow, there is mixing between

the various layers in the boundary layer. These eddies dissipate kinetic energy as

heat, resulting in an increase in skin friction drag when compared to laminar flow.

This increase in drag is the primary reason why laminar flow, turbulent flow, and

the transition between them, are important to the aerospace field.

1.2.2 Reynolds Number

The Reynolds number is a non-dimensional parameter that is used as a general

measure of turbulence. The Reynolds number is defined as the ratio of the inertial

forces of a fluid to the viscous forces of the fluid and is defined by Eq. 1.1:

Re =
ρUL

µ
(1.1)

In this equation, ρ is the fluid density, U is the fluid velocity, and L is the char-

acteristic length, and µ is the fluid’s dynamic viscosity. For flows with a low
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Reynolds number, the viscous forces are dominant and the Reynolds number is

laminar. Turbulent flows are dominated by inertial forces and therefore have high

Reynolds numbers.

1.2.3 Transition

Transitional flow describes the flow as it changes from laminar to turbulent

flow or vice versa. As the flow moves across a surface, it may begin to undergo

transition from laminar flow to turbulent flow. Usually transition is defined as the

region during which the skin friction coefficient (Cf ) increases to its fully turbulent

value. Fig 1.1 illustrates how transition affects the skin friction over a flat plate.

The momentum thickness Reynolds number (Reθ) also increases during transition.

The increase in skin friction leads to an increase in drag and a transfer of heat to

the surface. In addition, the flow may eventually reverse and the boundary layer

may separate from the surface [1]. During transition, the velocity of the flow no

longer varies uniformly across the boundary layer and oscillations begin to appear

in the flow. The flow is no longer steady with respect to time. Small eddies begin

to form in the flow. As the eddies grow, the flow transitions into turbulent flow.

This is illustrated in Fig. 1.2. Fig. 1.3 shows a comparison between the eddy

viscosity plots for a fully turbulent case and a case with transition. As can be seen

from the figure, the eddy viscosity decreases when the transition model is applied

when compared to the fully turbulent solution.

Application of Uncertainty Quantification to Turbulence Intensity 6
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Figure 1.1: Skin friction over flat plate, Tu = 2.0% (reproduced from [6])

Figure 1.2: Boundary layer transition (reproduced from Comsol website)

Application of Uncertainty Quantification to Turbulence Intensity 7
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(a) Eddy viscosity field plot - fully turbulent (b) Eddy viscosity field plot - transition

Figure 1.3: S809 Airfoil at Mach = 0.2, Re = 2 × 106, AOA = 1 degree, FSTI =
0.05%

1.2.4 Physical Mechanisms of Transition

One way to approach the transition of a laminar boundary layer is to treat

the transition as a “non-linear response of a very complicated oscillator - the lam-

inar boundary layer - to a random forcing function” with “infinitesimal amplitude

compared with the appropriate laminar-flow quantities” [2]. This forcing func-

tion’s characteristics (i.e. amplitude, frequency, and phase) are determined by

receptivity, a concept introduced by Morkovin [3]. Receptivity refers to the way

in which a disturbance enters the boundary layer. The disturbances induce a re-

sponse. The response amplitude grows until it reaches the “breakdown phase”.

During the breakdown phase, spots of intermittent turbulence develop in the flow

and begin to grow. As these spots grow, they begin to merge with one another

until the entire flow becomes turbulent [4].

Application of Uncertainty Quantification to Turbulence Intensity 8
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1.2.5 Intermittency

One way to quantify the transition from laminar to turbulent flow is to use

the intermittency factor, γ [5]. As the flow transitions, intermittent turbulent

spots appear and grow. γ is defined as the fraction of time any point spends in

turbulent flow (i.e. one of these intermittent turbulent spots). When γ is equal to

one, this means that airflow at this location is now fully turbulent, whereas when

γ is equal to zero, the flow is laminar.

1.2.6 Types of Transition

There are a number of different types of transition, including natural tran-

sition, separation-induced transition, bypass transition, and crossflow transition.

Each type of transition will be reviewed briefly, with the exception of crossflow

transition, since the scope of the present work is limited to two-dimensional air-

foils.

Natural Transition

Natural transition is the most common form of transition for aircraft. For

this type of transition, transient growth is negligible. The initial disturbances are

small and breakdown is reached through the growth of the disturbances via linear

processes. These processes include Tollmien-Schlichting, Gortler, and crossflow in-

stabilities [6]. Tollmien-Schlichting waves are free disturbances that are the normal
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modes of the boundary layer. Gortler and cross-flow instabilities appear in three-

dimensional flows. Gortler instabilities are induced by concave surface curvature

while crossflow instabilities manifest due to sweep and pressure gradients. Linear

stability theory and the Orr-Sommerfeld equations [7, 8] can be used to predict

this kind of transition accurately. A depiction of natural transition induced by

Tollmien-Schlichting waves is shown in Fig. 1.4.

Figure 1.4: Natural transition due to Tollmien-Schlichting waves (reproduced from
White 1991)

Separation-Induced Transition

Another type of transition is separation-induced transition. This process

occurs in the presence of a strong adverse pressure gradient. The pressure gradient

causes the laminar boundary layer to separate over a “laminar-separation bubble”

(Fig. 1.5). The boundary layer then undergoes rapid transition before reattaching

as a turbulent boundary layer. For low Reynolds numbers, the separation bubble

Application of Uncertainty Quantification to Turbulence Intensity 10



CHAPTER 1. INTRODUCTION

can extend up to 50% of the airfoil chord, resulting in significant amounts of viscous

drag. Stall is induced when the adverse pressure gradient is increased to the point

where the bubble “bursts,” causing the flow to remain unattached.

Figure 1.5: Flow structure of laminar-separation bubble (reproduced from Horton
1968)

Bypass Transition

When the initial disturbance amplitude is relatively large, the transition may

bypass the stage of linear growth and directly reach the breakdown phase [3]. This

is known as bypass transition. The large initial disturbances associated with this

type of transition are typically due to a high level of freestream turbulence intensity

(FSTI) or surface roughness. In bypass transition, the intermittent turbulent spots

form quickly. This type of transition has been observed experimentally and is

most common in turbomachinery, where high FSTI levels are present in the wake

of upstream blade rows. However, the phenomenon cannot be described by linear

stability theory due to the non-linear growth of the disturbances. Bypass transition

is still not well understood and is a topic of ongoing research.
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1.2.7 Transition Modeling

In CFD, transition models predict a “transition zone”, in which the flow

is in between the laminar and turbulent states. The transition models are then

incorporated into the flow solvers in order to simulate transition within the solver.

There are a number of different transition models in use today, ranging from

models based on hydrodynamic stability theory [9, 12] to correlation-based mod-

els [6, 16]. The first category involves using linear stability analysis to determine

where transition occurs. The complete unsteady Navier-Stokes equations are lin-

earized locally. The Orr-Sommerfeld stability equations can then be obtained,

which are used to check if the disturbance amplitude grows or decays. The change

in disturbance amplitudes determines when transition occurs. On the other hand,

correlation models use the relationship between transition location and certain

quantities, such as intermittency and transition momentum thickness Reynolds

number (Reθt) to predict the transition location [6].

There are a number of transition models currently in use in CFD. These models

include the eN model [12], the K-V model [10], the Langtry-Menter Model [16],

and the Medida model [6] which is derived from the Langtry-Menter model. A

brief description of each of these models is presented here.

The eN Transition Model

The eN transition model is a linear stability based model that utilizes the

Orr-Sommerfeld equations to calculate the growth of spatial disturbances. The

Application of Uncertainty Quantification to Turbulence Intensity 12



CHAPTER 1. INTRODUCTION

model compares the initial unstable amplitude to the amplitude corresponding

to the most unstable frequency. Transition occurs when the latter exceeds the

former by more than eN . Typically, N ranges between 8 and 10 [10]. This

method is derived from an eigenvalue analysis of the Orr-Sommerfeld equations,

with the assumption that viscous parallel flow is present. However, this assumption

is not necessarily valid. This is addressed by the linear Parabolized Stability

Equations (PSE) method. A non-linear PSE method has also been developed

to take into account bypass transition, roughness-induced transition, and other

non-linear phenomena [11].

In order to implement this model, the laminar velocity and temperature profiles

have to be calculated at different locations in the flow. The local linear stability

equations (or the PSE) are then solved in order to obtain the local amplification

rates. N is then calculated by integrating the local amplification growth rate

along the streamline. Transition takes place once N exceeds a certain value [12].

Some versions of the model use a database to evaluate the instability data. The

inputs to the database are determined via two equations: 1) the von Karman

integral relation and 2) the kinetic energy thickness equation. These equations

allow for two N -factors to be calculated and used to estimate the growth rate in

the database [13].

The K-V Transition Model

Kapsalis et al published a paper in 2016 proposing a new transition model.

The model, dubbed the “K-V transition model”, is a linear stability theory model
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which utilizes the velocity shape factor Λ to determine the instability point. Like

the eN model, the various parameters of the laminar boundary layer are calculated

along the surface. After this, the critical Reynolds number, Reδ1,cr, can be calcu-

lated at each point based on the known distribution of Λ. Reδ1 is the Reynolds

number based on displacement and is defined by Eq. 1.2:

Reδ1 =
Ubδ1

ν
(1.2)

where Ub is the velocity at the edge of the boundary layer, δ1 is the displacement,

and ν is the air kinematic viscosity. The critical Reynolds number is the value

which correlates to the instability/inflection point as Λ varies. Once Reδ1,cr is

computed, it can be used to calculate Reθt along the airfoil. Each point is then

assumed to be the transition point, and the value DReθt is calculated. This value

represents the difference in the Reynolds number based on momentum thickness

at the transition point and the instability point. The transition point is then

determined to be the point when DReθt exceeds the critical value Reθt,cr. In

the work of Kapsalis, this method is shown to be more accurate than the two

equation implementation of the eN model. In addition, the K-V model only uses

one parameter (Λ) and therefore is able to converge faster than the eN model [10].

The Langtry and Menter Transition Model

In 2009, Langtry and Menter published a paper establishing a new correlation-

based transition model. It has become one of the most widely used transition im-

plementations in industry [6]. The model has also been adapted to create a hybrid
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method, where this model is used to calculate the amplification factor N from the

eN model [14].

This model utilizes the two equation Shear Stress Transport (SST) k − ω tur-

bulence model in order to calculate the turbulence. The key concept behind this

model is the use of the vorticity Reynolds number Rev , which was derived by

Van Driest and Blumer [15]. Langtry and Menter were able to establish an empir-

ical correlation between the local boundary layer quantities and Rev . They were

therefore able to avoid the requirement of integrating the boundary-layer velocity

profile. Instead, they calculate Reθ with the simple equation:

Reθ =
max(Rev)

2.193
(1.3)

Rev can be easily calculated at each mesh point, allowing this model to be efficient.

Meanwhile, Reθt,cr can be calculated with experimental correlations and solving

a transport equation. Another transport equation is then used to solve for the

intermittency, using Rev [16].

The model then uses a transport equation to solve for intermittency. The local

intermittency values are used in conjunction with the k − ω turbulence model.

The transition onset location is determined using equation 1.3. Using correlations

based on the local transition momentum thickness Reynolds number, Langtry and

Menter were able to determine the Flength function, which sets the length of the

transition zone, and Fonset, which enables the transition from laminar to turbulent

flow. Meanwhile, the intermittency production term is calculated using Flength and
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Reθt,cr. A second transport equation is used to solve for the transport variable for

the momentum thickness Reynolds number, Reθt. A transport equation is used

rather than a correlation based on experiment in order to account for the large

variance of turbulence intensity in some applications. However, the local Reθt value

is calculated using experimental correlations. These correlations take turbulence

intensity into account and require an iterative process in order to compute the

final value of Reθt [16].

The Medida Transition Model

The Medida model [6] is a derivation of the Langtry-Menter model. The

model has been modified to be compatible with the one equation Spalart-Allmaras

(S-A) turbulence model rather than the k − ω two-equation turbulence model.

Another modification is the adjustment of the correlations between Reθt and the

turbulence intensity. The model implements a linear piece-wise form of the cor-

relations which better account for data from the T3-series zero-pressure gradient

flat plate experiments and laminar flow simulations. The intermittency produc-

tion and destruction terms have been adjusted in order to improve intermittency

recovery in the turbulent boundary layer. The model assumes constant freestream

turbulence intensity in the flow field and omits separation-induced transition. In

addition, the destruction term is not scaled by intermittency when using the term

in the S-A turbulence model [6].
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1.3 Uncertainty Quantification

1.3.1 Definitions

In order to provide a comprehensive understanding of uncertainty quantifi-

cation (UQ), it is necessary to review the definitions of certain terms and concepts:

Uncertainty: Uncertainty is defined as a potential deficiency that is due to a lack

of knowledge. Uncertainty can be divided into two categories: aleatory uncertainty

and epistemic uncertainty [18].

Aleatory uncertainty: Aleatory uncertainty is uncertainty associated with the

inherent randomness/variation in a population. This type of uncertainty is also

known as irreducible uncertainty, since this uncertainty cannot be eliminated from

the model [19]. An example of aleatory uncertainty in CFD is the variation of

an input parameter, such as free stream Mach number. This uncertainty usually

has a probability distribution associated with it, such as a normal or uniform

distribution.

Epistemic uncertainty: Epistemic uncertainty is uncertainty stemming from a

model’s failings due to a lack of knowledge. Research into the area where knowledge

is lacking can result in an improved model, which can in turn reduce or even

eliminate epistemic uncertainty [19]. One current source of epistemic uncertainty

in CFD is turbulence model assumptions [18].

Application of Uncertainty Quantification to Turbulence Intensity 17
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Sensitivity analysis: Sensitivity analysis (SA) is the study of how much an out-

put varies due to a change in a certain input. SA can be categorized as either local

or global. Local SA measures how much the output changes due to infinitesimal

changes in the input. On the other hand, global SA measures how the output

changes when the input is varied over all feasible values. [20]

Non-intrusive and intrusive techniques: Non-intrusive techniques are UQ

techniques which do not require the modification of the deterministic function,

model, and/or codes that are used. These techniques are relatively simple to

implement since they simply require the selection of certain inputs into the model

without any “tinkering under the hood” of the CFD solvers. On the other hand,

intrusive methods modify the actual mathematical equations being solved by the

CFD codes.

1.3.2 Overview

UQ falls under the framework of Verification and Validation [17]. Verifica-

tion addresses errors that occur when solving equations and deals primarily with

the numeric solvers and algorithms using numerical analysis. On the other hand,

validation deals with how accurate the numerical simulations are when compared

to the physical world and experimental data. When conducting experiments, un-

certainty bars are provided along with the data to quantify the repeatability and

measurement errors associated with the experiment. UQ can be used to calculate

computational uncertainty bars that are analogous to the uncertainty bars from ex-

periments as well as quantify the numerical errors attributed to the computational
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solver [18].

When applying UQ to CFD, it is useful to consider each CFD simulation as

a function y = g(~x), where ~x is a vector of inputs to the CFD simulation, such

as angle of attack, freestream Mach number, Reynolds number, and FSTI and y

represents the quantities of interest (QOI), such as the coefficients of lift, drag, and

moment. Uncertainties in ~x result in ~x becoming a stochastic variable. The un-

certainty propagates through the system, resulting in y also becoming a stochastic

variable. The actual UQ techniques depend on the type of uncertainty. Aleatory

and epistemic uncertainties are each handled differently in UQ. The present work

focuses on aleatory uncertainties attributed to variation in FSTI. For aleatory

uncertainty, UQ can be used to determine the distribution of the output and/or

statistics related to this distributions, such as the expected mean and standard

deviation [20]. The following sections will review the different UQ techniques

typically used to obtain these quantities.

1.3.3 Monte Carlo Method

The Monte Carlo method [21] is one of the oldest UQ techniques. It is a

simple non-intrusive sampling method that utilizes the law of large numbers to

converge to the correct solution. The law of large numbers states that as the

frequency of a probabilistic event increases, the mean of the results will converge

to the expected/theoretical mean. The Monte Carlo method involves randomly

sampling the input parameters; the inputs can have a uniform distribution, a

normal distribution, or any other distribution desired.
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The randomly generated samples are then used as the inputs for the system

and the desired output quantities are computed. This is done repeatedly until the

average of the outputs converges. This converged mean output is the expected

value. The simplicity of this method allows for easy implementation and universal

application. However, the method is slow to converge and may require an excessive

amount of samples to converge to the correct solution [18]. For CFD simulations

that take some time to run, this may make the Monte Carlo method infeasible

from a computational cost standpoint without the use of a surrogate surface (see

section 1.3.5).

1.3.4 Stochastic Collocation

Stochastic collocation is the application of quadrature to integrate integrands

composed of random variables. This can be used to determine the expectation of

a random variable. The goal of stochastic collocation is to calculate the expected

mean output values E[y] and the variance of the output values V ar[y] (using the

notation introduced in section 1.3.2). One way to determine these quantities is to

use the probability density function (PDF) fy. If the PDF has been computed,

E[y] and V ar[y] can be calculated as follows:

E[y] =

∫ ∞
−∞

zfy(z)dz (1.4)

V ar[y] =

∫ ∞
−∞

(z − E[y])2fy(z)dz = E[y2]− (E[y])2 (1.5)

These integrals can be computed numerically through quadrature techniques.
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Consider the case where there is a single uncertain parameter ξ. Stochastic collo-

cation is achieved by expressing the integrals in Eq. 1.4 and 1.5 as weighted sums

of the integrands evaluated at a number of locations on the ξ-axis. These loca-

tions are referred to as abscissas. The abscissas and weights are typically chosen

by selecting a basis function which is easy to integrate, usually a polynomial. The

accuracy of the stochastic collocation method increases as the number of abscissas

increases [18].

