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SUMMARY 

 

 

 The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide 

range of engineering applications from medical devices to electronic components to automobiles continues 

to motivate the development of improved constitutive models to meet increased performance demands 

while minimizing cost.  Emerging technologies often incorporate materials in which the dominant 

microstructural features have characteristic dimensions reaching into the submicron and nanometer regime.  

Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical 

response, and classical approaches to constitutive model development at engineering (continuum) scales, 

being local in nature, are inadequate for describing such behavior.  Therefore, traditional modeling 

frameworks must be augmented and/or reformulated to account for such phenomena.  Crystal plasticity 

constitutive models have proven quite capable of capturing first-order microstructural effects such as grain 

orientation (elastic/plastic anisotropy), grain morphology, phase distribution, etc. on the deformation 

behavior of both single and polycrystals, yet suffer from the same limitations as other local continuum 

theories with regard to capturing scale-dependent mechanical response.  This research is focused on the 

development, numerical implementation, and application of a generalized (nonlocal) theory of single 

crystal plasticity capable of describing the scale-dependent mechanical response of both single and 

polycrystalline metals that arises as a result of heterogeneous deformation. 

 This research developed a dislocation-based theory of micropolar single crystal plasticity.  The 

majority of nonlocal crystal plasticity theories are predicated on the connection between gradients of slip 

and geometrically necessary dislocations.  Due to the diversity of existing nonlocal crystal plasticity 

theories, a review, summary, and comparison of representative model classes is presented in Chapter 2 

from a unified dislocation-based perspective.  The discussion of the continuum crystal plasticity theories is 

prefaced by a brief review of discrete dislocation plasticity, which facilitates the comparison of certain 

model aspects and also serves as a reference for latter segments of the research which make connection to 

this constitutive description.  Chapter 2 has utility not only as a literature review, but also as a synthesis and 

analysis of competing and alternative nonlocal crystal plasticity modeling strategies from a common 
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viewpoint.  The micropolar theory of single crystal plasticity is presented in Chapter 3.  Two different types 

of flow criteria are considered - the so-called single and multicriterion theories, and several variations of 

the dislocation-based strength models appropriate for each theory are presented and discussed.   

The numerical implementation of the two-dimensional version of the constitutive theory is given 

in Chapter 4.  A user element subroutine for the implicit commercial finite element code Abaqus/Standard 

is developed and validated through the solution of initial-boundary value problems with closed-form 

solutions.  Convergent behavior of the subroutine is also demonstrated for an initial-boundary value 

problem exhibiting strain localization.  In Chapter 5, the models are employed to solve several standard 

initial-boundary value problems for heterogeneously deforming single crystals including simple shearing of 

a semi-infinite constrained thin film, pure bending of thin films, and simple shearing of a metal matrix 

composite with elastic inclusions.  The simulation results are compared to those obtained from the solution 

of equivalent boundary value problems using discrete dislocation dynamics and alternative generalized 

crystal plasticity theories.  Comparison and calibration with respect to the former provides guidance in the 

specification of non-traditional material parameters that arise in the model formulation and demonstrates its 

effectiveness at capturing the heterogeneous deformation fields and size-dependent mechanical behavior 

predicted by a finer scale constitutive description.   

Finally, in Chapter 6, the models are applied to simulate the deformation behavior of small 

polycrystalline ensembles.  Several grain boundary constitutive descriptions are explored and the response 

characteristics are analyzed with respect to experimental observations as well as results obtained from 

discrete dislocation dynamics and alternative nonlocal crystal plasticity theories.  Particular attention is 

focused on how the various grain boundary descriptions serve to either locally concentrate or diffuse 

deformation heterogeneity as a function of grain size. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation 

 

 The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide 

range of engineering applications from medical devices to electronic components to automobiles continues 

to motivate the development of improved constitutive models to meet increased performance demands 

while minimizing cost.  Emerging technologies often incorporate materials in which the dominant 

microstructural features have characteristic dimensions reaching into the submicron and nanometer regime.  

Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical 

response, with the relationship that “smaller is stronger”.  Representative examples of the “smaller is 

stronger” phenomena have been experimentally observed with respect to the yield strength of polycrystals 

[1, 2], indentation of single crystals [3], bending of thin films [4], torsion of thin rods [5], and tension of 

passivated thin films [6, 7].  The ability to model and predict variations in the mechanical response due to 

changes in microstructure is crucial to the advancement and optimization of metallic material systems.  

Classical models of crystal plasticity [8-10] have proven quite capable of describing the influence of first-

order microstructural effects such as grain orientation (elastic/plastic anisotropy), grain morphology, phase 

distribution, etc. on the mechanical response of both single and polycrystalline metals, yet suffer from the 

same limitations as other local continuum theories with regard to modeling scale-dependent behavior.  

Therefore, the classical theory must be augmented or reformulated to account for these higher-order effects.

 To address the shortcomings of the classical (local) theory, generalized (nonlocal) crystal 

plasticity theories that appeal to the notion of geometrically necessary dislocations (GNDs) [11] have been 

developed on multiple conceptual fronts.  The term nonlocal is used here in the broad sense as defined by 

Bazant and Jirasek [12] and is meant to imply “weak nonlocality”.   Weakly nonlocal constitutive models 
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incorporate additional gradient dependence in the formulation and are to be contrasted against the “strong 

nonlocality” synonymous with nonlocal integral formulations.  From this point forward in this research, 

when a model is referred to as nonlocal, it is to be understood that weak nonlocality is implied.  As noted 

by Kuroda and Tvergaard [13], there are three main subclasses of nonlocal single crystal plasticity models:  

(i) low-order theories (ii) non-work-conjugate higher-order theories and (iii) work-conjugate higher-order 

theories.  The distinction between the low-order and higher-order theories is that the former’s governing 

partial differential equations are of the same order as the classical theory, whereas the latter are of a higher-

order.  Low-order theories do not admit the application of non-standard boundary conditions and only 

incorporate nonlocality via enhanced constitutive relations, while the higher-order theories do admit non-

standard boundary conditions as well as nonlocal constitutive relations.  In higher-order theories, the 

continuum is assumed to have additional degrees-of-freedom, and the difference between the non-work-

conjugate and work-conjugate theories, as one might infer, is that the additional degrees-of-freedom do not 

contribute to the power of internal forces in the former, whereas they do in the latter. 

 The vast majority of generalized single crystal plasticity models are formulated such that the 

explicit calculation of slip gradients is required (cf. [14-20].  While certain slip gradient-based approaches 

do possess some attractive features such as being able to apply boundary conditions on slip at the slip 

system level [15, 17], there are also certain practical and philosophical limitations as compared to the 

classical theory.  From a practical standpoint, the numerical implementation of slip gradient-based 

approaches requires either modified [21, 22] or higher-order [23-25] finite element (FE) interpolation 

schemes as compared standard 0C -continuous methods.  Furthermore, if the slip system shears or GND 

densities are taken as continuum degrees-of-freedom, the FE matrix bandwidth for a given discretization of 

an initial-boundary value problem will be significantly larger for the nonlocal theory as compared to the 

classical one, as the number of additional degrees-of-freedom scales with the number of slip systems.  In 

addition to the steep increase in computational burden associated with the slip gradient-based approaches, 

there are also, in our opinion, some philosophical disadvantages to the slip gradient theories that treat the 

slip system shearing rates as power-conjugate generalized velocities [18].  In these approaches, it is now 

common practice to incorporate “energetic” and “dissipative” decompositions of the thermodynamic 

stresses, and to include the plastic strain gradients directly in the free energy function (not as internal state 
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variables).  In contrast, a more traditional approach would introduce elastic (energetic) and plastic 

(dissipative) decompositions of the thermodynamic strains, and the free energy would then only depend on 

the elastic parts and possibly a set of internal state variables reflecting energy storage due to irreversible 

changes in microstructure. 

 It is with these issues in mind that we are motivated to pursue an alternative (to the slip gradient-

based approaches) formulation of generalized single crystal plasticity.  Specifically, we seek to develop a 

model of generalized single crystal plasticity that: 

◊ Maintains the standard approach of elastic-plastic thermodynamics 

 
◊ Avoids treating the slip system shears as generalized displacements 

 
◊ Admits higher-order (non-standard) boundary conditions 

 
◊ Offers a simpler and more efficient numerical implementation as compared to the slip gradient-

based approaches 

 
 

Examples of alternative models of generalized single crystal plasticity are the full second gradient theories 

of Smyshlyaev and Fleck [26] and Shu and Fleck [27], the couple-stress theory of Kim and Oh [28], the 

micromorphic theories of Naghdi and Srinivasa [29, 30] and Le and Stumpf [31, 32], and the micropolar 

theory of Forest et al. [33-35].  The full second gradient and couple stress models require the use of higher-

order interpolation functions [25] in numerical implementations, whereas the micromorphic and micropolar 

models may be implemented using standard 0C -continuous interpolation functions since the higher-order 

kinematics (additional degrees-of-freedom) are independent of the displacement field.  Based on these 

considerations and motivated by the prior works of Clayton et al. [36] and Forest and collaborators [34, 35, 

37-41], this research is focused on the development and application of micropolar models of single crystal 

plasticity. 
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1.2 Scope of the work 

 

 This research is concerned with the development of models of micropolar single crystal plasticity 

as an alternative to the more common slip gradient-based models of generalized single crystal plasticity.  A 

micropolar [42] or Cosserat [43] continuum is type of work-conjugate higher-order continuum which 

possesses extra rotational degrees-of-freedom.  Early works in phenomenological micropolar 

elastoplasticity are due to Besdo [44], Lippmann [45], and Sawczuk [46], while more recent representative 

contributions in this vein are due to de Borst [47], Steinmann [48], Grammenoudis and Tsakmakis [49], and 

Neff [50].  Most relevant to this research are the works of Forest et al. [33-35, 38] which present 

phenomenological models of micropolar single crystal plasticity.  Building upon these previous works, the 

current research is undertaken with three main objectives: 

◊ Develop physically-based models of micropolar single crystal elasto-viscoplasticity. 

 
◊ Implement the constitutive models in a finite element code. 

 
◊ Apply the models to simulate the scale-dependent mechanical response of single and 

polycrystalline metals, benchmark against discrete dislocation simulations, and conduct parametric 

studies to shed light on more appropriate forms of constitutive relations within the micropolar 

crystal plasticity construct. 

 

 These research objectives are achieved as outlined in the remainder of this thesis which is 

structured as follows.  Chapter 2 introduces background material relevant to the development of scale-

dependent models of continuum single crystal plasticity.  The chapter begins with a review of discrete 

dislocation plasticity.  Topics covered in the review will facilitate the comparison of certain concepts that 

arise in the scale-dependent continuum theories, and also serve as a reference for latter segments of the 

research where discrete dislocation simulation results are compared to those obtained from the developed 

micropolar theories.  Classical single crystal plasticity theory is then reviewed prior to discussing 

representative developments of generalized single crystal plasticity, and attention is focused on dislocation-

based constitutive models.  This material is intended to provide appropriate depth and perspective for the 



 

~ 5 ~ 

micropolar model of single crystal plasticity that is presented in Chapter 3.  Chapter 2 has utility not only as 

a literature review, but also as a synthesis and analysis of competing and alternative nonlocal crystal 

plasticity modeling strategies from a common viewpoint.  Both theoretical and computational aspects of the 

models are discussed. 

 The micropolar theory of single crystal plasticity is presented in Chapter 3.  Two distinct 

viscoplastic modeling frameworks - the so-called single and multicriterion theories are introduced.  The 

previous works of Forest et al. [34, 35] based on a multicriterion framework and containing a 

phenomenological strength model are extended to incorporate a dislocation-based strength models.  This is 

an important contribution as it enables one to establish clear connections between micropolar single crystal 

plasticity and various aspects of slip gradient-based generalized crystal plasticity models, and also provides 

a more physically-based description of scale-dependent strengthening behavior.  Additionally, a new single 

criterion formulation is presented with an analogous, but simplified strength model.  The development of 

the single criterion model is motivated by related earlier works in phenomenological macroscopic 

micropolar elastoplasticity, and represents the first attempt to embed a single criterion flow rule within a 

micropolar single crystal plasticity framework.  Several variations of dislocation-based strength models 

appropriate for each theory are presented and discussed. 

 Chapter 4 presents the numerical implementation of the two-dimensional version of the 

constitutive theory given in Chapter 3 appropriate for plane strain and plane stress problems.  A user 

element (UEL) subroutine has been developed for the implicit commercial FE code Abaqus/Standard [51].  

The element has three degrees-of-freedom per node (two displacements and one rotation), and a rate-

tangent method [52] appropriate for a micropolar elasto-viscoplastic material has been presented for the 

constitutive update.  Element performance is validated through the solution of elastic initial-boundary value 

problems with closed-form solutions, and the convergent behavior is also demonstrated for an elastic-

plastic initial-boundary value problem exhibiting strain localization.   

 The constitutive models are employed in Chapter 5 to solve several standard initial-boundary 

value problems for heterogeneously deforming single crystals including: simple shearing of a constrained 

thin film, pure bending of thin films, and simple shearing of a metal matrix composite with elastic 

inclusions.  First, the general performance of the constitutive models is demonstrated via solution of the 
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constrained shear problem in order to gain an understanding of how the non-classical inelastic material 

constants affect the mechanical response and the resulting deformation fields.  This information is then 

used to guide calibration of the micropolar models to results of equivalent initial-boundary value problems 

solved using discrete dislocation dynamics.  The deformation behavior predicted by the calibrated 

micropolar models is then compared to results obtained from both discrete dislocation dynamics 

simulations as well as alternative generalized crystal plasticity theories.  Comparison and calibration with 

respect to the former provides guidance in the specification of non-traditional material intrinsic length scale 

parameters, and demonstrates the developed models’ effectiveness at capturing the heterogeneous 

deformation fields and size-dependent mechanical behavior predicted by a finer scale constitutive 

description. 

 In Chapter 6 the models are applied to simulate the deformation behavior of small polycrystalline 

ensembles.  Two different polycrystal representations are considered:  a traditional model in which the 

micropolar crystal plasticity constitutive description is applied to each grain up to a sharp grain boundary 

interface, and a core-mantle model in which the polycrystal is divided into grain interior (core) and mantle 

(grain boundary) regions.  The grain cores are modeled as viscoplastic single crystals and the grain 

boundary mantle is modeled as an elastic micropolar phase.  Direct numerical simulations are performed 

for a range of grain sizes using both polycrystal representations in order to evaluate the aggregate 

mechanical response, and the scale-dependent deformation behavior is subsequently analyzed.  Particular 

attention is focused on how the different polycrystal descriptions serve to either locally concentrate or 

diffuse deformation heterogeneity as a function of grain size, and also on the scaling behavior of the flow 

stress with respect to grain size. 

 Chapter 7 provides a summary of the work, acknowledges the original contributions, and suggests 

potential avenues for future work.  The unique contributions of this dissertation as summarized as follows: 

 

Constitutive Model Development 

 Two new physically-based theories of micropolar single crystal plasticity have been developed. 

 A multicriterion flow theory with a dislocation-based strength model has been proposed as an 

extension of the phenomenological strength model of Forest et al. [34].  The replacement of the 
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phenomenological strength model with a dislocation-based model is a necessary step for relating 

the current developments to existing physically-based models, and also for making direct 

comparisons to finer scale simulations, i.e., discrete dislocation dynamics. 

 A novel single criterion flow theory with a dislocation-based strength model has also been 

proposed.  Single criterion flow rules are commonly used in other types of higher-order nonlocal 

crystal plasticity theories, and are advantageous because they significantly reduce the number of 

non-standard material constants as compared to multicriterion theories. 

 Several variations of the dislocation-based strength models have been proposed and their 

performance has been evaluated via direct numerical simulation.  It has been demonstrated that 

some of the strength models do not produce deformation behavior consistent with observations 

from finer scale (e.g., discrete dislocation) simulations. 

 The relationship between the developed models and the more common slip gradient-based theories has 

been established. 

 A focused effort has been made to relate the models to the prominent and highly cited model due 

to Gurtin [17], which is a significant contribution since the proposed models offer a simpler 

numerical implementation than the former.  This has important implications in the practical 

application of the model in future 3-D numerical simulations. 

 

Numerical Simulations 

 A numerical implementation of the model has been developed and incorporated into the commercial 

finite element code Abaqus/Standard as a user element subroutine. 

 The numerical implementation has been validated through the solution of boundary value problems 

with known analytical solutions, and the convergence behavior for an inelastic problem featuring strain 

localization has been studied and the mesh regularization properties have been demonstrated. 

 The role of the model length scale parameters has been clearly defined in terms of their effect on the 

mechanical response and the development of heterogeneous deformation fields.  This understanding is 

critical to ascribing physical significance to the nonlocal material parameters. 

 The viability of the models has been established through a comparison to discrete dislocation dynamics 

simulations of equivalent initial-boundary value problems.  This not only demonstrates that the models 

are capable of capturing the physics of lower length scale deformation processes in meaningful way, 

but also suggests they could be incorporated as part of a multiscale modeling framework. 
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 A pathway and methodology for calibrating the micropolar model parameters to discrete dislocation 

dynamics simulations has been established.  Knowledge of how the nonlocal material parameters relate 

to various aspects of the finer scale simulations lends confidence that the calibrated values are 

physically meaningful. 
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CHAPTER 2 

SCALE-DEPENDENT SINGLE CRYSTAL PLASTICITY 

 

 

2.1 Introduction 

 

 This chapter presents background material relevant to the development of scale-dependent models 

of single crystal plasticity.  The generalized or nonlocal continuum, as discussed in the introduction, has 

been advanced on several conceptual fronts, and it is covered herein how these different philosophies have 

been applied to constitutive modeling of metallic single crystals.  This material will provide appropriate 

depth and perspective for the micropolar model of single crystal plasticity that is introduced in Chapter 3 

and is the focus of this research.  The following discussion is undertaken within the context of small 

deformations since the micropolar theory is developed within a geometrically linear setting.  The small 

deformation assumption also simplifies comparison of various nonlocal single crystal plasticity theories.  

With regard to constitutive model development, attention is focused on dislocation-based strength evolution 

equations.  In addition to the various nonlocal single crystal plasticity theories presented in Sections 2.4.3-

2.4.5, a few supplemental topics are included to facilitate the review.  The list of supplemental topics 

include: discrete dislocation dynamics (Section 2.2), the classical theory of single crystal plasticity (Section 

2.3), and the geometrically necessary dislocation density tensor (Sections 2.4.1-2.4.2).  Although these 

topics are not necessarily essential to this research, they are included for completeness and ease of 

reference. 

 

2.2 Discrete Dislocation Dynamics 

 

 Discrete dislocation dynamics is a constitutive description of crystalline plasticity which explicitly 

models the motion and evolution of individual dislocations.  In this formalism, dislocations are treated as 

line singularities embedded in an elastic continuum, and the description of plastic deformation follows 
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directly from their nucleation, glide, obstruction, and interaction.  Discrete dislocation dynamics simulation 

frameworks of various levels of sophistication have been developed and employed by several research 

groups [53-59].  All of the methodologies are based on the same fundamental steps of computing the 

migration of dislocations due to the forces acting upon them, but differ in the different numerical 

algorithms used to discretize the continuum and dislocation lines, treat dislocation interactions, the 

computation of long-range forces, etc.  The two-dimensional discrete dislocation dynamics simulation 

methodology of Needleman and Van der Giessen [57] is outlined here in part for simplicity and clarity of 

presentation, and also because comparisons are made to results obtained using their model later in the 

research.  The model is developed for small deformations and elastically isotropic materials. 

