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SUMMARY 

 

In this thesis, a framework is laid for holistic uncertainty management for simulation-based 

design of multiscale systems. The work is founded on uncertainty management for 

microstructure mediated design (MMD) of material and product, which is a representative 

example of a system over multiple length and time scales, i.e., a multiscale system. The 

characteristics and challenges for uncertainty management for multiscale systems are 

introduced context of integrated material and product design. This integrated approach results 

in different kinds of uncertainty, i.e., natural uncertainty (NU), model parameter uncertainty 

(MPU), model structure uncertainty (MSU) and propagated uncertainty (PU). We use the 

Inductive Design Exploration Method to reach feasible sets of robust solutions against MPU, NU 

and PU. MMD of material and product is performed for the product autonomous underwater 

vehicle (AUV) employing the material in-situ metal matrix composites using IDEM to identify 

robust ranged solution sets. The multiscale system results in decision nodes for MSU 

consideration at hierarchical levels, termed as multilevel design. The effectiveness of using game 

theory to model strategic interaction between the different levels to facilitate decision making 

for mitigating MSU in multilevel design is illustrated using the compromise decision support 

problem (cDSP) technique. Information economics is identified as a research gap to address 

holistic uncertainty management in simulation-based multiscale systems, i.e., to address the 

reduction or mitigation of uncertainty considering the current design decision and scope for 

further simulation model refinement in order to reach better robust solutions. It necessitates 

development of an improvement potential (IP) metric based on value of information which 

suggests the scope of improvement in a designer’s decision making ability against modeled 

uncertainty (MPU) in simulation models in multilevel design problem. To address the research 

gap, the integration of robust design (using IDEM), information economics (using IP) and game 

theoretic constructs (using cDSP) is proposed. Metamodeling techniques and expected value of 

information are critically reviewed to facilitate efficient integration. Robust design using IDEM 



 xxvi 

and cDSP are integrated to improve MMD of material and product and address all four types of 

uncertainty simultaneously. Further, IDEM, cDSP and IP are integrated to assist system level 

designers in allocating resources for simulation model refinement in order to satisfy 

performance and robust process requirements. The approach for managing MPU, MSU, NU and 

PU while mitigating MPU is presented using the MMD of material and product. The approach 

presented in this article can be utilized by system level designers for managing all four types of 

uncertainty and reducing model parameter uncertainty in any multiscale system.



 

   1 

CHAPTER 1 

MULTISCALE SYSTEMS:  FOUNDATIONS FOR MULTILEVEL 

DESIGN 

 

Goal: Lay a framework for holistic uncertainty management for simulation-based design of 

multiscale systems in the context of integrated material and product design.  

The motivation for the research work presented in this thesis is to lay a framework for robust 

design of multiscale systems. The method should facilitate robust design against all modeled 

uncertainty and its propagation through a design chain while adequately capturing the 

nondeterministic systems behavior. The research work presented is based on augmenting the 

Inductive Design Exploration Method (IDEM) developed by Choi in his PhD dissertation specific 

to integrated multiscale design of material and product 1. The material is this thesis is a 

culmination of four research articles developed through the study of multiscale systems over 

the last 3 years. The first research article on microstructure mediated design appeared in IDETC 

2009. In this article IDEM is successfully demonstrated for the microstructure mediated design 

(MMD) task representative of integrated product and material design in Chapter 2. IDEM 

provides ranged sets of robust solutions useful for early design space exploration. However, to 

obtain a single solution, game theoretic protocols are investigated leveraging the compromise 

decision support problem (cDSP approach). This study appeared in IDETC 2010 and is explained 

in Chapter 3. Independent investigation of the IDEM and cDSP approach leads us to formulate 

the research questions and hypothesis in context of MMD in Chapter 4. A fundamental 

limitation of both these approaches is that though they account for both quantifiable and 

unquantifiable uncertainty in obtaining single or ranged sets of robust solutions, it does not 

provide for uncertainty mitigation, i.e., it alleviates uncertainty but does not reduce it. This 

limitation is incumbent for efficient multiscale systems design where initial design space 

exploration may lead to feasible solutions but not sufficiently robust solutions and the 
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uncertainty component in the identified feasible points is high. This necessitates systematically 

understanding the components of uncertainty and investing computational resources for its 

mitigation. Hence, the phrase uncertainty management has been adopted so as to lay an 

underlying framework for both alleviating uncertainty as well as mitigating it.  IDEM and cDSP 

are coupled to obtain an improved approach suitable both for management of uncertainty using 

ranged sets as well as obtaining a single robust solution for the MMD task. The research article 

developed through this study is under review for publication in Journal of Computer Aided 

Design and appears in Chapter 5. The developed robust design approach is coupled with 

constructs from information economics to enable efficient resource allocation for uncertainty 

mitigation. Specifically, uncertainty is classified into four types and the focus is on reducing one 

of the three kinds of reducible uncertainty. To achieve this end, metamodeling approaches are 

used in conjunction with a value of information metric, i.e., the improvement potential metric 

which quantifies the degree of model parameter uncertainty which is the reducible uncertainty 

in consideration. The improvement potential metric was initially defined by Panchal in his 

dissertation to capture the degree of uncertainty and evaluate decisions for further simulation 

refinement. In this thesis, the improvement potential is extended to correlate it to 

computational cost and optimization techniques are used to reach a trade-off among the cost 

functions to evaluate resource allocation. The results achieved are under review for publication 

in Journal of Mechanical Design and is explained in Chapter 6. The validation square method is 

used to validate my approaches as well as lay scope for future work on holistic uncertainty 

management in Chapter 7. Because the chapters essentially are independent research articles, 

same concepts or constructs may appear in multiple chapters. In this chapter the foundations 

are built on which the subsequent chapters will be based on. Several sections are leveraged 

from Choi's and Panchal's dissertation which form the foundational works for my thesis. The 

reader gets acquainted with the hierarchical nature of multiscale systems in an integrated 

material and product development approach. The challenges associated in design of multiscale 

systems are described and stress is laid on modeling and accounting for uncertainty in reaching 

a robust solution. Multiscale modeling is reviewed in context of Olson's diagram for hierarchical 
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materials design. Different robust design approaches are classified and discussed and the robust 

design strategy for design space exploration in multiscale systems, i.e., IDEM is looked at greater 

detail. A section has been devoted to the organization of work in this thesis.  

 

1.1. Multiscale Simulation-Based Systems 

 

The emergence of computational methods has resulted in systems design methods being driven 

by increasingly effective simulation tools to realize complex products with smaller development 

cycle times and increased quality. These simulation models are able to predict the behavior of 

systems at multiple scales and the natural next step is to use systematically use these models to 

design systems that are able to predict the overall system behavior by integrating the 

information generated from the constituent models. Most complex systems are hierarchical in 

nature with coupling between the system, subsystem and components. As defined in the 

glossary, hierarchical systems design is a method of systems design simulating performance over 

multiple levels of a hierarchically partitioned system with the objective of reducing the 

aggregate time required to reach the desired system level performance. In this thesis, 

hierarchical systems are described as separate from multiscale systems which are systems 

simulated over multiple length and time scales, Figure 1.1.  

 

Figure 1.1: A multiscale system1  
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In Figure 1.1, it is seen that the final system level performance is a function of its individual 

components which in turn depend on the material properties. The material properties can be 

simulated over different length and time scales ranging from the quantum domain which 

influences the molecular interactions and results in the microstructure of the material. The 

microstructure in turn affects continuum behavior and results in constituent mechanical 

properties. The time scales may vary from the order of few femtoseconds in the quantum 

domain to the entire life cycle of the system which may be in the order of months or years. As 

these scales are linked there is interdependency between the system performance and the 

modeling at these scales and hence these scales are said to be coupled. In hierarchical systems 

the coupling is primarily between the physical components whereas in multiscale systems 

coupling may exist within physical phenomena as different scales for the same component2, i.e., 

in hierarchical systems coupling exists over the systems, subsystems and individual components 

at the same scale (horizontal coupling) whereas in multiscale systems, there is an additional 

element of coupling over the length and time scales for designing the individual components 

(vertical coupling), Figure 1.2. Hence in multiscale systems, vertical coupling needs to be 

considered in addition to horizontal coupling to effectively integrate the information from the 

physical phenomena at the different scales in order to make right decisions and leads to an 

increased element of complexity.  

 

Figure 1.2: Horizontal and vertical coupling in multiscale systems3 
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The advantage of designing system over multiple scales is the increased flexibility of system 

configuration making it possible to design products with specific performance, not possible by 

traditional hierarchical systems design. Having defined multiscale systems, we proceed to 

understanding multiscale systems in the context of integrated material and product design. 

1.1.1. Integrated Material and Product Design: A Multiscale Approach 

 

Integrated material and product design refers to designing materials to suit specific 

multifunctional performance requirements of the product. There is an increasing trend of 

advancing material systems to satisfy multiple conflicting performance requirements. Integrated 

material and product design can be viewed as a multiscale system where models at lower scales 

of the hierarchy are used to provide information for formulating other models on higher scales . 

To achieve integrated product and material development, Olson developed a materials design 

hierarchy which partitions the system as a set of deductive mappings from the material 

processing path, nano-structure and micro-structure, material properties and up to product 

performance, Figure 1.3. Olson’s diagram is central to this thesis and will be referenced in every 

chapter. 

 

Figure 1.3: Olson’s material design hierarchy4 

It is very difficult to formulate a single model for macroscopic material properties that unifies all 

of the length scales 5. Theoretical and solid-state physics can be used on atomistic and molecular 
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levels to predict the structure and properties of ideal designs. However, such models are 

computationally expensive to analyze materials with highly heterogeneous microstructures that 

strongly influence their macroscopic properties. On the other hand, continuum-based models, 

based on classical continuum theory, are useful for describing properties at a macroscopic scale 

relevant to many engineering applications; however, they are inappropriate for smaller scale 

phenomena that require atomistic resolution. Therefore, multiple scale models need to be 

incorporated to predict precisely a system level product performance considering smaller scale 

material phenomena1. Hence, integrated material and product development can be viewed as a 

multiscale system. Olson’s diagram sets the philosophical foundation for materials design as a 

set of bottom-up mappings. However, due to the computational expense of modeling at the 

small scales it becomes critical that a top-down inductive approach assists the deductive 

mappings for efficient design space exploration. Having looked at multiscale material systems 

we look at the challenges associated with multiscale modeling of such systems. 

 

1.1.2. Multiscale Modelling for Integrated Material and Product Design 

 

The hierarchy of multiscale computational models incorporated for integrated material and 

product design is illustrated in Figure 1.4. The length hierarchy extends from Angstroms in the 

quantum scale to meters in the macroscale while the time hierarchy extends from femto-

seconds in the quantum domain to months or years for the entire lifecycle of the product in the 

macro scale. In the following section, the multiscale models (the boxes in the scale graph) for 

multifunctional analyses of material and product employed for this research are briefly 

discussed. This section on multiscale modeling has been leveraged from Choi’s disseration1 

Quantum Mechanics Models 

Quantum scale models, the smallest scaled computational model in Figure 1.4, are used to 

determine the equation of state properties of the individual materials and the likelihood of 

reaction initiation between reactive components. These ab initio models only require 
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environmental properties such as pressure and temperature as inputs since the atomic 

properties are fundamentally derived. The equation of state results are used in the mesoscale 

discrete particle models to determine the constitutive behavior of the individual components. 

Evaluation of the transition states and energies that relate to the interaction of reactive 

components can be processed to determine the likelihood that a reaction will initiate. These 

probabilities can be used in the mesoscale discrete particle models. Quantum scale models are 

also used to determine the parameters in potentials used in molecular dynamics models. 

 

Figure 1.4: Hierarchical materials design1 

Molecular Dynamics Models 

Molecular dynamics (MD) models, the second smallest scaled models in Figure 1.4, can also be 

used to investigate the equation of state properties and the probability of reaction initiation, 

but at larger scales. While quantum scale models are limited to tens of atoms, MD models can 

investigate the interactions of hundreds of thousands to millions of atoms. The MD models can 
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then be used more effectively to study shock waves through the atoms, size scale effects at 

reactive component interfaces, and nanoscale domains of the constituents. The MD models can 

also be compared and verified with quantum scale models. The results of the MD models may 

be used in the mesoscale discrete particle models. 

Mesoscale or Microscale Models 

In the microscale model, the third smallest scaled models in Figure 1.4, the constituents are 

modeled as discrete particles in the nanometer to micron scale range. With a given input, the 

model estimates reaction initiation and micro-structural information within a volume element 

measuring in the tens to hundreds of microns in length. The randomly generated morphology is 

created based on statistical information such as volume fractions, size distributions, and nearest 

neighbor distributions. The structural information is used in continuum models for property 

analysis.  

Continuum Models 

Achieving an accurate continuum model for new materials is important to accurately estimate 

the property of a material. Structural and reaction information generated from microscale 

models are interfaced with the continuum model. Experimental data are often required for 

validating multiscale analysis models at this scale. Constitutive models and reduced order 

models are implemented at this scale. The reduced order model are used when simulations are 

infeasible and predicts properties based on the ‘rule of mixtures,’ in which a mixture’s property 

can be calculated by the weighted average of mixture constituents’ properties based on their 

fractions in a mixture. 

Macroscale Models 

Macroscale models are used to map between the obtained properties from the microstructure 

to the performance of the system. Mapping models in the property-performance domain in 

Olson’s diagram are generally well understood and extensive modeling literature exists. Often 
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they are in the form of an individual or set of ordinary or partial differential equations.  Finite 

element analysis is commonly used for structural modeling in the macroscale domain.  

In this section, we introduce the multiscale models for designing material and product as an 

example of multiscale simulation-based materials design. In the next section, the challenges in 

the multiscale simulation-based materials design are discussed. 

1.1.3. Challenges in Multiscale Modelling for Integrated Product and Material Design 

A multiscale model is defined as a model that takes advantage of information from various 

scales present in the system in order to gain a better understanding of the system while 

reducing the computational cost. For successful multiscale modeling we must overcome the 

challenges described in Table 1-1 and discussed in detail in this section. Some of the challenges 

have been leveraged in part from Panchal’s dissertation3. Although these challenges are 

common to all multiscale systems, we describe these in context of integrated product and 

material design examples. 

Table 1.1: Challenges associated with multiscale modeling3 

a. Balancing the prediction accuracy with computational cost 

b. Modelling physical phenomena and interaction between scales 

c. Collaborative decision making 

d. Collaborative computational infrastructure 

e. Managing uncertainty and its propagation 

f. The inverse problem 

 

a. Balancing the Prediction Accuracy with Computational Cost  

The biggest obstacle hindering design of multiscale systems is the computational cost 

associated with modeling in the molecular or microscale domain. Ideally, we would 
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want to use the modeling in the quantum domain to drive the molecular simulations 

and predict the microstructure using this information. Using the microstructure 

information and accurate continuum models, the material properties can be predicted 

which in turn can be mapped to the system performance. Though such a comprehensive 

analysis of atomistic interactions can give very accurate representations of the true 

system performance, current computing powers prohibit such an approach. Modeling in 

the atomistic or molecular domain even under simplified conditions and considering a 

small number of interactions lead to large computational times, sometimes on order of 

days to months. A thorough analysis is inefficient especially in the early stages of design. 

So we sacrifice accuracy for computational efficiency. This translates into using models 

with lower degrees of freedom which can sufficiently capture the physical phenomena 

in the material domain and the predictive capabilities of the model are used to generate 

information fed into models at a higher scale in the material design hierarchy. Accuracy 

is sacrificed in terms of analyzing discrete points in the design space, screening 

unimportant variables for modeling the physical phenomena or reducing a 3D analysis 

into a more tractable 2D analysis. An alternative approach is to use the computational 

resources in an adaptive fashion by progressively increasing the information content 

from models which have a greater impact on the overall multiscale system performance 

and allow targeted refinement. This can be achieved via identifying critical links in the 

model chain which amplify uncertainty and investing computational resources to 

increase the level of detail and consequently reduce the uncertainty in the indentified 

mapping model. The idea is to use the right combination of models and the associated 

detail in the constituent models so as reach the desired levels of accuracy while 

ensuring computational efficiency. This approach is also beneficial in terms of evolving 

design goals and one can tailor the computational resource investment to adjust to new 

possibilities because of improved simulation model formulation and increased material 

knowledge with passage of time. This aspect of ensuring computational efficiency and 
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ensuring targeted refinement of simulation models in multiscale systems is identified as 

gap for integrated material and product design and addressed in Chapter 6.  

b. Modelling Physical Phenomena and Interaction between the Scales 

As we saw in our description in the previous section, multiscale systems are coupled 

between and within the length and time scales as well as between and within the 

subsystems and components. For example, in the Olson’s diagram, coupling exists 

between the quantum, molecular, microscale and continuum domain   and within the 

individual components and subsystems. These domains or scales are governed by 

different physical laws and mathematical equations. Though there exists comprehensive 

literature in macroscale modelling, material modelling in the quantum or molecular 

scale is still in its infancy. For multiscale modelling, it is also vital to ensure consistent 

flow of information gathered by simulating the physical phenomena at the different 

scales. Due to the significant level of complexity in the material modelling, domain 

experts are entrusted with the task of simulating the mathematical equations or 

physical laws governing the length and time scales. The models developed by the 

domain experts are based on varying assumptions and provide different fidelity of 

insight into the system behavior and hence, must be integrated in a manner so as 

achieve consistent system level interactions.  In summary, multiscale systems represent 

a special type of complex systems, characterized by multiple components, multiple 

physics, and multiple scales. The performance of multiscale systems cannot be predicted 

merely through analysis of subsystems at the different scales but appropriate 

consideration of interactions as well. 

c. Collaborative Decision Making 

Design of multiscale systems involves different stakeholders. These may be internal or 

external stakeholders and the interests of the individual stakeholders must be met. At 

the internal level, the stakeholders might be the system level designer, the constituent 
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designer teams, or the employees and at the external level the stakeholders include the 

society at large, the customers, the government or the creditors. Meeting the minimum 

level of expectations of all these different stakeholders is a big challenge and entails 

collaboration between the stakeholders. Additionally, the models developed by the 

design teams must be linked in a manner that facilitates design space exploration by a 

collaborative team of experts and as a result reducing the brunt of achieving solution 

spaces from the system level designer. This strategy contrasts markedly with attempts 

to design materials using concurrent multiscale modeling. Distributing analysis and 

synthesis activities also leverages the extensive domain specific knowledge and 

expertise of various material and product designers who may be specialized according 

to length and time scales, classes of materials, and domains of functionality. A 

fundamental role of each domain-specific expert is to make decisions that involve 

synthesizing and identifying solution alternatives to achieve desirable tradeoffs between 

sets of conflicting material property goals. However, material subsystems are 

interdependent, and the individual decisions associated with them rely on information 

and solutions generated by other decision-makers at other levels of the hierarchy. In the 

end, preferable systems-level solutions are sought, and they are not necessarily 

obtained by ‘optimizing’ each subsystem individually. Therefore, it is critical to establish 

multi-objective decision protocols for individual designers as well as standards, tools, 

and mathematical techniques for interfacing and managing individual decisions while 

facilitating information flow among multiple experts. This aspect of establishing 

cooperative decision protocols is taken up in detail in Chapter 3 of the thesis using game 

theoretic constructs to achieve system level performance requirements.  

d. Collaborative Computational Infrastructure 

 
In order to realize collaborative decision-making between multidisciplinary material 

experts, it is critical to establish a computing infrastructure for integrating 

heterogeneous, distributed software applications and databases in a materials design 
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process. An effective computing infrastructure needs to automate the details of 

executing and linking various models, freeing a designer to build upon previous model-

based developments and to concentrate on higher-level design issues. The computing 

infrastructure should be easily extensible and platform independent. A computing 

infrastructure also needs to archive and organize large amounts of data and facilitate 

real-time data sharing and visualization as well as systematic communication, 

translation, and search-based retrieval of design information. Tools are needed for on-

line collaboration, communication, and project management, and real-time data sharing 

and archiving. The simulation models may employ various bundled software like 

MATLAB, ABAQUS, ANSYS or the design team may have its custom code based on C++, 

JAVA or FORTRAN. The computational infrastructure should enable a seamless interface 

between these softwares and automatic execution of the design programs. Such 

infrastructure is not commonplace as is viewed as challenge for multiscale modeling of 

systems. This has led to a new field of multiscale information science. An alternative 

approach is to make design space exploration more efficient by using design of 

computer experiments, approximate metamodeling techniques to create simplified 

mapping relationships between response variables and responses using the data 

generated from the computational simulation models. These mapping relationships can 

be used in lieu of cumbersome and computationally expensive simulation models and 

can be directly employed in for design space exploration. However mapping models lead 

to an increased uncertainty component which is discussed in the next section. 

e. Managing Uncertainty and its Propagation 

Uncertainty in simulation models is categorized as aleatory and epistemic uncertainty. 

Aleatory uncertainty refers to the uncertainty due to the inherent randomness in the 

physical processes, whereas epistemic uncertainty refers to the uncertainty due to lack 

of knowledge about the system, which can be due to lack of information about model 

parameters and approximations in the model. In order to make appropriate use of 
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information generated by simulation models, uncertainty quantification plays an 

important role. Since materials are complex, hierarchical, heterogeneous systems, it is 

not reasonable or sufficient to adopt a deterministic approach to integrated product 

and materials design. First, microstructure is inherently random at some scales. Second, 

parameters of a given model are subject to variation associated with variation of 

material microstructure from specimen to specimen. Furthermore, uncertainty is 

associated with model-based predictions for several reasons. Models inevitably 

incorporate assumptions and approximations that impact the precision and accuracy of 

predictions. Uncertainty may be magnified when a model is utilized near the limits of its 

intended domain of applicability and when information propagates through a series of 

models. Also, to facilitate exploration of a broad design space, approximate or surrogate 

models may be utilized, but fidelity may be sacrificed for computational efficiency. 

Experimental data for conditioning or validating approximate or detailed models may be 

sparse, and they may be affected by measurement errors. Also, variation is associated 

with the structures and morphologies of realized materials due to variations in 

processing history and other factors. Often, it is expensive or impossible to remove 

these sources of variability, but their impact on model predictions and final system 

performance can be profound. Therefore, systems-level design methods need to 

account for the many sources of variation and uncertainty. In Section 1.2.3, 

uncertainties in materials design are discussed in further detail. 

f. The Inverse Problem 

This challenge is specific to integrated design of material and product. As mentioned 

previously, multiscale systems are rife with different sources of uncertainty and 

employing a bottom-up mapping is an idealized approach which may not lead to desired 

system performance. To overcome this obstacle it is critical to develop infrastructures 

that employ top-down analysis while being guided by bottom-up simulation models. 

However, material models are not invertible in the sense that given the output at the 
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higher level of the material design hierarchy it is not feasible to derive the conditions 

required in the lower level of the hierarchy. This is because the mapping models are 

derived using governing equations which are complex sets of partial differential 

equations and which do not have closed form solutions. This can be viewed as a P not 

equal NP problem in computational science which states that though the solution can 

be verified in polynomial time, the solution may or may not be calculated in polynomial 

time. Quantum computation is an interesting area of research in theoretical computer 

science and efforts are being made to build quantum computers which overcome this 

inverse problem, i.e., to be able to find the solution and verify it in polynomial time. 

However current computing infrastructures do not permit seamless inversion and is 

viewed as a major obstacle for inductive design space explorations. We will look at how 

the microstructure mediated approach (MMD) overcomes the inverse problem in 

Chapter 5. 

Having looked at the challenges for multiscale modeling, we proceed to describe how these 

challenges are overcome through a multilevel design approach through the remainder of the 

thesis. 

 

1.1.4. Multilevel Design 

Multiscale modeling is inherently a bottom-up exercise traversing along the process-structure-

property-performance relationships in that order as described in Olson’s diagram in Figure 1.3. 

Although seamless bottom-up mapping is useful from a theoretical or scientific perspective, the 

uncertainty associated with the modeling and its propagation along the design chain with a 

compounding of approximations makes it too idealized for materials design and may 

compromise its viability. Instead we resort to multilevel design where we consider the hierarchy 

of length and time scales as well as product, assembly and subsystem interfaces with decision 

nodes, i.e., it employs decision support at the linkages rather seeking automated seamless 
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connectivity, Figure 1.5.  The decision support can be in regards to uncertainty components and 

its management or in terms of performance measures for optimization. This gives the designer 

additional flexibility to tailor the design based on the values input at the decision nodes, i.e. , 

increased design freedom.  

 

Figure 1.5: Multilevel design 

Thus the approach in multilevel design for integrated material and product development is to 

couple bottom-up simulation mapping models with a top-down assessment of responses using 

decision support techniques. Thus while multiscale modeling through linking of mapping models 

achieves predicition of performance, multilevel design focuses on achievement of system level 

objectives through efficiency in design exploration techniques, i.e., it manages the complexity of 

the interlinked mapping models while manging uncertainty. Through the remainder of the thesis 

we will see how multilevel design tackes each of the challenges in multiscale modeling for 

integrated product and material development. Chapters 2 and 3 lay the foundations for 

multilevel design approach for integrated product and material design which are analyzed and 
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further refined in Chapters 5 and 6. Having understood multiscale modeling and multilevel 

design, we understand how uncertainty can be managed in multiscale systems. 

 

 

1.2. Uncertainty Management in Multiscale Systems 

 

For managing the sources of uncertainty discussed in the previous section, two primary 

approaches are available. One approach is reducing the uncertainty itself, and the other is 

designing a system to be insensitive to uncertainty without reducing or eliminating it, i.e., robust 

design. The following discussion on management of uncertianty is leveraged from Choi's 

dissertation. 

Reducing or Mitigating Uncertainty 

One approach of reducing uncertainty is when the designer has large amounts of data at his 

disposal. Kennedy and O’Hagan6 employ a Gaussian Process model (known as kriging in spatial 

statistics) for fitting simple model data . They assume the model for detailed simulation data is a 

combination of the fitted simple model, a linear scale term, and error terms. The linear scale is 

assumed as an unknown constant and error terms are defined in another Gaussian Process 

model. By adding some detailed simulation results, unknown scale and error terms are 

estimated for constructing an approximate model of the detailed simulation. Simpson and 

coauthors7 extend the kriging metamodeling technique and recommend a guideline for the 

appropriate use of statistical approximation techniques for multidisciplinary optimization. 

However in multiscale systems access to large amounts of data translates into a large number of 

simulation runs and hence becomes computationally expensive. An alternative approach is to 

adaptively increase the knowledge of the system through improved formulation or stepwise 

increase in the number of simulation runs to better represent the physical phenomena in the 

multiscale system. This approach to reducing uncertainty is taken up in Chapter 6 and is termed 

as uncertainty mitigation in my thesis.  
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Robust Design 

The second approach for managing uncertainty is designing a system to be insensitive to 

uncertainty without eliminating or reducing its sources in the system; this is called robust design 

8-13
. In other words, robust design is used to make the system response insensitive to 

uncontrollable system input variations, thus improving the quality of a designed product. This is 

also called parameter design. Parameter design alone does not always leads to sufficiently high 

quality. Further improvement can be achieved by controlling the source of variation. However, 

the cost associated with controlling the source’s variation may be prohibitively high. A robust 

design approach can be introduced to design at lower cost by sacrificing the achievement of 

optimal performance,i.e., identify sub-optimal regions in the design space which are insensitve 

to variations. Typically, in robust design literature, design parameters are divided into three 

categories: control factors, noise factors, and responses. Control factors, also known as design 

variables, are parameters that a designer adjusts. Noise factors are exogenous parameters that 

affect the performance of a product or process but are not under a designer’s control. 

Responses are performance measures for the product or process. Uncertainty described in 

Section 1.1.3. reside in system design models, based on which designers make their decision in a 

scientific manner, with various forms; these are control factors, noise factors, or others, which 

are discussed in the subsequent section, Section 1.2.1. It is important for designers to identify 

where the uncertainty sources reside in a system model in order to employ an appropriate 

uncertainty management method. Thus, robust design is a method for improving the quality of 

products and processes by reducing their sensitivity to variation, thereby reducing the effects of 

variability without removing its sources 14,15. In the following sections, Sections 1.2.1 and 1.2.2, 

robust design approaches are discussed and sources of uncertainty integrated material and 

product systems. 
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1.2.1. Robust Design Approaches 

As mentioned, robust design aims to alleviate the consequence of uncertainty without removing 

the underlying sources. Robust design approaches are classified as: 

 Type I- for managing uncertainty in noise factors 

 Type II- for managing uncertainty in control factors 

 Type III- for managing uncertainty in system models 

 IDEM- for managing propagated model chain uncertainty in multiscale systems 

Robust design techniques have been developed specifically for each type of uncertainty, Figure 

1.6. The distribution functions represent the uncertainty in the control, noise factors or model 

while its propagation through the design chain may lead to amplification or reduction 

depending on the connectivity. A thorough explanation of robust design techniques follows. 

 

Figure 1.6: Robust design approaches- Type I, II, III and IV1 

Managing Uncertainty in Uncontrollable Parameters-Type I Robust Design 

One of the main forms of uncertainty in a system model is uncertainty in uncontrollable 

independent system parameters, which are known as “noise factors.” Noise factors are in 

parametric form and may be quantified and characterized as continuous numbers, with or 
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without probability information. Noise factors are usually given in system models as 

environmental factors, operating conditions or materials property variances that may be 

represented as continuous parameters and cannot be controlled by designers. Uncertainty in 

noise factors can exist as one of the aforementioned uncertainty types; however the most 

dominant type of uncertainty is variability (natural uncertainty), which can be measured in a 

statistical way. The degree of uncertainty in noise factors can be decreased by increasing the 

size of sampling and/or adapting efficient uncertainty analysis methods, leaving only irreducible 

statistical variability. In order to design a system robust to the uncertainty in noise factors, Type 

I robust design was proposed by Taguchi 16. 

 

 

 

Type I robust design is used to design systems that satisfy a set of performance requirement 

targets despite variations in noise factors which are uncertain, uncontrollable, independent, 

system parameters. Although Taguchi’s robust design principles are advocated widely in both 

industrial and academic settings, his statistical techniques, including orthogonal arrays and 

signal-to-noise ratio, have been criticized extensively, and improving the statistical methodology 

has been an active area of research17. During the past two decades, a number of researchers 

have extended robust design methods for a variety of applications in engineering design10 

Managing Uncertainty in Controllable Parameters - Type II Robust Design 

The second form of uncertainty in a system model is uncertainty in controllable system 

variables, which are known as “control factors”. Similar to noise factors, control factors are also 

in parametric forms that can be measured and characterized as continuous numbers with or 

without probability distribution. Control factors are usually derived from the characterized 

parameters in system models that relate to system performance, including geometric 

information, mass, amounts of constituents in materials, process control inputs, etc. Designers 

can determine the means of control factors; however, the deviations of control factors may not 

be controllable. Therefore, control factors should be characterized in a manner similar to noise 

Type I Robust Design: Identify control factor (design variable) values that satisfy a set of 

performance requirement targets despite variation in noise factors. 
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factors. In order to design a system robust to the uncertainty in control factors, Type II robust 

design was proposed by Chen and coauthors11. 

 

 

 

Type II robust design is used to design systems that are robust to possible variations in system 

parameters as a design evolves. In Type II robust design, designers search for means of control 

factors that satisfy a set of performance requirement targets despite variation in control factors.  

 

Figure 1.7: Robust design for variations in noise factors and control factors18 

 

Figure 1.8: Computation infrastructure for RCEM18 

Type II Robust Design: Identify control factor (design variable) values that satisfy a set of 

performance requirement targets despite variation in control and noise factors. 
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In Figure 1.7, the optimal design solution is different from the Type I, II robust solution. Optimal 

solutions may have large components of uncertainty and if uncertainty measures are introduced 

in the design formulation, one obtains flatter regions in the output response instead of an 

optimal response. Thus there is a trade-off between optimal system configuration and the 

uncertainty in the noise and control factors.  A method for combining Types I and II robust 

design in the early stages of product development, namely, the Robust Concept Exploration 

Method18 has been developed. RCEM is a domain-independent approach for generating robust, 

multidisciplinary design solutions. Robust solutions to multifunctional design problems are 

preference-weighted trade-offs between expected performance and sensitivity of performance 

due to deviations in design or uncontrollable variables. These solutions are not global optima 

but most robust within the design space. By strategically employing experiment-based 

metamodels, some of the computational difficulties of performing probability-based robust 

design are alleviated. The computational infrastructure for RCEM is shown in Figure 1.8. Briefly, 

it consists of design of experiments for generating points for running the simulation, analyzing 

the simulation results and building integrated metamodels followed by trade-off between 

performance measures and uncertainty components in the compromise decision support 

problem (cDSP)For detailed discussion of the RCEM framework, refer to Chen, 1997. 18 

 

Managing Uncertainty in System Models- Type III Robust Design 

Tpye III uncertainty is used to design systems that are robust to uncertainty embedded in 

system functions which may arise due to a combination of limited data and nonparametric 

system noise (or un-configured system noise). For example, if a nondeterministic system 

analysis is computationally intensive or experimentally expensive, then the limited data may 

result in uncertain parameters in metamodels (such as response surface models) of the system 

response. This is the typical type of uncertainty in materials design that employs 

computationally intensive models. Another type of uncertainty arises in systems models due to 

assumptions and idealization during simulation modeling.  Thus includes linearization and 

discretization errors in finite element analysis, errors in computer codes, employment of 
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uncertain knowledge, and other assumptions due to limited information. The uncertainty 

embedded in a system model cannot be managed by previous robust design approaches (Type I 

and II). In order to manage this uncertainty, a new type of robust design approach, called Type 

III robust design, is proposed. A visual representation of Type III robust design, compared to 

Type I and Type II robust design, is shown in Figure 1.9. In this figure, an objective function curve 

is employed to show the differences among the optimal solution, Type I and II robust solution, 

and Type I, II and III robust solutions. A deviation (or objective) function, which represents the 

system’s response, is illustrated as a solid curve. In addition, two dotted curves are added 

around the objective function, representing uncertainty limits, which are due to the non-

parametric variability, un-configured variability, and model parameter uncertainty as mentioned 

above. Considering not only the objective function but also the two uncertainty limits, the 

optimal and Type I and II robust solution have larger performance deviations than the Type I, II, 

and III robust solution. Type III robust design becomes more important since modern 

engineering systems are getting more and more complex (or extremely small) and their 

behaviors are stochastic.  For Type III robust design, it is required to build error bounds 

(uncertainty bounds) in a model in a computationally inexpensive manner. The most accurate 

way to incorporate the embedded uncertainties as well as the uncertainty in control and noise 

factors during design exploration is to perform actual simulations using statistical techniques 

(simulation-based design). In Figure 1.9, a comparisison between Type I, Type I,II and Type I, II, 

III is illustrated. Type I, II, III acounts for uncertainty in nosie, control and model parameters and 

the desired solution is obtained a trde-off between performance, flat regions representing 

robustness against noise and control factors and small error bounds representing robustness 

against uncertainty in the model response.  

Type III Robust Design: Identify adjustable ranges for control factors (design variable), that 

satisfy a set of performance requirement targets and/or performance requirement ranges and 

are insensitive to the variability within the model.  

 

 

Type III Robust Design: Identify adjustable ranges for control factors (design variable), that 

satisfy a set of performance requirement targets and/or performance requirement ranges 

and are insensitive to the variability within the model.  



 

   24 

 

Figure 1.9: Robust design for variations in noise factors, control factors and model response16 

 

Figure 1.10: Computation infrastructure for RCEM-EMI 16 

The RCEM-EMI (Figure 1.10) construct was introduced by Choi to handle Type III robust design. 

The RCEM-EMI procedure consists of (a) clarification of the design task, (b) DOE and simulation, 

(c) integrated metamodel and prediction interval estimation, and (d) design space search using 

the cDSP for the RCEM-EMI. In the RCEM-EMI, the Error Margin Indices (EMI) are metrics 

indicating the degree of reliability of a decision that satisfies system constraints and bounds 16. 

The design procedure is to find ranged sets of design specifications that meet a range of system 
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requirements based on the EMIs calculations. Unlike Type I and II robust design, in which only 

system response variations due to uncertainty from control factors and noise factors are 

considered, the RCEM includes the response variation due to the variability of the model itself 

and uncertainty bounds of models into the consideration. For a detailed mathematical 

understanding of the RCEM-EMI framework, refer to Choi’s disseration1. 

The RCEM-EMI framework has its limitation while extending it to the multiscale system analysis. 

Monte Carlo Simulation is a popular method to measure variations of performance by 

simulating input variations (uncertainty analysis).Even though this approach could produce 

accurate results in design exploration, it requires a large number of experiments (more than 

10,000 in many cases) for uncertainty analysis even in a single evaluation during a design 

exploration process. However, most multiscale material performance analyses need intensive 

computing power (from half an hour to several days for a single simulation run). It is nearly 

impossible to employ this approach in materials design exploration even if a sampling 

technique, such as Latin Hypercube sampling, is applied to reduce the number of experiments. 

Computationally inexpensive uncertainty analysis methods are needed to solve this problem. 

Hence , IDEM was proposed for managing uncertainty in multiscale systems, discussed next. 

Managing Uncertainty in Design Process Chain- Inductive Design Exploration Method (IDEM) 

The final type of robust design is for multiscale systems and managing the uncertainty  

generated in the design and analysis process chain, which, unlike the aforementioned 

uncertainties in a system model, arises from the complex design and analysis process chain and 

not from the system model itself. This type of uncertainty is often observed in multidisciplinary 

uncertain system design problems and includes errors in decisions made by other designers and 

accumulated errors (propagated uncertainty) by subsequent series of uncertain subsystem 

models. Typically, complex multidisciplinary system design requires multiple experts to 

collaborate to make decisions for designing a system. The outputs of other experts’ decisions in 

a subsystem could be input parameters, constraints, or design spaces of other subsystems or 

systems design. In many cases, multiple subsystem designs even share common design 
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variables. In these interactions in design activity, a subsystem design error can be propagated to 

another subsystem or system.Additionally, complex systems design tends to employ multiple 

analyses and simulations in a series to predict system responses.  

 

Figure 1.11: Robust design for amplification or reduction of system response along a design 

process chain1 

Design process uncertainty emanates from: (a) changes in design specifications as a result 

downstream or concurrent decisions and design activities or (b) the propagation or potential 

amplification of uncertainty due to the combined effect of analysis tasks performed in series or 

in parallel, Figure 1.11. Due to the sequential nature of the design chain mapping, the 

uncertainty in the noise and control paramaters is amplified by the uncertainty in the model as 

it propagates through the models in the design chain. Both sources of design process 

uncertainty are common and important for multidisciplinary design and analysis, including 

multiscale, multi-physics materials design, with a plethora of shared or coupled variables and 

analyses performed on multiple length and time levels. The information dependency in 

multiscale models engenders complex design process chains – hierarchical, parallel, and serial 

design processes. 
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For an accurate understanding of the Inductive Design Exploration Method (IDEM)19 it is 

important to classify the sources of uncertainty relevant to multiscale systems. We take this up 

in the next sub-section. 

1.2.2. Uncertainty in Multiscale Systems 

IDEM is going to be the central framework we build upon in the subsequent chapters. Before we 

proceed to understanding IDEM, it is necessary to categorize the types of uncertainty in a 

multiscale system, since quantification of the uncertainty in the model depends on these 

uncertainty types. Uncertainty can be classified as either Aleatory (irreducible) or Epistemic 

(reducible) based on the causes of the uncertainty. Epistemic uncertainty can be diminished by 

improvements in measurements and/or model formulation and/or by increasing the accuracy or 

sample size of data13. Aleatory uncertainty, on the other hand, is inherent in the physical system 

and can only be quantified in a statistical sense13. Extending the classification of uncertainty 

types by Isukapalli and coauthors 20, the types of uncertainty are categorized by Choi et al. 13 is 

as follows. 

a. Variability (natural uncertainty): Uncertainty due to the inherent randomness or 

unpredictability of a physical system; this is irreducible and can only be quantified in a 

statistical sense. The variability can be further classified as parameterizable and 

unparameterizable. Parameterizable variability can be configured as variance in numeric 

form, but unparameterizable variability cannot. 

b. Model parameter uncertainty (data uncertainty): This is incomplete knowledge of 

model parameters/inputs due to insufficient or inaccurate data; it is reducible by 

sufficient data or accurate measurements. 

c. Propagated uncertainty (PU): this is uncertainty expanded by a combination of the 

above two types of uncertainty in a chain of models.  

Inductive Design Exploration Method: Identify adjustable ranges of control factor (design 

variable) values under potential uncertainty and uncertainty propagation in a design and 

analysis process chain in multiscale systems. 
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d. Model structure uncertainty (model uncertainty): This is uncertain model formulation 

due to approximations and simplifications in a model; it is reducible by improving model 

formulation.  

 

Figure 1.12: Classification of types of uncertainty 

These uncertainty types coexist within any system. While one type of uncertainty may 

dominate, the other type of uncertainty may be negligible. It is an important step of the 

multiscale design process to identify the key sources of uncertainty and make efforts to mitigate 

them. In this thesis, we are concerned with all four types of uncertainty and the interrelation 

with each type of uncertainty is as follows:  

a. Variability (Natural Uncertainty) 

Variability can be quantified only in the statistical sense. Variability in inherent in any 

physical phenomena and cannot be mitigated i.e. irreducible in nature. Hence, efforts 

are focused in accurately modelling variability while managing uncertainty. The 

modelling efforts can in the form of distribution functions (most commonly Gaussian 

distributions) or intervals. The approach in this thesis to model natural uncertainty as an 

interval estimate which is formulated as a Taylor series expansion and incorporated in 

the confidence bound determination.  We note that since this uncertainty cannot be 

reduced, efforts are put only in accounting for variability in robust design of multiscale 

systems and not reducing it.  

b. Model Parameter Uncertainty (Data Uncertainty) 

In multiscale systems, there may be several simulation models at different length and 

time scales. Since it would be computationally very expensive to evaluate feasible 

spaces for the multiscale system by running simulation models over the entire design 

Uncertainty in Multiscale Design 
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Model Struture 
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Paramater 

Uncertainty

Propagated 
Uncertainty

Aleatory 
(Irreducible)

Variability



 

   29 

space, we run the simulation models only at a limited number of discrete points in the 

design space for the design variables with the objective of gaining maximum amount of 

information about the simulation model reproducing the physical phenomena. To gain 

the maximum amount of information, we use a design of experiments technique and 

proceed to evaluate metamodels based on the output from the simulation runs. A 

metamodel is a ‘model of a model’ i.e. a model that represents the functional 

relationship between the input and output variables for the simulation model. A linear 

model for a simulation model with only one design variable (x) will be of the form: 

                     

Where, Y is the output of the simulation model,    and    are model parameters and x 

is the design variable. Such an approximate function can replace the actual simulation 

model in our analysis of the multiscale system. As the metamodel is an approximation 

based on the limited data from the actual simulation model, there will an uncertainty 

component associated with     ,   and x. Ideally, the uncertainty associated with x is 

only the natural uncertainty or variability. To mitigate model parameter uncertainty 

associated with    and   , we have to acquire additional information about the 

simulation model over the design space so that we can get better estimates for    and 

  . This translates to running the simulation model over sufficient data points in the 

entire design space. However, there is no metric to quantify the number of additional 

runs required to converge to a robust solution or the associated benefit associated in 

the re-runs. In this Chapter 6, the focus is on reducing the model parameter uncertainty 

associated with the only the model parameters (   and    in the Equation 1.1) and not 

with x which comes from two components: 

(i) Variability which is irreducible in nature 

(ii) Discretization error which can be reduced by making intervals smaller while 

evaluating robust feasible spaces in IDEM.  

However managing discretization error will involve a rigorous study of the 

computational effort and the benefit associated with reducing the discrete interval 

approach in IDEM. Hence we are limit our focus to understanding the computational 

effort and the effort-benefit trade-off associated with modeling parameters for the 
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metamodel. My approach is to first quantify the model parameter uncertainty and the 

benefit associated with the refinement of the individual subsystem level simulations. 

This is taken up in Chapter 6. The idea to first get an initial estimate of the benefit of 

simulation model refinement on the final design performance and then proceed to 

proposing the set of data points for re-runs for each simulation model at the subsystem 

level. This is achieved by reaching a trade-off between the computational cost models 

for the simulations associated with the anticipated gain on the overall performance 

requirements of the multiscale system for the system design. 

c. Propagated Uncertainty (PU) 

 

Figure 1.13: Propagation of uncertainty through design chain 1 

Not all subsystems will have the same effect on the final design performance. The 

uncertainty associated with the simulation models at the micro or nano-scale in the 

spatial domain will have a greater effect on the performance of the system or product 

as compared to the models at the macro domain. This is because of the hierarchical 

nature of multiscale systems and the lower level subsystems will propagate to a greater 
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extent through the design chain. This propagated uncertainty is managed by our 

technique of robust design, i.e., IDEM. In order to account for propagated uncertainty 

while achieving trade-off for further simulation refinement, we account for the 

propagation by assigning greater weights to simulation models at the smaller scale in 

the spatial or temporal domain. Figure 1.13 illustrates the propagation of uncertainty 

through the design model chain along the length scale for the microscale discrete 

particle shock simulation-based robust design of multifunctional energetic structural 

materials used by Choi for validating IDEM 1. The uncertainty is amplified along the 

design chain. Based on the connectivity between the interlinked models, uncertainty 

may be reduced too along a design chain. 