Gaussian quadratures are often used as they are highly accurate. For Gaussian

quadrature, equation 1.4 is rewritten in terms of a weighted sum:

∫ b

a

y(ξ)f(ξ)dξ =
n∑
k=1

wky(ξk) +Rn(y) (1.6)

where ξk are the zeros of the chosen orthogonal polynomial for the quadrature, wk

are the weights, which are calculated using the weighting function f . n is the total

number of abscissas used for the quadrature and Rn is the remainder term, which

also denotes the order of accuracy of the method.

Like the Monte Carlo method, stochastic collocation is non-intrusive and rel-

atively simple to implement. Once the abscissas have been determined, the CFD

simulation is simply run using the abscissas as the inputs. Thus, stochastic collo-

cation usually requires far fewer CFD runs to achieve convergence.
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Gauss-Hermite Quadrature

The Gauss-Hermite quadrature is used to approximate integrals of the form

[22]: ∫ ∞
−∞

e−ζ
2

φ(ζ)dζ ≈
n∑
k=1

wkφ(ζk) (1.7)

where wi and ζi are defined by the Hermite polynomial and M is the number

of nodes used for the quadrature. The Hermite polynomial can be expressed

recursively as follows [23]:

Hn(x) = n!

n/2∑
m=0

(−1)m
1

m!2m(n− 2m)!
(2x)n−2m (1.8)

ζi are defined by the zeros of 1.8 and wi is defined by [25]:

wi =
2n−1n!

√
π

n2[Hn−1(ζi)]2
(1.9)

If the uncertain parameter X is characterized with a normal distribution with a

mean µ and standard deviation σ, the Gauss-Hermite quadrature can be used

to compute E[y] and V ar[y] by applying a simple transformation ζ = (x −

µ)/(
√

2σ), φ(ζ) = g(µ+
√

2σζ)/
√
π (g(x) is defined as the CFD simulation). Using

this transformation and the abscissas and weights defined by the Hermite polyno-

mial, E[y] and V ar[y] can be written as follows:

E[y] =

∫ ∞
−∞

1√
2πσ2

e−(x−µ)2/2σ2

g(x)dx ≈
n∑
k=1

wk√
π
g(µ+

√
2σζk) (1.10)
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V ar[y] ≈
n∑
k=1

wk√
π

(g(ζk)− E[y])2 (1.11)

1.3.5 Surrogate Surfaces

One of the main drawbacks of both the Monte Carlo method and stochastic

collocation is the computational time required to compute the mean and variance

of the QOIs. Stochastic collocation methods can require 5-10 CFD runs for a single

case, while Monte Carlo sampling may require tens of thousands of runs to achieve

convergence. This can make these methods cost-prohibitive unless combined with

a surrogate surface. A surrogate surface approximates the relationship between

the output QOIs of the CFD simulation and the uncertain input parameters [20].

Each QOI requires its own surrogate surface. Although several CFD simulations

are necessary to create the surrogate surfaces, this method provides a way to

perform Monte Carlo sampling and stochastic collocation inexpensively.

There are several methods that can be used to generate the surrogate surface.

The simplest method is to run a parametric sweep through the uncertain variable

and extrapolate between the points. More complex methods include using radial

basis functions [26], support vector regression [27], polynomial chaos [28, 29], and

Kriging [30–33].
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1.4 Thesis Contributions

The purpose of this thesis is to examine the effects of introducing uncertainty

into the input FSTI and investigate the sensitivity of the aerodynamic coefficients

of lift, drag, and moment to this uncertainty. This was achieved by applying UQ

techniques such as stochastic collocation and surrogate surfaces to determine the

expected mean values of QOIs and the expected standard deviations for these

QOIs. A comparative analysis was used in conjunction with the calculated stan-

dard deviations to determine the sensitivities of the QOIs to uncertainty in FSTI.

All CFD simulations in this study used the in-house flow solver OVERTURNS

[34] with a γ−Reθ−SA transition model. Four airfoils were selected to be used in

this study: 1) NACA 0012, 2) S809, 3) SC1095, and 4) RC(4)-10. These airfoils

were selected due to their widespread usage in the field. For each airfoil, a para-

metric sweep of FSTI was conducted in order to generate the surrogate surface.

Stochastic collocation was performed for a test case using both the surrogate sur-

face and actual CFD runs in order to validate the surrogate surface. Once this was

complete, stochastic collocation was applied to the surrogate surface to compute

the expected means and standard deviations of the QOIs over a range of angles of

attack. For the SC1095 and RC(4)-10, both of which often operate in transonic

flows, the freestream Mach number was varied between 0.2 and 0.8 as well.

The contributions of the present work is to lay out the foundation and process

for generating “uncertainty reference tables” for various airfoils. This data can
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be used to provide more accurate data when there is known uncertainty in the

freestream conditions. These tables will also highlight operating conditions under

which there is greater sensitivity to this uncertainty. Such information would be

relevant for determining confidence in a CFD simulation, providing more accurate

validation, and creating more robust designs.

1.5 Scope and Organization of Thesis

This thesis is concerned with the application of UQ techniques for airfoils

undergoing transition with an uncertain FSTI value. This thesis details the mo-

tivation for this research, the UQ techniques used, the general approach, and the

results of applying the UQ techniques to four airfoils. The rest of the thesis is

organized as follows:

� Chapter 2 describes the computational methodology used for this study.

The chapter reviews how the flow solver OVERTURNS solves the Reynolds

Averaged Navier Stokes (RANS) equations. In addition, the discretizations

methods, mesh descriptions, and boundary conditions used by the solver are

described.

� Chapter 3 reviews the UQ methodology used by the present work. This

includes descriptions of the parametric studies, the generation of the sur-

rogate surfaces, and the details of the quadratures used for the stochastic

collocation.
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� Chapter 4 presents the results of the parametric studies and the generation

of the surrogate surfaces for the NACA0012, S809, SC1095, and RC(4)-10.

The FSTI is varied from 0.05% to 5% while the angle of attack is varied from

-4 degrees to 12 degrees.

� Chapter 5 presents the results of the UQ analysis. These results include

the expected mean values of the QOIs and the standard deviations for these

QOIs. A comparison of these standard deviations over the range of angles of

attack for specific mean FSTI values will be used to demonstrate the changes

in sensitivity for the QOIs.

� Chapter 6 summarizes the key results presented in this study and provides

recommendations for future work.
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Chapter 2

Numerical Implementation

In this chapter, an overview of the CFD analysis used for this work is presented. 

The Overset Transonic Unsteady Rotor Navier-Stokes (OVERTURNS) flow solver 

[34] was used to run all simulations. This chapter will cover the partial differential 

equations (PDEs) which govern the flow and how OVERTURNS solves these PDEs 

to obtain the flow field solution. This includes the turbulence and transitioning 

modeling used by OVERTURNS to obtain the solution. The mesh generation 

process used for the present work is also discussed. Finally, sample results which 

validate the approach are presented.
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CHAPTER 2. NUMERICAL IMPLEMENTATION

2.1 Governing Equations

In order to determine flow characteristics, the governing equations, the Navier-

Stokes equations, must be solved. The Navier-Stokes equations are coupled partial

differential equations relating the velocity, density, pressure, and temperature. The

equations are derived using conservation of mass, momentum, and energy and are

dependent on both time t and the spatial coordinates x and y.

The equations can be written in “strong conservation form” in terms of the

viscous and inviscid fluxes through the control volumes as follows:

∂Q

∂t
+
∂Fi
∂x

+
∂Gi

∂y
=
∂Fv
∂x

+
∂Gv

∂y
(2.1)

where Q is the conserved variables vector, Fi and Gi are the inviscid flux vectors,

and Fv and Gv are the viscous flux vectors. Q is defined by Eq. 2.2:

Q =



ρ

ρu

ρv

E


(2.2)

where ρ is the fluid density, u and v are the components of the fluid velocity in

the x and y directions. E is the total energy per unit volume and is calculated as

follows:

E = ρ

[
e+

1

2
(u2 + v2)

]
(2.3)
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where e is the energy per unit mass.

The inviscid fluxes are defined by Eqs. 2.4 and 2.5, and the viscous fluxes are

defined by Eqs. 2.6 and 2.7

Fi =



ρu

ρuu+ p

ρuv

(E + p)u


(2.4)

Gi =



ρv

ρvu

ρvv + p

(E + p)v


(2.5)

Fv =



0

τxx

τyx

uτxx + vτyx − qx


(2.6)

Gv =



0

τxy

τyy

uτxy + vτyy − qy


(2.7)
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In the above equations, qx and qy are the heat conduction terms. They are

defined as:

qj = k
∂T

∂xj
(j = x, y) (2.8)

where k is the coefficient of thermal conductivity and T is the temperature of the

fluid. τij is the viscous stress tensor and is defined by Stokes’ hypothesis [45]:

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
, δij = 1 if i=j; δij = 0 if i 6= j (2.9)

µ is the coefficient of molecular viscosity and is given by Eq. 2.10:

µ = C1
T

3
2

T + C2

(2.10)

For air at standard temperature and pressure (STP), C1 = 1.4×10−6 kg/(ms
√
K)

and C2 = 110.4 K. In order to solve this system, one more equation is needed:

p = ρRT (2.11)

Eq. 2.11 is the equation of state for ideal gases. R is the gas constant. The fluid

in the present work is air at STP; it can therefore be assumed to be a calorically

perfect gas, where the specific heats remain constant:

cv =
R

γ − 1
; cp =

γR

γ − 1
(2.12)

where γ is the ratio of specific heats. For air at STP, γ = 1.4. In addition, the
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following equations are applicable to calorically perfect gases:

e = cvT (2.13)

p = (γ − 1)ρe (2.14)

e = cvT (2.15)

Using the above relations, Eq. 2.3 can be re-written as follows:

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (2.16)

2.2 Non-Dimensionalization

OVERTURNS solves the governing equations in their non-dimensionalized

form. Non-dimensionalization results in all the flow variables to be of the same

magnitude, thereby reducing numerical errors due to mathematical operations be-

tween numbers of very different values. In addition, non-dimensionalization allows

for the parameter like Reynolds number and Mach number to be varied indepen-

dently. Non-dimensionalized reference variables are denoted by the * superscript

and are defined below:

x∗ =
x

L
, y∗ =

y

L
, t∗ =

t

L/a∞
(2.17)

u∗ =
u

a∞
, v∗ =

v

a∞
, µ∗ =

µ

a∞
(2.18)
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ρ∗ =
ρ

ρ∞
, p∗ =

p

p∞a2
∞
, T ∗ =

T

T∞
(2.19)

In the above equations, L represents the chord length of the airfoil and a∞ is

the freestream speed of sound. The governing equations in terms of the non-

dimensionalized variables are obtained by substituting Eqs. 2.17 - 2.19 into Eq.

2.1. The dimensional governing equations are the same as the dimensionless ones,

with the exception of the viscous stress tensor and thermal conduction terms. The

modified terms are defined here:

τij =
µM∞
Re∞

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

]
(2.20)

qj = − µM∞
Re∞Pr(γ − 1)

∂T

∂xj
(2.21)

In the above equations, all the variables are non-dimensional, so the * superscript

has been dropped for the sake of convenience. The above equations introduces

three new dimensionless quantities:

Reynolds number: Re∞ =
ρ∞V∞L

µ∞
(2.22)

Mach number: M∞ =
V∞
a∞

(2.23)

Prandtl number: Pr =
µcp
k

(2.24)

where V∞ is the freestream velocity magnitude (
√
u2
∞ + v2

∞). For air at STP, the

Prandtl number, Pr = 0.72.
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2.3 Reynolds-Averaged Navier-Stokes Equations

In order to model boundary layer transition, it is necessary to modify the

governing equations into a form which is compatible with turbulence models. This

can be achieved using the Reynolds-Averaged Navier Stokes (RANS) approach.

Using this approach, the dependent variables are broken down into two compo-

nents: the mean component and the fluctuating component, as shown in Eq. 2.25:

u = u+ u′ v = v + v′ ρ = ρ+ ρ′ p = p+ p′ T = T + T (2.25)

The governing equations in terms of these components are then time-averaged.

Eq. 2.26 is used to time average each quantity:

f =
1

∆t

∫ t0+∆t

t0

fdt (2.26)

where f is the time-averaged quantity and ∆t is the time period. This time period

must be small sufficiently small such that the mean flow variation is small, yet

large when compared to the period of turbulent fluctuations. By definition, the

mean of the fluctuating component (f ′) is equal to zero:

f ′ =
1

∆t

∫ t0+∆t

t0

f ′dt = 0 (2.27)

The RANS equations are obtained by substituting Eq. 2.25 into the unsteady

Navier-Stokes equations (Eq. 2.1). The RANS governing equations are identical
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to the Navier-Stokes equation with the addition of fluctuating terms. These terms

can be grouped into a stress tensor, known as the Reynolds Stress Tensor (τij):

(τij)turb = −ρu′iu′j (2.28)

In order to solve the RANS equations, the Reynolds Stress tensor must be put in

terms of the mean quantities. There are various turbulence models which are used

to do so. The present work utilizes the Spalart-Allmaras turbulence model [35],

which is discussed in detail in Sec. 2.6.3.

2.4 Coordinate Transformation

Eq. 2.1 is the Cartesian form of the Navier-Stokes equations. However,

in order to apply these equations to the computational meshes used by OVER-

TURNS, it becomes necessary to apply a curvilinear coordinate transformation.

This transformation maps the Cartersian coordinates x and y which may not be

uniformly spaced, onto the computational domain (ξ and η) for an equally-spaced

computational mesh (see Fig. 2.1). By applying chain rule differentiation to Eq.

2.1, one obtains the following:

∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
= 0 (2.29)
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where,

Q̃ =
1

J
Q

F̃ =
1

J
[ξtQ+ ξx(Fi − Fv) + ξy(Gi −Gv)]

G̃ =
1

J
[ηtQ+ ηx(Fi − Fv) + ηy(Gi −Gv)]

H̃ =
1

J
[ζtQ+ ζx(Fi − Fv) + ζy(Gi −Gv)]

(2.30)

and J is the coordinate transformation Jacobian (i.e. the determinant of the 3×3

matrix
∂(ξ, η)

∂(x, y)
.

Figure 2.1: Transformation from physical domain to computational domain (re-
produced from Blazek 2006)

2.5 Grid Generation

The present work studies airflow over two-dimensional airfoils. It was there-

fore necessary to generate body-fitted meshes for these airfoils. The meshes used

in this work were C-topology structured meshes, as pictured in Fig. 2.2. These

meshes were created using hyperbolic grid generation. The mesh is made up of

three types of boundaries: solid wall, farfield, and wake-cut.
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(a) C-mesh (b) Close-up of C-mesh

Figure 2.2: C-topology mesh around NACA 0012

2.6 Numerical Algorithms in OVERTURNS

This section describes the numerical algorithms used to discretize the govern-

ing equations, model turbulence and transition, and handle boundary conditions.

OVERTURNS solves the curvilinear form of the RANS equations using a cell-

averaged finite volume approach with a cell-vertex scheme. The flow variables are

stored at each grid point, and the control volumes are computational cells which

are centered around the grid points, as shown in Fig. 2.3. In order to determine

the time rate of change in the conserved quantities at each timestep, the inviscid

and viscous fluxes are calculated at the interfaces of the cell and integrated over

the cell faces. Eq. 2.29 can therefore be converted into a semi-discrete form:

∂Q̃

∂t
= −

F̃j+ 1
2
− F̃j− 1

2

∆ξ
−
G̃k+ 1

2
− G̃k− 1

2

∆η
(2.31)
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Figure 2.3: Computational Cell(reproduced from [36])

where j and k are the indices corresponding to the ξ and η directions respectively.

The computational cell boundaries are therefore defined by (j± 1
2
, k± 1

2
). Note that

this is the two-dimensional form of the equation. The next two sections describe

the discretization techniques used to compute the inviscid and viscous fluxes.

2.6.1 Inviscid Fluxes

Evaluating the inviscid fluxes (Eqs. 2.4 and 2.5) in OVERTURNS is a two-

step process. First, the primitive variables must be reconstructed at the cell faces.

Once this has been achieved, the fluxes can be evaluated at the cell faces using the

reconstructed primitive variables. All CFD solutions in this work were obtained

using a Monotone Upstream-Centered Scheme for Conservation Laws (MUSCL)

[37] to reconstruct the primitive variables for both the right and left sides of each

face (qL
i+ 1

2

, qR
i− 1

2

). MUSCL calculates the primitive variables at each face using the
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following equations:

qL
i+ 1

2
= q + φi

[
1

3
(qi+1 − qi) +

1

6
(qi − qi−1)

]
(2.32)

qR
i− 1

2
= q − φi

[
1

3
(qi+1 − qi) +

1

6
(qi − qi−1)

]
(2.33)

where φ us Koren’s differentiable limiter [38]:

φi =
3∆qi∇qi + ε

2(∆qi −∇qi)2 + 3∆qi∇qi + ε
(2.34)

In the above equation, ε represents a small value used to avoid division by zero. ∆

and∇ are forward and backward operators: ∆qi = (qi+1−qi) and∇qi = (qi−qi−1).