 The mechanical initial-boundary value problem in discrete dislocation dynamics is solved as a 

three step process.  First, the stress field within the body is determined based on current position of the 

dislocations.  The Peach-Koehler force acting on each dislocation is then determined, and finally used to 

evolve the dislocation’s positions based on a set of constitutive relations describing the glide, nucleation, 

trapping, and annihilation processes.  The stress field in the body is obtained through a superposition 

procedure which takes advantage of analytical solutions for the dislocation stress fields in an infinite 

continuum and then calculates a corrective stress field on a domain without dislocations to account for the 

actual boundary conditions applied to the finite body.  A schematic representation of the field 

decomposition is given in Figure 2.1.  Consider a linear elastic body of volume R  which consists of a 

matrix phase denoted MR  which may contain dislocations and an elastic inclusion phase denoted R◊  that 

is dislocation free such that MR R R◊= ∪ .  Individual dislocations, indicated by an index i , are treated 

as line defects in the elastic matrix and are characterized by their Burgers vector, ib , and the unit vector 

normal to the slip plane, in .  At a given material point, R∈x , in the interior of the body, the 

displacement field is expressed as an additive superposition of the displacements caused by the N  

dislocations in an infinite medium of the homogeneous matrix material and the corrective displacements 

required to correct for the actual boundary conditions on the finite body and also the presence of inclusions, 

i.e., 

 = +u u u��  (2.1) 
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where u  is the actual displacement field. The dislocation displacement field is indicated by ( i�) and the 

corrective field by ( �i ).  The strain, ε , and stress, σ , fields are also expressed in terms of the dislocation 

and corrective fields, respectively, as 

 1
2
( )= ∇ + ∇ = +u uε ε ε
L K ��  (2.2) 

 = +σ σ σ��  (2.3) 

The balance of linear and angular momentum expressed in terms of the total fields for a body in static 

equilibrium in the absence of body forces are given as 

 
T

R

⎫⎪∇ ⋅ = ⎪⎪⎪⎪ ∀ ∈⎬⎪⎪⎪= ⎪⎪⎭

0
x

σ

σ σ

K

 (2.4) 

Standard displacement and traction boundary conditions can be applied to the body, i.e., 

 *
uR= ∀ ∈ ∂u u x  (2.5) 

 *ˆ Rσ= ⋅ = ∀ ∈ ∂T n xσ Τ  (2.6) 

where *u  and *Τ  are the applied displacements and tractions, respectively, on complimentary portions of 

the external boundary such that uR R Rσ∂ = ∂ ∪ ∂  and uR Rσ∂ ∩ ∂ = ∅ .  The total dislocation fields are 

given as the sum of the individual dislocation fields as 

 , ,i i i

i i i

= = =∑ ∑ ∑u u ε ε σ σ� �� � � �  (2.7) 
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Figure 2.1:  Decomposition of the total fields for a discrete dislocation dynamics problem into the 
dislocation ( i�) and corrective ( �i ) components.  Gray matrix phase ( MR ) and brown elastic 
dislocation-free inclusion phase (R◊ ). 

 

 

The ( i�) fields are determined for an infinite homogeneous (inclusion-free) matrix material based 

on the current dislocation configuration (see Figure 2.1) and the governing equations for this sub-problem 

are given as 

 M

T

R R R◊

⎫⎪∇ ⋅ = ⎪⎪⎪⎪ ∀ ∈ = ∪⎬⎪⎪⎪= ⎪⎪⎭

0
x

σ

σ σ

K
�

� �
 (2.8) 

 : R= ∀ ∈xσ ε�� C  (2.9) 

 *
uR= ∀ ∈ ∂u u x�  (2.10) 

 *ˆ Rσ= ⋅ = ∀ ∈ ∂T n xσ Τ��  (2.11) 

where C  is the 4th rank tensor of elastic moduli for the matrix material.  Solving for the dislocation fields is 

simplified by the fact that analytical solutions exist for dislocations embedded in an elastically isotropic 

infinite medium.  The dislocation displacement, *u� , and traction fields, *Τ� , are those that result on the 

=   +

∞  

* Rσ∀ ∈ ∂xΤ  

*
uR∀ ∈ ∂u x  

* Rσ∀ ∈ ∂xΤ�  

*
uR∀ ∈ ∂u x�  

* * * Rσ= − ∀ ∈ ∂xΤ Τ Τ
� �  

* * *
uR− ∀ ∈ ∂u = u u x� �  

u  
u�   u�  

R◊  

R  
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actual surface of the body due to the presence of dislocations.  The governing equations for the corrective 

fields are then given as 

 M

T

R R R◊

⎫⎪∇ ⋅ = ⎪⎪⎪⎪ ∀ ∈ = ∪⎬⎪⎪⎪= ⎪⎪⎭

0
x

σ

σ σ

K �

� �
 (2.12) 

 * * *
uR= = − ∀ ∈ ∂u u u u x� �  (2.13) 

 * * *ˆ Rσ= ⋅ = = − ∀ ∈ ∂T n xσ Τ Τ Τ
�� �  (2.14) 

 

:

: ( ) :

MR

R◊ ◊ ◊

= ∀ ∈

= + − ∀ ∈

x

x

σ ε

σ ε ε

��

�� �

C

C C C
 (2.15) 

where ◊C  is the 4th rank elasticity tensor for the elastic inclusions.  It is noted that the corrective stress 

field for the inclusions contains a term (2nd term in Eq. (2.15)2) that is due to the dislocation strain fields 

and the difference in elastic properties between the matrix and inclusion phases.  Given that the dislocation 

displacement fields remain continuous on uR∂  and along the interface between the matrix and inclusion, 

Eqs. (2.12)-(2.14) constitute a well-posed linear elastic boundary value problem that can be solved using 

the finite element procedure outlined in Lubarda et al. [60].  Once the stress fields are known, the glide 

component of the Peach-Koehler force is computed according to  

 i i j i

j i≠

⎛ ⎞⎟⎜ ⎟⎜= ⋅ + ⋅⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑f n bσ σ�  (2.16) 

where the first term inside the parenthesis is the stress due to external loading and the second term accounts 

for the stress fields produced by all of the individual dislocations (excluding the one under consideration). 

 The dislocation configuration is then updated through an appropriate set of constitutive relations.  

Dislocation generation is accommodated by activation from point sources which are randomly distributed 

with source density, src� , throughout the matrix material.  A source is activated when the source strength, 

nucτ , is exceeded by the shear stress acting at the source over a time period of nuct .  Nucleation consists of 
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the creation of a dipole where the oppositely signed dislocations are placed at a distance, nucl , apart (each 

dislocation is placed at a distance of / 2nucl  on either side of the source) to balance the critical source 

stress.  This critical distance is defined as  

 
2 (1 )nuc

nuc

b
l

μ
π ν τ

=
−

 (2.17) 

The dislocation glide velocity, iv , is assumed to be linearly related to the Peach-Koehler force according to 

 

 1i iB−=v f  (2.18) 

where B  is a drag coefficient.  A glide dislocation may become trapped at point obstacles which are 

characterized by an obstacle strength, obsτ , and will remain pinned until the resolved shear stress acting on 

the lead dislocation exceeds the obstacle strength.  Mutual annihilation of dislocations is specified to occur 

when two oppositely signed dislocations are separated by a distance less than or equal to the critical 

annihilation distance, cy .  Additional constitutive assumptions specifying the initial state of the simulated 

crystal are required such as: the slip plane spacing, the initial dislocation density, the spatial distribution of 

dislocation sources and obstacles, and the statistical distribution of source and obstacle strengths. 

 Discrete dislocation dynamics simulations are widely used to study the scale-dependent 

mechanical behavior of crystalline materials, and they are capable of capturing both statistical and nonlocal 

aspects of the deformation.  The statistical aspects emerge due to the initial dislocation and source 

configurations, whereas the nonlocality arises due to long-range dislocation forces.  Although the length 

and time scales currently capable of being simulated are somewhat limited by the n-body nature of the 

problem and the time discretization required to accurately capture the transients of dislocation motion, 

discrete dislocation models are a useful tool for benchmarking and calibrating nonlocal crystal plasticity 

models. 
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2.3 Classical Single Crystal Plasticity 

 

2.3.1 Kinematics 

 The traditional theory of single crystal plasticity is based on three fundamental assumptions: (i) a 

two-term decomposition of the total deformation into elastic and plastic parts (ii) the plastic deformation is 

given as the sum of individual slips (shears) on a discrete number of active slip systems and (iii) the lattice 

deformation is equal to the elastic material deformation.  The usual two-term multiplicative decomposition 

of the deformation gradient, F , into elastic, e e= +F I H , and plastic, p p= +F I H , parts in a 

geometrically linear ( e p, 1H H � ) setting leads to the approximation 

 e p e p= + = ⋅ ≈ + +F I H F F I H H  (2.19) 

where = ∇H u
L

, eH  and pH  are the total, elastic and plastic distortions, respectively.  As shown in 

Figure 2.2, a material vector,dX , is transformed under a given deformation into the vector dx  according 

to 

 e p( ) ( )d d d d d d= ⋅ = + + ⋅ = + + ⋅x F X X X X H H Xε ω  (2.20) 

where the additive decomposition of the total distortion into the infinitesimal strain, sym( )= Hε , and 

linear rotation, skw( )= Hω , tensors has been stated in Eq. (2.20)2.  According to (iii), it is assumed that 

the lattice deformation is equal to the elastic material deformation, eH , which implies that during 

deformation an arbitrary lattice vector, αD , is transformed according to 

 e eα α α α= ⋅ = + ⋅d F D D H D  (2.21) 

where αd  is the deformed lattice vector.  As in Eq. (2.20)2 the elastic distortion can be additively 

decomposed into strain and rotation components, i.e., e e e= +H ε ω , such that the lattice rotation is given 

by eω .  Any rigid body rotations are encompassed in eH  via eω  so that lattice vectors follow material 
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vectors under such motions, accordingly, the intermediate configuration defined by pF  in Figure 2.2 is 

isoclinic.  The temporal evolution of the plastic distortion due to dislocation glide is given as [10] 

 p α α α

α

γ= ⊗∑H s n� �  (2.22) 

where αγ� , αs , and αn  are the (signed) slip system shearing rate and unit vectors in the shearing and slip 

plane normal directions, respectively, for the thα  slip system. 

 

 

 

Figure 2.2:  Elastic-plastic kinematics for the classical theory of single crystal plasticity. 

 

 

2.3.2 Balance Laws and Thermodynamics 

 The classical balances of linear and angular momentum for a nonpolar body in static equilibrium 

and in the absence of body forces are stated as 

1dX  

2dX   1D  

2D  

1dx�  

2dx�  
1 1=d D�

2 2=d D�

2d  
1d  

1dx  

2dx  

F  

pF   eF  
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R

⎫⎪∇ ⋅ = ⎪⎪⎪⎪ ∀ ∈⎬⎪⎪⎪= ⎪⎪⎭

0
x

σ

σ σ

K

 (2.23) 

where σ  is the Cauchy stress.  The boundary value problem admits the usual natural and essential 

boundary conditions, respectively, on appropriate parts of the external surface, R∂ , i.e., 

 *ˆ Rσ= ⋅ = ∀ ∈ ∂T n xσ Τ  (2.24) 

 *
uR= ∀ ∈ ∂u u x  (2.25) 

where T  is the traction vector, *Τ  is the applied traction, n̂  is the unit normal to the bounding surface, 

Rσ∂ , where tractions are applied, and *u  are the prescribed tractions and displacements on the 

complementary portion of the boundary, uR∂  , and uR R Rσ∂ = ∂ ∪ ∂ . 

 A set of constitutive relations is proposed within a thermodynamic setting considering isothermal 

processes and neglecting other forms of energy production.  The 2nd Law inequality under these conditions 

states that the deformation power must be greater than or equal to the rate of change in the free energy of 

the system, i.e., 

 I Rρψ≥ ∀ ∈x�p  (2.26) 

where, :I = σ ε�p , is the deformation power, ρ  is the mass density, and is the ψ  is the Helmholtz free 

energy.  Assuming that the free energy depends on the elastic strains and a set of scalar strain-like internal 

state variables (ISVs), I
αζ , for each slip system, i.e., eˆ( , )I

αψ ψ ζ= ε , where the subscript signifies the thI  

ISV, I = 1, 2, …, N  it can be shown via standard thermodynamic arguments [61] that the state laws are 

given by 

 
e

, I
I

α
α

ψ ψ
ρ χ ρ

ζ

∂ ∂
= =

∂ ∂
σ

ε
 (2.27) 
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where I
αχ  are the thermodynamic forces work-conjugate to the thermodynamic displacements, I

αζ , and 

the reduced dissipation inequality is given as 

 p: 0I I
I

α α

α

χ ζ= − ≥∑ ∑σ ε ��d  (2.28) 

The I
αζ , reflect microstructural evolution that leads to energy storage in addition to that embodied by the 

recoverable elastic strains, eε . 

 

2.3.3 Constitutive Equations 

 The plastic strain evolution equation for an associative theory of single crystal plasticity may be 

cast in a general form as  

 p
Fα

α α α

α α

λ λ
∂

= =
∂∑ ∑ Nε
σ

� ��  (2.29) 

where αλ� , F α , and αN  are the plastic parameter, yield function (also the flow potential in the associated 

flow case), and plastic flow direction for the thα  slip system, respectively.  Since p psym( )= Hε �� , it can 

be asserted with the aid of Eq. (2.22) that 

 bF rα α α ατ τ= − −  (2.30) 

 :α α α ατ = ⋅ ⋅ =n s Pσ σ  (2.31) 

 ( )sgn b
α α α ατ τ= −N P  (2.32) 

 sgn( )b
α α α αγ λ τ τ= −��  (2.33) 

where ατ  is the resolved shear stress, b
ατ  is the slip system back stress, rα  is a slip threshold stress 

defining the elastic domain in stress space, and sym( )α α α= ⊗P s n  is the Schmid tensor.  The 

expression in Eq. (2.31)2 may be written in this form due to the symmetry of the Cauchy stress tensor and 
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elucidates the plastic flow direction as the derivative of a flow potential.  A rate-dependent formulation is 

adopted and the plastic parameter is given by the power law overstress function as 

 ( )0

0

0 0

m x x
F g x

x
α α αλ γ

⎧ ∀ ≥⎪⎪= = ⎨⎪ ∀ <⎪⎩

� �  (2.34) 

where 0γ�  is a reference shearing rate, gα  is a drag stress, and m  is the inverse strain rate sensitivity 

exponent.  The threshold stress is given by the Taylor relation, i.e., 

 0 1r r c b hα α αβ β
β

μ= + ∑ �  (2.35) 

where 0r
α  is the intrinsic lattice resistance to slip, 1c  is a material constant related to the dislocation 

configuration, μ  is the shear modulus, b  is the magnitude of the Burgers vector, hαβ  is an slip system 

interaction matrix, and β�  is the total dislocation density on slip system β .  The dislocation density 

evolution equation is taken to be of the Kocks-Mecking [62] form as a competition between storage due to 

dislocation trapping and annihilation due to dynamic recovery, i.e., 

 
1 1

2 cyb l
α α α

α
γ

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠
� �� �  (2.36) 

where lα  is the mean free path for mobile dislocations and cy  is the capture radius for the annihilation of 

oppositely signed dislocations.  The mean free path for dislocations is defined as  

 
K

l
a

α

αβ β
β

=
∑ �

 (2.37) 

where K  is material parameter and aαβ  is an interaction matrix defining the potency of dislocations on 

slip system β  for trapping dislocations on slip system α  [63].  A typical phenomenological description of 

back stress evolution used in classical crystal plasticity models is an appropriate adaptation of the 
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Armstrong-Frederick [64] law for each slip system with the assumption of self-hardening due to 

dislocations of like sign on the same system, i.e., 

 | |b bB Cα α α ατ γ τ γ= −� � �  (2.38) 

where B  and C  are direct hardening and dynamic recovery coefficients, respectively.  Equation (2.38) can 

be transformed into a dislocation-based one by postulating a relationship between the back stress and a 

signed dislocation density, α
±� , that is interpreted as a phenomenological geometrically necessary 

dislocation density, i.e., 

 2 | | sgn( )b c bα α ατ μ ± ±= � �  (2.39) 

where 2c  is a dislocation configuration-dependent material constant.  Equations (2.38) and (2.39) are 

connected through the signed dislocation density evolution equation which is specified as 

 3 4| | sgn( ) | |bc cα α α α α ατ τ γ± ± ±
⎡ ⎤= − −⎢ ⎥⎣ ⎦

� �� � �  (2.40) 

where 3c  and 4c  are material constants defining the accumulation and annihilation rates, respectively, of 

the signed dislocation density.  Time differentiation of Eq. (2.39), insertion of Eq (2.40), and then 

comparing the resulting expression to Eq. (2.38) leads to the interpretation of the phenomenological 

constants in terms of the dislocation-based ones as 

 2 3 4,
2 2

c c b c
B C

μ
= =  (2.41) 

While the signed dislocation density, α
±� , can be thought of as a type of geometrically necessary 

dislocation density, it should not be confused with the geometrically necessary dislocation density that is 

required to maintain compatibility of the total deformation field, as discussed in Section 2.4.2. 

 It is assumed that two scalar ISVs are needed to describe the energy storage due to microstructure 

evolution; one each for the total and signed dislocation densities, i.e., 
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 1 1c b hα αβ β
β

ζ = ∑ �  (2.42) 

 2 2 | | sgn( )c bα α αζ ± ±= � �  (2.43) 

The variable 1
αζ  is defined as the short-range elastic strain field on slip system α  produced by dislocations 

on all other slip systems, and 2
αζ  is the pseudo long-range strain field produced by dislocation pileups lying 

on slip system α .  Introducing a free energy function with quadratic dependence on its arguments, i.e.,  

 e e1 1
1 1 1 2 2 22 2

: : ( )v E Eα αβ β α αβ β

α β

ψ ζ ζ ζ ζ= + +∑ ∑ε εC  (2.44) 

where, vψ ρψ= , is the free energy per unit volume, C  is the 4th rank tensor of elastic moduli, and IEαβ  

I = 1,2 are symmetric positive-definite matrices of material moduli with units of force/length2.  Inserting 

Eq. (2.44) into Eq. (2.27) leads to explicit state laws, i.e.,  

 1 1 1 2 2 2: , ,e E Eα αβ β α αβ β

β β

χ ζ χ ζ= = =∑ ∑σ εC  (2.45) 

Assuming that 1 2E Eαβ αβ αβμδ= = , it is seen that 1 rα αχ =  and 2 b
α αχ τ= .  Considering Eqs.(2.42), 

(2.43), (2.36), and (2.31) the reduced dissipation inequality for the single ISV constitutive model may be 

expressed as 

 2 3 4
2 0

2 2b b

c c b c
r H αβα α α α α α αβ β

α α β

τ τ γ τ ζ δ γ
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= − − − ≥⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

∑ ∑ ∑� �d  (2.46) 

where H αβ  is defined as 

 1 1
2

2 c

c h
H a y

Kh

αβ
ξαβ ββξ

ξαδ δ
δ

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑
∑

� �
�

 (2.47) 

The first term in Eq. (2.46) is the rate of energy dissipated by plastic deformation, and the second term is 

the rate of energy stored due to microstructural evolution. 
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 Physically, the product term 1rα αζ  is the energy stored due to the short-range interactions of 

dislocations lying in slip plane α  and can be related to the self-energy of the dislocation configuration.  To 

elucidate this fact, consider the expression for the self-energy per unit length, /d dE l , of a dislocation as 

expressed in dislocation theory [65], i.e., 

 2
5/d dE l c bμ=  (2.48) 

where 5c  is a numerical constant that depends on the dislocation configuration and character.  The total line 

length, dl , of dislocations in a given volume, V , is given as 

 dl V= �  (2.49) 

where α
α

= ∑� � .  Therefore, the dislocation energy per unit volume of material may be expressed as 

 2
5/dE V c bμ= �  (2.50) 

Now consider the energy per unit volume stored due to microstructural rearrangement, m
vψ , (the second 

term in Eq. (2.44)), i.e.,  

 2 2
1 1

m
v r c b hα α αβ β

α α β

ψ ζ μ≡ =∑ ∑ ∑ �  (2.51) 

The two expressions given in Eqs. (2.50) and (2.51) are equivalent if the constant 5c  is specified such that 

 2
5 1

h

c c

αβ β

α β

δ

δ

=
∑∑

∑

�

�
 (2.52) 

Equation (2.52) shows that the constant 5c  is function of the current microstructural state via the 

dislocation density.  On the other hand, the product 2b
α ατ ζ  is the energy stored due to long-range effects on 

slip system α , i.e., those due to dislocation pileup effects. 
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2.4 Generalized Single Crystal Plasticity 

 

 There are a variety of ways in which generalized theories of crystal plasticity can be constructed, 

and this is reflected by the diversity of the models that can be found in the literature.  Accordingly, it is 

beneficial to introduce a classification system as in Kuroda and Tvergaard [66] which delineates broadly 

between three classes of models:  low-order theories, non-work-conjugate theories, and work-conjugate 

theories.  Low-order theories incorporate nonlocality into the constitutive response while maintaining the 

classical structure of the mechanical balance equations and do not admit non-standard boundary conditions.  