To further understand the nature of propagated uncertainty which will be crucial for 

developing weights for the simulation models we look at Figure 1.14. Parameter, x1, is 

an input to the subsystem model, f1; x1 has a variance associated with it. The y1 is the 

response from the model in which the input uncertainty is increased because of the 

combination of variance of x1 and errors in f1 model itself. A Similar thing happens in 

y2, which is the response of f2 with x2 as the input. The same effect may be applied to 

model, f3. Variables, y1 and y2, are inputs with variances to f3. The response, z, includes 

increased uncertainty due to the combination of variances in y1 and y2 and the 

uncertainty in the model, f3. Therefore, uncertainty accumulates through multiple steps 

of a model chain and making the variance of the final response unexpectedly large. In 

order to deal with this kind of uncertainty, the robust design approach for complex 

systems is necessary and accounted for in IDEM. Also, we see that the uncertainty 

associated with x1 propagates through two levels in the design chain (f1 and f3) and x2 

propagates through two levels in the design chain (f2 and f3) while uncertainty 

associated with y1 propagated through only one level (f3). Thus we realize that there is 

a greater benefit in reducing uncertainty in x1 and x2 as compared to variables higher in 

the design chain. A similar argument can be placed for the models f1, f2 and f3. The 

uncertainty in f1 and f2 propagate through f3 while f3 has no propagation effect. Thus 

while developing weights for the simulation models; we should assign greater weights 

to models lower in the design chain. 
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Figure 1.14: Uncertainty propagation through design chain 1 

d. Model Structure Uncertainty (model uncertainty) 

 Among the types of uncertainty, model structure uncertainty (MSU) is the most difficult 

type to manage since it is hard to quantify13. Choi et al 13 developed IDEM to find robust 

solution against MSU. Their strategy to deal with MSU is to first find the feasible 

solution space for given final performance requirements and process constraints 

considering variability, propagated and model parameter uncertainty. Then proceed to 

find the best robust solution amongst the identified feasible space against MSU. To 

reach this trade-off they contend that feasible robust points further away from 

constraint boundaries considering all interdependent variable spaces are more reliable 

against unquantifiable model structure uncertainty. For example, in Figure 1.15, even 

though Design 1 and 2 achieve the same final performance (z space), Design 2 is better 

than Design 1 because the projected region of Design 2 in the interdependent variable 

space (y space) is farther from the constraint boundary of the feasible region than 

Design 1 13. In this thesis, we only focus on managing MSU and not reducing it. In order 

to reduce MSU, value of information needs to be understood holistically. MSU arises 

from modelling assumptions and hence the computational costs will be more difficult to 

quantify. One approach is to prepare a comprehensive list of computational programs 

used in simulations and understanding the impact of refining the model. For example, in 

structural modelling, the validity of the results is dependent on the mesh size. The 

computational effort in reducing mesh sizes in FEM softwares like ABAQUS or ANSYS 

need to be quantified. Also, in numerical simulation in MATLAB we often use 

approximations which can be tailored. For example a material simulation model may 

use the Simpsons rule for numerical integration. This can be refined by using Simpsons 

3/8th rule at an increased computational cost. All these scenarios need to be tabulated 
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and corresponding computational costs need to be quantified. This is proposed as 

future work. It is noted that this kind of uncertainty cannot be reduced through 

additional data acquisition but only through improving the model formulation. For 

example, if higher order coefficients are ignored in model formulation,additional data 

will give a set of solution based on the reduced order of the model and will ignore the 

uncertainty component due to the ignorance of higher order coefficients. Hence the 

model will need to reformulated accounting for the higher order coefficients to reduce 

model structure uncertainty.  

 

Figure 1.15: Robust design against model structure uncertainty (MSU) 13 

 

Table 1.2: Classification and sources of uncertainty in multiscale systems 1 

In summary, a multiscale design has four sources of uncertainty and the system level designer 

has to expend resources to quantify and mitigate these sources of uncertainty. In my algorithm 

robust design is achieved by the Inductive Design Exploration Method (IDEM) which accounts for 

all the four sources of uncertainty in a multiscale environment. Aleatory uncertainty can be 

quantified in the statistical sense but epistemic uncertainty can only by mitigated by increasing 
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the knowledge about the multiscale system. In IDEM, aleatory uncertainty is incorporated in the 

error bounds for response surface models as a Taylor series expansion at the subsystem level for 

each of the simulation based subsystems in the multiscale system. Epistemic uncertainty is 

accounted for by understanding the sources and the quantifying the degree of model parameter 

uncertainty, model structure uncertainty and propagated uncertainty for the multiscale design. 

The sources and classification of uncertainty is illustrated in Table 1.2. In the algorithm in 

Chapter 6, we specifically look at reducing model parameter uncertainty (MPU) while 

accounting for the other three sources of uncertainty. This is represented in Figure 1.16 and we 

look at reducing the red error bounds. MSU can reduced by refining the modeling assumptions 

and would mean a new response surface altogether.  NU cannot be reduced while MPU 

associated with the design variables can be reduced by taking smaller intervals in IDEM. 

  

Figure 1.16: Uncertainty management for simulation models 

Having understood the sources and classification of uncertainty associated with multiscale 

design, we proceed to understanding the management of aleatory and epistemic uncertainty in 

IDEM in the next section. 
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1.2.3. Inductive Design Exploration Method 

The robust design approach for multiscale systems developed by Choi 21 is to identify adjustable 

ranges of control factor (design variable) values under variability, model uncertainty and 

uncertainty propagation in a design and analysis process chain. The Inductive Design Exploration 

Method (IDEM) 21 is proposed as a robust design approach for multiscale systems.  

The assumption of IDEM is that the uncertainty which comes from the error of models and then 

is propagated during the design process can be reduced by keeping the design freedom as large 

as possible in each design stage. Therefore, IDEM does not provide any specific solutions, but a 

feasible design space. The specific solution is achieved by the compromise decision support 

problem (cDSP) approach. In the IDEM approach, the basic idea for finding ranged sets of robust 

solutions against the propagated uncertainty in a complex model chain is to pass down the 

feasible solution range in an inductive manner, from desired given final performance ranges to 

the design space, while the design freedom at each step is kept as large as possible. The design 

freedom in IDEM is defined as the ratio of the feasible ranges versus entire design space. For 

identifying feasible solution range, designers use only mathematical surrogate models i.e. the 

response surface models or theoretical mathematical functions for bottom-up calculation, not 

the simulation models for the inverse calculation. Designers chose the solutions from this space 

according to their preferences or experience. The discrete exploration process is implemented 

in IDEM to explore the whole design space and check whether all individual design variables are 

able to create feasible performance. Since the discrete exploration process is computationally 

expensive, the computational time for design problems with a large number of design variables 

may become exponentially large in IDEM. Therefore, an additional assumption of IDEM is that 

the design space is small enough to allow for an exhaustive search of all possible design 

combination. Moreover, due to the discretization of a design space, discretization errors are not 

avoidable when the algorithm is checking the feasibility of a mean performance based on 

discretized feasible and infeasible points.  
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IDEM is a three step algorithm. The steps are as follows13: 

(i) Rough design space discretization 

(ii) Parallel discrete function evaluation 

(iii) Inductive discrete constraints evaluation (IDCE)  

The overall procedure for IDEM is illustrated in the Figure 1.17.  

 

Figure 1.17: Solution search procedure for IDEM 21 

In Step 1 we discretize the design space into intervals as design space exploration is 

computationally expensive. After Step 1 we generate discrete mapping models between the 

design variables and the output parameters in the multiscale system. We get ranged sets of 

feasible design space after Step 2. In step 3 we get the best robust solution by compromising the 

model structure uncertainty (MSU) with the different models in the multiscale system. We now 

proceed to look at each of the three steps in greater detail: 
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Step 1: Discretize Design Space. 

IDEM employs search techniques between the mapping models to explore the design spaces at 

each scale of the multiscale system. The mapping models have to be evaluated for each set of 

discrete input points and if a model has multiple inputs, a combinatorial set of discrete input 

sets have to be defined and these sets may become very large for small discretization resolution 

or large number of inputs. The IDEM performs exhaustive search among these mapping models 

to find ranged sets of feasible spaces in the lowest level of the material design hierarchy. As a 

result, the computational time may increase exponentially for small discretization resolutions or 

choice of large number of response variables. To avoid computational complexity, the design 

space is discretized and the resolution space is decided so as to have sufficient accuracy while 

performing the design space search. To this end, the choice of the discrete intervals is decided 

by the variability or natural uncertainty modeled in the response surface and it is chosen to be 

equal to twice the variability to cover the entire design space without loss of crucial information, 

i.e., within limits of error due to natural uncertainty. Also response variables are screened to 

maintain only the crucial coefficient terms from the mapping models to further decrease 

computational expense. The parallel discrete function evaluation and inductive constraint 

design exploration steps are performed on the discretized design space. 

Step 2: Parallel Discrete Function Evaluation 

After having defined the rough design space (x space in Figure 1.16), the interdependent space 

(y space in Figure 3.16), and the performance space (z spaces in 1.16), discrete input sets are 

generated in each of these spaces. The discrete points which are generated are evaluated based 

on the mapping models (model f and model g in Figure 1.18) and the evaluated data sets which 

are composed of discrete input points and associated output ranges are stored in a database. 

These two steps combined are combined in Step 2 and are called parallel discrete function 

evaluation in IDEM.  
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Figure 1.18: Parallel discrete function evaluation in IDEM 13 

 Since it is common that an analysis chain includes shared variables with several models, the 

process for projecting shared input and output space is defined as the following: 

 Discretization: Obtain all combinations of discrete input points of associated input design 

variables. 

 Grouping: Group the combinations created in the ‘discretization’ process according the 

input variables for the mapping models.  

 Mapping: Evaluate the groups created in parallel by the associated mapping model or 

function. We get the corresponding output as well as the ranges for each input point. 

 Merging: Combine the multiple response ranges obtained from ‘Mapping’ process in order 

to formulate response ranges for each point in the original discretization. 
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For further details of the implementation of the parallel discrete evaluation step, refer Choi’s 

dissertation. 

Step 3: Inductive Discrete Constraints Evaluation 

Feasible regions in y and x spaces are sequentially identified by a metric for determining 

whether a discrete point from an input space maps to a feasible design solution in the output 

space. This metric is called Hyper-Dimensional Error Margin Index (HD-EMI). A visual and 

mathematical representation of HD-EMI is shown in Figure 1.19.  

Figure 1.19: Calculation of HD-EMI 1 

 

Figure 1.20: An example of the IDCE controlling HD-EMIs 1 
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HD-EMI is an extension of the EMI metric 1 developed by Choi from one dimension for a single 

output model to hyper-dimensional space relevant to multiscale systems with multiple outputs. 

HD-EMI is a measure of the distance of a design point from the design space boundary divided 

by variation in system performance. As shown in Figure 1.17, a higher HD-EMI value indicates 

that the output is further away from the constraint boundaries in the hyper dimensional space 

and has greater tolerance for model structure uncertainty (MSU). The assumption is that a 

solution that is far from the constraint boundaries of the feasible design space will remain 

within the feasible design space in the presence of slight variations. Hence the system level 

designer can be confident while making design decisions though shifts in the output range are 

possible due to model uncertainty. Therefore, in IDEM, designers are interested in selecting 

design points with high values of HD-EMI. Mathematically, a HD-EMI value of 0 indicates that 

the output is on the constraint boundary along one output direction, i.e., the numerator is 0 and 

hence indicating the mean output coincides with the nearest constraint boundary point. A HD-

EMI value of 1 indicates that either the maximum or minimum output coincides with the 

constraint boundary range, i.e. , the numerator is equal to the denominator indicating that the 

distance between the mean output and nearest constraint boundary point is the same as the 

distance between the mean output and one of either the maximum or minimum output. Hence 

the nearest boundary point and the output range are coincident along an output direction. 

These concepts will be used in Chapters 5 and 6 to evaluate robust and feasible discrete points 

in the design space. 

The Inductive Discrete Constraints Evaluation (IDCE) technique is implemented to sequentially 

find feasible ranges in all intermediate as well as final design spaces based on the HD-EMIs. It is 

an inverse method in the analysis process chain show in Figure 1.20. 

The evaluation procedure starts with an assumption that the required range of the final 

performance, z, is given as shown in the gray area in z-space in Figure 1.18. From the z-space, a 

feasible range in y-space is obtained. To achieve this, feasible discrete points in y-space are 
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found out by evaluating whether the HD-EMI in z-space for the discrete points in y-space are 

greater than or equal to one.  Constraint contours are calculated between the feasible and 

infeasible discrete points in y-space, by identifying the discrete points in y-space for which the 

HD-EMIs in z-space are less than or equal to one. Then, the next step is to find feasible regions in 

x-space based on the identified feasible region in y-space in the same way. The process to find 

the interpolating point between the feasible and infeasible points is achieved by a numerical 

root finding method. The method used in this algorithm is the bisection method.22 

Thus we note that as HD-EMI increases for a particular model, the output range moves farther 

from the constraint boundary. This means the decision becomes more reliable under potential 

shift of the output range due to MSU. In the IDCE process, the given specifications are required 

final performance range and required HD-EMI for the discrete constraints evaluation. These 

specifications are to be decided by the designer for the product at hand. Therefore, the required 

HD-EMIs in each space should be selected statistically in order to find the best solution among 

feasible sets of solutions. Values of HD-EMIs are important in determining the most desirable 

robust solution against MSU, because HD-EMIs represent the amount of margin for potential 

errors in the mapping models for estimating output range. A designer may leave wider margins 

between an output range and constraint boundaries by increasing the HD-EMI for the mapping 

model whose MSU is larger than others. An additional constraint is that all HD-EMIs should be 

greater than or equal to one so that entire output range can satisfy the constraints Depending 

on the value of required HD-EMI, the identified feasible range may be large, small, or 

unattainable 

If there are multiple feasible discrete points in a design space, a designer has more room for 

tailoring design variables. In this case, the required HD-EMIs in the spaces of y and z can be 

increased which reduce the feasible ranges in x- and y-spaces, respectively. In order to make 

product level decisions for the design variables, designers need to compromise the achieved HD-

EMI values in the different models so as to get high HD-EMI values for model with high MSU 

while ensuring product level specifications are met. The IDEM is applied to a multiscale system 
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in Chapter 2. The limitation of this using IDEM is that if the design process is not sufficiently 

constrained, it may give large sets of feasible processing spaces in the material design hierarchy 

and it becomes difficult to choose a single solution from these sets of solution. One approach to 

overcome this problem is a trial and error approach of increasing the HD-EMI values so that a 

sufficiently small feasible processing space is obtained and a single solution can be chosen from 

this small ranged set. However, this may be a painstakingly cumbersome process and the 

multiscale system is governed by a complex interlinking of dependent and independent 

variables. The compromise Decision Support Problem (cDSP) can effectively overcome this 

obstacle and the selection procedure for HD-EMI values is automated using the cDSP approach. 

This is discussed in the next section.  

1.2.4. The compromise Decision Support Problem (cDSP) 

The following information on the compromise Decision Support Problem (cDSP) is leveraged 

with only minor modifications from the Master’s Thesis of Markus Rippel23. The cDSP is the 

backbone construct that facilitates the Type I, II and III frameworks presented in the previous 

sections. The purpose of this section is to review the literature regarding the use of compromise 

Decision Support Problems in solving engineering design problems in order for it to be applied 

to multiscale systems. This is undertaken in Chapter 3 using game theoretic protocols. It is 

further extended by coupling it with IDEM in Chapter 5. Compromise and selection Decision 

Support Problems are two flavors of DSP. Selection DSPs serve as decision models for selecting 

between design alternatives. The cDSP provides a mean for solving multi-objective and non-

linear design problems 24. Mathematically, the cDSP is a domain-independent, multi-objective 

decision model which is a hybrid formulation based on Mathematical Programming and Goal 

Programming 25. It is used to determine the values of the design variables, which satisfy a set of 

constraints and bounds while achieving as closely as possible a set of conflicting goals. Since an 

important aspect of design is to model and handle multiple trade-offs simultaneously; the 

compromise DSP is used to model such decisions 26. The mathematical formulation of the cDSP 

is shown in Figure 1.21. The word formulation of the cDSP is as follows 27: 
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Given:  A feasible alternative, assumptions, parameter values and goals 

Find: Values of independent system variables (they describe the physical attributes of 

an artifact) and deviation variables (they indicate the extent to which the goals 

are achieved.) 

Satisfy              System constraints, system goals, and bounds on variables 

Minimize: Deviation function that measures the deviation of the system performance from 

that implied by the set of goals and their associated priority levels or relative 

weights.   

 

Figure 1.21: Mathematical formulation of cDSP25 
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The system descriptors (system and deviation variables, system constraints, system goals, 

bounds, and the deviation function) are described in detail by Mistree, Hughes and Bras 25 and 

are not repeated here. In the compromise DSP, each goal has two associated deviation variables 

id   and 
id   that indicate the extent of the deviation from the target. The deviation variables 

represent the levels of overachievement and underachievement, respectively, of a goal. The 

product constraint 0i id d    ensures that at least one of the deviation variables for a 

particular goal is always zero. The goals may not be equally important. In order to affect a 

solution on the basis of preference, the goals may be rank-ordered into priority levels. The 

designers rate certain product qualities higher or lower than other qualities. There are two types 

of deviation function that can be used in formulating a compromise DSP: the Archimedean 

solution scheme and the Preemptive approach. In this thesis, the Archimedean approach is 

used. In the Archimedean approach, the deviation function, Z, is simply a weighted sum of the 

deviation variables of each of the objectives. In a compromise DSP, the bounds and constraints 

form the feasible design space. The solution of the compromise DSP is a point selected within 

the feasible design space based on its degree of satisfaction to a set of conflicting design goals. 

Satisfaction is evaluated using the value of the deviation function in the compromise DSP. The 

above two sections lay the groundwork to what follows in the remaining chapters. The 

organization of work and its validation is described in the next section. 

1.3. Validation and Organization of Work  

 

In this section, an overview of the thesis is presented.  The reader is also made aware of the 

running icon that is presented at the end of each chapter.  A roadmap is presented and related 

to the running icon.  The reader is presented with another tool to help with his/her navigation 

through my work. This section is tied to the entire work because it provides the reader with the 

overall picture of what will be discussed and how it will be presented. Section 1.3.1 has been 

leveraged from Rippel’s thesis23 
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1.3.1. Validation and Verification 

 

 

Figure 1.22: The validation square approach 23 

The validation and verification strategy for this thesis is based on the validation square, which 

was introduced for the validation of design methods28.  Typically, engineering research is based 

on formal, quantitative validation through logical induction and/or deduction. However, this 

approach is problematic for the validation of engineering design methods. As soon as a method 

is not solely based on mathematical modeling but also on subjective statements, an alternative 

to logical induction and/or deduction is needed. With the validation square, an approach to the 

validation of engineering design methods is proposed, which is based on a relativistic notion of 

epistemology in which “knowledge validation becomes a process of building confidence in its 
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usefulness with respect to a purpose.” The validation square is a framework for validating design 

methods in which the ‘usefulness’ of a design method is associated with whether the method 

provides design solutions correctly (structural validity) and whether it provides correct design 

solutions (performance validity). This process is illustrated in Figure 1.22. Structural and 

performance validities are further divided into theoretical and empirical validity which lead to 

the four quadrants: 

Quadrant 1: Theoretical Structural Validity 

Theoretical structural validity involves showing the internal consistency of the individual 

constructs constituting the method as well as showing the overall internal consistency of their 

assembly. This can be achieved by searching and referencing to literature related to the single 

constructs, which are already validated elsewhere. Furthermore, the correctness of the 

information flow throughout the entire design method has to be demonstrated. For this step a 

flow chart may be useful.  

Quadrant 2: Empirical Structural Validity 

Empirical structural validity involves building confidence in the appropriateness of the chosen 

example problems for illustrating and verifying the performance of the developed design 

method. This means, it has to be shown that the examples are good representations of design 

problems, for which the method is designed and that the associated data can be used to support 

a conclusion. 

Quadrant 3: Empirical Performance Validity 

Empirical performance validity includes showing the usefulness of the method for solving the 

example problems. The results achieved using the design method have to be analyzed and 

assessed. Measurements of the usefulness should be related to the desired specifications, which 

are formulated in the requirements list. Furthermore it has to be shown that the achieved 

usefulness is, in fact, a result of applying the developed method, for example by comparing the 

generated outcomes to solutions acquired without the method. The analysis should also include 

assessment of data with regard to internal consistency, for example multiple starting points and 

convergence in optimization exercises. 
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Quadrant 4: Theoretical Performance Validity 

Theoretical performance validity involves a “leap of faith” from the usefulness of the design 

method for the chosen example problems to the general validity of the method, which means 

building confidence in the generality of the method and accepting that the method is useful 

beyond the example problems. This can be supported by showing that the example problems 

are representative for a general class of engineering design problems as well as a final critical 

analysis of the entire validation process. 

 Implementation of the Validation Framework in this Thesis 

The validation square is a framework that suggests a logical step by step approach for the 

validation of a design method. Successfully building confidence for the validities in quadrants 

one, two, and three followed by a critical analysis allows for the “leap of faith” in quadrant four. 

This “leap of faith” to the general validity of the developed method is characteristic for the 

validation of design methods that include subjective assumptions. Since this is the case for the 

methods presented in this thesis, the validation square is an appropriate framework for the 

validation and verification of the presented work. In Table 1.3, the outline of the validation 

strategy is presented with regard to the four quadrants of the validation square. The tasks for 

each step are given with reference to the chapter in which they are addressed. Figure 1.23 

captures the flow of information. The quadrants and the chapters for the validation square do 

not follow a sequential numbering, i.e., Quadrant 1 is addressed in Chapter 1 and we revisit 

Quadrant 1 after clarifying Quadrant 2. This is done because the work in this thesis followed a 

sequential approach and the initial work led to further research questions and hypothesis. 

Hence the study of robust design of multiscale systems taken up in Chapters 2 and 3 led to 

further refinement of the initial questions and were restated. The work in Chapters 2 and 3 can 

be associated with Quadrant 3 as it achieves a set of results with an independent set of 

conclusions, however has been put in Quadrant 2 as it essentially clarifies the foundational 

constructs on which the subsequent Chapters 5 and 6 are built. Chapter 7 is the Closure and ties 

to Quadrant 4 in helping up take the leap of faith and apply it to any generic multiscale system. 

The elements of the validation square will become clearer as we move through the chapters of 
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my thesis. Figure 1.23 will be used for describing the validation approach at the end of each 

chapter of this thesis. As seen in Figure 1.23, Chapter 1 ties with motivation for this thesis and 

introduction of key constructs used in the remainder of the thesis and falls in Quadrant I, i.e., 

theoretical structural validity. Figure 1.24, shows the organization of work in this thesis. 

Table 1.3: The validation approach 

Quadrant 1: Theoretical Structural Validation 

• Critical review of literature relating to the components that are foundational for 

the methods proposed in this thesis. 

• What are the characteristics, limitations and domains of application of the building 

blocks? Are the underlying assumptions compatible? How do the individual 

components relate to the research questions and hypotheses? 

Chapters 

1 and 4 

 

Quadrant 2: Empirical Structural Validation 

• Presentation and discussion of the current methods and relating it to the research 

questions and hypotheses. 

• Discussion of the appropriateness of the example problem 

 Argue that the example is representative for engineering design problems in 

the domain the methods are designed for. 

 Document that the method theoretically is applicable to the example. 

  Show that the expected data and results can support a conclusion whether 

the hypotheses are valid or not. 

Chapters 

2 and 3 

Quadrant 3: Empirical Performance Validation 

• Building confidence in the utility of the proposed methods using the  example 

• Demonstrate that the method is working as designed (converges, makes 

compromises, results in robust points) 

Chapters 

5 and 6 

Quadrant 4: Theoretical Performance Validation 

• Building confidence in the general applicability of the methods beyond the 

example used in this thesis. 

Chapter 

7 
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Theoretical 
Structural 

Validity

Theoretical 

Performance 
Validity

Empirical 
Structural 

Validity

Empirical 
Perfomance 

Validity

Chapter 1 Motivation: of 
integrated product and process 
Design 

Chapters 1 Introduction: Key 
constructs critical for 
microstructure mediated design in 
a multiscale system 

 Chapter 4 Tools: Explaining the 
tools useful to achieve uncertainty 
mitigation after iterations in a 
simulation model refinement. 

 

 

Chapter 4 Framing the 
research questions and 
hypotheses: Based on the 
structural validity of the 
core constructs, gaps are 
identified and research 
questions are proposed. 
This approach is 
evolutionary and not like 
standard validation 
square approach. 

Chapters 2 and 3 Validation of the IDEM 
and cDSP problem for the proposed 
method: In these chapters we apply the 
proposed example to our foundational 
constructs of IDEM and cDSP. We firstly 
answer if the simulation based UAV design 
problem appropriate for validation of the 
method? Then we document the result data 
from the comprehensive example using 
IDEM and cDSP and move to the next the 
next step to validate the proposed 
hypotheses 

 

 

Chapters 5 and 6: Validation of the results 
and hypotheses: Validate based on the 
obtained results for the multiscale UAV 
problem. Demonstrate materials and 
product design significance and 
contributions 

 

Chapter 7 Closure: 
Building confidence of 
the utility of the method 
in general multiscale 
simulation-based design 
problem. 

Justifying the 
comprehensive example 
is the representative 
problem of multiscale 
simulation-based design 
refinement. 

Figure 1.23: The validation square and flow of information 
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 Figure 1.24: Organization of Work 
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1.3.2. Organization of Work 

As explained in the introduction of this chapter, this research work stems from four research 

article developed during the course of my MS study. Hence the chapters are organized 

chronologically in the sequence of their development. The organization of work is represented 

in Figure 1.24. 

In Chapter 1, the foundation for the thesis is laid with a clear description of multiscale systems, 

the challenges associated with design of multiscale systems and the notion of multilevel design. 

Uncertainty is classified and two approaches for managing uncertainty are identified, i.e., robust 

design and uncertainty mitigation. The core constructs of inductive design exploration method 

(IDEM) and cDSP are also described in detail which lay the groundwork for the study in Chapters 

2 and 3. The validation square approach is discussed to validate and verify the work presented in 

the thesis. 

In Chapter 2, the construct of microstructure mediated design is introduced and a sample 

example of autonomous underwater vehicle (AUV) is modeled for the process-structure-

property-performance relationships. The IDEM introduced in Chapter 1 is validated by applying 

it to AUV and benefits of IDEM for design of multiscale systems are instantiated. This article was 

presented in the proceedings of ASME, IDETC 2009 conference at San Diego, USA 29 

In Chapter 3, game theoretic constructs are used for reaching singular solution or multilevel 

design. This chapter establishes the groundwork for using cDSP in conjunction with IDEM which 

identifies ranged sets of solution to identify a single solution from these ranged sets of solution. 

It also illustrates the efficacy of using cDSP template to reach solution in a collaborative design 

environment. This study was presented in the proceedings of ASME, IDETC conference ASME, 

IDETC 2010 conference at Montreal, Canada28 

In Chapter 4, the limitations of the current IDEM are identified and research questions are 

proposed along with hypotheses to answer them. The crucial limitation of existing multilevel 
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design methods to reduce uncertainty is identified and tools to overcome this barrier are 

reviewed which include response surface modeling, design of experiments and value of 

information.  

In Chapter 5, the advantages of IDEM and cDSP are unified to get an integrated approach to 

identify ranged as well as a single solution for multilevel design. We use the microstructure 

mediated design approach to identify the sources of uncertainty in multiscale modeling and 

investigate how the cDSP assists IDEM to manage uncertainty by reaching a trade-off amongst 

the HD-EMI metrics which act as decision nodes for uncertainty management. The results from 

this chapter are under review to be published in the Journal of Computer Aided Design- Special 

issue on Multiscale Systems 

 In Chapter 6, an algorithm is developed to assist uncertainty mitigation in multiscale systems 

and is applied to the MMD construct. Robust design and concepts from information economics 

are combined to adaptively reach better solutions based on available computational resources. 

The benefits of using this approach are summarized. . The results from this chapter are under 

review to be published in the Journal of Mechanical Design- Special issue on Design of Complex 

Systems 

In Chapter 7, the thesis is summarized and the research questions are answered by discussing 

the validity of the hypotheses introduced in Chapter 4. Furthermore, the work is critically 

reviewed and the contributions are identified. Hereby, emphasis is placed on the underlying 

assumptions and conditions under which the proposed methods work. For the theoretical 

performance validation, it is argued that the methods presented in this thesis as well as the 

conclusions are relevant and valid beyond the AUV problems. Finally, potential future research 

topics are identified that could enhance the proposed methods and make them more efficient 

and ideas for holistic uncertainty management are proposed 
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CHAPTER 2 

MICROSTRUCTURE MEDIATED DESIGN 

In this chapter, the construct of microstructure-mediated design of material and product is 

introduced. The microstructure of the material is controlled within feasible bounds to achieve 

the performance targets of the product. The efficacy of this construct is illustrated via the 

integrated robust design of submersible and Al-based matrix composites. The integrated design 

is carried out using an Inductive Design Exploration Method (IDEM) that facilitates robust design 

in the presence of model structure uncertainty (MSU). Model structural uncertainty (MSU) as 

described in Chapter 1, originating from assumptions and idealizations in modeling processes, is 

a form of uncertainty that is often virtually impossible to quantify. In this chapter the Inductive 

Design Exploration Method (IDEM) introduced in Chapter 1 is demonstrated that facilitates 

robust design in the presence of model structural uncertainty. Robustness is achieved by trading 

off the degree of system performance and the degree of reliability based on structural 

uncertainty associated with system models (i.e., models for performances and constraints). 

IDEM is demonstrated in the design of a shell of a robotic submersible. The material considered 

is in-situ Al metal matrix composites (MMCs) due to the advantages that the in-situ MMCs have 

over the conventional MMCs. This design task is a representative example of integrated 

materials and product design problems. The study in this chapter was presented at the 

proceedings of IDETC 2009, San Diego30. The microstructure mediated design approach lays the 

foundation for a refined algorithm in Chapter 5. 
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2.1.  Framing the Problem 
 

Traditionally materials are selected from databases of experimentally determined materials 

properties. However, the paradigm is shifting towards the concurrent design of materials and 

products. This entails tailoring materials for specific performance required in specific products 

or processes. In order to tailor materials, the approach taken by materials scientists is sequential 

deductive analysis, with a bottom-up mapping from processing path to nano- and micro-

structure, material properties and performance. This corresponds to Olson’s materials design 

hierarchy 4 shown in Figure 2.1 and described in Section 1.1.  

The microstructure of a material strongly influences physical, mechanical and chemical 

properties such as strength, toughness, ductility, corrosion resistance, high/low temperature 

behavior, etc., which in turn govern the application of these materials. The microstructure 

represents the interface between structure-property-performance relations including systems 

design and process-structure relations. A microstructure-mediated design-centered approach 

has been adopted for concurrent design of materials and product. 

A systems-based approach has been adopted. This combines inductive (top-down) engineering 

with deductive (bottom-up) science; see Figure 2.1. Fundamental to this design approach is an 

interconnected system of modules (a design process chain) expressed in terms of variables, 

constraints, and models that embed relevant aspects of the material microstructures through 

overall system configuration. In this chapter, the method is illustrated through the design of the 

shell and design of the material from which the shell of a submersible is made. The shell is 

characterized by both geometrical and material features; see Figure 2.2 31. The objective is to 

design the shell of a robotic submersible for deep sea exploration with the multifunctional 

requirements of minimizing the mass in walls (wall thickness) for given support superstructure 

for given maximum depth and associated pressure differential. Other design requirements 

include a) suitable factor of safety with respect to collapse at target maximum operating depth, 

b) a large endurance time satisfying the time of operation constraints under water without 
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resurfacing/refueling/battery changes, c) satisfying geometric and weight constraints. The 

preferred design must have a) high strength to weight ratio and b) resistance against 

environmental factors such as corrosion. Recent advances in material processing allow designing 

the material to attain specific desired properties.  

 

Figure 2.1: Hierarchical materials design 
4
 

 

 

Figure 2.2: Pressure shell of a submersible robot 

Al-based metal matrix composite is used to illustrate the proposed method. Metal matrix 

composites (MMCs), in general, and Al-based MMCs in particular, have been the subject of 

intense research for the past two to three decades and are being exploited for a range of 

commercial applications related to aerospace and automotive industries. Al-based metal matrix 

composites can be divided into two classes, namely, ex-situ and in-situ. In ex-situ composites the 

reinforcements are added externally 32  whereas in in-situ composites the reinforcing 

particulates are formed by chemical reaction within the liquid melt. One of the important 

drawbacks during the processing of ex-situ MMCs is the presence of interfacial impurities and 
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oxides between reinforcement and matrix resulting in poor wettability and bonding. This has led 

to the development of in-situ composites, wherein the reinforcements are generated in a 

metallic matrix via chemical reactions between elements and/or compounds with Al alloy melt 

during the composite fabrication. The advantages that in-situ MMCs have over conventional 

MMCs include thermodynamically stable reinforcements in the matrix, clean reinforcement-

matrix interfaces resulting in a strong interfacial bonding, finer particle size yielding better 

mechanical properties and potential for lower cost of production. These advantages make them 

a strong candidate for the design task at hand. On the other hand, the reinforcement particles in 

in-situ composites are subject to strong segregation effects and therefore post solidification 

process strategies are necessary to more uniformly mix the particles. 

2.2. Microstructure-Mediated Design 
 

The design approach is based on systems-based integrated top-down (inductive) and bottom-up 

(deductive) multilevel design as illustrated in Figure 2.3. Multilevel design for the shell design 

problem involves two activities, namely, process path - structure relationships and structure-

property-performance relationships. These two design objectives interact via the 

microstructure. While on one hand the processing conditions influence the obtained 

microstructure, the performance of the product depends on the mechanical properties which in-

turn are mapped from the microstructure. 

In the present study, two major aspects of the design problem, namely, the materials design 

(rather than just materials selection) and structural design, are combined. The materials design 

aspect has been divided into three parts based on the different processing steps of the material. 

The interface between materials design and structural design is the mapping of the processed 

microstructure to the required mechanical properties.  

The Inductive Design Exploration Method (IDEM) is used to effect solution.  The design process 

chain for this application constitutes of six interconnected modules, Figure 2.4. Five modules 
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account for the modeling of the behavior of the material and the structure. The sixth is used to 

address uncertainty embodied in the simulation models, the management of uncertainty 

propagation and tools for design exploration in the presence of propagated uncertainty in the 

design process chain.  

 

 

 

 

 

 

 

 

Figure 2.3: Microstructure mediated design of material and structure 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Analysis diagram 
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Figure 2.5: Interface diagram 

Based on the materials processing steps involved and mechanical design requirements, the 

interconnected modules that constitute the design process chain for this application are (see 

Figure 2.3): 

MODULE 1: Precipitation modeling in liquid Al. 

MODULE 2: Modeling of microstructure evolution in MMCs. 

MODULE 3: Evolution of microstructure during semisolid processing of MMCs. 

MODULE 4: Structure - property correlations of MMCs. 

MODULE 5: Requirement list, microstructure mapping and system-level design. 

MODULE 6: Robust design strategy using IDEM to address model structure uncertainty and 

propagated uncertainty among levels of models. 
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MODULEs 1, 2 and 3 provide the simulated microstructure after processing. The resulting 

mechanical properties are estimated in MODULE 4, whereas MODULE 5 maps the required 

mechanical properties based on the system design considerations.  

Given the complexity inherent in the design process chain, it is important to define the 

variables, the interface and the design constraints between the different modules. In Figures 4, 

5 and 6 the analysis is shown, interface and the respective integrated flow diagrams for this 

design process chain. In the analysis diagram [Figure 2.4] the various independent and 

dependent variables in the six modules of the design process chain are shown along with the 

representative modeling constraints. In the interface diagram [Figure 2.5] the connectivity and 

flow of information between the modules is mapped in the form of design template. 

 

Figure 2.6 Integrated Flow Diagram 

MODULE 1 involves the prediction of the precipitation of liquid aluminum based on the 

composition and processing temperature. The output of MODULE 1 is the information about 

different phases formed, the size of precipitates and the time required to complete the reaction. 
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Init. Micro-
structure, ppt. 

distribution
[Templates]

MODULE 1
Precipitation 
modeling in 

liquid aluminum

1.Phases 
formed

2. Ppt size
[Templates]

MODULE 2
Modeling 

microstructure 
evolution in 

MMCs 

MODULE 3
Semisolid 

processing of 
MMCs 

Final microstructure after 
semisolid processing

[Templates]

MODULE 4
Structure - Property 
correlation of MMCs

1. Composite composition
2. Temp. of processing

3. Time of reaction
[Templates]

Req’d mech. Prop. [Templates]

Obtained mech. properties [Templates]

MODULE 6
Robust design 

using IDEM 

Interface variables of 
Projects 1, 2, 3, 4

[Templates]

Design and uncertainty parameters
[Text and Abaqus Output Files]

Modification parameters [Templates]

Ppt. info.

MATERIALS

DESIGN

MECHANICAL 
DESIGN

MODULE 5
Requirement list, 
microstructure 

mapping & design

INTERFACE

Range of Mech. 

Properties

Constraints

Convection

Stress 
Heat transfer 
Shock response

Max. vol. frac. 

TiB2

Analysis Flow 

Variables

Indep. Parameters

Rolling Parameters

Temperature

Syn. Flow Variables



 

   60 

and the effect of temperature and solutal fields on the resulting microstructure. The next step is 

the semi-solid processing of the Al-MMCs through a rolling operation which modifies the 

material’s microstructure. In MODULE 3 the effect of the rolling parameters on the resulting 

microstructure is predicted. In MODULE 4, this microstructure is used to predict the mechanical 

properties inherent in the material. These mechanical properties are used in the system-level 

MODULE 5 to predict the effects of different AUV geometries on overall system performance. As 

can be seen from the integrated flow diagram [Figure 2.6], the microstructure is the essential 

link between the design of the material and the design of the undersea submersible appearing 

the process-structure and structure-property mappings. 

In this application, the strength is principally determined by the sizes, shapes and distribution of 

TiB2 precipitates – in other words the microstructure of the material. The microstructure is 

determined by processing methods – in this case, it is initially created by precipitation and 

followed by the evolution of the precipitate size and distribution during semi-solid rolling. The 

structural design can be modified in two ways, namely, 1) by changing the processing conditions 

to modify the microstructure, which has an effect on the overall system performance and 2) by 

changing the geometry of the shell, which in turn not only affects structural performance, but 

also puts constraints on required mechanical properties of the material. Hence, the material 

microstructure needs to be designed in such a way that the constraints on the material 

properties, imposed by the structure, are satisfied. Since the material microstructure acts as the 

interface between the material and structure, the phrase microstructure mediated design has 

been adopted. Having defined the design variables and the connectivity within the design 

process chain, the modules described in the sections that follow. 

2.2.1 MODULE 1 (Precipitate Modelling in Liquid Aluminium) 

 

A suitable route (Mixed-Salt route) for the in situ Al / TiB2 composite manufacturing process 

utilizes the reduction of K2TiF6 and KBF4 with aluminum, generally known as the “halide salt” 
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process. Yang and coauthors 33 proposed a diffusion mechanism wherein Al3Ti is formed in the 

melt initially by a very fast reaction. Boron then diffuses into Al3Ti particles in the melt, thus 

forming TiB2 particles according to the reaction, Al3Ti + 2B = 3Al + TiB2. 

The liquid-state processing techniques to produce in-situ composites include self propagating 

high temperature synthesis (SHS), exothermic dispersion (XD), reactive hot pressing (RHP), flux 

assisted synthesis (FAS) and rapid solidification processing (RSP). Any of these processes could 

be used. K2TiF6 and KBF4 are other precursors that dissolve in the aluminum melt to form 

intermediate phases Al3Ti and AlB2. The reaction between these intermediate phases has been 

studied to predict the particle size distribution of TiB2 phase thus formed in the matrix.  

A model proposed by Anestiev and coauthors 34 has been used to investigate the diffusion 

reactions taking place between the intermediate phases.  In this model, Al3Ti and AlB2 are 

allowed to react in liquid Al to form TiB2 particulates. A coordinate system dividing a 2-

dimensional space into strips of equal length has been used, half of which contains Al3Ti and the 

other half AlB2 dissolved in the Al melt, shown in Figure 2.7. When these intermediate phases 

react, random nucleation of TiB2 particulates is assumed. The kinetics of the formation of TiB2 

particles is governed by unsteady state diffusion equations (solute redistribution theory), which 

in turn depends on the concentration profile of the intermediate solute phases in the region. 

The solute consumption rate due to TiB2 formation is described by volume fraction of the region 

transformed per unit time. Johnson-Mehl-Avrami analysis35,36 is used to find the transformed 

volume fraction from the nucleation and growth rates of the particles as:  ψ= 1 – exp(-ktn) 

where ψ is is the volume fraction transformed, k =  N G 3/3 and n = 4, N and G are Nucleation 

and Growth Rate respectively.  

The Nucleation rate is primarily a function of the Gibbs energy change associated with the 

formation of the particle, while the growth rate also depends on its surface energy. The 

thermodynamic models predicting the Gibbs free energies of the involved phases in the current 

system are described in Mirkovic et al.37, Witusiewicz and colleagues38,39. The kinetics of 
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reinforcement particles can be mathematically described by the following set of partial 

differential equations: 

∂X1/∂t = D (∂2X1/∂x2) - X1
S (∂ψ/∂t)     (2.1) 

∂ X2/∂t = D (∂2X2/∂x2) – X2
S (∂ψ/∂t)   (2.2) 

where, X1 and X2 are the mol fractions of the dissolved Ti and B in the Al matrix respectively, t is 

the time, D is the diffusion coefficient,  X1
S and X2

S are the mole fractions of Ti and B in the solid 

phase (TiB2). The complex diffusion equations are solved numerically to compute the TiB2 

particle size distribution across the matrix. 

 

 

 

 

Figure 2.7 Schematic of coordinate system used in MODULE 1 

 

2.2.2 MODULE 2 ( Modelling Microstructure Evolution) 

Microstructural evolution of materials during various material processes relates key properties 

such as mechanical strength and electrical properties to the average grain size and the grain size 

distribution, which are direct consequences of the microstructure evolution. In MODULE 2, 

microstructure evolution during solidification depends on the thermal and the solutal fields.  

The S/L interface evolves in time and has to be found as part of solution. The solidification of a 

three component alloy is governed by the evolution of temperature T(t, x, y) and concentration 

field Cα (t, x, y) ,where α= 1,2 which satisfies several boundary conditions at the moving S/L 

interface as well as the initial and the boundary conditions. The equations that describe the 

physics of solidification process follow. Temperature T in Ω (heat transfer equation): 

Interface 

Al + AlB2 Al + Al3Ti 
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ρCp ( T/ t) = KΔT + ρL( fs/ t)      (2.3) 

Where t is time, (x, y) is the domain co-ordinates, ρ is the density,  Cp is the specific heat, K is the 

thermal conductivity, L is the latent heat of solidification and fs is solid fraction. For simplicity 

the notation fL = 1 - fs, denotes the liquid fraction. The concentration (C) for the solute (solute 

diffusion equation) 

 CL
α/ t =  DL

α ΔCL
α   ……For liquid phase    (2.4) 

 CS
α/ t =  DS

α ΔCS
α ……...For solid phase    (2.5) 

where α = 1,2, DL
α and DS

α are liquid and solid diffusion coefficients of solute α, respectively. The 

cross diffusion is neglected and zero flux boundary conditions are applied to the four walls of 

simulation domain Ω. 

Fluid flow due to forced or natural convection also influences the microstructure evolution. The 

present module involves the numerical solution of continuum equations for thermal fields and 

coupling it with a cellular automata model that computes the evolution of grain structure with 

solidification time. The measured flux values are used to derive the evolution of the thermal 

fields with solidification time. Using measured temperature values at the specific points along 

the metal-mold interface, realistic flux values at the metal-mold interface can be derived which 

can be fed into a Computation Fluid Dynamics (CFD) modeling tool to obtain accurate thermal 

fields across the casting domain. These fields are used in the cellular automata model to predict 

the microstructure evolution as the solidification proceeds. 

2.2.3 MODULE 3 ( Semi-solid Processing in MMCs) 

The present module deals with the simulation of the semi-solid processing of metal matrix 

composites. The actual process40,41 consists of passing slabs of as-cast composite material 

through rollers [Figure 2.8] at such a temperature that part of it is in semi-solid or “mushy” 

state. Two-high mill rollers of diameter 120 mm and 125 mm barrel width are used in this 
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process. The sample is heated to temperatures between 610 to 633° C to obtain 10 to 30% 

liquid in the material. When the slab is passed through the rollers, the grains deform and 

rearrange and a nearly homogeneous distribution of TiB2 particles is obtained. Multiple passes 

are performed to refine the grain size. Such a process enhances the properties of the MMC and 

homogenizes its composition.   

 

Figure 2.8: Schematic of semi-solid processing 

Since this is a novel process and its physics are not yet fully understood, an empirical model is 

used, based on data taken from a large number of experiments. The model takes as input the 

processing conditions of semi-solid processing, including ratio, and then predicts the final 

average grain size and also gives an approximate microstructure. To predict the final grain size it 

takes in the experimental details and interpolates the grain size. After processing, the TiB2 

particulates rearrange themselves to achieve a more uniform spatial distribution, which is also 

reflected in the model. Using a genetic algorithm based Voronoi and Monte Carlo code 42, 

equiaxed globular grains are created. It forms in 100 x 100 matrix grains differentiated by 

different color codes which can be then be interpreted to render the final microstructure after 

semi-solid processing. 

2.2.4 Module 4 (Structure-Property Correlation of MMCs) 

Yield Stress: The matrix yield stress is assumed to obey the Hall-Petch relation, i.e., 

ςy = ς0 + ky (d)-0.5        (2.6) 

where ky is the strengthening coefficient (a constant unique to each material; for pure Al, ky = 

3.4 MPa-mm), ςo is a material constant related to lattice resistance (for pure Al, ςo= 2.95 MPa), d 
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is the grain diameter, and ςy is the yield stress. The constants corresponding to matrix properties 

are assumed to be that of pure Al. The calculation of overall yield stress (ς) also incorporates 

Orowan particle bypass via dislocation looping 43, i.e., 

ς = ςy (1 +f1) (1 +f2) (1 +forowan)         (2.7) 

where f1 takes the effect of volume fraction of particles, f2 takes into account the thermal 

expansion coefficient mismatch between matrix and reinforcement, and forowan takes into 

account the effect of particle size (d) and spacing. It receives input from outputs of MODULEs 1 

and 3, specifically reinforcement size (dp, grain size (d), semisolid processing temperature (T) 

and volume fraction of TiB2 particles. 

Density: The determination of density is based on the average property of each of the 

constituent phases, i.e., 

ρ = ρTiB2 xTiB2 + ρCu xCu + ρAl (1-xTiB2 – xCu)             (2.8) 

where ρ, ρTiB2, ρCu, ρAl are the densities of the composite, TiB2, copper and aluminum 

respectively. Also, xTiB2 is the volume fraction of  TiB2 and xCu is the volume fraction of copper 

(typically 6%). 

2.2.5 Module 5 (Property-Performance Correlation of MMCs) 

MODULE 5 acts as an interface between the materials design aspect and the design of the 

structure of the submersible. The performance parameters considered are depth, time of 

operation and weight of the outer shell of submersible. The objective is to maximize the depth 

and time of operation while minimizing the weight of the outer shell of the submersible. The 

formulas used for the calculation of these performance parameters are stated in what follows  

Model for Depth (h): Roark’s formula 30 for thickness (t) to outer diameter (OD) ratio is used.  
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where t is the thickness of the shell, OD is the outer diameter of the shell; P is the external 

pressure and ς is the yield stress of the metal matrix composite. Substituting for P as ρwgh 

where ρw is the density of water (1025 kg/m3), g is the gravitational attraction (9.81 m/sec2) and 

h is the depth of submersible below water. Solving for h we get 30: 
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Model for Weight (W): The weight of a cylindrical shell with spherical end caps is calculated. 