Once the primitive variables are reconstructed, they are used to evaluate the

inviscid fluxes using Roe’s flux difference splitting scheme [39] with an entropy fix:

F (qL, qR) =
F (qL) + F (qR)

2
− |Ã(qL, qR)|q

R − qL

2
(2.35)

In the above equation, FL and FR are the left and right state fluxes, and Ã is the

Roe-averaged Jacobian matrix. Numerical dissipation is taken into account by the

second term on the right hand side of the above equation. In order to prevent

entropy violations, Harten’s entropy correction to the flux Jacobian eigenvalues is

applied [40]:

|λ| =


|λ|, if |λ| > δ

λ2 + δ2

2δ
, if |λ| ≤ δ

(2.36)

where δ = max
[
0, (λi+ 1

2
− λi), (λi+1 − λi+ 1

2
)
]
. λ denotes Roe-averaged eigenvalues.
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2.6.2 Viscous Fluxes

In order to evaluate the viscous fluxes (Eqs. 2.6 and 2.7), in the curvilinear

form of the governing equations, the following must be evaluated:

∂

∂ξ

(
α
∂β

∂η

)
(2.37)

OVERTURNS evaluates the above expression with a second order central differ-

encing scheme:

1

∆ξ

([
αj+ 1

2
,k

βj+ 1
2
,k+1 − βj+ 1

2
,k

∆η

]
−

[
αj− 1

2
,k

βj− 1
2
,k − βj− 1

2
,k−1

∆η

])
(2.38)

where δj+ 1
2
,k =

δj,k + δj+1,k

2
and δ = (α, β).

2.6.3 Turbulence Modeling

OVERTURNS is able to incorporate turbulence into the CFD solutions by

solving the RANS governing equations using turbulence models (see Sec. 2.3).

The present work uses the one-equation Spalart-Allmaras turbulence model [35].

The model is based on the Boussinesq eddy viscosity hypothesis [41, 42], which

proposes the following relationship between the Reynolds stress tensor and the

mean strain rate:

(τ ij)turb = −ρu′iu′j =
2

3
ρkδij − µt

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(2.39)
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where µt is the turbulent/eddy viscosity and k is the turbulent kinetic energy:

k =
1

2

[
(u′)2 + (v′)2 + (w′)2

]
(2.40)

Using Eq. 2.39, the total viscous stress tensor to be used in the RANS equations

can be calculated:

(τ ij)total =
2

3
ρkδij − (µ+ µt)

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(2.41)

The Spalart-Allmaras model uses a transport equation for the eddy viscosity,

evaluating the diffusion, production, and destruction terms for eddy viscosity:

Dν̃

Dt
= Pν −Dν +

1

σ

[
∇((ν + ν̃) + cb2(∇ν̃)2

]
(2.42)

Pν = cb1Ω̃ν̃ and Dν = cw1fw[
ν̃

d
]2 (2.43)

Ω is the vorticity magnitude. Ω̃ is given by:

Ω̃ = max

(
Ω +

ν̃

κ2d2
fv2, 0.3Ω

)
, fv2 = 1− χ

1 + χfv1

(2.44)

The wall damping function, fw, is given by:

fw = g

[
1 + c6

w3

g6 + c6
w3

] 1
6

, g = r + cw2(r6 − r), r =
ν̃

Ω̃κ2d2
(2.45)

The constants in the above equations are defined as follows: cb1 = 0.1355, σ =

2/3, cb2 = 0.622, κ = 0.41, cw1 = cb1/κ
2 +(1+cb2)/σ, cw2 = 0.3, cw3 = 2.0, cv1 = 7.1.
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The eddy viscosity transport variable, ν̃ is set equal to zero at smooth wall bound-

aries, equal to 0.1 at the inflow boundaries, and extrapolated from the interior at

the outflow boundaries.

For the present work, convection terms were discretized using a first order

upwind scheme, while diffusion terms were discretized using a second order central

scheme. The algebraic system of equations was solved using the Diagonalized

Alternating Direction Implicit (DADI) approximate factorization method [43].

2.6.4 Transition Modeling

The present work utilizes the γ − Reθ−SA transition model, as developed

by Medida [6]. The transition model solves two transport equations in order to

generate an intermittency and transition momentum thickness flow field around the

airfoil. The model is coupled with the Spalart-Allmaras one equation turbulence

model (see Sec. 2.6.3) by multiplying the eddy viscosity production term from the

SA model with the intermittency factor, γ. Therefore, the effects of turbulence

only appear as the intermittency factor approaches one.

The transition model defines the intermittency factor transport equation as

follows:

D(ργ)

Dt
= Pγ −Dγ +

∂

∂xj

[
(µ+ µt)

∂γ

∂xj

]
(2.46)

The source term is given by:

Pγ = ρ Fonset Gonset max

[
Ω

Flength

,
1.0

Flength, min

]
(2.47)
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If γ > 1.0, Pγ = (1.0− γ)Pγ (2.48)

Flength = 40.0, Flength, min = 2.5 (2.49)

The destruction term is given by:

Dγ = ρ Ω γ(1.0−Gonset) (2.50)

Fonset = max(Fonset2 − Fonset3, 0) (2.51)

Fonset1 =
Rev

2.193Reθc
(2.52)

Fonset2 = min(max(Fonset1, F
4
onset1), 4.0) (2.53)

Fonset3 = max(2− (0.25RT )3, 0) (2.54)

Rev =
ρd2S

µ
,RT =

µt
µ

(2.55)

The critical Reynolds number can be calculated using the following numerical

correlation:

Reθc = 0.62Reθt (2.56)

The transport equation for the transition momentum thickness Reynolds num-

ber, Reθt is given by:

D(ρReθt)

Dt
= Pθt +

∂

∂xj

[
2.0(µ+ µt)

∂Reθt
∂xj

]
(2.57)
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FSTI% Reθt,new
0.01 1800.0
0.03 1135.0
0.51 894.0
1.33 392.0
2.00 252.0
5.25 165.0
6.5 100.0

Table 2.1: Piecewise Linear Correlations between Reθt and FSTI

The production term is given by:

Pθt = 0.03
ρ

t
(Reθt −Reθt)(1.0− Fθt) (2.58)

Fθt = min
(
e−( dδ )

4

, 1.0
)

(2.59)

θBL =
Reθtµ

ρU
; δBL = 7.5θBL; δ =

50Ωd

U
δBL (2.60)

Piecewise linear correlations, as defined by Table 2.1, are multiplied by the

F(λθ) equations to calculate Reθt values outside of the boundary layer. This takes

the FSTI and streamwise pressure gradient effects. The F(λθ) equations are given

below:

F (λθ) =


1− [−12.986λθ − 123.66λ2

θ − 405.689λ3
θ]e
−[Tu1.5 ]

1.5

, λθ ≤ 0

1 + 0.275[1− e[−35.0λθ]]e−[Tu0.5 ], λθ > 0

(2.61)

where the pressure gradient parameter, λθ, is defined by:

λθ =
ρθ2

µ

dU

ds
(2.62)

Application of Uncertainty Quantification to Turbulence Intensity 43



CHAPTER 2. NUMERICAL IMPLEMENTATION

dU

ds
is the streamwise acceleration:

dU

ds
=
u

U

dU

dx
+
v

U

dU

dy
(2.63)

dU

dx
=

1

2U

[
2u
du

dx
+ 2v

dv

dx

]
(2.64)

dU

dy
=

1

2U

[
2u
du

dy
+ 2v

dv

dy

]
(2.65)

U =
√
u2 + v2 (2.66)

In order to evaluate F(λθ), an iterative process is used with the initial value of

λθ = 0.0. The freestream Reθt value is set equal to Reθt inf . Reθt inf can be computed

using the above equations with λθ equal to zero.

The intermittency transport equation is solved for the intermittency factor γ,

which can then be multiplied by production term of the eddy viscosity in the SA

model. Eq. 2.42 therefore is rewritten to include the intermittency term:

Dν̃

Dt
= γPν −Dν +

1

σ

[
∇((ν + ν̃) + cb2(∇ν̃)2

]
(2.67)

Transition Model Validation

In order to verify the transition model’s accuracy in OVERTURNS, a test

case was run using the S809 airfoil. The case was run with an FSTI of 0.05%,

an angle of attack of 1 degree, and a Reynolds number of 2 million. The case

was compared against both experimental results as well as the results obtained by
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(a) Coefficient of Pressure (b) Coefficient of Skin Friction

Figure 2.4: Transition Model Validation for S809 Airfoil

Medida [6]. Fig. 2.4 shows the coefficient of pressure and skin friction. As can be

seen from the figure, there is good agreement between the results of the present

work, the results from Medida’s work, and experimental results.

2.6.5 Time Integration

Although the present work only deals with steady cases, for the sake of

completeness, a short overview of time integration is provided here. OVERTURNS

utilizes BDF2 [44], a second order implicit backwards-in-time method as its time-

marching scheme to integrate the semi-discrete form of the governing equations

(Eq. 2.31). Backwards-in-time implicit methods converge well and are usually

more stable, making these methods a logical choice when dealing with boundary

layer flows. The BDF2 scheme is implemented using Eq. 2.68:

∂Q̃n+1

∂t
= −

F̃ n+1
j+ 1

2

− F̃ n+1
j− 1

2

∆ξ
−
G̃n+1
k+ 1

2

− G̃n+1
k− 1

2

∆η
+ S̃n+1

j,k (2.68)
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where the LHS can be discretized using Eq. 2.69 :

∂Q̃n+1

∂t
=

3Q̃n+1 − 4Q̃n + Q̃n−1

2∆t
(2.69)

Eq. 2.68 is a non-linear equation; a Taylor series expansion about Q̃n can be

applied to the fluxes to linearize the equation:

F̃ n+1 = F̃ n + Ã∆Q̃+O(∆t2) (2.70)

G̃n+1 = G̃n + B̃∆Q̃+O(∆t2) (2.71)

where the solution update ∆Q̃ = Q̃n+1− Q̃n, and A and B are the flux Jacobians,

defined as
∂F̃

∂Q̃
and

∂G̃

∂Q̃
respectively. The source term S can also be in linearized

using the same method. The linearization does not decrease the time-accuracy of

the scheme since the linearized terms are second-order accurate. The linearizations

are then applied to Eq. 2.68, resulting in the following equation:

[I + ∆t(δξÃ
n + δηB̃

n)]∆Q̃ = −∆t[δξF̃
n + δηG̃

n] (2.72)

In the above equation, the left-hand side controls the convergence and stability of

the equation, while the right-hand side represents the physics of the problem.

Eq. 2.72 can be written as a banded matrix of algebraic equations. OVER-

TURNS solves this system using an approximate factorization method. In order

to invert the system, the Lower-Upper Symmetric Gauss-Seidel (LUSGS) method
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is utilized. Using this method, Eq. 2.72 can be rewritten as:

[L+D + U ]∆Q̃n ≈ [D + L]D−1[D + U ]∆Q̃n = −∆t[RHS]n (2.73)

In the above equation, L, U , and D represent the lower, upper, and main diagonal

of the left-hand side of the equations, respectively and are defined as follows:

L = ∆t(−Ã+
j−1,k − B̃

+
j,k−1) (2.74)

U = ∆t(Ã−j+1,k + B̃−j,k+1) (2.75)

D = I + ∆t(Ã+
j,k − Ã

−
j,k + B̃+

j,k − B̃
−
j,k) (2.76)

A two step process is used to obtain the solution update ∆Q̃:

[D + L]∆Q = −∆t[RHS]n (2.77)

[D + U ]∆Q̃ = DQ (2.78)
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Uncertainty Quantification

Methodology

This chapter details the uncertainty quantification methodology used in the

present work. The following steps were taken for each airfoil studied:

1. Run Parametric Sweep: Parametric studies were run varying FSTI and

the angle of attack. For some airfoils, Reynolds number or Mach number

was also varied. Details of the specific parameters being varied are provided

in Table 3.1.

2. Generate Surrogate Surface: Once the parametric studies were run, a

piecewise cubic Hermite interpolating polynomial (PCHIP) was used to in-

terpolate between the points in the parametric sweeps and generate the sur-

rogate surface.
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Airfoil Mach Number Reynolds Number (×106)
S809 0.2 2.0

NACA 0012 0.2 0.5, 1.0, 2.0, 4.0
SC1095 0.2, 0.4, 0.6, 0.7, 0.8 2.0

RC(4)-10 0.2, 0.4, 0.6, 0.7, 0.8 2.0

Table 3.1: Freestream Conditions for Parametric Sweeps

3. Perform UQ Analysis - Monte Carlo Simulation: The Monte Carlo

method was used in conjunction with the surrogate surface in order to com-

pute the expected means and standard deviations of the aerodynamic coef-

ficients, given an input FSTI and standard deviation. These computations

were repeated over a range of angles of attack. For some of the airfoils, the

Mach or Reynolds number was also varied. The standard deviations of the

aerodynamic coefficients indicate the sensitivity of each parameter to un-

certainty in the FSTI. By computing the standard deviations for different

freestream conditions, it is possible to see how the freestream parameters

affect this sensitivity.

3.1 Parametric Sweeps

Based off of preliminary sweeps, the FSTI range of 0.05% to 5% was identified

as the area of interest for this study. An initial increment of 0.5% was used for

the first sweep. Three angles of attack were initially chosen: 0 degrees, 4 degrees,

and 8 degrees. Each case was then run in OVERTURNS until convergence. The

results of this initial sweep are shown in Fig. 3.1 for the S809 airfoil. This initial

sweep showed that the QOIs experienced rapid change between 0.5% and 2%
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(a) Lift coefficient (b) Drag coefficient

(c) Moment coefficient

Figure 3.1: Initial Turbulence Sweep for S809 Airfoil at Mach = 0.2, Re = 2× 106

FSTI. Additional points were therefore added to the sweep in this region until the

parametric sweep was well resolved. In addition, the angle of attack range was

expanded, from -4 degrees to 12 degrees, using 1 degree increments. The final

parametric sweep is shown in Fig. 3.2 for the S809 airfoil.
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(a) Lift coefficient

(b) Drag coefficient

Figure 3.2: Final Parametric Sweep for S809 Airfoil at Mach = 0.2, Re = 2× 106
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(c) Moment coefficient

Figure 3.2: Final Parametric Sweep for S809 Airfoil at Mach = 0.2, Re = 2× 106

(cont.)

3.2 Surrogate Surface Generation

Once the parametric turbulence sweep was complete, a surrogate surface

was generated using the “PCHIP” function in MATLAB [46]. PCHIP stands for

Piecewise Cubic Hermite Interpolating Polynomial. This function uses a Her-

mite polynomial P (x) to interpolate points from a given data set, resulting in a

monotonic cubic interpolation. The polynomial generated has a continuous first

derivative dP
dx

. The PCHIP function selects the slopes at each data point such

that the interpolating polynomial preserves the shape of the data and respects

monotonicity. Therefore the extrema of the data are also the extrema of P (x).

In this work, the PCHIP function was invoked using the range of 0% to 5.0%
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FSTI, with intervals of 0.001% as the input interpolation points for the PCHIP

function. The CFD results from the parametric sweep were used as the data to be

interpolated. The solid lines in Fig. 3.2 represent the generated surrogate surface.

It can be seen that PCHIP smoothly fills in the data between the CFD outputs.

3.3 UQ Analysis

Once the surrogate surface has been generated, the next step is to compute

the expected means and standard deviations. This can be achieved through either

a Monte Carlo approach or stochastic collocation. The Monte Carlo method was

deemed better suited for the current work since the use of the surrogate surface

allowed for a large number of runs to be conducted without a large computational

penalty. While stochastic collocation would have been more efficient, it was not

possible to use more than 5 nodes for quadrature with the desired mean input

FSTI (1%) and standard deviation (0.3333%). Increasing the number of nodes

with these inputs would have required CFD simulations to be run with negative

FSTI values, which was not possible (see Table 3.2). Therefore, a Monte Carlo

approach was taken. As shown by Fig. 3.3, using the Monte Carlo approach results

in the means and standard deviations to converge to the correct values. Since the

stochastic collocation method is limited to 5 nodes, it is not as accurate. Note

that the present work assumes that the uncertainty in FSTI results in a normal

distribution of freestream FSTI values.
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Node 5 Nodes - FSTI (percent) 6 Nodes - FSTI (percent)
1 4.777 ∗ 10−2 -0.1080
2 0.548 0.3703
3 1.0 0.7945
4 1.452 1.2055
5 1.952 1.6297
6 - 2.1080

Table 3.2: FSTI values for the quadrature for mean FSTI = 1%, σ = 0.3333

Figure 3.3: UQ Analysis for Drag - S809 Airfoil, Mach = 0.2, Re = 2× 106, Mean
FSTI = 1.0%, Std Dev = 0.3333%
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Airfoil No. of Inputs
S809 800,000

NACA 0012 350,000
SC1095 550,000

RC(4)-10 650,000

Table 3.3: Number of FSTI Input Values Required for Consistency

3.3.1 Monte Carlo Method

This section details how the Monte Carlo method was applied to determine

the expected mean and standard deviations for the aerodynamic coefficients. First

a vector of normally distributed FSTI input values was generated using the MAT-

LAB normal random number generation function ’normrnd’. The number of input

values was experimentally determined such that the results were consistent. This

number differed per airfoil; the number of input values are listed in Table 3.3. Once

this vector of inputs was generated, the aerodynamic coefficients were calculated

at these input values using the surrogate surface. The results were then averaged

and the standard deviation was calculated.