Such models are incapable of predicting size-dependent mechanical behavior for a homogeneous material 

subjected to uniform remote boundary conditions.  Non-work-conjugate theories are defined as those that 

maintain the classical structure of the mechanical balance laws, but include additional non-mechanical 

balance equations.  The class of work-conjugate continua is comprised of models with non-standard 

expressions of deformation power and mechanical balance laws; examples include second or nth gradient 

models and generalized micromorphic models with the distinction that grade-n theories incorporate higher-

order derivatives of the usual displacement degrees-of-freedom, whereas the latter introduce additional 

micro degrees-of-freedom that are independent of the displacement field.   

Classical single crystal plasticity is extended to account for scale effects by appealing to the 

concept of geometrically necessary dislocations (GNDs) [11].  From a purely kinematic point of view, the 

origins of the connection between heterogeneous states of deformation, deformation incompatibility, and 

geometrically necessary dislocations can be traced back to the early works of Kondo[67], Bilby et al. [68], 

and Kröner [69], amongst others, whereas the connection between GNDs and lattice curvature can be 

traced back to the work of Nye [70].  According to Ashby [11], GNDs lead to increases of both isotropic 

and kinematic hardening by further reducing the mean free path of mobile dislocations and by virtue of the 

long-range nature of their associated stress fields; however, there are many models that neglect GND 

effects on kinematic hardening.  Disregarding this aspect of material strengthening is questionable as the 

long-range and directional nature of the internal stress fields induced by GNDs is unequivocal and deemed 

critically important by many; Mughrabi [71] noted that the inclusion of GND-enhanced isotropic hardening 
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by itself is insufficient to properly model scale-dependent mechanical behavior.  While most nonlocal 

theories have been applied to boundary value problems involving forward uniaxial loading, thereby making 

the two hardening contributions difficult to distinguish, an appropriate coupling of GNDs to back stresses is 

imperative to capturing material behavior during load reversal.  Kinematic hardening due to the presence of 

GNDs has been incorporated into crystal plasticity models in a number of ways [17, 72-74], but with the 

commonality that the back stresses are related to gradients in the GND density.  Representative generalized 

crystal plasticity models within the three previously described classes are the low-order theories due to [19, 

21, 22, 75], the non-work-conjugate theories due to [14, 73, 76-79] and the work-conjugate theories due to 

[17, 25, 28, 29, 31, 34, 36, 80, 81]. 

The GND density tensor used in nonlocal crystal plasticity theories can be derived from the 

mathematical compatibility requirements of deformation measures; however, it is instructive to first 

examine the GND density tensor from the discrete dislocation perspective.  The presentation and discussion 

of Section 2.4.1 follows closely to the seminal 1999 contribution of Arsenlis and Parks [82]. 

 

2.4.1 The Discrete Geometrically Necessary Dislocation Density Tensor 

 In 1953, Nye [70] introduced a tensorial measure of the dislocated state of the lattice [70].  Nye’s 

tensor, like the usual dislocation density familiar to metallurgists and materials scientists, must be evaluated 

over a reference volume of material and is a function of the Burgers and line tangent vectors of all of the 

dislocations contained within the volume.  Considering a single straight (constant line tangent vector) 

dislocation which extends across a volume of characteristic length, l , which is perpendicular to and pierces 

opposing faces of the cube, Nye’s tensor, α , is defined as 

 = ⊗bα � ξ  (2.53) 

where 21 / l=� , b  is the Burgers vector of the dislocation, and ξ  is the unit tangent vector directed 

along the dislocation line in the right-hand screw sense.  If a volume of material containing an ensemble of 

dislocations is considered, then Nye’s tensor is defined by the line integral over all dislocation segments 

within the volume as 



 

~ 25 ~ 

 1 i i i

i

dl
V

Γ

= ⊗∑ ∫ bα ξ  (2.54) 

It is seen that Eq. (2.53) is just a special case of the more general definition given in Eq. (2.54).  From this 

definition it becomes clear that Nye’s dislocation density tensor is an aggregate measure for all dislocations 

contained within the volume; and that as pointed out by Arsenlis and Parks [82], the inverse problem of 

determining the exact dislocation distribution for a volume of material given the components of α  does not 

have a unique solution.  In fact, as shown by Kröner [83], the scalar dislocation density (total line length 

per unit volume) and Nye’s dislocation density tensor are just two different invariants of various statistical 

moments of the dislocation distribution in a given volume.  Furthermore, if each dislocation segment can be 

treated individually as having a constant Burgers vector, the definition of Nye’s tensor given in Eq. (2.54) 

can be expressed as 

 1 i i i

i

dl
V

Γ

= ⊗∑ ∫bα ξ  (2.55) 

As a consequence of being expressed in this form, the integrated properties of Nye’s tensor are revealed.  

For example, consider the generally curved dislocation threading the reference volume shown in Figure 2.3, 

and applying Eq. (2.55) to evaluate Nye’s tensor over this volume yields 

 1
( )

V
+ −= ⊗ −b r rα  (2.56) 

where +r  and −r  are the coordinate positions of the beginning and end points of the dislocation segments 

on the boundaries of the volume, as defined by the direction of integration in Eq. (2.55).  Equation (2.56) 

shows that the Burgers vector and the two threading points are all that is needed to calculate an individual 

dislocation segment’s contribution to Nye’s tensor, and that the actual path of the segment has no 

consequence on the calculation.  This reinforces the earlier comment that given the components of Nye’s 

tensor over the volume (the straight red dash-dotted line in Figure 2.3), the total dislocation distribution 

(the generally curved path between the two end points) cannot be uniquely determined.  Making use of Eq. 
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(2.56), Eq. (2.55) may be expressed for a population of dislocation segments in terms of the average 

tangent vector, iξ , and the secant length, il , as 

 1 i i i

i

l
V

= ⊗∑ bα ξ  (2.57) 

where  

 ,
i i

i i i i
i i

l
+ −

+ −
+ −

−
= = −

−

r r
r r

r r
ξ  (2.58) 

Introducing a scalar measure of the discrete GND density for a given segment as 

 
i

i
GD

l

V
=� , (2.59) 

Nye’s tensor can also be written in the form 

 i i i
GD

i

= ⊗∑ bα � ξ  (2.60) 
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Figure 2.3:  Demonstration of the geometrically necessary dislocation density (dash-dot straight red 
line) associated with the arbitrarily curved (solid red line) dislocation. 

 

 

A natural measure of the discrete SSD density for each segment can then be defined as 

 i i i
SD GD= −� � �  (2.61) 

where the total dislocation density for each segment is defined in the usual manner as 

 1i i

i

dl
V

Γ

= ∑ ∫�  (2.62) 

Considering Eq. (2.61) and the dislocation segment shown in Figure 2.3, it is clear that the discrete SSD 

and GND densities cannot be thought of as belonging to separate dislocation populations - a dislocation is 

neither geometrically necessary or statistically stored - rather they are two different statistical moments of 

the total dislocation distribution within the volume under consideration.   

 The lattice-geometric consequences of Nye’s tensor are illustrated by considering a single face of 

the reference volume.  The integral over the enclosed area of the inner product of Nye’s tensor with the 

plane normal gives the net Burgers vector, B , of all dislocations piercing the plane, i.e., 

1x  

2x  

3x  

+r  
−r  

ξ
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 ˆ
R

dA
∂

= ⋅∫B nα  (2.63) 

Evaluating the surface integral in Eq. (2.63) over all of the surfaces of the reference volume and making 

use of the divergence theorem, the previous result leads directly to the conservation equation for Nye’s 

tensor as 

 V⋅ ∇ = ∀ ∈0 xα
L

 (2.64) 

which is interpreted as a statement of conservation of Burgers vector that implies that dislocations cannot 

terminate within the interior of a crystal.  Finally, a representation of Nye’s tensor for the special case of a 

dislocation population consisting entirely of straight, pure edge and screw segments with constant Burgers 

vector (e.g., fcc) is given in Eq. (2.65).  This representation of the dislocated state of a crystal is employed 

in some discrete dislocation dynamics frameworks [53] and is often encountered in discussions of 

continuum measures of the GND density tensor.  For a given slip system defined by the right-handed triad 

of vectors ( , , )β β βs n t  where βt  is a unit vector defined as β β β= ×t s n  Nye’s tensor is given for this 

special case as 

 ( ) ( )b β β β β β β β β

β
⊥ ⊗= − ⊗ + − ⊗∑ s t s sα :F� � � �  (2.65) 

where, β
⊥� , β

F�  are the positive and negative edge densities and β
:ρ , β

⊗ρ  are the positive and negative 

screw densities, respectively.  For more general crystal structures (e.g., hcp), the Burgers vector is not 

constant and cannot be pulled outside of the summation.  It is emphasized that the dislocation densities in 

Eq. (2.65) refer to the thβ  slip system and not to the individual dislocation segments as in the previous 

developments of this section.  In other words, each slip system density can be thought of as being the 

cumulative individual segment density lying within that system over the given volume. 
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2.4.2 Deformation Compatibility and the Continuum GND Density Tensor 

 Compatibility, i.e., the mathematical requirement for a single-valued global displacement field, on 

a standard continuum, is ensured if ×∇ = ∇×∇ =H u 0
L L L

.  Therefore, a continuum measure of the 

deformation incompatibility is the continuous analog to the discrete GND density tensor, α , which was 

introduced in the Section 2.4.1 and is defined in this context as 

 e p≡ − × ∇ = × ∇H Hα
L L

 (2.66) 

The following reciprocal relationships between the GND density tensor and the lattice (elastic material) 

deformation can be established [82], i.e., 

 etrT= − + − × ∇α κ (κ)1 ε
L

 (2.67) 

 e1
2
tr )T T= − + − × ∇κ α (α)1 (ε

L
 (2.68) 

where the lattice torsion-curvature is defined as 

 = ∇κ φ
L

 (2.69) 

The lattice rotation (axial) vector, φ , is related to the lattice linear rotation tensor in the usual manner via 

the alternating tensor, ε , i.e., 1 / 2 : e= −φ ωε .  The original relationships between the continuum GND 

density tensor and lattice torsion-curvature derived by Nye [70] neglected the elastic strain terms in Eqs. 

(2.67) and (2.68).  Researchers frequently use the original expressions (neglecting the elastic strain term) to 

convert experimentally measured lattice orientations into GND densities cf. [84-88].  Expressed in terms of 

the plastic distortion (see Eq. (2.22)), the continuum GND density tensor is written as 

 ( ), ,G Gb α α α α α α

α
⊥= ⊗ + ⊗∑ s t s sα :� �  (2.70) 

where the edge, ,G
α

⊥� , and screw, ,G
α
:� , GND densities are defined as gradients of slip projected in the 

respective glide directions for pure edge and screw dislocations, i.e.,  
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 , ,
1 1

,G Gb b
α α α α α αγ γ⊥ = − ∇ ⋅ = ∇ ⋅s t:

K K
� �  (2.71) 

Comparing Eqs. (2.70) and (2.71) to Eq. (2.65) leads to the following connection between the polarity of 

the discrete dislocation densities and the continuum gradients of slip, i.e., 

 ,
1

G b
α α α α αγ⊥ ⊥= − ∇ ⋅ = −s

K
F� � �  (2.72) 

 ,
1

G b
α α α α αγ ⊗= ∇ ⋅ = −t: :

K
� � �  (2.73) 

The relationships in Eq. (2.71) and (2.73) may be used to incorporate nonlocality into the slip system 

hardening description, and are central to the slip gradient-based extensions of the classical theory. 

 

2.4.3 Low-Order Theories 

 The distinguishing feature of low-order theories is that the classical structure of mechanical 

balance laws remains intact and no additional non-mechanical balance laws are introduced.  The model 

enhancements are restricted to the material hardening description.  Specifically, the constitutive equations 

are modified to account for the additional strain-hardening due to GNDs, and in most cases both isotropic 

and kinematic contributions are accounted for.  To extend the model presented in Section 2.3 to incorporate 

isotropic hardening due to GNDs, for example, the total dislocation density on each slip system is written 

as the sum of SSDs and GNDs, i.e., 

 S G
α α α= +� � �  (2.74) 

Here, the total GND density is given in terms of the edge and screw GND densities as 

 ( ) ( )2 2

, ,G G G
α α α

⊥= + :� � �  (2.75) 

Taking the time derivative of Eq.(2.75) and making use of the rate version of Eq. (2.71) yields the total 

GND density evolution equation, i.e., 
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 ( ) ( ), ,
1

G G G
Gb

α α α α α α α
α

γ γ⊥
⎡ ⎤= −∇ ⋅ + ∇ ⋅⎢ ⎥⎣ ⎦s t:

K K
� � �� � �

�
 (2.76) 

The SSD evolution equation is assumed to have the same functional form as in the classical theory (see Eq. 

(2.36)) such that 

 
1 1

2S c Sy
b l

α α α
α

γ
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠

� �� �  (2.77) 

where the mean free path, lα , may be defined in one of two ways, i.e., 

 1

S

K
l

a

α

βαβ
β

=
∑ �

   or   2
( )S G

K
l

a

α

β βαβ
β

=
+∑ � �

 (2.78) 

In the first definition, Eq. (2.78)1, the mean free path is a function of only the SSD density, whereas in the 

second it is a function of the total density.  Similarly, the slip threshold stress maybe defined in terms of the 

SSD or total densities as  

 1 0 1 Sr r c b h βα α αβ
β

μ= + ∑ �    or   2 0 1 ( )S Gr r c b h β βα α αβ
β

μ= + +∑ � �  (2.79) 

The particular choices that one makes regarding the definitions of the mean free path and the threshold 

stress are constitutive assumptions, and to date there has been no definitive answer as to which, if either, 

description is more appropriate.  Clearly, if the combination 1 1( , )l rα α  is chosen, then the isotropic hardening 

description remains classical, whereas any of the other combinations will include a nonlocal contribution. 

 In generalized crystal plasticity theories, the typical phenomenological back stress contribution 

used in many classical theories that is given in Eqs. (2.39)-(2.40) is often replaced by a more physical 

description that is derived considering the pseudo long-range internal stress fields generated by the GNDs 

[14, 72, 73, 89].  In these works, the back stress contribution at a material point is determined from a first-

order (linear) approximation of the GND density distribution about the point in question which is assumed 

to be valid within a cylinder of radius R .  The GND density linearization is used in conjunction with the 

analytical solutions for the stress fields produced by edge and screw dislocations to determine the total back 
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stress contribution via integration.  The calculated internal stress fields are approximate since they are 

determined considering only the cylindrical region of influence defined by R , and also because the 

analytical stress field solutions are derived assuming an elastically isotropic infinite medium and a state of 

plane strain.  The individual back stress components due to edge, ,b
ατ ⊥ , and screw ,b

ατ : , GND densities are 

considered separately such that the total back stress tensor, bσ , is expressed as 

 , ,( )( )b b b
α α α α α α

α

τ τ⊥= − + ⊗ + ⊗∑ s n n sσ :  (2.80) 

and the resolved slip system back stress is given by 

 : ( )b b
α α ατ = ⊗s nσ  (2.81) 

The edge and screw-related back stress components, respectively, are given as [14]  

 
2

, ( )
8(1 )b G

bR
d βα αβ α

β

μ
τ

ν⊥ ⊥= − ∇ ⋅
− ∑ s

K
�  (2.82) 

 
2

, ( )
4b G

bR
d βα αβ α

β

μ
τ = ∇ ⋅∑ t: :

K
�   (2.83) 

where ν  is Poisson’s ratio and dαβ
⊥  and dαβ

:  are matrices defining the relative shear stress contributions 

on the thα  system due to gradients of GND densities on the thβ  slip system.  These matrices are defined as 

 
1 for 1,2, 12

0 otherwise
dαβ α β

⊥

⎧ = =⎪⎪= ⎨⎪⎪⎩

…
 (2.84) 

 
1 for( , ) (4,13),(6,18),(8,17),(9,15),(10,16),(11,14)

1 for( , ) (1,16),(2,17),(3,18),(5,14),(7,13),(12,15)

0 otherwise

dαβ

α β
α β

⎧⎪− =⎪⎪⎪= =⎨⎪⎪⎪⎪⎩

:  (2.85) 

The preceding developments are referred to as a “self-internal formulation” of the nonlocal back stress, and 

it is noted that further studies [72, 89] have sought to improve upon this approximation.  However, Eqs. 

(2.82) and (2.83) suffice in highlighting the key features of this and related GND-induced back stress 
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formulations; namely, that the back stress is a function of gradients in GND densities (or second gradients 

of slip via Eq. (2.71)) and the intrinsic material length scale is given by the cut-off radius, R , which 

determines the region of influence of the pseudo long-range effects.  It is to be understood here that pseudo 

refers to the fact that the calculation of the back stresses has been truncated. 

 To proceed with the thermodynamic analysis, certain decisions must be made regarding which 

versions of Eqs (2.78) and (2.79) will be employed.  Rather than considering all of the possible 

combinations, a description of isotropic hardening based on 2l lα α=  and 2r rα α=  is pursued.  Three ISVs 

are introduced to capture the stored energy due to microstructural rearrangement, i.e., 

 1 1 ( )S Gc b h β βα αβ
β

ζ = +∑ � �  (2.86) 

 
2

2 ,( )
8(1 ) G

bR
d βα αβ α

β

ζ
ν ⊥ ⊥= ∇ ⋅

− ∑ s
K
�  (2.87) 

 
2

3 ,( )
4 G

bR
d βα αβ α

β

ζ = ∇ ⋅∑ t: :
K
�  (2.88) 

where 1
αζ  is the elastic strain due to short-range dislocation interactions and 2

αζ  and 3
αζ  are the elastic 

strains due to the long-range dislocation interactions of edge and screw populations, respectively.  The free 

energy is assumed to have the same functional form as Eq. (2.44), i.e., 

 e e 2 2 21 1
1 2 32 2

: : ( ) ( ) ( )v
α α α

α

ψ μ ζ ζ ζ⎡ ⎤= + + +⎢ ⎥⎣ ⎦∑ε εC  (2.89) 

and the state laws are given as 

 

e
1 1

2 , 2 3 , 3

:

,

b b

rα α α

α α α α α α

χ μζ

χ τ μζ χ τ μζ⊥

= = =

= − = = =

σ ε

:

C
 (2.90) 

The dissipation inequality for the proposed constitutive description then follows as 
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1 2

, 3 , 4

( )

( ) : ( ) 0b b

r H rα α α αβ β α αβ β

α α β

α αβ α αβ β

α β

τ γ γ γ

τ τ γ⊥

= − + ⋅ ∇

− + ∇ ∇ ≥

∑ ∑ ∑

∑ ∑

H

H H:

K
� � � "

K K
�

d

 (2.91) 

where the matrices 1Hαβ , 2
αβH , 3

αβH , and 4
αβH  are defined as 

 1
1

1
( ) 2

2 ( )
S G c S

S G

c h
H a y

Kh

αβ
ξ ξ βαβ βξ

ξαδ δ δ
δ

⎛ ⎞⎟⎜= + − ⎟⎜ ⎟⎜ ⎟⎝ ⎠+
∑

∑
� � �

� �
 (2.92) 

 , ,1
2 2 ( )

G G

GS G

c h

h

β ββ βαβ
αβ

βαδ δ δ
δ

⊥− +
=

+∑
s t

H :� �

�� �
 (2.93) 

 
2

3 8(1 )

R
dαβ αβ β β

ν ⊥= ⊗
−

H s s  (2.94) 

 
2

4 4

R
dαβ αβ β β= ⊗H t t:  (2.95) 

It is shown in Eq. (2.91) that there are contributions from both first- and second-order slip gradients to the 

energy storage rate due to microstructural evolution.  The first-order gradient contribution is the result of 

the GND-enhanced isotropic hardening, whereas the second-order gradient effects are the result of the 

long-range GND stress fields. 