W = π ρ L (OD
2
 – ID

2
) + (4/3) π ρ (OD

3
 – ID

3
)         (2.11) 

where  in eq. (2.11) is the density of the composite, L is the length of the submersible, OD is 

the outer diameter and ID is the inner diameter of the cylindrical shell with spherical end-caps 

[Figure 2.2]. The outer diameter (OD) is fixed at 260 mm and the length (L) at 1.6 meter. 

Thickness (t) can vary from 5 mm to 15 mm as representative parameters of a typical 

Autonomous Underwater Vehicle as described Kumar et al44. 

Model for Endurance Time (Topr) 

LoadpropulsionFixedLoad

DensityEnergyeffWB
Topr






)(8.0            (2.12) 

where B is the buoyant weight of the submersible, W (eq.6) is the weight of the cylindrical shell, 

eff is the efficiency of the battery. The efficiency of a Lithium-Ion battery is typically 60% and its 

energy density is 128 Watt-Hour/Kg. For the initial design, assuming a slow moving submersible 

and submergence/surfacing rates, propulsion load is ignored in our calculations and assume a 

fixed electrical load of 400 Watt-Hour which is typical of the control computers and electronics 

payloads in a small underwater robotic submersible 31. 
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2.2.6 MODULE 6 (Robust Design using IDEM) 

IDEM is employed to achieve a robust multi-level design that traverses process-structure, 

structure-property and property-performance relationships; see Figure 2.1. IDEM includes 

parallel discrete function evaluation and Inductive Discrete Constraints Evaluation (IDCE) based 

on Error Margin Indices (EMIs) for finding the best solution under MSU 1,45,46,13. The overall 

procedure for the IDEM is schematically illustrated in Figure 2.9. 

IDEM is exercised to identify adjustable ranges of control factor (design variable) values in a 

system with uncertainty propagation in a design/analyses process chain and to account for 

uncertainty in downstream activities and uncertainty propagation. With IDEM, a designer can 

maximize or maintain ranges of values for design variables or performance parameters that are 

shared or linked with another designer’s robust design process. Thereby, design freedom is 

preserved for another collaborating designer who can make changes to the design—within 

specified ranges—without compromising design requirements. 

 

Figure 2.9 Schematic of IDEM 
1
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IDEM facilitates multi-level design, the management of uncertainty inherent in the models and 

the propagation of uncertainty through the design process chain shown in Figure 2.4.  In IDEM, 

we deal with the propagation of uncertainty in design and analysis modules that constitute the 

design process chain for a particular application. We start with performance and traverse 

sequentially to process; see Figure 2.1. At each level ranged set of feasible specifications are 

identified.  

IDEM, embodies the concept of Hyper-Dimension Error Margin Indices (HD-EMIs). In this 

chapter however we employ the Error Margin Indices (EMIs) developed for Type III robust 

design. The focus of this chapter is to demonstrate the efficacy of IDEM to reach feasible sets of 

solution for MMD design in a multiscale environment and hence EMIs which are a simplified 

version of the HD-EMIs are used to affect the solution. However we use the HD-EMI metric in 

Chapter 5 to illustrate the full potential of IDEM and its ability to manage of all four kinds of 

uncertainty.  EMIs are indicators of the degree of reliability of a decision that it will satisfy the 

prescribed system constraints or bounds. The procedure for obtaining the EMI is as follows: (a) 

obtain the upper and/or lower deviation of a response (URL and LRL) and (b) calculate the EMI 

from this deviation. The EMI is calculated by including the response mean (µy) and upper/lower 

deviations (Yupper and Ylower) from a combined distribution of a system model and error 

bounds. The EMI includes the response deviations of a system model due to variations in design 

variables and the response deviations of error bounds as well as the system model. The 

mathematical formulations of EMI corresponding to a goal i are: 

( ( )) /i i i upperEMI URL f x Y    for minimization problems;     (2.13a) 

( ( ) ) /i i i lowerEMI f x LRL Y    for maximization problems;    (2.13b) 

i i i i
i

i i

| f URL | | f LRL |
EMI Min{ , }

Y Y
( i 1,2,...,Number of the goals )

 


 


     (2.14) 

Y ; Yupper upper y lower y lowerY Y                   (2.15) 
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As shown in Figure 2.9, the objective is to find the best ranged set of design specifications in the 

space x considering uncertainty in mapping functions (f) and propagated uncertainty through a 

design process. IDEM involves finding ranged sets of design specifications by passing feasible 

solution spaces from performance requirements by way of an interdependent response space to 

the design space while preserving the feasible solution space as much as possible. The 

procedure includes the following steps as described in Section 1.2 13. 

 Step 1: Define rough design and performance spaces (hyper-dimensional x, y, and z 

spaces) and generate discrete points in each of these spaces. 

 Step 2: Conduct parallel discrete function evaluation 

 Evaluate the generated discrete points using the mapping models (f and g in Figure 

2.9) that include all quantified amount of uncertainty. 

 Store the evaluated data sets, including discrete input points and output ranges, in a 

database. 

 Step 3: Inductive Discrete Constraints Evaluation (IDCE) process: Using information from 

Step 1, sequentially identify feasible regions in y and x spaces with a given initial 

requirement range in z space 

As EMI increases for a particular model, the output range moves farther from the constraint 

boundary. This means the decision becomes more reliable under potential shift of the output 

range due to MSU. In the IDCE process, the specifications, the performance ranges and the 

initial EMI values for the discrete constraint evaluation are specified by the designer. To 

determine the best solution among feasible sets of solutions the required EMIs for each space 

should be anchored in statistics. Values of EMIs are important in determining the most desirable 

robust solution against model structural uncertainty, because EMIs represent the amount of 

margin for potential errors in the mapping models for estimating output range. A designer may 

leave wider margins between an output range and constraint boundaries by increasing the EMI 

for the mapping model whose MSU is larger than others. An additional constraint is that all EMIs 

should be greater than or equal to one so that the entire output range can satisfy the 
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constraints Depending on the value of required EMI, the identified feasible range may be large, 

small, or unattainable.  The solution strategy for this application is outlined in the next section. 

2.3. Solution Strategy using IDEM 
 

The solution strategy for this application is illustrated in Figure 2.9.  The modeling in MODULE 2 

has presented many challenges and these have yet to be resolved.  Hence, it is bypassed in 

illustrating IDEM this application.  

 

 

 

 

 

 

 

Figure 2.10: Modules used in this application 

In Figure 2.10, f1, f3, f4, f5, f7, f8 and f9 represent the theoretical or empirical models 

considered at the different levels of design. The inputs to MODULE 1 are the volume fraction of 

TiB2 (xTiB2) and temperature of processing in degree K (T).The output of MODULE 1 (f1) is the 

average TiB2 particle size (dp ) which is one of the inputs to MODULE 4. The independent inputs 

to MODULE 3 are volume fraction of TiB2 (xTiB2) and percentage of liquid in processing (%L) and 

the output of MODULE 3 (f3) is the average grain size (d) of microstructure. MODULE 4 receives 

inputs from the outputs of MODULE 1 and 3 along with the independent inputs of volume 

fraction of TiB2 (xTiB2) and temperature of semi-solid processing (temp). MODULE 4 deals with 
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the structure-property relationships and f4 gives the density (ρ) and f5 gives yield stress (ς) as 

outputs. Finally, MODULE 5 deals with the property-performance relationship of the developed 

microstructure and f7 evaluates the performance variable of depth of operation (h), f8 evaluates 

the weight of the outer shell (W) and f9 evaluates the time of operation (Topr) of the 

submersible. The independent parameter in this level of design is the thickness of the shell (t) 

and the dependent parameters are density (ρ) and yield stress (ς).The solution scheme for this 

application is illustrated in Figure 2.11. It is observed that the that the feasible design spaces are 

inductively passed from MODULE 5 to MODULE 4 and subsequently to MODULES 3 and 1 of 

design. 

 

 

 

 

                                                                                                                                                                                  

 

 

Figure 2.11: Solution strategy using IDEM 

It is noted that the volume fraction of TiB2 is an input to MODULE 1, MODULE 3 and MODULE 4 

of design. The responses of MODULE 1 and MODULE 3 are influenced by multiple variables and 

hence response surface methodology is used for modeling and analysis of the design task at 

these levels. The Response Surface Methodology employed embodies second order models47: 
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where, 
ij ,i 1,2,...,k; j 0,1,2,...,k    are the regression coefficients and xj are the regression 

variables, Y is the response. The Response Surfaces for MODULE 1 and MODULE 3 are generated 

using MINITAB®. Table 2.1 gives the data set of the variables used to generate the response 

surface for Module 1. 

Table 2.1: Data set for MODULE 1 

Volume fraction     
(xTiB2, %) 

Temperature 
(T, K) 

Average particle radius   
(r, µm) 

2.5 1073 0.96 

5.0 1073 1.25 

7.5 1073 1.22 

10.0 1073 1.11 

10.0 1173 1.57 

10.0 1273 1.74 

10.0 1373 1.80 

 

The response surface generated for MODULE 1 is represented by the equation: 

2 2

TiB2 tiB2Y 17.3246 0.2290x 27.7783T' 0.0167x 10.4230T'       (2.17) 

where Y is the response i.e. the average TiB2 particle grain radius (dp/2), xTiB2 is the volume 

fraction of TiB2 and T’ is T/1000 where T is the temperature in Kelvin.  

The data set of the variables used to generate the response surface of MODULE 3 is shown in 

Table 2.2. The response surface generated for MODULE 3 is represented by the equation: 

2 2 2

2 280.67 0.167 2.25 0.3067 0.01375 0.202TiB ToB TiBY x L x L x L       (2.18) 

where Y is the response i.e., the average grain size(d), xTiB2 is the volume fraction of TiB2 and L is 

the % liquid.  
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Table 2.2: Data set for MODULE 3 

% Volume fraction  
TiB2 

% Liquid Grain Size    
(µm) 

2.5 10 62 

2.5 20 58 

2.5 30 30 

5.0 10 54 

5.0 20 51 

5.0 30 55 

7.5 10 62 

7.5 20 48 

7.5 30 53 

10.0 10 49 

10.0 20 47 

10.0 30 54 

  

2.4. Discussion of Results 
 

The primary design variables in the present case for the submersible’s shell *Figure 2.2+ are 

thickness of the shell (t) and volume fraction of TiB2.(xTiB2). Target requirements include: 

 The safe depth of operation of the submersible with a small shell thickness should be as 

large as possible preferably exceeding 2500 meters and greater depth is better. 

 The submersible must have a good endurance with a large time of operation of at least 

12 hours without resurfacing or recharging and greater duration of submersion is better. 
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 Given a weight of the vessel of 76 Kgs and allowing as large a payload as feasible, a 

representative limit on the weight of the outer shell of the submersible may not exceed 

18 kgf, and a lighter shell is preferred. 

IDEM has been implemented in MATLAB® for this application. The resolutions for discrete points 

are fixed as 1(mm), 30 (kg/m3), 10 (MPa), and 0.5(%) for thickness (t), density of composite (ρ), 

yield stress (ςy), and volume fraction of TiB2 (xTiB2) respectively. The range for discrete variables 

are fixed as 5-15(mm), 2700-3300 (kg/m3), 300-500 (MPa), and 2-10(%) for thickness (t), density 

of composite (ρ), yield stress (ς), and volume fraction of TiB2 (xTiB2), respectively. These 

resolutions are reasonably small in order to be able to ignore discretization errors. A 5% 

performance variability is assumed for each of the mapping models (f1, f3, f4, f5, f7, f8 and f9). 

This is the sum of all quantifiable uncertainty, including natural uncertainty and model 

parameter uncertainty, of each mapping model. First, the entire feasible ranges are searched in 

property space (the spaces of t, ρ and ς) with given performance requirements. The required 

EMIs (EMI7, EMI8, and EMI9) for mapping models (f7,f8, and f9) are set as greater than or equal 

to unity, which means all quantified uncertainty is accounted for and the performance output 

range satisfies the boundary constraints. Among the obtained feasible spaces of t, ρ, and ς, the 

value of t (thickness of shell) is selected that has the largest feasible space for the rest of the 

properties (ρ and ς) because the feasible design domain is to be maintained as large as possible 

until the end of the design process to achieve robustness under model structure uncertainty. 

 

Figure 2.12: Color graph for EMI values 
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Different colors are used to indicate the variation in the EMI values for different values of 

variables [Figure 2.12]. Red indicates a EMI value of 5 and the progressively lighter shades 

denote lower EMI values. The blue diamond points in the figures are the boundary points. 

When EMI7, EMI8, and EMI9, are assumed as unity, the largest feasible range in y space is 

achieved at t = 10 (mm).  Satisfactory discrete points (circular points) and boundary points 

(diamond points) between the feasible and infeasible spaces are shown in Figures 2.13, 2.14. 

With the feasible range achieved in property space, the feasible space of the volume fraction of 

TiB2 is identified by setting EMI4 and EMI5 for mapping models (f4 and f5) as unity. Then, the 

entire feasible ranges in the structure space are searched (the feasible spaces of grain size (d), 

TiB2 particle size (dp) and volume fraction of TiB2 (xTiB2)) with given property requirements. The 

required EMIs (EMI4 and EMI5) for mapping models (f4 and f5) are set as greater than or equal 

to unity, which ensures satisfaction of the requirement that all quantified uncertainty is within a 

target level. Among the obtained feasible space of d, dp and xTiB2 the value of temperature of 

processing (temp) is selected that has the largest feasible space for the rest of the properties (d, 

dp, and xTiB2) because, as explained previously, it is desired to maintain the feasible region as 

large as possible until the end of the design process to achieve robustness under MSU. 

The achieved feasible space of the volume fraction of TiB2 is within the ranges [0.0322, 0.450] 

and [0.0656, 0.0995] [Figure 2.15]. This indicates that the achieved space of the volume fraction 

of TiB2, [0.0322, 0.450]; [0.0656, 0.0995] and thickness of shell, 10 (mm), with processing 

temperature of 634 deg C guarantee that the submersible performance satisfies the given 

requirements while maintaining all quantifiable uncertainty within bounds (5% performance 

variability), both for each of the mapping models (f1, f3, f4, f5, f7, f8 and f9) and for its 

propagation through the model chain into the final performance space. 
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Figure 2.13: Feasible design space for MODULE 5 

 

Figure 2.14: Feasible design space for MODULE 4 

                                                           

Figure 2.15: Feasible design space for MODULEs 1 and 3 

It is seen from Figure 2.13 that higher yield stress ςy values and lower density values are 

favorable for the design and are associated with higher EMI values. It can also be concluded 

from Figure 2.14 that lower grain size (d) and lower TiB2 particle size (dp) yield higher EMI values 

and hence are favorable for the design. From Figure 2.17 it can also be concluded that higher 

volume fraction of TiB2 yields more feasible design structures of the composite. On increasing 

the EMI values to [1.4, 1.8, 1.8] for (f7, f8, f9) and [1.4, 1.2] for (f4, f5) and [1.8, 1.8] for (f1, f2); 

we see in Figures 2.16 and 2.17 that the feasible spaces at each level of design reduces and 
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feasible space of volume fraction of TiB2 falls to within the range [8.84, 9.75]. As illustrated, 

considering MSU in the mapping models, a designer may then select the “best” or preferred 

solution(s) for materials and product using IDEM. Ranged sets of design specifications are 

identified with given product/system performance requirements considering quantifiable 

uncertainty. Based on obtained feasible solution sets, designers may have more freedom for 

choosing their decisions, emphasizing product performance, achieving robustness against MSU, 

or compromising between them. 

 

Figure 2.16: Feasible design space for MODULE 4 

 

Figure 2.17: Feasible design space for MODULEs 1 and 3 

At this point, the reader may wonder what additional information is afforded by this approach in 

designing or selecting a material beyond the rather obvious effects of reducing particle size and 

spacing through increase of particle volume fraction.  It might seem obvious that these steps 

would be necessary to develop a high specific strength in situ Al MMC in such an application.  

However, there are several important points to make. First, the specific ranges of microstructure 

attributes are directly coupled in the present methodology with the overall systems design 
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(material plus submersible). Hence, changes in performance requirements are directly reflected 

in the ranges of microstructure attributes that emerge from application of IDEM.  Second, this 

approach can be readily extended to include performance requirements that impose 

multifunctional, multiphysics requirements on the material design aspect.  For example, if high 

thermal conductivity is also required as part of the present design (as might be the case for heat 

transfer from the submersible interior), it may very well drive a decrease in volume fraction of 

non-metallic particles, which conflicts with strength requirements.  Such competing modes of 

requirements in materials design are common and serve as a compelling basis for the present 

systems-based robust design approach.  Moreover, if one is interested in selecting different 

process routes (e.g., in-situ versus ex-situ Al MMCs or other matrix materials), the assessment of 

feasibility is quite difficult without considering the full contributions of the process-structure-

property-performance relations.  In other words, it is not just a classical materials selection 

problem 48.  

2.5. Thoughts on What has been Presented and What is Next 
 

In this chapter the microstructure-mediated design construct has been introduced.  A 

methodology is presented to pursue concurrent robust design of a robotic submersible and Al-

based metal matrix composite that embodies the microstructure-mediated robust design 

construct. Recently developed tools have been used such as the Inductive Design Exploration 

Method, which facilitates top-down searching for design solutions including process path and 

microstructure based on bottom-up simulations.   

The work presented in this chapter constitutes one of the most complete applications of IDEM.  

The primary challenge involves managing uncertainty in over seven empirical and theoretical 

models over four levels of design. Starting from a hull thickness parameter in MODULE 5, the 

feasible design spaces for various mechanical properties along with higher yield stress and lower 

density are identified using IDEM. Similarly, the feasible space of material properties and various 

material and processing parameters are identified using IDEM, leading to preference for lower 
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grain size and higher volume fraction of TiB2 in the MMC; this is based on use of MODULEs 4, 3 

and 1. Upon analyzing the results it is concluded that the microstructure mediated design 

(MMD) construct holds promise in designing both the product and the material from which the 

product is made.  The MMD construct is further refined in Chapter 5 by inclusion of HD-EMI 

metric instead of EMIs and coupling with cDSP. Having established the functionality of IDEM to 

reach ranged sets of robust solutions against modeled and propagated uncertainty in multiscale 

systems, we investigate the applicability of cDSP using game theoretic protocols for managing 

uncertainty in multilevel design. 

In this chapter, one of the founding constructs, i.e., IDEM for the algorithms developed in 

Chapters 4 and 5 is introduced and hence contributes to the Empirical Structural Validity, i.e., 

Quadrant II and establishes the internal consistency of algorithm to be developed, Figure 2.18. 

Detailed description with respect to the validation square is taken up in Chapter 7. Also Figure 

2.19 shows where we are in terms of the thesis.  
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Theoretical 
Structural 

Validity

Theoretical 

Performance 
Validity

Empirical 
Structural 

Validity

Empirical 
Perfomance 

Validity

Chapter 1 Motivation: of 
integrated product and process 
Design 

Chapters 1 Introduction: Key 
constructs critical for 
microstructure mediated design in 
a multiscale system 

 Chapter 4 Tools: Explaining the 
tools useful to achieve uncertainty 
mitigation after iterations in a 
simulation model refinement. 

 

 

Chapter 4 Framing the 
research questions and 
hypotheses: Based on the 
structural validity of the 
core constructs, gaps are 
identified and research 
questions are proposed. 
This approach is 
evolutionary and not like 
standard validation 
square approach. 

Chapters 2 and 3 Validation of the IDEM 
and cDSP problem for the proposed 
method: In these chapters we apply the 
proposed example to our foundational 
constructs of IDEM and cDSP. We firstly 
answer if the simulation based UAV design 
problem appropriate for validation of the 
method? Then we document the result data 
from the comprehensive example using 
IDEM and cDSP and move to the next the 
next step to validate the proposed 
hypotheses 

 

 

Chapters 5 and 6: Validation of the results 
and hypotheses: Validate based on the 
obtained results for the multiscale UAV 
problem. Demonstrate materials and 
product design significance and 
contributions 

 

Chapter 7 Closure: 
Building confidence of 
the utility of the method 
in general multiscale 
simulation-based design 
problem. 

Justifying the 
comprehensive example 
is the representative 
problem of multiscale 
simulation-based design 
refinement. 

Figure 2.18: The validation square  
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Figure 2.19: Organization of work 
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CHAPTER 3 

DEVELOPMENT OF GAME THEORETIC PROTOCOLS FOR 

MULTILEVEL DESIGN 

The effectiveness of the use of game theory in addressing multi-objective design problems in 

multiscale systems has been illustrated in this Chapter. For the most part, researchers have 

focused on design problems at single level. In this chapter, the efficacy of using game theoretic 

protocols is illustrated to model the relationship between multidisciplinary engineering teams 

and facilitate decision making at multiple levels. The protocols are illustrated in the context of 

an underwater vehicle with three levels that span material and geometric modeling associated 

with microstructure mediated design of the material and vehicle developed in Chapter 2. The 

solution is reached using the cDSP approach described in Section 1.2. This study was presented 

at the proceedings of IDETC 2010, Montreal 28. 

 

3.1.  Frame of Reference 
 

In the context of engineering design, a game is a decision-making process between multiple 

teams each of which controls a subset of design variables and seeks to maximize target 

achievement of system goals subject to individual constraints 49. In this chapter, game theoretic 

protocols are applied to model the relationship between multidisciplinary engineering teams 

and facilitate decision making for a multilevel designing task. The game theoretic construct for 

multilevel design will be demonstrated through the design of an underwater vehicle as a 

representative example. This design task is an example of a multilevel design problem with 

modelling over three levels, i.e., property-performance relationship modelling at the top level, 

the structure-property relationship modelling in the central level and finally material processing-

structure relationship modelling at the lowest level associated with the microstructure mediated 
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design 29. The primary objective of the theoretical and empirical modelling considered at the 

various levels of design is to satisfy the performance constraints in the system. 

The efficacy of the game construct is illustrated through the design of the shell and design of the 

material from which the shell of a submersible vehicle is made. The objective is to design the 

shell of an underwater submersible for deep sea exploration with the multifunctional 

requirements of minimizing the mass in walls (wall thickness) for given support superstructure 

for given maximum depth and associated pressure differential 31. Other design requirements 

include a) suitable factor of safety with respect to collapse at target maximum operating depth, 

b) a large endurance time satisfying the time of operation constraints under water without 

resurfacing to/refuel the/battery and, c) satisfying geometric and weight constraints.  

The advantage of modelling this multilevel multidisciplinary design problem as a game is that 

each team controls an individual payoff function and facilitates modular decision making, hence 

removing the burden of disciplinary analysis and decision making at the system level50. It also 

helps reduce iterations among engineering teams for the individual modules. Individual modules 

are modelled using compromise Decision Support Problems (cDSP) solved by using the JAVA 

DSIDES software which uses an Adaptive Linear Programming algorithm 51. Fundamental to this 

design approach is a system considering variables, constraints, and models that embed relevant 

aspects of the material microstructures through overall system configuration. This system has 

been established and details in this chapter will focus on mathematical modelling of the design 

scheme. For detailed discussion on the design task at hand see Sinha et al 29 

3.2. The Method 
 

In this section material that is needed to understand the foundational elements of the method is 

presented. This approach is useful for design problem has multiple levels (sometimes called 

multiple scales). Each level also may have interacting contributions from various groups – or 
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players. As design requires the successful satisfaction of top-level requirements, we proceed 

from the highest – or top – level to the lowest level. 

(STEP 1) Represent the theoretical or empirical models in multilevel design task as compromise 

DSPs and instantiate these compromises DSPs into decision templates, 

(STEP 2) Use game theoretic protocols to represent interactions and formulate coupled 

compromise DSP’s for cooperating multidisciplinary teams with aid of developed decision 

templates 52. 

 (STEP 3) Solve the optimization problem for the deviation function in the coupled cDSP at the 

top level in my multilevel design task using JAVA DSIDES®. 

(STEP 4) Use the solutions in an inductive top-down manner to determine feasible range space 

and target values for functional models at lower hierarchical levels in the multilevel design. 

Continue process till you converge to a solution for the lowest level of design.   

(STEP 5) Exercise design freedom for individual models by reformulating compromising DSPs 

using design capability indices (DCI’s) 53. 

3.2.1 Microstructure Mediated Design 

The relevant aspects of MMD are described from Chapter 2. Multilevel design for the shell 

design problem involves two activities, namely, process path - structure relationships and 

structure-property-performance relationships. These two design objectives interact via the 

microstructure. The processing conditions influence the obtained microstructure, and the 

performance of the product depends on the mechanical properties which in-turn are mapped 

from the microstructure. 

In the present study, the materials design and structural design are combined. The materials 

design aspect has been divided into three parts based on the different processing steps of the 
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material. The interface between materials design and structural design is the mapping of the 

processed microstructure to the required mechanical properties.  

In this application, the strength is principally determined by the sizes, shapes and distribution of 

TiB2 precipitates – in other words the microstructure of the material. The microstructure is 

determined by processing methods – in this case, it is initially created by precipitation and 

followed by the evolution of the precipitate size and distribution during the semi-solid rolling. 

Based on the Olson’s Diagram *Refer Figure 2.1]; the design of the underwater vehicle has been 

divided into design over three levels; processing-structure relationship modeling associated with 

the microstructure mediated design at the bottom level at level 3; the structure-property 

relationship modeling in the level 2 and finally property-performance relationship modeling at 

level 1or the top level. Based on the materials processing steps involved and mechanical design 

requirements, the interconnected modules that constitute the design process chain for this 

application are [See Figure 2.3]. For detailed analysis of the modules refer Section 2.2. 

MODULE 1: Precipitation modeling in liquid Al. 

MODULE 2: Modeling of microstructure evolution in MMCs. 

MODULE 3: Evolution of microstructure during semisolid processing of MMCs. 

MODULE 4: Structure - property correlations of MMCs. 

MODULE 5: Requirement list, microstructure mapping and system-level design. 

MODULEs 1, 2 and 3 provide the simulated microstructure after processing. The resulting 

mechanical properties are estimated in MODULE 4, whereas MODULE 5 maps the required 

mechanical properties with the performance based on the system design considerations. The 

modeling in MODULE 2 has presented many challenges and these have yet to be resolved.  

Hence, it is bypassed in illustrating my method via this application. The problem investigated is 

shown in the Figure 3.1. 
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Figure 3.1: Problem analysis diagram 

In Figure 3.1; A, B, C, D, E, F and G represent the theoretical or empirical models considered over 

four modules and over three  levels of design. As we are evaluating strategic interactions in 

design teams, the individual modules in Figure 2.10 are represented as players. These levels of 

design are associated with characteristic relationship modeling between processing-structure; 

structure-properties or properties-performance. Effectively, these seven models can be viewed 

as players with their respective outputs as pay-offs. The inputs to MODULE 1 are the volume 

fraction of TiB2 (xTiB2) and temperature of processing in degree K (T).The output of MODULE 1 (A) 

is the average TiB2 particle size (r) which is one of the inputs to MODULE 4. The independent 

inputs to MODULE 3 are volume fraction of TiB2 (xTiB2) and percentage of liquid in processing 

(%L) and the output of MODULE 3 (B) is the average grain size (d) of microstructure. MODULE 4 

receives inputs from the outputs of MODULE 1 and 3 along with the independent inputs of 

volume fraction of TiB2 (xTiB2) and temperature of semi-solid processing (  ). MODULE 4 deals 

with the structure-property relationships and D gives the density (ρ) and C gives yield stress (ς) 

as outputs. Finally, MODULE 5 deals with the property-performance relationship of the 

developed microstructure and E evaluates the performance variable of depth of operation (h), F 

evaluates the weight of the outer shell (W) and G evaluates the time of operation (Topr) of the 
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submersible. The convention of calling the models in the Modules as Players is followed from 

here on.  The independent parameter in this level of design is the thickness of the shell (t) and 

the dependent parameters are density (ρ) and yield stress (ς).Thus by Figure 3 we realize that 

Players A and B belong to Level 3 game while Players C and D fit in to the Level 2 game and 

finally E, F and G go to Level 1 game design. 

3.2.2 Decision Template and Compromise DSP 

A compromise DSP is a multi-objective decision model which is a hybrid formulation based on 

mathematical programming and goal programming in which the objective is to satisfy a set of 

constraints while achieving a set of conflicting goals as well as possible 54. The mathematical 

formulation of the compromise DSP is given in Fig 3.2 and described in detail in Section 1.2. 

Because of its standardized format, a compromise DSP can be used to model the decision 

making activities of all of the engineering teams. The compromise DSP formulated in the most 

elementary entities, e.g., mathematical formulations or computer codes, which are easy to 

understand by engineering teams and implementable on computer, is called a decision 

template. In my multilevel design problem, decision templates that represent the player’s or 

engineering team’s activities are coupled by shared design variables and state variables that 

represent interdisciplinary interaction relationships. Game theoretic principles are used to 

model this interaction and coupled compromise DSP’s are developed. Finally a solution is 

reached using JAVA DSIDES®. The JAVA version of DSIDES (Decision Support in the Design of 

Engineering Systems) solves the Decision Support Problem (DSP) using an adaptive linear 

programming (ALP) multi-objective optimization algorithm55. It is noted additionally, the ALP 

algorithm successfully navigates around geometric constraints, although care must be taken 

when linearizing highly non-linear design spaces. 
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Figure 3.2: Generic form of the compromise DSP54 

3.2.3 Game Constructs: Pareto or Cooperative Solution 

 

Figure 3.3: Solution of cooperative game 50 

To distinguish a game based approach from other decision making approaches, when solving 

problems using the principles of game theory, the term “player” is used to represent a 

disciplinary engineering team with its associated computer-based analysis and synthesis tools 

(decision templates).The ideal scenario for collaboration is full cooperation between two players  

in which both players have full access to information about each other’s decision making 

process, including their decision templates and associated engineering tools56. Assuming 

coupled compromise DSPs, A and B respectively represent the decision making activities of 

player A and B, a full cooperation scenario is solved by combining all players DSPs, hence all 
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goals, constraints, etc. in DSPs A and B are satisfied in one DSP, as shown in Fig.3.3. 

Mathematically this is: 

                                      (3.1) 

3.2.4 Design Capability Indices 

In Chapter 2 we used the error margin index metric (EMI) to affect the IDEM solution. In this 

chapter we employ the design capability index (DCI) which is an alternative to EMI and does not 

account for model variability. The focus of this chapter is to illustrate the successful compilation 

of cDSP templates in a multiscale design problem to reach a solution and hence model variability 

is ignored for illustrative purposes. Chen and co-authors present design capability indices to 

evaluate performance variations caused by a range of design solutions, and determine whether 

the design solutions are capable of satisfying a ranged set of design requirements53.Say, a design 

variable is represented using x and Δx. f(x) is the formulation of performance measure. The 

response is measured using y and Δy. Design Capability Indices (DCI’s) are represented using: 

                                                            (3.2) 

      
  

   
     

                                  
   (3.3) 

    
     

  
      

     

  
                        (3.4) 

                                                   (3.5) 

LRL and URL represent the lower requirement limit and upper requirement limit for the model, 

i.e., the range of operation of performance desired.    ≤1 means that a portion of design 

solutions falls outside of the requirement limits. Design solutions with    ≥1 are capable of 

satisfying design requirements Design capability indices are controlled in the compromise DSP 

by changing the target values for individual    ’s. Since constraints     ≥1 are added, the 

deviation function is also changed to maximizing the overachievements of the     values. 
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Compromise DSP for ranged set of decisions is formulated in this manner to ensure that the 

range of each performance measure not only falls into the corresponding target range, but also 

achieves the specific target as well as possible 52. Thus, DCI’s operate as a metric for design 

freedom where higher values of     correspond to greater design freedom.  However, we shall 

not solve for the ranged feasible values for the design variables as it has already been illustrated 

using collaborative optimization 57 and IDEM 29. The DCI and EMI constructs are extended to the 

EMI metric in Chapter 5 in order to successfully account for all four types of uncertainty in a 

multiscale system.  

3.3. Mathematical Formulation 
 

Having defined the elements, the modules are described mathematically in the section that 

follows. For detailed description of the modules, please refer the previous chapter or Sinha et 

al., 2009 29. 

3.3.1. Level 1  

Level 1 is the top level in my design task and consists of property performance modeling or 

Module 5 in the underwater submersible design The performance parameters are depth of safe 

operation (Depth or h); minimizing the mass (Weight or W) in walls (wall thickness) for given 

support superstructure and Time of Operation (Time or Topr) under water without resurfacing. 29 

MODULE 5 (Property-Performance Correlation of MMCs) 

MODULE 5 acts as an interface between the materials design aspect and the design of the 

structure of the submersible. The performance parameters considered are depth, time of 

operation and weight of the outer shell of submersible. The objective is to maximize the depth 

and time of operation while minimizing the weight of the outer shell of the submersible. The 

formulas used for the calculation of these performance parameters are stated in what follows. It 

comprises of entire Level 1 design task.  
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PLAYER E: Model for Depth (h): Roark’s formula29 is used for thickness (t) to outer diameter 

(OD) ratio.  

1 2
1 1

2

t P

OD 

 
    

 
                          (3.6) 

where t is the thickness of the shell, OD is the outer diameter of the shell; P is the external 

pressure and ς  is the yield stress of the metal matrix composite. Solving for h we get: 

2

w

2t
h 1 1

2 g OD





    
      

       

(3.7) 

Decision Template for PLAYER E (h) 

Given: 

Target Value for Depth = 3500 m 

Range of Depth (2000- 5000m) 

Δt = 1(mm),  Δσ = 20 (MPa) 

                                 

     
  

  
      

  

  
     

  

  
                        

  

  
                          

Find: 

Location of system variable: t, σ 

Deviation variables:   
    

    
    

  

Satisfy: 

System Goals 
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System Constraints 

Depth ≥ 2000 m 

   
    

  
    

      
    

     

   
    

        
    

    

System Bounds 

5 ≤ t ≤15 (mm) 

300 ≤ σ ≤ 500 (MPa) 

Minimize 

Deviation Function: 

Z=   (   
     (   

   

 

PLAYER F: Model for Weight (W): The weight of a cylindrical shell with spherical end caps is 

calculated. 

W = π ρ L (OR
2
 – IR

2
) + (4/3) π ρ (OR

3
 – IR

3
)         (3.8) 

where ρ is the density of the composite, L is the length of the submersible, OR is the outer 

radius and IR is the inner radius of the cylindrical shell with spherical end-caps.  

Decision Template for PLAYER F (W) 

Given: 

Target Value for Weight = 16 kgf 

Range of Weight (7- 25 kgf) 

Δt = 1(mm), Δρ = 60 (kg/  ) 
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Find: 

Location of system variable: t, ρ 

Deviation variables:  
    

 ;   
    

  

Satisfy: 

System Goals 

   
     

      
   

    
    

 

       
   

    
    

System Constraints 

Weight ≤ 25kgf 

   
    

   
    

       
    

    

  
    

      
    

     

System Bounds 

5 ≤ t ≤15 (mm) 

2936.2 ≤ ρ ≤ 3096 (kg/  ) 

Minimize 

Deviation Function: 

Z=   (   
     (   

   

PLAYER G: Model for Endurance Time (Topr) 
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where B is the buoyant weight of the submersible, W is the weight of the cylindrical shell, eff is 

the efficiency of the battery.  

Decision Template for PLAYER G (Topr) 

Given: 

Target Value for Time = 12 hours 

Range of Time = (10- 15 hours) 

Δt = 1(mm); Δρ = 60 (kg/  ) 

                                                   

        
     

  
      

     

  
     

     

  
                                  

     
  

                                      

Find: 

Location of system variable: t, ρ 

Deviation variables:   
    

    
    

  

Satisfy: 

System Goals 

   
     

      
    

    
    

    
       

   
    

    

System Constraints 

Time ≥ 10 hours 

   
    

  
    

      
    

     

  
    

   ;   
    

    

System Bounds 
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5 ≤ t ≤15 (mm) 

2936 ≤ ρ ≤ 3096 (kg/  ) 

Minimize 

Deviation Function: 

Z=    (   
 )    (   

   

 

Coupled Decision Template (PLAYERS E, F and G) 

 

FIGURE 3.4 Coupled decision template (Players E, F and G) 

Combining the DSP’s for the individual performance parameters, a coupled cDSP is obtained as 

show in Figure 3.4. The Decision Templates for Weight, Time and Depth are combined and the 

deviation function is function of the weights of the individual deviation functions. Assigning 

different weights to the three negative deviation variable (Sum of weights equal to 1), different 

designing scenarios are calculated. In addition there are three deviation variables to calculate 

the deviation in objective function for each of the three performance parameters. The output of 

the coupled cDSP is the target values for elastic modulus (ς), density of composite (ρ) and the 

thickness of the submersible (t).  
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Coupled Decision Template (Level 1) 

Given: 

Target Value for Depth = 4000 m 

Target Value for Time = 12 hours 

Target Value for Weight = 16 kgf 

Weight of Time, Depth, Weight= (     ,   ) 

Δt = 1(mm); Δσ = 20 (MPa) ;Δρ = 60 (kg/  ) 

                                 

     
  

  
      

  

  
     

                                     

     
  

  
      

  

  
     

                                                

     
  

  
      

  

  
     

Find: 

Location of system variable: t, σ, ρ 

Deviation variables:   
    

 ;   
    

 ;   
    

 ; 

  
    

 ;   
    

 ;   
    

  

Satisfy: 

System Goals 

   
 

   
         

    
                   

  
       

   
    

                 

System Constraints 
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Depth ≥ 2000 m; Weight ≤ 25kgf; Time ≥ 10 hours 

   
                            For i=E, F, G, 5, 6, 7. 

  
    

          
    

  0 

System Bounds 

5 ≤ t ≤15 (mm); 

300 ≤ σ ≤ 500 (MPa) 

2936.2 ≤ ρ ≤ 3096.2 (kg/  ) 

Minimize 

Deviation Function: Z=    *(   
 )      for i=E, F, G, 5, 6, 7 

3.3.2. Level 2  

Level two is the structure- property relationship modeling level in the design task. The structure 

parameters are particulate radius(r); grain diameter (d); volume fraction of TiB2 (       and 

temperature of processing     The property parameters are elastic modulus (   and density (ρ). 

The target values for the property parameters are solved for the cDSP at Level 1 using JAVA 

DSIDES. 

MODULE 4 (Structure-property correlation of MMCs) 

PLAYER C: Yield Stress: The matrix yield stress is assumed to obey the Hall-Petch relation 58, i.e., 

σy = σ0 + ky (d)
-0.5                                                           (3.10) 

where ky is the strengthening coefficient (a constant unique to each material; for pure Al, ky = 

3.4 MPa-mm), ςo is a material constant, d is the grain diameter, and ςy is the yield stress. The 

calculation of overall yield stress  

σ = σy (1 +f1) (1 +f2) (1 +forowan)                   (3.11) 

where f1 takes the effect of volume fraction of particles, f2 takes into account the thermal 

expansion coefficient mismatch between matrix and reinforcement, and forowan takes into 
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account the effect of particle size (d) and spacing43. It receives input from outputs of MODULEs 1 

and 3 (Players A and B), specifically reinforcement size(r), grain size (d), semisolid processing 

temperature (  ) and volume fraction of TiB2 particles. Because of the complexity in 

mathematical modeling for Elastic Modulus, the partial derivatives for     calculation are not 

presented in closed form and MATLAB has been used to calculate    using equation 3.2. 

Decision Template for PLAYER C (   

Given: 

Target Value for Elastic Modulus = From Level 1 (     

Range of feasible space for  = 300-500 MPa 

Δ      = (0.1-0)* 0.1 = 0.01(vol. fraction) 

Δd  = (65-45)* 0.1 = 2 (µm) 

Δr = (2- 0.5)* 0.1 = 0.15(µm) 

Δ   = (640- 610)* 0.1 = 3(C) 

σ=   *(1+f_1)*(1+f_d)*(1+f_orowan) 

     
  

  
      

  

  
      

  

      
       

   
  

   
    

  

Find: 

Location of system variable:              

Deviation variables:   
    

 ;   
    

  

Satisfy: 

System Goals 

   
     

      
   

    
    

 

       
   

    
    

System Constraints 

300 ≤ σ ≤ 500 (MPa) 
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   ;    
    

    

System Bounds 

0 ≤      ≤ 0.1 (volume fraction) 

32 µm ≤ Grain Size (d) ≤ 62 µm 
0.8 µm ≤ Particulate Reinforcement size (r) ≤ 1.8 µm 

610 ≤ Temperature (     ≤ 640 (Degree Celsius) 
 

Minimize 

Deviation Function: Z=   (   
 )    (   

   

PLAYER D: Density: The determination of density is based on the average property of each of 

the constituent phases, i.e., 

ρ = ρTiB2 xTiB2 + ρCu xCu + ρAl (1-xTiB2 – xCu)             (3.12) 

where ρ, ρTiB2, ρCu, ρAl are the densities of the composite, TiB2, copper and aluminum 

respectively.  

Decision Template for PLAYER D (   

Given: 

Target Value for Density = From Level 1 (   ) 

Range of feasible space for  = (2936.2 -3096) kg/   

Δ      = (0.1-0)* 0.1 = 0.01(vol. fraction) 

                             

     
  

      
       

 

 

  

      
        

Find: 

Location of system variable:       
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Deviation variables:  
    

 ;   
    

  

Satisfy: 

System Goals 

   
     

      
   

    
    

 

       
   

    
    

System Constraints 

2936 ≤ ρ ≤ 3096 (kg/  ) 

   
    

  
    

      
    

    

   
    

      
    

    

System Bounds 

0≤     ≤ 0.1   (volume fraction) 

Minimize 

Deviation Function Z=    (   
 )    (   

   

Coupled Decision Template (PLAYERS C and D) 

 

Figure 3.5 Coupled decision template (Players C and D) 
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Combining the DSP’s for Player C and D’s parameters, coupled cDSP is obtained as show in 

Figure 3.5. The Decision Templates for Elastic Modulus (Player C) and Density (Player D) are 

combined and the objective function for minimization is a function of the weights and values of 

the individual deviation functions. Assigning different weights to the two deviation variables 

(Sum of weights equal to 1), we can calculate for different designing scenarios. The output of 

the coupled cDSP is the target values for grain size (d), particulate size(r), temperature of 

semisolid processing (   ) and volume fraction of composite (      . 

Coupled Decision Template (Level 2) 

Given: 

Target Value for Density = From Level 1 (   ) 

Target Value for Elastic Modulus =Level 1 (     

Range of feasible space for  = 300-500 Mpa 

Range of feasible space for ρ = 2936-3096 (kg/  ) 

Weight of Density and Elastic Modulus= (     ) 

Δ      = (0.1-0)* 0.1 = 0.01(vol. fraction) 

Δd  = (65-45)* 0.1 = 2 (µm) 

Δr = (2- 0.5)* 0.1 = 0.15(µm) 

Δ   = (640- 610)* 0.1 = 3(C) 

                             

     
  

      
       

 

 

σ=   *(1+f_1)*(1+f_d)*(1+f_orowan) 

     
  

  
      

  

  
      

  

      
       

   
  

   
    

  

Find: 

Location of system variable:              
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Deviation variables:  
    

 ;   
    

 ;   
    

 ;   
    

  

Satisfy: 

System Goals 

   
 

   
         

    
                 

  
       

   
    

               

System Constraints 

300 ≤ σ ≤ 500 (MPa) 

2936 ≤ ρ ≤ 3096 (kg/  ) 

   
                            For i=C,D,3,4 

  
    

     

  
    

    

System Bounds 

0 ≤      ≤ 0.1 (volume fraction) 

32 µm ≤ Grain Size (d) ≤ 62 µm 
0.8 µm ≤ Particulate Reinforcement size (r) ≤ 1.8 µm 

610 ≤ Temperature (     ≤ 634 (Degree Celsius) 
 

Minimize 

Deviation Function: 

Z=    *(   
 )      for i=C, D, 3, 4. 

3.3.3. Level 3  

There are two modules in the process-structure relationship modeling level. Modules 1 and 2 

are considered as Players A and B respectively. The responses of MODULE 1(A) and MODULE 

3(B) are influenced by multiple variables and hence we use response surface methodology for 

modeling and analysis of the design task at these levels. The Response Surface Methodology 

employed embodies second order models: 
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k k
2

0 i i ii i ij i j

i 1 i 1 i k

Y x x x x    
  

        
(3.13) 

where, 
ij ,i 1,2,...,k; j 0,1,2,...,k    are the regression coefficients and xj are the regression 

variables, Y is the response. The Response Surfaces for MODULE 1 and MODULE 3 are generated 

using MINITAB®. TABLE 3.1 gives the data set of the variables used to generate the response 

surface of MODULE 1 i.e. response surface for Player A. 

PLAYER A: MODULE 1 (Precipitation Modeling in Liquid Aluminum) 

Table 3.1 Data set for MODULE 1 

Volume fraction 
(xTiB2, %) 

Temperature 
(T, K) 

Average particle 
radius (r, µm) 

2.5 1073 0.96 

5.0 1073 1.25 

7.5 1073 1.22 

10.0 1073 1.11 

10.0 1173 1.57 

10.0 1273 1.74 

10.0 1373 1.80 

 

The response surface generated for MODULE 1 is represented by the equation: 

2 2

TiB2 tiB2Y 17.3246 0.2290x 27.7783T' 0.0167x 10.4230T'       (3.14) 

where Y is the response i.e. the average TiB2 particle grain radius (R), xTiB2 is the volume fraction 

of TiB2 and T’ is   /1000 where   is the temperature of precipitate modelling in Kelvin.  
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Decision Template for PLAYER A (r) 

Given: 

Target Value f for particulate size (r) = From Level 2 (     

Range of feasible space for  = 0.8-1.8 µm 

Δ      = (0.1-0)* 0.1 = 0.01(vol. fraction) 

Δ   = (1373- 1073)* 0.1 = 30 (K) 

                                                                      
   

     
  

      
       

   
  

   
    

    

  

      
                         

  

   
                             

Find: 

Location of system variable:          

Deviation variables:   
    

 ;   
    

  

Satisfy: 

System Goals 

   
     

      
   

    
    

 

       
   

    
    

System Constraints 

0.8 µm ≤ Particulate Reinforcement size (r) ≤ 1.8 µm 

   
    

  
    

       
    

     

   
    

   ;   
    

    

System Bounds 

0 ≤      ≤ 0.1 (volume fraction) 
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1073 ≤ Temperature (     ≤ 1373 (Kelvin) 
Minimize 

Deviation Function: 

Z=    (   
 )    (   

   

 

MODULE 3 (Semi-Solid Processing in MMCs) 

Table 3.2 Data set for MODULE 3 

% Volume 
fraction  TiB2 

% Liquid Grain Size 
(µm) 

2.5 10 62 

2.5 20 58 

2.5 30 30 

5.0 10 54 

5.0 20 51 

5.0 30 55 

7.5 10 62 

7.5 20 48 

7.5 30 53 

10.0 10 49 

10.0 20 47 

10.0 30 54 

 

The response surface generated for MODULE 3 is represented by the equation: 

2 2 2

2 280.67 0.167 2.25 0.3067 0.01375 0.202TiB ToB TiBY x L x L x L       (3.15) 
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where Y is the response i.e., the average grain size(d), xTiB2 is the volume fraction of TiB2 and L is 

the % liquid.  