3.4 Validation

In order to be confident of the results of the process detailed above, it was

necessary to validate the method. This process included validating the surrogate

surface and verifying that the results were reasonable when compared to discrete

FSTI.
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3.4.1 Surrogate Surface Validation

In order to avoid the high costs of thousands of CFD simulations, surrogate

surfaces were used in place of actual CFD results. The surrogate surfaces were

generated using actual CFD results from parametric sweeps, as detailed in Sec. 3.1

- 3.2. In order to verify that the surrogate surfaces could be relied upon to provide

accurate results, both stochastic collocation and Monte Carlo simulations were

performed using both the surrogate surface. This was compared against stochastic

collocation using actual CFD simulations for a test case for the S809 airfoil. Note

that the Monte Carlo method was not used with actual CFD results due to its

excessively high computational cost. A five node Gauss-Hermite quadrature was

performed using a mean FSTI value of 1% and a standard deviation of 0.3333.

The 5 node quadrature therefore required 5 CFD simulations at the FSTI values

specified in Table 3.2. The results of the 5 CFD simulations are compared to the

results generated from the surrogate surface in Fig. 3.4. The figure shows that the

surrogate surface agrees well with the actual CFD results.

Once the aerodynamic coefficients were obtained from the surrogate surface

results, the expected mean and standard deviations could be calculated for the

test case (AOA = 8 degrees, mean FSTI = 1%, σ = 0.3333). The results of

this quadrature are presented in Table 3.4 using the actual CFD results and the

surrogate surface. The table shows that the final output of stochastic collocation

using the surrogate surface is comparable to the results of stochastic collocation

using actual CFD results. A Monte Carlo simulation using 10,000 runs was also

performed using the surrogate surface. The results of this Monte Carlo simulation
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(a) Lift coefficient (b) Drag coefficient

(c) Moment coefficient

Figure 3.4: Comparison of Surrogate Results and CFD Results for S809 Airfoil at
Mach = 0.2, Re = 2× 106, AOA = 8 degrees
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Stochastic
Collocation -
CFD - 5 Nodes

Stochastic
Collocation -

Surrogate - 5 Nodes

Monte Carlo -
Surrogate - 10,000

Runs
Coefficient Expected

Value
Standard
Deviation

Expected
Value

Standard
Deviation

Expected
Value

Standard
Deviation

Lift 1.077963 0.003297 1.077950 0.003234 1.077877 0.003214
Drag 0.0140970 3.082e-04 0.0140959 3.035e-04 0.0141036 3.005e-04

Moment -0.0633449 4.180e-04 -0.0633469 4.138e-04 -0.0633367 4.073e-04

Table 3.4: Comparison of Expected QOIs and Standard Deviations for for S809
Airfoil at Mach = 0.2, Re = 2× 106, AOA = 8 degrees

are also included in Table 3.4. The table shows that the results are all in general

agreement. Thus it was deemed that Monte Carlo with a surrogate surface could

be used for the uncertainty quantification of FSTI on airfoil aerodynamics.
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Parametric Sweep Results

While the main purpose of the parametric sweeps was to generate the surrogate

surfaces for the UQ analysis, many cases of interest were identified and investi-

gated. This chapter presents selected results which featured behavior worth noting

and exploring. Note that the complete parametric sweep results can be found in

Appendix A. Four airfoils were used: 1) S809, 2) NACA 0012, 3) SC1095, and

4) RC(4)-10. FSTI was varied from 0.05% to 5%. However, this section focuses

on the results up to 3% FSTI. The angle of attack was varied from -4° to 12° for

the S809, SC1095, and RC(4)-10 airfoil, with the exception of certain cases where

the convergence of the CFD cases became problematic due to the high angles of

attack, as discussed later. For the NACA 0012, the angle of attack was varied

from 0° to 12°. The negative angles of attack were omitted since the NACA 0012

is a symmetric airfoil. Mach number was also varied for the SC1095 and RC(4)-10

airfoils. In order to explore the effect of varying Reynolds number, four Reynolds
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Airfoil Mach Number Reynolds Number (×106)
S809 0.2 2.0

NACA 0012 0.2 0.5, 1.0, 2.0, 4.0
SC1095 0.2, 0.4, 0.6, 0.7, 0.8 2.0

RC(4)-10 0.2, 0.4, 0.6, 0.7, 0.8 2.0

Table 4.1: Freestream Conditions for Parametric Sweeps

numbers were used for the NACA 0012. Table 3.1 provides the freestream Mach

numbers and Reynolds numbers for each parametric sweep.

4.1 Computational Meshes

All the meshes used for this study are two-dimensional with C-topology

grids. 491 points are used in the wrap-around direction on the airfoil surface,

while 131 points are used in the wall-normal direction. These dimensions were

chosen to ensure sufficient discretization for result accuracy while minimizing the

computational time required to run CFD simulations. The outer boundary was

placed 40 chord lengths away from the airfoil to ensure that the outer domain did

not interfere with the CFD solution. The meshes for each airfoil are presented in

Fig. 4.1.

4.2 S809 Airfoil

The S809 airfoil is a thick airfoil (maximum thickness of 21% of chord) used

specifically in horizontal axis wind turbines. The NREL Phase VI model wind
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(a) S809 (b) NACA 0012

(c) SC1095 (d) RC(4)-10

Figure 4.1: Computational Meshes for Airfoil Parameter Sweeps
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.2: Parametric Sweep for S809 Airfoil at Mach = 0.2, Re = 2× 106
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(c) Moment coefficient

Figure 4.2: Parametric Sweep for S809 Airfoil at Mach = 0.2, Re = 2×106 (cont.)

turbine primarily uses this airfoil for its turbine blades [47]. The airfoil is designed

to promote laminar flow over the airfoil for over 50% of the airfoil at low angles

of attack. This design makes the S809 airfoil popular for transition studies. The

parameter sweep for the S809 airfoil was run at a freestream Mach number of 0.2

and a Reynolds number of 2 million.

Fig. 4.2 presents the parametric sweep for the S809 airfoil. Observe that lift

remains relatively constant as FSTI is varied, although there is a slight decrease

in lift as FSTI increases for the high AOA. Drag increases as FSTI increases for

all AOA, with the maximum amount of change occurring near 0° AOA. The pitch

moment also increases as FSTI increases for all AOA.

Fig. 4.3a depicts the coefficient of drag versus the angle of attack for various
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(a) Coefficient of Drag (b) Coefficient of Moment

Figure 4.3: S809 Airfoil at Mach = 0.2, Re = 2.0×106 - Aerodynamic Coefficients
vs. AOA

FSTI values up to 2%. The graph allows one to clearly visualize the “drag bucket.”

This drag bucket phenomenon is caused by the transition from laminar to turbulent

flow. When the flow is laminar, the drag does not change substantially, even

as angle of attack increases, creating the bottom of the bucket. When the flow

transitions to turbulent flow, the drag increases sharply and continues to increase

as angle of attack increases, creating the sides of the bucket. One can note that

for low FSTI values (0.05% - 1.0%), the laminar portion of the graph is much

larger. At higher FSTI values (1.5% and 2%), the laminar region is much shorter

and steeper. One can also note that at low angles of attack, there is a significant

difference between the values of drag between FSTI values of 1% and 2%. However,

as AOA increases, the curves for all the FSTI values approach the same drag

coefficient value. A similar trend can be seen for the coefficient of moment, as

illustrated in Fig. 4.3b, where the 0.05%, 0.5%, and 1.0% FSTI curves fall on top

of each other at the plotted moderate AOA.
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(a) Skin Friction - AOA = 0° (b) Pressure - AOA = 0°

(c) Skin Friction - AOA = 8° (d) Pressure - AOA = 8°

Figure 4.4: S809 Airfoil at Mach = 0.2, Re = 2.0×106 - Skin Friction and Pressure
Plots - Separation Bubble
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Figure 4.5: Separation Bubble for S809 Airfoil for AOA = 0°, FSTI = 1.0%, Mach
= 0.2, Re = 2.0× 106

Fig. 4.4 shows the coefficients of pressure and skin friction along the airfoil for

an angle of attack of 0° and 8° AOA. Note that the curve at the top portion of the

graph represents the upper surface of the airfoil, while the curve at the bottom

of the graph represents the lower surface. Also note the sign convention for skin

friction plots: airflow moving from left-to-right over the airfoil results in positive

skin friction on the upper surface and negative skin friction on the lower surface.

The transition from laminar to turbulent flow can be determined from the skin

friction coefficient plots. The steep increase in the magnitude of the skin friction

coefficient indicates the transition location. As can be seen from the plots, as the

FSTI value increases, the transition location moves toward the leading edge of the

airfoil.

In addition, the skin friction plots can be used to determine the type of transi-

tion. Observe the skin friction coefficient plot for AOA of 0°. For the lower values

of FSTI (0.05% and 0.5%), it can be seen that the friction becomes negative on the
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upper surface right before transition. The opposite occurs on the bottom surface.

This indicates that the air flow has reversed direction in this region. This indi-

cates a separation bubble has formed, and the air is circulating in this bubble, as

pictured in Fig. 4.5. The laminar separation bubble results in separation-induced

transition (see sec. 1.2.6). Once the flow transitions, the turbulent boundary layer

then reattaches to the airfoil.

The separation bubbles can also be seen on the pressure plots, albeit more

subtly. There is a small pressure drop at the bubble, since suction pressure de-

creases due to the adverse pressure gradient. Since the location of the bubble varies

slightly for each FSTI case, the pressure plot varies slightly at the location of the

separation bubble. The separation bubbles have been circled on the figure. One

can notice that the transition location does not move as much between 0.05% and

1.0%, when compared to the change in transition location between 1.5% and 2.0%.

On the other hand, at 0° AOA for 1.5% and 2.0% FSTI, there is no negative skin

friction for the upper surface and no positive skin friction for the lower surface.

Rather, the skin friction just increases steeply. This indicates natural transition

has occurred. The flow remains attached in this case as well.

At 8° AOA, all five cases undergo separation-induced transition, with a very

small separation bubble near the leading edge at the top of the airfoil. At the

bottom surface, another separation bubble is present near mid-chord, except for

the 2.0% FSTI case, which undergoes natural transition here. Again, there is only

a small change in transition location as FSTI varies. The lack of change in the

transition location at 8° AOA explains why, in Fig. 4.3a, there is only a small
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difference in drag at the high angles of attack, but greater difference at lower

angles of attack. At low angles of attack, the type of transition changes from

separation-induced to natural transition. At high angles of attack, separation-

induced transition occurs predominantly.

It can be noted that there is a significant difference between the 0° and 8° AOA

plots. The transition location moves from mid-chord to the leading edge of the

airfoil and a much larger pressure gradient is present for the 8° AOA case on the

upper surface. On the lower surface, the transition location only moves slightly

aft from 0° to 8° AOA because of the separation induced transition near midchord

at lower FSTI.

4.3 NACA 0012 Airfoil

The NACA 0012 airfoil is a symmetrical airfoil with a maximum thickness of

12% of the chord. This airfoil was used for helicopter rotors for a number of years.

The large amount of experimental data available for the NACA 0012 makes it an

ideal ”yardstick” to compare other airfoils against. In this study, the NACA 0012

airfoil was used for the Reynolds number sweep using a constant Mach number of

0.2. The results of the parametric studies for the four Reynolds numbers selected

are presented in Figs. 4.6 - 4.17.
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.6: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 0.5×106
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(c) Moment coefficient

Figure 4.6: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 0.5×106

(cont.)

Re = 500,000

Fig. 4.6 shows the results of the parametric sweep for the NACA 0012 airfoil

at a Reynolds number of 500,000. Most of the variations are relatively smooth.

Similar to the S809, the lift curves remain relatively constant as FSTI varies. At

low AOA, drag also does not change much at low values of FSTI up to 1.0%.

From 1.0% to 2.0%, drag increases noticeably with FSTI. At high AOA, the drag

increases as FSTI increases. Moment decreases as FSTI increases, with the excep-

tion of AOA 3° to 6°. At these AOA, moment first increases to a peak between

FSTI values of 1.25% and 1.75% before decreasing again as FSTI increases.

Fig. 4.7 presents the pressure and friction plots for 5°, 6°, and 12° AOA. As
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(a) Pressure - AOA = 5° (b) Skin Friction - AOA = 5°

(c) Pressure - AOA = 6° (d) Skin Friction - AOA = 6°

(e) Pressure - AOA = 12° (f) Skin Friction - AOA = 12°

Figure 4.7: Pressure and Friction Plots for NACA 0012 Airfoil, Re = 0.5 × 106,
Mach = 0.2
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(a) AOA = 5° (b) AOA = 6°

(c) AOA = 12°

Figure 4.8: Zoomed in Skin Friction Plots for NACA 0012 Airfoil, Re = 0.5× 106,
Mach = 0.2
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(a) FSTI = 0.05% (b) FSTI = 3.0%

Figure 4.9: NACA 0012 - Coefficient of Lift, Mach = 0.2

can be seen from the skin friction graphs, the flow remains laminar on the bottom

surface, with the exception of the 2% FSTI case for 5° and 6° AOA. Fig. 4.8 zooms

in on the separation bubble region. At this Reynolds number, at the lower FSTI

values, two separation bubbles form. After the first bubble, the flow reattaches

without becoming fully turbulent, before forming a second separation bubble. The

flow finally transitions fully after this second bubble. At 5° AOA, only the 0.05%

and 0.5% FSTI cases exhibit this double separation bubble, while at 6° AOA, the

phenomenon occurs for all the FSTI values besides 2.0%. At 12° AOA, all five

FSTI values have the double separation bubble. This double separation bubble

does not occur at Reynolds numbers of 2 million and higher, as will be shown in

later sections.

Since the two separation bubbles are near the leading edge of the airfoil on the

upper surface, they effectively add positive camber to the airfoil. This results in

an increase in suction pressure at the leading edge, which in turn increases the lift.

This is why the suction peak in the pressure graphs is slightly higher for the cases
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which have multiple separation bubbles. This also accounts for the increase in lift

for the Re = 500,000 case at the moderate angles of attack, as shown in Fig. 4.9.

As FSTI varies, the bubble locations move, which is why there is a steep increase

in pitching moment at the moderate angles of attack for low FSTI values in Fig.

4.6c. The steep increase is limited to the region with the separation bubbles. At

the higher FSTI values, the flow undergoes natural transition and the moment

begins to decrease as FSTI increases.

Re = 1 × 106

The results of the sweep for a Reynolds number of 1 million are presented in

Fig. 4.10. For this sweep, certain cases did not converge smoothly to a single

value, but rather resulted in repeating oscillations, as can be seen in Fig. 4.11. In

order to obtain the final aerodynamic coefficients, the results were averaged from

peak to peak for the last three to five oscillations. Table 4.2 lists the cases where

this method was applied. The different methods used to obtain the quantities of

interest resulted in a noticeable jump in values in the moment coefficient graph in

Fig. 4.10.

Fig. 4.12 shows the skin friction plots for 5°, 6°, and 12° AOA cases. Similar

trends to the Reynold number of 500,000 cases can be seen. Fig 4.13 shows the

portion of the skin friction plots where the separation bubbles are present. The

double separation bubble phenomenon is present for an FSTI value of 0.05% at 5°

AOA, for FSTI values of 0.05% - 1.0% at 6° AOA, and for all of the FSTI values

at 12° AOA except for FSTI of 1.5%. One noticeable difference between Reynolds
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.10: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 1×106,
Mach = 0.2
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(a) Density Residual (b) Coefficient of Lift

Figure 4.11: Convergence Oscillations - NACA 0012 - Mach = 0.2, Re = 1× 106,
AOA = 5°, FSTI = 0.1%

numbers 500,000 and 1 million is that the bottom surface is no longer laminar for

the Reynolds number of 1 million and instead undergoes natural transition for all

of the AOA. It can also be noted that as angle of attack increases, the transition

location moves closer to the leading edge on the upper surface and closer to the

trailing edge on the bottom surface. One can also see that, as FSTI varies for the

5° AOA case, there is a greater change in transition location, but for 6° and 12°

AOA, there is only a small amount of change in transition location.

Re = 2 × 106

Fig. 4.14 shows the sweep results for a Reynolds number of 2 million. When

compared to the lower Reynolds number, one can observe that there is more

change in drag as FSTI increases, especially at the higher angles of attack. At

low Reynolds number, the drag is relatively constant at these higher angles. This

can be explained by examining the skin friction plots in Fig. 4.15. As can be seen

Application of Uncertainty Quantification to Turbulence Intensity 76



CHAPTER 4. PARAMETRIC SWEEP RESULTS

Angle of Attack (degrees) FSTI (percent)
4 0.1 - 0.4
5 0.05 - 0.4

Table 4.2: NACA 0012 - Mach = 0.2, Re = 1 × 106, Mach = 0.2 - Peak-to-Peak
Averaged Cases

(a) AOA = 5° (b) AOA = 6°

(c) AOA = 12°

Figure 4.12: Skin Friction Plots for NACA 0012 Airfoil, Re = 1.0× 106, Mach =
0.2
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(a) AOA = 5° (b) AOA = 6°

(c) AOA = 12°

Figure 4.13: Zoomed in Skin Friction Plots for NACA 0012 Airfoil, Re = 1.0×106,
Mach = 0.2
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.14: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 2×106,
Mach = 0.2
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(a) AOA = 6° (b) AOA = 8°

(c) AOA = 10° (d) AOA = 12°

Figure 4.15: Skin Friction Plots for NACA 0012 Airfoil, Re = 2.0× 106, Mach =
0.2
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(a) L/D vs Angle of Attack (b) Cd vs Cl

Figure 4.16: NACA 0012 Airfoil at Mach = 0.2, Re = 2× 106, Mach = 0.2

from these plots, transition on the upper surface occurs at the leading edge at

these angles. Since transition occurs so close to the leading edge, the flow is able

to stay attached after transition. The turbulent flow therefore has a greater effect

on the skin friction, and therefore the drag. On the other hand, at low Reynolds

numbers, some separation occurs, allowing the drag to remain constant.