 

2.4.4 Non-Work-Conjugate Theories:  The Dislocation Sub-Problem 

Higher-order theories, in addition to nonlocal constitutive response, also involve supplemental 

balance equations that must be satisfied as part of the initial-boundary value problem.  The non-work-

conjugate theories are a subset of higher-order theories in which the additional conservation equation(s) are 

of a kinematical nature (not mechanical) and, therefore, do not involve higher-order stress measures.  

Within the context of crystal plasticity, this is typically achieved by introducing dislocation density 

conservation equations that admit dislocation density and density-flux boundary conditions.  Among these 

types of models, there are those which augment the standard mechanical initial-boundary value problem 

with a weak form implementation of Eq. (2.71) as in Evers et al. [14, 73], and those which couple the 
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mechanical problem with the dislocation sub-problem via the well-known Orowan relation [74, 78, 79, 90].  

Orowan’s relation is the kinematical relationship between the slip system shearing rate and the mobile 

dislocations lying in that system and is given as 

 α α α αγ = ⋅b v� �  (2.96) 

where αv  is continuum dislocation glide velocity in slip direction.  This relation provides a natural link 

between theories of single crystal plasticity which include αγ�  as a fundamental ingredient and the 

evolution and flux of dislocation density.  No distinction is made here between the mobile and immobile 

population dislocation densities, but it is seen from Eq. (2.96) that only mobile segments, i.e., those with 

nonzero velocity contribute to the slip system shearing rate. 

A related but unique coupled approach has also been introduced and developed by Acharya and 

co-workers in a series of papers [76, 91-99].  Their theories of field dislocation mechanics [76] and the 

coarse-grained version, phenomenological field dislocation mechanics [95], are different from the other 

coupled approaches in that they capture the long-range internal stress fields due to dislocations exactly, 

whereas the formerly mentioned coupled models incorporate approximate versions of these fields which are 

functionally similar to Eq. (2.82).  The field dislocation mechanics model is able to capture the exact 

internal dislocation stress fields, in essence, because it explicitly includes the elastic deformation fields 

produced by the dislocations as part of an orthogonal decomposition of the total elastic deformation.  This 

aspect of the theory is closely related to the superposition principle employed in the discrete dislocation 

dynamics framework discussed in Section 2.2 in which the strains produced by dislocations and external 

loading are treated separately.  In fact, the omission of these dislocation-induced elastic strain fields results 

in the introduction of a non-equilibrated internal stress field that is manifested by including a back stress in 

the slip rate evolution equation (see Eqs. (2.30), (2.33), and (2.34)) without including the additional 

kinematic degrees-of-freedom that are associated with it.  This deficiency has led some [36, 73, 100-102] to 

argue in favor of expanding the usual two-term decomposition of the total deformation given in Eq. (2.19) 

to include another elastic term which accounts for the internal stress fields that remain when external 

tractions are removed from the material element.  While this assumption is different from the orthogonal 
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decomposition of the elastic deformation employed by Acharya [76], it is intended address the same 

shortcoming of the classical ISV-type approach to kinematic hardening. 

Finally, the models of Ashmawi and Zikry [103-106] are mentioned as another augmented-type of 

approach which is distinct from those which employ the weak form of the GND density conservation 

equation.  They introduce evolution equations for mobile and immobile dislocation densities, similar in 

spirit to the kinetic relations used by Walgraef and Aifrantis [107] to study dislocation pattern formation, 

and then develop a set of constitutive rules and a numerical scheme for “passing” mobile dislocation 

density from one material point to another.  As a result no explicit dislocation boundary conditions are 

required in their formulation.  Oddly, the mobile dislocation density is not explicitly coupled to the slip 

system shearing rate via Orowan’s relation, and is linked to the mechanical problem only through its 

participation in the mobile/immobile dislocation density evolution equations their contribution to the slip 

resistance. 

A few of the representative approaches to the dislocation sub-problem are subsequently introduced 

and compared.  Specifically, the models of Evers et al. [14], Arsenlis et al. [78] and Yefimov and Van der 

Giessen [74] are discussed, and to simplify the presentation attention is focused on 2-D versions of the 

models such that only conservation equations for the edge dislocation density are considered.  In the works 

of Evers et al. [14], Geers [89], and Gerken and Dawson [73] the dislocation sub-problem consists of a 

weak form of Eq. (2.71)1 which is obtained by multiplying the equation by a virtual edge GND density, 

,G
αδ ⊥� , and integrating over a volume, i.e., 

 ( )1
, , 0G Gb

R

dVα α α αγ δ⊥ ⊥+ ∇ ⋅ =∫ s
K

� �� �  (2.97) 

where the rate form of the equation has been used to facilitate comparison with the other theories.  

Integrating by parts to transfer the gradients from the slip rate to the GND density yields the following 

 1 1
, , , ,ˆ( )G G G Gb b

R R

dV dAα α α α α α α αδ γ δ γ δ⊥ ⊥ ⊥ ⊥
∂

⎡ ⎤− ⋅ ∇ = − ⋅⎢ ⎥⎣ ⎦∫ ∫s s n
K

� � �� � � �  (2.98) 

The surface integral term in Eq. (2.98) clearly shows that natural boundary conditions are admitted in terms 

of the slip rate and essential boundary conditions in terms of the edge GND densities..  While it is possible 
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to apply arbitrary boundary conditions of either type, two types of extreme conditions have typically been 

employed in practice.  These limiting cases are the so-called microhard (microrigid, microclamped) and 

microfree conditions and are given, respectively, as 

 ˆ 0 Rα α
γγ ⋅ = ∀ ∈ ∂s n x ��  (2.99) 

 , 0G Rα
⊥ = ∀ ∈ ∂x ��  (2.100) 

where the microhard condition (Eq. (2.99)) represents a boundary that is impenetrable to slip and the 

microfree condition (Eq. (2.100)) describes a boundary that is a perfect sink for GNDs, i.e., a free surface.  

The remaining treatment of the dislocation substructure evolution and the slip system hardening description 

is handled exactly as in the low-order theories discussed in Section 2.4.3, such that all of the previous 

analysis can be directly applied here.  The key components which seem to be missing from such 

formulations are (i) a coupling of the dislocation density to the slip rate equation via Orowan’s relation and 

(ii) the total density conservation equation.  Equation (2.98) is the GND density balance equation and only 

accounts for the conservation of the total amount of local Burgers vector (GNDs).  The total dislocation 

density conservation equation, if included, states that the rate of increase of total dislocation density within 

a given volume is equal to the net increase in density produced by generation and annihilation by interior 

sources/sinks minus the net outflux of density through the boundaries. 

 The model of Arsenlis et al. [78], on the other hand, addresses the two missing components of the 

previous approach enumerated in the preceding paragraph, but does not handle the GND density 

conservation equation in a transparent manner.  Their model also differs from the previous model in that it 

employs a signed dislocation density basis to describe the dislocated state of the crystal, and this approach 

has the distinct advantage that the GND and SSD densities may be unambiguously defined.  In the 2-D 

case, this leads to the introduction of two edge dislocation densities (positive/negative) for each slip system, 

α
⊥�  and α

F� , respectively.  Therefore, the total, GND, and SSD dislocation densities are defined as 

 α α α
⊥= + F� � �  (2.101) 

 G
α α α

⊥= − F� � �  (2.102) 
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 S G
α α α α α α α

⊥ ⊥= − = − −F F� � � � � � �+  (2.103) 

The evolution equation for each species on each slip system, α
⊥�  and α

F� , can be written in general form as 

 ,
flux

i i i i iα α α α+ −
= + + =⊥� � � �� � � � F  (2.104) 

where i
α+��  and i

α−��  are the volumetric generation (multiplication and nucleation) and annihilation terms, 

respectively, and flux

i
α��  gives the rate of change of density due to dislocation flux.  The generation and 

annihilation terms are constitutively specified and have functional forms similar to those given in Eq. (2.36)

, while the flux terms are given as 

 
( ) ( )

( ) ( )

flux

flux

v v

v v

α α α α α α α

α α α α α α α

⊥ ⊥ ⊥ ⊥ ⊥= −∇ ⋅ = −∇ ⋅

= ∇ ⋅ = ∇ ⋅

s s

s s

K K
�

K K
�F F F F F

� � �
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 (2.105) 

Here, v α
⊥  and v α

F  are the signed scalar dislocation glide velocities and Eq. (2.105) represents the 

volumetric loss of dislocation density due to net outward flux of the dislocation species.  Neglecting for the 

moment the generation and annihilation source terms, the weak form of Eq. (2.104) for each species is 

obtained by multiplying by the appropriate virtual dislocation density ( αδ ⊥�  or αδ F� )and integrating over a 

volume as 
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 (2.106) 

Integrating by parts and applying the divergence theorem yields the relations 

 

( )

( )

ˆ

ˆ

R R

R R

v dV v dA

v dV v dA

α α α α α α α α α α

α α α α α α α α α α

δ δ δ

δ δ δ

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
∂

∂

⎡ ⎤− ⋅ ∇ = − ⋅⎢ ⎥⎣ ⎦

⎡ ⎤+ ⋅ ∇ = ⋅⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

s s n

s s n

K
�

K
�F F F F F F F F

� � � � � �

� � � � � �

 (2.107) 
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As before in the case of the GND density conservation equation, it is seen that analogous microhard 

(natural) and microfree (essential) boundary conditions are admitted as extreme cases, respectively, as 
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While the relations given in Eqs. (2.98)-(2.100) are similar to those given in Eqs. (2.107)-(2.109), it is 

emphasized that they have been obtained from two different dislocation conservation equations; the former 

from a statement of GND density (net Burgers vector) conservation and the latter from a statement of total 

dislocation density conservation.  Furthermore, had the source terms been included in the weak form of Eq. 

(2.104) there would have been additional terms in this Eq. (2.107) accounting for this contribution.  Ideally, 

a complete formulation of the dislocation sub-problem should include both conservation equations.  

Considering the 2-D dislocation density basis employed, the dislocation and mechanical problems are 

related by the appropriate form of Orowan’s relation, i.e., 

 ( )b v vα α α α α α α α α α αγ ⊥ ⊥ ⊥ ⊥ ⊥= ⋅ + ⋅ = +b v b v� F F F F F� � � �  (2.110) 

since bα α α
⊥ = = −b s bF , vα α α

⊥ ⊥=v s , and vα α α= −v sF F .  The scalar dislocation velocities are specified 

as constitutive functions and contain a slip resistance contribution that is a function of the total dislocation 

density akin to Eq. (2.35) and a back stress contribution that is a function of the gradients in GND density 

which is similar to Eq. (2.82).  However, instead of using the analytical stress fields and GND density 

linearization as described Section 2.4.3, the back stress is assumed to be given as follows 

 6
,b G

c bα α α
α

μ
τ ⊥= ∇ ⋅ s

K
�

�
 (2.111) 
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where 6c  is a numerical constant.  This approximate functional form of the back stress has been derived by 

Groma et al. [108] by coarse-graining the internal stress fields produced by 2-D ensemble of edge 

dislocations.  Comparing Eq. (2.111) to Eq. (2.82) and taking account of the fact that 1dαα
⊥ = , it is seen 

that the two expressions are equivalent if 2
6 / / 8(1 )c Rα ν= −� .  This is brought to attention to point 

out that the intrinsic material length scale appearing in the back stress derived from the semi-analytical 

approach is constant and defined by R , whereas the one derived from coarse-graining of dislocation 

ensembles evolves with deformation.  The model of Arsenlis et al. [78] does not appear to explicitly 

incorporate the GND density balance equation although it does allow for polar densities to develop, for 

example, through the specification of microhard boundary conditions of the type given in Eq. (2.108). 

 A non-work-conjugate theory which features both dislocation conservation equations and couples 

the dislocation sub-problem to the mechanical problem via Orowan’s relation are those due to Yefimov and 

Van der Giessen [74] and Limkumnerd and Van der Giessen [90].  The dislocation density balance 

equations in their model are stated as 

 ,( )G f
t

α
α α α

⊥
∂

+ ∇ ⋅ =
∂

v
K�

�  (2.112) 

 , ( ) 0G

t

α
α α⊥∂

+ ∇ ⋅ =
∂

v
K�
�  (2.113) 

where Eq. (2.112) is the total dislocation density balance equation and Eq. (2.113) is the GND balance 

equation.  The function f α  embodies the source/sink terms describing the volumetric generation and 

annihilation rates.  It can easily be shown that Eq. (2.107) of Arsenlis et al. [78] is identical to Eq. (2.112).  

Adding the rate equations given in Eq. (2.104), including the generation and annihilation terms, leads to the 

following 

 ( )v vα α α α α α α α α α α+ − + −

⊥ ⊥ ⊥ ⊥ ⊥+ + ∇ − ⋅ = + + +s
K

� � � �F F F F F� � � � � � � �  (2.114) 

Recognizing that v vα α
⊥ = F  and pulling the slip vector αs  inside the parenthesis on the second term on the 

LHS of Eq. (2.114) clearly asserts the equivalence between the two expressions where 
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f α α α α α+ − + −

⊥ ⊥= + + +F F� � � � .  Similarly, equivalence between Eq. (2.113) and the rate form of Eq. 

(2.72) is established by moving the unit slip vector outside of the parenthesis in Eq. (2.113) and utilizing 

Eq. (2.96) such that 
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α α
α α α α αγ⊥ ⊥∂ ∂
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∂ ∂

s s
K K

�
� �
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which is identical to the rate form of Eq. (2.72).  The weak forms of the two balance equations (neglecting 

the source term for convenience) are obtained as before by multiplying by virtual dislocation densities and 

integrating over the volume such that the following two expressions are obtained, i.e., 
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∂
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Inspection of Eq. (2.116) reveals that the total dislocation density conservation equation admits natural 

boundary conditions with respect to the GND density flux and essential boundary conditions with respect to 

the total density, whereas Eq. (2.117) reveals that the GND density conservation equation admits natural 

boundary conditions with respect to the total dislocation density flux and essential boundary conditions 

with respect to the GND densities.  The coupled mechanical-dislocation initial-boundary value problem is 

completed by employing Orowan’s relation and prescribing constitutive equations for f α  and also the 

dislocation stress-velocity relationship, i.e., the functional form for αv  are required.  It is noted that these 

modeling frameworks provide a transparent connection to the discrete dislocation dynamics models 

discussed in Section 2.2, and that all of the so-called material length scales have a direct and physical 

connection to unit dislocation processes.  Additionally, the higher-order boundary conditions required for 

the dislocation sub-problem have a clear physical interpretation in terms of dislocation density and density-

flux and again are analogous to the boundary conditions employed in discrete dislocation dynamics models 

of plasticity. 
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2.4.5 Work-Conjugate Theories 

 Work-conjugate theories of higher-order generalized crystal plasticity are characterized by the 

inclusion of non-standard power-conjugate degrees-of-freedom at each continuum point.  These theories 

are sometimes referred to as “continua with microstructure” or alternatively as “generalized micromorphic 

continua”.  The usage of microstructure here is not to be confused with an actual material microstructure 

(e.g., grains, porosity, multiple phases, inclusions, etc.), but instead refers to the fact that each continuum 

point is imbued with micro degrees-of-freedom in addition to the usual displacement field.  Therefore, the 

deformation power, the mechanical balance laws, and the required boundary conditions for such theories 

are non-classical.  This is contrasted with the non-work-conjugate higher-order theories discussed in the 

previous section in which the standard mechanical balance laws apply, and the additional balance laws and 

boundary conditions are restricted to the dislocation sub-problem.  There are two sub-classes of work-

conjugate theories: (i) grade-n theories and (ii) generalized micromorphic theories.  Grade-n theories 

incorporate higher-order derivatives of the usual displacement field; representative examples include the 

full second-gradient theory of Smyshlyaev and Fleck [26] and the couple-stress theory of Kim and Oh [28].  

On the other hand, generalized micromorphic theories introduce degrees-of-freedom that are independent 

of the displacement field.  In general, these micro degrees-of-freedom can be of arbitrary tensorial rank but 

are typically taken to be either scalar or vectorial.  Representative generalized micromorphic single crystal 

plasticity models with scalar micro degrees-of-freedom have been introduced by Gurtin [16, 17] and Gurtin 

and co-workers [18, 109] and a number of other authors [77, 81, 110, 111], whereas theories including 

additional vectorial degrees-of-freedom have been introduced by Le and Stumpf [31], Clayton et al. [36], 

Naghdi and Srinivasa [29, 112], Shizawa and Zbib [80], and Forest [34, 35].  It is beyond the scope of this 

thesis to elaborate in detail the particulars of each formulation; however, due to the popularity of the 

Gurtin-type framework it is instructive to introduce and discuss this particular type of model in more detail 

which is pursued in subsequent sections.  Discussion of micropolar single crystal plasticity, the focus of 

this research and a type of work-conjugate higher-order theory, is postponed until the more detailed 

treatment given in Chapter 3. 

 The previous discussion of low-order and non-work-conjugate higher-order theories of generalized 

single crystal plasticity has been undertaken from the perspective that they can be incorporated/coupled to 
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the solution of the standard mechanical initial-boundary value problem for the classical continuum without 

altering its structure.  Since the mechanical initial-boundary value problem is altered for higher-order work-

conjugate theories, the Gurtin-type theory is presented here with more completeness. 

 

Kinematics 

 The Gurtin-type model to generalized single crystal plasticity is based on treating the set of slip 

system shears, 1 2{ } { ... }Nαγ γ γ γ= , as the additional scalar micro degrees-of-freedom.  Here, 

“micro” is used to denote the higher-order degrees-of-freedom associated with fine scale kinematics that 

are not controllable in the classical theory.  The main kinematical relations of the classical theory for 

infinitesimal strain presented in Section 2.3.1 are assumed to hold and are summarized as 
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 (2.118) 

Here, it is noted that the GND density tensor has been listed as a fundamental kinematic relation.  As in the 

classical theory, the elastic material deformation is assumed to correspond to the lattice deformation, i.e., 

Eq. (2.21) holds.  The key kinematic distinction between the present theory and those that have been 

previously discussed is that the slip system shears are taken to be power-conjugate degrees-of-freedom. 
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Balance Laws and Thermodynamics 

 Due to the non-standard nature of the force system introduced by Gurtin [17], the principle of 

virtual power [113] is employed to derive the mechanical balance laws.  It is assumed that internal power is 

expended independently on the elastic distortion rate tensor as well as slip rate and its gradient such that the 

internal power density is given as 

 e: ( )I qα α α α

α

γ γ= + + ⋅ ∇∑Hσ
K� � �p ς  (2.119) 

where qα  and ας  are scalar and vectorial microstresses, respectively.  The scalar microstress is a force 

stress with units of force/length2, whereas the vectorial microstress is a couple stress with units of 

force/length.  Making use of Eqs. (2.118)2,3 and (2.31), Eq. (2.119) may also be expressed in terms of the 

total distortion rate tensor as 

 : [( ) ]I qα α α α α

α

τ γ γ= + − + ⋅ ∇∑Hσ
K� � �p ς  (2.120) 

When expressed in this form, it is clear that if the Cauchy stress is to be interpreted as power-conjugate to 

the total distortion rate tensor then a resolved effective stress, p qα α ατ≡ − , is power-conjugate to the 

slip rates.  Since the displacements and slip rates are the fundamental continuum degrees-of-freedom, the 

external power density (neglecting body forces) is assumed to be of the form 

 E
α α

α

γ= ⋅ + Ξ∑uΤ � �p  (2.121) 

where Τ  and αΞ  are the macro- and microtraction vectors, respectively.  Given the assumed functional 

forms for the internal and external power densities, the principle of virtual power can be utilized to obtain 

the mechanical balance laws.  The principle of virtual power consists of two requirements: 

i) Power Balance:  Given any subbody, P , of a continuum, R , the corresponding internal and 
external powers are balanced for all generalized virtual velocities 
 

 ( , ) ( , )I E
P P

P dV P dA
∂

= ∀∫ ∫V V Vp p  (2.122) 
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where the generalized virtual velocity is defined as { },{ }αδ δγ= u� �V . 