Decision Template for PLAYER B (d) 

Given: 

Target Value for grain size=Level 2 (     

Range of feasible space for  = (32 to 62 µm) 

Δ      = (0.1-0)* 0.1 = 0.01(vol. fraction) 

ΔL = (30- 10)* 0.1 = 2(%) 

                                                                              
   

     
  

      
       

   
  

  
     

  

      
                                  

  

  
                                       

Find: 

Location of system variable:         

Deviation variables:   
    

    
    

  

Satisfy: 

System Goals 

   
     

      
   

    
    

 

       
   

    
    

System Constraints 

45 µm ≤ Grain Size (d) ≤ 65 µm 

   
    

  
    

      
    

    

   
    

   ;    
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System Bounds 

0 ≤      ≤ 0.1 (volume fraction) 

10 ≤ % Liquid  ≤  30 % (%) 
 

Minimize 

Deviation Function: 

Z=    (   
 )    (   

   

Coupled Decision Template (PLAYERS A and B) 

Combining the DSP’s for the players A and B, a coupled cDSP is obtained as show in the Figure 

3.6. The output of the coupled cDSP is the target values for volume fraction of particulate 

(      , temperature for precipitate modeling (    and percentage of liquid (%L) in semisolid 

modeling. Hence a solution for the processing conditions for the microstructure is reached. 

 

FIGURE 3.6 Coupled decision template (Players A and B) 

Coupled Decision Template (Level 3) 

Given: 

Target Value f for particulate size (r) =Level 2 (     

Target Value for grain size=Level 2 (     

Range of feasible space for  = (32-62 µm) 
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Range of feasible space for r = (0.8 – 1.8µm) 

Weight of grain size and particulate size= 0.5= (     ) 

Δ   = (1373- 1073)* 0.1 = 30 (K) 

Δ      = (0.1-0)* 0.1 = 0.01(vol. fraction) 

ΔL = (30- 10)* 0.1 = 2(%) 

                                                                                   

     
  

      
       

   
  

  
     

                                                                       

      

     
  

      
       

   
  

   
    

  

Find: 

Location of system variable:            

Deviation variables:  
    

 ;   
    

 ;   
    

 ;   
    

 ; 

Satisfy: 

System Goals 

   
 

   
         

    
                 

  
       

   
    

               

System Constraints 

0.5 µm ≤ Particulate Reinforcement size (r) ≤ 2 µm 
45 µm ≤ Grain Size (d) ≤ 65 µm 

   
                            For i=A,B,1,2 

  
    

     

   
    

    

System Bounds 

0 ≤      ≤ 0.1 (volume fraction) 
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1073 ≤ Temperature (     ≤ 1373 (Kelvin) 

10 ≤ % Liquid  ≤  30 % (%) 
 

Minimize 

Deviation Function: 

Z=    *(   
 )      for i=A,B,1,2 

 

3.3.4. Coupling of Level 2 and 3 

It is seen that        is an input parameter to Players A and B at Level 3 and Players C and  D at 

Level 2. If the top-down approach is followed, iteration becomes necessary to converge to a 

solution for                                                   Instead the two levels of design 

are coupled as shown in the figure and formulate a coupled cDSP for Level’s 2 & 3. The 

hierarchical optimization solution strategy in JAVA DSIDES is used with Level 2 as the Top Level 

and Level 3 as the bottom level. This helps us avoid iterating between Level’s 2 and 3 and a 

solution is reached quickly. This can be abstracted as a Stackelberg Leader-Follower Protocol in 

game theory. Solving this cDSP one arrives at the processing conditions for the microstructure; 

i.e. target values for volume fraction of particulate (      , temperature for precipitate 

modeling (   and percentage of liquid in semisolid modeling (%L). 

Coupled Decision Template (Level 2 and 3) 

Given: 

Target Value for Density = From Level 1 (   ) 

Target Value for Elastic Modulus =Level 1 (     

Range of feasible space for  = (300 to 500) MPa 

Range of feasible space for  = From Level 1. (2936.2-3096) 

Weight of Density and Elastic Modulus= (     ) 

Δ   = (1373- 1073)* 0.1 = 30 (K) 

Δ      = (0.1-0)* 0.1 = 0.01(vol. fraction) 
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ΔL = (30- 10)* 0.1 = 2(%);  Δ   = (640- 610)* 0.1 = 3(C) 

                             

        

σ=   *(1+f_1)*(1+f_d)*(1+f_orowan) 

     
  

  
      

  

  
      

  

      
       

   
  

   
    

  

                                                                                
   

     
  

      
       

   
  

  
     

                                                                       

      

     
  

      
       

   
  

   
    

  

Find: 

Location of system variable:          ,       

Deviation variables:  
    

 ;   
    

 ;   
    

 ;   
    

  

Satisfy: 

System Goals 

   
 

   
         

    
                     

  
       

   
    

               

System Constraints 

300 ≤ σ ≤ 500 (MPa) 

2936.2 ≤ ρ ≤ 3096 (kg/  ) 

   
                            For i=A,B,C,D,3,4 
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System Bounds 

0 ≤      ≤ 0.1 (volume fraction) 

32 µm ≤ Grain Size (d) ≤ 62 µm 
0.8 µm ≤ Particulate Reinforcement size (r) ≤ 1.8 µm 

610 ≤ Temperature (     ≤ 634 (Degree Celsius) 
  

Minimize 

Deviation Function: 

Z=    *(   
 )      for i=A,B,C,D,3,4 

 

FIGURE 3.7: Coupled decision template (Players A, B, C, D) 

Table 3.3 provides a summary of the variables used in the game theoretic formulation. Table 3.4 

provides a summary of the Targets and Ranges for each of the Players. NA refers to Not 

Applicable. Table 3.5 provides a summary of the independent variables, and the modules and 

corresponding players they are input to. 
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Table 3.3: List of variables in game formulation 

Player Parameter Weight 
Target 

Weight 
DCI 

Deviation 
Targets 

Deviation 
DCI 

Level 

A r          
    

     
    

  3 

B d          
    

     
    

  3 

C σ          
    

     
    

  2 

D ρ          
    

     
    

  2 

E h          
    

     
    

  1 

F W          
    

     
    

  1 

G               
    

     
    

  1 

 

Table 3.4: List of targets and ranges 

Player Parameter Targets Ranges Constraint Level 

A r     (0.8,1.8)µm NA 3 

B d     (32,62) µm NA 3 

C σ     (300,500) MPa NA 2 

D ρ     (2936,3096)kg/   NA 2 

E h 3500 m (2000,5000) m ≥2000m 1 

F W 16 kgf (7,25)kgf ≤25kgf 1 

G      12 hrs. (0,15)Hrs ≥10 Hrs. 1 

 

Table 3.5 List of independent input variables 

Variable Range Input Module Input Player 

       (0.02,0.1)% 1,3,4 A,B,C,D 

   (1073,1373) K 1 A 

   (610,634) C 4 C 

%L (10,30) % 3 B 

t (5,15)mm 5 E,F,G 

 



 

   113 

3.4. Discussion of Results 
 

Performance target requirements at Level 1 for the underwater submersible include: 

 The safe depth of operation of the submersible with a small shell thickness should be as 

large as possible preferably exceeding 2000 meters and the desired target depth is 3500 

meters. 

 The submersible must have a good endurance with a large time of operation of at least 

10 hours without resurfacing or recharging and greater duration of submersion is better. 

 Given a weight of the vessel of 76 Kgs and allowing as large a payload as feasible, a 

representative limit the weight of the outer shell of the submersible may not exceed 25 

Kgs, and a lighter shell is preferred. 

The cDSP’s has been implemented in JAVA DSIDES® for this application.  

3.4.1. Level 1 Result 

For the coupled decision template at Level 1 ; the range for input variables are derived as 5-

15(mm), 2936.2-3096 (kg/m3), 300-500 (MPa), for thickness(t), density of composite (ρ) and yield 

stress (ς) respectively [Table 3.4,3.5]. The weights for the deviation variables (Targets and 

Design Capability Index) and the target values for the parameters at Level 1 are displayed in 

Table 3.6. 

Table 3.6: Weights for coupled cDSP Level 1 

Player Parameter Weight for 

Targets 

Weight for 

DCI 

Target DCI 

Target 

Level 

E h 0.1666 0.1666          1 

F W 0.1666 0.1666 16 kgf 8 1 

G      0.1666 0.1666 12 hrs 8 1 
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Table 3.7: Hierarchical formulation for coupled cDSP Level 1 

Player Variable Weight Target Level 

E 

 

   
  0.5 3500 1 

   
  0.33 8 2 

F    
  0.25 16 1 

   
  0.33 8 2 

     
  0.25 12 1 

   
  0.33 8 2 

Table 3.8: Results for Coupled cDSP Level 1 

Input/Output Variable Value 

 
Input 

  7.861mm 

ρ 2936.2 kg/m3 

ς 500 MPa 

 
 

Output 

Player Variable Value 

E Depth (h) 2915.96 m 
E

dkC  2.38 

F Weight (W) 19.464 kgf 
F

dkC  8.00 

G Time( )oprT  11.83 hrs 

G

dkC  2.83 

 

These weights and the target values represent one design scenario. The designers (Player E, F 

and G) at Level 1 have the autonomy to tailor the weights and target values as per the design 

requirement and investigate other design scenarios. Also, instead of a single deviation function 

that captures all the deviation variables, two deviation functions can be set up hierarchically, 

where the first deviation function addresses the maximization of target achievement and the 

second deviation function tackles with design freedom optimization. This feature of hierarchical 

deviation functions is embedded in JAVA DSIDES®. An illustrative Table 3.7 is presented. We 

realize that the game theoretic formulation gives the designers at Level 1, the autonomy to 

control the design evolution via 12 control variables, (6 target values, i.e., 2 for each player E, F 



 

   115 

and G, i.e., the target for design capability indices (DCI’s) and target for performance 

requirement. The solution for the coupled cDSP at Level 1 with weights as per Table 3.6 has 

been displayed in Table 3.8. The input values to Level 1 set the target values for the coupled 

cDSP for Levels 2 and 3. Hence the target for Player D (ρ) is 2936.2 kg/m3 and for Player C (ς) is 

500 MPa. We now proceed to the Level 2 result for the illustrative microstructure mediated 

design of underwater submersible. 

3.4.2. Level 2 and 3 Results 

For the coupled decision template for Level 2 and  3; the range for input variables are  2-10(%), 

610-634(C), 1073-1373 (K) and 10-30(%) for the volume fraction of TiB2 (xTiB2), processing 

temperature for Module 4 (
1T ),  processing temperature for Module 1 (

2T ) and liquid percentage 

for semisolid processing (%L)  respectively. The weights assigned and the target values along 

with the level for hierarchical optimization for the parameters at Level 2 are displayed in the 

Table 9. The justification for the levels of hierarchical optimization is that for the coupled cDSP 

for Level’s 2 and 3; the primary objective is the attainment of the target values for ρ (Player D) 

and ς (Player C) derived from the Level 1 cDSP solution. The DCI metric associated with Level 2, 

i.e. , C

dkC  and D

dkC are maximized before maximization of DCI metrics associated with Level 3, i.e., 

A

dkC  and B

dkC .This is because Level 2 dominates Level 1 for our top down inductive method. This 

can also be understood from the interpretation that Level 2 acts as a leader and Level 3 as a 

follower. Hence the variables ρ and ς are at the top level for deviation function minimization; 

C

dkC  and D

dkC  are assigned level 2 and A

dkC  and B

dkC  are assigned level 3.Again it is seen that the 

game theoretic formulation gives the designers at Level 2and 3, the autonomy to control the 

design solution via 10 control variables, i.e., 6 weights for deviation variables and 4 target values 

for i

dkC ; i=A, B, C, D. The solution for the coupled DSP for Levels 2 & 3 has been displayed in 

Table 3.10. 
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Table 3.9 Hierarchical formulation: Coupled cDSP level 2and 3 

Player Variable Weight Target Value Level 

C 

 

  Cd   0.5 500 MPa 1 

3 d   0.5 8 2 

D   Dd   0.5 2936.2 kg/m3 1 

4 d   0.5 8 2 

A    Ad   0.5 8 3 

B   Bd   0.5 8 3 

 

Table 3.10 Results for coupled cDSP Level 2 and 3 

Input/Output Variable Value 

 
Input 

TiB2x  0.0996 

2T  1143.18 K 

%L  15.26 % 

1T  634 deg C 

 
 

Output 

Player Variable Value 

C Elastic (σ) 499.9 MPa 
C

dkC  1 

D Density (ρ) 2936.2 
kg/m3 

D

dkC  1 

A A

dkC  2.53 

B B

dkC  5.303 

 

As both the Players D (ρ) and C (ς) variables can independently achieve their respective target 

values as dictated by the Level 1 solution, the final performance values are the same as in Table 

[3.8]. Else we would have had to recalculate the final performance values for the achieved ρ, ς 

output values at Level 1. Based on obtained solution sets, designers may have more freedom for 
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choosing their decisions, emphasizing product performance, achieving robustness against MSU, 

or compromising between them. 

3.5. Thoughts on What has been Presented and What is Next 
 

The complexity of modern product realization processes requires multidisciplinary collaboration. 

Principles from game theory are used to model the relationships between engineering teams 

and facilitate collaborative decision making, and use design capability indices to help maintain 

design freedom. In this chapter the design construct for multi-level design is introduced using 

game theoretic protocols of cooperation and leader-follower mechanism. A methodology is 

presented to pursue concurrent decision making under in design for an underwater submersible 

and Al-based metal matrix composite that embodies the microstructure-mediated robust design 

construct. The principal challenge involved is the performance target achievement in over seven 

empirical and theoretical models over three levels of design. Starting from a hull thickness 

parameter in MODULE 5, the feasible design spaces for the mechanical properties are identified 

using design capability indices. A cooperative solution is reached using the cDSP’s for Level 1 and 

Level 2and 3. Based on our observations it is summarized that the advantages of the game 

based approach for the proposed multilevel design for the product realization of underwater 

submersible: 

 Interdisciplinary iterations between uncoupled design levels are eliminated, which can 

greatly reduce the computing cost in multidisciplinary product realization. There are no 

iterations between modules or levels. This limits the complexity of the decision making 

process. 

 Each team (player) holds its own cost function and makes decisions in its own discipline. 

Hence, the game based approach greatly increases the autonomy and independence of 

the disciplinary teams and enables higher parallelism.  
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 The game theoretical protocols are appropriate to model the relationships between 

engineering teams, and enable collaborative decision making based on the cooperation 

styles between teams. JAVA DSIDES is efficient for solving the derived cDSP’s as it offers 

the provision for hierarchical optimization. 

 Most importantly, the construct introduced in this chapter can be applied to any 

complex product. Upstream teams make decisions that remain superior even though 

the requirements of the downstream teams are yet unknown. Downstream teams can 

specify final solutions without jeopardizing the satisfaction of the design requirements 

in upstream activities. Hence, engineering teams can keep the product realization 

problem open in the early stages of product realization, and make decisions that are 

superior from the perspective of all disciplines. 

In closing, it is noted that compared to other approaches my method does not necessarily lead 

to a better design. However, for multilevel design tasks especially in the early stages of product 

realization, the proposed construct is deemed efficient. It is suggested that my method is more 

practical in the design of multiscale systems. My method also establishes the soundness of using 

cDSP for design of multiscale systems. IDEM provides ranged sets of solutions as described in 

the previous chapter and cDSP has potential to manage uncertainty and identify a single best 

solution from these ranged sets of solution. In this chapter it identifies the best solution by 

compromising performance achievement and robustness in terms of the DCI metric. Having 

established the framework for multilevel design using IDEM in the previous chapter and cDSP in 

this chapter, we proceed to understanding the research gaps and formulate the research 

questions. The IDEM and cDSP constructs are coupled in Chapter 5 for improved robustness 

formulate for microstructure mediated design.  

This chapter also ties to Quadrant II of the validation square as it establishes the internal 

consistency of the cDSP used in developing the methods for multiscale systems in Chapters 5 

and 6. Figure 3.9 represents the organization of work up to this point in the thesis. 
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Figure 3.8: The validation square 
 

Chapter 1 Motivation: of 
integrated product and process 
Design 

Chapters 1 Introduction: Key 
constructs critical for 
microstructure mediated design in 
a multiscale system 

 Chapter 4 Tools: Explaining the 
tools useful to achieve uncertainty 
mitigation after iterations in a 
simulation model refinement. 

 

 

Chapter 4 Framing the 
research questions and 
hypotheses: Based on the 
structural validity of the 
core constructs, gaps are 
identified and research 
questions are proposed. 
This approach is 
evolutionary and not like 
standard validation 
square approach. 

Chapters 2 and 3 Validation of the IDEM 
and cDSP problem for the proposed 
method: In these chapters we apply the 
proposed example to our foundational 
constructs of IDEM and cDSP. We firstly 
answer if the simulation based UAV design 
problem appropriate for validation of the 
method? Then we document the result data 
from the comprehensive example using 
IDEM and cDSP and move to the next the 
next step to validate the proposed 
hypotheses 

 

 

Chapters 5 and 6: Validation of the results 
and hypotheses: Validate based on the 
obtained results for the multiscale UAV 
problem. Demonstrate materials and 
product design significance and 
contributions 

 

Chapter 7 Closure: 
Building confidence of 
the utility of the method 
in general multiscale 
simulation-based design 
problem. 

Justifying the 
comprehensive example 
is the representative 
problem of multiscale 
simulation-based design 
refinement. 
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 CHAPTER 4 

HOLISTIC UNCERTAINTY MANAGEMENT BY 

INTEGRATING ROBUST DESIGN AND INFORMATION 

ECONOMICS 

 

In this chapter the challenges for design of multiscale systems are reviewed in context of the 

methods developed in Chapters 2 and 3 and research gaps are identified. The research 

questions are framed, propose posits to answer them and briefly discuss the overview for the 

work. The tools used in this work are briefly discussed: the design of experiments, response 

surface models and value of information. 

4.1. Gap Analysis and Research Questions 

4.1.1. Gap Analysis  

In this section, the gaps in the current research methods for uncertainty management are 

identified with respect to the challenges identified in Chapter 1. The challenges identified in 

Section 1.1 with respect to multiscale systems are restated in Table 4.1 

Table 4.1: Challenges in design of multiscale systems 

a.  Balancing the prediction accuracy with computational cost 

b.  Modeling physical phenomena and interaction between scales 

c. Collaborative decision making 

d. Collaborative computational infrastructure 

e. Managing uncertainty and its propagation 

f. The inverse problem 
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The biggest challenge identified was that of balancing prediction accuracy with computational 

cost. We saw in Chapter 2 that IDEM facilitates robust decision making in presence of 

uncertainty and has the capability to tailor prediction accuracy based on the EMI metric. 

However, it does not account for computational cost for predictions. It also does not provide 

any means to increase the accuracy. This challenge remains unanswered and is identified as a 

research gap. The second challenge is alleviated using IDEM as it lays a framework for domain 

independent modeling of physical phenomena and can account for interdependency amongst 

linkages in the design chain. Though cDSP allows for collaborative decision making in a 

multiscale environment as seen in Chapter 3, its integration with IDEM remains to be validated 

and hence addressing challenge 3, that of collaborative decision making. IDEM diminishes the 

need for a collaborative computational architecture as its uses mapping models in the form of 

response surfaces in lieu of simulation models to map between the hierarchical scales. We saw 

in Chapters 2 and 3, that IDEM was used to successfully manage model parameter uncertainty, 

propagated uncertainty and natural uncertainty. In addition use of IDEM also establishes the 

degree of model structure uncertainty which is difficult to quantify unlike the other types of 

uncertainty. It does so in the form of a HD-EMI metric which defines the reliability of a system 

model under potential shift of output response due to model structure uncertainty. This metric 

can be used in cDSP to reach a compromise for its level of attainment and hence manage MSU. 

However, the integration of IDEM and cDSP relevant to microstructure mediated design (MMD) 

remains to be validated. Use of IDEM answers the inverse problem by establishing second order 

mapping models between the input and output response and hence assists in inverse design 

space exploration. However, it is not explicitly defined in scope of IDEM and this needs to be 

illustrated with respect to MMD. Based on this discussion, the following gaps are identified for 

uncertainty management of multiscale systems.  

 Clarification of multilevel design: Clear definition of the multilevel design and 

difference from multiscale systems modeling is not clear. Also difference between 

multiscale modeling and multilevel design for multidisciplinary systems in terms of 
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hierarchical material design and Olson diagram is not clear from literature and the cDSP 

and IDEM approaches. Specifically, the inverse problem challenge of multiscale systems 

needs to be addressed with respect to microstructure mediated design. The presence of 

decision nodes that arise due to multiscale modeling for multilevel design of systems 

need to instantiated with respect to material design hierarchy.  

 Clear definition of the mathematical challenges for uncertainty management and 

uncertainty mitigation in simulation based multiscale systems: The discussion of the 

mathematical challenges for uncertainty management in hierarchical material design 

using simulation models is scattered throughout literature and not explicit. Chapters 2 

and 3 addressed two key components of uncertainty management through robust 

design. In Chapter 2, the IDEM approach focused on managing modeling uncertainty as 

it propagates through the design chain. However, explicit modeling of the model 

parameter uncertainty and natural uncertainty were not discussed and addressed 

briefly. In Chapter 3, the cDSP approach was tested for collaboratively tailoring the DCI 

metric to suit management of model structure uncertainty. However, a unified approach 

which addresses all four types of uncertainty in multiscale systems needs to be 

established.   Also the challenges of methods for mitigating uncertainty in an adaptive 

way by considering the current prediction accuracy of the multiscale system and scope 

of further refinement are not found in literature. 

 Generality of the IDEM: IDEM has not been tested for general design problems that do 

not necessarily have a one-to-one mapping between variable spaces. IDEM can be used 

for many-to-one mappings implying multiple solutions in the inverse exploration. Also 

the question of coming up with a singular solution in presence of multiple solutions 

arises. MMD is an example to this end. Use of IDEM can find ranged sets of solution; 

however for general applicability suitable for both initial design space exploration as 

well as final robust solution, it needs to be extended in order to come up with a singular 
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solution from the ranged sets of solution. The cDSP approach gives us insight to achieve 

this.  

 Establishment of the compatibility between the decision formalisms of value-of-

information and robust design: In the first chapter it is discussed that multiscale 

systems are generally a compilation of interlinked simulation models with high 

computational expense. Hence, acquiring large data sets for uncertainty mitigation is 

not feasible. Hence current methods like kriging or Monte Carlo simulation are not 

feasible. It is hypothized that an adaptive formulation for uncertainty mitigation is 

feasible by acquiring insight into the current multiscale system performance as well as 

the scope for uncertainty reduction based on value of additional information. 

Uncertainty mitigation using robust design and information economics raises the 

question about the compatibility between the decision formulations of robust design 

and utility theory. Robust design involves finding solutions insensitive to uncertainty 

while traditional value of information approaches use utility theory to derive an 

improvement potential metric which focuses on maximization of expected utility. 

Clearly, optimization and robustness are incompatible and warrants further 

investigation. Hence, a framework needs to be developed to integrate robust design and 

information economics in order to achieve uncertainty reduction and move towards 

holistic uncertainty management, i.e., achieve robustness along with uncertainty 

reduction.  

 Formulation of a fundamental, rigorous definition of the tradeoff problem: 

Computational expense or cost will be the common platform for determining the value 

of information metric for further simulation refinement. A trade-off will need to be 

achieved between prediction accuracy and computational cost as described in one of 

the challenges. The proposed method of trading off value versus effort is not found in 

the literature. It needs to be addressed by establishing a) an approach for quantifying 
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the effort, and b) a rigorous definition of the tradeoff problem, and c) an approach for 

making the tradeoff decisions. 

 Justification of the use of information economics over existing techniques: Information 

economics uses utility theory to predict the expected value of information. 

Improvement potential metric was defined for use to engineering systems and 

applicability to design problem. However, this metric has several shortcomings. The 

most important one is that it ignores the expected value of information, i.e., it only 

quantifies the scope of improvement but does not quantify the reduction of the 

improvement potential metric with additional information. This is identified as a 

research gap and warrants the improvement potential metric to be extended to suit 

expected value of information as well as applicability to robust multiscale systems 

design.  

 

4.1.2. Research Questions and Hypotheses  

After having identified the research gaps with respect to multiscale systems the research 

questions are developed.  In Chapters 2 and 3, IDEM and cDSP were structurally validated for 

application to simulation-based multiscale systems. IDEM successfully provides us ranged sets of 

solution robust against modeled and propagated uncertainty and also provides a metric for 

managing model structure uncertainty which is hard to quantify in terms of the developed HD-

EMI metric. In Chapter 2, the EMI metric was used instead of HD-EMI metric to simplify the 

problem at hand though successfully demonstrating its ability to handle model structure 

uncertainty in terms on constraints placed on the EMI values. In Chapter 3, the cDSP was used in 

a collaborative game theoretic setting to investigate its applicability to model decisions in a 

multiscale system. cDSP performed a trade-off between performance achievement and DCI 

metric which is a alternative formulation to the EMI metric. cDSP arrived at a single solution and 

hence showed potential to arrive at a single solution from ranged sets of solution if used in 
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conjunction with the IDEM. However, neither the cDSP not the IDEM provided means for 

reducing uncertainty in the simulation models. Reducing uncertainty is critical if the initial 

robust space exploration does not yield sufficiently robust solutions. Hence, the primary 

research question is formulated as: 

Primary Research Question 

How does one manage and mitigate uncertainty in simulation-based multiscale systems? 

The primary research question has two elements for handling uncertainty- manage and 

mitigate. The management is achieved through robust design and the mitigation has not been 

addressed. Hence two research hypotheses for answering the primary research question are 

formulated as: 

1. Integrating constructs from robust design and decision support systems can manage 

uncertainty 

2.  Integrating constructs from robust design, information economics and decision support 

systems can mitigate uncertainty. 

IDEM is a robust design method and cDSP falls in the class of decision support systems. Hence it 

is hypothized that integrating constructs from robust design can help us achieve ranged sets of 

robust solutions as identified in IDEM and decision support systems can aid in arriving at a single 

solution from the ranged sets of solution as identified in cDSP. Information economics is the 

study of value of information. Robust design integrated with decision support systems can 

identify the best solution for the multiscale system in its current configuration. The system and 

the associated subsystem simulation models can be viewed as sources of information and a 

designer can investigate the value additional information from the simulation models has on the 

overall system performance. To this end, information economics can aid in analyzing the value 

of additional data from the simulation models in respect to computational time. The objective is 

to minimize the utilization of computational resources while achieving the maximum benefit 

from additional data on the system level performance. Hence, for mitigating uncertainty it is 
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hypothized that integrating constructs from robust design, decision support systems and 

information economics will aid in systematic reduction of uncertainty. 

To manage uncertainty, one of the secondary research questions is formulated as: 

Secondary Research Question 1 

How can we address model parameter uncertainty, model structure uncertainty, natural 

uncertainty and propagated uncertainty in multiscale systems? 

In Chapter 1, types of uncertainty in multiscale systems were identified as model parameter 

uncertainty (MPU), model structure uncertainty (MSU), natural uncertainty (NU) and 

propagated uncertainty (PU). IDEM was verified for managing modeled uncertainty and 

propagated uncertainty in multiscale systems. However, detailed understanding of modeling 

uncertainty was not developed. IDEM also provides a metric for managing model structure 

uncertainty which cannot be modeled in terms of the HD-EMI metric. Arriving at a small set of 

ranged solution from which the best robust solution can be identified by tailoring the HD-EMI 

metric was identified as a time-intensive and rigorous task especially as the nature of 

uncertainty propagation along a complex chain of interlinked models is difficult to comprehend. 

cDSP was successfully employed to identify single robust solutions by achieving a trade-off 

between system performance and robustness in terms of the DCI metric. Hence based on this 

understanding, the following hypotheses are formulated to manage all four kinds of uncertainty 

in simulation-based multiscale systems for multilevel design: 

 IDEM incorporates MPU, NU and PU to give feasible solution sets. 

 IDEM develops HD-EMI metric to manage MSU. 

 cDSP can used to reach a trade-off amongst HD-EMI values to mange MSU and hence 

give a single robust solution against MSU, MPU, NU and PU. 
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Natural uncertainty can be statistically modeled. MPU can be modeled in terms of confidence 

intervals for the mean metamodel. Thus the mean metamodel along with uncertainty bounds 

can incorporate the uncertainty due to NU and MPU. This integrated metamodel can serve as 

the mapping function for multiscale materials design as per Olson’s diagram. Propagated 

uncertainty is minimized by developing exact constraint boundaries in IDEM. The HD-EMI metric 

is a metric that establishes the reliability of a decision under potential shifts of a model response 

due to MSU. Hence IDEM can provide robust sets of solution against modeled MPU, NU and PU 

as well as provides the HD-EMI metric for managing unquantifiable MSU. The cDSP is used to 

tailor the HD-EMI values from the simulation models in order to reach a single robust solution 

from the ranged sets of robust solutions identified using IDEM. 

For uncertainty mitigation, the second secondary research question is formulated as: 

Secondary Research Question 2 

How does the system level designer allocate resources for auxiliary simulations based model 

refinement while ensuring satisfaction of system level design objectives and product 

requirements in a multiscale integrated product and material design? 

If the identified robust solution does not meet the standards, auxiliary or additional simulation 

runs need to be executed to gather additional information about the model and hence 

contribution to uncertainty mitigation. In order to achieve this, my approach is to integrate the 

two constructs of robust design and information economics in multiscale simulation based 

design and reach a trade-off for simulation based model refinement. Ranged sets of robust 

solution are first identified using concepts from IDEM. At the identified feasible points value of 

information is defined in terms of the additional information required to reduce the error 

bounds in the metamodel. To do this, the value of information is defined in terms of 

improvement potential metric with respect to the model parameter uncertainty in the 

simulation model. NU is ignored because it cannot be mitigated.  Simplistic cost functions are 

developed which capture the computational effort in reducing the error bounds for the 
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simulation models.  Optimization techniques are then used to reach a trade-off between the 

cost functions and model refinement to allocate the limited resources to the individual 

simulation models in the multilevel design. The hypotheses for uncertainty mitigation through 

resource allocation are: 

 Integrating IDEM and cDSP facilitates obtaining a single robust solution against all forms 

of uncertainty. 

 Response surface modelling facilitates defining the improvement potential metric in 

terms of confidence intervals for mitigating MPU. 

 Concepts from value of information and response surface modelling can be integrated 

to develop predicted improvement potential and corresponding cost functions 

 Optimization techniques can be used to reach a trade-off among cost functions.   

Based on the hypotheses for the secondary research question 1, it is hypothized that integrating 

IDEM and cDSP will identify a single robust solution against MPU, NU, MSU and PU as well 

identify ranged sets of solution robust against MPU, NU and PU. NU is irreducible and PU is in 

effect a compounded effect of the other three kinds of uncertainty. Individual mitigation of the 

other 3 kinds will translate into mitigation of PU. Though an element of PU appears at 

constraints boundaries due to discretization resolution in the IDEM, understanding the value of 

information for mitigating PU due to discrete resolution is not taken up. Instead it is proposed in 

future work. MSU and MPU are the two kinds of uncertainty that arise due to incomplete 

knowledge of the simulation model. MSU arises due to simplifications or assumptions in 

simulation modeling and mitigating MSU would mean a rigorous understanding of underlying 

assumptions and its effect of simulation model response. This is a challenging task and is not the 

focus of this thesis. In this study, the focus is on mitigating MPU which arises due to insufficient 

information from the simulation models. This insufficient information correlates to larger 

statistical error bounds or confidence intervals. Hence, the improvement potential metric is 
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defined so as to capture the degree of MPU in terms of the statistical confidence intervals. Value 

of information constructs are used to understand the behavior of the confidence intervals with 

additional data and a correlation is developed between additional data points and improvement 

potential for the simulation model. Optimization techniques are used to derive maximum 

benefit in terms of improvement potential metric while minimizing the computational resource. 

Hence it is hypothized that successful integration of response surface modeling with 

improvement potential metric can aid in developing accurate cost functions for efficient 

resource allocation. This will ensure benefit of system level performance while ensuring 

reduction in MPU. The primary and secondary research questions along with their associated 

hypotheses are illustrated in Table 4.2. Table 4.3 represents the connectivity between the 

research questions and the sections they are answered. In this table observed refers to the 

establishing the theoretical understanding, reflected refers to establishing the connectivity 

between the established construct and the proposed method. Articulated refers to arriving at 

results using the proposed hypotheses in context of out example problem of design of AUV 

using metal matrix composites. This is a representative example for multiscale systems with 

microstructure mediated design approach. 
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Research Question: 

How does one manage and mitigate uncertainty in simulation-based multiscale systems? 

Hypothesis: 

1. Integrating constructs from robust design and decision support systems can manage uncertainty 

2. Integrating constructs from robust design, information economics and decision support systems can 

mitigate uncertainty.  
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Research Question 1: 

How can we address model parameter uncertainty, model structure uncertainty, natural uncertainty and 

propagated uncertainty in multiscale systems? 

Hypothesis:  

1.1 IDEM incorporates MPU, NU and PU to give feasible solution sets. 

1.2 IDEM develops HD-EMI metric to manage MSU 

1.3 cDSP can used to reach a trade-off amongst HD-EMI values to mange MSU and hence give a single 

robust solution against MSU, MPU, NU and PU.  

Research Question 2: 

How does the system level designer allocate resources for auxiliary simulation based model refinement 

while ensuring satisfaction of system level design objectives and product requirements in a multiscale 

integrated product and material design? 

Table 4.2: Research questions and hypotheses  
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Table 4.3: Connectivity of research questions and chapters 

 Hypothesis 
Chapters 
Observed 

 Chapters 

Reflected 

Chapters  

Articulated 

 

RQ: How does one manage and mitigate uncertainty in simulation-based multiscale systems? 

 H 1  Uncertainty management 4.1, 5.1    5.2, 5.3  5.3, 5.4 

 H 2  Uncertainty mitigation 4.1, 6.1    6.2, 6.3 6.3, 6.4 

 

RQ1: How can we address model parameter uncertainty, model structure uncertainty, natural 

uncertainty and propagated uncertainty in multiscale systems? 

 H 1.1  IDEM 5.2 5.3 5.3,5.4 

 H 1.2  HD-EMI 5.2 5.3 5.3,5.4 

 H 1.3  cDSP 5.2 5.3 5.3,5.4 

Hypothesis:   

2.1 Integrating IDEM and cDSP facilitates obtaining single robust solution against all forms of uncertainty. 

2.2 Response surface modeling facilitates defining the improvement potential metric in terms of 

confidence intervals for mitigating MPU. 

2.3 Concepts from value of information and response surface modeling can be integrated to develop 

predicted improvement potential and corresponding cost functions 

2.4 Optimization techniques can be used to reach a trade-off among cost functions.   

Table 4.2 continued 
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RQ2: How does the system level designer allocate resources for auxiliary simulation based 

model refinement while ensuring satisfaction of system level design objectives and product 

requirements in a multiscale integrated product and material design? 

 H 2.1  IDEM and cDSP 6.2       6.3 6.3, 6.4 

 H 2.2  Improvement Potential 6.2 6.3 6.3, 6.4 

 H 2.3  Cost functions 6.2 6.3 6.3, 6.4 

 H 2.4  Constraint Optimization 6.2 6.3 6.3, 6.4 

 

4.2. LITERATURE REVIEW 

  

The tools to answer the research gaps are the research questions are briefly presented in this 

section. The constructs and tools used in robust design and information economics are 

discussed, i.e., design of experiments, response surface modeling and value of information 

metric referred to as the improvement potential metric. The tools and constructs developed in 

this section will be used in the remainder of my thesis in Chapters 5 and 6. 

 

4.2.1 Design of Experiments 

There are several strategies for the design of experiments like Latin hypercube design, full 

factorial design, Box-Behnken design, central composite designs etc 59. Of these, Central 

composite designs (CCDs) are most popular for building second order response surface models.  

Central composite designs (CCDs) are used, for calibrating the full quadratic response surface 

models (RSM) from the simulation models at the subsystem level. A CCD design with axial, 

center and cube points for a simulation experiment with three parameters in shown in Figure 

Table 4.3 continued  
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4.1. A brief description of the procedure for evaluating the design points in CCDs follows. For 

details of CCD’s refer  60,61. The design matrix for a CCD experiment involving k factors is derived 

from a matrix, d, containing three parts.  These three parts may vary depending on the type of 

simulation runs 62: 

1. The matrix F obtained from the factorial experiment of the design variables. The factor 

levels are scaled so that its entries are coded as +1 and −1. 

2. The matrix of the center points is represented as C. The factor levels will all be coded as 

0, i.e., (0, 0, 0... 0), where there are k zeros. 

3. The third matrix E comes from the axial points, with 2k rows. For every factor there is a 

±α point while assigning 0 to all the other factors. The E matrix for the central composite 

design is represented in Figure 4.2. The flexibility of choosing the α value lies with the 

designer. A CCD design (d matrix) with three variables is shown in Figure 4.2 However, 

to make the CCD design rotatable we have to choose specific values of value α given by 

the formula α = F1/4, where F is the number of design variables. These values are 

represented in Table 4.4. Finally I vertically concatenate these three matrices into the d 

matrix i.e.                          

 d = [F C E]’                        (4.1) 

 

Figure 4.1: CCD for an experiment with three factors61 
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Figure 4.2: The E matrix for CCD 60 

 

Figure 4.3: The d matrix for CCD with 3 variable60 

The advantages of using CCD’s for RSM designs are as follows 63 : 

e. A CCD can be run sequentially. It can be naturally partitioned into two subsets of points; 

the first subset estimates linear and two-factor interaction effects while the second 

subset estimates curvature effects. If analysis of the data from the first subset points 

indicates the absence of significant curvature effects we may not run the second set of 

points. Although in this algorithm existence of interaction effects are assumed and 
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hence evaluate all the sets of point, this characteristic is useful for reducing the 

computational effort by sequentially increasing the number of runs to include the 

second set only if curvature effects exist. 

f. CCDs are very efficient, providing information about variable effects over the entire 

design space and overall simulation error in a small number of required runs. For 

example a full factorial design with 3 design variables will require 27 runs while a CCD 

requires only 15 runs. This difference becomes more significant as the number of design 

variables increase. This is shown in Table 4.4 

Table 4.4: Comparison of full factorial    and CCD61 

 

g. CCDs are very flexible. The flexibility in CCD resides in choosing the number of centre 

runs in the C matrix and the choice of the α value. For computer simulation experiments 

which are deterministic in nature only one centre run suffices. Based on the α value, 

there are three varieties of CCD’s and hence enables the appropriate use over 

conditions of the operability in the simulation models and the regions of interest.  The 

three different kinds of CCDs are: 

 Face centred CCD 

 Circumscribed CCD 

 Inscribed CCD  
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Table 4.5: Classification of central composite design 64 

Central 
Composite  
     Design 

Type 

Terminology Comments 

Circumscribed CCC 

CCC designs are the original form of the central composite design. 

The star points are at some distance α from the center based on 

the properties desired for the design and the number of factors in 

the design. The star points establish new extremes for the low and 

high settings for all factors. These designs have circular, spherical, 

or hyperspherical symmetry and require 5 levels for each factor. 

Augmenting an existing factorial or resolution V fractional factorial 

design with star points can produce this design.  

Inscribed CCI 

For those situations in which the limits specified for factor settings 

are truly limits, the CCI design uses the factor settings as the star 

points and creates a factorial or fractional factorial design within 

those limits (in other words, a CCI design is a scaled down CCC 

design with each factor level of the CCC design divided by α to 

generate the CCI design). This design also requires 5 levels of each 

factor.  

Face Centered CCF 

In this design the star points are at the center of each face of the 

factorial space, so α = ± 1. This variety requires 3 levels of each 

factor. Augmenting an existing factorial or resolution V design 

with appropriate star points can also produce this design.  

 

A comparison of the three types of CCD’s is provided in Table 4.5 Based on the conditions of 

operability, the subsystem level modeler chooses the appropriate CCD for his/her analysis.  

After the design of experiments, the subsystem level designer will run the simulation model at 

the chosen design points. The next objective would be to develop a metamodel with the results 

from these simulation runs which can replace the simulation model for system analysis. We now 

look at the metamodel developing, specifically response surface modeling. 
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4.2.2 Metamodeling Techniques 

In the approach in Chapter 5 and 6, the response surface modeling technique is used for 

developing full quadratic second order models. The general form of response surface (RS) 

models is a polynomial function of degree d. It is assumed that the pre-selected polynomial 

model although rigid in nature, is flexible enough to represent the true response surface.  

The general RS model can be expressed as the following.  

 2

0 , ,...,' ... d

j j jk j k jj j jkl j k l j j j j

j j k j j j k j l k j

y b b x b x x b x b x x x b x
  

                  (4.2) 

Although second-order RS models have a limited capability to model accurately non-linear 

functions of arbitrary shape, they have several advantages. Although higher-order response 

surfaces can be used to model non-linear design spaces, instabilities arise and it is 

computationally very expensive to take a sufficient number of sample points in order to 

estimate all of the coefficients in the polynomial equation, particularly in high dimensions.  

The advantage of choosing response surface modeling over other methods is that statistical 

uncertainty due to estimating system behavior in a continuous space by discrete sampling points 

may be captured using confidence and prediction interval 65. These techniques quantify 

statistical uncertainty due to inadequate sampling data and are intended for quantifying 

statistical uncertainty due to lack of sampling data. As the focus is on reducing the model 

parameter uncertainty, these statistical techniques can be extended to understand how 

additional information from the simulation models can assist in reducing the confidence and 

prediction intervals. I shall be extending the interval techniques to capture computational effort 

information look in section 3.3. We now take a deeper look into response surface models and 

calculating confidence intervals to capture the uncertainty associated in simulation 

modeling.Second order response surface models can be represented by 65: 
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(4.3) 

Where,      i=1, 2… k; j=1, 2… k are the regression coefficients and xi, xj are the regression 

variables, Y is the response, ε are random errors and k the number of design variables. It is 

explained how the parameters      are estimated for a simple linear regression model. This can 

be extended in order to determine the regression coefficients for the full quadratic model. 

Suppose the linear model is: 

                (4.4) 

The residual,                is defined as the difference between the predicted value of the 

dependent variable as per the model and the true value of the dependent variable. In order to 

estimate the coefficients      , the method of ordinary least squares is followed which 

minimizes the sum of the squared residuals (SSE) for each observation i. 

       
 

 

   

         

Where n is the number of data points. The minimization of this function yields a set of equations 

in        , which are solved simultaneously. For the above model the least square estimates are: 

   
                 

         
 

         

                       

Where,     is the average of the x values and     is the average of the y values. The estimate of 

that variance is given by: 
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This is called the mean square error (MSE) of the regression. For a multiple linear regression, the 

coefficients can be determined in a similar fashion. The estimate of MSE will be given by where 

p is the number of model parameters. We now proceed to determining confidence intervals. 

Confidence Intervals  

We realized that the metamodel is an approximation based on the limited data from the actual 

simulation model and there will an uncertainty component associated with:  

(i) Regression coefficients due to limited data and 

(ii) Input variables which comes due to the variability 

The confidence intervals associated with both these kinds of uncertainty is shown in Figure 4.4.  

 

Figure 4.4: Confidence Intervals 

(i) The statistical bounds introduced in the metamodel due to uncertainty in regression 

coefficients can be represented mathematically as: 

                                    
       

   
                   

http://en.wikipedia.org/wiki/Mean_square_error
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Where MSE is the mean square error, X is a (n x p) matrix of the levels of regression 

variables and    is a (n x 1) matrix of the particular point. We note that we are 

calculating the confidence interval, and         
 is the t statistic associated with n 

data points, p regression coefficients and for 100(1-α) % confidence interval 

(ii) The bounds introduced in the metamodel due to uncertain input design parameters 

can be represented mathematically as: 

                      
  

   
    

 

   

           

Where there are k input variables and     captures the error in the input variables 

due to the variability in the input variables. Equation 4.12 is the response variance in 

the output derived due to variation in the input design variables assuming a first 

order Taylor series expansion. There are certain underlying assumptions in using this 

bound. Firstly, there are no noise parameters. In the presence of noise parameters 

Equation 3.14 would modified as: 

                      
  

   
    

 

   

    
  

   
    

 

   

         

Where     is the variation associated with m noise parameters. In my deterministic 

simulation experiments    =0. Also the variations are small. If these variations are 

large, the equation is modified as: 

                        
  

   
 
 

   
 

 

   

             

Where    
  is the variance associated with design variable   . In Equation 4.13, the 

worst case scenario is assumed where all fluctuations occur simultaneously in the 

worst possible combination. 53 Also in my representation it is assumed the variation 
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of     as an interval estimate    and not as variance, primarily because we am not 

aware of the distribution function of   . It is noteworthy to note that in the first 

order Taylor series representation, the steeper the function is at the point of 

interest, the higher is the expected variance. This approach works as long as the 

function is near linear.  When dealing with nonlinear functions, this approach can be 

erroneous and lead to solution converging to a local optimum instead of a robust 

solution 23. Rippel suggested the use of the Multiple Point Method for getting better 

variance estimates and avoiding the problem of the solution converging to a local 

optimum. The use of the multiple point method for getting variance estimates is 

proposed in future work. 