It can also be noted that the sharp increases in moment are no longer present

for a Reynolds number of 2 million. Instead, as angle of attack increases, there is

a sudden decrease in moment which becomes steeper and occurs at higher FSTI

values as angle of attack increases. When examining the skin friction plots, it be-

comes apparent that this sudden drop in moment is correlated to transition on the

bottom surface. At the lower FSTI values, the flow has a small separation bubble

near the trailing edge of the bottom surface; for the higher FSTI values, natural

transition occurs near mid-chord. The separation bubble results in a virtual in-

crease in reverse camber, which in turn affects the moment coefficient. Therefore,

there is sharp drop in moment when comparing the low FSTI cases which have
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this trailing edge separation bubble and the higher FSTI values which have natural

transition.

Compare the pitching moment for the S809 airfoil (Fig. 4.2) and the pitch-

ing moment for the NACA 0012 at a Reynolds number of 2 million (Fig. 4.14).

Note that even though the freestream Mach and Reynolds numbers are identical,

the trends are significantly different. The NACA 0012 airfoil pitching moment

decreases as FSTI increases, including the region of sharp decreasing pitching mo-

ment. On the other hand, the pitching moment increases as FSTI increases for

the S809 airfoil.

Fig. 4.16 shows the L/D curve and drag polar for various values of FSTI. At

the lower FSTI values, there is a larger peak in the L/D curve but a faster drop

off. The higher FSTI values stay flatter. All of the FSTI curves approach a similar

value at the high angles of attack.

Re = 4 × 106

The results for the Reynolds number of 4 million sweep are shown in Fig.

4.17. This case is very similar to the case for a Reynolds number of 2 million case.

There is a large change in drag at the higher angles of attack due to the large

region of attached flow. However, there is a noticeable difference in the moment

coefficient plot. The sharp decrease in moment has shifted left (i.e. at lower FSTI

values). Fig. 4.18 shows the skin friction for an angle of attack of 12 degrees.

When comparing this case against lower Reynolds numbers, one can see that the
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(a) Drag coefficient

Figure 4.17: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 4×106

transition location on the bottom surface has moved forward. Also, the 1% FSTI

case also naturally transitions at this Reynolds number.

4.4 SC1095 Airfoil

The SC1095 airfoil was designed by Sikorsky Aircraft for use on the Black

Hawk UH-60A helicopter. It is a cambered airfoil witha maximum thickness of

9.5%. The airfoil can be considered to be representative of modern airfoil design

[48]. In this study, the Mach number was varied for this airfoil from 0.2 to 0.8.

The results of the parametric study are presented in Figs. 4.19 - 4.30. Note that

for the sweeps with a Mach number of 0.6 or greater, the results have been omitted

for high angles of attack (i.e. over 6 degrees). These cases did not result in stable
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(b) Moment coefficient

Figure 4.17: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 4×106

(cont.)

Figure 4.18: Skin Friction Plot for NACA 0012 Airfoil, Re = 4.0 × 106, Mach =
0.2, AOA = 12 degrees
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steady solutions. This is due to unsteady transonic effects due to shock induced

separation, which are beyond the scope of this work.

Mach 0.2

Fig. 4.19 shows the results for a Mach number of 0.2 and a Reynolds num-

ber of 2 million. The plots show trends similar to the NACA 0012 at the same

conditions. Comparing the results of both the NACA 0012 and SC1095 against

the S809 airfoil, one can see that minimum drag for the NACA 0012 and SC1095

airfoils is lower than the S809 airfoil. This makes sense, since the NACA 0012 and

SC1095 airfoils are used for helicopter rotors and therefore drag minimization was

a significant design consideration. On the other hand, the S809 airfoil’s primary

design objective was promoting laminar flow.

Fig. 4.20 shows the L/D plot and drag polar for various FSTI values. From the

L/D plot, it can be seen that the low FSTI curves (0.05% and 0.5%) are close to

each other, indicating there is not much variance. This is attributed to the smaller

drag bucket (shown in the drag polar graph) when compared to NACA 0012. This

smaller drag bucket is due to the camber of the SC1095 airfoil.

Fig. 4.21 shows the skin friction plots for the cases at Mach 0.2. Once again,

the graphs show similar trends to the NACA 0012 results (see Fig. 4.15). However,

for the SC1095 airfoil, at the high angles of attack and lower values of FSTI, the

separation bubble does not occur right at the leading edge, but rather slightly

later.
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.19: Parametric Sweep for SC1095 Airfoil at Mach = 0.2, Re = 2× 106
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(a) L/D vs Angle of Attack (b) Cd vs Cl

Figure 4.20: SC1095 Airfoil at Mach = 0.2, Re = 2× 106

Mach 0.4

Fig. 4.22 shows the drag coefficient for the Mach 0.4 sweep. Note the

large increase in drag between AOA of 10° and 12°. Fig. 4.23 shows the Mach

contours at these angles of attacks for FSTI values of 0.5% and 2.0%. From these

plots, it can be seen that there is not much difference between the 0.5% and 2.0%

cases. However, when comparing the 10° and 12° AOA cases, the Mach number is

observed to be higher for the 12 degree case near the leading edge of the airfoil.

The boundary layer is also observed to be much thicker for the 12° AOA case.

This thicker boundary layer negatively affects the effective camber at the trailing

edge. This results in a small drop off in lift and a large jump in drag.
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(a) AOA = 4° (b) AOA = 6°

(c) AOA = 8° (d) AOA = 10°

(e) AOA = 12°

Figure 4.21: Skin Friction Plots for SC1095 - Mach = 0.2
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Figure 4.22: Parametric Sweep for Drag Coefficient - SC1095 Airfoil at Mach =
0.4, Re = 2× 106

Mach 0.6

Fig. 4.24 shows the coefficient of drag for the Mach 0.6 sweep. The graph

resembles the graphs for the Mach 0.4 cases. However, the jumps in drag have

increased between each angle of attack. The magnitude of the jump between 5°

and 6° AOA for Mach 0.6 is of the same magnitude as the jump between 10° and

12° AOA for Mach 0.4. It can also be noted that for each curve, drag remains

fairly constant before a noticeable jump as FSTI increases. After this jump, drag

remains constant. Fig. 4.25 compares the Mach contours for FSTI values of 0.5%

and 2.0% for the 6° AOA case. The spike in Mach along the airfoil indicates that

a shock has occurred there. However, similar to the Mach 0.4 case, there is not

much change between FSTI values of 0.5% and 2.0%.
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(a) AOA = 10°, FSTI = 0.5% (b) AOA = 12°, FSTI = 0.5%

(c) AOA = 10°, FSTI = 2.0% (d) AOA = 12°, FSTI = 2.0%

Figure 4.23: Mach Contours for SC1095 Airfoil at Mach = 0.4, Re = 2× 106
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Figure 4.24: Parametric Sweep for Drag Coefficient - SC1095 Airfoil at Mach =
0.6, Re = 2× 106

Fig. 4.26 shows the pressure and skin friction plots. Observe that the upper

surface is virtually unaffected as FSTI increases. However, the transition location

moves forward as the FSTI increases. For this case, there is a large jump in the

transition location between 1% and 1.5%. This corresponds to the increase in drag

that was noted earlier in Fig 4.24.

Mach 0.7

Fig. 4.27 presents the results of the Mach 0.7 sweep. Note that the lift

actually decreases between 4° and 6° AOA. There is also a very large increase in

drag and a large decrease in moment between 4° and 6° AOA. Fig. 4.28 shows the

Mach contours for the 6° case for FSTI = 0.5% and 2.0%. Unlike the previous

Mach numbers, there is a noticeable, albeit still small, difference between the two
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(a) FSTI = 0.5% (b) FSTI = 2.0%

Figure 4.25: Mach Contours for SC1095 Airfoil at Mach = 0.6, Re = 2×106, AOA
= 6 degrees

(a) Coefficient of Pressure CP (b) Skin Friction Cf

Figure 4.26: Pressure and Friction Plots for SC1095 Airfoil, Mach = 0.6, AOA =
6 degrees

Application of Uncertainty Quantification to Turbulence Intensity 92



CHAPTER 4. PARAMETRIC SWEEP RESULTS

FSTI values. The shock is stronger for the 2.0% FSTI case. The pressure and skin

friction plots are shown in Fig. 4.29. Observe that the low FSTI values result in

a small reduction in the suction peak on the upper surface.

Mach 0.8

The lift and moment curves for the Mach 0.8 sweep are presented in Fig. 4.30.

There are large jumps in lift between -2°, 0°, and 2° AOA. On the other hand,

the lift for 2°, 4°, and 6° AOA are all bunched together. The 2° AOA case is

of particular interest, especially between 1.0% and 1.25%. At this point, the lift

increases before decreasing again, unlike any of the other angles of attack. The

moment also decreases before increasing in this range. The pressure and skin

friction plots are provided for this case in Fig. 4.31. The plots reveal why such

rapid change in the aerodynamic coefficients occurs between FSTI values of 1.0%

and 1.25%. The plots show that the shock has moved downstream. For the 1.0%

case, it is evident that the flow becomes turbulent after the shock. The drop in

skin friction on the upper surface of the 1.0% FSTI case indicates the shock has

occurred, and then the increase in skin friction marks the transition to turbulent

flow. The FSTI value of 1.25% leads to flow transition at the shock. The 1.25%

FSTI case undergoes transition before the shock. This results in very different skin

friction profiles for each case (and lift and moment curves), even though FSTI is

only varying by a small amount.

Figs. 4.32 and 4.33 show the Mach contours, pressure, and skin friction plots

for the 6° AOA cases. The Mach contours show that at an FSTI of 0.5%, there is a
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(a) Lift coefficient

(b) Drag coefficient

Figure 4.27: Parametric Sweep for SC1095 Airfoil at Mach = 0.7, Re = 2× 106
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(c) Moment coefficient

Figure 4.27: Parametric Sweep for SC1095 Airfoil at Mach = 0.7, Re = 2 × 106

(cont.)

(a) FSTI = 0.5% (b) FSTI = 2.0%

Figure 4.28: Mach Contours for SC1095 Airfoil at Mach = 0.7, Re = 2×106, AOA
= 6 degrees
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(a) Coefficient of Pressure CP (b) Skin Friction Cf

Figure 4.29: Pressure and Friction Plots for SC1095 Airfoil, Mach = 0.7, AOA =
6 degrees

weaker shock that occurs closer to the leading edge, which results in a longer sep-

aration bubble. The skin friction plot shows that the 2.0% case transitions before

the shock, the 1.5% case transitions at the shock, and the low FSTI cases undergo

separation-induced transition, as evidenced by the separation bubble. Once again,

these differences are responsible for the change in moment in Fig. 4.30.

4.5 RC(4)-10 Airfoil

The RC(4)-10 airfoil was designed by NASA for the inboard section of he-

licopter rotors [49]. The airfoil was designed to optimize the maximum lift coef-

ficient in order to increase the lift load capacity of the retreating rotor blade. In

the present work, the Mach number was varied for this airfoil from 0.2 to 0.8. The

results of the parametric studies are presented in Figs. 4.34 - 4.45. Note that,

like the SC1095 airfoil, the results have been omitted for high angles of attack (i.e.
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(a) Lift coefficient

(b) Moment coefficient

Figure 4.30: Parametric Sweep for SC1095 Airfoil at Mach = 0.8, Re = 2× 106
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(a) Coefficient of Pressure CP (b) Skin Friction Cf

Figure 4.31: Pressure and Friction Plots for SC1095 Airfoil, Mach = 0.8, AOA =
2 degrees

(a) FSTI = 0.5% (b) FSTI = 2.0%

Figure 4.32: Mach Contours for SC1095 Airfoil at Mach = 0.8, Re = 2×106, AOA
= 6 degrees
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(a) Coefficient of Pressure CP (b) Coefficient of Skin Friction Cf

Figure 4.33: Pressure and Friction Plots for SC1095 Airfoil, Mach = 0.8, AOA =
6 degrees

over 7 degrees) at high Mach numbers. Also note that, similar to the NACA 0012,

certain cases did not converge to a single value, but rather resulted in repeating

oscillations (see Fig. 4.11). The values were averaged peak-to-peak for the last

three to five oscillations. The cases which were averaged are listed in Table 4.3.

Mach 0.2

Fig. 4.34 shows the results for Mach 0.2 sweep for the RC(4)-10. The drag

coefficient plot looks fairly similar to the SC1095 sweep at the same conditions

(Fig. 4.19), with the exception of the 2° AOA case, which has a sharp increase

in drag around 0.5% FSTI. The 2° and 4° AOA cases also exhibit an increase in

moment before decreasing, which was not present in the SC1095 case.

Fig. 4.35 shows the L/D and drag polar plots for this sweep at various FSTI

values. Comparing against the SC1095 results (Fig. 4.20), one notes that the
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RC(4)-10 is able to achieve higher L/D values as a more modern airfoil. However,

besides this, the trends are fairly similar between the two airfoils, although the

drag bucket is much sharper for the RC(4)-10 at low FSTI values.

Fig. 4.36 presents the skin friction plots for the Mach 0.2 sweep. One thing to

note is the large change in transition location for the 2° AOA case. As the angle

of attack increases, the change in the transition location becomes smaller.

Mach 0.4

The results for the Mach 0.4 sweep are presented in Fig. 4.37. Note in Fig.

4.37, that there is a noticeable jump in drag between 0.6% and 0.75% FSTI for

the 2° AOA case. However, it is possible that this is due to the fact that the

values obtained for the FSTI values from 0.3% to 0.6% at this angle of attack

were obtained using peak-to-peak averaging. However, one thing to note when

examining the moment graph is that even the lower FSTI values for the 2° AOA

case (which were not averaged) are greater than the 4° AOA case. Also, the 4°

and 6° AOA cases show the trend of an increasing and then decreasing moment

coefficient, which was seen previously.

Fig. 4.38 presents the skin friction plots for the Mach 0.4 sweep. Once again, it

can be seen that as angle of attack increases, the change in transition location de-

creases. One interesting case is the 0.5% FSTI case at 2° AOA. This case behaves

very differently to the other cases, and starts undergoing transition before relami-

narizing on the bottom surface. On the other hand, the flow at the FSTI value of
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.34: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.2, Re = 2× 106
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Mach Number Angle of Attack (degrees) FSTI (percent)
0.2 1 0.5

0.4
1 0.1-0.4
2 0.3-0.6

0.6 2 0.05

Table 4.3: RC(4)-10 - Peak-to-Peak Averaged Cases

(a) L/D vs Angle of Attack (b) Cd vs Cl

Figure 4.35: RC(4)-10 Airfoil at Mach = 0.2, Re = 2× 106
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(a) AOA = 2° (b) AOA = 4°

(c) AOA = 8° (d) AOA = 12°

Figure 4.36: Skin Friction Plots for RC(4)-10 - Mach = 0.2, Re = 2× 106
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0.05% remains laminar for the entire bottom surface while the cases with higher

values of FSTI undergo transition as usual. This relaminarization phenomenon

was not observed for the same conditions for the SC1095 airfoil.

In order to investigate further, the pressure, skin friction, and intermittency

were compared, as shown in Fig. 4.39. A plot of the airfoils’ geometries is also

provided in the figure. The intermittency plot confirms that the bottom surface

of the RC(4)-10 relaminarizes in the midst of transition, whereas the SC1095

undergoes full transition. A comparison of the pressure plots reveals that the

RC(4)-10 does not have as favorable of a pressure gradient. When comparing

the two airfoil profiles, it can be seen that the RC(4)-10 is slightly flatter on the

bottom surface when compared to the SC1095. In addition, Fig. 4.1 shows that the

RC(4)-10 has extra camber at the leading edge compared to the SC10095. These

geometrical features lead to the relaminarization at these freestream conditions.

Mach 0.6

The results for the Mach 0.6 are presented in Fig. 4.40. The results appear

to be fairly similar to the previous results. Fluctuations are again present for the

moment coefficient at 4° AOA. However, there is no cross-over between 2° and 4°

AOA. Fig. 4.41 shows the skin friction plots at 2° and 4° AOA. Both the 0.05%

and 0.5% FSTI cases at 2° AOA relaminarize after beginning transition. At 4°,

the large change in moment can be explained by the small separation bubble near

the bottom of the trailing edge for the 0.5% and 0.05% cases, which is not present

at the higher FSTI cases.
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.37: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.4, Re = 2× 106
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(a) AOA = 2° (b) AOA = 4°

(c) AOA = 6°

Figure 4.38: Skin Friction Plots for RC(4)-10 - Mach = 0.4
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(a) Airfoil Geometry (b) Intermittency

(c) Coefficient of Pressure CP (d) Coefficient of Skin Friction Cf

Figure 4.39: Comparison of Plots for SC1095 Airfoil and RC(4)-10, Mach = 0.4,
AOA = 2 degrees, FSTI = 0.5%
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.40: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.6, Re = 2× 106
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(a) AOA = 2° (b) AOA = 4°

Figure 4.41: Skin Friction Plots for RC(4)-10 - Mach = 0.6

Mach 0.7

Fig. 4.42 shows the results of the Mach 0.7 sweep. It is fairly similar to

the Mach 0.6 sweep. However, there is one prominent difference. At 6° AOA, the

moment is significantly lower, dropping below the 0° AOA case at some points.

Fig. 4.43 shows the skin friction plot for the 6° AOA case. One notices that after

the shock, the friction remains negative, indicating that the flow never reattaches

after the shock. The Mach contour of the 0.5% case, as shown in Fig. 4.44 confirms

this.