 

ii) Frame indifference:  Given any subbody, P , the internal power expenditure is null when the 
motion is rigid 
 

 ( , ) 0 R
I

p

P dV = ∀ ∈∫ V V� Vp  (2.123) 

where RV  is the set of rigid generalized velocities.  A generalized virtual velocity is said to 
be rigid if [17] 

 

 e( ) , , { } 0αδ δ δγ= + × = − ⋅ =u x a c x H c�� �ε  (2.124) 

where a  and c  are constant vectors. 

 

 Applying the principle to determine the mechanical balance laws, a generalized virtual velocity 

without slip is first considered, { } 0αδγ =� .  The virtual power balance is then given as 

 :
P P

dV dAδ δ
∂

= ⋅∫ ∫H uσ Τ� �  (2.125) 

Integrating by parts and applying the divergence theorem then leads to the following, 

 ˆ( ) ( ) 0
P P

dV dAδ δ
∂

⋅ ∇ ⋅ + − ⋅ ⋅ =∫ ∫u n uσ Τ σ
L

� �  (2.126) 

This relation must hold for all P  and δu�  and, therefore, one obtains the balance of linear momentum as 

 R⋅ ∇ = ∀ ∈0 xσ
L

 (2.127) 

and the macroscopic traction condition as 

 ˆ R= ⋅ ∀ ∈ ∂n xΤ σ  (2.128) 

Next a rigid rotation velocity field is considered such that the distortion rate is a constant skew-symmetric 

tensor, i.e., δ = − ⋅H c� ε .  Appealing to the frame indifference requirement the following must hold, 
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 : 0
P

dVδ =∫ Hσ �  (2.129) 

Since T= −H H� � , Eq. (2.129) is satisfied only if 

 T R= ∀ ∈xσ σ  (2.130) 

which is nothing more than the classical angular momentum balance.  To determine the microscopic force 

balance, a generalized virtual velocity is considered such that δ =u 0�  and the power balance is given by 
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Integrating by parts and applying the divergence theorem leads to the following expression, 

 ˆ( ) ( ) 0
P P

q dV dAα α α α α α α

α α

τ δγ δγ
∂

− − ∇ ⋅ + ⋅ − Ξ =∑ ∑∫ ∫ n
K

� �ς ς  (2.132) 

Since this must hold for all P  and { }αδγ� , the microscopic force balance is given as 

 0q Rα α ατ + ∇ ⋅ − = ∀ ∈x
K

ς  (2.133) 

with the corresponding microtraction condition given by 

 ˆ Rα αΞ = ⋅ ∀ ∈ ∂n xς  (2.134) 

The principle of virtual power applied to a continuum with displacements and slip system shears taken as 

basic degrees-of-freedom has lead to two distinct sets of mechanical balance laws: the usual “standard” 

macroscopic balances of linear and angular  momentum given in Eqs. (2.127) and (2.130), respectively, and 

a non-standard microscopic force balance given in Eq. (2.133).  The macroscopic and microscopic 

deformation processes are coupled by the presence of the resolved shear stress in the microscopic force 

balance.  The microforce balance can be interpreted as a nonlocal yield condition where the second and 

third terms in Eq. (2.133), represent kinematic and isotropic components to slip resistance, respectively.  
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The weak form of the microforce balance given in Eq. (2.131) reveals that the microhard and microfree 

boundary conditions appropriate for the Gurtin-type model are given, respectively, as 

 0 Rα
γγ = ∀ ∈ ∂x  (2.135) 

 ˆ 0 Rα
ς⋅ = ∀ ∈ ∂n xς  (2.136) 

The microhard and microfree conditions given above have similar physical implications as in the non-

work-conjugate theory, namely, that a microhard condition describes a surface that would be impenetrable 

to dislocations and the microfree condition describes a surface that is a perfect dislocation sink.  It is noted, 

however, that the microhard and microfree conditions in the Gurtin-type theory are essential and natural 

boundary conditions, respectively, whereas in the dislocation density flux-based theories they are natural 

and essential boundary conditions, respectively. 

 In prelude to deriving the state laws and dissipation inequality, it is noted that Gurtin [17, 18, 109, 

114] does not use ISVs or pose constitutive equations in the same manner as has been done in the previous 

developments (cf. Eqs. (2.44), (2.45), and (2.86)-(2.95)).  The only arguments admitted to the free energy 

are the elastic strains and the slip gradients (or some function of slip gradients), i.e., e(̂ ,{ })αψ ψ γ= ∇ε
K

, 

both of which appear in the internal power density (see Eq. (2.120)).  Additionally, Gurtin [18] proposes a 

decomposition of the vectorial microstress into energetic and dissipative parts, i.e., 
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 (2.137) 

Given that the vectorial microstress is a function of the slip gradients, it is seen with the aid of the 

microforce balance that the kinematic hardening term in Eq. (2.133) is related to second gradients of slip 

which is in agreement with the physically-based back stress derivations covered in Section 2.4.3.  The 

energetic/dissipative decomposition of the thermodynamic stress, ας , instead of the thermodynamic strain, 

αγ∇
K

, is commonly done in higher-order work-conjugate theories which treat the plastic slip rates or the 

plastic strain rate tensor as generalized velocities.  It is interesting to note that on the one hand an 
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energetic/dissipative decomposition is introduced for the total macroscopic strain, e p= +ε ε ε , yet it is 

the microscopic stress to which the energetic/dissipative decomposition is applied.  Similar 

energetic/dissipative decompositions of the scalar microstress, q α , have been proposed in some related 

works, but this is not a typical feature of Gurtin’s crystal plasticity theories [17, 18, 109].  For isothermal 

deformation processes, the dissipation inequality of Eq. (2.26) holds, and the power density of internal 

forces is given by Eq. (2.119).  Following the Coleman-Gurtin [61] thermodynamic procedure, the state 

laws are  

 
e

, en
α

α

ψ ψ
ρ ρ

γ

∂ ∂
= =

∂ ∂∇
σ

ε
Kς  (2.138) 

and the reduced dissipation inequality is 
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which may also be expressed with the aid of the microforce balance as 
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Interestingly, if the total mechanical dissipation rate, D , is considered the following expression is obtained 
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where the term containing the divergence of the vectorial microstress in the first line of Eq. (2.141) has 

been integrated by parts and the divergence theorem has been applied.  This expression reveals that the 

energetic portion of the vectorial microstress actually serves to decrease the mechanical dissipation rate and 

presumably reflects a stored energy due microstructural rearrangement due to higher-order gradient effects 

as discussed in dislocation-based model in Section 2.4.3.  Equation (2.141) also shows that in addition to 
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the usual volumetric contribution to the mechanical dissipation rate due to the resolved shear stress acting 

on the slip system shearing rates there is a surface contribution due to the vectorial microtractions. 

 

Constitutive Equations 

 Constitutive equations are required for the free energy function, the scalar, q α , and vectorial, ας , 

microstresses, and the evolution of the slip resistance.  The methodology and terminology used to define 

the constitutive functions adheres to the ideology of Gurtin et al. [18].  The free energy is assumed to have 

the functional form 
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ψ μ γ= + ∇∑ε ε
K

AC  (2.142) 

where A  is a so-called “energetic” length scale.  Inserting Eq. (2.142) into Eq. (2.138) leads to the 

following explicit state laws for the Cauchy stress and the energetic portion of the vectorial microstress, 

i.e., 

 e 2: , en
α αμ γ= = ∇σ ε

K
AC ς  (2.143) 

The dissipative constitutive equations are introduced with the aid of an equivalent slip system deformation 

rate, dα� , which is defined to be 

 2 22d Lα α αγ γ= + ∇
K� � �  (2.144) 

where L  is a so-called “dissipative” length scale.  The scalar dissipative microstress is posited to have the 

functional form 
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where gα  is a drag stress-like parameter that is required to be strictly positive, 0d  is the reference 

equivalent deformation rate, and m  is the inverse rate-sensitivity exponent.  The drag stress effectively 

represents the slip resistance and is assumed to evolve according to the following general functional form 

 ( ){ },{ }g h dα αβ χ χ β

β

γ γ= ∇∑
K

�  (2.146) 

where hαβ  is a hardening matrix and as indicated in Eq. (2.146) the matrix components evolve as functions 

of both slip rates and their gradients.  Gurtin [18, 115] does not frame slip system strength evolution 

equations in terms of dislocation densities as discussed in Sections 2.3.3 and 2.4.3 or give a specific 

evolution equation for the drag stress.  Rather than invoking assumptions on their behalf, the discussion is 

continued without specifying the exact functional form of Eq. (2.146).  Analogous to the scalar dissipative 

microstress, the dissipative portion of the vectorial microstress is assumed to be given as 
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Inserting Eqs. (2.145) and (2.147) into the dissipation rate density given in Eq. (2.139) yields the 

expression 
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 In an effort to connect the theoretical developments of Gurtin et al. [18] to the models introduced 

in Sections 2.3, 2.4.3, and 2.4.4, a version of their theory without slip gradients is considered.  The 

following conditions hold in the absence of slip gradients: { } {0}α =ς , | |dα αγ=� � , and qα ατ= , and 

the mechanical dissipation rate density then simplifies to 
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Now consider the classical theory of single crystal plasticity with only isotropic hardening and a creep-type 

viscoplastic kinetic equation for the slip system shearing rate, i.e., 

 0
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Here, the drag stress serves as the isotropic hardening variable in the absence of a threshold stress and there 

is no explicit yield surface in stress or strain space.  The mechanical dissipation rate in the classical theory 

according to Gurtin’s point of view (no back stress and no ISVs) [17, 18] is given as 

 α α

α

τ γ= ∑ �d  (2.151) 

Solving Eq. (2.150) for the resolved shear stress and then substituting the result into Eq. (2.151) yields 

 
1/

0

| |
| |

m

g
α

α α

α

γ
γ

γ

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
∑

�
�

�
d  (2.152) 

A comparison of Eqs (2.149) and (2.152) shows that the mechanical dissipation rate density in Gurtin’s 

theory in the absence of slip gradients is identical to that of the classical theory if there is no back stress or 

traditional ISVs and provided that 0 0dγ = �� .  It is this particular interpretation of the classical theory that 

motivates Gurtin’s choice of constitutive equations for the dissipative microstresses so that when there are 

no slip gradients, the classical theory is retrieved.  Further comparison of the Gurtin-type model to that of 

the dislocation-based ISV frameworks introduced in the earlier sections is somewhat difficult due to the 

different philosophical perspectives from which the models are developed.  On the one hand, the 

dislocation-based models embrace the ideology of introducing physically-based ISVs to capture both the 

increased slip resistance and the energy stored due to microstructural evolution, whereas Gurtin et al. [18] 

describe the increased flow resistance through similar isotropic hardening descriptions yet do not account 

for the additional energy stored during such processes.  Another subtle difference is that constitutive 

equations in the dislocation-based models are introduced for the inelastic kinematic variables (plastic strain 

and ISV strains or dislocation densities) and the ISV stresses and strains are related through appropriate 
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constitutive moduli.  Alternatively, the Gurtin [17] ideology is based on specifying constitutive equations 

for the thermodynamic stresses without clearly defining the corresponding work-conjugate thermodynamic 

strains.  The two methodologies could be brought into closer alignment through a reinterpretation and 

reformulation of the ideas presented with this section, but would require invoking certain assumptions that 

the original authors might not agree with.  Some of these aspects are further addressed in Chapter 3 

following the introduction of the theory of micropolar single crystal plasticity, but for now the Gurtin 

model is presented in a manner analogous with original authors’ intentions. 

 

2.4.6 Discussion 

 The generalized single crystal plasticity theories elaborated upon in this section will be referred to 

as slip gradient-based models.  These formulations all require the explicit calculation of slip gradients as 

part of the constitutive update, the global solution of equilibrium equations, or both.  Therefore, the 

numerical implementation of such models requires modified finite element schemes [21, 22] or the use of 

higher-order interpolation functions as compared to the standard 0C -continuous methods to ensure 

consistency between the interpolated fields [18, 116].  Additionally, if the slip system shears or GND 

densities are taken as nodal DOF as in the higher-order theories, the finite element matrix bandwidth is 

significantly larder.  For example, an fcc crystal with twelve slip systems would require twelve additional 

degrees-of-freedom per node in a full 3-D implementation of the Gurtin-type [18] theory and eighteen are 

required for the Evers-Bayley [14, 72] non-work-conjugate theory.  A consequence of these modifications 

is an increased computational cost associated with the solution of initial-boundary value problems as 

compared to traditional 0C -continuous displacement-based finite element methods.  While such theories 

offer an enhanced description of material behavior during heterogeneous deformation, the extent of the 

increased computational cost associated with the numerical implementation of these models provides some 

practical limitations on the size of the boundary value problems that can be solved.  It is in part due to these 

limitations that this research focuses on the development of a micropolar theory of single crystal plasticity.  

The micropolar theory, in contrast to the slip gradient-base ones, introduces only three additional degrees-

of-freedom per node in the 3-D case and may be implemented with 0C -continuous shape functions.  These 
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issues are further addressed in the development of the micropolar theory in Chapter 3 and its numerical 

implementation, which is covered in Chapter 4. 

 

2.5 Summary 

 

 This chapter has provided an overview of topics relevant to the formulation of theories of 

generalized single crystal plasticity.  The classical theory of crystal plasticity is introduced within a 

dislocation-based constitutive framework, and nonlocal extensions representative of three classes of 

generalized continua have been discussed.  Both the low-order and non-work-conjugate higher-order 

theories have been introduced conceptually as relatively straight-forward extensions of the classical theory, 

whereas the Gurtin-type work-conjugate higher-order theory promotes a different philosophical perspective 

regarding certain fundamental aspects such as the nature of energetic/dissipative decompositions of 

thermodynamic quantities and the use of traditional ISVs.  The relative merits and weaknesses of each type 

of nonlocal theory have been discussed from both physical and practical perspectives.  This study has been 

limited to infinitesimal deformations and plastic deformation due solely to dislocation glide while 

neglecting cross-slip and climb. 
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CHAPTER 3 

MICROPOLAR SINGLE CRYSTAL PLASTICITY 

 

 

3.1 Introduction 

 

 This chapter develops theories of micropolar single crystal plasticity which are presented as an 

alternative to the more common slip gradient-based approaches to generalized crystal plasticity.  A 

micropolar [42] or Cosserat [43] continuum is a special case of the micromorphic continuum where each 

material point possesses microrotational degrees-of-freedom in addition to the displacements.  Early works 

in phenomenological micropolar elastoplasticity are due to Besdo [44], Lippmann [45], and Sawczuk [46], 

while more recent contributions in this vein are due to Deborst [117, 118], Steinmann [48, 119-121], 

Grammenoudis and Tsakmakis [49, 122-124], Neff [50, 125] and Neff and Chelminski [126, 127].  Most 

relevant to the current research are the models of micropolar single crystal plasticity put forth by Forest and 

collaborators [34, 35, 37-40, 128]. 

 The motivations for pursuing a micropolar theory of single crystal plasticity are several-fold and 

are based upon both practical and philosophical considerations.  First, as discussed in Chapter 2, explicit 

slip gradient-based approaches require modified and/or higher-order FE methods which leads to a 

significantly higher computational cost associated with the solution of similar boundary value problems 

with equivalent discretization sizes as compared to a standard theory.  In contrast, the micropolar 

continuum has only three additional DOF per node for the fully 3-D case and, since the microrotations are 

independent of displacements, standard 0C -continuous interpolation functions can be used in the numerical 

implementation.  From a philosophical perspective, the adherence to the more “traditional” physical 

interpretation of elastic-plastic thermodynamics is appealing.  Here, “traditional” is defined in the sense 

that the total deformation measures are separated into energetically recoverable (elastic) and energetically 

dissipative (plastic) parts, where the total deformation rates appear in the definition of the internal power 

density and only the elastic components (in addition to ISVs) explicitly appear in the free energy function.  

As such, the introduction of non-standard force systems that are work-conjugate to plastic strains and their 
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gradients and the associated microforce balances is avoided.  The construction of yield criteria or flow rules 

for work-conjugate higher-order continuum theories can be done in one of two ways [129]:  (i)  a single 

criterion can be introduced in terms of a combined equivalent stress and inelastic rate or (ii) individual 

criteria can be specified for each conjugate stress/inelastic kinematic rate pair, a so-called multicriterion 

theory. 

 Building upon the previous works of Forest et al. [34, 35] within the framework of multicriterion 

micropolar single crystal plasticity, their phenomenological strength model is extended to a dislocation-

based model.  This is an important contribution as it enables one to establish the connections between 

micropolar single crystal plasticity and various aspects of slip gradient-based generalized crystal plasticity 

models, and in addition provides a more physically-based description of scale-dependent strengthening 

behavior than the former.  Additionally, a new single criterion formulation is presented with an analogous 

but simplified strength model.  The development of the single criterion model is motivated by related 

earlier works in phenomenological macroscopic micropolar elastoplasticity, and is the first such model of 

micropolar single crystal plasticity.  The models are developed within the context of geometrically linear 

kinematics.  This avoids certain issues associated with multiplicatively decomposed micropolar 

elastoplasticity at finite strains that are still open to debate, such as the appropriate elastic-plastic 

decompositions of deformation maps [35, 48, 120] and the specification of appropriate deformation 

measures [130, 131].  An infinitesimal deformation framework is sufficient for examining the scale-

dependence of initial yield and the early strain-hardening regime, and attention is confined to these 

conditions in this research. 

 

3.2 Kinematics 

 

 The motion of the classical continuum is completely determined by the displacement, u , and the 

deformed state of the body is characterized by the deformation gradient, F .  In contrast, the motion of a 

micropolar continuum is defined by two independent motions which are determined by; the displacements, 



 

~ 56 ~ 

u , and the microrotation vector, φ .  The two deformation maps associated with these DOF are the 

deformation gradient, F , and the microrotation tensor, R , which is related to the microrotation vector as 

 ( ) ( )exp exp= − ⋅ =R φ Φε  (3.1) 

where , ε  is the alternating tensor and = − ⋅Φ φε  is the skew-symmetric linear microrotation tensor.  