Thus after having understood the mathematical preliminaries in addressing the uncertainty 

associated with the input variables and model parameters I can now set the upper and lower 

confidence intervals of the simulation metamodel as: 

                                 

                         (4.15) 

             
       

   
            (4.16) 

       
  

   
    

 
         (4.17) 

     denotes the bounds for a 100(1-α) % confidence interval of the metamodel while 

     arises due to variations in input variables assuming first order Taylor series expansions as 

illustrated in Equations 4.14-4.17.     is the error in the input variables and is representative of 

the the variability of the input parameters. p is the total number of regression coefficients, MSE 

is the mean square error, X is a (n x p) matrix of the levels of regression variables and    is a (n x 

1) matrix of the particular point we are calculating the confidence interval.  We looked at design 

of experiments, building the response surface models for the simulation models and the 
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confidence interval estimates for the response surface. We note that this analysis is done at the 

subsystem level by the individual design modelers or can also be done by the system level 

designer is the appropriate information is passed. Having done the system level analysis we 

proceed to evaluating the robust solution for the entire multiscale problem using the Inductive 

Design Exploration Method (IDEM). IDEM and cDSP has already been explained in Section 1.2. 

We now look at the other foundational construct for uncertainty mitigation, i.e., value of 

information.  

4.2.3 Value of Information 

 

The basic notion underlying value of information is that at any stage in the decision-making 

process, designers possess some information that can be used for selecting the best course of 

action 66-68. The designer can either make the decision using available information (e.g., using 

simpler models), or gather more information (i.e., simulation model refinement) and then 

making a decision using the updated information. In the context of simulation-based design for 

multiscale systems, a simulation model is a source of information 69. The system level designer 

can either make the decision using available information (e.g., using simpler models), or gather 

more information (i.e., simulation model refinement) and then making a decision using the 

updated information. Simulation model refinement at the subsystem level can be associated 

with; (i) refining the modeling assumptions (mitigating MSU) and (ii) acquiring additional data 

(i.e. , more simulation runs) to better represent metamodels used at subsystem level (mitigating 

MPU). In this context, the value of this added information is referred to as the improvement in a 

designer’s decision-making ability. The primary metric used in engineering design is the 

expected value of information which accounts only for irreducible uncertainty 70,71. To address 

both reducible and irreducible uncertainty, Panchal and coauthors 69 extended the expected 

value of information to a metric called the improvement potential (Pi).  The improvement 

potential quantifies the maximum possible improvement in a designer’s decision (in terms of 

utility) that can be achieved by refining a simulation model. If the improvement potential is high, 
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the design decision can possibly be improved by refining the simulation model. However, if the 

improvement potential is low, then the possibility of improving the design solution is low. The 

advantages of the metric have been shown for uncertainty mitigation in individual models 72,73. 

The metric only quantifies the benefit of gaining more information. It does not account for the 

effort involved in procuring addition information. However, a key step towards further 

simulation refinement is to predict the change of improvement potential as additional 

information is gained from simulation runs or refining modeling assumptions. Quantifying the 

value of information associated with refining the modeling assumptions will be a rigorous task 

considering the large number of simulations that assist modeling of various physical 

phenomena. We need to build a comprehensive list of all the simulation software and associated 

cost-benefit understanding for each of these. An alternative method would be look at different 

physical phenomena like thermodynamics, structural dynamics, etc. and common assumptions 

used in modeling these phenomena. However, in multiscale modeling, different physical laws 

will be used for modeling subsystems at different length and time scales. Considering the length 

and time scales can range from quantum or molecular domain to the macro domain of physical 

products or the nano second to entire product lifecycle which may be years, developing cost 

models will be a difficult task. In Chapter 6, my investigation is focused on quantifying the value 

of information gained by additional simulation runs and not on the value of information gained 

by refining modeling assumptions.  Concepts from Lawrence’s value of information and response 

surface modeling are used to predict the change of improvement potential with additional 

simulation runs. Lawrence provides the ex-ante value to decide which information source to 

choose (i.e., how many simulation runs to choose) in order to evaluate the value-of-information 

before executing the simulation code and the ex-post value to evaluate the value of this 

additional information after making the decision. Mathematically, the ex-ante and ex-post value-

of-information based metrics are represented as: 

Ex-ante value: v(x, y) =                             (4.18) 

Ex-post value: v(x, y) =                             (4.19) 
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where        is the expected value of f (x) and         is the expected value of f (x) given y.    

and    represent the actions taken by the decision maker in the absence and presence of 

information y and π(x, a) represents the payoff achieved by selecting an action a, when the state 

realized by the environment after the decision is x. It is important to realize that the key 

difference between ex-ante and ex-post value is that in ex-post value, the realization of the state 

x is known whereas the realization of the state x is not known in the ex-ante value and the 

expected value of payoff is taken over the uncertain range of state x 69. In the study in Chapter 6, 

the ex-ante improvement potential is first derived using which the behavior of the improvement 

potential with the number of simulation runs is predicted. Using these values for the 

improvement potential computational cost models can be developed for the individual 

simulation models and the system level designer reaches a trade-off between the computational 

cost and benefit between these simulation models towards the system level design objectives 

and allocates resources for further simulation refinement. Once these runs have been made, the 

ex-post value-of-information is checked against the ex-ante value of information to validate the 

assumptions and predictive capabilities of the ex-ante Improvement Potential for simulation 

model refinement. 

The formulation of the improvement potential metric is discussed suitable for design of 

multiscale systems. IDEM gives us the set of discrete feasible points in the design space at 

different scales in the multiscale problem. The improvement potential metric must capture the 

scope of refinement allied with the entire design space while accounting for uncertainty bounds. 

To this end improvement potential for the simulation model,     is defined as:                 
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The subscript i in     denotes the simulation model the improvement potential metric is 

calculated for. The improvement potential metric decreases as the error bounds are reduced 

and will hypothetically be 0 when                suggesting no further model refinement is 

possible. However, this cannot be realized statistically. The improvement potential metric is 

calculated over all set of feasible design variables to get a true reflection of the scope of 

refinement without bias. We note that          and        are related to statistical error bounds 

for the response surface and are different from            which also incorporate the variation 

of the input variables and the discretization error as first order Taylor series expansions. At this 

point we may also note that there may be greater value associated with redefining the 

improvement potential metric in terms of         and          when larger values are desired 

and         and        when smaller values are desired. The insight about which simulation 

model is associated with larger/smaller values can be acquired through IDEM. However, most 

modeling efforts in multiscale systems lead to highly non-linear models where there is little 

benefit associated with characterizing a simulation model as larger/smaller value is better. 

Hence the improvement potential is defined in terms of          and        without bias. In this 

thesis the focus is on extending the improvement potential metric to account for mitigating 

MPU for the individual simulation models at the subsystem level. I proceed to use this metric to 

make meta-level decisions involving a trade-off between reduced uncertainty and increased 

effort as a result of the uncertainty mitigation. The use of value of information for uncertainty 

mitigation is taken up in Chapter 6.  

4.3. WHAT HAS BEEN PRESENTED AND WHAT IS NEXT 

 

In this chapter hypotheses were formulated to address the research questions and also 

identified the key constructs.  They were studied in detail and the theoretical structural validity 

was established, i.e., Quadrant I of the validation square. I revisit the validation square in 

greater detail in Chapter 7.  Figure 4.6 shows the organization of work. 
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CHAPTER 5 
 

MICROSTRUCTURE MEDIATED DESIGN 

 
 

In this chapter, the construct of microstructure-mediated design of material and product is 

refined by (i) embedding appropriate aspects of the material microstructure through overall 

system configuration (i.e., frame multiscale system) (ii) developing hierarchical material models 

modeling over multiple scales (i.e., multiscale modeling) (iii) controlling the microstructure 

within feasible bounds subject to uncertainty in design variables, models and its propagation in 

the multiscale system to achieve the performance targets of the product (i.e., multiscale design) 

and (iv) Deciding the most suitable processing route among feasible solutions.  The efficacy of 

this construct is illustrated via the integrated design of submersible and Al-based matrix 

composites as in the previous chapters. The material considered is in-situ Al metal matrix 

composites (MMCs) due to the advantages that the in-situ MMCs have over the conventional 

MMCs. The product considered is a shell of a robotic submersible with performance targets and 

constraints. The hierarchical system is modeled to identify process-structure, structure-property 

and property-performance relationships. The integrated design is carried out using an Inductive 

Design Exploration Method (IDEM) that facilitates robust design in the presence of natural 

uncertainty (NU), model parameter uncertainty (MPU), model structure uncertainty (MSU) and 

propagated uncertainty (PU) as explored in Chapter 2. The most suitable processing route is 

determined using the compromise decision support problem (cDSP) technique coupled with 

IDEM as established in Chapters 2 and 3. This design task is a representative example of 

integrated materials and product design problems. The study and results described in this 

chapter has been submitted for review to the journal of Computer Aided Design74.  

 

 



 

   150 

5.1. Frame of Reference- Microstructure Mediated Design 

Conventional approaches to product design involve determining the specific material properties 

for required performance objectives and selecting the appropriate material from databases of 

experimentally determined material properties, i.e., a top-down approach 75. Although a lot of 

modeling literature exists in goal oriented design methods that move from the system level to 

the component or the part level, designers are restricted to material selection methods due to 

limited inverse modeling in the material domain. An alternative bottom-up reductionist 

approach advocating discovery of new materials is simulation-based design of materials using 

computational material sciences and physics 5.  However this is an idealized process considering 

the infancy of material design techniques. Using modeling tools at multiple scales (quantum, 

molecular, micro, continuum), i.e., multiscale modeling; material scientists develop deductive 

mappings from the processing path to micro-structures, properties and performance, 

corresponding to Olson’s material design hierarchy 4, Figure 5.1. Owing to the cost of modeling 

and simulation, it becomes critical that top-down (inductive) requirements driven exploration 

guide the bottom-up (deductive) modeling and simulation techniques. Such a systems-based 

integrated material and product design approach enables tailoring materials for specific 

performance requirements in specific products or processes.  

 

Figure 5.1: Hierarchical materials design4 
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The Olson’s diagram was applied to integrated product and material design in Chapter 2. The 

notions of Olson’s material design hierarchy are augmented and the challenges in this system 

based approach are explained, Figure 5.2. Material design hierarchy is decomposed as a set of 

mappings, i.e., processing-structure relations; structure-property relations and property-

performance  relations5.  

a. Process-structure (PS) relations: Establishes feasibility criteria (Thermodynamic, kinetic 

etc.) and constraints (manufacturing, cost etc.) for the processing conditions. 

b. Structure-property (SP) relations: Establishes relations between microstructure features 

(composition, morphology, phases etc.) and material properties. 

c. Property-performance (PP) relations: Establishes relations between desired 

performance requirements and corresponding material properties required. 

The arrows are unidirectional for the PS and SP relations indicating limited inversion, as 

described in the inverse problem in Section 1.1, due to non-linear, nondeterministic and non-

equilibrium characteristic of material behavior with solutions depending on initial conditions. PP 

relations may be invertible and is the basis for most designers opting for material selection. PS  

relations constrain the processes of design exploration at higher levels of the hierarchy (due to 

manufacturing or cost constraints; thermodynamic accessibility; kinetic feasibility etc.) where as 

SP searches guide exploration of material composition and processing conditions to achieve 

microstructures satisfying required property sets 5. The key to material design lies in effectively 

modeling the microstructure acting as an interface between the PS and SP relations. The 

microstructure strongly influences physical, mechanical and chemical properties such as 

strength, toughness, ductility, corrosion resistance, high/low temperature behavior, etc., which 

in turn govern the application of these materials. In addition, the design of a product can be 

modified in two ways, namely, i) by changing the material processing conditions to modify the 

microstructure, which has an effect on the overall system performance and ii) by changing the 

geometry of the product, which in turn not only affects structural performance, but also puts 

constraints on required mechanical properties of the material. Hence, the material 

microstructure needs to be designed in such a way that the constraints on the material 
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properties, imposed by the structure, are satisfied. Thus, the microstructure acts as a decisive 

interface in the material design hierarchy including product performance requirements. So a 

microstructure-mediated design (MMD) centered approach for integrated design of materials 

and product is adopted. Figure 5.2, can be viewed as reducing the order of modeling resulting in 

an increased uncertainty component which is discussed next. 

 

Figure 5.2: Hierarchical mapping in materials design 

The second important feature in Figure 5.2 is the lateral transformations at each level of the 

hierarchy to favor design exploration while introducing different components of uncertainty. The 

sources of uncertainty are classified as natural uncertainty (NU), model structure uncertainty 

(MSU), model parameter uncertainty (MPU) and propagated uncertainty (PU) 46. NU in the 

processing variables or other independent variables at different levels of the hierarchy is induced 
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by inherent randomness or variability in composition or operating conditions. For example, the 

input volume fraction of a material or temperature of processing (control factors) of a material 

possesses some statistical variance or external processing conditions like humidity (noise factor) 

vary with time. Serious departures in performance may arise if NU is not considered in modeling. 

MSU arises due to simplistic assumptions and approximations (e.g., reducing 3D loading to more 

tractable 2D loading for stress-strain analysis or using a representative volume element for 

microstructural analysis) while developing simulation models in order to reduce computational 

complexity. The unquantifiable uncertainty associated with idealizations in multiscale modeling, 

i.e., quantum, molecular or microscale due to incomplete understanding of physical phenomena 

at these scales also contributes to MSU. The dotted bidirectional arrows linking the MSU models 

indicate that though it is technically possible to use the simulation models for design space 

exploration, the requirement of a complex computational infrastructure linking different 

simulation and analysis software deems it infeasible. The origination of MPU is categorized as 

arising due to inaccuracy of inputs and arising due to insufficient information of metamodel 

parameters. There is loss of information in transforming digital microstructure as normal or log-

normal distribution function with reduced degrees of freedom. Although accuracy is conceded 

for efficiency, it is crucial to consider the inaccuracy in mean and variance of these distributions. 

Heavy computational costs of non-deterministic simulations costs make it infeasible to mitigate 

this inaccuracy with large number of replicate runs. Though current advances in microstructure 

sensitive design (MSD) make it possible to follow the inverse top-down approach in SP relations; 

infancy of inverse PS relations as new processing techniques emerge constantly and requirement 

of complex mathematical methods  (e.g., n-point correlation functions; spectral methods; 

discrete Fourier transforms etc.) for optimal microstructure determination among several 

possibly non-unique SP mappings limit MSD’s applicability to integrated material and product 

design especially in the early stages of design 76. This drives us towards using metamodeling 

techniques to permit efficient inversion though with an increased MPU component. The set of 

possible microstructures or processing conditions is continuous making it imperative to use 

discrete points to extract relevant information and use response surface modeling to derive 
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input-output relationships. These metamodel parameters possess MPU due to insufficient 

information (e.g., 15 discrete CCD points for 3 design variables to represent a continuous 

physical phenomenon) owing to high cost for large number of runs. The metamodels enable 

reversibility through the hierarchical material domains but a fourth type of uncertainty, i.e., PU 

which is a compounded effect of all other three types of uncertainty needs to considered for 

exploring the hierarchical degrees of freedom associated with material composition and process 

modifications . Thus for successful integrated design of material and product, we (Figure 5.3) (i) 

frame a multiscale system, (ii) develop hierarchical models, i.e., multiscale modeling, (iii) use an 

inductive approach to find feasible processing routes in order to achieve performance targets 

and, (iv) decide the most suitable processing route among feasible solutions.  

 

Figure 5.3: Schematic for microstructure mediated design 

The integrated design of material and product using the three steps is referred as multiscale 

design. Design of material refers to controlling the microstructure whereas design of product 

implies meeting the performance requirements. Often, multiple performance requirements may 

impose conflicting requirements on the material composition or microstructure (geometry, size, 

distribution of phases etc.). In order to reach feasible design solutions, a multiscale design 

approach has been adopted which combines inductive (top-down) engineering with deductive 

(bottom-up) science for efficient design space exploration. Robust design is employed to 

minimize effect of uncertainty on process requirements and product performance.  Literature 
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exists for robust design against reducible (MPU, MSU and PU) as well as irreducible 

uncertainties (NU)8-13. For robust design the Inductive Design Exploration Method (IDEM) is 

employed as it offers the following capabilities with respect to microstructure mediated 

multiscale design13: 

(i) Designers can identify multiple feasible solution ranges with IDEM. This advantage is 

vital owing to non-uniqueness in mapping relations.  

(ii) Designers can identify ranged sets of solution for hierarchical systems comprised of 

models with multiple outputs or shared input variables over different scales using IDEM. 

This property is useful for multiscale systems with complex interlinking of input and 

output variables. 

(iii) Feasible solution ranges are identified considering all four types of uncertainty. A metric 

called the Hyper-Dimensional Error Margin Index (HD-EMI) is developed to quantify the 

degree of MSU. A designer can set constraints for HD-EMI achievement enabling him to 

tailor the HD-EMI values to make risk-informed decisions against MSU at all hierarchical 

scales. 

(iv) The designer only needs the input and output files for the models being developed. 

Hence design exploration and simulation analysis can be conducted in parallel reducing 

computational complexity and saving resources (time, money etc.).  

(v) The mapping functions in hierarchical design are modularized implying a change in an 

analysis model can be incorporated by changing the corresponding mapping function 

avoiding design iterations. 

(vi) The ability to maintain design freedom, i.e., IDEM maintains maximum feasible space in 

design space while deciding independent design variables. This is useful for early stages 

in design where the objective is design exploration instead of design optimization and 

relevant to MMD while we are in the formative years of establishing material design 

techniques. 

The run time for IDEM is large for problems with many design variables. So design variables are 

screened to eliminate unimportant factors in the design chain. The most robust solution is 
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calculated by compromising the degree of performance achievement or by reaching a trade-off 

amongst robust process requirements. For finding the best solution among feasible processing 

routes the compromise decision support problem (cDSP) is employed 55. A cDSP is a multi-

objective decision model which is a hybrid formulation based on mathematical programming 

and goal programming and is well suited to satisfy a set of constraints while achieving a set of 

conflicting targets as well as possible in a multiscale system tasks. For MMD the constraints 

come from processing conditions, performance achievement and HD-EMI values and targets are 

set for HD-EMIs and performance. In this approach to the multiscale design, a designer moves 

from the top-down in Olson’s hierarchy using IDEM after completing the bottom-up (deductive) 

analysis of simulation models. Robustness is achieved by trading off the degree of system 

performance and the degree of reliability based on MSU associated with system models in the 

cDSP while quantifying NU and MPU in IDEM. PU is mitigated by developing exact constraint 

boundaries at the various scales. Current efforts in integrated material and product design focus 

on employing topological optimization in conjunction with MSD77. However, IDEM is employed 

as it facilitates robustness in integrated hierarchical material and product systems. We note 

achieving robustness in the presence of uncertainty separates MMD from MSD and other 

material design techniques employing microstructure information. Considering uncertainty is 

vital due to the infancy of material design techniques and stress should be on robust design 

guiding design space exploration instead of performance optimization ) 29. The efficacy of the 

MMD construct is illustrated via the integrated design of submersible and Al-based matrix 

composites.  

 

The shell of a typical underwater robotic vessel, namely an autonomous underwater vehicle 

(AUV)31, with both geometrical and material features is considered as a test application case for 

design in this chapter. The objective is to design the shell of the vessel for deep sea exploration 

with multifunctional requirements of minimizing the mass in walls (wall thickness) for given 

support superstructure for given maximum depth and associated pressure differential. Other 

design requirements include a) suitable factor of safety with respect to collapse at target 
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maximum operating depth, b) a large endurance time satisfying the time of operation 

constraints under water without resurfacing/refueling/battery changes, c) satisfying geometric 

and weight constraints d) satisfying operating temperature conditions.  

Metal matrix composites (MMCs) are strong and stiff light metal-based composites and with a 

reinforcement which may be a metal, ceramic or an organic compound78. The reinforcement in 

addition to serving a structural task (reinforcing the compound), also changes the physical 

properties such as wear resistance, friction coefficient or thermal conductivity. Al-based metal 

matrix composite is used to illustrate the microstructure mediated design method. Metal matrix 

composites (MMCs), in general, and Al-based MMCs in particular, have been the subject of 

intense research for the past two to three decades and are being exploited for a range of 

commercial applications related to aerospace and automotive industries. Al-based metal matrix 

composites can be divided into two classes, namely, ex-situ and in-situ79. In ex-situ composites 

the reinforcements are added externally whereas in in-situ composites the reinforcements are 

formed by chemical reactions within the melt. One of the important drawbacks during the 

processing of ex-situ MMCs is the presence of interfacial impurities and oxides between 

reinforcement and matrix resulting in poor wettability and bonding. This led to the development 

of in-situ composites, wherein the reinforcements are generated in a Al alloy matrix via chemical  

reactions between elements and/or compounds during the composite fabrication80. The 

advantages that in-situ MMCs have over conventional MMCs include thermodynamically stable 

reinforcements in the matrix, clean reinforcement-matrix interfaces resulting in a strong 

interfacial bonding, finer particle size yielding better mechanical properties and potential for 

lower cost of production. These advantages make it a strong candidate for the design task at 

hand. In this thesis we deal with the Al-4 % Cu metal matrix composites with 2TiB  

reinforcement. The four steps associated with multiscale design of AUV using in-situ Al MMCs 

are investigated in Section 5.2. Section 5.3 discusses the MMD solution and closing thoughts are 

presented in Section 5.4. 
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5.2. Multiscale Design 

 

Figure 5.4: Strategy for microstructure mediated design 

In Figure 5.4, the 4 steps relevant to MMD of material and product are instantiated. They are: 

(i) Step 1: Frame a multiscale system expressed in terms of variables (independent or 

dependent), targets and models that embed relevant aspects of the material 

microstructures and define the system goals. 

(ii) Step 2: Develop hierarchical material models over multiple length and time scales, 

i.e., Multiscale modeling. Design of experiments is used to determine the simulation 

runs and use metamodeling techniques to determine mean response surface model 

with interval estimates. 

(iii) Step 3: Use a top-down (inductive) approach, i.e., IDEM, to control the 

microstructure within feasible bounds subject to four types of uncertainty and 

ascertain feasible processing routes in order to achieve performance targets.  

(iv) Step 4: Decide the most suitable processing route among feasible solutions using 
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the cDSP technique. 

The multiscale system for AUV design using 2TiB  is framed in Section 5.2.1. In Section 5.2.2 I 

look at the constitutive models for developing the PS, SP and PP linkages. The steps of IDEM for 

MMD are explained in Section 5.2.3 and cDSP is explained in Section 5.2.4. 

 

5.2.1. Framing the Multiscale System 

The design approach is based on systems-based integrated top-down (inductive) and bottom-up 

(deductive) multiscale design. Multiscale design for the shell design problem involves two 

activities, namely, process path-structure relationships and structure-property-performance 

relationships (Figure 5.1). These two design objectives interact via the microstructure. While on 

one hand the processing conditions influence the obtained microstructure, the performance of 

the product depends on the mechanical properties which in-turn are mapped from the 

microstructure. In this chapter, two major aspects of the design problem, namely, the materials 

design (rather than just materials selection) and structural design, are combined. The Inductive 

Design Exploration Method (IDEM) is used to effect solution.  The design process chain for this 

application is constituted of three interconnected modules which account for the modeling of 

the behavior of the material and the structure. IDEM is used to manage uncertainty embodied in 

the simulation models, uncertainty arising due to metamodeling and random system variability 

for design exploration in the presence of propagated uncertainty in the design process chain. 

Based on the materials processing steps involved and mechanical design requirements, the 

interconnected modules that constitute the design process chain for this application are: 

MODULE 1: Process- Structure Correlation 

MODULE 2: Structure-Property Correlation 

MODULE 3: Property-Performance Correlation 

 

MODULE 1 provides the simulated microstructure after processing. The resulting mechanical 
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properties are estimated in MODULE 2, whereas MODULE 3 maps the required mechanical 

properties based on the system design considerations. MODULE 1 involves the prediction of the 

precipitation of liquid aluminum based on the composition and microstructure evolution due to 

the effect of temperature and solutal fields. The output of MODULE 1 is the information about 

different phases formed, the size of precipitates and the grain size distribution. The 

microstructure information from MODULE 1 is used in MODULE 2 which predicts the mechanical 

properties inherent in the material. These mechanical properties are used in the system-level 

MODULE 3 to predict the effects of different AUV geometries on overall system performance.  

 

Figure 5.5: The multiscale system for MMD 

In this application, the strength is principally determined by the sizes, shapes and distribution of 

2TiB  precipitates – in other words the microstructure of the material. The AUV design can be 

modified in two ways, namely, 1) by changing the processing conditions to modify the MMC 

microstructure and 2) by changing the geometry of the shell which puts constraints on required 

mechanical properties of the material while affecting the structural performance. Hence, the 
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microstructure needs to be designed concurrently with the shell so as to satisfy the imposed 

constraints on the material properties. Given the complexity inherent in the design process 

chain, the independent and dependent variables are represented; the models and the 

information flow between the different modules, Figure 5.5. F1, F2, F3 and F6 represent 

simulation models used to design the autonomous underwater vehicle (AUV) while F4, F5, F7, F8 

and F9 represent theoretical or empirical models considered for design. The problem and 

models have been classified as per the mapping relationships contrary to formulations in 

previous chapters. 

a. MODULE 1: The inputs to F1 are the volume fraction of TiB2 (xTiB2), time of reaction    (t) 

and temperature of processing in degree K (T).The output of F1 is the average TiB2 

particle size (dp) which is an input to MODULE 2. The independent inputs to F2 are 

volume fraction of TiB2 (xTiB2) and cooling rate (C) and the output of MODULE 2 (F2) is 

the average grain size (d) of microstructure which is another  input to MODULE 2. 

MODULE 1 deals with the process-structure relationships (PS) shown in Figure 6.  

b. MODULE 2: This module deals with the structure-property relationships (SP).  F3 gives 

the yield stress (ς), F4 gives density (ρ) and F5 gives the heat transfer coefficient (k) as 

outputs. The model for yield stress (ς) receives inputs from the outputs of MODULE 1 

(dp and d) along with the independent inputs of volume fraction of TiB2 (xTiB2) and 

percentage of area fraction (A). The only input to models for density (ρ) and heat 

transfer coefficient (k) is the independent variable of volume fraction of TiB2 (xTiB2).   

c. MODULE 3: This deals with the property-performance (PP) relationship of the 

developed microstructure. The performance variable of depth of operation (D) is 

evaluated in F6; weight of the outer shell (W) is evaluated in F7, time of operation (Topr) 

for the submersible is evaluated in F8 and temperature of operation (Top) is evaluated in 

F9. The independent parameter, thickness of the shell ( hT ) and is an input to all the 

models, i.e., F6, F7, F8 and F9. The dependent parameters are density (ρ) to weight (F7) 
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and time of operation (F8) while yield stress (ς) is an input to depth (F6).  

Table 5.1: Dependent parameters 

Model Parameter Target Module 

F1 dp  (Average particle size) From Structure-Property 

mapping 

1 

F2 d (Average grain size) From Structure-Property 

mapping 

1 

F3 ς(Yield stress) From Property-Performance 

mapping 

2 

F4 ρ  (Density) From Property-Performance 

mapping 

2 

F5 k (Heat transfer coefficient) From Property-Performance 

mapping 

2 

F6 D (Safe depth of operation) Maximize 3 

F7 W (Weight of outer shell) Minimize 3 

F8 Topr (Time of operation) Maximize 3 

F9 Top (Operating temperature) Minimize 3 

Table 5.2: Independent parameters 

Variable Target Input Modules Input Models 

2TiBx
 

Volume fraction of TiB2
 

From Property-
Structure mapping 

1,2 F1,F2,F3,F4,F5 

T 
Temperature for precipitate 

modelling 

From Property-
Structure mapping 

1 F1 

t 
Time of reaction 

From Property-
Structure mapping 

1 F1 

C 
Cooling rate for 

microstructure evolution 

From Property-
Structure mapping 

1 F2 

A 
Percentage Area Fraction 

From Structure-
Property mapping 

2 F3 

hT  

Shell thickness 

From Property-
Performance 

mapping 

3 F6,F7,F8,F9 
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Tables 5.1 and 5.2 summarize the models, associates modules and targets for the dependent 

and independent parameters in the multiscale system. The feasible design spaces are 

inductively passed (using IDEM) from MODULE 3 to MODULE 2 and subsequently to MODULE 1 

of design after completing the deductive analysis. Having defined the design variables and the 

connectivity within the design process chain, the modules described in the sections that follow. 

5.2.2. Hierarchical Material Modelling   

MODULE 1: Process-Structure Correlation  

Precipitation Modeling in Liquid Aluminum (F1 in Figure 5.5) 

A suitable route (Mixed-Salt route) for the in-situ Al / TiB2 composite manufacturing process 

utilizes the reduction of K2TiF6 and KBF4 with aluminum, generally known as the “halide salt” 

process. Yang and colleagues33 proposed a diffusion mechanism wherein Al3Ti is formed in the 

melt initially by a very fast reaction. Boron then diffuses into Al3Ti particles in the melt, thus 

forming TiB2 particles according to the reaction, Al3Ti + 2B = 3Al + TiB2. 

The liquid-state processing techniques to produce in-situ composites include self-propagating 

high temperature synthesis (SHS), exothermic dispersion (XD), reactive hot pressing (RHP), flux 

assisted synthesis (FAS) and rapid solidification processing (RSP). Any of these processes could 

be used. K2TiF6 and KBF4 are other precursors that dissolve in the aluminum melt to form 

intermediate phases Al3Ti and AlB2. The reaction between these intermediate phases has been 

simulated to predict the particle size distribution of TiB2 phase thus formed in the matrix.  

A model proposed by Anestiev et al.34 is used to investigate the diffusion reactions taking place 

between the intermediate phases. This model accounts for the processes taking place at 

diffusion controlled formation of TiB2 in liquid Al and is used to predict the mean precipitate size 

and size distribution of the dispersed TiB2 particles. The thermodynamics of the phase formation 

as well as the nucleation and growth kinetics have been taken into account. In this model, Al3Ti 

and AlB2 are allowed to react in liquid Al to form TiB2 particulates. A coordinate system dividing 
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a 2-dimensional space into strips of equal length is used, half of which contains Al3Ti and the 

other half AlB2 dissolved in the Al melt (Figure 5.6). When these intermediate phases react, 

random nucleation of TiB2 particulates is assumed. The kinetics of the formation of TiB2 particles 

is governed by unsteady state diffusion equations (solute redistribution theory), which in turn 

depends on the concentration profile of the intermediate solute phases in the region. The 

kinetics of TiB2 particle formation can be mathematically described by the following set of 

partial differential equations: 

2
S1 1
12

X X
D X (5.1)

t x t

  
 

    

2
S2 2
22

X X
D X (5.2)

t x t

  
 

  
 

where, X1 and X2 are the mole fractions of the dissolved Ti and B in the Al matrix respectively, t is 

the time, D is the diffusion coefficient,  is the volume fraction of the solute reacted per unit 

time, X1
S and X2

S are the mol fractions of Ti and B in the solid phase (TiB2). The solute 

consumption rate due to TiB2 formation is described by the volume fraction of the region 

transformed per unit time. Johnson-Mehl-Avrami analysis36 is used to determine the rate of 

solute consumption due to chemical reaction, described by the increment of the volume 

fraction reacted () per unit time. Assuming random dispersion of transformed regions, the 

volume fraction reacted is given by: 

 ext-V
=1-e (5.3)        

Where, Vext is the extended volume fraction reacted, i.e., the fraction that would be transformed 

if there was no impingement between the growing particles. Assuming homogenous nucleation 

and isotropic growth of the particles of the new phase, 

t t

3

ext 1 2 1 2

0 t '

4
V I[X (x, t '),X (x, t ')] ( v[X (x, t"),X (x, t")]dt ") dt ' (5.4)

3


    

Where, I[X1(x,t), X2(x,t)] is the nucleation rate, v[X1(x,t), X2(x,t)] is the growth rate of the new 
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phase, t’, t’’ are variables for integration from time 0 to t. According to the theory of solute 

redistribution81  the growth velocity of the new phase depends on the chemical compositions of 

the phases as: 

1 2 0

z G
v[X (x, t),X (x, t)] v 1 exp( ) (5.5)

RT
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Where, s is the surface tension of the matrix melt, Vm is the molar volume of the precipitate 

phase, r is the radius of the individual particle, ΔGL and ΔGS are the Gibbs free energies of the 

liquid and the solid phase respectively. As it is difficult to determine the radii of each individual 

particle, the average radius of the particles formed is used: 
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The nucleation rate can be derived from the classical nucleation theory 
82

 as: 

*

0

E G
I I exp exp (5.8)

kT kT

   
   

   
 

Where, E is the activation energy accounting for the ionic mobility, ΔG* is the Gibbs free energy 

for the formation of critical nuclei.  For the solution of the above system of equations, numerical 

methods are implemented in MATLABTM, as their analytical solution is not possible. The partial 

differential equations are solved using the finite difference scheme while Simpson’s 3/8th rule 

are used to solve the integrals. The values of constants or parameters used in the above 

equations are: D = 5x10-9 m2/s, Vm = 1.55x10-5 m3/mol, σ = 1 N/m [34], Q = 326.3 kJ/mol. The 

particle size dp is twice the particle radius avr . The TiB2 particle size distribution is determined 

across the matrix over a reaction time of one hour after which the reaction is complete. The 

mole fractions of Ti and B (X1 and X2 ) are correlated to volume fraction of TiB2, 2TiBx . For 

additional details of modeling refer thesis by Patra, 2009 82.
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Figure 5.6: A schematic of the coordinate system used for precipitate modeling 82 

Modeling Microstructure Evolution (F2 in Figure 5.5) 

Microstructure evolution of materials during various material processes relates key properties 

such as mechanical strength and electrical properties to the average grain size and the grain size 

distribution, which are direct consequences of the microstructure evolution. The microstructure 

evolution during solidification depends on the thermal and the solutal fields. Fluid flow due to 

forced or natural convection also influences the microstructure evolution. The final grain 

structure of the composite is determined by three main phenomena: the heterogeneous 

nucleation of grains, the preferential growth orientations and the growth kinetics of a dendrite 

tip83. They are used in conjunction with the thermal-solutal fields in the cellular automata model 

to predict the microstructure evolution as the solidification proceeds. The mathematical 

description of the dendritic solidification process of a three component alloy (Al, Cu and TiB2) in 

two dimensional square solidification domain (Ω) follows. For details refer to thesis by Lenka, 

2009 84. 

The solid/liquid (S/L) interface evolves over time and is found as part of solution. The 

solidification of a three component alloy is governed by the evolution of temperature T(t,x,y) 

and concentration field Cα(t,x,y) ,where α= 1,2 which satisfy the initial conditions as well as 

boundary conditions at the moving S/L interface. The equations that describe the physics of 

solidification process are: 

s
p

δfδT
ρC k T ρL (5.9)

δt δt
    

Al + AlB2 

x     

Al + Al3Ti 
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l 0 2l 
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Where T is temperature, t is time, (x,y) is the domain co-ordinates, ρ is the density, 
pC  is the 

specific heat, k is the thermal conductivity, L is the latent heat of solidification and  fs is solid 

fraction. L sδf 1 δf   , denotes the liquid fraction. The boundary condition at the walls of the 

domain is: 

 k T n h T T (5.10)     

Where n is normal to the wall, h is the convective heat transfer coefficient and T  is the 

environmental temperature. The concentration (C) for the solute (solute diffusion equation) are 

given by the following two equations: 

α
α αL
L L

δC
D C   for liquid phase   (5.11)

δt
   

α
α αS
S S

δC
D C   for solid phase     (5.12)

δt
   

Where α = 1,2, DL
α and DS

α are liquid and solid diffusion coefficients of solute α, respectively. 

The cross diffusion is neglected and zero flux boundary conditions are applied to the four walls 

of simulation domain. The solute conservation equation at S/L interface is: 

 α,* α,* α α α α

L S n S S L SC C V (D C D C ).n      (5.13)      

 nV  , n are the normal velocity and the normal vector of the interface pointing into the liquid 

respectively. The notation ‘*’ indicates evaluation of interface. The local equilibrium equation at 

the S/L surface is given by: 

α,* α α,*

S L (5K )C C .14  

Where αK  is the equilibrium partition coefficient for solute α. The interface temperature , T *  

is defined as: 
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2
* EQ α,* α α

L L o L

α 1

T T (C C )m τkf (φ,θ) (5.15)


     

Where α

oC  is the initial concentration for solute α, EQ

LT  is the equilibrium temperature of the 

liquid phase, i.e., the liquidus temperature at the initial composition, α

Lm   is the slope of 

liquidus for solute α, τ is the Gibbs Thompson coefficient, is the curvature of S/L interface, θ  is 

the angle of preferential growth direction (generally  <100> crystallographic orientations for 

cubic metals), and φ  is the angle of the normal to the interface with respect to same axis. For 

heterogeneous nucleation modeling, the work done by Rappaz et al. 85 has been adopted. The 

total density of nucleated grains, n(ΔT) accounting for extinction of nucleation sites by growing 

grains is given by: 
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T
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Where ΔT is the given undercooling and    is the volume fraction of solid already formed which 

is a function of volume fraction of TiB2, 
2TiBx . Gaussian distributions are used to describe 

heterogeneous nucleation both at the mould surface and in the bulk of the melt. After having 

described the heterogonous nucleation, I describe the growth orientation of a nucleated grain. 

The probability of a newly nucleated grain to have a dendritic growth direction in the range *θ, θ 

+ dθ+ is given by 84: 

 
2

dp θ dθ       (5.17)
π

  

The relationship between the growth rate of the dendrite tip, ν, and its undercooling, ΔT, is 

calculated with the aid of the Kurz-Giovanola-Trivedi model86 and given by the solution of 

following equations: 
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c
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Ω is the supersaturation, 0c   is the initial concentration of the alloy, c’ is the concentration in 

the liquid at the tip, χ is the partition coefficient, m is the slope of the liquidus, D is the diffusion 

coefficient in the liquid, G is the Gibbs-Thomson coefficient, cG  is the solute gradient in the 

liquid at the tip and eP  is the solutal Peclet number. Iν ( eP ) is the Ivantsov function of the Peclet 

number. The present model determines the numerical solution of continuum equations for 

thermal-solutal fields. The computed flux values at the specific points along the metal-mold 

interface are fed into FLUENTTM to obtain accurate thermal fields over time across the casting 

domain. These fields are used in a state transition matrix generated in the cellular automata 

code to predict the microstructure evolution as the solidification proceeds. When the 

temperature becomes lower than the liquidus point, the cells in the matrix become solid as 

governed by mechanisms of heterogeneous nucleation, growth orientations and growth kinetics 

of a dendrite. The cellular automata code is implemented in FORTRANTM 84. 

MODULE 2: Structure-Property Correlation  

Yield Stress (F3 in Figure 5.5) 

The variation of the periodic hexagonal array (PHA) is used to predict the local stress and strain 

fields and stiffness properties based on the stress field, the volume fraction of the phases and 

the constituent mechanical properties87,88. The composite structure region is assumed to be a 

two dimensional hexagonal model with uniform grain size and split into a  hard phase comprised 

of uniformly distributed TiB2 particles in the Al-Cu alloy and a soft phase consisting of the pure 
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Al-Cu alloy. The hard phase takes into account the segregation of particulate reinforcements 

along the grain boundary region in the composite. It is assumed that the soft phase has no 

particulate reinforcements. The model is constrained to maintain contact between the hard 

phase and soft phase. The interfacial tying between the matrix region and the boundary region 

is done by creating contact surfaces on both phases. A representative volume element (RVE) is 

selected to cover the entire macroscopic volume of the composite with identical local stress and 

strain within each RVE (Figure 5.7). The elasto-plastic analysis of the mechanical behavior for the 

composite is reduced to the analysis of the RVE subject to periodic boundary conditions. A fixed 

percentage of the area along the boundaries of the RVE constitutes the hard phase. This area 

fraction correlates to the volume fraction of TiB2, 
2TiBx . The periodic boundary conditions for 

the nodes are set so as to have equal displacement along a direction. Mathematically, the 

equations are: 

u12 - uv4 = u11 - uv1                 (5.22) 

u22 - uv1 = u21 - uv2                 (5.23)                                                                                                                                                                                               

uv3 - uv2 = uv4 - uv1                  (5.24) 

Where uij is the displacement vector for any boundary point joining vertices vi and vj of the RVE 

and uvi the displacement vector for the vertex vi  of the RVE. For the hard phase (Al-4Cu-xTiB2), 

Young’s modulus was calculated using Voigt upper bound (traditional rule of mixtures 

approach). The value of yield stress is determined using: 

 σc =σm(1+f1)(1+fd)(1+forowan)       (5.25) 

σc is the yield strength of the MMC, σm is the yield strength of the monolithic matrix, f1 is the 

improvement factor associated with the load-bearing effect of the reinforcement, fd is the 

improvement factor related to the dislocation density in the matrix, caused by the thermal 

mismatch between the matrix and the reinforcement particles forowan is the improvement factor 

associated with Orowan strengthening of the particles43. The expression for f1 is: 

 
21 TiBf 0.5x

           
(5.26) 
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The expression for fd is: 

 
d m ymf 1.25G b /  

        
(5.27) 

Where mG is the shear modulus of the matrix, b is the Burgers vector, ω is the enhanced 

dislocation density given by 43: 

 2
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(5.28) 

Where  is difference in the coefficients of thermal expansion between metal matrix and 

particulate and T is difference between processing and test temperatures. The σm value varies 

with grain size d, given by the modified Hall-Petch equation 89 as: 

σy = [(σo + 22.6 Co) + (ky + 1.04 Co)d -1/2]      (5.29) 

Where Co is the weight % of Cu (4%), ky is the strengthening coefficient for pure metal and σo is a 

material constant related to lattice resistance. For the soft phase, yield stress and plastic strain 

are defined using the plasticity model. The constants used for calculating the elastic and plastic 

behaviors of the constituent phases are determined from experimental values43. A numerical 

solution for the elastoplastic behavior of the periodic hexagonal array (PHA) RVE (i.e., stress-

strain response curve) subject to uniform tensile stresses is calculated at nodes using the finite 

element software ABAQUSTM. Yield strength values are calculated using 0.2% offset from linear 

part of the stress-stress curve and is averaged over the nodes. For additional details refer to 

Mishra, 2010 89.  

 

Figure 5.7:  Representative volume element (RVE) 
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Density (F4 in Figure 5.5) 

The determination of density is based on the average property of each of the constituent 

phases, i.e.,      

2 2 2TiB TiB Cu Cu Al TiB Cux x (1 x x )      
    

(5.30) 

Where ρ, ρTiB2, ρCu, ρAl are the densities of the composite, TiB2, copper and aluminum 

respectively. Also, xTiB2 is the volume fraction of TiB2 and xCu is the volume fraction of copper 

(4%). 

 

Heat Transfer Coefficient  (F5 in Figure 5.5) 

The Maxwell model is used as representative of all classical models for thermal conductivity. 

Particle size has not been accounted for in any classical models. Based on Maxwell’s work, the 

effective thermal conductivity (k) can be predicted as 90 
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(5.31) 

Where, 
2TiBk is the thermal conductivity of TiB2,  Al Cuk  is the thermal conductivity of the Al-Cu 

matrix, and xTiB2 is the particle volume fraction of TiB2. 

 

MODULE 3 : Property-performance correlation 

Depth (F6 in Figure 5.5) 

This analysis was carried out by Bera, 2010 91. A finite element analysis is performed for the 

pressure hull to determine the collapse depth of the underwater submersible. A cylindrical shell 

with hemispherical end caps is considered (Figure 5.8). The outer radius is fixed at 125 mm, 

inner radius being variable and length fixed at 1650mm. In order to obtain the operating depth 

of the underwater vehicle a static buckling analysis of the pressure hull was done. The material 

used for the purpose was isotropic elastic material with variable yield strength and Poisson’s 

ratio assumed constant equal to 0.3. A homogeneous solid section was assigned to the part and 



 

   173 

the analysis was completed in three steps. In the first step the static boundary conditions were 

defined and the two ends of the pressure hull were pinned to the reference frame. In the 

second step a static pressure of 1MPa was applied on the structure. In the third step a liner 

buckling analysis of the pressure hull was done and another uniform pressure load of 1 MPa was 

applied and a minimum of four eigenvalues were requested. The element type used for the 

analysis was C3D20R which is a 20 node quadratic brick element suitable for linear elastic 

calculations. All 20 nodes have three translational degrees of freedom in the nodal x, y and z 

direction. The element has 27 integration points. The location of the integration points in this 

element enables capturing the stress concentrations at the surface of a structure. The C3D20R 

element employs a reduced integration scheme to decrease the number of calculations thus 

simplifying the overall computational complexity of the model without sacrificing accuracy. Seed 

size used for the problem was 10. The stress distribution and buckling pressure of the pressure 

hull are predicted using the finite element package ABAQUSTM 91. A factor of safety of 1.5 is used 

for deriving the relationship between collapse pressure and safe depth 

 

Figure 5.8: Pressure Shell of an Autonomous Underwater Vehicle 

Weight  (F7 in Figure 5.5) 

The weight of a cylindrical shell with spherical end caps is calculated as: 

 2 2 3 34
( )

4 24

L
W OD ID OD ID

 
   

               
(5.32) 

 

Where   the density of the composite, L is the length of the submersible, OD is the outer 

diameter and ID is the inner diameter of the cylindrical shell. The outer diameter (OD) is fixed at 

260 mm and the length (L) at 1.65 meter. Thickness ( hT ) varies from 5 mm to 15 mm as 
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representative parameters of a typical Autonomous Underwater Vehicle 

 

Time of Operation (F8 in Figure 5.5)     

 0.8 - . . d

opr

f p

B W eff E
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L L



                   

(5.33)

 

Where B is the buoyant weight of the submersible, W is the weight of the cylindrical shell and 

eff is the efficiency of the battery, dE is the energy density of the battery, 
fL is the fixed load 

for the submersible and 
pL  is the propulsion load for the submersible. The efficiency of a 

Lithium-Ion battery is typically 65% and its energy density is 128 Watt-Hour/Kg. For the initial 

design, assuming a slow moving submersible and submergence/surfacing rates, we shall ignore 

propulsion load in these calculations and assume a fixed electrical load of 400 Watt-Hour which 

is typical of the control computers and electronics payloads in a small underwater robotic 

submersible. 

 

Temperature Conditions  (F9 in Figure 5.5)  

  

1 2 and TS TS  are the temperatures at the outer radius and inner radius of cylinder respectively. 

The operating temperature inside the cylindrical shess is predicted by solving the following set 

of equations: 
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(5.35) 

10.5 ( )qOD h TS T 
          

(5.36) 

Where q  is the internal heat generated per unit volume, OD is the outer diameter of the shell, 

ID is the inner diameter, K is the thermal conductivity for the equipment inside (assume it to be 
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a solid cylinder), k is the thermal conductivity for the composite, h is the convective coefficient 

for water and  T is the convective temperature of water. Having looked at the hierarchical 

models and IDEM in detail, IDEM is explained in respect to MMD. 