Mach 0.8

Fig. 4.45 presents the results of the Mach 0.8 sweep. One thing to note is

that the -4° AOA case has a very large moment coefficient compared to the other

angles of attack. Also, the 6° AOA case has similar behavior to the Mach 0.7 case.
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.42: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.7, Re = 2× 106
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Figure 4.43: Skin Friction Plot for RC(4)-10 - Mach = 0.7 - AOA = 6 degrees

Figure 4.44: Mach Plot for RC(4)-10 - Mach 0.7 - AOA = 6° - FSTI = 0.5%
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The pressure, skin friction, and Mach contours are shown for both angles of attack

in Fig. 4.46.

The skin friction plot for the -4° AOA case shows that there is separation

induced transition on the upper surface for the lower FSTI values. This results

in a small increase in suction pressure at the separation bubble, whereas the high

FSTI values undergo natural transition and therefore do not have this increase

in pressure. The -4° AOA case also shows a strong shock on the bottom surface

followed by a region with a thin layer of separation.

For the 6° AOA case, the skin friction plot shows that the flow remains laminar

on the bottom surface, even after the shock. This behavior differs greatly from

the SC1095 at the same conditions (see Fig. 4.33). Once again, this is due to the

difference in the geometries of the airfoils, which were noted earlier.
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(a) Drag coefficient

(b) Moment coefficient

Figure 4.45: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.8, Re = 2× 106
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(a) CP - AOA = -4° (b) CP - AOA = 6°

(c) Cf - AOA = -4° (d) Cf - AOA = 6°

(e) Mach Plot - AOA = -4° - FSTI = 0.5% (f) Mach Plot - AOA = 6° - FSTI = 0.5%

Figure 4.46: Plots for RC(4)-10 Airfoil, Mach = 0.8, Re = 2× 106
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Chapter 5

Uncertainty Quantification

Results

This chapter presents the results of the UQ analysis. In order to obtain these 

results, a Monte Carlo approach was used, as described in section 3.3.1. Results 

are shown for a mean FSTI of 1% with a standard deviation of 0.3333%, unless 

stated otherwise. A standard deviation of 0.3333 with a mean of 1.0% means that 

99.73% of the input values are expected to be within 0% and 2.0%. The results 

consist of the expected means and standard deviations for each of the four airfoils 

for various Mach and Reynolds numbers, as specified in Table 3.1. The standard 

deviations can be used to determine the sensitivity of the coefficients of lift, drag, 

and momentum as various parameters are varied. These parameters include FSTI, 

angle of attack, Mach number, and Reynolds number. An increase in standard 

deviation indicates that the quantity of interest is more sensitive to uncertainty
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in FSTI. Trends in standard deviation can simply be explained by examining how

the aerodynamic coefficients change as FSTI is varied at each AOA. However, this

section explains these trends further by correlating the trends in sensitivity of the

quantities of interest to the physics of the airflow.

5.1 S809 Airfoil Results

In order to demonstrate the importance of UQ analysis, Monte Carlo simu-

lations were run for the S809 airfoil at an AOA of 2° with an input FSTI standard

deviation of 0.3333%. Two mean input values were used for FSTI: 1.5% and 4.0%.

Fig. 5.1 shows the distributions of the input FSTI values as well as the output

moment coefficient. As illustrated by the figure, the mean input of 4.0% results in

a normal distribution for the moment coefficient. However, when the mean input

is changed to 1.5%, the output is not normally distributed. Instead, there is a

second peak in the distribution near a pitching moment coefficient value of -0.059.

This shows that even with a normally distributed input, the outputs could vary

considerably. This also demonstrates why a large number of runs are required

for the Monte Carlo simulation to reach statistical convergence. By applying UQ

analysis using a Monte Carlo simulation, the true mean and standard deviation

can be determined.

Monte Carlo simulations were run for the S809 airfoil for AOA from -4° to 12°,

using different mean input FSTI values and different input standard deviations.

Fig. 5.2 shows the results for a mean FSTI input of 1.0% and an input standard
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(a) Mean Input FSTI = 4.0%

(b) Mean Input FSTI = 1.5%

Figure 5.1: Distributions of Inputs and Outputs for S809 Airfoil at AOA = 2°,
Mach = 0.2, Re = 2× 106, Input σ = 0.3333%
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deviation of 0.3333%. The error bars on the figure represents the output standard

deviation. The values obtained for the discrete 1.0% FSTI value (i.e. without any

input uncertainty) are shown for comparison. As shown in the figure, the discrete

values are close in value to the values obtained with input uncertainty in FSTI,

especially for lift and moment. However, there is a noticeable difference between

the discrete values and the values obtained via Monte Carlo for the coefficient of

drag, especially at low angles of attack. Note that the standard deviations for

lift are also very small. On the other hand, the standard deviations for drag and

moment are much larger with respect to the magnitude of the drag and moment

coefficient, respectively. Variation in standard deviation values can be observed

clearly as AOA increases.

Plots in Fig. 5.3 shows the results of varying the mean of the input FSTI value

between 1.0% to 2.0%. This sweep was performed to narrow down the region of

interest. In order to better visualize the trends present, the difference between

the expected mean of the aerodynamic coefficients with uncertainty in the input

FSTI and the discrete value obtained if no uncertainty was present is plotted

against AOA in one plot, and the standard deviations are shown in a separate

plot. Note that standard deviation is essentially a measure of sensitivity to the

input uncertainty in FSTI. Proceeding forward, sensitivity is used interchangeably

with the output standard deviation. The plots of the aerodynamic coefficients

show that the trends vary as the mean input is increased. As was shown in the

parameter sweeps for the S809 airfoil (see Fig. 4.2), the aerodynamic coefficients

do not vary linearly with FSTI. Therefore changing the mean input FSTI value

results in variation in the difference between the discrete values and mean Monte
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(a) Lift coefficient (b) Drag coefficient

(c) Moment coefficient

Figure 5.2: Monte Carlo Results for S809 Airfoil for Mean Input FSTI 1.0% and
Standard Deviation 0.3333%
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(a) Lift coefficient

(b) Drag coefficient

(c) Moment coefficient

Figure 5.3: UQ Results for S809 Airfoil at Mach = 0.2, Re = 2 × 106, Input
σ = 0.3333%
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(a) Lift coefficient

(b) Drag coefficient

(c) Moment coefficient

Figure 5.4: UQ Results for S809 Airfoil at Mach = 0.2, Re = 2× 106, Mean FSTI
= 1.0%
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Carlo outputs.

As can be seen from the standard deviation plots, the sensitivity of the quan-

tities of interest are lower for a mean FSTI of 2.0%. The trends from the S809

parametric sweep support these results (see Fig. 4.2). As FSTI increases above

2.0%, the trends become relatively linear and do not vary as much. Therefore, the

sensitivity of the quantities of interest to uncertainty in FSTI decreases for input

FSTI values of 2.0% or greater. Fig. 5.3 shows that at low angles of attack (up

to 3°), there is greater sensitivity for a mean FSTI of 1.5%, while at moderate to

high angles of attack, sensitivity is greater for the mean input 1.0% case.

Fig. 5.4 shows the Monte Carlo results for different input standard deviations.

As expected, decreasing the input standard deviation decreases the sensitivity

to the aerodynamic coefficients and the difference between the discrete and mean

coefficients. An input standard deviation of zero means that there is no uncertainty

present. As the input standard deviations approach zero, the expected means

approach the discrete values and the standard deviations approach zero. However,

it is interesting to note that at high angles of attack (9° or greater), the curves

approach a single value. This indicates that at angles of attack of 9° or greater,

an increase in the amount of uncertainty in FSTI does not impact the final results

as much as it would at angles of attack below 9°.

When comparing the difference in coefficients to the standard deviation plots,

note that the trends and peaks do not necessarily correlate. The two types of

graphs provide different information. While the difference between the discrete
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Figure 5.5: Drag Polar for S809 Airfoil at Mach = 0.2, Re = 2× 106

and mean values may be important for practical application for a specific case,

it does not provide any information about the sensitivity of each coefficient to

the input uncertainty, which is the focus of the present work. The plots of the

difference between the discrete and mean coefficients is therefore omitted when

discussing the other three airfoils.

The standard deviations graphs show that all three coefficients have peaks in

sensitivity at an angle of attack of 4° and after this point, the standard deviations

decrease monotonically. This peak can be attributed to the “drag bucket” for

the S809 airfoil (see the drag polar in Fig. 5.5) [50]. At angles of attack below

4°, the flow remains laminar over a significant portion of the leading edge of the

airfoil. Since the pressure drag is low at these low angles of attack, the overall drag

remains low, creating the laminar drag bucket. For these low angles of attack, small

changes in FSTI result in small changes in the drag. At angles of attack above 6°,

the pressure drag dominates the drag term and therefore changes in FSTI have

relatively small impacts on the quantities of interest. However, for moderate angles
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of attack (i.e. near 4°-6°), the viscous drag, which is affected by FSTI, is the main

contributor to the total drag. Small changes in FSTI therefore result in greater

changes in the aerodynamic coefficients for these moderate angles of attack.

5.2 NACA 0012 Airfoil Results: Reynolds Num-

ber Sweep

Fig. 5.6 presents the standard deviations of the aerodynamic coefficients for

the NACA 0012 airfoil. The Reynolds number has been varied from 500,000 to 4

million. There are a number of conclusions regarding the sensitivity to FSTI that

can be reached by examining the trends in the standard deviation graphs. Observe

that as the Reynolds number increases, the sensitivity curves change shape. This

indicates that there is not a simple relationship between Reynolds number and

sensitivity to uncertainty in FSTI. Detailed analysis for each Reynolds number is

presented in the following sections.

Re = 500,000

Referring back to Fig. 5.6, a trend can be observed in the standard deviations

of lift and moment coefficients for a Reynolds number of 500,000. There is a region

of sharp increase in sensitivity between 2° and 5° AOA followed by a region of

sharp decrease. This is attributed to the double separation bubble phenomenon

mentioned in sec. 4.3. Fig. 5.7 shows skin friction plots for FSTI values of 0.3%,
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(a) Lift coefficient (b) Drag coefficient

(c) Moment coefficient

Figure 5.6: Standard Deviations for NACA 0012 Airfoil at Mach = 0.2, Mean
FSTI = 1%, Input σ = 0.3333%
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(a) FSTI = 0.3%

(b) FSTI = 0.4%

(c) FSTI = 0.875% (d) FSTI = 1.0%

Figure 5.7: Skin Friction Plots for NACA 0012 Airfoil at Mach = 0.2, Re = 500,000
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(a) AOA = 8° (b) AOA = 12°

Figure 5.8: Skin Friction Plots for NACA 0012 Airfoil at Mach = 0.2, Re = 500,000
- AOA 8° versus 12°

0.4%, 0.875%, and 1.0%. Zoomed in portions of the 0.3% and 0.4% are provided

to see the separation bubbles more clearly. The 0.3% FSTI case has the double

separation bubble on the upper surface from 3° to 5° AOA. However, if the FSTI

is slightly increased to 0.4%, then the double separation bubble appears for 4° and

5° AOA. At 3° AOA, there is only a single separation bubble. Likewise, 0.875%

and 1.0% FSTI can be compared. At 5° AOA, there is a double separation bubble

for 0.875% FSTI case but not for 1.0% FSTI. As mentioned in sec. 4.3, the double

separation bubble increases the effective camber of the airfoil, thereby increasing

lift and moment. Since these small changes in FSTI at AOA between 2° and

5° can result in the appearance/disappearance of the double separation bubble,

the coefficients of lift and moment are more sensitive to uncertainty in FSTI in

this AOA range. As FSTI approaches 1.0% (which is the mean input FSTI), the

separation bubble appears/disappears near 5° AOA, which is why there is a peak

at sensitivity at 5° AOA. The sensitivity decreases at 6° AOA because the double

separation bubble is present for all values of FSTI up to 1.5% (not shown in figure).
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Fig. 5.8 presents the skin friction plots at 8° and 12° AOA, focusing on the

double separation bubble region. This figure explains why the sensitivity of the

lift coefficient increases from 8° to 12° AOA. For FSTI values of 0.75% to 1.5% at

8° AOA, the values of the skin friction coefficient at the region of the separation

bubble are close. However, at 12° AOA, there is a significant difference between

FSTI values of 1.25% and 1.0%. This also explains the peak in sensitivity for the

drag coefficient as well.

Re = 1 × 106

When examining the sensitivity curves for a Reynolds number of 1 million

in Fig. 5.6, the most distinctive feature is the sharp peak in sensitivity at 4° AOA

for lift and moment. Fig. 5.9 shows the skin friction plots from 3° to 5° AOA. At

3° AOA, the 1.0% and 1.25% FSTI cases undergo natural transition on the lower

surface. This differs from the 0.75% FSTI case, which has a small separation

bubble on the lower surface near the trailing edge. Compare this against the plot

for 5° AOA. Here, there is a separation bubble near the trailing edge of the lower

surface for both the 0.75% and 1.0% FSTI cases. However, at 4°, the 1.0% FSTI

case does not behave like either of the other two FSTI cases at the lower surface.

This unique behavior is responsible for the spike in sensitivity for lift and moment

at 4° AOA. A small separation bubble at the lower surface near the trailing edge

increases the negative effective camber of the airfoil, resulting in significant changes

in lift and moment.
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(a) AOA = 3° (b) AOA = 4°

(c) AOA = 5°

Figure 5.9: Skin Friction Plots for NACA 0012 Airfoil at Mach = 0.2, Re = 1×106

- AOA 3° - 5°

Re = 2 × 106

In Fig. 5.6, the standard deviation of lift and moment at a Reynolds number of

2 million increase smoothly to a peak at 8° before decreasing gradually. Fig. 5.10

shows the skin friction plots for 4°, 8°, and 12° AOA respectively. When comparing

the transition location on the lower surface, note that the transition location has

the largest change for the 8° AOA case, which is why the sensitivity peaks at this
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(a) AOA = 4° (b) AOA = 8°

(c) AOA = 12°

Figure 5.10: Skin Friction Plots for NACA 0012 Airfoil at Mach = 0.2, Re =
2× 106

point for lift and moment.

When examining the sensitivity of the drag coefficient in Fig. 5.6, one notes

that the sensitivity generally decreases as AOA increases. However, there is a sharp

peak in sensitivity at 11° AOA. Upon examining the pressure and skin friction plots

from 10° to 12° AOA (see Fig. 5.11), the cause of this peak is not readily apparent.

Further work is needed to explain the reason for this peak.
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(a) AOA = 10°

(b) AOA = 11°

(c) AOA = 12°

Figure 5.11: Pressure and Skin Friction Plots for NACA 0012 Airfoil at Mach =
0.2, Re = 2× 106
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Re = 4 × 106

Going back to Fig. 5.6, one can observe that the standard deviation for lift

at a Reynolds number of 4 million is fairly smooth, with a peak near 10° AOA.

However, the sensitivity remains almost constant above 10°. Also note that the

sensitivity of lift and moment at a Reynolds number of 4 million is lower than

the sensitivity at a Reynolds number of 2 million. It is also observed that the

sensitivity peaks at 6° AOA for both drag and moment. Fig. 5.12 shows the skin

friction plots at 5°, 6°, 7°, 10°, and 12° AOA. However, the friction plots do not

provide a clear explanation for the trends in aerodynamic coefficients; more work

is required to determine the actual cause.

5.3 SC1095 Airfoil Results: Mach Number Sweep

Fig. 5.13 presents the standard deviations of the aerodynamic coefficients. The

standard deviations correlate to the sensitivity of each coefficient to the uncertainty

in FSTI. It can be observed from the figure that standard deviation curves for Mach

0.2, 0.4, and 0.6 follow similar trends for all three aerodynamic coefficients, with

the exception of AOA between 3° and 6°. The similarities at these Mach numbers

is due to the incompressibility of air at subsonic speeds. At Mach 0.7 and 0.8,

transonic flow begins to appear, and compressibility effects change the trends in

sensitivity.
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(a) AOA = 5° (b) AOA = 6°

(c) AOA = 7° (d) AOA = 10°

(e) AOA = 12°

Figure 5.12: Skin Friction Plots for NACA 0012 Airfoil at Mach = 0.2, Re =
4× 106
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(a) Lift coefficient (b) Drag coefficient

(c) Moment coefficient

Figure 5.13: UQ Results for SC1095 Airfoil at Re = 2 × 106, Mean FSTI = 1%,
Input σ = 0.3333%
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Mach 0.2, 0.4, and 0.6

For Mach 0.2 and 0.4, the flow remains subsonic and the aerodynamic co-

efficients follow similar trends. At Mach 0.6, the flow is subsonic at AOAs below

3°. However, there are some differences between Mach 0.2, 0.4, and 0.6 between

3° and 6°. In this region, lift and moment are significantly more sensitive to FSTI

uncertainty for Mach 0.2 compared to Mach 0.4 and 0.6. Also, the sensitivity of

drag decreases over AOA 3° to 6° for Mach 0.2 and 0.4, but increases for Mach

0.6. Referring to Fig. 5.14, which depicts the Mach contours for AOA 6° at Mach

0.4 and 0.6, one can see that at Mach 0.4, there is no observable differences in the

Mach contour plots between FSTI 0.5% and 2.0%. On the other hand, for Mach

0.6, the shock is observed to be stronger at FSTI 2.0% compared to 0.5%. The

increase in drag sensitivity for Mach 0.6 between 3° and 6° can be attributed to

this increase in shock strength, which would increase the drag over the airfoil.

Mach 0.7 and 0.8

Mach 0.7 and 0.8 differ in behavior compared to Mach 0.2 to 0.6. At almost

all AOAs, the sensitivity of lift and drag are greater for Mach 0.7 and 0.8 than for

Mach 0.2 to 0.6. For Mach 0.7, the sensitivity for lift and drag increases sharply

as AOA increases between 0° and 4° AOA before decreasing sharply. For Mach

0.8, the sharp increase in sensitivity occurs at 2° AOA.