The two-point tensor R  can be thought of as a microdeformation map completely analogous to the 

deformation gradient, with the distinction that the deformation gradient describes the transformation of 

material vectors attached to continuum point while the microrotation tensor describes the transformation of 

microstructural vectors attached to the same point.  Considering small deformations and rotations, material 

vectors deform according to Eq. (2.20)1,2, i.e.,  

 ( )d d d d= ⋅ = + + ⋅x F X X Xε ω  (3.2) 

while microstructural director vectors, D , deform according to 

 = ⋅ = + ⋅d R D D DΦ , (3.3) 

where d  is the deformed microstructural vector and the small deformation assumption has been used in the 

approximation ( )exp= ≈ +R IΦ Φ .  A suitable set of linearized invariant deformation measures are 

the micropolar strain, ε , and torsion-curvature, κ , tensors defined as 

 = − = ∇ + ⋅H uε Φ φ
L
ε  (3.4) 

 = ∇κ φ
L

 (3.5) 

The overbar on the microrotation vector, linear microrotation tensor, strain, and torsion-curvature tensors is 

used to distinguish kinematic quantities used in the micropolar theory from those introduced in Chapter 2, 

and = ∇H u
L

 is the distortion tensor.  The micropolar strain tensor is generally non-symmetric, and is 

sometimes referred to as the relative deformation tensor.  The symmetric part is just the classical small 

strain tensor since the microdeformation is purely rotational, i.e., 
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 ( ) ( )1
2

sym = ∇ + ∇ =u uε ε
L K

 (3.6) 

whereas the skew-symmetric part  gives the difference between the material rotation and microrotation, i.e., 

 ( ) ( )1
2

skw = ∇ − ∇ + ⋅ =u uε φ ω −Φ
L K

ε  (3.7) 

If the microrotation and material rotations coincide, the kinematic description reduces to that of the so-

called constrained micropolar continuum (also referred to in the literature as indeterminate couple stress 

theory [132]) in which the couple stress is work conjugate to the gradient of material rotation. 

 The 2-D interpretation of these deformation measures is illustrated in Figure 3.1 for a material 

element under simple shear.  The deformed state at a material point is characterized by considering the 

motion of two independent sets of initially orthogonal vectors, 1 2,d dX X  and 1 2,D D , the former being 

material vectors and the latter denoting the microstructural vectors (shown in red).  During deformation the 

material and microstructural vectors are transformed into their respective counterparts, 1 2,d dx x  and 1 2,d d .  

The material vectors stretch and rotate, whereas the microstructural director vectors only rotate.  The 

relevant micropolar tensorial shear strain components 12ε  and 21ε  are given as, 12 3ε φ=  and, 

21 2,1 3uε φ= − , where it is again emphasized that (12)ε  and (21)ε  are the usual tensorial shear strains from 

the standard theory, and [12]ε  and [21]ε  give the difference between the material and microrotations, i.e., the 

relative rotation of the microstructure with respect to the material. 
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Figure 3.1:  Geometric interpretation of the micropolar shear strains. 

 

 

3.3 Balance Laws and Thermodynamics 

 

In the absence of body forces and couples, the strong form of the linear and angular momentum 

balances for a micropolar continuum in static equilibrium are given as 

 
:

R

⎫⎪⋅ ∇ = ⎪⎪⎪ ∀ ∈⎬⎪⎪⋅ ∇ − = ⎪⎪⎭

x
m

σ 0

σ 0

L

L
ε

 (3.8) 

where σ  is the Cauchy stress tensor work-conjugate to the micropolar strains and m  is the couple stress 

tensor work-conjugate to the torsion-curvature.  The micropolar continuum admits the prescription of the 

standard natural and essential boundary conditions given in Eqs. (2.24)-(2.25), and additional micro 

boundary conditions of the type 

 *ˆ mR= ⋅ = ∀ ∈ ∂M m n M x  (3.9) 

 * Rφ= ∀ ∈ ∂xφ φ  (3.10) 

1d  

2dx  
1dx  

2,1u  

3φ  

X  

1 1,dX D

2 2,dX D

2d  
,u φ  

x  

1 1,E e  

2 2,E e  

1
(12) (21) 12 2,12

uε ε ε= = =  

1
[21] [12] 2,1 32

( 2 )uε ε φ= − = −  
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where *M and *φ  are the prescribed couple stress tractions and microrotations, respectively.  Here, mR∂  

and Rφ∂  are the portions of the external boundary where couple tractions and microrotations are specified, 

respectively and mR R Rφ∂ = ∂ ∪ ∂ . 

 The free energy inequality introduced in Chapter 2 remains valid, i.e., I ρψ≥ �p , but the 

expression for the power density of internal forces appropriate for the micropolar continuum must be used 

and is given as 

 : :I = + mσ ε κ� �p  (3.11) 

The deformation power may be split into local, I L−p , and nonlocal, I NL−p , contributions as 

 ( ): sym :I L− = σ ε = σ ε� �p  (3.12) 

 ( ): skw :I NL− = + mσ ε κ� �p  (3.13) 

It is clear from Eq. (3.13) that the nonlocal contribution vanishes when (i) material and microrotation rates 

coincide and (ii) the torsion-curvature rate is zero.  For micropolar elastoplasticity within a geometrically 

linear framework, additive decompositions of strain and torsion-curvature are assumed to hold, i.e., 

 e p= +ε ε ε  (3.14) 

 e p= +κ κ κ  (3.15) 

The free energy is assumed to be a function of the elastic strain, elastic torsion-curvature and a set (one for 

each slip system) of elastic strain-like scalar ISVs, { }αζ , i.e., 

 ( )e eˆ , ,{ }αψ ψ ζ= ε κ  (3.16) 

Following standard arguments the state laws and reduced dissipation inequality are obtained as 
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e e

, , α
α

ψ ψ ψ
ρ ρ χ ρ

ζ

∂ ∂ ∂
= = =

∂ ∂ ∂
mσ

ε κ
 (3.17) 

 p p: : 0α α

α

χ ζ+ − ≥∑mσ ε κ �� �d =  (3.18) 

where ρ  is the mass density and αχ  is the thermodynamic force work conjugate to the thermodynamic 

displacement, αζ .  Introducing a free energy function with quadratic dependence on its arguments, i.e., 

 e e e e1 1 1
2 2 2

: : : :v Eα αβ β

α β

ψ ζ ζ= + + ∑∑ε ε κ κC D  (3.19) 

where C  and D  are 4th rank elasticity tensors, Eαβ  is a symmetric positive-definite material modulus 

matrix, and the elasticity cross-term of the form e e: :κ εG  has been neglected since there can be no 

coupling between the force and couple stress elastic responses if the material possesses at least point 

symmetry [133].  Given Eq. (3.17), the state laws take the explicit forms 

 e e: , : , Eα αδ δ

δ

χ ζ= = = ∑mσ ε κC D  (3.20) 

 

3.4 Constitutive Equations 

 

 In the process of defining the material modulus tensors, C , D , and Eαβ , the evolution equations 

for pε� , pκ� , and αζ� , and the material strength model appropriate for a micropolar single crystal, the 

classical theory and its slip gradient-based extensions are used as a guide.  With this in mind, the following 

assumptions are made: 

A1. As in the classical linearized theory, the total distortion is decomposed into elastic and plastic 

parts, e p∇ = +u H H
L

. 

 

A2. The micropolar plastic strain rate is equal to the plastic distortion rate, p p≡ Hε �� . 
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A3. Micropolar effects should be negligible during purely elastic deformations. 

 

A4. Microrotations are identified as lattice rotations. 

 

A5. Elastic material rotations, embodied by eω , should coincide with the lattice rotations, i.e., the 

skew symmetric force stresses should be small compared to the symmetric force stresses. 

 

A6. The evolution of plastic torsion-curvature is due to the generation and accumulation of 

geometrically necessary dislocations (GNDs). 

 

 
These assumptions provide the basis from which the remainder of the theory is derived, and it is noted here 

that a similar approach has been advanced in Forest et al. [34].  The first two assumptions are relatively 

straight forward, whereas the last three require further elaboration. 

 

3.4.1 Micropolar Crystal Elasticity 

 The linear elastic state laws for a micropolar material are given in Eqs. (3.20), where the elasticity 

tensors obey the major symmetry relations ,ijkl klij ijkl klij= =C C D D  which follows directly from the free 

energy definition given in Eq. (3.19).  Additional material symmetries lead to further reductions in the 

number of independent elastic constants, and for crystalline materials the three most common symmetry 

classes considered are: isotropic (idealized), cubic (fcc/bcc), and hexagonal (hcp).  An isotropic micropolar 

material requires the specification of six elastic constants, whereas crystals with cubic and hexagonal 

structure require eight and sixteen constants, respectively.  In the classical theory of linear elasticity, 

isotropic, cubic, and hexagonal materials have two, three, and five independent elastic constants, 

respectively, meaning that an additional four, five, and eleven constants (considering these three 

symmetries), respectively, are needed to describe the elastic response of a micropolar solid.  The complete 

list of symmetry groups and the associated number of independent elastic constants are given in Eringen 

[134].  For an elastically isotropic material the stress-strain relations are expressed as 
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 e e etr( ) 2 sym( ) 2 skw( )cλ μ μ= + +σ ε 1 ε ε  (3.21) 

 e e etr( ) 2 sym( ) 2 skw( )α β γ= + +m κ 1 κ κ  (3.22) 

where λ and μ are the usual Lamé’s constants from the classical theory and cμ , α , β , and γ   are the 

additional micropolar constants.  The elastic constitutive equations for cubic and hexagonal crystal 

symmetries are expressed most conveniently in a modified Voigt notation with the nine-dimensional stress 

and strain (resp. couple stress and torsion-curvature) vectors defined as 

 11 22 33 (23) (31) (12) [23] [31] [12]{ } { }Tσ σ σ σ σ σ σ σ σσ =  (3.23) 

 e e e e e e e e e e
11 22 33 (23) (31) (12) [23] [31] [12]{ } { 2 2 2 2 2 2 }Tε ε ε ε ε ε ε ε εε =  (3.24) 

where the non-dilatational components of the vectors are defined with respect to the symmetric and skew-

symmetric tensor components.  The elasticity equations may then be expressed in matrix notation as 

 e e{ } [ ]{ } , {m} [ ]{ }σ = ε = κC D  (3.25) 

Denoting the 4th rank tensor G  which symbolically represents either of the tensors C  or D , the symmetry 

of the constitutive tensors for cubic and hexagonal crystals are given, respectively, as 

 

Cubic: 

 

11 12 12

12 11 12

12 12 11

44

44

44

77

77

77

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0
[ ] 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

G

G G G
G G G
G G G

G
G

G
G

G
G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.26) 
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Hexagonal: 

 

11 12 13

12 11 13

13 13 33

44 47

44 47

66

47 77

47 77

99

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
[ ] 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

G

G G G
G G G
G G G

G G
G G

G
G G

G G
G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.27) 

where 66 11 12( ) / 2G G G= −  for the crystal with hexagonal symmetry. 

 

3.4.2 Flow Criteria and ISV Kinetics 

 There are two ways in which to construct the flow criteria for generalized continua with higher-

order stresses; the so-called single and multicriterion methodologies [129].  In a single criterion model with 

associative plastic flow a single relationship is employed between a combined equivalent stress and 

equivalent inelastic rate measure to define the onset and direction of plasticity.  A general set of functional 

relationships for the flow potential of micropolar material within this context are given as 

 ( ) ( ), , , , ,p pF L r f L r= −m mσ σ  (3.28) 

 p p,
F F

λ λ
∂ ∂

= =
∂ ∂m

ε κ
σ

� �� �  (3.29) 

where F  is the yield function, f  is a scalar invariant function of the  force stress, couple stress, and a 

characteristic plastic length scale, pL , required for dimensional consistency, r  is the yield stress, and λ�  is 

the plastic mutliplier.  On the other hand, multicriterion models employ independent flow criteria for the 

plastic strain rate and plastic torsion-curvature rate.  This is expressed by an analogous set of relations, i.e., 

 ( ) ( ) ( ) ( ), , , , ,m p m m p mF r f r F L r f L rσ σ σ σ= − = −m mσ σ  (3.30) 
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 p p, m
m

F Fσ
σλ λ

∂ ∂
= =

∂ ∂m
ε κ

σ
� �� �  (3.31) 

where all of the terms have the same interpretation as in the single criterion theory, but have been 

introduced independently with subscripts “ σ ” and “m ” indicating the terms related to the plastic strain and 

torsion-curvature evolution, respectively.  In this type of model, coupled strengthening/softening effects 

(plastic torsion-curvature induced strain hardening, for example) are accounted for through the prescription 

of evolution equations for rσ  and mr  which may, in general, be functions of both plastic parameters.  This 

contrasts with the single criterion models where cross-coupling effects enter the formulation naturally as a 

result of employing a unified yield function. 

 

MultiCriterion Flow Theory 

 Based on assumptions A2 and A6, the plastic strain and torsion-curvature rates may be generalized 

from Eq. (3.31) and written in terms of individual slip system contributions as 

 p
Fα

α α α

α α

λ λ
∂

= =
∂∑ ∑ Nε
σ

� ��  (3.32) 

 p FF αα
α α α α α α

α α

λ λ λ λ⊥
⊥ ⊥ ⊥

∂∂
= + = +

∂ ∂∑ ∑ N N
m m

κ :
: : :

� � � ��  (3.33) 

In Eq.(3.33), separate terms have been introduced to account for excess edge ( ⊥ ) and screw (: ) GND 

densities as suggested by Eqs. (2.68)-(2.70).  The transition from Eq. (3.32) to a specific form and set of 

relations analogous to Eqs. (2.30)-(2.33) from the classical theory then follows directly given assumption 

A2, i.e., 

 p ,α α α α α

α

γ= = ⊗∑ Z Z s nε� �  (3.34) 

 effF rα α ατ= −  (3.35) 

 :eff
α ατ = Zσ  (3.36) 
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 sgn( )eff
α α ατ=N Z  (3.37) 

 sgn( )eff
α α αγ λ τ= ��  (3.38) 

 ( )0

m
F gα α αλ γ=� �  (3.39) 

where we have used the notation, eff
ατ , for the resolved shear stress to make the distinction that the driving 

force for slip in the micropolar theory contains a contribution from the skew-symmetric part of the stress 

tensor which is not present in the classical theory such that 

 eff b
α α ατ τ τ= −  (3.40) 

 sym( ) skw( )eff
α α α α ατ ⎡ ⎤= ⋅ ⋅ = ⋅ + ⋅⎣ ⎦s n s nσ σ σ  (3.41) 

 sym( )α α ατ = ⋅ ⋅s nσ  (3.42) 

 skw( )b
α α ατ = − ⋅ ⋅s nσ  (3.43) 

Here, ατ  is the classical resolved shear stress and b
ατ  is the component due the non-symmetric stresses 

which acts as a slip system level back stress.  Furthermore, using the balance of angular momentum, Eq. 

(3.8)2, an expression can be obtained for the skew symmetric part of the force stress tensor in terms of the 

couple stress tensor, i.e., 

 1
2

skw( ) ( )= ⋅ ⋅ ∇mσ
L

ε  (3.44) 

Substitution of this expression into Eq. (3.43) and making use of the fact that α α α= ×t s n  allows the 

back stress contribution to be written as 

 1
2

( )b
α ατ = − ⋅ ⋅ ∇t m

L
 (3.45) 

This shows that the back stress arises due to gradients in lattice torsion-curvature projected onto the slip 

plane.  This is analogous to slip gradient-based frameworks which introduce back stresses as functions of 
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gradients in GNDs, i.e., gradients of lattice torsion-curvature. However, in the micropolar theory back 

stresses emerge as a consequence of the balance of angular momentum (see Eq. (3.43)) and not as a result 

of additional constitutive assumptions.  This back stress contribution and its relation to other models of 

strain gradient crystal plasticity and the statistical theory of dislocations has been originally pointed out by 

Forest [38] for the case of single slip, where the result in Eq. (3.45) is given in a slightly different form.  It 

is also worth noting that, as seen in Eq. (3.34), in contrast to the classical theory, the micropolar plastic 

strain tensor contains the plastic spin, i.e., p ( )skw α α= ⊗s nω� . 

Appealing to A6 and Eq. (2.68), a set of relations for the plastic torsion-curvature evolution due to 

changes in GND densities is proposed, i.e., 

 p

L L

αα
α α

α α
α

ϕϕ⊥
⊥

⊥

= +∑ Y Yκ :
:

:

���  (3.46) 

 ,α α α α α α
⊥ = ⊗ = ⊗Y t s Y s s:  (3.47) 

 ,F L r F L rα α α α α α α απ π⊥ ⊥ ⊥ ⊥= − = −: : : :  (3.48) 

 : , :α α α απ π⊥ ⊥= =m Y m Y: :  (3.49) 

 ( ) ( )1 1
sgn , sgn

L L
α α α α α α

α α
π π⊥ ⊥ ⊥

⊥

= =N Y N Y: : :
:

 (3.50) 

 ( ) ( )sgn , sgnα α α α α αϕ λ π ϕ λ π⊥ ⊥ ⊥= =: : :
� �� �  (3.51) 

 ( ) ( )0 0,
n n

F g F gα α α α α αλ ϕ λ ϕ⊥

⊥ ⊥ ⊥ ⊥= = :

: : : :
� �� �  (3.52) 

where the dislocation dyad tensors ,α α
⊥Y Y: ; characteristic plastic (dissipative) length scales ,L Lα α

⊥ : ; 

resolved couple stresses ,α απ π⊥ : ; and torsion-curvature threshold stresses ,r rα α
⊥ :  have been introduced for 

edge ( ⊥ ) and screw (: ) GND densities, respectively.  It is noted that the screw dislocation dyad tensor 

used in this work differs from that employed in Forest et al. [34], where the expression 

1
2

α α α= − ⊗Y 1 s s:  is used in place of Eq. (3.47)2.  The interpretation of Eqs (3.46)-(3.52) in terms of 

yield functions, resolved driving forces, flow directions, etc. parallels the treatment of plastic slip 
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deformation modes in the classical theory.  The threshold stresses r α
⊥  and r α

:  are expressed in units of 

force/length2 in the yield functions of Eq. (3.48), but the products r Lα α
⊥ ⊥  and r Lα α

: :  represent the local 

threshold couple stresses (force/length) which, when exceeded, require the generation of GNDs to 

accommodate the local curvature.  These plastic length scale parameters, Lα
⊥ and Lα

: , are not directly 

identifiable with any particular material microstructural feature (grain size, inclusion spacing, etc.) per se; 

however, we assume that they are related to the GND densities via the expressions 

 , ,,G G
bL bL

αα
α α

α α

ϕϕ⊥
⊥

⊥

= − = − :
:

:

��
� �� �  (3.53) 

where we have been guided by a comparison of Eqs. (2.68), (2.70), and (3.46).  Voyiadjis et al. [135] have 

shown that the “plastic” length scales entering their micropolar model for granular materials may vary 

depending on the loading conditions, microstructure, and deformation history.  A comparison of the rate 

form of Eq. (2.71) with Eq. (3.53) shows that the role played by gradients of slip projected in the glide 

direction in the slip gradient-based extensions of crystal plasticity is subsumed into the plastic multipliers in 

the micropolar theory, i.e., Lα α α αϕ γ⊥ ⊥⇔ ∇ ⋅ s
K

� �  and Lα α α αϕ γ⇔ − ∇ ⋅ t: :
K

� � . 