 

5.2.3.  Inductive Design Exploration Method (IDEM) 

IDEM was described in detail in Section 1.2. IDEM is employed to achieve a robust multiscale 

design that traverses property-performance; structure-property and process-structure 

relationships after the bottom-up mappings are evaluated. IDEM includes parallel discrete 

function evaluation and Inductive Discrete Constraints Evaluation (IDCE) based on Hyper-

Dimensional Error Margin Indices (HD-EMIs)46. IDEM is exercised to identify adjustable ranges of 

control factor (design variable) values in a system with uncertainty in a design/analyses process 

chain with complex interlinking of design variables and output responses. IDEM facilitates 

multiscale design, the management of uncertainty inherent in the models and the propagation 

of uncertainty through the design process chain. We start with performance and traverse 

inductively to process using IDEM. At each level a ranged set of feasible specifications is 

identified. The steps of IDEM for MMD are: 

 Step 1: Rough design spaces (hyper-dimensional performance, property, structure, and 

process spaces) are defined and discrete points in each of these spaces are generated. 

 Step 2: Discrete function evaluation (DFE): 

 The generated discrete points are generated using the mapping models in PS, SP and 

PP domain that include all quantified amount of uncertainty. The number of mapping 

models is larger than the number of models if a model in the multiscale system 

produces multiple outputs. 

 The evaluated data sets, including discrete input points and output ranges, are stored 

in a database. 

 Step 3: Inductive Discrete Constraints Evaluation (IDCE) process: Using information from 
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Steps 1 and 2, feasible regions in property, structure and process spaces are sequentially 

identified with a given initial requirement range in performance space based on the 

Hyper Dimensional-Error Margin Index (HD-EMI) metric. 

 

HD-EMIs are indicators of the degree of reliability of a decision that it will satisfy design space 

constraints or performance bounds if it undergoes a shift in the output range due to 

uncertainty. The HD-EMI values are calculated in each output direction in a hyper-dimensional 

output space, Figure 5.9. HD-EMI for output direction i, is represented as46: 

j i

i i

j i

| (mean B ) u |
HD EMI min

| (mean B ) u |

 
                   

(5.37) 

Where j is the set of all points on constraint boundaries, mean represents a vector of output 

responses, 
jB  is one point on the constraint boundary, 

i

jB  is a projection vector of 
jB onto the 

output range along the desired output direction and iu  is a unit vector of output responses 

along the output direction46. iHD EMI is the minimum of all values calculated based on all 

constraint boundary points. HD-EMI metric is reliable even if there are multiple isolated feasible 

regions (even single points) since every feasible point will have its corresponding ensemble of 

constraint boundary points. 

 

Figure 5.9: HD-EMI calculation in an output direction46 
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As the simulation models used in the multiscale system are computationally expensive, 

simulation experiments are systematically planned and executed at a small number of discrete 

points to extract relevant input-output information. The procedure for obtaining the mean and 

output range used in the HD-EMI calculation for simulation models is as follows:  

(i) Second order response surface models are used to determine the mean response Y 

from the input-output data sets.  Second order response surface model is 

represented as65: 

η η
2

0 i i ii i ij i j

i=1 i=1 i<η

Y=β + β x + β x + β x x +ε                    (5.38) 
 

Where,      i=1, 2… k; j=1, 2… k are the coefficients and xi, xj are the input design 

variables, ε is the random error and  the number of design variables.    ’s are 

calculated using least-square fit. As IDEM is computationally expensive, the fitted 

response surface model is analyzed to eliminate the unimportant linear, quadratic 

or interaction terms using stepwise regression methods47.  The backward 

elimination technique is used starting with the full quadratic response surface 

model. 

(ii)  The output range is determined using the maximum Ymax and minimum Ymin 

deviations from the mean response Y. First the upper Yupper and lower Ylower 

deviations are calculated using statistical confidence intervals as65:                                    

upper CIY =Y+ΔY
             

(5.39) 

lower CIY =Y-ΔY
             

(5.40) 

 
-1

' '

CI α 0 on-p,
2

ΔY =t MSE x XX x
                   

(5.41) 

CIΔY denotes the statistical bounds for a 100(1-α) % confidence interval. n is the 

number of simulation runs and p is the total number of regression coefficients, MSE 

is the mean square error, X is a (n x p) matrix of the levels of regression variables 
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and 
ox is a (p x 1) matrix of regression variables for the particular point we are 

calculating the confidence interval. CIY models the MPU due to insufficient data 

and  not include the variability (NU) in the input variables. Assuming the variations 

iΔx  in the input variables are small, the maximum Ymax and minimum Ymin 

responses estimated using a first-order Taylor series expansion are given by92: 

j

i

i 1 i

max jY Max Y (x | x)
Y

|
x





 
 


 







                 

(5.42) 

j

i

i 1 i

min jY Min Y (x | x)
Y

|
x





 
 


 







              

(5.43) 

Where j= mean, upper and lower deviation of responses. Hence the Ymax and Ymin 

are determined as: 

max maxY Y Y  
          

(5.44) 

min minΔY =Y-Y
               

(5.45) 

The Ymax and Ymin for theoretical models follow a similar procedure where Yupper 

and  Ylower are set by the designer depending on the expected degree of deviation 

from theoretical response Y due to MPU.  

Using the above equations, HD-EMIs can be qualitatively explained as: 

(a) A HD-EMI value less than zero indicates that the mean output vector is outside the 

constraint boundaries and is infeasible as the numerator will be negative and 

denominator positive in the vector calculations, 

(b) A value greater than 0 indicates the mean output vector is within the constraint 

boundaries, i.e. both the numerator and denominator are positive and hence is a 

feasible input point,  further a value of 0 indicates that the length of mean output vector 
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from the constraint boundary is 0 and hence is coincident on the constraint boundary,  

(c) A value of 1 indicates the maximum or minimum output deviation coincides with 

nearest constraint boundary point and hence is robust against modelled NU and MPU as 

discussed in description of IDEM in Section 1.2.  

(d) A value of HD-EMI greater than 1 indicates the output range is further away from 

constraint boundaries and has a larger margin for potential error due to MSU for 

estimating output range.  

In the IDCE process, the specifications, the performance ranges and the initial HD-EMI values for 

the discrete constraint evaluation are specified by the designer. A designer may leave wider 

margins between an output range and constraint boundaries by increasing the constraint HD-

EMI value for the mapping model whose MSU is larger than others. Depending on the value of 

required HD-EMI, the identified feasible range may be large, small, or unattainable. Exact 

constraint boundaries are identified in a top-down manner using the bisection method to avoid 

propagated errors, i.e., combined effect of NU and MPU. The discretization resolution in IDEM is 

set as twice the variability so as to continuously cover the design space and identify all feasible 

regions unless the region is smaller than the resolution. Discretization errors due to coarse 

resolution occur in the vicinity between feasible and infeasible points due to which few 

infeasible points are deemed feasible. However, it can be reduced by more conservative 

resolutions at an increased computational time. IDEM is implemented in MATLABTM. Using the 

feasible solution spaces from IDEM, the best processing route is determined using the cDSP, 

described in the next section. 

5.2.4.  Compromise Decision Support Problem (cDSP) 

Compromise decision support problem (cDSP) as described previously in Section 1.2, is a multi-

objective decision model which is a hybrid formulation based on mathematical programming 

and goal programming 55. The cDSP is explained with respect to MMD. The system goals are 
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normalized and achievement is evaluated using deviation variables. Weights are assigned to 

goals and the cDSP minimizes the weighted sum of the deviation function (Archimedean 

formulation). Preemptive (lexicographic) formulations are also possible in cDSP enabling 

hierarchical minimization of multiple deviation functions. It has the advantage of including 

equality and inequality constraints over traditional goal programming. For MMD, the selection 

of deviation variables is formulated using the cDSP. It is achieved by setting targets and 

constraints for the HD-EMIs and trading off their achievement to identify the design variables 

which minimize the deviation for the targets. The cDSP is segmented as given, find, satisfy and 

minimize (Figure 5.10). 

 

Figure 5.10: The mathematical formulation for cDSP55 

The given information in the cDSP includes constraints or ranges for the system performance, 

targets for HD-EMIs and information from the DFE and IDCE process which includes the mapping 

models, constraint boundaries in the hierarchical space and feasible solution ranges. HD-EMIs 

are constrained to be greater than one, guaranteeing the final solution is robust against 

modeled MPU and NU. The overachievement of HD-EMI values indicates robustness against 

MSU in the corresponding PS, SP or PP mapping models. This aspect is illustrated in Figure 5.11. 

If x represents the processing space, y represents the intermediate structure/property space 
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and z represented the final performance space, although both design solutions (Design 1 and 2) 

have identical final performances, Design 2 is more robust against MSU than Design 1 as its 

mapped region is further away from the constraint boundaries. Integrating IDEM and cDSP 

provides the advantage of considering MSU in intermediate models while making design 

decisions over traditional robust design approaches which focus only on final performance 

spaces13. The cDSP finds the design variables within bounds subject to HD-EMI evaluation using 

constraint boundaries to minimize target deviation and hence weighted HD-EMI goal 

achievement. cDSP is implemented in JAVATM with a MATLABTM builder.  Different scenarios for 

HD-EMIs will be evaluated in Section 3.4.  

 

Figure 5.11: Robustness against MSU13 

5.3. Discussion of Results 

In Figure 5.12, the 4 steps are depicted in order to find the best solution for MMD of material 

and product. In perspective of the discussion in Section 5.2, they are: 

(i) The bounds and variability of the processing variables are set for the framed 

multiscale system. The constraints and targets for the system goals along with 

ranges and resolution for the process-structure-property-performance spaces are 

defined. This information is used in the Step 1 of IDEM. 

(ii) Using the results from the hierarchical material models, second order response 

surface models are developed and variables are screened using backward 
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elimination technique. The mean response surface models along with interval 

estimates are input to Step 2 of IDEM. We traverse sequentially from process to 

structure to property to final performance space to complete the deductive analysis. 

(iii)  Using information from the previous 2 steps, IDEM is employed to control the 

microstructure within feasible bounds subject to four types of uncertainty. Ranged 

feasible property, structure and processing spaces are evaluated in an inductive 

manner in order to achieve performance targets.  

(iv) The DFE and IDCE process is input to cDSP along with HD-EMI targets to decide the 

best processing route among multiple feasible solutions by trading off the HD-EMI 

achievement. 

Each step is described in greater detail in the succeeding sub-sections. 

 

Figure 5.12: Steps for MMD 
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5.3.1. Quantify the Multiscale System for MMD 

The multifunctional performance requirements of AUV are quantified as: 

 The safe depth of operation of the submersible with a small shell thickness should be as 

large as possible exceeding 3000 meters and greater depth is better. The target depth is 

set at 5000 meters. 

 The submersible must have a good endurance with a large time of operation of at least 

12 hours without resurfacing or recharging and greater duration of submersion is better. 

The target time of operation is set at 15 hours. 

 Given a weight of the vessel of 80 kilograms and allowing as large a payload as feasible, 

a representative limit the weight of the outer shell of the submersible may not exceed 

18 kilograms and a lighter shell is preferred. The target for weight is 15 kilograms. 

 The operating temperature of the submersible should not exceed 20 degree Celsius. We 

set an operation temperature target of 18 degree Celsius. 

Table 5.3: Dependent parameters 

Model Parameter Ranges Resolution 
 

Variability

 x  

Model 
Variability 

 

Target Const-
raint 

F1 dp [0.1,4.2] µm 0.1 µm 0.05 µm RSM IDCE NA 

F2 d [10,150] µm 5 µm 2.5 µm RSM IDCE NA 

F3 ς [140,300] MPa 5MPa 2.5 Pa RSM IDCE NA 

F4 ρ [2600,3200] 3/kg m  10 3/kg m  5 3/kg m  ±2.5% IDCE NA 

F5 k [200,260] 

W/m-K 

5 

W/m-K 

2.5 

W/m-K 

±2.5% IDCE NA 

F6 D [500,25000] m 25 m NA RSM 5000 m ≥3000m 

F7 W [5,30] kgs 0.5 gs NA ±2.5% 15 kgs ≤18 kgs 

F8 Topr [8,16] hrs 0.25rs N ±2.5% 14 hrs. ≥12 Hrs. 

F9 Top [16,22] C 0.C A ±2.5% 18 C ≤20 C 
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Table 5.4: Independent parameters 

Variable Range Resolution Variability 

x  

Input 

Modules 

Input Models 

2TiBx
 

[2,10] % 0.25 % 0.15% 1,2 F1,F2,F3,F4,F5 

T [1073,1273] K 10 K 5 K 1 F1 

t ,60] mins 3 mins 1.5 mins 1 F1 

C [0.2,9.0] K/sec 0.4 K/sec 0.2 K/sec 1 F2 

A [15,30] % 3 % 1.5% 2 F3 

hT  [5,15] mm 0.25 mm 0.125 mm 3 F6,F7,F8,F9 

 

We note that the discretization resolution for IDEM is set twice the variability so as to cover the 

entire design space and reasonably small enough to avoid discretization errors. Model variability 

due to MPU is determined using response surface confidence intervals for the simulation 

models and set equal to ±2.5% for the theoretical models. The response surface models along 

with sources of MSU and modeling of MPU and NU are briefly described in the next section. 

Tables 5.3 and 5.4 summarize the models, ranges, resolution, targets and constraint values for 

the dependent and independent parameters in the multiscale system. 

5.3.2. Response Surface Modelling 

The mean responses of simulation models (F1, F2, F3 and F6) are analyzed using response 

surface modeling for modeling for the design task. As mentioned previously  0.10 value is used  

for the F-to-remove statistic in the backward elimination technique from the full quadratic 

response surface model. All variables are scaled from -1 to 1 corresponding to the ranges in the 

respective data sets and are denoted using symbols as described in Tables 1 and 2. The mean 

square error and 2R statistic values are evaluated. 
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Response Surface Modeling for 2TiB precipitate size (F1 in Figure 5.5) 

The response 2TiB
 
particle size (dp) is simulated with change in reaction temperature (T) and 

different initial concentrations of Ti and B which correlates to the volume fraction (
2TiBx )  after 

the reaction is complete in approximately one hour. The evolution of particle size with time (t) is 

determined by calculating the dp. in intervals of 10 minutes for a range of one hour. A sample 

output response is depicted if Figure 13. Thus the response dp is a function of three variables, 

i.e.,
2TiBx , T and t (Table 5.5). 

2 2 2 2

2

2 2

( ) 1.42 0.16 0.61 1.37 0.20 0.09 0.54 0.27

2.58 10 ; 0.98

p TiB TiB TiB TiBd m x T t x x T Tt x

MSE R

t



      

  



   

(5.46) 

 

Figure 5.13: Evolution of concentration profile with time, T = 1073K, initial concentration:  Ti 

0.05, B 0.1 mole fraction 82 
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Table 5.5: Partial data set for F1 

Temperature (T) 
(K) 

Volume Fraction (
2TiBx ) 

(%) 

Time (t) 
(minutes) 

Precipitate Size (dp) 
µm 

1073 2.5 60 0.885 

1073 5 60 1.725 

1073 7.5 60 1.683 

1173 2.5 60 2.725 

1173 5 60 3.1 

1173 7.5 60 2.997 

1273 2.5 60 3.091 

1273 5 60 3.788 

1273 7.5 60 4.202 

 

The sources of MSU in F1 are: 

 In the mixed salt route TiB2 is formed from the reaction of K2TiF6 and KBF4 rather than Ti 

and B in elemental form as assumed in this model.  

 It has been assumed that all of the Ti and B added into the melt convert to TiB2, which is 

not the case. Some amount of unreacted Ti and B still remain in the melt.  

 The presence of any metastable phases such as Al3Ti and AlB2 has been neglected in the 

final particulates.  

 Assuming that the melt is constantly stirred during the process, gravity or viscous drag is 

ignored. 

 The precipitate size is determined by averaging over the strips in 2-dimensional space, 

i.e., first order statistic. 

For a time step size of 0.04 seconds, the MATLAB model has a run time of approximately 72 

hours for the simulated time of one hour of the reaction. Due to the heavy computational time, 

the simulation model is run for a set of 9 combinations of 
2TiBx  and T. MPU due to insufficient 

information from the simulation model is modeled using confidence intervals as described in Eq 

41. The NU is modeled using first order Taylor series as described in Eqs 42 and 43. The 
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variability ( x ) values are mentioned in Table 2. The same procedure for modeling MPU and 

NU is followed for the rest of the simulation models. 

Response surface modeling for grain size (F2 in Figure 5.5) 

The response grain size (d) is simulated with change in the volume fraction (
2TiBx ) and evolution 

over decreasing temperature flux values which correlates to the cooling rate (C) in the mould. 

Thus the response d is a function of three variables, i.e.,
2TiBx and C  (Table 5.6). The initial fitted 

response surface model has a low 2R statistic suggesting poor fit and power-transformation was 

performed on the output response so as to improve the fit 47.  λ=0 is obtained using Box-Cox 

transformation suggesting ln power-transformation of the response. The final response surface 

using power transformation is: 

 2

2

( ) 3.50 0.54 0.34

  0.0134, 0.96

TiBd m x C

MSE R

   

               

(5.47) 

The sources of MSU in F2 are: 

 A two dimensional square solidification domain (Ω) has been assumed for temperature 

flux determination to decrease the computational complexity of the model. 

 <100> crystallographic orientation is assumed, idealizing 2TiB
 

reinforced bimetallic 

composite as a cubic metal.  

 Grain nucleation and redistribution due to Brownian motion is neglected.  

 The average grain size is determined using a normal grain size distribution over the 2D 

matrix (e.g., 250x500 cells in a 500x 1000 µm matrix in Figure 5.14)   
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Table 5.6: Data set for F2 

Cooling Rate (C) 
(K/sec) 

Volume Fraction (
2TiBx ) 

(%) 
Grain Size (d) 

µm 

0.2 2.5 90.099 

0.2 5 70.297 

0.2 7.5 45.297 

0.8 2.5 60.1485 

0.8 5 49.0099 

0.8 7.5 32.9208 

5.5 2.5 39.8515 

5.5 5 30.198 

5.5 7.5 20.0495 

7.2 2.5 32.1782 

7.2 5 24.0099 

7.2 7.5 17.0792 

9 2.5 29.9505 

9 5 20.0495 

9 7.5 13.8614 

 

 

Figure 5.14: Grain distribution in 250x500 cells with a cell size of 2 µm84 

Response Surface Modeling for Yield Strength (F3 in Figure 5.5) 

The response yield strength (ς) is simulated with change in the volume fraction (
2TiBx ), varying 

the area fraction (A), grain size (d) and precipitate size (dp). Thus the response d is a function of 

three variables, i.e.,
2TiBx and C  (Table 7). The final response surface is: 
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 2 2

2

( ) 243.33 16.44 2.21 5.88 10.30 1.12 4.50

1.78; 0.99

TiB p TiB p pMPa x d d L x d d

MSE R

L       

       

(5.48) 

Table 5.7: Data set for F3 

Volume Fraction 

(
2TiBx ) % 

Grain Size 
(e) µm 

Precipitate Size 
(dp) µm 

Area Fraction 
(A) % 

Yield Strength 
(ς) MPa 

2.5 150 0.5 15 216.61 

2.5 150 
 

15 15.21 

2.5 50 0.5 15 227.1 

2.5 50 1 15 225.4 

7.5 150 0.5 15 240.66 

7.5 150 1 15 237.2 

7.5 50 0.5 15 254.33 

7.5 50 1 15 247.7 

2.5 150 0.5 30 228.55 

2.5 150 1 30 225.8 

2.5 50 0.5 30 239.67 

2.5 50 1 30 23674 

7.5 150 0.5 30 271.36 

7.5 150 1 30 264.21 

7.5 50 0.5 30 286.12 

7.5 50 1 30 276.64 

 

The sources of MSU in F3 are: 

 The analysis of the yield strength for the MMC composite has reduced to a more 

tractable 2D RVE analysis. 

 It is assumed that the particulate reinforcements are entirely segregated along the grain 

boundaries in the hard phase and the soft phase has no particulate reinforcements.  

 The stresses in the  PHA RVE are idealized to uniform tensile stresses  

 The stress-strain response curve analyzed using dummy nodes over the RVE introduces 

MSU (Figure 5.15)   
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Figure 5.15: Stress distribution for Al-4Cu-2.5TiB2 (Grain size=100 µm, Particle size = 0.5 µm, 

Area fraction of harder phase = 15%) 

Response Surface Modeling for Depth (F6 in Figure 5.5) 

The response depth (D) is simulated with change in thickness (
2TiBx ) and yield strength (ς)  

2 2 2( ) 1000(2.75 3.31 1.04 1. )36 1.17 ; 6534.4; 1D m t t MSE R                 (5.49) 

Table 5.8: Data set for F6 

Thickness ( hT ) 

mm 
Yield strength (ς) 

MPa 
Depth (D) 

m 

6 220 701.93 

8 180 1211.55 

8 60 1750.05 

10 140 1755.48 

10 220 2758.61 

10 300 3761.73 

2 180 3835.7 

12 260 5540.19 

14 220 7433.23 
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Data set is given in Table 5.8. MSU in F6 arises due to idealizing the pressure hull to be a cylinder 

with hemispherical end caps. The MPU and NU are modeled as described for F1. 

5.3.3. Robust Design Spaces using IDEM  

The solution for IDEM takes the structure as shown in Figure 5.16. Ranged set of performance 

targets are set in the top level of the MMD problem and based on property-performance (PP) 

mapping models and constraining the HD-EMI values (HD-EMI
6
 , HD-EMI

7
, HD-EMI

8
 and HD-

EMI
9
) to be greater than 1, ranged sets of discrete property space points are inductively 

determined along with the constraint boundaries. The HD-EMI values constrained to be greater 

than 1 ensure that the range of discrete property points are robust against modeled NU and 

MPU for performance variables. 

 

Figure 5.16: Solution strategy for MMD using IDEM 
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The range of property space determined by bisection method to mitigate PU is passed to the 

structure-property (SP) domain in the multiscale system. The independent variable, t, is selected 

by maximizing design freedom, i.e., the value which maximizes the number of discrete feasible 

sets in the property domain range. The same procedure is repeated with the structure-property 

(SP) mapping models and ranged sets of structure points and constraint boundaries are passed 

into the process-structure (PS) domain. The independent variable A, is selected in a manner 

similar to t, i.e., by maximizing design freedom. IDEM is run in the process-structure domain and 

finally get ranged sets of robust process variables. A dummy model is introduced for the volume 

fraction as 
2TiBx is an input to both PS and SP domains. The HD-EMI value is constrained to be 

greater than 1 for the property and structure models (HD-EMI
1
, HD-EMI

2
, HD-EMI

3
, HD-EMI

4
 and 

HD-EMI
5
) indicating the mean output vector is within the constraint boundaries, i.e., is a robust 

input point. A HD-EMI value of 1 indicates that the maximum or minimum output deviation 

coincides with nearest constraint boundary point and hence is robust against modeled NU and 

MPU while a higher value of HD-EMI indicates the output range is further away from constraint 

boundaries and has a larger margin for potential error in the mapping model due to MSU for 

estimating output range. Exact constraint boundaries are identified in a top-down manner using 

the bisection method to avoid propagated errors, i.e., combined effect of NU and MPU. IDEM is 

executed and feasible and robust design points are identified in the property, Figure 5.17; 

structure, Figure 5.18; and processing, Figures 5.19 and 5.20, design space based on the 

interlinked mapping models. 

 

The robust space of the volume fraction of TiB2 (processing variable) lies within the ranges 

[0.0225, 0.035]; [0.045, 0.0525]; [0.06, 0.0675] and [0.075, 0.0775] (Figures 5.19 and 5.20). This 

indicates that the achieved space of the volume fraction of TiB2, 0.0225, 0.035]; [0.045, 0.0525]; 

[0.06, 0.0675]; [0.075, 0.0775], thickness of shell, 10.75 mm, and area fraction, 30%, guarantees 

satisfactory submersible performance while maintaining all quantifiable uncertainty (MPU and 

NU) and its propagation within bounds. We see from Figure 17 that higher yield strength ς 
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values and lower density ρ values are favorable for the design and are associated with higher 

HD-EMI values. It can also be concluded from Figure 18 that lower grain size (d) and lower TiB2 

particle size (dp) yield higher HD-EMI values and hence are favorable for the design. From 

Figures 5.18 and 5.19 it can also be concluded that higher volume fraction of TiB2 yield higher 

HD-EMI values and hence more favorable design structures of the composite. The color legend 

for HD-EMI attainment is shown to the right of each figure. The black diamond points indicate 

the constraint boundary points. The absence of constraint boundary points along an axis (e.g., 

Thermal conductivity k) indicates that the entire range meets the desired requirements subject 

to modeled uncertainty. IDEM facilitates the designer to determine ranged sets of processing 

variables robust against modeled MPU, NU and PU. The most suitable processing route from the 

ranged sets is determined using the cDSP by compromising the HD-EMI attainment and hence 

robustness against MSU as illustrated in Section 5.3.4. 

 

 

Figure 5.17: Robust design space for MODULE 3 
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Figure 5.18: Robust design space for MODULE 2

 

Figure 5.19: Robust design space for MODULE 1 (Precipitate size) 
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Figure 5.20: Robust design space for MODULE 1 (Grain size) 

5.3.4. Compromise Decision Support Problem for HD-EMI’s 

The cDSP is coupled with the IDEM process in order to reduce the robust design space and find 

the best set of process variables by minimizing the weighted summation of deviations between 

the achieved objectives and target objectives. Three scenarios for the objective deviation 

function is formulated based on either HD-EMI values for MSU management or performance 

objectives: 

 

• Scenario 1: Find the optimal design specifications for the process variables that optimize the 

performance objectives, i.e., depth, time of operation, weight and operating temperature. 

• Scenario 2: Find the robust design specifications for process variables that incorporate 

modeled uncertainty in the mapping models (MPU, NU, PU) in order to optimize the 

performance objectives. 

• Scenario 3: Find the robust design specification for process variables considering MSU in the 

mapping model in addition to modeled uncertainty in order to optimize the HD-EMI attainment. 
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For Scenarios 1 and 2, the deviation function is formulated using performance objectives with 

equal weights while in Scenario 3, the deviation function is formulated using HD-EMI value 

attainment and the robust solution for the multiscale system, i.e., values of the design variables, 

is calculated by minimizing the deviation of the HD-EMIs from target values (10 for all models 

and equal weights). While only one scenario for robust design specification is analyzed, the cDSP 

provides for setting different target values based on provision for potential MSU and 

hierarchical optimization of deviation functions and other scenarios can be set as deemed 

appropriate by system level designer. For Scenario 2 and 3, the constraints on all HD-EMIs must 

be greater than or equal to 1 and the number of solution sets found by the IDCE in IDEM must 

be at least 1. The results of the design exploration are shown in Table 5.9. The achieved HD-EMI 

values are infinite when no constraint boundaries exist in the output direction. The HD-EMI 

value is -1 when the mean output lies outside the ranged specifications. The values of 

independent variables, hT  and A, are 10.75 mm and 30% respectively as found out using IDEM. 

 

Scenario 1 gives us the optimal performance achievement, however, HD-EMI
1 

is -1 indicating the 

dp is outside the prescribed range and hence suggesting uncertainty consideration in the 

interdependent variables is vital along with final system performance. In Scenario 2 the HD-EMI 

values are constrained to be greater than 1 and process variables yield robust final performance 

considering modeled NU, MPU and PU. In Scenario 3, the deviation function formulated using 

HD-EMI values is minimized yielding most suitable solution under potential MSU. In Scenarios 2 

and 3, system performance is compromised to account for uncertainty. The consideration of 

modeled MSU using the HD-EMI metric in addition to modeled MPU, NU and PU in IDEM 

provides robustness against incorrect mapping functions due to inappropriate assumptions or 

limited knowledge.  The HD-EMI target values can be altered in the cDSP formulation to consider 

higher or lower potential MSU by the material modeler or system level designer. Thus, the cDSP 

identifies the best solution amongst the ranged sets by compromising performance or HD-EMI 

attainment.  
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Table 5.9: cDSP solutions 

 

Variables Scenario 1 Scenario 2 Scenario 3 

 

 

 

 

HD-EMI 

Variables 

F1 (dp) HDEMI
1
 -1     

F2 (d) HDEMI
2
       

F3 (ς) HDEMI
3
 11.77 13.02 12.90 

F4 (ρ) HDEMI
4
 4.27 4.21 4.21 

F5 (k) HDEMI
5
       

F6(D) HDEMI
6
 12.59 12.75 12.79 

F7 (W) HDEMI
7
 18.04 18.05 18.05 

F8 (Topr) HDEMI
8
 4.20 4.21 4.21 

F9 (Top) HDEMI
9
 5.44 5.45 5.45 

 

Design 

Variables 

2TiBx  0.080 0.0775 0.0775 

T(K) 1073 1163 1073 

C(K/sec) 9.0 8.6 0.20 

t(mins) 15 12 21 

Perfor-

mance 

Variables 

D(m) 4674.5 4571.4 4551.4 

W(kgs) 15.62 15.65 15.64 

Topr(hrs) 13.45 13.45 13.45 

Top(C) 17.51 17.50 17.50 

        

 

5.4.  Thoughts on What has been Presented and What is Next 

A robust design approach for MMD is investigated by coupling IDEM and cDSP by making system 

level performance insensitive to MPU, MSU, PU and NU without eliminating its sources. Ranged 

sets of process variables are identified for MMD using IDEM while maximizing design freedom 

and considering quantifiable uncertainty (MPU, NU and PU). A singular robust solution is 

identified by compromising product performance for achieving robustness against MSU using 
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cDSP and HD-EMI metric. The key features using a coupled IDEM and cDSP approach are: 

 IDEM facilitates top-down searching for design solutions including process path and 

microstructure based on bottom-up simulations. The specific ranges of microstructure 

attributes are directly coupled in the present methodology with the overall systems 

design (material plus submersible). Hence, changes in performance requirements are 

directly reflected in the ranges of microstructure attributes that emerge from 

application of IDEM.  

 All sources of uncertainty are accounted in identifying a singular robust solution. NU, 

MPU and PU are accounted for in IDEM which provides ranged sets of robust solutions. 

NU or variability is dealt with first order Taylor series expansion.MPU is dealt by defining 

confidence intervals for response surface models developed. PU is dealt by developing 

exact constraint boundaries in a top-down manner using bisection technique. MSU is 

dealt by trading off the HD-EMI attainment from the robust ranged sets of solution.   

 Feasibility of process paths is assessed by considering the full contributions of the 

process-structure-property-performance relations. The approach can be ready extended 

to include additional competing modes of microstructure requirements or existing 

mapping models in the design chain can be altered without revaluating the entire design 

exploration. This is possible due to the modular nature of the mapping models and as 

the uncertainty modelled in mapping functions is decoupled from design exploration.   

 With material modelling techniques at its infancy, consideration of potential MSU serve 

as a compelling basis for the present systems-based robust design approach. Although 

the approach does not guarantee robustness against unquantifiable or unrecognizable 

MSU, it facilitates robust decision making under potential MSU by aiding for the desired 

level of MSU mitigation in terms of HD-EMI targets or constraints. 

 

The work presented in this chapter constitutes one of the most complete applications of 

uncertainty management for integrated material and product design. Uncertainty is successfully 
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managed over three modules and nine analysis models in the PS, SP and PP domains for MMD. 

The MMD approach determines robust processing routes to pursue concurrent design of a 

robotic submersible and Al-based metal matrix composite that embodies the microstructure-

mediated robust design construct and holds promise for early design space exploration in 

designing both the product and the material from which the product is made.  The advantage of 

this method is the use of simple input-output mappings in the form of response surface models 

to calculate the system robust solution. The uncertainty arising due to use of the response 

surfaces is systematically accounted in the form of statistical confidence intervals. IDEM can be 

applied without resorting to complex material knowledge and mathematical formulations but 

only through having access to the input output functions and the range of operation of the 

simulation model. It is noted that the MMD approach is different from the MSD approach as a 

designer uses response surface models as input-output relationships instead of direct data from 

the simulation models. The flexibility of this approach enables a designer to use other 

mathematical relationships instead of second order response surface models as illustrated in the 

MMD approach. A material designer, once he/she has access to a better model can use the 

improved data set to build new response surface models and plug it into the IDEM infrastructure 

without having to iterate the entire design process. This enables saving time and resources as 

well as increases the flexibility of the IDEM. The IDEM is also capable of using the data itself in 

form of sub-routines in the main MATLAB function. A designer has the flexibility to use these 

sub-routines for direct measurements of the response based on the original simulation model 

instead of resorting to response surface modeling. Though this will result in increased 

computational cost, it has the benefit of increased accuracy based on real-time design of 

experiment setting. This possibility of IDEM greatly increases the flexibility to couple it with MSD 

exploits while avoiding re-calculation of the entire design process to provide robust feasible 

sets. It is also useful for maintaining design freedom in initial design exploration while material 

design modeling techniques are at its infancy. A detailed description is provided in I-Statement 

in the Section 7.2. Having looked at robust design for a multiscale system, the next frontier of 

uncertainty management is explored, i.e., uncertainty reduction in the next chapter.  
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In this chapter the secondary research question 1 (Section 4.1) was answered by integrating the 

constructs of IDEM and cDSP. Uncertainty modeling was systematically established in multiscale 

systems for MMD and validated the hypotheses proposed for the secondary research question. 

Results were achieved and it fits into the Empirical Performance Validity, i.e., Quadrant III of the 

validation square.  The organization of work is depicted in Figure 5.22. 
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Theoretical 
Structural 

Validity

Theoretical 

Performance 
Validity

Empirical 
Structural 

Validity

Empirical 
Perfomance 

Validity

Chapter 1 Motivation: of 
integrated product and process 
Design 

Chapters 1 Introduction: Key 
constructs critical for 
microstructure mediated design in 
a multiscale system 

 Chapter 4 Tools: Explaining the 
tools useful to achieve uncertainty 
mitigation after iterations in a 
simulation model refinement. 

 

 

Chapter 4 Framing the 
research questions and 
hypotheses: Based on the 
structural validity of the 
core constructs, gaps are 
identified and research 
questions are proposed. 
This approach is 
evolutionary and not like 
standard validation 
square approach. 

Chapters 2 and 3 Validation of the IDEM 
and cDSP problem for the proposed 
method: In these chapters we apply the 
proposed example to our foundational 
constructs of IDEM and cDSP. We firstly 
answer if the simulation based UAV design 
problem appropriate for validation of the 
method? Then we document the result data 
from the comprehensive example using 
IDEM and cDSP and move to the next the 
next step to validate the proposed 
hypotheses 

 

 

Chapters 5 and 6: Validation of the results 
and hypotheses: Validate based on the 
obtained results for the multiscale UAV 
problem. Demonstrate materials and 
product design significance and 
contributions 

 

Chapter 7 Closure: 
Building confidence of 
the utility of the method 
in general multiscale 
simulation-based design 
problem. 

Justifying the 
comprehensive example 
is the representative 
problem of multiscale 
simulation-based design 
refinement. 

Figure 5.21: The validation square  
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Figure 5.22: Organization of work 
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CHAPTER 6 

UNCERTAINTY MANGEMENT IN SIMULATION BASED 

MULTISCALE SYSTEMS 

 

Chapter 5 was dedicated to arriving at ranged sets and a single robust solution in multiscale 

systems. This was achieved for the microstructure mediated design task. In this chapter, the 

opportunities for managing uncertainty in simulation-based design of multiscale systems are 

explored using constructs from information management and robust design. A multiscale system 

is simulated with models at multiple length and time scales. The accuracy of the simulated 

performance is determined by the trade-off between computational cost for model refinement 

and the benefits of mitigated uncertainty from the refined models. Hence, the motivating 

question: ‘How should a system level designer allocate resources for auxiliary simulation model 

refinement while satisfying system level design objectives and ensuring robust process 

requirements for multiscale systems? My approach consists of integrating: (i) a robust design 

method for multiscale systems, and (ii) an information economics based approach for 

quantifying the cost-benefit trade-off for mitigating uncertainty in simulation models. 

Specifically, this approach focuses on allocating resources for reducing model parameter 

uncertainty arising due to insufficient data from simulation models. A comprehensive multiscale 

design problem, the concurrent design of material and product is used to demonstrate my 

approach. System level designers can efficiently allocate resources for sequential simulation 

model refinement in multiscale systems using the approach presented in this chapter. 
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6.1. Frame of Reference: Uncertainty Management in Simulation-Based 

Multiscale Systems Design 

 

Uncertainty in simulation-based design is particularly important in systems at multiple length 

and time-scales, referred to as multiscale systems. Multiscale systems design (multiscale design) 

is characterized by a number of challenges29 such as: a) the presence of both reducible and 

irreducible uncertainties, b) the presence of uncertainties within individual models, which are 

due to uncertain parameters, approximations, assumptions, etc., c) propagation of uncertainties 

in networks of interconnected models through multiple scales, d) evolving simulation models, 

resulting in multiple fidelities of models at different points in a design process, and e) significant 

model development and execution costs, necessitating judicious use of computational 

resources.  

 

Robust design alleviates the consequence of uncertainty without removing the underlying 

sources12. Most published approaches for robust design are focused on mitigating reducible 

uncertainties to the extent possible and developing accurate representations of irreducible 

uncertainty8-13. In the context of simulation based multiscale design, both approaches are 

associated with an increase in effort. Uncertainty mitigation necessitates additional simulation 

runs or modeling effort, whereas increasing the information about uncertainty demands 

increased computational effort. In the multiscale design, this increase in effort is so significant 

that it can prevent design exploration and has proven an impediment to the development of 

efficient methods that facilitate robust design. Instead of striving to mitigate reducible 

uncertainty and getting meta-information about irreducible uncertainty, the paradigm of 

managing uncertainty is proposed by balancing: a) the need to reduce uncertainty (by gathering 

more information, refining modeling assumptions, accurate representations etc.), and b) making 

decisions that are robust against various sources of uncertainty in simulation-based multiscale 

design. The motivating question for this chapter is: ‘How does a system level designer allocate 
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his/her limited resources for auxiliary simulation model refinement while ensuring a robust 

design and satisfaction of system level design objectives in multiscale design?’ It is postulated 

this can be addressed by integrating constructs from robust design and information economics. 

 

Information economics guides  the best course of action  between using available information 

(e.g., using simpler models) or gathering more information (i.e., simulation model refinement) in 

the decision-making process66-68. The integration of information economics and robust design is 

challenging because in addition to the design decisions involving the system’s performance 

objectives, there is an additional layer of meta-level decisions involving the tradeoff between 

uncertainty reduction and effort. These meta-level tradeoff decisions require the knowledge of 

the effort and costs associated with uncertainty mitigation. My approach to address the 

motivating question is to separate the multiscale design problem into two sets of decisions: a) 

robust design constructs are used for the recommendation of  product parameters (i.e., design 

variables) in the presence of uncertainty, and b) information economics constructs to quantify 

the cost-benefit trade-off. Integration of these twin constructs is achieved via auxiliary 

simulation model refinement. My belief is that successful integration of information economics 

and robust design enables efficient allocation of resources (time/money) to improve system 

level performance while satisfying robust process requirements. This integrated algorithm is 

developed in Section 6.2 and a comprehensive multiscale example of concurrent product and 

material development is used to clarify each step and validate my algorithm in Section 6.3. 

Closing thoughts are presented in Section 6.4. 

 

6.2. Integrating Robust Design and Information Economics 

6.2.1.  Uncertainty  

Simulation models are used to generate information about physical phenomena when it is 

impractical or expensive to measure the outcomes using experiments or direct measurements. 

Simulation models are built on underlying assumptions under which the models are valid. They 
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guide the development of the predictive capabilities between the desired response (output) and 

the design variables (input). Often, these simulation models are computationally expensive 

making it infeasible to search the design space for satisfying responses. Instead, simulation 

experiments are systematically planned and executed to extract relevant information and 

approximate mathematical surrogates, i.e., metamodels which represent input-output 

relationships. These relationships are used in multiscale systems to search for desired solutions 

of design variables. The uncertainty associated with these assumptions or approximations may 

further be amplified as it propagates through a chain of simulation models at different length 

and time scales with interlinked parameters as is often the case with multiscale systems.  

 

 

Figure 6.1: Uncertainty in simulation models. 

 

It is critical to understand the sources of uncertainty in multiscale systems in order to manage 

the uncertainty efficiently and hence it is mentioned again from Section 1.2. In the context of 

simulation-based design for multiscale systems uncertainty is classified as13: 
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 Variability (Natural Uncertainty): Variability is irreducible and can be quantified in a 

statistical sense. It arises due to inherent randomness of noise and control factors in 

physical systems. 

 Model Parameter Uncertainty (Data Uncertainty): It arises due to uncertainty in model 

parameters of a surrogate model used to represent the simulation model. It can be 

reduced by additional information. 

 Model Structure Uncertainty (Model Uncertainty): This uncertainty is introduced due 

to the assumptions and approximations used while building a simulation model. It can 

be reduced by model refinement, i.e., better assumptions or approximations, usually at 

a greater computational cost. 

 

These sources of uncertainty are represented graphically in Figure 6.1. A hypothetical physical 

phenomenon is represented with a solid curve. A simulation model with simplifications and 

assumptions predicts this phenomenon under model structure uncertainty (---- curve). Running 

the simulation model at a small number of inputs (star points) and building a metamodel to 

represent the input-output relationship introduces model parameter uncertainty (  

  curve). Further the inputs also possess variability. Upper and lower bounds are built (dotted 

curves) on this metamodel to capture variability of inputs and statistical confidence intervals for 

the error in model parameters, i.e., these bounds quantify the model parameter uncertainty 

(MPU) and natural uncertainty (NU) in  a simulation model. However, model structure 

uncertainty (MSU), i.e., information about the simplifications and assumptions is not captured 

by these bounds. My hypothesis is that by systematically reducing these error bounds over 

simulation models at different length and time scales, i.e., at the subsystem scales/levels, I 

achieve robustness (insensitivity to NU and MPU) in the system process as well reliable 

performance targets. Variability is aleatory (irreducible) in nature but we can mitigate the other 

two types of epistemic (reducible) uncertainty with additional effort.  There are two ways to 

refine simulation models at an added cost to achieve better performance: a) refine the model 
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formulation to reduce model structure uncertainty (mitigate MSU) and b) accumulate more data 

to reduce model parameter uncertainty (mitigate MPU). In this chapter, the focus is on 

developing metrics to reduce MPU. Reducing MSU is challenging because there are different 

physical laws governing different length and time scales and only an accurate understanding of 

these laws along with comprehensive knowledge about modeling techniques can quantify the 

relative uncertainty of model structure in order to reduce it. 

 

6.2.2. Method for simulation model refinement in multiscale systems 

 

An eight step method is proposed for a system level design to be able to allocate resources to 

subsystem level simulation model refinement in multiscale systems by integrating constructs 

from robust design and information economics, Figure 6.2. This approach relies on the ability to 

uncouple individual subsystem modules from the overall calculation. 

 

Figure 6.2: Simulation model refinement for uncertainty management in multiscale systems 
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Step 1. Frame the Multiscale Problem 

The system level designer comprehensively represents the design process chain, simulation 

modeling techniques at subsystem levels and dependent/independent parameter values/ranges 

interlinked with individual subsystems in a multiscale system. This step ensures system level 

connectivity with subsystem level models for multiscale design. 

 

Step 2. Subsystem Level Analysis 

The subsystem level modelers analyze the simulation models in the multiscale system, i.e.:  

(i) Perform design of experiments to plan simulation runs;  

(ii) Execute simulation models; 

(iii) Develop response surface models or other metamodels and; 

(iv) Establish bounds 

The response surface models along with bounds are passed to the system level designer. 

 

Step 3. Robust Design Exploration 

The system level designer performs robust exploration to determine possible sets of solutions 

under MPU, MSU, NU and a compounded combination of all three uncertainty types due to 

propagation in the design chain and determines the best solution amongst the feasible sets. It 

passes the ranged sets of solution to the subsystem modelers. For robust exploration and to 

determine a robust solution the use of the Inductive Design Exploration Method (IDEM) is 

proposed.13 IDEM facilitates hierarchical design of multiscale systems while accounting for all 

three kinds of uncertainty in simulation models and its propagation93. It identifies ranged sets of 

discrete design variables in each domain at the subsystem scales in an inductive way and 

determines a desirable solution against MSU13.   

 

Step 4. Subsystem Level Value-of-Information  

Subsystem level designers quantify the value-of-information associated with: a) refining 

assumptions/approximations in inputs or modeling techniques for simulation models and b) 
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gathering additional information from existing simulation models. In this work, the focus is on 

the latter and, in the context of simulation refinement, this added information correlates to 

mitigating MPU and hence improving the model’s ability to recommend good decisions. 

Specifically, a metric is developed to quantify insufficiency of data from simulation runs,  the 

improvement potential metric (IPi)
69. Each subsystem designer calculates the IPi metric 

corresponding to its simulation model. 

 

Step 5. System Level Value-of-Information  

Using these improvement potential metrics, the system level designer calculates the 

improvement potential metric (IP) for the multiscale system, i.e., system-level improvement 

potential (IP), to check for convergence and ensure there is added value in further simulation 

model refinement. A weighted sum approach is used for this calculation where weights are 

derived as degrees of influence of simulation models on system-level performance objectives. 

 

Step 6.Cost-Benefit Analysis 

The subsystem level modelers develop a functional relationship between the computational 

cost for auxiliary simulation runs and the benefit in terms of improvement potential metric 

referred to as the ex-ante improvement potential ( 'iIP ). 'iIP
 

is the predicted benefit 

associated with additional simulation runs without performing the simulation runs. 

 

Step 7. Trade-Off 

The system level designer uses the functional relationships between computational costs and 

'iIP  to make the meta-level decision trade-off. That is, to minimize total computational time 

versus constraining system level ex-ante improvement potential in order to find an IP’ below 

convergence criterion) and assigns computational resource for further simulation refinement. 
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Step 8. Refine Simulation Models 

The subsystem level modelers run the next set of simulations based on assigned resources and 

provide improved metamodels for the robust exploration step (Step 3). The algorithm is iterated 

until the system level improvement potential (IP) is equal to or drops below the desired 

convergence criterion. 

  

The entire algorithm can be thought of as being divided into four quadrants. Steps 1 to 3 are 

linked to robust design while steps 4 to 7 deal with information economics. Step 8 integrates 

robust design and information economic constructs.  Steps 1,3,5,7 are performed by the system 

level designer while Steps 2, 4 and 6 are performed by the subsystem level modelers. An 

important assumption here is that there is complete information exchange between the system 

and the subsystem level designers, i.e., total collaboration. I proceed to explain each step in the 

context of my example multiscale system, i.e., concurrent design of material and product in 

Section 6.3.  