Fig. 5.15 shows the skin friction plots for Mach 0.7 at 2°, 4°, and 6°; and for

Mach 0.8 at 0°, 2°, and 6° AOA. For Mach 0.7 at an AOA of 2°, all the cases
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(a) Mach = 0.4, FSTI = 0.5% (b) Mach = 0.4, FSTI = 2.0%

(c) Mach = 0.6, FSTI = 0.5% (d) Mach = 0.6, FSTI = 2.0%

Figure 5.14: Mach Contours for SC1095 Airfoil at 6° AOA, Re = 2× 106
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(a) Mach 0.7 - AOA = 2° (b) Mach 0.8 - AOA = 0°

(c) Mach 0.7 - AOA = 4° (d) Mach 0.8 - AOA = 2°

(e) Mach 0.7 - AOA = 6° (f) Mach 0.8 - AOA = 6°

Figure 5.15: Skin Friction Plots for SC1095 Airfoil, Mach = 0.7 - 0.8, Re = 2×106
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undergo transition after the shock. For Mach 0.8 at an AOA of 0°, all of the cases

undergo transition after the shock except the 1.5% FSTI case, which transitions

completely before the shock. For Mach 0.7 at an AOA of 4° and Mach 0.8 at

an AOA of 2°, there is one FSTI case which is mid-way through transition at

the shock. For Mach 0.7, this is the 1.5% FSTI case; for Mach 0.8, this is the

1.12% case. Note that for both cases where transition is occurring at the shock,

the transition location differs from all of the other FSTI cases. Since these FSTI

values are relatively close to 1.0%, this results in an increase in sensitivity for lift

and drag for a mean input of 1.0%. As the AOA increases, the sensitivity decreases

once again, as all of the FSTI cases exhibit the same behavior, as shown in the

Mach 0.7 and 0.8 plots at an AOA of 6°.

5.4 RC(4)-10 Airfoil Results: Mach Number Sweep

Fig. 5.16 presents the standard deviations of the aerodynamic coefficients for

the RC(4)-10. The Mach number was varied from 0.2 to 0.8. Both the Mach 0.2

and 0.4 standard deviation curves follow similar trends. Similar to the SC1095

cases, at these Mach numbers, the flow remains subsonic. However, the sensitivity

results for Mach 0.6 to Mach 0.8 become more erratic, once compressibility effects

come into effect. Compare the sensitivity curves for the RC(4)-10 against the

SC1095 sensitivity plots in Fig. 5.13. While the trends are similar for Mach 0.2

and 0.4, the sensitivities are very different for Mach 0.7 and 0.8.
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(a) Lift coefficient (b) Drag coefficient

(c) Moment coefficient

Figure 5.16: UQ Results for RC(4)-10 Airfoil at Re = 2× 106, Mean FSTI = 1%,
Input σ = 0.3333%
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Mach 0.2 and 0.4

The sensitivities for Mach 0.2 and 0.4 are very close to each other for all

three coefficients, with a few exceptions:

� Lift and moment coefficients between 5° and 8° AOA

� Drag coefficient at 1° AOA

Fig. 5.17 presents skin friction plots for 1°, 6°, and 7° AOA for both Mach 0.2 and

0.4. Comparing the 1° AOA plots, one can see that at Mach 0.2 for an FSTI value

of 0.5%, the flow relaminarizes on the lower surface but does not relaminarize at

the same conditions for Mach 0.4. Since laminar flow results in significantly less

drag than turbulent flow, the drag coefficient is much more sensitive to uncertainty

in FSTI at Mach 0.2 than at 0.4. However, when examining the skin friction plots

for AOA 6° and 7°, the graphs do not differ significantly between Mach 0.2 and

0.4. Additional investigation is required to determine why there is a difference in

the sensitivity of lift and moment between Mach 0.2 and 0.4 for AOA 5° to 8°.

Mach 0.6 to 0.8

When examining Fig. 5.16, one can observe that the Mach 0.6 to 0.8 sensi-

tivity curves are not as smooth as the Mach 0.2 and 0.4 curves; rather, they are

characterized by jumps and fluctuations in sensitivity as AOA varies. Seven points

of interest have been identified to explore further:

1. Mach 0.6: Peak in sensitivity of the moment coefficient at AOA of 2°.
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(a) Mach 0.2 - AOA = 1° (b) Mach 0.4 - AOA = 1°

(c) Mach 0.2 - AOA = 6° (d) Mach 0.4 - AOA = 6°

(e) Mach 0.2 - AOA = 7° (f) Mach 0.4 - AOA = 7°

Figure 5.17: Skin Friction Plots for RC(4)-10 Airfoil, Mach = 0.2 - 0.4, Re =
2× 106
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2. Mach 0.6: Minimum sensitivity of the moment coefficient at AOA of 3°.

3. Mach 0.6: Peak in sensitivity of the moment coefficient at AOA of 4°.

4. Mach 0.7: Peak in sensitivity of the moment coefficient at AOA of 4°.

5. Mach 0.7: Peaks in sensitivity of the lift and drag coefficient at AOA of 5°.

6. Mach 0.8: Peak in sensitivity of the moment coefficient at AOA of 1°.

7. Mach 0.8: Peak in sensitivity of the drag coefficient at AOA of 5°.

Fig. 5.18 provides the skin friction plots for the three Mach 0.6 cases mentioned

above, while Fig. 5.19 presents the skin friction plots for the Mach 0.7 and 0.8

cases. For the Mach 0.6 cases, at an AOA of 2° and an FSTI of 0.5%, the flow

relaminarizes. This results in a peak in sensitivity for the moment coefficient.

At AOA 3° and 4°, this relaminarization is not present. However, at AOA 4°, a

separation bubble forms on the lower surface near the trailing edge for the FSTI

0.5% and 0.75% cases. At AOA 3°, the separation bubble only forms on the 0.5%.

Since the mean input is 1.0%, the change in the transition mode between 0.75%

and 1.0% FSTI results in a peak in the moment coefficient sensitivity.

Fig. 5.19 shows the skin friction plots for the four Mach 0.7 and 0.8 cases of

interest. For Mach 0.7 at an AOA of 4°, both the upper and lower surfaces show

different methods of transition. On the upper surface, at FSTI values of 0.5% to

1.0%, the flow transitions after the shock. At 1.25% FSTI, the flow transitions at

the shock, while at 1.5% FSTI, the flow transitions before the shock. On the lower

surface, at 0.5% FSTI, there is a small separation bubble at the trailing edge. For

the FSTI values greater than 0.5%, the flow undergoes natural transition. The

small changes in FSTI result in completely different methods of transition on both

the upper and lower surface, resulting in a peak in sensitivity for the moment
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coefficient for Mach 0.7.

The Mach 0.7 case at an AOA of 5° also features different methods of transition

as FSTI varies. On the upper surface, the flow transitions at the shock at an FSTI

of 1.5% and transitions after the shock for all the other FSTI values. However,

unlike the 4° AOA case, there is no separation bubble on the lower surface. On the

lower surface, the 0.5% and 0.75% cases remain laminar, while the 1.0%, 1.25%,

and 1.5% cases undergo natural transition. The moment sensitivity decreases due

to the absence of the separation bubble on the lower surface, but the changes in

the transition location on the lower surface result in a peak in sensitivity for both

lift and drag.

For the Mach 0.8 case, at an AOA of 1°, the flow on the upper surface transitions

before the shock for FSTI values of 1.25% and 1.5%. For FSTI values of 0.5%,

0.75%, and 1.0%, the flow transitions after the shock. The change in transition

method results in a peak in moment sensitivity. For the Mach 0.8 case at an AOA

of 5°, the relaminarization of the 0.5% FSTI case is responsible for the peak in

drag sensitivity.

5.5 Summary

This chapter presented the results of the Monte Carlo simulation for each

of the S809, NACA 0012, SC1095, and RC(4)-10 airfoils. The importance of UQ

analysis was demonstrated by showing how a normally distributed FSTI input
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(a) AOA = 2° (b) AOA = 3°

(c) AOA = 4°

Figure 5.18: Skin Friction Plots for RC(4)-10 Airfoil, Mach = 0.6, Re = 2× 106
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(a) Mach 0.7 - AOA = 4° (b) Mach 0.7 - AOA = 5°

(c) Mach 0.8 - AOA = 1° (d) Mach 0.8 - AOA = 5°

Figure 5.19: Skin Friction Plots for RC(4)-10 Airfoil, Mach = 0.7 - 0.8, Re =
2× 106

Application of Uncertainty Quantification to Turbulence Intensity 145



CHAPTER 5. UNCERTAINTY QUANTIFICATION RESULTS

could result in a non-Gaussian output, using a case from the S809 airfoil as an

example. The mean input FSTI and standard deviations were varied for the S809

airfoil to show how this would affect the difference between discrete and mean

outputs and the output standard deviations. For the NACA 0012, the Reynolds

number was varied. The standard deviations of the aerodynamic coefficients fea-

tured spikes in sensitivity at certain AOA. The reasoning behind these peaks was

explained for some of these cases, while the cause for some of the peaks require

additional research. The results for the SC1095 and RC(4)-10 were also presented

for Mach 0.2 to 0.8. Both airfoils showed similar sensitivity trends at Mach 0.2

and 0.4, when the flow is transonic. However, they exhibited different behavior at

Mach 0.6 to 0.8. The physics behind some of the more interesting features of the

graphs were explained.
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Chapter 6

Conclusions

6.1 Summary

This thesis studied the effects of uncertainty on the aerodynamic coefficients 

of four airfoils. The study focused on the sensitivities of the aerodynamic coef-

ficients to uncertainty in FSTI and examined how varying the mean FSTI, the 

input standard deviation, the Reynolds number, and the Mach number affected 

the sensitivity through UQ analysis.

The first chapter highlighted the importance of UQ and the motivation behind 

this work, before discussing boundary layer transition and providing an overview of 

UQ. The chapter went over the differences between laminar, turbulent, and tran-

sitional flow and described the physical mechanisms of transition and the different
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types of transition. The chapter then provided a brief overview of a few transition

models that are currently used by CFD solvers. The chapter then described the

field of UQ as well as different UQ techniques that were used for the present work.

The second chapter provided an overview of the CFD analysis used in this

work. This included a description of the governing equations that are solved by

the OVERTURNS flow solver and how these equations are non-dimensionalized.

The RANS equations were then derived from the non-dimensionalized governing

equations. A brief description of grid generation is provided. The chapter then

reviewed how OVERTURNS uses numerical algorithms to solve the governing

equations, including the incorporation of the turbulence and transition models.

The third chapter went through the UQ methodology used in this work. The

chapter described how parametric sweeps were used to generate a surrogate sur-

face to use in place of CFD calculations. The chapter then explained why the

Monte Carlo method was chosen over stochastic collocation. Finally, the chapter

described how the Monte Carlo method was implemented and provided validation

results for the surrogate surface and the overall UQ analysis.

The fourth chapter presented the results of the parametric sweeps for the S809,

NACA 0012, SC1095, and RC(4)-10. Results of interest were identified and the un-

derlying physics were examined in order to understand the results. This uncovered

cases with multiple laminar separation bubbles and cases with relaminarization.

At higher Mach numbers, some cases with shock induced separation (with transi-

tion before or after the shock) were observed.
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Finally, the fifth chapter went over the results of the UQ analysis. The Monte

Carlo method was used to determine the expected means and standard deviations

of the aerodynamic coefficients for each airfoil. The standard deviations provided

a measure of the sensitivity of each aerodynamic coefficient to the uncertainty in

FSTI. Cases were selected to be explored further to attempt to understand why

the coefficients were more or less sensitive for a particular Mach/Reynolds number

and AOA.

6.2 Key Observations

This section lists the key observations gleaned from the present work. Both

general observations and specific results for each airfoil have been highlighted.

6.2.1 General Observations

� Although the input distribution of FSTI values was normally distibuted, the

resulting output distributions were not always Gaussian.

� Mean values of lift and pitching moment were close to the values obtained

with discrete FSTI inputs (i.e. without uncertainty). However, the mean

drag values differed from the drag values obtained with discrete FSTI inputs

when inside the drag bucket AOA range.

� Even when the mean outputs were close to the values obtained with discrete
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FSTI, the standard deviations of the aerodynamic coefficients were large

enough to be statistically relevant.

6.2.2 S809

� The UQ analysis performed on the S809 airfoil demonstrated that the sensi-

tivity trends of the aerodynamic coefficients is dependent on the mean FSTI

value. Although this was expected, the S809 cases provided confirmation

as well as showed how much the sensitivity could change. For example, the

standard deviation for the coefficient of lift was reduced by over a factor of

4 when the input mean FSTI value was changed from 1.0% to 2.0% for an

AOA of 4°.

� The S809 case was also used to show how reducing the input standard devia-

tion affects the sensitivity of the aerodynamic coefficients. While the trends

remained the same, the standard deviations of the aerodynamic coefficients

were reduced, which was expected. However, as the angle of attack increases,

the difference in standard deviations decrease, indicating that varying FSTI

at these high angles of attack does not impact the results as much.

� All three aerodynamic coefficients have peaks in standard deviation at an

AOA of 4°. This is due to the drag bucket phenomenon. Near 4° AOA, the

viscous drag increases rapidly in response to small increases in FSTI.
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6.2.3 NACA 0012

� At Reynolds numbers of 500,000 and 1 million, a double separation bubble

forms at certain AOA and FSTI values. This double separation bubble is

responsible for fluctuations in sensitivity for the aerodynamic coefficients.

For a given AOA, the double separation bubble will appear for a certain

threshold of FSTI values. If the FSTI is increased/decreased slightly at the

edges of this threshold, the double separation bubble will form or disappear,

resulting in a relatively large change in drag. When the double separation

bubble occurs near the leading edge, it also increases the effective camber,

leading to changes in lift and moment as well. Therefore as threshold val-

ues approach the mean input FSTI value, the sensitivity of the coefficients

increase.

� At Reynolds numbers of 2 million and 4 million, as AOA increases, the

transition location approaches the leading edge of the airfoil. At high AOA,

the flow transitions close to or at the leading edge and is therefore able to

remain attached to the airfoil after transitions. This leads to increases in

drag as FSTI increases. At Reynolds numbers of 500,000 and 1 million, at

high angles of attack, the drag remains relatively constant as FSTI increases,

since the flow separates after transition.

� Change in transition location affects the sensitivity of the aerodynamic coef-

ficients. The more that the transition locations for a set increase/decrease in

FSTI, the more that the sensitivity of the aerodynamic coefficients change.
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� At Reynolds numbers of 2 million and 4 million, sharp peaks occur at certain

AOA. The causes for these peaks were not able to be determined; further

work is required to provide an explanation.

6.2.4 SC1095 and RC(4)-10

� The RC(4)-10 exhibits an interesting phenomenon at AOA of 2° for Mach

0.4 and Mach 0.6. At an FSTI value of 0.5% (and 0.05% at Mach 0.6), the

flow on the lower surface transitions, but then relaminarizes. This does not

occur for the SC1095. This relaminarization is attributed to the increased

camber of the leading edge and the flatter lower surface of the RC(4)-10.

� For Mach numbers 0.2 and 0.4, the sensitivity trends are very similar. This is

due to the fact that at these Mach numbers and AOA, the flow is subsonic and

incompressible. However, for Mach 0.6 to 0.8, the flow becomes transonic

and is no longer incompressible. This results in large fluctuations in the

sensitivity of the aerodynamic coefficients to uncertainty in FSTI. At these

Mach numbers, the trends differ between the SC1095 and the RC(4)-10.

� Spikes in sensitivity occur when small changes in FSTI near the mean input

FSTI of 1.0% result in the transition location moving before, after, or at

the shock location. Each scenario results in a different skin friction profile,

which affects all three aerodynamic coefficients.
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6.3 Contributions

Currently, UQ is not widely implemented in CFD results. Most CFD papers

do not address the role of uncertainty in the published results. However, incor-

porating UQ analysis into CFD results can provide additional information to be

used for design and reliability analysis. In addition, it will make CFD results more

accurate by taking into account uncertainties that exist in the physical world in

CFD calculations.

The present work takes the first step into incorporating UQ analysis for CFD

results for uncertainty in FSTI specifically and lays the foundation for establishing

a UQ framework for flow transition studies in general. Specifically, the sensitivity

analysis provided in this work can be used in conjunction with CFD simulations

in order to obtain more accurate results. The sensitivity analysis can also be

used in rotor design, allowing designers to select airfoils which are less sensitive

to uncertainty in FSTI at the expected operating conditions of the rotor. The

present work also provides the UQ framework so that a similar approach can be

taken for different airfoils as well as different input quantities besides FSTI.

Finally, this work required extensive parametric studies, varying FSTI, AOA,

Reynolds number, and Mach number. The result was a treasure trove of data,

from which several key points were highlighted. There has been little to no work

previously that has examined small changes in FSTI values to this extent. While

the present work has highlighted a number of key observations, there is always
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more that can be gleaned from all of the data.

6.4 Recommendations for Future Work

The work presented in this thesis represents only a small subsection of the

work possible for applying UQ to CFD results. There are numerous ways to build

upon this research and expand further. Some of the possible ways to do so are

listed below:

� The sensitivity analysis unearthed a number of features that remain unex-

plained. Further work is required to determine why at certain conditions

there are peaks in the sensitivity of the aerodynamic coefficients to uncer-

tainty in FSTI.