 The model is completed by defining the slip system level ISV, αζ , the threshold stresses for slip 

and plastic torsion-curvature, and their respective evolution equations.  The ISV is defined as a measure of 

the short-range internal elastic strain field caused by dislocations and taken to have the functional form 

 1 ( )S Gc b h β βα αβ
β

ζ = +∑ � �  (3.54) 

where 1c  is dislocation configuration-dependent material constant, b  is the magnitude of the Burgers 

vector, hαβ  is a slip system interaction matrix defining the relative contribution of dislocations lying in slip 

system β  to the strain field on the thα  slip system, and S
β�  and G

β�  are the SSD and GND densities, 

respectively.  Defining the ISV constitutive matrix Eαβ αβμδ=  (see Eq. (3.19)), the state law between 

the ISV generalized stress and strain is then given as  
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 α αχ μζ=  (3.55) 

The total slip system GND density is defined as in Eq. (2.75) and, with the aid of Eq. (3.53), the GND 

density evolution equation is given by 

 , ,
1

G G G
G bL bL

αα
α α α

α α α

ϕϕ⊥
⊥

⊥

⎛ ⎞⎟⎜ ⎟⎜= − + ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

:
:

:

��
�� � �

�
 (3.56) 

The SSD density evolution equation is defined as [62] 

 
1 1

2 | |S c Sy
b l

α α α
α

γ
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠

� �� � , (3.57) 

and the total dislocation density evolution equation is then given as 

 , ,
1 1 1

2 c S G G
G

y
b l bL bL

αα
α α α α α

α α α α

ϕϕ
γ ⊥

⊥
⊥

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟⎜= − ⎟ − + ⎟⎜ ⎜⎟ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜⎝ ⎠

:
:

:

��
� �� � � �

�
 (3.58) 

It is noted here that lα , as discussed in Chapter 2, could be defined in terms of the SSD or total density as 

shown in Eq. (2.78).  Equations (3.54)-(3.58) define the evolution of the dislocation substructure and it is 

left to define the strength models for plastic shearing and torsion-curvature rates.  Three different strength 

models are proposed.  In the first version, it is assumed that the slip threshold is given by an enhanced 

Taylor relation, the plastic torsion-curvature thresholds are constant, and the mean free path is defined as 

function of both SSD and GND densities, as outlined next. 
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Strength Model Version 1 

 0 1 ( )S Gr r c b h β βα α αβ
β

μ= + +∑ � �  (3.59) 

 
( )S G

K
l

a

α

β βαβ
β

=
+∑ � �

 (3.60) 

 ,r r r rα α α α
⊥ ⊥0 0= =: :  (3.61) 

where the newly introduced terms are the intrinsic (constant) flow resistances, rα
⊥0  and 0rα

: , for plastic 

torsion-curvature due to edge and screw GNDs, respectively.  The terms in Eqs. (3.59) and (3.60) have 

previously been given in Chapter 2 (see Eqs. (2.35) and (2.37)).  The reduced dissipation inequality for this 

model is then given as 

 

1 2 3

| || |

| | 0

eff
L L

r H H H
L L

α α
α α α α

α α
α

ββ
α αβ β αβ αβ

β β
α β

ϕ ϕ
τ γ π π

ϕϕ
γ

⊥
⊥

⊥

⊥

⊥

⎛ ⎞⎟⎜ ⎟⎜ ⎟= + + ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟⎜− − − ≥⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑

∑ ∑

:
:

:

:

:

� �
�

��
�

d

 (3.62) 

where eff
ατ  is the resolved shear stress (see Eq. (3.41)) and the matrices 1H αβ , 2H αβ , and 3H αβ  are defined 

according to 

 1
1

1
( ) 2

2 ( )
S G c S

S G

c h
H a y

Kh

αβ
χ χ βαβ βχ

χαδ δ δ
δ

⎛ ⎞⎟⎜= + − ⎟⎜ ⎟⎜ ⎟⎝ ⎠+
∑

∑
� � �

� �
 (3.63) 

 ,1
2 2 ( )

G

GS G

c h
H

h

βαβ
αβ

βαδ δ δ
δ

⊥=
+∑

�

�� �
 (3.64) 

 ,1
3 2 ( )

G

GS G

c h
H

h

βαβ
αβ

βαδ δ δ
δ

=
+∑

:�

�� �
 (3.65) 

The second version assumes that the slip threshold is defined by a generalized Taylor relation, the plastic 

torsion-curvature thresholds are defined by Taylor-like relations in terms of the edge and screw GND 
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densities, respectively, and the mean free path is defined as a function of both SSD and GND densities.  It 

is listed as follows. 

 

Strength Model Version 2: 

 0 1 ( )S Gr r c b h β βα α αβ
β

μ= + +∑ � �  (3.66) 

 
( )S G

K
l

a

α

β βαβ
β

=
+∑ � �

 (3.67) 

 7 , 8 ,| | , | |G Gr r c b h r r c b hβ βα α αβ α α αβ
β β

μ μ⊥ ⊥0 ⊥ ⊥ 0= + = +∑ ∑: : : :� �  (3.68) 

The material constants 7c  and 8c  and interaction matrices hαβ
⊥  and hαβ

:  are analogous to 1c  and hαβ  used 

in the slip threshold expression.  The dissipation inequality for version 2 is also given by Eqs. (3.62)-(3.65).  

The third version does not employ the generalized Taylor relation to describe the slip threshold strength, 

which is defined as a function of the SSD density only.  Similarly, the mean free path is also defined as a 

function of only the SSD density.  The plastic torsion-curvature thresholds are taken to be defined as in Eq. 

(3.68).  This version of the strength model completely decouples the strain and torsion-curvature hardening 

responses and the sole source of scale-dependent strengthening is that due to the gradient-dependent back 

stress.  Decoupling the two material hardening descriptions is an attempt to reflect that, as discussed in 

Chapter 2, the SSD and GND densities are two independent moments of the total dislocation density which 

are allowed to evolve independently. 

 

Strength Model Version 3: 

 0 1 Sr r c b h βα α αβ
β

μ= + ∑ �  (3.69) 

 
S

K
l

a

α

βαβ
β

=
∑ �

 (3.70) 

 7 , 8 ,| | , | |G Gr r c b h r r c b hβ βα α αβ α α αβ
β β

μ μ⊥ ⊥0 ⊥ ⊥ 0= + = +∑ ∑: : : :� �  (3.71) 
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The reduced dissipation inequality for the third version of the strength model is given as 

 

1 2 3

| || |

| | 0
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:

� �
�

��
�
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 (3.72) 

where the matrices 2H αβ  and 3H αβ  are defined by Eqs. (3.64)-(3.65) and 1H αβ  is defined as 

 1
1

1
2

2 ( )
S c S

S G

c h
H a y

Kh

αβ
χ βαβ βχ

χαδ δ δ
δ

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠+
∑

∑
� �

� �
 (3.73) 

Notice that since the slip threshold stress does not depend on the total dislocation density, r α  does not 

appear in the mechanical dissipation rate in Eq. (3.72). 

 

Single Criterion Flow Theory 

 The single criterion theory possesses a few potentially advantageous features as compared to the 

multicriterion framework.  Namely, it 

i) Does not rely on the additive partition of the total dislocation density into SSD and GND 

contributions as a means to describe scale-dependent slip threshold hardening; a questionable 

proposition to some [78, 136, 137]. 

 
ii) Reduces the number of material parameters and evolution equations required to define the 

inelastic material response. 

 
The appropriate generalization of Eq. (3.29) for the single criterion model is 

 p
Fα

α α α

α α

λ λ
∂

= =
∂∑ ∑ Nε
σ

� ��  (3.74) 

 ( )p
Fα

α α α α

α α

λ λ ⊥

∂
= = +

∂∑ ∑ N N
m

κ :
� ��  (3.75) 

The yield function for the single criterion model is taken to have the form 
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1

ˆ ˆ,
pp p p

effF r L Lα α α α α α α α ατ τ τ π π⊥ ⊥
⎛ ⎞⎟⎜= − = + + ⎟⎜ ⎟⎜⎝ ⎠: :  (3.76) 

where α̂τ  is an equivalent stress measure that is strictly analogous to that introduced in Shu and Fleck [27] 

for their second gradient crystal plasticity theory and p  is an exponent that according to them “...in a loose 

sense it defines the interaction between statistically stored and geometrically necessary dislocations.”  In 

this research, we consider cases p =  1,2 and the remaining relations for the model follow in a straight 

forward manner  For p =  1, 

 ˆ eff L Lα α α α α ατ τ π π⊥ ⊥= + + : :  (3.77) 

 sgn( )eff
α α ατ=N Z  (3.78) 

 
1 1

sgn( ) , sgn( )
L L

α α α α α α
α α

π π⊥ ⊥ ⊥
⊥

= =N Y N Y:: :
:

 (3.79) 

 sgn( )eff
α α αγ λ τ= ��  (3.80) 

 sgn( ) , sgn( )α α α α α αϕ λ π ϕ λ π⊥ ⊥= =: :
� �� �  (3.81) 

 ( )0

m
F gα α α α α αλ γ γ ϕ ϕ⊥= = = = :

� � � � �  (3.82) 

For p = 2, 

 2 2 2
ˆ eff L Lα α α α α ατ τ π π⊥ ⊥= + + : :  (3.83) 
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α α
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 (3.85) 

 
ˆ
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α α
α

τ
γ λ

τ
= ��  (3.86) 
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αα
α α α α

α α α α

ππ
ϕ λ ϕ λ

τ τ
⊥

⊥
⊥

= = :
:

:

� �� �  (3.87) 

 ( ) 2 2 2

0

m
F gα α α α α αλ γ γ ϕ ϕ⊥= = + + :

� � � � �  (3.88) 

Eqs. (3.82)2-4 and Eq. (3.88)3 can be proven in straight-forward fashion by insertion of Eqs. (3.80)-(3.81) 

into Eq. (3.82) and insertion of Eqs. (3.86)-(3.87) into Eq. (3.88), respectively.  The plastic strain and 

torsion-curvature rates derived using these yield functions may be expressed as before as, i.e., 

 p p,
L L

αα
α α α α

α α
α α

ϕϕ
γ ⊥

⊥
⊥

= = +∑ ∑Z Y Yε κ :
:

:

��� ��  (3.89) 

where it is understood that the definitions given in Eqs. (3.77)-(3.88) are to be used in place of those 

introduced for the multicriterion model. 

 The slip system level ISVs are defined as in Eqs. (3.54)-(3.55) and the SSD density evolution 

equation for the single criterion model is defined as 

 
1 1

2S S c Sa y
b K

βα αβ α α
β

λ
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑ ��� � �  (3.90) 

where it is seen that the lα  is defined as a function of the SSD density only as in version 3 of the 

multicriterion strength model, and the GND density evolution equations for the single criterion model are 

obtained by substituting Eq. (3.81) (resp. (3.87)) in place of Eq. (3.51) in Eq. (3.53).  The single criterion 

model requires only a single strength variable for each slip system and it is defined in terms of the SSD 

only, i.e., 

 0 1 Sr r c b h βα α αβ
β

μ= + ∑ �  (3.91) 

Notice here, as in version 3 of the multicriterion theory, that rα αχ ≠  since αζ  is a function of the total 

dislocation density.  It is also noted that the SSD density in Eq. (3.90) is different in character than that 

defined in Eq. (3.57) and in the first term of Eq. (3.58) for the slip gradient and multicriterion models, 

respectively.  In those formulations the SSD density evolves according to the magnitude of the slip system 
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shearing rate, | |αγ� ; however, since αλ�  in Eq. (3.90) is an equivalent inelastic rate as defined by either Eq. 

(3.82) or Eq. (3.88), it embodies effects due to both plastic slip and torsion-curvature evolution.  This is a 

by-product of the natural coupling present within the single criterion framework, and in this way 

incorporates scale-dependent isotropic hardening in the absence of a Taylor relation based on the additive 

superposition of the SSD and GND densities.  The reduced dissipation inequality for the above constitutive 

description is then given as  

 ˆ 0H αβα α α β

α α β

τ λ χ λ= − ≥∑ ∑ ∑� �d  (3.92) 

where the resolved shear stress has been replaced with the appropriate equivalent stress measure, ˆατ , and 

the matrix H αβ  is defined for p =  1 as 
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and for p =  2 as 
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 (3.94) 

The simplified nature of the single criterion model with respect to the multicriterion model is advantageous 

only if the reduced nature of the constitutive description does not significantly limit the range and 

characteristics of the deformation behavior that can be captured.  This is assessed in the benchmark 

numerical simulations performed in Chapter 5. 
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3.4.3 Material Parameter Selection 

 The various assumptions listed at the beginning at the beginning of Section 3.4 provide guidance 

in specifying and interpreting certain material parameters.  Given A4 and Eq. (3.3), a slip system director 

vector, αD , deforms according to 

 α α α= + ⋅d D DΦ  (3.95) 

Assumptions A1 and A2 result in the micropolar elastic strain tensor being defined as 

 e e= −Hε Φ  (3.96) 

A5 asserts that the elastic material rotations should approximately coincide with the lattice rotations, a 

constraint that maintains a connection with the classical theory of crystal plasticity (see Eq. (2.21)).  This 

constraint may be enforced by minimizing the skew-symmetric part of the elastic micropolar strain tensor, 

i.e., 

 e eskw( ) = −ε ω Φ  (3.97) 

Considering the isotropic constitutive relations given in Eq. (3.21), this can be achieved by prescribing 

large values for cμ  [34] such that the nonlocal strain energy contribution from this term (Eq. (3.13)1) 

would become unbounded if eskw( )ε  were non-negligible since e e 2: skw( ) || skw( ) ||cμ=σ ε ε .  

Therefore, the cμ  parameter acts as an energetic penalty constraint forcing e eskw( ) 0≈ ⇒ ≈ε ω Φ .  

The extension of this concept to other material symmetries should follow the same logic so as to minimize 

the development of skew-symmetric elastic strains.  A consequence of this assumption is that prior to 

reaching the activation threshold for plastic torsion-curvature, the lattice rotation predicted by the 

micropolar theory is identical to that predicted by the classical theory.  However, once activated, the plastic 

torsion-curvature will drive the lattice rotations which will necessarily differ from those obtained from the 

standard theory. 

 The remaining non-traditional material parameters are those related to the couple stress-curvature 

response.  With regard to A3, we require that the micropolar effects should be negligible during purely 
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elastic deformations.  Essentially, this is a requirement that the effective elastic stiffness of the micropolar 

crystal should not exceed that of its classical counterpart.  Such behavior can result if large values of the 

couple stress elastic constants are used.  From dimensional considerations, it is seen that the quotient of any 

given couple stress elastic constant to that of a force stress elastic constant has dimensions of length 

squared.  These quotients represent “elastic” or “energetic” material length scales of the micropolar 

continuum.  Referring to the constitutive relations given in Eqs. (3.21)-(3.22), a typical elastic length scale, 

1A , which commonly arises in the solution of 2-D initial-boundary value problems, is given as 

 1
β γ

μ
+

=A  (3.98) 

Additional elastic material length scales have been introduced by Cowin [138].  To satisfy assumption A3, 

these elastic length scales should be smaller than the characteristic dimensions of the material volume being 

modeled.  These elastic length scales are to be distinguished from the plastic (dissipative) length scales  

(Lα
⊥ , Lα

: ) which are introduced in the plastic torsion-curvature evolution equations in Section 3.4.2.  Since 

the intrinsic back stress arises due to gradients in lattice torsion-curvature, as demonstrated in Eq. (3.45), 

this allows for an interpretation of the couple stress and plastic torsion-curvature parameters as being 

related to the development of heterogeneous dislocation arrangements whose influence affects post-yield 

behavior.  For example, consider the stress-strain response of a single crystal with no slip threshold 

evolution (no isotropic hardening).  If there are no gradients in lattice torsion-curvature, the stress-strain 

response will be elastic-perfectly plastic as shown in Figure 3.2(a).  Conversely, when there are appreciable 

gradients in lattice torsion-curvature there will be material strengthening due to the development of back 

stresses via Eq. (3.45).  In the absence of plastic torsion-curvature, which can be accomplished in the 

multicriterion theory by specifying infinite plastic torsion-curvature thresholds and in the in the single 

criterion theory by specifying 1,L Lα α
⊥ : � A , the kinematic hardening response is linear and the rate of 

hardening is proportional to the elastic length scale parameter, as shown in Figure 3.2(b).  When plastic 

torsion-curvature is non-negligible, the initial kinematic hardening modulus is dictated by the elastic length 

scale parameter, whereas the deviation from the linear response is governed by the plastic torsion-curvature 
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threshold stresses and the magnitude of the plastic length scales, as shown in Figure 3.2(c).  These 

deformation characteristics are further examined and demonstrated in the simulations performed in Chapter 

5. 

 

 

 

 (a) (b) (c) 

Figure 3.2:  Qualitative 1-D stress-strain response for a micropolar single crystal with no slip 
threshold evolution (a) no gradient effects (b) gradient effects with energetic kinematic hardening 
only and (c) gradient effects with energetic-dissipative kinematic hardening. 
 

 

3.5 Discussion 

 

Analogue to an enhanced three-term decomposition of the material deformation 

In a certain sense, the micropolar continuum may actually provide a more refined description of 

GND-related size effects than many of the slip gradient-based models.  It has been argued by Hartley [139], 

Clayton and McDowell [36, 100], and more recently by Gerken and Dawson [73, 102] that the popular 

two-term decomposition of the strain (or deformation gradient for finite deformation) into elastic and 

plastic parts may be insufficient for describing the kinematics of non-homogeneously deforming crystalline 

materials within a classical continuum theory.  These authors reason that the lattice deformation, lH , 

typically associated with the elastic material distortion, eH , should actually be decomposed into (at least) 

ε  

σ  

ε  

σ

ε  

σ

elastic length scale controlled 

plastic torsion-curvature  
controlled 
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two-terms: one associated with the removal of external tractions on the “released” (thought experiment) 

material volume element and another associated with the deformation heterogeneity that exists at finer 

length scales and/or between incompatibly deformed neighboring material elements.  These approaches 

suggest a decomposition of the total distortion in the geometrically linear setting as 

 l p e* i p∇ = + = + +u H H H H H
L

 (3.99) 

where lH  is the total lattice distortion, e*H  is the lattice distortion associated with external (to the volume 

element) loading, and iH  is the lattice distortion due to inhomogeneous (incompatible) deformation.  One 

advantage of such models as compared to theories (classical or generalized) employing the two-term 

decomposition is that the accomodational elastic lattice strains that develop during heterogeneous plastic 

flow are distinguished from those resulting from external loading and directly enter the mechanical balance 

equations since, i.e., 

 e* i: sym( )= +H Hσ C  (3.100) 

Therefore, the additional lattice kinematics due to deformation incompatibility are properly accounted for 

and the resulting back stresses enter the flow rule naturally, which is counter to approaches that insert the 

back stress due to GNDs directly into the yield function while retaining the two-term decomposition [14, 

72, 140]. 

 A challenge for this type of theory lies in the construction of the evolution equation for the 

incompatible lattice distortion.  Gerken and Dawson [73] have cleverly addressed this issue by determining 

iH  from the long-range strain fields produced by the GND distribution which is calculated in terms of the 

slip gradients according to Eq. (2.71).  However, this approach, as handled in Gerken and Dawson [73], 

still involves the additional computational cost associated with the modified FE algorithms required to 

calculate slip gradients, the incompatible deformation tensor, and incorporating these features into the 

solution procedure.  On the other hand, micropolar single crystal plasticity qualitatively embodies the 

advantageous features of the enhanced three-term decomposition while retaining the ability to use standard 

FE methods in the numerical implementation of the theory.  Since the plastic torsion-curvature evolution in 

the micropolar theory is associated with the generation of GNDs, the associated elastic fields embodied by 
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eκ  would play a role analogous to the incompatible lattice distortions, iH .  This is further demonstrated 

by comparing the effective resolved shear stresses from the two theories, i.e,  

 eff b
α α α α ατ τ τ= ⋅ ⋅ = −s nσ  (3.101) 

 GD:  e* i: sym( ) : , : sym( ) :b
α α α ατ τ= = −H Z H ZC C  (3.102) 

 MP:  e e1
2

: sym( ) : , (( : ) )b
α α α ατ τ= = − ⋅ ⋅ ∇H Z t κ

L
C D  (3.103) 

where the abbreviations GD (Gerken and Dawson) and MP (micropolar) have been used above.  The key 

difference between the two approaches is that the additional contribution to the resolved shear stress in Eq. 