 

6.3. Concurrent Design of Material and Product  

6.3.1. Design of Autonomous Underwater Vehicle (AUV) using In-Situ Al-Based Metal 

Matrix Composite (MMCs) 

 

The paradigm of concurrent design of materials and product entails tailoring materials to meet 

specific performance requirements. Design of material refers to controlling the microstructure 

and design of product implies meeting the performance requirements. Hierarchy exists over 

multiple length and time scale in the process-structure [PS], structure-property [SP] and 

property-performance [PP] relationships, Figure 6.3. Hence, concurrent material and product 

development can be viewed as a multiscale problem. There is significant uncertainty associated 

with simulation modeling in the material domain scales, i.e., quantum, molecular or microscale 

as physical phenomena at these scales is not fully understood and modeling assumptions lead to 
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increased uncertainty. The computational cost of executing simulation runs at these levels is 

high and efforts to reduce computational cost result in model simplification using metamodeling 

techniques and hence lead to an increased uncertainty component. Hence, concurrent design of 

material and product is a representative example for uncertainty management in multiscale 

systems and is useful for demonstrating the integration of robust design and information 

economics. 

 

Figure 6.3: Hierarchical materials design4
 

 

Design of an Autonomous Underwater Vehicle(AUV) is considered with the following 

multifunctional requirements:29 

 The safe depth of operation of the submersible with a small shell thickness should 

exceed 5000 meters and the greater the depth the better. 

 The submersible must have a time of operation of at least 12 hours without resurfacing 

or recharging. Greater duration of submersion is better. 

 Given the weight of vessel to be 80 kilograms and allowing as large a payload as is 

feasible, a representative limit for the weight of the outer shell of the submersible may 

not exceed 18 kilograms, and a lighter shell is preferred. 

 The operating temperature of the submersible may not exceed 20 degree Celsius to 
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ensure safe operation of the electronic equipment within the submersible. 

Metal matrix composites (MMCs) are strong and stiff light metal-based composites and with a 

reinforcement which may be a metal, ceramic or an organic compound78. A new category of 

materials known as in-situ composites have been developed, wherein the reinforcements are 

generated in a metallic matrix via chemical  reactions between elements and/or compounds 

during the composite fabrication80. This example deals with the processing route of in-situ Al 

composites. In this chapter we work with an Al-Cu matrix strengthened with TiB2 reinforcement. 

The 8 steps for are followed the example (Figure 6.4).The steps associated with robust design 

are demonstrated in Section 3.2 and those with information economics in Section 6.3.3. In 

Section 6.3.4 the integration of the two constructs is achieved via sequential simulation 

refinement. 

 

 

Figure 6.4: Simulation model refinement for multiscale design 
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6.3.2. Robust Design of the AUV using In-Situ Al-Based MMCs 

 

 

Figure 6.5: Robust design of multiscale systems using IDEM 

 

The Inductive Design Exploration Method13 is used for robust design of my multiscale system. 

This corresponds to Steps 1-3 in Figure 6.2. The steps of IDEM are: 

  

 IDEM Step 1: Parallel Discrete Function Evaluation for Each Subsystem 

The design space (design variables), interdependent space (dependent variables) and the 

performance space (performance variables) are defined and discrete points are generated. 

These generated points are evaluated based on mapping models (i.e., surrogate models) and the 

evaluated data sets composed of discrete input points and associated output ranges are stored 

in a database.  
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 IDEM Step 2: Inductive Discrete Constraints Evaluation (IDCE) 

Feasible and robust regions in interdependent and design spaces are sequentially identified with 

constraints in the performance space based on a metric called the Hyper Dimensional-Error 

Margin Index (HD-EMI) indicating the degree of reliability of the model if it undergoes a shift in 

the output range due to uncertainty.  

 

 IDEM Step 3: Compromise Decision Support Problem (cDSP) for System Level Design. 

The cDSP55 is used to calculate the most desirable robust solution from the feasible set of 

solutions for the design parameters by reaching a trade-off among the HD-EMI values.  

 

With IDEM, ranged sets of feasible specifications (discrete points) are identified and a robust 

solution is calculated under different kinds of uncertainty. The ranged sets of specifications are 

used for calculating the improvement potential metric while the robust solution indicates the 

design variables for robust process requirements once the algorithm has converged. The robust 

design method for my multiscale example is shown in Figure 6.5. Each step is discussed in detail. 

 

Step1: Framing the Multiscale Problem 

To frame the multiscale problem, the multiscale design process is represented in Figure 6 which 

shows the dependent/independent parameter values interlinked with individual subsystems, 

the models and the modeling techniques, the performance requirements and goals associated 

with multiscale design task. In Figure 6.6, f1, f2, f3 and f6 represent simulation models (shaded 

boxes) used to design the autonomous underwater vehicle (AUV) while f4, f5, f7, f8 and f9 

represent theoretical or empirical models considered for design. The inputs to MODULE 1 are 

the volume fraction of TiB2 (xTiB2) and temperature of processing in degree K (T).The output of 

MODULE 1 (f1) is the average TiB2 particle size (dp) which is an input to MODULE 3. The 

independent inputs to MODULE 2 are volume fraction of TiB2 (xTiB2) and cooling rate (C) and the 
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output of MODULE 2. (f2) is the average grain size (d) of the microstructure which is another 

input to MODULE 3. MODULE 1 and MODULE 2 deal with the process-structure relationships 

[PS] shown in Figure 3. MODULE 3 deals with the structure-property relationships [SP]:  f3 gives 

the yield stress (ς), f4 gives density (ρ) and f5 gives the heat transfer coefficient (k) as outputs. 

The model for yield stress (ς) receives inputs from the outputs of MODULE 1 and 2 along with 

the independent inputs of volume fraction of TiB2 (xTiB2). The only input to models for density (ρ) 

and heat transfer coefficient (k) is the independent variable of volume fraction of TiB2 (xTiB2).  

Finally, MODULE 4 deals with the property-performance [PP] relationship of the developed 

microstructure. The performance variable of depth of operation (D) is evaluated in f6; weight of 

the outer shell (W) is evaluated in f7, time of operation (Topr) for the submersible is evaluated in 

f8 and temperature of operation (Top) is evaluated in f9. The independent parameter, thickness 

of the shell (t) and is an input to all the models, i.e., f6, f7, f8 and f9. The dependent parameters 

are density (ρ) to weight (f7) and time of operation (f8) while yield stress (ς) is an input to depth 

(f6). The feasible design spaces are inductively passed from MODULE 4 to MODULE 3 and 

subsequently to MODULES 2 and 1 of design.  

 

Figure 6.6: Multiscale system for concurrent design of material and product 
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Table 6.1: Dependent parameters 

Model Parameter Range Resolution Variability Constraint Module 

f1 dp 
Average prep size 

[0.1,2.1] µm 0.1 µm 0.05 µm NA 1 

f2 d 
Average grain size 

[10,150] µm 5 µm 2.5 µm NA 2 

f3 ς 
Yield stress 

[400,500] MPa 5 MPa 2.5 MPa NA 3 

f4 ρ 
Density 

[2700,3100]
3/kg m  

10 
3/kg m  5 

3/kg m  NA 3 

f5 k 
Heat transfer 

coefficient 

[200,260] 
W/m-K 

5 W/m-K 2.5 W/m-K NA 3 

f6 D 
Safe depth of 

operation 

[500,25000] m 25 m NA ≥5000 m 4 

f7 W 
Weight of outer shell 

[5,30] kgs 0.5 kgs NA ≤18 kgs 4 

f8 Topr 

Time of operation 
[10,15] hrs 0.25 hrs NA ≥12 Hrs. 4 

f9 Top 

Operating temperature 
[15,22] C 0.1 C NA ≤20 C 4 

 

Table 6.2: Independent parameters 

Variable Range Resolution Variability 

x  

Input 
Module 

Input Models 

2TiBx
 

Volume fraction of 
TiB2

 

[2,10] % 0.25 % 0.125% 1,2,3 f1,f2,f3,f4,f5 

T 
Temperature for 

precipitate 
modelling 

[1073,1273] K 10 K 5 K 1 f1 

C 
Cooling rate for 
microstructure 

[0.2,9.0] K/sec 0.5 K/sec 0.25 K/sec 2 f2 

t 
Shell thickness 

[5,15] mm 0.25 mm 0.125 mm 4 f6,f7,f8,f9 
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The performance constraints are: 

 The safe depth of operation (D) of the submersible must exceed 5000 meters. 

 The submersible must have a time of operation (Topr) of at least 12 hours. 

 The weight of the outer shell (W) of the submersible may not exceed 18 kgs. 

 The operating temperature (Top) of the submersible may not exceed 20 degree Celsius. 

 

For the multiscale problem, simulation models are used for precipitate modeling (f1), 

microstructure evolution (f2), modeling the yield stress of the composite (f3) and for 

determining the depth of operation (f6). All simulation models carry underlying assumptions 

(resulting in MSU) and are run for a relatively small number of design variable settings as they 

are computationally expensive (resulting in MPU). The solution technique IDEM is used to 

evaluate outputs for discrete input points and the discretization resolution in IDEM is modeled 

to reflect the variability (NU) in the input variables. However, discretization errors are 

introduced in calculating feasible and infeasible points. Tables 6.1 and 6.2 summarize the 

models, associated modules, ranges, discretization resolution and constraints for the dependent 

and independent parameters in my multiscale system. These ranges, resolution values and 

constraints are used in IDEM. The modeling techniques and assumptions of the simulation 

models are briefly discussed and I proceed to determine a robust solution and metrics to 

mitigate MPU by refining the simulation models. The details of the other models can be found in 

Chapter 5. 

 

MODULE 1: Precipitation Modeling in Liquid Aluminum (f1 in Figure 6.6)  

A suitable route for the in situ Al / TiB2 composite manufacturing process is the reduction of 

K2TiF6 and KBF4 with aluminum. A model proposed by Anestiev and co-authors34 has been used 

to investigate the diffusion reactions taking place between the intermediate phases of Al3Ti and 

AlB2.  A coordinate system dividing a 2-dimensional space into strips of equal length is used, half 
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of which contains Al3Ti and the other half AlB2 dissolved in the Al melt. Random nucleation of 

TiB2 particulates is assumed. The kinetics of the formation of TiB2 particles are governed by 

unsteady state diffusion equations, which, in turn, depend on the concentration profile of 

intermediate solute phases in the region. The solute consumption rate due to TiB2 formation is 

described by the volume fraction in the region per unit time. Johnson-Mehl-Avrami analysis35,36 

is used to find the volume fraction from the nucleation and growth rates of the particles. The 

nucleation rate is primarily a function of the Gibbs energy change associated with the formation 

of the particle, while the growth rate also depends on the particle’s surface energy. The 

thermodynamic models predicting the Gibbs free energies of the phases are described Mirkovic 

et al.20, Witusiewicz and colleagues21-22. The complex diffusion equations are solved numerically 

in MATLABTM to compute the TiB2 particle size distribution across the matrix for a reaction time 

of one hour 82. The mean particle size is determined by calculating the average particle size over 

the entire matrix.  

 

MODULE 2: Modeling Microstructure Evolution (f2 in Figure 6.6) 

The microstructure evolution during solidification depends on the thermal and the solutal fields. 

Fluid flow due to forced or natural convection also influences microstructure evolution. The 

model numerically calculates the solution of continuum equations for thermal fields and couples 

the solution with a cellular automata model that computes the evolution of grain structure with 

solidification time. Measured flux values are used to derive the evolution of the thermal fields 

with solidification time. Using measured temperature values at specific points along the metal-

mold interface, realistic flux values at the metal-mold interface are derived which are then fed 

into the Computation Fluid Dynamics (CFD) modeling tool, FLUENTTM, to obtain accurate 

thermal fields across the casting domain. These fields are used in the cellular automata model 

developed in FORTRANTM to predict the microstructure evolution and the grain size distribution 

as the solidification proceeds 84.  
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MODULE 3: Structure-Property Correlation of Yield Stress (f3 in Figure 6.6) 

The variation of the periodic hexagonal array is used to predict the local stress and strain fields 

and stiffness properties based on the stress field, the volume fraction of the phases and the 

constituent mechanical properties87,88. The composite structure region is assumed to be a two 

dimensional hexagonal model with uniform grain size and is split into a  hard phase comprised 

of uniformly distributed TiB2 particles in the Al-Cu alloy and a soft phase consisting of the pure 

Al-Cu alloy. A representative volume element is selected to cover the entire macroscopic 

volume of the composite. The elastic and plastic behaviors of the constituent phases are either 

described using experimental values or calculated theoretically43. Grain size is varied using the 

Hall-Petch relation and a numerical solution for the elastoplastic behavior of the PHA RVE (i.e., a 

stress-strain curve) and subject to uniform tensile stresses is calculated using the finite element 

software ABAQUSTM. Yield strength values are calculated using 0.2% offset from the linear part 

of the stress-stress curve 89. 

 

MODULE 4 : Property-Performance Depth Correlation (f6 in Figure 6.6) 

A finite element analysis is performed for the pressure hull to determine the collapse depth of 

the underwater submersible. A cylindrical shell with hemispherical end caps is considered. The 

stress distribution and buckling pressure of the pressure hull are predicted using the finite 

element package ABAQUSTM 91. A factor of safety of 1.5 is used for deriving the relationship 

between collapse pressure and safe depth. 

 

Step 2: Subsystem Level Analysis 

Second order response surface models are used to capture the non-linearity of the input-output 

relationships. Designers can opt for higher order response surface models or other 

metamodeling techniques to model highly non-linear phenomena. Central composite designs94 

(CCDs) are used for calibrating the full quadratic response surface models from the simulation 

models at the subsystem level. CCDs estimate linear, quadratic and interaction effects in a 

minimum number of simulation runs.  The input variables are scaled from -1 to 1 in the CCD to 
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calibrate second order response surface models represented as65: 

                                 

2
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1 1

i i ii i ij i j

i i i

Y x x x x
 



    
  

                                              (6.1)                                   
 

Where,      i=1, 2… k; j=1, 2… k are the coefficients and xi, xj are the input design variables, Y is 

the response, ε are the random errors and   the number of design variables. The upper and 

lower confidence intervals of the simulation metamodel are calculated as60,11,46:                                    

                                                             
upper CIY Y Y                                                                   (6.2)                                                  

                                                            lower CIY Y Y                                                                    (6.3) 
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                                        (6.4)                                                  

CIY denotes the statistical bounds for a 100(1-α) % confidence interval. n is the number of 

simulation runs and p is the total number of regression coefficients, MSE is the mean square 

error, X is a (n x p) matrix of the levels of regression variables and ox is a (p x 1) matrix of 

regression variables for the particular point I am calculating the confidence interval. CIY is the 

response variation due to insufficient data (MPU) and does not include the variability (NU) in the 

input variables. Assuming the variations ix  in the input variables are small, the maximum and 

minimum responses are estimated using a first-order Taylor series expansion and are given by: 

                                                           max upper IPY Y Y 
     

                                                         (6.5)         
 

                                                           max lower IPY Y Y                                                                  (6.6) 
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                                                                    (6.7) 

 IPY arises due to variability in the input variables. The discretization resolution in IDEM is 

twice the deviation, ix  in the input variables (NU) so as to cover the entire design space. We 

note that the deviation ix
 
in inputs to models higher in the multiscale hierarchy (xi is an output 

response from a model at lower hierarchy) are set independently assuming worst case scenario 

and are not equal to the variability of the output response. The α value is 0.05, i.e., a 95% two- 
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sided confidence interval. The response surface models for the simulation models, calculated in 

MATLABTM  along with their MSE and 2R  statistic are as follows: 

 

2 2 2

2 2 2 2( ) 3.12 0.36 1.13 0.27 0.37 0.07 ;  6.2 10 ; 0.97p TiB TiB TiBd m x T x T x T MSE R          (6.8)     

2 2 2

2 2 2( ) 30.25 12.67 22.35 0.61 14.47 6.84 ;  10.88, 0.99TiB TiB TiBd m x C x C x T MSE R         (6.9) 

2 2

2 2

2 2 2

2

( ) 444.11 0.62 10.62 61.62 9.94 14.94 48.94

5.50 19.50 6.50 ;  561.54; 0.87

TiB p TiB p

TiB p TiB p

MPa x d d x d d

x d x d d d MSE R

       

    
                    (6.10)   

2 2 2( ) 1000(5.64 6.77 0.65 2.67 0.002 0.72 );  24543; 0.99D m t t t MSE R                (6.11) 

 

Step 3: Inductive Design Exploration Method (IDEM) 

The solution for IDEM takes the structure as shown in Figure 6.7. Ranged sets of performance 

targets are set in the top level of the multiscale design problem and based on property-

performance [PP] mapping models, ranged sets of feasible property space discrete points are 

inductively passed to the structure-property [SP] domain in the multiscale system. In this 

chapter, feasible points are defined as a discrete evaluation point whose output response falls 

within the constraint boundaries. The independent variable, t, is selected by maximizing design 

freedom, i.e., the value which maximizes the number of discrete feasible sets in the property 

domain range. The same procedure is repeated with the structure-property [SP] mapping 

models and ranged sets of feasible structure are passed into the process-structure [PS] domain. 

Finally we get ranged sets of feasible process variables. A dummy model is introduced for the 

volume fraction as 
2TiBx is an input to both PS and SP domains. The best robust solution against 

MSU, MPU and NU is calculated by adjusting the hyper dimensional-error margin indices (HD-

EMIs) obtained from each mapping model.  HD-EMIs indicate the degree of reliability of chosen 

design variables that it will satisfy hierarchical constraints or bounds. 
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 Figure 6.7: IDEM for multiscale design 

 

The HD-EMI values are calculated in each output direction in a hyper-dimensional output space, 

Figure 6.8. HD-EMI for output direction i, is represented as: 

                                                   
| ( ). |

min
| ( ). |

j i

i i

j i

mean B u
HD EMI

mean B u

 
     

                                       (6.12) 

Where j is the set of all points on constraint boundaries, mean represents a vector of output 

responses, jB  is one point on the constraint boundary, 
i

jB  is a projection vector of jB onto the 

output range along the desired output direction and iu  is a unit vector of output responses 

along the output direction46. iHD EMI is the minimum of all values calculated based on all 

constraint boundary points. An HD-EMI value greater than 0 indicates the mean output vector is 
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within the constraint boundaries, i.e., is a feasible input point, while a value of 1 indicates that 

the maximum or minimum output deviation coincides with nearest constraint boundary point 

and hence is robust against modeled NU and MPU. The corresponding input point will be 

referred to as a robust point. A higher value of HD-EMI indicates the output range is further 

away from constraint boundaries and has a larger margin for potential error in the mapping 

model due to MSU for estimating output range. Exact constraint boundaries are identified in a 

top-down manner using the bisection method to avoid propagated errors, i.e., combined effect 

of NU and MPU. IDEM is executed and feasible design points are identified in the property, 

Figure 6.9; structure, Figure 6.10; and processing, Figure 6.11, design space based on the 

interlinked mapping models. 

 

 

Figure 6.8: HD-EMI calculation in an output direction46 
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Figure 6.9: Feasible property (MODULE 4) design space 

 

Figure 6.10: Feasible structure (MODULE 3) design space 
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Figure 6.11: Feasible and robust processing design space (MODULES 1 and 2) 

 

The feasible space of the volume fraction of TiB2 (processing variable) lies within the ranges 

[0.0225, 0.035]; [0.045, 0.0525]; [0.06, 0.0675] and [0.075, 0.08] (Figure 6.11) while the robust 

space lies within the ranges [0.0225, 0.035]; [0.045, 0.0525]; [0.06, 0.0675]. This indicates that 

the achieved space of the volume fraction of TiB2, [0.02, 0.035]; [0.045, 0.0525]; [0.06, 0.0675] 

and thickness of shell, 10.25 mm, guarantees satisfactory submersible performance while 

maintaining all quantifiable uncertainty (MPU and NU) and its propagation within bounds. 

The best solution for the multiscale system, i.e., values of the design variables, is calculated by 

minimizing the deviation of the HD-EMIs from target values (10 for all models and equal 

weights). This solution along with the achieved HD-EMI values and system level performance is 

shown in Table 3. The HD-EMI values indicate that f2 and f6 are relatively robust against MSU 

while the low values for f1 and f3 indicate the best compromise solution is close to the 

constraint boundaries. The performance exceeds the requirements for the submersible and the 

achieved depth (D) from f6 is 6098 meters. The number of robust points is 237 from a resolution 

space of 13167 points. I compare the HD-EMI values from the simulation models, depth 

performance after simulation model refinement and number of robust points in Section 6.3.4.  
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The feasible design space points are used for improvement potential calculations. 

Table 6.3: System level solution 

f1 (dp) f2 (d) f3 (ς) f4 (ρ) f5 (k) f6(D) f7 (W) f8 (Topr) f9 (Top) 

HDEMI1 HDEMI2 HDEMI3 HDEMI4 HDEMI5 HDEMI6 HDEMI7 HDEMI8 HDEMI9 

1.06 5.82 116 2.24 3.81 8.92 17.62 4.04 5.53 

Design Variables Performance 

2TiBx  T(K) C(K/sec) t(mm) D(m) W(kgs) Topr(hrs) Top(C) 

0.035 1073 0.536 10.25 6098.81 15.31 13.50 17.52 

 

 

Figure 6.12: Schematic for improvement potential trade-off 



 

   228 

6.3.3. Information Economics 

 

In the context of simulation-based design of multiscale systems, a simulation model is a source 

of information69. Using information economics, we wish to decide the best course of action for 

resource allocation to gather additional information based on available information. The 

additional information should specifically mitigate MPU while meeting performance 

requirements. To this end, the improvement potential (Pi)
69 metric developed by Panchal and 

co-authors capture the expected value of information in terms of utility70,71.  A high 

improvement potential value indicates a greater value associated with refining the simulation 

model compared to a low value. The metric only quantifies the benefit of gaining more 

information. It does not account for the effort involved in procuring additional information. In 

this section the improvement potential metric is defined in terms of the response surface 

models to suit robust design of multiscale systems and develop cost-benefit functions for 

auxiliary runs on mitigating MPU in a simulation model. These functions are used to decide 

resource allocation by reaching a trade-off between reduced uncertainty and increased effort 

for additional simulation runs. The first step towards developing the cost-benefit functions is to 

predict the change in improvement potential with additional simulation runs. Concepts from 

value of information66-68 and response surface modeling60  are used to predict this change. 

Specifically, the predicted value without executing the simulation model is termed the ex-ante 

improvement potential and the realized value based on the refined metamodels is termed the 

ex-post improvement potential. Comparing the ex-post improvement potential against the ex-

ante improvement potential metric guides the predictive capabilities of the ex-ante metric. The 

steps for information economics relevant to the multiscale problem are shown in Figure 6.12. In 

Section 6.3.3 the improvement potential metric for the simulation models and system is 

developed. Also, the cost-benefit models are developed in terms of the ex-ante improvement 

potential. 

 



 

   229 

Step 4: Improvement Potential 

IDEM gives us the set of discrete feasible points in the design space at different scales in the 

multiscale problem. The improvement potential metric must capture the scope of model 

refinement. Using the feasible sets from IDEM, the improvement potential for the simulation 

model, iIP  is defined as:                 
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                                  (6.15) 

The subscript i in iIP  denotes the simulation model for improvement potential metric. The 

improvement potential metric decreases as the error bounds are reduced and will 

hypothetically be 0 when    upper lowerY Y  suggesting no further model refinement is possible. 

However, this cannot be realized statistically unless MSE=0, i.e., the model fits the data 

perfectly. The improvement potential metric is calculated over all set of feasible design points 

(m) to get a reflection of the scope of refinement without bias. I note, the feasible design points 

refer to corresponding output responses being inside the constraint boundaries and robust 

points to the entire range being inside the boundaries. It is expected that few feasible points to 

get converted to robust points as the associated output range decreases with simulation model 

refinement. The improvement potential metric is defined to capture the degree of uncertainty 

in model parameters due to insufficient data, i.e., in terms of    upperY  and lowerY  related to 

statistical error bounds for the response surface. Ymax and Ymin additionally incorporate the 

variability as first order Taylor series expansions.  As variability is irreducible, it is not 

considered. The resolutions of design variables in IDEM are twice the variability so as to 

continuously cover the design space. However, discretization errors occur in the vicinity 

between feasible and infeasible points and can be reduced by more conservative resolutions at 
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an increased computational cost. 

 

The improvement potential values associated with f1, f2, f3 and f6, i.e., the simulation models in 

the multiscale system are 0.527 ( 1IP ), 0.242 ( 2IP ), 0.25 ( 3IP ) and 0.109 ( 6IP ) respectively. 

These values suggest that f1 has the maximum potential for refinement while that of f6 is the 

least. 

 

Step 5: System Level Improvement Potential 

At the system level, (i) determine the weights for the individual simulation models as a function 

of the impact on the system level performance; (ii) calculate the overall Improvement Potential 

of the system. A convergence criterion is set as an indication of when to stop further simulation 

model refinement. This criterion is based on the current improvement potential, the α value for 

confidence interval and the computational resources available to a system level designer. A 

system level designer has freedom to choose this value based on the degree of uncertainty 

mitigation desired. A higher convergence criterion for the overall system level improvement 

potential should be set for larger percentage of confidence intervals, i.e., for small α values as 

convergence may be statistically unattainable if it is set too low. 

 

i. Weights for Simulation Models: The relative weight of importance for a simulation 

model is calculated as a multiplicative factor of the weight of the performance 

objective and the corresponding degree of influence of its output. It is to be 

summed over all performance objectives. This is: 

                                                               Pi O e

PO

W W H                                                                     (6.16) 

Where, iW  is the weight of the simulation model, WPO, is the weight of the system 

level performance objective, and eH is the highest exponent of the simulation 

output parameter that appears in the performance function. As we consider second 
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order response models for simulation models or closed form empirical functions for 

other models in the multiscale system, eH can be derived explicitly. The product of 

POW and eH  is summed over every performance objective it appears in and a 

cumulative weight for the simulation model is obtained. The designer can also assign 

weights independently as per his/her discretion.  

 

Weight for f1: The output from f1 (
pd ) appears in one performance objective, i.e., 

depth (D). Depth is a function of yield strength with highest order 2, i.e., D=

  2

0 1 2a a f a    . Also, yield strength ( )  is a second order function of   pd , i.e. 

  =   2

0 1 2p pa a f d a d 
.
 

Therefore it is derived D=  2 3 4

0 1 2,  ,p p p pa a f d d d a d   and the highest exponent 

of  
pd  in depth (D) is 4. If all performance objectives have equal weight of 0.25, the 

weight of f1 will be 0.25x4, i.e., 1. 

Weight for f2: The output from f2 (d) appears in one performance objective, i.e., 

depth (D). Following a similar calculation, the weight of f2 is determined to be 1. 

Weight for f3: The output from f3 ( )  appears only in the performance objective 

depth (D). As depth is a function of yield strength with highest order 2, the weight of 

f3 is 0.5. 

Weight for f6: The weight of the objective D will be its performance weight, i.e., 

0.25. 

Thus, models (f1 and f2) in lower hierarchy of the multiscale system have a higher 

weight suggesting there is greater value in mitigating the uncertainty in these 

models. This is justified as the uncertainty is these models will be propagated to a 

greater extent in the design chain as compared to ones in the top of the hierarchy. 
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ii. System Improvement Potential (IP): The system improvement potential is 

calculated as a weighted average over the weights of the simulation models ( iW ) 

and their corresponding improvement potentials ( iIP ). The system level designer 

sets a convergence criterion cIP
 
for the system improvement potential and further 

simulation model is stopped once that threshold value is reached, i.e., IP≤ cIP . The 

system level improvement potential  can be expressed as:                                                                                 
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                                                          (6.17) 

Where s is the number of simulation models in the multiscale system. Based on the 

weights and improvement potential values of the simulation models the system 

improvement potential is determined to be 0.335. It is checked for three 

convergence criterion equal to 0.25, 0.20 and 0.15 

 

Step 6: Ex-ante Improvement Potential 

Cost-benefit models are developed based on the ex-ante improvement potential. It is noted that 

although this ties to the sample size determination for an experiment, traditional sample size 

determination techniques are based using the operating characteristic curve for null hypothesis 

treatment or a trial and error confidence interval estimation47. These techniques are only 

suitable for calibration experiments and not my simulation-based multiscale design task as there 

are several computational models (experiments) and cost factors which need to be accounted 

for. Developing cost-benefit models helps scale the benefit of uncertainty mitigation in terms of 

the common parameter-computational time. Assigning computational resources based on the 

iIP  metric can lead to inefficiency because a model with a high iIP
 
value can have significant 

computational time. Instead, there may be greater value in using this resource to run a model 

with lesser computational time. The underlying mathematics for deriving the cost-benefit 

models is presented below. Combining Eqs. 6.13, 6.14 and 6.15, the improvement potential 
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metric is: 
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Where n is the number of simulation runs. The mean square error is calculated as:  
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 ie are the residual errors between the actual values and the fitted values by the regression 

model.  A critical part of evaluating the ex-ante improvement potential is to estimate how the 

mean square error will vary with an increase in the number of data points. It is assumed the 

residual error per observation, e will remain constant. However for small sample sizes as with 

the CCD, this will underestimate the MSE95. Hence the predicted MSE’  is modified using Eqn. 

6.20:  
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The factor of 1 in the denominator can be interpreted as Bessel’s correction for the sample MSE 

from the population of (unrealized) simulation runs. Therefore for r additional runs or data sets, 

the MSE’ will vary as: 

2( ) ( )( 1) ( )( 1)
' '

1 ( 1)( ) ( 1)( )
r

n r e n r n p n r n p
MSE MSE MSE
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 (6.21) 

Where the value for MSE’ for n runs is known, i.e., MSE. Varying r from 1 to larger values, the ex-

ante improvement potential is determined as a function of additional simulation runs as:  
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 The subsystem level designers can approximate the time required for r simulation runs as  
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i iT a rt   where a in the set up time and the constant it  
represents the time per simulation 

for the thi  simulation model with r additional runs. Thus the improvement potential can be 

evaluated as a function of computational time. This function will decrease with increase in 

computational time and is represented using an exponential function shown in Eqn. 6.23, where 

the constants 0a , 1a , 2a , 3a  and 4a  are found by a least square fit in MATLABTM. These functions 

are calculated by subsystem modelers and used by the system level designer for trade-off and 

assigning computational resources. 

                                               
' '

2 4'

0 1 3' exp exp
i iT T

a a

i iIP f T a a a                                         (6.23) 

Thus the ex-ante improvement potential metric is devised in terms of the number of simulation 

runs and further correlated with the computational time/cost. These functional relationships are 

used by the system level designer to achieve trade-off and assign resources for further 

simulation refinement. For my multiscale system no set-up time  is assumed, i.e. a=0; and the 

functions between improvement potential and computational time are represented as: 
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Step 7: Trade-Off Mechanism 

An ideal scenario is assumed where a system level designer has complete information about the 

cost functions and ex-ante improvement potentials and there is full information exchange 

between the system level designer and subsystem level modelers. Constraint optimization 

techniques are used to minimize the total computational time in order to order to reach the 
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convergence criterion cIP . 
s

i

i 1

TT


  is minimized with constraints 'c IP IP
 
where 'IP  is the 

weighted system level ex-ante improvement potential metric. The solution for the number of 

runs for each model approximated to the nearest integer value is shown in Table 6.4.  

Table 6.4: Trade-off solution 

Convergenc

e 

Criterion 

Simulation 

Model 

Time for runs 

(hours) 

Number of 

runs 

 

0.25 

f1 34.30 ~1 

f2 19.28 ~4 

f3 7.19 ~2 

f6 2.05 ~4 

 

0.20 

f1 108.78 ~3 

f2 31.49 ~6 

f3 21.95 ~6 

f6 3.30 ~7 

 

0.15 

f1 419.40 ~12 

f2 140.33 ~28 

f3 100.59 ~25 

f6 14.75 ~30 

 

 

6.3.4. Step 8: Refine Simulation Models and Iteration  

 

Once the resource allocation has been determined, the simulation models are re-run by the 

subsystem modelers. IDEM in Step 3 gives us the set of feasible solution sets and the simulation 

models are re-run for set of input values for which the improvement potential values are 

maximum. After the re-runs, the modified metamodels and used to re-run IDEM (STEP 3). This 

procedure is continued until convergence is reached. For my multiscale system, the simulation 

models are re-run as per the trade-off solution. The refined response surface models are: 
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Convergence Criterion: 0.25 

2 2 2

2 2 2 2( ) 3.12 0.36 1.13 0.27 0.37 0.08 ;  4.7 10 , 0.98p TiB TiB TiBd m x T x T x T MSE R          (6.28) 

2 2 2

2 2 2( ) 30.15 12.41 22.34 1.03 14.85 6.85 ;  5.26; 0.99TiB TiB TiBd m x C x C x T MSE R         (6.29) 

2 2

2 2

2 2 2

2

( ) 455.39 0.86 11.64 63.11 4.65 0.34 34.34

2.65 7.55 1.65 ;  455.46; 0.87

TiB p TiB p

TiB p TiB p

MPa x d d x d d

x d x d d d MSE R

       

    
                (6.30) 

2 2 2( ) 1000(5.62 6.77 0.65 2.69 0.01 0.73 ;  10609; 1.0D m t t t MSE R            (6.31) 

 

Convergence Criterion: 0.20 

2 2 2

2 2 2 2( ) 3.10 0.40 1.18 0.31 0.37 0.02 ;  6.1 10 , 0.97p TiB TiB TiBd m x T x T x T MSE R         
 
(6.32) 

2 2 2

2 2 2( ) 29.40 12.45 22.23 0.48 15.21 6.84 ;  4.95; 0.99TiB TiB TiBd m x C x C x T MSE R         (6.33)

2 2

2 2

2 2 2

2

( ) 455.91 0.91 11.59 63.27 5.10 0.45 33.48

2.78 7.05 0.88 ;  293.68; 0.89

TiB p TiB p

TiB p TiB p

MPa x d d x d d

x d x d d d MSE R

      

    


       (6.34) 

2 2 2( ) 1000(5.63 6.76 0.65 2.68 0.007 0.84 ;  8420; 1.0D m t t t MSE R            (6.35) 

 

Convergence Criterion: 0.15 

2 2 2

2 2 2 2( ) 3.04 0.44 1.21 .30 0.35 0.004 ;  3.7 10 , 0.97p TiB TiB TiBd m x T x T x T MSE R          (6.36) 

2 2 2

2 2 2( ) 27.89 10.21 17.97 0.04 13.71 5.07 ;  14.01; 0.95TiB TiB TiBd m x C x C x T MSE R         (6.37) 

2 2

2 2

2 2 2

2

( ) 453.63 3.68 8.23 61.61 3.09 0.32 38.95

10.33 0.99 4.44 ;  139.45; 0.89

TiB p TiB p

TiB p TiB p

MPa x d d x d d

x d x d d d MSE R

      

    


                   (6.38) 

2 2 2( ) 1000(5.64 6.69 0.64 2.66 0.02 0.79 ;  7356; 1.0D m t t t MSE R               (6.39) 

 

IDEM is re-run and the cDSP solutions for all three cases are shown in Table 6.5. The ex-post 

improvement potential values for the simulation models are shown against the ex-ante values in 

Table 6.6. We see that the ex-post values are in close comparison with the ex-ante value being 

overestimated apart from f2 (convergence criterion 0.15) and f1 (convergence criterion 0.20 and 
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0.25). The overestimation of the ex-ante value can be elucidated as the simulation models are 

run at the points of maximum improvement potential thus ensuring an advantageous reduction 

in improvement potential. The underestimation for  f2 (convergence criterion 0.15) and f1 

(convergence criterion 0.20) can be explained due to the rise in MSE for the refined response 

surface model suggesting the behavior of microstructure and precipitate evolution is highly non-

linear and require higher order response surface models to capture the simulation behavior. The 

underestimation for f1 (convergence criterion 0.25) is within tolerance limits for only one 

additional simulation run. The weighted system level improvement potential is equal to 0.239 

(convergence criterion 0.25), 0.196 (convergence criterion 0.20) and 0.127 (convergence 

criterion 0.15) suggesting the convergence criterion has been reached for all three cases and no 

further simulation refinement is necessary. Thus for: 

 

 Convergence Criterion 0.25,  a total computational time of 499.5 hours (433.5 hours for 

the initial CCD runs and 66 hours for iterated runs) is required, 

 Convergence Criterion 0.20, 599 hours (433.5 hours for the initial CCD runs and 165.5 

hours for iterated runs) is required, and  

 Convergence Criterion 0.15,  1120.5 hours (433.5 hours for the initial CCD runs and 687 

hours for iterated runs) is required 

 

The system level improvement potential has reached the corresponding convergence criterion 

in a single iteration for all three cases.  The robust solution for the design variables and the 

system performance is the solution shown in Table 5. The HD-EMI values progressively increases 

with simulation refinement indicating greater robustness against MSU. The weighted average 

HD-EMI value for the 4 simulation models increases from 4.24 for initial CCD runs to 6.49 for 

criterion 0.25, 7.52 for criterion 0.20 and 8.39 for criterion 0.15. The HD-EMI metric can be used 

to gauge qualitatively the relative levels of refinement required to mitigate MSU to achieve 

greater robustness at the system level. There is a progressive increase in achievement of safe 
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depth to 6155 meters as compared the 6098 meters from the first cDSP solution suggesting 

simulation model refinement was beneficial in terms of performance objectives at the system 

level. The number of robust points increases to 332 points for criterion 0.25, to 380 points for 

criterion 0.20 and finally 385 points for criterion 0.15, Figure 6.13, indicating an increase in 

robust space due to simulation model refinement. The range for robust points spans from 

[0.0225, 0.075] for criterion 0.15 as compared to [0.0225, 0.0675] for initial CCD runs suggesting 

a few infeasible/feasible points have been converted to robust points by uncertainty mitigation. 

The solution in Table 6.5 is robust against all forms of uncertainty as determined by IDEM with 

the achieved degree of refinement determined by the system level improvement potential 

metric. Contingent on the assumption of MSE variation, the algorithm provides the most 

effective resource allocation for further simulation refinement to converge below the 

convergence criterion and reach a robust solution for the multiscale system. 

Table 6.5: System level solution 

Convergence Criterion:0.25 

f1 (dp) f2 (d) f3 (ς) f4 (ρ) f5 (k) f6(D) f7 (W) f8 (Topr) f9 (Top) 

HDEMI1 HDEMI2 HDEMI3 HDEMI4 HDEMI5 HDEMI6 HDEMI7 HDEMI8 HDEMI9 

1.01 8.47 1.32 2.25 3.7 15.17 17.2 4.03 5.53 

Design Variables Performance 

2TiBx  T(K) C(K/sec) t(mm) D(m) W(kgs) Topr(hrs) Top(C) 

0.036 1084 0.743 10.25 6135.74 15.31 13.51 17.52 

Convergence Criterion:0.20 

f1 (dp) f2 (d) f3 (ς) f4 (ρ) f5 (k) f6(D) f7 (W) f8 (Topr) f9 (Top) 

HDEMI1 HDEMI2 HDEMI3 HDEMI4 HDEMI5 HDEMI6 HDEMI7 HDEMI8 HDEMI9 

1.64 8.86 1.71 2.18 3.57 6.03 7.64 4.05 5.52 
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Table 6.5 continued 

Design Variables Performance 

2TiBx  T(K) C(K/sec) t(mm) D(m) W(kgs) Topr(hrs) Top(C) 

0.033 1087 0.896 10.25 6151.59 15.33 13.50 17.52 

Convergence Criterion:0.15 

f1 (dp) f2 (d) f3 (ς) f4 (ρ) f5 (k) f6(D) f7 (W) f8 (Topr) f9 (Top) 

HDEMI1 HDEMI2 HDEMI3 HDEMI4 HDEMI5 HDEMI6 HDEMI7 HDEMI8 HDEMI9 

3.78 8.73 2.71 2.11 3.25 18.37 17.65 4.06 5.52 

Design Variables Performance 

2TiBx  T(K) C(K/sec) t(mm) D(m) W(kgs) Topr(hrs) Top(C) 

0.029 1082 0.20 10.25 6155.78 15.36 13.50 17.52 

 

Table 6.6: Ex-ante vs. Ex-post values of improvement potential 

Convergence 

Criteri

on 

Improvement 

Potential 

f1 f2 f3 f6 

0.25 Ex-ante 0.425 0.133 0.205 0.058 

Ex-post 0.451 0.106 0.176 0.040 

0.20 Ex-ante 0.337 0.119 0.168 0.049 

Ex-post 0.366 0.100 0.132 0.032 

0.15 Ex-ante 0.246 0.887 0.130 0.375 

Ex-post 0.211 0.105 0.056 0.014 
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Figure 6.13: Robust processing space for 0.25, 0.20 and 0.15 convergence criterion. 

 

6.4. Thoughts on What has been Presented and What is Next 
 

The question posed in this chapter is ‘How should a system level designer allocate resources for 

auxiliary simulation model refinement while satisfying system level design objectives and 

ensuring robust process requirements in multiscale systems?’ In multiscale systems a qualitative 

answer is not possible due to the hierarchical nature of subsystem integration and complex 

coupling of the dependent and independent parameters. To provide a quantitative answer to 
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the question, sources of uncertainty are differentiated as MSU, MPU and NU. An algorithm to 

mitigate MPU arising due to insufficient data is developed using constructs from robust design 

and information economics. Using this algorithm, a system level designer is able to allocate 

resources as follows: 

 Robust design against all three types of uncertainty and its propagation is facilitated 

using IDEM for multiscale systems. Ranged feasible sets are identified in addition to a 

single robust solution enabling use of these ranges for improvement potential 

evaluation until a final solution is reached. It assists in avoiding design iteration due to 

shifts in model responses.   

 MPU due to insufficient data is quantified by the improvement potential metric in terms 

of statistical confidence intervals of a second order response surface model. The metric 

can be extended to higher order response surface models or other metamodeling 

techniques in order to represent non-linear phenomena of various fidelities. 

 Correlation between benefit in terms of improvement potential and associated effort is 

made possible by the ex-ante improvement potential metric based on an empirical 

variation of MSE. It allows designers to account for computational cost in addition to 

uncertainty quantification and differentiates this metric from existing value-of-

information based metrics. 

 The computational time for iterations is minimized using constraint optimization 

techniques, hence allowing intelligent and judicious allocation of resources. Although 

the algorithm does not guarantee convergence in a single iteration, it assists a system 

level designer to allocate resources efficiently and enables the advantageous mitigation 

of MPU to reach the convergence criterion in a small number of iterations.  

 Modularizing the algorithm into system and sub-system levels and decoupling robust 

design and information economics evaluations allows parallel computations in 

distributed design environments. Parallel computing techniques in combination with 

efficient resource allocation can cut down convergence time for a final robust solution. 
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This algorithm lays a general framework applicable to any multiscale system with a complex 

interlinking of simulation models. The consideration of simulation model weights in developing 

system level ex-ante improvement potential addresses the need for uncertainty mitigation at 

different levels of hierarchy. Coupled with the power of IDEM in identifying feasible ranged sets 

of designs, the proposed algorithm effectively allocates resources in simulation-based multiscale 

systems by integrating constructs from robust design and information economics. The focus in 

this chapter was on mitigating MPU and the method lays the foundation for holistic uncertainty 

management in simulation-based multiscale systems. The current algorithm uses second order 

response surface models to capture the input-output relationships. In the I-Statement in Section 

7.2, posits have been laid down to choose the order of response surface based on the 

computational cost and the physical phenomena governing the simulation model. Also, the 

algorithm focuses on reducing model parameter uncertainty without consideration of 

performance objectives. Mixing performance measures with robust design measures is not a 

suitable approach. However, brief comments have been added to the I-Statement to suit 

uncertainty mitigation in terms of performance objectives. Also, as the focus was on mitigating 

MPU, additional insight cannot be obtained about the uncertainty from the value of the 

improvement potential metric alone. Separate metric needs to be evaluated for mitigation of 

MSU discussed in the I-Statement in Section 7.2.  

 

In this chapter the secondary research question 2  in Section 4.1 was answered by integrating 

the constructs of robust design and information economics. Uncertainty modeling was 

systematically established in multiscale systems and validated the hypotheses proposed for the 

secondary research question. The eight step algorithm provides a framework for efficient 

resource allocation to mitigate MPU. Results were achieved and it fits into the Empirical 

Performance Validity, i.e., Quadrant III of the validation square.  The organization of work is 

shown in Figure 6.15. 
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 Figure 6.14: The validation square 
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Chapters 1 Introduction: Key 
constructs critical for 
microstructure mediated design in 
a multiscale system 

 Chapter 4 Tools: Explaining the 
tools useful to achieve uncertainty 
mitigation after iterations in a 
simulation model refinement. 

 

 

Chapter 4 Framing the 
research questions and 
hypotheses: Based on the 
structural validity of the 
core constructs, gaps are 
identified and research 
questions are proposed. 
This approach is 
evolutionary and not like 
standard validation 
square approach. 

Chapters 2 and 3 Validation of the IDEM 
and cDSP problem for the proposed 
method: In these chapters we apply the 
proposed example to our foundational 
constructs of IDEM and cDSP. We firstly 
answer if the simulation based UAV design 
problem appropriate for validation of the 
method? Then we document the result data 
from the comprehensive example using 
IDEM and cDSP and move to the next the 
next step to validate the proposed 
hypotheses 

 

 

Chapters 5 and 6: Validation of the results 
and hypotheses: Validate based on the 
obtained results for the multiscale UAV 
problem. Demonstrate materials and 
product design significance and 
contributions 

 

Chapter 7 Closure: 
Building confidence of 
the utility of the method 
in general multiscale 
simulation-based design 
problem. 

Justifying the 
comprehensive example 
is the representative 
problem of multiscale 
simulation-based design 
refinement. 
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CHAPTER 7 

CLOSURE 

 

In this chapter, if the objectives for the work have been achieved and if the intellectual 

questions posed in Chapter 3 have been addressed.  Finally, future work is discussed 

and the relevant contributions of the work are outlined in the I-statement.  The relevant 

section titles and the status of each section are as follows. 

7.1. A Look Back: Revisiting Research Questions and Hypotheses 
 

The primary research question is: 

‘How does one manage and mitigate uncertainty in simulation-based multiscale systems?’  

It is postulated that integrating constructs from robust design and decision support systems 

facilitate uncertainty management while integrating constructs from robust design, information 

economics and decision support systems aid mitigation of uncertainty. 

To address the primary research question two secondary research questions are postulated: 

1. How can we address model parameter uncertainty, model structure uncertainty, natural 

uncertainty and propagated uncertainty in multiscale systems? 