� The present work assumed that the uncertainty in FSTI was Gaussian. How-

ever, the methodology presented here can easily be applied to any other

probability distribution. Future work could include experimental studies to

make the probability distribution of FSTI more representative of the physical

world. This would improve the accuracy of the UQ analysis.

� While examining the results of the parametric studies, a number of key

findings were highlighted. However, there were many additional findings that

were left unaddressed. A thorough review of the parametric study results

would yield additional findings.
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� The present work was limited to isolated two-dimensional airfoils. However,

the UQ methodology can be applied to FSTI for three dimensional objects,

such as rotors as a whole and/or fuselages.

� The present work was concerned with the effect of uncertainty in FSTI on

the aerodynamic coefficients. A possible subject of future work would be

to utilize the distributions of sectional aerodynamics due to uncertainty in

FSTI in a comprehensive rotor analysis. The effect of uncertainty can be

propagated forward to see the impacts on performance, vibrations, and/or

acoustics.

� While the present work was solely concerned with uncertainty in FSTI, the

UQ methodology established here can be applied to other input variables.

One example would be surface roughness, which is another factor which im-

pacts transition onset. There are transition models, including the model used

by OVERTURNS, which incorporate surface roughness in the model. The

UQ methodology can therefore be applied in a similar fashion to uncertainty

in surface roughness.

� The current work can be utilized as a small component in a much larger

project to formalize the use of UQ in CFD. Such a project could take the form

of a tool that could automate the UQ analysis and provide sensitivities of the

aerodynamic coefficients for requested flow conditions. However, this would

require that parametric studies are already conducted for the requested flow

conditions and airfoil in use. Another possible form would be to use the

current methodology to generate “uncertainty reference tables” for various

airfoils.
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Appendix A

Complete Parametric Sweep 

Results

A.1 Introduction

In this work, parametric sweeps are used to generate the surrogate surfaces 

used for UQ analysis (see Sec. 1.3). The complete results of the parametric sweeps 

are provided for reference here for all four airfoils used in this study. The freestream 

conditions for the parametric sweeps are provided in Table 3.1.
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(a) Lift coefficient

(b) Drag coefficient

Figure A.1: Parametric Sweep for S809 Airfoil at Mach = 0.2, Re = 2× 106

159



(c) Moment coefficient

Figure A.1: Parametric Sweep for S809 Airfoil at Mach = 0.2, Re = 2×106 (cont.)

(a) Lift coefficient

Figure A.2: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 0.5×106
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(b) Drag coefficient

(c) Moment coefficient

Figure A.2: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 0.5×106

(cont.)
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(a) Lift coefficient

(b) Drag coefficient

Figure A.3: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 1×106
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(c) Moment coefficient

Figure A.3: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 1×106

(cont.)

(a) Lift coefficient

Figure A.4: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 2×106
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(b) Drag coefficient

(c) Moment coefficient

Figure A.4: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 2×106

(cont.)
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(a) Lift coefficient

(b) Drag coefficient

Figure A.5: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 4×106
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(c) Moment coefficient

Figure A.5: Parametric Sweep for NACA 0012 Airfoil at Mach = 0.2, Re = 4×106

(cont.)

(a) Lift coefficient

Figure A.6: Parametric Sweep for SC1095 Airfoil at Mach = 0.2, Re = 2× 106
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(b) Drag coefficient

(c) Moment coefficient

Figure A.6: Parametric Sweep for SC1095 Airfoil at Mach = 0.2, Re = 2 × 106

(cont.)
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(a) Lift coefficient

(b) Drag coefficient

Figure A.7: Parametric Sweep for SC1095 Airfoil at Mach = 0.4, Re = 2× 106
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(c) Moment coefficient

Figure A.7: Parametric Sweep for SC1095 Airfoil at Mach = 0.4, Re = 2 × 106

(cont.)

(a) Lift coefficient

Figure A.8: Parametric Sweep for SC1095 Airfoil at Mach = 0.6, Re = 2× 106
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(b) Drag coefficient

(c) Moment coefficient

Figure A.8: Parametric Sweep for SC1095 Airfoil at Mach = 0.6, Re = 2 × 106

(cont.)
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(a) Lift coefficient

(b) Drag coefficient

Figure A.9: Parametric Sweep for SC1095 Airfoil at Mach = 0.7, Re = 2× 106
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(c) Moment coefficient

Figure A.9: Parametric Sweep for SC1095 Airfoil at Mach = 0.7, Re = 2 × 106

(cont.)

(a) Lift coefficient

Figure A.10: Parametric Sweep for SC1095 Airfoil at Mach = 0.8, Re = 2× 106
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(b) Drag coefficient

(c) Moment coefficient

Figure A.10: Parametric Sweep for SC1095 Airfoil at Mach = 0.8, Re = 2 × 106

(cont.)
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(a) Lift coefficient

(b) Drag coefficient

Figure A.11: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.2, Re = 2× 106
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(c) Moment coefficient

Figure A.11: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.2, Re = 2× 106

(cont.)

(a) Lift coefficient

Figure A.12: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.4, Re = 2× 106
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(b) Drag coefficient

(c) Moment coefficient

Figure A.12: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.4, Re = 2× 106

(cont.)
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(a) Lift coefficient

(b) Drag coefficient

Figure A.13: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.6, Re = 2× 106
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(c) Moment coefficient

Figure A.13: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.6, Re = 2× 106

(cont.)

(a) Lift coefficient

Figure A.14: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.7, Re = 2× 106
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(b) Drag coefficient

(c) Moment coefficient

Figure A.14: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.7, Re = 2× 106

(cont.)
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(a) Lift coefficient

(b) Drag coefficient

Figure A.15: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.8, Re = 2× 106

180



(c) Moment coefficient

Figure A.15: Parametric Sweep for RC(4)-10 Airfoil at Mach = 0.8, Re = 2× 106

(cont.)

181



Bibliography

[1] Morkovin, M. V., Arnal, D., Mack, L. M., Reshotko, E., Poll, D. I. A., and

Herbert, T., “Special Course on Stability and Transition of Laminar Flow,”

Technical Report AGARD-R-709, AGARD, von Karman Institute Rhode-

Saint-Genese, Belgium, 1984.

[2] Reshotko E., “Boundary-layer Stability and Transition,” Annual Review of

Fluid Mechanics, vol. 8, pp.311–349, 1976.

[3] Morkovin, M. V., “On the Many Faces of Transition,” In Proceedings of the

Symposium on Viscous Drag Reduction. Plenum Press, New York, 1969.

[4] Emmons, H. W., “The Laminar-Turbulent Transition in a Boundary Layer -

Part 1,” Journal of Aerospace Science, 18(7), pp. 490–498, 1951.

[5] Dhawan, S. and Narasimha, R., “Some Properties of Boundary Layer Flow

During the Transition from Laminar to Turbulent Motion,” Journal of Fluid

Mechanics, vol. 3, no. 4, pp. 418–436, 1958.

[6] Medida, S., “Correlation-based Transition Modeling for External Aerody-

namic Flows.” PhD thesis. University of Maryland, 2014.

182



[7] Orr, W. MF., “The Stability or Instability of the Steady Motions of a Perfect

Liquid and of a Viscous Liquid. Part i: A Perfect Liquid,” In Proceedings of

the Royal Irish Academy A, number 27, pp. 9–68, 1907.

[8] Orr, W. MF., “The Stability or Instability of the Steady Motions of a Perfect

Liquid and of a Viscous Liquid. Part ii: A Viscous Liquid,” In Proceedings of

the Royal Irish Academy A, number 27, pp. 69–138, 1907.

[9] Smith, A. M. O. and Gamberoni, N., “Transition Pressure Gradient and Sta-

bility Theory,” Douglas Aircraft Company, Long Beach, California. Rep. ES

26388 , 1956.

[10] Kapsalis, P-C.S., Voutsinas, S., Vlachos, N., “Comparing the Effect of Three

Transition Models on the CFD Predictions of a NACA0012 Airfoil Aerody-

namics,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 157,

pp. 158-170, 2016.

[11] Herbert, T., “Parabolized Stability Equations,” Annual Review of Fluid Me-

chanics, vol. 29, pp 245-283, 1997.

[12] Van Ingen J. L., “A Suggested Semi-Empirical Method for Calculation of the

Boundary Layer Transition Region,” Technical Report Rep. VTH-74, Univer-

sity of Delft, Dept. of Aerospace Engineering, Delft, The Netherlands, 1956.

[13] Stock, H., and Degenhart, E., “A Simplified eN Method for Transition Pre-

diction in Two-Dimensional, Incompressible Boundary Layers,” Z. Flugwiss.

Weltraumforschung vol. 13, pp. 16–30, 1989.

183



[14] Coder, J. G., and Maughmer, M. D., “A CFD-Compatible Transition Model

Using an Amplification Factor Transport Equation,” In 51st AIAA Aerospace

Sciences Meeting including the New Horizons Forum and Aerospace Exposi-

tion, number 2013-0253. AIAA, 2013.

[15] Van Driest, E. R., and Blumer, C. B., “Boundary Layer Transition:

Freestream Turbulence and Pressure Gradient Effects,” AIAA Journal, vol.

1, no. 6, pp. 1303–1306, 1963.

[16] Langtry, R. B., and Menter, F. R., “Correlation-Based Transition Modeling

for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA

Journal, vol. 47, no. 12, pp. 2894-2906, 2009.

[17] Knupp, P., and Salari, K., Verification of Computer Codes in Computational

Science and Engineering, Chapman and Hall/CRC, Boca Raton, FL, 2003.

[18] Iaccarino, G., “Quantification of Uncertainty in Flow Simulations Using Prob-

abilistic Methods,” VKI Lecture Series, Sept. 8-12, 2008.

[19] Roy, C. J., and Oberkampf, W. L., “A Comprehensive Framework for Verifi-

cation, Validation, and Uncertainty Quantification in Scientific Computing,”

Comput. Methods Appl. Mech. Engrg., vol. 200, pp. 2131-2144, 2011.

[20] Lockwood, B. A., ”Gradient-Based Approaches for Sensitivity Analysis and

Uncertainty Quantification within Hypersonic Flows,” PhD thesis, University

of Wyoming, 2012.

[21] Sandor, Z., and Andras, P. ”Alternative Sampling Methods for Estimating

Multivariate Normal Probabilities,” Econometric Institute Report EI 2003,05

184



[22] Xiu, D., Hesthaven, J.S., “High Order Collocation Methods for the Differential

Equations with Random Inputs,” SIAM J. Sci. Comput. vol. 27, pp. 1118-

1139, 2005.

[23] Keryszig, E., Advanced Engineering Mathematics. Wiley, New York, 1979.

[24] Liu, Q., and Pierce, D., “A Note on Gauss-Hermite Quadrature,” Biometrika,

vol. 81, no. 3, pp. 624-629, 1994.

[25] Mâıtre, O. L., and Knio, O., Spectral Methods for Uncertainty Quantification.

Springer, 2010.

[26] Broomhead, D. and Lowe, D., “Multivariable Functional Interpolation and

Adaptive Networks,” Complex Systems, vol. 2, pp. 321–355, 1988.

[27] Gunn, S. R., “Support Vector Machines for Classification and Regression,”

Tech. Rep., University of Southampton, Tech. Rep., 1998.

[28] Hosder, S., and Walters, R. W., “Non-Intrusive Polynomial Chaos Methods

for Uncertainty Quantification in Fluid Dynamics,” 48th AIAA Aerospace

Sciences Meeting, AIAA 2010-129.

[29] Alexeenko, A., Weaver, A., Greendyke, R., and Camberos, J., “Flowfield Un-

certainty Analysis for Hypersonic CFD Simulations,” in 48th AIAA Aerospace

Sciences Meeting, AIAA, 2010-1180.

[30] Kawai, S., and Shimoyama, K., “Kriging-Model-Based Uncertainty Quantifi-

cation in Computational Fluid Dynamics,” 32nd AIAA Applied Aerodynamics

Conference, AIAA Aviation, AIAA 2014-2737.

185



[31] Peter, J., and Marcelet, M., “Comparison of Surrogate Models for Turboma-

chinery Design,” WSEAS Transactions on Fluid Mechanics, vol. 3, no. 1, pp.

10–17, 2008.

[32] Laurenceau, J., and Sagaut, P., “Building Efficient Response Surfaces of Aero-

dynamic Functions with Kriging and Cokriging,” AIAA Journal, vol. 46, no.

2, pp. 498–507, 2008.

[33] Laurenceau, J., and Meaux, M., “Comparison of Gradient and Response

Surface Based Optimization Frameworks Using Adjoint Method,” in 49th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Ma-

terials Conference, Schaumburg, IL, April 2008, AIAA Paper, 2008-1889.

[34] Baeder, J. D., and Srinivasan, G. R., “Turns: A Free-Wake Euler/Navier-

Stokes Numerical Method for Helicopter Rotors,” AIAA Journal, vol. 31, no.

5, pp. 959–962, 1993.

[35] Spalart, P. R., and Allmaras, S. R., “A One-Equation Turbulence Model for

Aerodynamic flows,” Recherche Aerospatiale, vol. 1, pp. 5–21, 1994.

[36] Lakshminarayan, V. K., “Computational Investigation of Micro-Scale Coaxial

Rotor Aerodynamics in Hover,” PhD thesis, University of Maryland College

Park, 2009.

[37] Van Leer, B., “Towards the Ultimate Conservative Difference Scheme: V.

A Second-Order Sequel to Godunov’s Method,” Journal of Computational

Physics, vol. 135, no. 2, pp.229–248, 1997.

186



[38] Koren, B., “Upwind Schemes, Multigrid and Defect Correction for the Steady

Navier-Stokes Equations,” In Proceedings of the 11th International Conference

on Numerical Methods in Fluid Dynamics, 1988.

[39] Roe, P., “Approximate Riemann Solvers, Parameter Vectors and Difference

Schemes,” Journal of Computational Physics, vol. 135, no. 2, pp. 250–258,

1997.

[40] Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2,

Wiley Publishers, 1990.

[41] Boussinesq, J., “Essai Sur la The’orie des eaux Courantes,” Mem. Pres. Acad.

Sci., XXIII, 46, Paris, 1877.

[42] Boussinesq, J., “Theorie de I’ Ecoulement Tourbillonant et Tumubteur des

Liquides Dans les Lits Rectiligues,” Comptes Rendus de 1’ Acad. des Sciences,

CXXII, pp. 1293, 1896.

[43] Pulliam, T. H., and Chaussee, D. “A Diagonal Form of an Implicit Approx-

imate Factorization Algorithm,” Journal of Computational Physics, vol. 39,

no. 2, pp.347–363, 1981.

[44] Iserles, A., A First Course in the Numerical Analysis of Differential Equations,

Cambridge University Press, 1996.

[45] White, F. M., Viscous Fluid Flow, McGraw-Hill, 3rd edition, 2005.

[46] MATLAB, “Piecewise Cubic Hermite Interpolating Polynomial (PCHIP),”

MATLAB version 9.2.0 (R2017a) Documentation, The MathWorks Inc., Nat-

ick, 2017.

187



[47] Hand, M. M., Simms, D. A., Fingersh, Jager, D. W., Cotrell, J. R., Schreck,

S., and Lawood, S. A., “Unsteady Aerodynamics Experiment Phase VI: Wind

Tunnel Test Configurations and Available Data Campaigns,” Technical Re-

port TP-500-29955, NREL, 2001.

[48] Leishman, J. G., Principles of Helicopter Aerodynamics. Cambridge Univer-

sity Press, 2nd edition, 2002.

[49] Noonan, K., “Aerodynamic Characteristics of Two Rotorcraft Airfoils De-

signed for Application to the Inboard Region of a Main Rotor Blade,” Tech-

nical Paper TP-3009, NASA, 1990.

[50] Somers, D. M., “Design and Experimental Results for the S809 Airfoil,”

NREL/SR-440-6918, Jan. 1997.

[51] Vos, R., and Farokhi, S., Introduction to Transonic Aerodynamics, Vol. 110,

Springer, 2015.

188


	Introduction
	Motivation
	Boundary Layer Transition
	Laminar, Turbulent, and Transitional Flow
	Reynolds Number
	Transition
	Physical Mechanisms of Transition
	Intermittency
	Types of Transition
	Transition Modeling

	Uncertainty Quantification
	Definitions
	Overview
	Monte Carlo Method
	Stochastic Collocation
	Surrogate Surfaces

	Thesis Contributions
	Scope and Organization of Thesis

	Numerical Implementation
	Governing Equations
	Non-Dimensionalization
	Reynolds-Averaged Navier-Stokes Equations
	Coordinate Transformation
	Grid Generation
	Numerical Algorithms in OVERTURNS
	Inviscid Fluxes
	Viscous Fluxes
	Turbulence Modeling
	Transition Modeling
	Time Integration


	Uncertainty Quantification Methodology
	Parametric Sweeps
	Surrogate Surface Generation
	UQ Analysis
	Monte Carlo Method

	Validation
	Surrogate Surface Validation


	Parametric Sweep Results
	Computational Meshes
	S809 Airfoil
	NACA 0012 Airfoil
	SC1095 Airfoil
	RC(4)-10 Airfoil

	Uncertainty Quantification Results
	S809 Airfoil Results
	NACA 0012 Airfoil Results: Reynolds Number Sweep
	SC1095 Airfoil Results: Mach Number Sweep
	RC(4)-10 Airfoil Results: Mach Number Sweep
	Summary

	Conclusions
	Summary
	Key Observations
	General Observations
	S809
	NACA 0012
	SC1095 and RC(4)-10

	Contributions
	Recommendations for Future Work

	Appendices
	Complete Parametric Sweep Results
	Introduction