2. How does the system level designer allocate resources for auxiliary simulation based 

model refinement while ensuring satisfaction of system level design objectives and 

product requirements for multiscale integrated product and material design? 

To answer the first secondary research question the following three hypotheses are postulated: 

1.1 Inductive Design Exploration Method (IDEM) incorporates model parameter uncertainty, 

propagated uncertainty, natural uncertainty and model structure uncertainty to give feasible 

solution sets. 

1.2 IDEM uses hyper dimensional error margin index metric (HD-EMI) to manage model structure 

uncertainty 
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1.3 Compromise Decision Support Problem (cDSP) can be used to reach a trade-off amongst HD-

EMI values to mange model structure uncertainty and hence gives a single robust solution 

against model structure uncertainty, model parameter uncertainty, propagated uncertainty 

and natural uncertainty. 

To answer the second secondary research question following four hypotheses are postulated: 

2.1 Integrating IDEM and cDSP facilitates giving single robust solution against all forms of 

uncertainty. 

2.2 Response Surface Modeling allows us to define the improvement potential metric in terms of 

confidence intervals for mitigating model parameter uncertainty. 

2.3 Concepts from value of information and response surface modeling can be integrated to 

develop predicted improvement potential and corresponding cost functions 

2.4 Optimization techniques can be used to reach a trade-off among cost functions.  

The first of the secondary research questions dealt with management of uncertainty in 

multiscale systems. Specifically management of model parameter uncertainty (MPU), model 

structure uncertainty (MSU), natural uncertainty (NU) and propagated uncertainty arising in 

multiscale systems are considered. The sources of these four kinds of uncertainty were 

described in context of simulation based multiscale systems. A comprehensive multiscale system 

was developed interlinking simulation as well as theoretical models over multiple length and 

time scales. The multiscale system comprised of material models in the process-structure (PS) 

and structure-property (SP) correlation. These material models simulated the microstructure 

and developed the property space for the material considered, i.e., in-situ aluminum based 

metal matrix composites. Further, simulation tools and theoretical models were used to map 

into the performance space for the product using property-performance (PP) relationships.  

Thus the mapping models moved in a bottom-up manner from the processing space to the 

structure space to the property space and finally to the performance space. Based on the 

materials processing steps involved and mechanical design requirements, the analysis of the 
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material and the structure was carried out using nine models (Section 5.2) : 1) precipitation 

model of the metal, 2) model of the evolution of microstructure in PS domain, 3) model for yield 

strength, 4) model for density, 5) model for thermal conductivity in SP domain and 6) model for 

depth, 7) model for time of operation, 8) model for weight and 9) model for operating 

temperature in the PP domain. The first three models and model for depth were simulation 

models and the rest were theoretical or empirical models considered.  The sources of 

uncertainty arising in the simulation models as well as theoretical models were understood and 

quantified when possible.  NU was quantified as a first order Taylor series expansion, MPU was 

quantified in terms of confidence intervals in response surface models and a metric indicating 

reliability of model performance against model structure uncertainty was incorporated, i.e., HD-

EMI for multiscale system design. The constraints for HD-EMI were set as 1 indicating robustness 

against MPU and NU. The information from the response surface models and corresponding 

uncertainty bounds were input to IDEM which is capable of managing uncertainty in hierarchical 

systems. IDEM was employed to identify robust sets of solution against MPU and NU in the 

property, structure and processing space given performance requirements in an inductive top 

down fashion. PU was controlled by developing exact constraint boundaries using the bisection 

technique while moving top-down from performance space to processing space. Thus bottom-

up analysis and top-down exploration were combined in IDEM based on Olson’s material design 

hierarchy over SP, PS and PP domains in Section 5.3. Once robust sets of design variables were 

identified against MPU, NU and MPU we proceeded to manage model structure uncertainty by 

setting target goals for HD-EMI metrics in models and the weights for the target achievements. 

A higher value of achieved HD-EMI indicated greater robustness against model structure 

uncertainty which is difficult to quantify. The target values, individual models, corresponding 

uncertainty bounds were input to cDSP to reach a trade-off among possible sets and emerge 

with a single solution with the highest weighted sum of HD-EMI values. This single solution from 

the robust solution sets is most reliable against model structure uncertainty. Thus all four kinds 

of uncertainty MPU, NU, MSU and PU are managed in Section 5.3.   
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To summarize the conclusions in Section 5.4: 

 NU or variability is dealt with using first order Taylor series expansion. The discretization 

resolution in IDEM is set equal to the variability in order to cover the entire design 

space. 

 MPU is managed by defining confidence intervals for response surface models. 

 PU is alleviated by developing exact constraint boundaries in a top-down manner using 

bisection technique. While passing the information in a top-down manner, the HD-EMI 

value is constrained to be greater than one which indicates robustness against NU and 

MPU. 

 MSU is managed by trading off the HD-EMI values from the robust sets of solution using 

cDSP technique with a weighted sum deviation function. The deviation function is 

minimized for set HD-EMI goals. 

 

The second of the secondary research questions dealt with mitigation of uncertainty in 

multiscale systems. The types of uncertainty are classified as reducible or irreducible. Natural 

uncertainty is irreducible in nature. Model parameter uncertainty and model structure 

uncertainty are reducible in nature. Propagated uncertainty (PU) is a compounded effect of the 

other three types of uncertainty and hence it can be mitigated by reducing model parameter 

uncertainty or model structure uncertainty. The IDEM technique employs exact constraint 

boundary technique and hence minimizes discretization error due to discrete resolution space 

and aiding mitigation of PU. Specifically mitigation of model parameter uncertainty (MPU) was 

considered in simulation models. Using the knowledge gained from the first secondary research 

question, IDEM was employed in conjunction with cDSP to identify a single solution from the 

feasible solution sets. A single solution once the level of improvement in simulation models has 

been reached is calculated using the cDSP and setting constraint for HD-EMI values to be greater 
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than 1. The error bounds developed for response surface model use the Taylor series expansion 

for NU and confidence intervals for MPU. As the concern is only mitigating MPU, the 

improvement potential metric is defined in terms of the lower and upper confidence intervals 

for the response surface models. The initial response surface models were built using central 

composite design. The improvement potential metric is devised in such a way that a low value of 

improvement potential indicates a lower value for simulation refinement as compared to a 

greater value for improvement potential. The improvement potential is averaged over all 

satisfying points to get a reflection without bias. A weighted sum approach for determining the 

system level improvement potential was developed in terms of the degree of influence of a 

simulation model on final performance objectives. This meant that models lower in the design 

hierarchy had greater weights which is justified as models lower in the hierarchy are propagated 

to a greater extent in the design chain and hence more value rests in mitigating the MPU in the 

lower models of the multiscale hierarchy. A convergence criterion was set to stop further 

simulation model refinement. The predicted or ex-ante improvement potential was then 

developed in terms of the number of subsequent simulation runs. To develop the ex-ante 

improvement potential, an empirical relation to capture the deviation of mean square error 

(MSE) was devised. Though MSE is erratic in nature, this relation guides resource allocation by 

correctly estimating the variation for models that must be adequately described using second 

order models. Overestimating or underestimating the MSE will lead to needless loss of 

resources or design iterations. Then based on the ex-ante improvement potential, 

computational cost functions are developed. This helps gauge scope of refinement in terms of 

the common parameter, computational time. The computational time was minimized in order 

for the system level improvement potential to reach the convergence criterion. The simulation 

models were re-run at points of maximum improvement potential and hence ensured 

advantageous reduction of MPU. With simulation model refinement we saw the number of 

robust feasible sets increased with a decrease in convergence criterion as expected. Also, the 

average HD-EMI value for the simulation models saw a progressive increase with a 

corresponding increase in achievement of depth. Thus simulation model refinement was 
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beneficial in terms of performance achievement and uncertainty mitigation. To summarize the 

conclusions in Section 6.4: 

 

 Robust design against all three types of uncertainty and its propagation is facilitated 

using IDEM and cDSP for multiscale systems. Ranged feasible sets are identified in 

addition to a single robust solution. Ranged sets are used for improvement potential 

evaluation. 

 MPU due to insufficient data is quantified by the improvement potential metric in terms 

of statistical confidence intervals of a second order response surface model.  

 Correlation between benefit in terms of improvement potential and associated effort is 

made possible by the ex-ante improvement potential metric based on an empirical 

variation of MSE.  

 The computational time for iterations is minimized using constraint optimization 

techniques, hence allowing intelligent and judicious allocation of resources. 

 Modularizing the algorithm into system and sub-system levels and decoupling robust 

design and information economics evaluations allows parallel computations in 

distributed design environments.  

Thus MPU is mitigated while MPU, MSU, NU and PU are managed. It sets the set for holistic 

uncertainty management and uncertainty mitigation. The algorithm was developed for MMD 

which is a representative example of a multiscale system. The constructs used to validate the 

primary research questions were founded on fundamental tools applicable to any generic 

system. Experiments were planned using a central composite design approach. Data was 

analyzed using a step-wise regression method to screen out unimportant variables for 

microstructure mediated design and decrease complexity. Integrated metamodels were 

developed using a second order response surface modeling. Prediction intervals were 

determined using statistical confidence intervals. These tools are applicable to any model with 

input and output. The improved IDEM formulation with coupled cDSP can be applied to any 
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generic multiscale system with mapping functions. For uncertainty mitigation the improvement 

potential metric was developed based on response surface and value of information constructs. 

The algorithm can be applied to any complex system with hierarchical mapping between the 

models. Weights for the simulation models were calculated using an empirical approach based 

on degree of influence. Optimization techniques were used to minimize the total computation 

time based on second order exponential functions for ex-ante improvement potential metric. 

The illustration of the algorithm was in terms of the MMD. However, MMD is representative of a 

multiscale design approach with interconnectivity established between the different material 

design hierarchy in terms of mapping functions. For any generic multiscale system, the mapping 

functions can be replaced by the representative mapping functions for the particular simulation 

model. As these methods are applicable to any generic simulation model, we can take a leap of 

faith and conclude the developed algorithm can manage and mitigate uncertainty in multiscale 

systems. This will be strengthened in the I-Statement. Thus we reach Quadrant IV of the 

validation square and establish theoretical performance validity. Figure 7.1 represents the 

validation square in context of the current chapter. 
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and hypotheses: Validate based on the 
obtained results for the multiscale UAV 
problem. Demonstrate materials and 
product design significance and 
contributions 

 

Chapter 7 Closure: 
Building confidence of 
the utility of the method 
in general multiscale 
simulation-based design 
problem. 

Justifying the 
comprehensive example 
is the representative 
problem of multiscale 
simulation-based design 
refinement. 
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7.2. I-Statement 

In my thesis, I explored the paradigm of uncertainty management using the constructs from 

information economics, game theory and robust design. I used IDEM for robust design and 

improvement potential metric for information economics. Game theoretic protocols were used 

to asses different design environment. To develop a system level understanding of what has 

been achieved, I looked in greater detail on types of uncertainty as developed by Choi et al. 

 Variability (natural uncertainty) 

 Model parameter uncertainty (data uncertainty) 

 Model structure uncertainty (model uncertainty) 

  Propagated uncertainty: It is a combined effect of all three types of uncertainty. 

I developed a multiscale problem- integrated material and product design. Microstructure 

mediated design task was investigated by developing models over the hierarchical material 

domain, specifically (Section 2.2):  

 Process-structure (PS) relations: I established feasibility criteria (Thermodynamic, kinetic 

etc.) and constraints (manufacturing, cost etc.) for the composition and processing 

conditions. 

 Structure-property (SP) relations: I established relations between microstructure 

features (composition, morphology, phases etc.) and material properties. 

 Property-performance (PP) relations: I established relations between desired 

performance requirements and corresponding material properties required. 

 

The following are the contributions from the tasks: 
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Table 7.1: Contributions from Chapters 2 and 3 

Chapter Contributions 

 

 

 

 

 

Chapter 2 

Microstructure 

mediated design 

 

 The specific ranges of microstructure attributes are directly coupled 

in the present methodology with the overall systems design 

(material plus submersible). Hence, changes in performance 

capability are directly reflected in the ranges of microstructure 

attributes that emerge from application of IDEM.  

 The approach can be readily extended to include performance 

requirements that impose multifunctional, multiphysics 

requirements on the material design aspect.  Competing modes of 

requirements in materials design are common and serve as a 

compelling basis for the present systems-based robust design 

approach. 

 If one is interested in selecting different process routes (e.g., in-situ 

versus ex-situ Al metal matrix composites or other matrix 

materials), the assessment of feasibility is quite difficult without 

considering the full contributions of the process-structure- 

property-performance relations. In other words, it is not just a 

classical materials selection problem. 

 Inductive Design Exploration Method facilitates top-down searching 

for design solutions including process path and microstructure 

based on bottom-up simulations. 

 The work presented in Chapter 2 constitutes one of the most 

complete applications of IDEM. The primary challenge involves 

managing uncertainty in over seven empirical and theoretical 

models over four levels of design.  

 

 

 

 

 Interdisciplinary iterations between uncoupled design levels are 

eliminated, which can greatly reduce the computing cost in 

multidisciplinary product realization. The complexity of the decision 
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Chapter 3 

Game Theoretic 

protocols for 

multilevel design 

making process is limited by eliminating iterations between 

modules or levels. 

 Each team (player) holds its own cost function and makes decisions 

in its own discipline. Hence, the game based approach greatly 

increases the autonomy and independence of the disciplinary teams 

and enables higher parallelism.  

 The game theoretical protocols are appropriate to model the 

relationships between engineering teams, and enable collaborative 

decision making based on the cooperation styles between teams. 

Java DSIDES is efficient for solving the derived cDSP as it offers the 

provision for hierarchical optimization.  

 The construct introduced in the corresponding chapter can be 

applied to any complex product. Upstream teams make decisions 

that remain superior even though the requirements of the 

downstream teams may not be known yet. Downstream teams can 

specify final solutions without jeopardizing the satisfaction of the 

design requirements in upstream activities. Hence, engineering 

teams can keep the product realization problem open in the early 

stages of product realization, and make decisions that are superior 

from the perspective of all domains.  

 Compared to other approaches my method does not necessarily 

lead to a better design. However, for multilevel design tasks 

especially in the early stages of product realization, the proposed 

construct is deemed efficient. I do suggest that my method is more 

practical in the design of complex engineered systems.  

 

Following these two tasks, research gaps were identified and addressed in Chapters 4 and 5.  

The gaps identified were as follows in Section 4.1: 

1. Clarification of multilevel design: Clear definitions of the multilevel design and 

difference from multiscale system modeling were not clear with respect to 

Table 7.1 continued 
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microstructure mediated design. Also the difference between multiscale modeling and 

multilevel design for multidisciplinary systems in terms of hierarchical materials design 

was not clear from literature and the IDEM and cDSP approaches. 

2. Clear definition of the mathematical challenges for uncertainty management and 

uncertainty mitigation in simulation based multiscale systems: The discussion of the 

mathematical challenges for uncertainty management in hierarchical material design 

using simulation models is scattered throughout literature and not explicit. Also the 

challenges for uncertainty mitigation are not found in literature. 

3. Generality of the IDEM method: The IDEM method has not been tested for general 

design problems that do not necessarily have a one-to-one mapping between variable 

spaces. IDEM can be used for many-to-one mappings implying multiple solutions in the 

inverse exploration. Also the question of coming up with a singular solution in the 

presence of multiple solutions arises. MMD is an example to this end. 

4. Establishment of the compatibility between the decision formalisms of value-of-

information and robust design: Uncertainty mitigation using robust design and 

information economics raises the question about the compatibility between the 

decision formulations. Robust design involves finding solutions insensitive to uncertainty 

while value of information uses utility theory to derive improvement potential metric 

which focuses on maximization of expected utility. Clearly, optimization and robustness 

are incompatible and this warrants further investigation.  

5. Formulation of a fundamental, rigorous definition of the tradeoff problem: The proposed 

method of trading off value versus effort is not found in literature. It needs to be 

addressed by establishing a) an approach for quantifying the effort, and b) a rigorous 

definition of the tradeoff problem, and c) an approach for making the tradeoff decisions. 

6. Justification of the use of improvement potential over existing expected value of 

information: Improvement potential metric ignores of the expected value of information 
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in the sense it only quantifies the scope of improvement but does not quantify how 

much the improvement potential will be reduced with additional information. This is 

identified as a research gap. 

To answer this question, the challenges are split into two chapters: 

 Microstructure mediated design: multiscale design of material and product (Chapter 5) 

 Uncertainty management in simulation-based multiscale systems (Chapter 6) 

Relevant to each chapter, the gaps are classified as follows: 

Table 7.2: Classification of Gaps 

Microstructure mediated design: 

Multiscale design of material and 

product (Chapter 5) 

Uncertainty management in 

simulation-based multiscale systems 

(Chapter 6) 

Clarification of multiscale design  Establishment of the compatibility between 

the decision formalisms of value-of-

information and robust design  

Clear definition of the mathematical 

challenges for uncertainty management and 

uncertainty mitigation in simulation based 

multiscale systems 

Formulation of a fundamental, rigorous 

definition of the tradeoff problem 

 

Generality of the IDEM method Justification of the use of improvement 

potential over existing expected value of 

information 

 

I discuss how these gaps have been addressed: 

1. Clarification of multiscale design: 

 Multiscale modeling involves coming up with hierarchical simulation models over 
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multiple length and time scales ensuring system level connectivity of the information 

flow. Multiscale modeling is discussed in Sections 4.2.1 and 4.2.2 in context of MMD of 

material and product. 

 Multilevel design seeks making risk-informed decisions at the various levels in a 

hierarchical system. If the hierarchical system is a multiscale system, i.e., with models 

simulated over different scales, it corresponds to multiscale design. Specifically the risk-

informed decisions are made using the HD-EMI metric which establishes the degree of 

reliability of a model in a multiscale system under potential shifts in the output range. 

2. Clear definition of the mathematical challenges for uncertainty management and 

uncertainty mitigation in simulation based multiscale systems. 

              For both uncertainty management and uncertainty mitigation, the primary challenge is 

identifying and classifying all sources of uncertainty that may arise in a multiscale 

system. To identify the challenges, sources of uncertainty were classified as:  

 Variability (natural uncertainty) 

 Model parameter uncertainty (data uncertainty) 

 Model structure uncertainty (model uncertainty)  

 Propagated uncertainty 

Variability was quantified using Taylor series expansion. MPU was quantified using 

statistical error bounds. MODEL STRUCTURE UNCERTAINTY was evaluated using the HD-

EMI metric. Propagated uncertainty was avoided by exact constraint boundary 

calculation. For MPU mitigation, improvement potential metric is devised using bounds 

from response surface models. 

3. Generality of the IDEM method: The generality of the IDEM method is illustrated using 

hierarchical material design over PS, SP and PP mappings over process-structure-

property-performance domains. These domains may have many-to one mapping in the 

bottom up approach and the input-output relationship is quantified using response 
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surface models. The top-down or inductive approach identifies all sets of feasible or 

robust solutions that may arise from many-to-one mappings in the bottom-up approach. 

The singular solution is identified by compromising the degree of HD-EMI achievement 

in the individual simulation or theoretical models using cDSP technique. 

4. Establishment of the compatibility between the decision formalisms of value-of-

information and robust design: To ensure compatibility between optimization and 

robustness, improvement potential metric is devised in terms of the confidence 

intervals used for robust design. This ensures the base for making robust design 

decisions for product parameters or design variables is the same as improvement 

potential metric used for making simulation refinement decisions for models or process 

variables.  

5. Formulation of a fundamental, rigorous definition of the tradeoff problem: The proposed 

method of trading off value versus effort is addressed by establishing  

 An approach for quantifying the effort for reducing MPU in terms of the number of 

simulation runs,  

 MPU is reduced by decreasing the confidence intervals. This is achieved by an empirical 

relation for MSE variation.  

 The simulation runs are correlated to computational time and time is used as a common 

base trade-off 

  Tradeoff decisions to allocate resources for further simulation refinement are achieved 

optimization techniques in MATLAB so that the system level improvement potential 

drops or becomes equal to the convergence criterion. 

6. Justification of the use of improvement potential over existing expected value of 

information: Improvement potential metric extends the current improvement potential 

metric and is able to quantify the scope of improvement as well as the reduction of the 

improvement potential with additional information.  
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Table 7.3: Contributions from Chapters 5 and 6 

Topic Contributions 

 

 

 

 

Chapter 5 

Microstructure 

mediated design 

 

 NU or variability is dealt with first order Taylor series 

expansion.MPU is dealt by defining confidence intervals for 

response surface models developed. PU is dealt by developing 

exact constraint boundaries in a top-down manner using 

bisection technique. Model structure uncertainty is dealt by 

trading off the HD-EMI values from the robust sets of solution 

using cDSP technique with a weighted sum deviation function.  

 The specific ranges of microstructure attributes are directly 

coupled in the present methodology with the overall systems 

design (material plus submersible). Robust solution ranges are 

identified using IDEM 

 IDEM is used in conjunction with design of experiments and 

response surface modeling to reduce computational cost. 

 The HD-EMI metric allows us to tailor the final solution based on 

the desired mitigation of model structure uncertainty. 

 The assessment of feasibility for different routes considers full 

contributions of the process-structure- property-performance 

relations and singular robust solution is identified using cDSP. 

 Inductive Design Exploration Method facilitates top-down 

searching for design solutions including process path and 

microstructure based on bottom-up simulations. 

 The work presented in this chapter constitutes one of the most 

complete applications of uncertainty management. The primary 

challenge involves managing uncertainty in over nine empirical 

and theoretical models over three levels of design.  

 

 

 

 Ranged feasible sets are identified using IDEM in addition to a 

single robust solution using cDSP enabling use of these ranges for 

improvement potential evaluation until a final solution is 

reached. It assists in avoiding design iteration due to shifts in 
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Chapter 6 

Uncertainty 

management in 

simulation-based 

multiscale systems 

 

model responses.   

 The improvement potential metric can be extended to higher 

order response surface models or other metamodeling 

techniques in order to represent non-linear phenomena of 

various fidelities. 

 The ex-ante improvement potential metric allows designers to 

account for computational cost in addition to uncertainty 

quantification and differentiates this metric from existing value-

of-information based metrics. 

 Although the algorithm does not guarantee convergence in a 

single iteration, it assists a system level designer to allocate 

resources efficiently and enables the advantageous mitigation of 

MPU to reach the convergence criterion in a small number of 

iterations.  

 Parallel computing techniques are made possible due to 

modularization of algorithm and in combination with efficient 

resource allocation can significantly cut down convergence time 

for a final robust solution. 

 This algorithm lays a general framework applicable to any 

multiscale system with a interlinking of simulation models. 

 The consideration of simulation model weights in developing 

system level ex-ante improvement potential addresses the need 

for uncertainty mitigation at different levels of hierarchy.  

 My focus in this thesis is on mitigating MPU and I believe the 

method lays the foundation for holistic uncertainty management 

in simulation-based multiscale systems. 

 

The algorithm for uncertainty mitigation is developed on some core assumptions. The most 

important one being that the system can be modeled using second order response surfaces. The 

MSE error variation is also a critical assumption contributing to the solution. In order to improve 

Table 7.3 continued 
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the algorithm, I propose the following for future work. 

Table 7.4: Scope for future work 

WRT Improvement 

 

Discretization error 

effort 

In my algorithm for uncertainty management, I looked at MPU 

specifically linked with model parameters and how value of information 

can be used for simulation model refinement for multiscale systems. 

This value of information understanding needs to be extended to 

mitigating uncertainty in design variables i.e. understanding the 

computational effort in reducing discretization error in IDEM. This can 

be achieved by understanding simulation run times for different 

discretization resolutions. 

Model structure 

uncertainty 

 

Model structure uncertainty arises from modeling assumptions and 

hence is more difficult to quantify. One approach is to prepare a 

comprehensive list of computational programs used in simulations and 

understanding the impact of refining the model. For example, in 

structural modeling, the validity of the results is dependent on the 

mesh size. The computational effort in reducing mesh sizes in FEM 

softwares like ABAQUS or ANSYS need to be quantified. Also, in 

numerical simulation in MATLAB we often use approximations which 

can be tailored. For example a material simulation model may use the 

Simpsons rule for numerical integration. This can be refined by using 

Simpsons 3/8th rule at an increased computational cost. All these 

scenarios need to be tabulated and corresponding computational costs 

need to be quantified.  

Design of 

experiments 

I used central composite design for space filling experiments. Although 

CCD’s have several advantages over other space filling experiments, 

other possibilities exist Latin hypercube, orthogonal arrays or D-optimal 

designs which may be more effective for space filling experiments. 

These need to be evaluated 



 

   263 

Response surface 

modeling 

I used a second order full quadratic model for developing metamodels 

for simulation outputs. We can start with linear models and based on 

p-values or F-statistic and determine when it is appropriate to consider 

second order models which require a larger number of runs to evaluate 

the regression coefficients correctly. Also, there are other alternatives 

to response surface models like Kriging, Adaptive Response Surface 

Modelling (ARSM) or Probabilistic collocation which need to be 

evaluated in terms of computational efficiency and appropriateness for 

application to IDEM. 

Confidence intervals 
I used a t-statistic confidence interval to determine the uncertainty 

bounds of a response surface model. Literature suggests that this 

prediction interval estimate is not appropriate for certain simulation 

based design with large data sets and can lead to incorrect variance 

estimates. Other confidence interval methods need to be rigorously 

studied and checked for validity with respect to different kind of 

simulation models. 

IDEM 
IDEM has been used for robust design. While evaluating metamodels 

the design space has been kept constant throughout the algorithm. 

Design space reduction will lead more quickly to convergence towards 

a robust solution. However, it would also mean the triviality of initial 

simulation runs outside the reduced feasible space and corresponding 

increase in uncertainty of associated metamodels. This needs to be 

understood in greater detail. 

Improvement 

potential 

The improvement potential metric has been evaluated in terms of 

upper and lower bounds of metamodel. It may make greater sense to 

redefine the improvement potential metric in terms of mean and upper 

bound when larger values are desired and mean and lower bound 

when smaller values are desired.  

Trade-off For trade-off, I assumed a hierarchical leader –follower game 

theoretical protocol similar to Stackelberg mechanism. In the 

Stackelberg leader-follower trade-off mechanism with complete 

information exchange, a very simplistic case has been assumed. We 

Table 7.4 continued 
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need to test game theoretic protocols for realistic design environments 

Algorithm 
The algorithm has been developed after the first set of simulation runs 

has been run and we have a starting point for uncertainty 

management. It will be interesting to refine the algorithm and 

understand how the system level designer can mitigate uncertainty 

from scratch without any prior simulation runs and only computational 

cost information. 

 

In summary, I have achieved the objective of integrating robust design and information 

economics in my algorithm which mitigates MPU in Chapter 6. This needs to be extended to the 

other two kinds of reducible uncertainty, i.e., model structure uncertainty and propagated 

uncertainty. 

For mitigating PU, we need to investigate the increase of computational time with increase in 

discretization resolution in IDEM. This exercise is fairly straightforward. However, uncertainty 

propagation in other robust multiscale techniques needs to be tested for efficiency against 

IDEM. Mitigation of model structure uncertainty is more challenging as it is hard to quantify and 

it is difficult to interpret how MSU varies with modeling assumptions and incomplete 

knowledge. To mitigate model structure uncertainty we can take leads from the HD-EMI value 

and computational resources should be invested in simulation models that yield low HD-EMI 

values indicating the mean response is close to constraint boundaries and more susceptible to 

error under potential shift of the output response due to model structure uncertainty. The cost 

models need to be systematically developed and the following discussion is in respect to cost 

modeling for mitigating model structure uncertainty. With any cost modeling the end goal is to 

have a little more insight into the future, before the cost is incurred. This is true whether the 

cost is time, money or other resources. Cost modeling is extremely important especially in the 

field of systems engineering, where an engineer, and ultimately a company, will benefit greatly 

from this estimated cost early on in a products life cycle. With this benefit being so important, 

many cost models have emerged. In 1981 Boehm produced a model called the constructive cost 

model (COCOMO) to estimate cost, schedule and effort for software engineering projects. This 

model was later replaced with COCOMO II in 1997 and later published in 2000, soon after 

Table 7.4 continued 



 

   265 

becoming widely accepted 96. In 2002, another cost model emerged called the Constructive 

Systems Engineering Cost Model (COSYSMO) which was developed by Valerdi 97. This cost model 

was primarily developed through an analysis of COCOMO II along with Delphi exercises.  

COSYSMO has also become widely accepted and has been implemented in many aerospace and 

defense companies 98.  

Through the analytical inspection of the relationship between how the COSYSMO model was 

developed from the COCOMO II model we can formulate an outline of how to create an 

analogous cost model for the domain of simulation-based design.  From Valerdi’s dissertation 97, 

which gives insight to how COSYSMO was developed, I have extracted these analogues steps 

needed to create a general cost model for model structure uncertainty:  

1. Specify/Identify the Problem: As stated before the goal of the system level designer is to 

quantify the cost associated with using existing models or developing new ones for the 

purpose of information economics. Unlike COSYSMO or COCOMO II, the system level 

designer is more interested in cost of the model itself rather than the elaborate costs of 

an overall project.  

2. Model Definition: The system level designer needs to identify the scope, boundaries and 

range of this cost model. In other words, the he needs to find the parameters in which 

my cost model needs to work, and will eventually be calibrated to this spectrum. This 

will give a clear view of what his end result will look like. 

3. Identify the Significant Factors: The system level designer needs to determine what 

variables will be the drivers in his cost model. What factors and components will affect 

and make up this model? In the example of COSYSMO, three main types of drivers were 

defined: additive, exponential, and multiplicative. Several questions need to be 

answered at this stage of a general cost model. Some of these questions include: What 

factors will be analogous to the COSYSMO drivers? How will they be similar? How will 

they be different?  Will a general model take a similar form? 

4. Determine and Calibrate Design Exploration Costs:  As with any creation of a model one 

must allocate time, energy and resources to design exploration. The design of 

experiments and strategies must be considered since both can incur a large cost. The 

system level designer will need to determine these costs so that the model does not 

over look significant hidden costs.  Leads from HD-EMI values from initial design space 
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exploration can be used to affect mitigation of MODEL STRUCTURE UNCERTAINTY. 

5. Determine and Calibrate Person-Hour Costs: Here the system level designer will model 

the labour allocated to the physical act of creating the model (i.e. coding the model). 

This portion will be the most similar to COSYSMO or COCOMO II since both quantify 

person-hours. The system level designer will determine the variables to quantify this 

portion of his model through similar means such as Delphi exercises and expert 

knowledge and opinion. Through these Delphi exercises the system level designer will 

ask experts questions including: How many years of experience do they have? Are there 

additional drivers not considered?  Do they agree with the selected drivers? The system 

level designer will also ask experts to rank potential drivers to determine their 

importance.  

6. Determining and Calibrate Computational Cost: Through the study of complexity classes 

and complexity time the system level designer will formulate a means to quantify the 

computational time depending on the algorithms implemented in the models. Since this 

stage has the potential to be the most complicated the system level designer will need 

to formulate a means to simplify this step to insure that the cost model is efficient to 

use.   

7. Refine Model and Validate: This step begins the iterative process to insure that the 

model is useful within the definition. Once the costs have been quantified for the cost 

model the system level designer must calibrate the variables to produce results that 

correspond with historical data and/or case studies. The system level designer will then 

refine his cost model to make it more accurate and repeat this process, returning to 

previous steps, until the cost model can be validated to a reasonable margin of error.    

 

Though, the above steps can be applied to any generic cost model, in this algorithm I am looking 

at a very specific component of cost modeling i.e. cost modeling associated with reducing model 

structure uncertainty. Detailed understanding of the physical phenomena will also contribute to 

such cost modeling. Significant effort needs to be put in order to develop a domain independent 

cost modeling for mitigating model structure uncertainty in multiscale systems. An alternative 

approach is to develop cost models relevant to specific analysis of multiscale systems. 

Quantifying the value of information associated with refining the modeling assumptions will be 



 

   267 

a rigorous task considering the large number of simulation software that assist modeling of 

various physical phenomena. We need to build a comprehensive list of all the simulation 

softwares and associated cost-benefit understanding for each of these softwares. An alternative 

method would be look at different physical phenomena like thermodynamics, structural 

dynamics etc. and common assumptions used in modeling these phenomena. However, in 

multiscale modeling, different physical laws will be used for modeling subsystems at different 

length and time scales. Considering the length and time scales can range from quantum or 

molecular domain to the macro domain of physical products or the nano second to entire 

product lifecycle which may be years, developing cost models will be a meticulous and 

challenging task. After having looked at the details of each of the algorithm and suggested 

improvement, I take it to a higher level of abstraction and justify the approaches from the 

standpoint of application. 

With Respect to Microstructure Mediated Design 

In MMD, my focus was on managing all the four kinds of uncertainty. A question from a material 

scientist maybe is what this approach offers that possibly the MSD or other material design 

techniques don’t. My justification to this falls in the realm of multidisciplinary systems. The 

algorithm has been developed with the notion that material and its microstructure forms the 

building block for multidisciplinary applications. In age of rapidly developing scientific tools, 

there is an influx from various domains like electronics, aerospace, bioengineering etc. The 

common ground for advancement of each of these sciences is the material from which it stems 

from, i.e., the silicon material from which transistors are built, the low weight high strength 

composites from which airplanes are built, the materials in our natural environment used to 

mimic biology processes in nature inspired engineering. The MMD approach goes beyond the 

realms of UAV design.  Current approaches focus on optimizing the performance of simulated 

microstructure using mathematical tools. Considering the simulation tools being developed are 

in its infancy and not well grounded like gravitation or other physical laws, proceeding to 

optimization without accounting for elements of uncertainty can only lead to erroneous results 
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and possibly loss of resources expecting the experimental results to yield the same results as 

predicted by the optimal solution. The idea is that every material is developed to produce a 

tangible product and hence it’s the product characteristics that should drive the material 

microstructure and not the material properties. Bringing in product characteristics also has the 

additional advantage of allowing design freedom to the material designer, i.e., the product 

requirements may not dictate equal weights on say yield strength or crack propagation. It allows 

a designer to set weights on the material characteristics based on the desired product 

requirements instead of optimizing each material property. In terms of multidisciplinary 

analysis, a electronic application will lead to higher to higher weights being assigned to heat 

dissipation and hence thermal conductivity while a structural analysis will lead to higher weights 

being assigned to yield strength or bulk modulus. Also, the structure of IDEM allows different 

disciplines to formulate individual models and each of these can be linked based on the desired 

flow of information. At the macroscale, the different disciplines may lay down independent 

frameworks and the requirements are passed into the material domain which forms the 

interdependent parameter. The feasibility of macroscale product can be determined using the 

top-down approach and infeasibility leads to a system level designer relaxing some of the 

requirements in the macro domain. The HD-EMI metric also provides insight into the degree of 

infeasibility. A very small HD-EMI metric for a model in the macro scale leads one to conclude 

that it is bottle-neck for material design. Current approaches do not allow such conclusions 

based on mathematical constructs.  
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Figure 7.2: Microstructure Mediated Design (MMD) 

I use Figure 7.2, to explain the flexibility of MMD. There are mappings between process-

structure-property-performance relationships which I call horizontal mappings and there are 

lateral transformations reducing the order of modeling which I call vertical mappings as per the 

figure. Suppose, a designer has response surface models for all but the structure-property 

mappings, the structure of IDEM allows him/her to use experimental data (yellow box) instead 

of response model (pink box). Now a designer uses the experimental data to develop a response 

surface model instead of a simulation model. The components of MPU, MSU  can be ignored in 

the modeling assuming accurate experimental set-up. Similarly, a designer can use the data 

(green box) directly instead of resorting to response modeling and develop constitutive 

mathematical models as mapping functions. Also, as IDEM is implemented in MATLAB, a 

subroutine can call a simulation model using some other software and hence the actual 

simulation model can be used to replace the response model. As uncertainty is systematically 

disseminated, depending on the kind of vertical mapping chosen ( grey, green , yellow or pink 
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box) only the corresponding elements of uncertainty will need to be accounted for. Hence if 

experimental data is used, only noise factors need to accounted and natural uncertainty arises. 

If simulation model is used, model parameter uncertainty can be ignored and only model 

structure uncertainty needs to be managed in addition to natural uncertainty. If the green 

models are used, only the component of uncertainty that arises due to inaccurate data needs to 

be quantified in model parameter uncertainty along with model structure uncertainty and 

natural uncertainty; and the component arising due to insufficient data can be ignored. Such 

flexibility over the entire material and product design hierarchy is not offered by other 

approaches. Also MMD approach can be used in parallel with MSD approach as material models 

evolve. Only the mapping function needs to be changed without affecting the rest of the design, 

hence saving on resources and avoiding design iteration.  

With Respect to Uncertainty Mitigation 

One limitation of the current algorithm is that it is formulated on robust design principles 

without consideration of performance objectives. It is my belief that robust design and 

optimization of performance index should not be mixed. However the current algorithm gives 

the flexibility if the formulation is altered. I explain it briefly.  

The HD-EM metric in Inductive Design Exploration Method needs to be reformulated in terms of 

desired target of performance values. The metric for calculation used in IDEM is Hyper 

Dimensional Error Margin Index (HD-EMI). 

The HD-EMI by definition is: 

    =    
        

        
  ) 

,i.e., the ratio of the distances of the mean from the constraints boundary and output boundary. 

The further the mean is from the constraints boundary, higher the value of HD-EMI. HD-EMI is 

metric indicating the robustness against model structure uncertainty. However, HD-EMI metric 
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does not indicate performance attainment. Hence I define another metric of calculation which 

checks for the response values relative to the desired target values. This metric I call the fitness 

index (FI). 

I define the target value as   and    ,        . This is vector of target values along different 

output directions. I define the FI as: 

   =   
        

        
 )| 

   =   
        

        
 )| 

Contrary to several boundary points, we have only one target value and hence only one fitness 

value per output direction. A smaller value of FI indicates the mean output is close to the 

desired target value and hence is desired. Fitness indices are relevant only to performance 

parameters in the final stages of design. Fitness indices in the intermediate steps have little 

meaning. So the objective is to find the solution closest to the target values. For this we consider 

all response        associated with finite positive HD-EMI values and small fitness values as 

close to zero as possible. For multiple performance objectives we can use compromise DSP to 

solve for fitness values.  

 

Figure 7.3  Evaluation of fitness index (FI) 
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So similar to HD-EMI’s, every mean response is associated with a fitness values (FI).In IDEM we 

use the cDSP approach to trade-off the HD-EMI values at different levels of the problem to give 

us a final ranged set of feasible design space of the input variables. We can follow a similar 

approach for minimizing the fitness indices (FI) in different output directions of the performance 

variables. If HD-EMI calculation is used in conjunction with FI, it is possible to generate 

performance measures for ranged sets of solutions. The approach is similar to that of IDEM. We 

obtain initial ranged sets of feasible design space using IDEM based on HD-EMI metric. We 

evaluate the FI for each feasible input point.  The cDSP can be reformulated to minimize the FI 

with targets being 0.  In Figure 7.4, a preliminary approach is shown to reduce the initial feasible 

space based on FI metric by constraining the FI metric to be greater than 0 and less than 1 on 

the final output responses. We obtain a smaller subset of feasible design space based on the 

design metric.  

                                                        

 

 

 

 

Figure 7.4 IDEM using fitness index (FI) 

The Green region denotes feasible space where all HD-EMI’s   .The Blue region is a subset of 

the green region which denotes all feasible space with HD-EMI’s 1 and 0 FI’s  .Thus we see 

we get values which are closer to the desired performance targets. To evaluate the 

improvement potential metric, we use the blue subset of design space. Thus the improvement 

potential metric is determined in terms of performance attainment in addition to robust 

constraints.  
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The second concern is that of evaluating the improvement potential metric itself. As we are 

concerned with performance measures, the improvement potential needs to be defined in 

terms of optimization of performance measures and not uncertainty mitigation. Hence, the 

formulation of Panchal based on utility theory would be appropriate. Refer Panchal for 

additional details. However, the improvement potential metric defined by Panchal needs to be 

refined in order to account for cost considerations. The metric also develops upper and lower 

bounds for performance based on utility theory. A detailed understanding of utility theory can 

enable consideration of computational cost. An alternative approach would be to use previous 

trends of refinement to predict suggested improvement. Also, kriging metamodels have 

provision for optimization and have a statistical metric called the expected value of 

improvement (EVI) which may suit the problem at hand. These cases need to be investigated. 

The system level improvement potential determination and trade-off solution can follow the 

same formulation as the current algorithm.  

Another concern is determining the order of response surface model suitable for simulation 

model. I lay the following guidelines for its determination: 

 Higher order response surface should be chosen for non-linear phenomena. For a simple 

ordinary differential equation governing the simulation model, a linear or second order 

response surface may suffice. However for physical phenomena being governed by a set 

of partial differential equation, third order or fourth order response surfaces may be 

required. Deciding the order depends on the previous experience of a material designer. 

An alternative approach is to start off with say a high order response surface model and 

use backward elimination techniques in regression analysis to eliminate the 

unimportant regression coefficients. The order of the highest significant regression 

coefficient may be chosen as the degree of response surface model. However 

depending on the order of the initial degree of response model chosen for backward 

elimination, a large number of data points may be required, increasing the 

computational cost. This interrelationship needs to be investigated.  
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 While choosing the degree of the response surface model, it is also important to 

consider the computational cost of determining all the regression parameters of a 

response surface model. Though higher order response surface models will always lead 

to better fits, it comes at an increased computational expense. For example a second 

degree response surface model will have a total of 9 regression coefficients to calculate 

linear, quadratic and interaction effects for 2 input variables. Hence a minimum of 9 

experiments will need to be run. However for a third order response surface model, the 

number of experiments increases to 16 and for a fourth order to 25. This increased 

computational expense needs to be justified while choosing the degree of the response 

surface.  

 If a phenomenon follows an exponential behaviour, choosing a response surface model 

without exponential variables may lead to a bad fit. Hence it is crucial to analyze the 

data prior to choosing the order of response model and appropriate regression 

parameters need to be considered. Design of experiments knowledge needs to be 

coupled with response surface modelling constructs in order to determine the trend of 

the obtained data and plan future experiments. Though this has not been considered in 

the current algorithm, I propose it for future study.  

Looking back at my thesis, I propose the following to whoever decides to work on uncertainty 

management in multiscale systems: 

 Simple is better: In multiscale systems we deal with different disciplines. As all design 

teams need to work collaboratively, it is useful to keep the formulations as simple as 

possible.  

 Avoid conflicting ideologies: Robust design and performance optimization are 

contradicting constructs. Hence a designer to stick to either one of the constructs while 

formulating the algorithm. I stuck to robust design constructs and performance 

objectives were considered independently in cDSP formulation. Robust design 
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constructs should be followed when there is presence of uncertainties within 

individual models, which are due to uncertain parameters, material properties, 

assumptions, etc or evolving simulation models, resulting in multiple fidelities of 

models at different points in a design process. This is especially relevant in the 

initial stages of design when the objective of a system level designer is to 

maintain design freedom.  Significant model development and execution costs 

results in limited data and hence increased uncertainty component. However if 

the model development costs are low and sufficiently accurate, a system level 

designer can resort to performance optimization. However with material design 

in its infancy, I believe robust design constructs should be followed.  The 

advantage of robust design is that it provides solutions in the presence of uncertainty. 

Performance optimization can lead to better results. However the optimal solution may 

be erroneous if uncertainty is not accounted for. Hence even in optimization solutions, a 

minimum level of robustness should be accounted for.  

 Integrate constructs: The MMD was a culmination of IDEM and cDSP for robust design. 

The algorithm for uncertainty mitigation was reached by integrating robust design and 

information economics constructs. Integrating existing constructs serves as a good 

method to reach solutions of new research questions rather than starting from scratch. 

 Maintain flexibility: In multiscale systems due to the evolutionary nature of modelling, it 

is crucial to maintain flexibility in the algorithm. The algorithm should not be rigid as it 

limits its applicability in case of evolving simulation models. It is also crucial to maintain 

this flexibility in the initial stages of design so as to avoid iterations and hence increase 

computational expense.  

 In conclusion, this thesis lays the framework for uncertainty management by developing a 

robust design algorithm against all four kinds of uncertainty in multiscale systems and 
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developing an algorithm or mitigating MPU. The algorithm and MMD construct is sufficiently 

general and hence can one can take the leap of faith to the fourth quadrant, i.e., theoretical 

performance validity. The next frontier of uncertainty management will be to develop an 

understanding to mitigate PU and model structure uncertainty and establish grounds for holistic 

uncertainty management. I end with a proposed one-page dissertation. 

 

Research Question: 

How does one increase the efficiency in terms of maximizing performance or minimizing uncertainty in 

simulation-based multiscale systems design? 

Hypothesis: 

Efficiency of multiscale systems can be increased by two approaches. One approach is to maximize the 

performance attainment. Another approach is to minimize the uncertainty component in multiscale 

systems. The two approaches should be independent of each other. A crucial component of efficiency 

is to evaluate performance or uncertainty metrics in terms of computational resources used. The 

objective is to minimize use of resources while either maximizing performance or minimizing 

uncertainty.  

Research Question 1: 

How can one increase the performance of multiscale systems while minimizing use of computational 

resources? 

Hypothesis:  

As we want to minimize the use of resources, a sequential approach should be followed rather than 

investing all resources all at once. Design of experiments technique should be used to develop accurate 

metamodels using minimum number of simulation runs. These metamodels should be used in IDEM to 

obtain feasible set of solutions while accounting for uncertainty and performance objectives. The 

fitness index approach described previously should be used to this end. Evaluation of improvement 

potential metric should be based on utility functions or the expected value of improvement construct 

in kriging. Cost models should be tied to the improvement potential metric and a designer should 

Table 7.5: Research questions and hypotheses  
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proceed to trade-off to determine optimal resource allocation. 

Research Question 2: 

How does the system level designer allocate resources for auxiliary simulation based model refinement 

while minimizing uncertainty? 

Hypothesis:   

My algorithm focused on mitigating model parameter uncertainty. The formulation is to be extended 

to mitigate model structure uncertainty. The sensitivity of the response model coefficients is to be 

evaluated as a function of cost to understand the change of response surface model due to uncertainty 

model formulation.  A holistic understanding of the assumptions involved in various model 

formulations is needed and it is to be tied to the impact on uncertainty. A cost model for reducing the 

error due to discretization resolution in IDEM is to be derived. A generic cost function coupling 

reduction of model parameter uncertainty, model structure uncertainty and propagated uncertainty is 

to be formulated and trade-off is to be performed to determine optimal resource allocation to mitigate 

each type of uncertainty. 
 

 

 

 

 

 

 

 

 

 

Table 7.5 continued 
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