(3.102) results from the enhanced kinematic description of a continuum governed by the standard 

mechanical balance laws, whereas in Eq. (3.103) they emerge due to the presence of couple stresses and as 

a consequence of the balance of angular momentum.  In fact, this may be a beneficial aspect of the model 

as the presence of GNDs has long been known as a potential source for couple stresses at coarse scales of 

observation due to the fluctuations of local stresses at finer scales [141].  It has been suggested that couple 

stresses may also develop in crystalline materials due to dislocation core distortions and multibody 

interatomic potentials [142], and Zhou and McDowell [143] have shown that couple stresses can arise from 

particle systems (e.g., nonlocal atomistic systems) only if non-central force interactions exist.  The 

micropolar theory also contains an additional contribution to the mechanical dissipation embodied by the 

term, p p: skw( ) :NL = +mσ ε κ� �d , that is not accounted for in the alternative GD approach. 

 

Comparison to Gurtin-Type Single Crystal Plasticity 

 The Gurtin-type work-conjugate higher-order theory was introduced and discussed in Chapter 2, 

and the key feature of these types of models is that the slip system shears are taken as continuum degrees-

of-freedom.  Therefore, the slip system shearing rate is no longer a constitutively specified function and is 

instead a generalized displacement.  As a result, the typical structure of the elastic-plastic constitutive 

formulation is altered.  For example, instead of specifying a yield function (or flow rule) which defines a 

yield threshold and a flow direction, the Gurtin-type theory contains an additional microforce balance law 

that augments the usual balances of linear and angular momenta.  Additionally, the Gurtin-type theory 
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introduces energetic-dissipative decompositions of thermodynamic stresses in addition to the elastic-plastic 

decomposition of the total strain tensor.  Constitutive assumptions are made for the free energy and 

thermodynamic stresses such that in the absence of slip gradients, the classical theory is more or less 

retrieved.  It is noted, that these models do not use ISVs in the traditional sense and they employ 

phenomenological descriptions of strain hardening.  That being the case, to facilitate the comparison of the 

micropolar model to the Gurtin-type model the following discussion is presented from a point-of-view 

consistent with developments of Gurtin and co-workers [18, 109, 115].  The governing equations of 

Gurtin’s theory are summarized below for ease of reference and Chapter 2 can be consulted for more in-

depth explanation.  The following discussion is more focused on the development of constitutive equations 

for the Gurtin-type framework that show the similarities between the micropolar theory and theirs. 
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Kinematic Relations 

 

e p

e p

p

p
, ,

{ ,{ }}

sym( )

G Gb

α

α α α

α

α α α α α α

α

γ

γ

⊥

=

= ∇ = +

= = +

= ⊗

= × ∇ = ⊗ + ⊗

∑

∑

u

H u H H

H

H s n

H s t s s

ε ε ε

α :

L

L

U

� �

 (1.104) 

 

Internal and External Power Densities 
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Mechanical Balance Laws 
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Traction Definitions 
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Free Energy and State Laws 
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Mechanical Dissipation Rate 

 ( ) 0disqα α α α

α

γ γ= + ⋅ ∇ ≥∑
K

� �ςd  (3.109) 

 

Energetic Constitutive Equations 

 The constitutive equations presented in Chapter 2 for the Gurtin-type model included a rather 

simple functional relationship between the free energy density and the magnitude of slip gradient vector 

(see Eq. (2.142)).  In recognition of the fact that gradients of slip normal to the slip plane do not lead to the 

generation of GNDs, Gurtin et al. [18] assert that the free energy should only depend on the in-plane slip 

gradients.  Therefore, the microcouple stress lies in the slip plane and may be expressed in the following 

general form 

 α α α
⊥= + :ς ς ς , (3.110) 

where α
⊥ς  is the edge component of the microcouple stress vector and is parallel to sα  and α

:ς  is the screw 

component and acts parallel to αt .  A free energy that is uncoupled and quadratic in the tangential 

gradients has been proposed by Gurtin et al. [18] as 
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 e e 2 2 2 21 1
0 , ,2 2

: : [( ) ( ) ]v G Gg b α α

α

ψ ⊥= + +∑ε ε :A � �C  (3.111) 

where 0g  is a material parameter with units of stress and A  is an energetic length scale.  The second term in 

Eq (3.111), which is associated with heterogeneous microstructural evolution, can be expressed in terms of 

the total slip system GND density with the aid of Eq. (2.75) as 

 e e 2 2 21 1
02 2

: : ( )v Gg b α

α

ψ = + ∑ε ε A �C  (3.112) 

Notice that there is no contribution to the free energy due to the SSD density.  Moreover, in contrast to 

earlier developments, the strain-like state variable is proportional to the GND density and not its square 

root.  The energetic stresses are obtained from differentiation of Eq. (3.111) with respect to the elastic 

strain and slip gradients, i.e., 
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Equation (3.113)1 is the standard elasticity constitutive equation and Gurtin et al. [18] view the energetic 

microcouple stresses (second term) as “distributed Peach-Koehler forces” since they act perpendicular to 

the line directions of pure edge and screw dislocations; however, it is not implicit that this interpretation is 

accurate considering that the usual glide component of the Peach-Koehler force is defined in terms of the 

Cauchy stress, slip plane normal, and dislocation Burgers vectors, as given in Eq. (2.16), and there are 

contributions from the remote stress field and the stress fields due to all of the other dislocations. 

 

Dissipative Constitutive Equations 

 The dissipative constitutive equations introduced in Chapter 2 were proposed within what 

effectively is a single criterion framework by making use of an effective inelastic rate as defined by Eq. 

(2.144).  An alternative path is pursued here in terms of a multicriterion Gurtin-type formulation of the 

dissipative stresses as it enables a more straight-forward connection to the micropolar model.  For example, 

the scalar dissipative microstress in the proposed multicriterion Gurtin model is expressed as 
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This equation is to be compared to the analogous expression given in Eq. (2.145) where the functional 

dependencies on the equivalent slip system deformation rate, dα� , have been replaced with a dependence 

only on the slip rates.  The drag stress evolves according to an appropriately modified form of Eq. (2.146), 

i.e., 

 ( )1 2({ },{ }) | | ({ },{ })g hα αβ χ χ β αβ χ χ β

β

γ γ γ γ γ γ= ∇ + ∇ ⋅ ∇∑ h
K K K

� � � , (3.115) 

where the scalar, 1hαβ , and vectorial, 2
αβh , slip system interaction matrix components may in general 

depend on the plastic slip and slip gradients on all slip systems.  The general form of Eq. (3.115) has been 

motivated by assuming that the drag stress is defined by an enhanced Taylor relation, i.e., 

 0 1 ( )S Gg g c b h β βα αβ
β

μ= + +∑ � � , (3.116) 

where the evolution equations for the SSD and GND densities are defined as in Eqs. (2.77) and (2.76), 

respectively, and the mean free path is defined as in Eq. (2.78)2.  The dissipative component of the 

microcouple stress vector is introduced by again appealing to the edge-screw decomposition and also to Eq. 

(2.147), i.e., 

 , ,dis dis dis f fα α α α α α α
⊥ ⊥= + = − +s t: :ς ς ς , (3.117) 

where the signed scalar functions, f α
⊥  and f α

: , are defined analogously to Eq. (3.114), i.e., 
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where gα
⊥  and gα

:  are edge and screw drag stresses, Lα
⊥  and Lα

:  are edge and screw dissipative length 

scales, 0γ⊥�  and 0γ:�  are edge and screw reference deformation rates with units s-1, and n⊥  and n:  are 

edge and screw inverse rate sensitivity exponents.  These expressions can be interpreted as flow rules for 

the gradients of slip in the slip and transverse directions, respectively.  The edge and screw drag stresses are 

assumed to have generalized evolution equations similar to that for slip given in Eq. (3.115), i.e., 
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 (3.119) 

 Since the dissipative microstress and microcouple stress equations are independent of one another, 

Eqs. (3.114) and (3.117)-(3.118) can be inverted to obtain relations between the slip rates and slip rate 

gradients and their respective driving forces which are given by  
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Here, coaxiality of the power-conjugate stresses and inelastic rates has been assumed, i.e., 

sgn( ) sgn( )qα αγ =� , sgn( ) sgn( )α α α αγ ς⊥−∇ ⋅ = ⋅s s
K
� , and sgn( ) sgn( )α α α αγ ς∇ ⋅ = ⋅t t:

K
� .  With the aid 

of the microforce balance (see Eq. (3.106)3) Eq. (3.120) may be expressed as  
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This is a familiar expression for the slip rate evolution, in which the second term in the numerator inside 

the parenthesis acts as the kinematic hardening variable and the drag stress acts the isotropic hardening 
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variable.  Similarly, the expressions given in Eqs. (3.118) and (3.121) may be written in terms of the edge 

and screw GND densities by using the rate form of Eq. (2.71).  Considering only the edge GND density 

equations for the sake of brevity, Eqs. (3.118)1 and (3.121)1 are expressed as 
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where ,G
α

⊥��  is the edge GND density evolution equation and , 0 0 /G bLα αγ⊥ ⊥ ⊥=� ��  is a reference rate of 

edge GND density.  Finally, Eqs.(3.122) and (3.121) can be inserted into Eq. (3.109) and the mechanical 

dissipation rate is then expressed as 
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 (3.125) 

It is easy to see from Eq. (3.125) that the dissipation inequality is unconditionally satisfied for the Gurtin-

type theory since each term is individually positive; this results from the omission of ISVs as arguments in 

the free energy which then do not appear in the internal power density. 

 

Decomposition of the Inverted Flow Rule 

 The energetic-dissipative decomposition, en dis
α α α= +ς ς ς , of the microcouple stress allows the 

microforce balance to be expressed as 
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where the energetic and dissipative contributions to hardening have been separated.  Notice that there is 

both energetic and dissipative kinematic hardening and only dissipative isotropic hardening.  Inserting the 

constitutive equations given in Eqs. (3.113)2, (3.114), and (3.117)-(3.118) into Eq. (3.126) then yields 
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This result will be compared to an analogous expression obtained from the multicriterion micropolar theory 

of single crystal plasticity in subsequent discussion. 

 

Relationship to the Multicriterion Theory of Micropolar Single Crystal Plasticity 

 In an effort to make a more clear connection to the micropolar theory of single crystal plasticity, 

the multicriterion flow rule presented in Chapter 3 is reexamined from a perspective more closely aligned 

with that of Gurtin et al. [51] with regard to certain constitutive assumptions.  Specifically, a simplified free 

energy function which only includes functional dependencies on the elastic strains and torsion-curvatures is 

considered.  Additionally, flow rules without elastic thresholds are adopted.  For the present analysis, Eqs. 

(3.39), (3.52), and (3.19) are replaced, respectively, with the following 
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2e e 2 e1 1

02 2
: :v gψ = +ε ε κAC  (3.130) 

In Eq. (3.130) the free energy is assumed to depend on the magnitude of the elastic torsion-curvature tensor 

and as in Eq. (3.111) 0g  is a material parameter with units of stress and A  is an energetic length scale.  The 
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isotropic hardening variables,gα  ,gα
⊥ , and gα

: , are assumed to have the following general forms analogous 

to Eqs. (3.115) and (3.119), i.e., 
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Here, it is to be understood that each of the interaction matrices given in Eqs. (3.131) and (3.132) may, in 

general, be a function of { }αγ , { }αϕ⊥ , and { }αϕ: . 

The explicit state laws for this version of the multicriterion theory are obtained from Eq. (3.130) as 

 e 2 e
0: , g= =mσ ε κAC  (3.133) 

which are to be compared to Eq. (3.113); the similarities between the energetic vectorial microcouple stress 

from the Gurtin-type theory to the tensorial couple stress of the micropolar theory are obvious.  While there 

are certainly differences between the two higher-order stresses it is argued that they have similar impacts 

and physical implications with regard to material behavior.  The most noteworthy difference between the 

two measures is their tensorial rank, which is due to the difference in torsion-curvature measures employed 

by the two theories.  The Gurtin-type theory with an uncoupled energy as in Eq. (3.112) can be thought of 

as employing a planar torsion-curvature measure, G
ακ , defined as 

 G , ,( )G Gbα α α α α
⊥= +s tκ :� �  (3.134) 

In some regards, a more rigorous comparison is difficult due to the different philosophical perspectives of 

the two theories.  For example, as previously discussed, the Gurtin-type theories employ an energetic-

dissipative decomposition of the microcouple stress, whereas the micropolar model achieves a similar 

effect through the elastic-plastic (energetic-dissipative) decomposition of the torsion-curvature.  A key 

difference between these two ideologies as it relates to material response is that of nonlocal effects; in 
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general such effects, are present during elastic deformations for the micropolar continuum, but are 

restricted to the inelastic regime for the Gurtin-type theory.  However, the separation of the microcouple 

stress in the Gurtin-type theory into energetic and dissipative parts is essentially amounts to an implicit 

additive decomposition of the slip gradient into elastic and plastic parts, i.e., e p
α α αγ γ γ∇ = ∇ + ∇

K K K
, where 

the subscripts denote the elastic and plastic parts of the slip gradient, respectively.  Since the slip system 

shears are treated as generalized displacements within the Gurtin-type framework, it is natural to think of 

the slip gradients as being the corresponding generalized (micro)strain measure which could be 

decomposed into elastic and plastic parts.  Although, this is not the approach as set forth by Gurtin et al. 

[18], the physical implication is that energy is both stored and dissipated due to gradients of slip. 

 To further compare the two models, the mechanical dissipation rate for the new version of the 

multicriterion theory is expressed with the aid of Eqs. (3.128) and (3.129) as 

 

1
2 1

0 2

0 0

| ( ) |
| ( ) |

| || |
0

m

nn

g

g L L g L L

α α
α α

α
α

α ααα

α α α α α α

τ
γ τ

π πππ
ϕ ϕ

⊥
⊥⊥

⊥
⊥ ⊥ ⊥

⎛ ⎛ ⎞⎜ + ⋅ ⋅ ∇ ⎟⎜⎜ ⎟⎜⎜ ⎟= + ⋅ ⋅ ∇ ⋅ ⋅ ⋅⎜⎜ ⎟⎜⎜ ⎟⎟⎜⎜ ⎝ ⎠⎜⎝

⎞⎛ ⎞⎛ ⎞ ⎟⎟⎟⎟ ⎜⎜ ⎟⎟⎟ ⎜⎜+ + ≥⎟⎟⎟ ⎜⎜ ⎟⎟⎟ ⎜⎜ ⎟ ⎟⎟⎜⎝ ⎠ ⎝ ⎠ ⎟⎠

∑
t m

t m

:
::

:
: : :

L
L

�

� �

d

 (3.135) 

where the effective resolved shear stress, eff
ατ , has been expressed with the aid of Eqs. (3.40) and (3.45).  

Comparing Eq. (3.135) to Eq. (3.125) the similarity between the two expressions is obvious, with 

analogous roles being played by the following terms: 

MP              Gurtin 

 

1
2

( )α α

α α α

α α α

π

π

⊥ ⊥

⋅ ⋅ ∇ ⇔ ∇ ⋅

⇔ ⋅

⇔ ⋅

t m

s

t: :

L K
ς

ς

ς

 (3.136) 

Clearly, the dissipation inequality is unconditionally satisfied for this version/interpretation of the 

multicriterion micropolar theory and is thermodynamically consistent in the sense implied by Gurtin et al. 
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[18].  Taking the comparison even further by examining the inverted flow rule for slip (Eq. (3.38)) and 

making use of the micropolar energetic-dissipative decomposition, e p= +κ κ κ , the following is 

obtained 
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As in Eq. (3.127), the energetic hardening term has been left on the LHS of Eq. (3.137), while the 

dissipative terms have been moved to the RHS.  This expression is similar to the equivalent expression 

resulting from the multicriterion Gurtin-type theory given in Eq. (3.127).  Yet, as to be expected, there are a 

few subtle differences that are by and large restricted to the gradient-dissipative term.  The gradient-

dissipative term in the Gurtin-type theory depends on the gradients of the rate of the GND densities, 

whereas in the micropolar theory it depends on the gradients of the current value of the GND densities.  

Additionally, both energetic and dissipative length scales appear in the gradient dissipative term for the 

micropolar theory since , /G bLα α αϕ⊥ ⊥ ⊥= −�  and , /G bLα α αϕ= −: : :� .  As a result, the ratio of the 

energetic-to-dissipative length scales is an important parameter that controls the kinematic hardening 

response in the micropolar models.  In contrast, only the dissipative length scales are contained in the 

gradient-dissipative term in the Gurtin-type theory.  The differences between the gradient-dissipative terms 

in the inverted flow rule, as previously discussed, are due to applying the energetic-dissipative 

decomposition to the microcouple stress instead of the microstrain (slip gradient).  It is also worth noting 

that the inverted flow rule in the Gurtin-type theory contains terms only pertaining to the slip system under 

consideration, while the micropolar theory, due to its use of a non-planar tensorial torsion-curvature 

measure, incorporates the influence of all slip systems.  However, this is not seen to be a limitation of the 

Gurtin-type theory as this can be remedied by choosing a free energy that has a coupled dependence on the 

GND densities, e.g., 

 e e1 1
2 2

: :v G GC βα αβ

α β

ψ = + ∑ ∑ε εC � �  (3.138) 
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where the material modulus matrix, C αβ , has units of force ×  length2.  Equation (3.138) leads to a 

microcouple stress on slip system α  that is a function of the GND densities on all other slip systems. 

 A comparison of the single criterion micropolar model and the model advanced by Gurtin et al. 

[18] could be carried out; however, the connections between the Gurtin-type and micropolar models are 

most easily seen in the multicriterion format.  Obviously, there will be differences in the final expressions 

obtained in such a comparison with respect to what has just been presented, but these are due to the 

fundamental differences between the multi and single criterion methodologies and no additional insight is 

gained by carrying out the analysis.  For this reason and for the sake of brevity, this analysis is omitted. 

 

3.6 Summary 

 

 This chapter has been concerned with the development of dislocation-based strength models of 

micropolar single crystal plasticity where the classical and nonlocal slip gradient-based theories have been 

used as guides.  General aspects of the micropolar continuum have been covered and models based on both 

single and multicriterion flow rules have been established.  The multicriterion models have built on the 

prior work of Forest et al. [34, 35] by replacing their phenomenological strength model with dislocation-

based models, and the single criterion model represents an original contribution of this research.   It has 

been shown that, as a consequence of the angular momentum balance, the micropolar theory includes a 

natural kinematic hardening mechanism for slip which arises due to gradients in lattice torsion-curvature.  

This is in agreement with the well-accepted notion that the long-range back stresses arising due to polar 

dislocation densities are proportional to gradients in GND densities (second gradients of slip).  Connections 

between the micropolar theory and theories featuring: (i) enhanced decompositions of the standard 

deformation and (ii) the slip system shears as treated as generalized displacements (Gurtin-type) have been 

established.  It is proposed that the micropolar theory of single crystal plasticity is able to capture the all of 

the relevant physical aspects of the slip gradient-based models while offering a simpler and more efficient 

numerical implementation.  
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CHAPTER 4 

NUMERICAL IMPLEMENTATION 

 

 

4.1 Introduction 

 

 This chapter presents a two-dimensional finite element implementation appropriate for the 

micropolar continuum along with the constitutive update algorithms for the single crystal viscoplasticity 

models presented in Chapter 3.  The user element (UEL) subroutine interface within Abaqus/Standard [51] 

has been employed to implement the element-level equations, which leaves the element assembly 

operations and the global equilibrium iterations to be performed by Abaqus.  The UEL implementation is 

benchmarked and validated through a series of comparisons to solutions of mechanical initial-boundary 

value problems with known analytical solutions, and also by demonstrating convergent behavior in a 

problem exhibiting strain localization. 

 

4.2 Finite Element Implementation 

 

4.2.1 Principle of Virtual Work 

 The weak form of the mechanical balance laws required for the finite element implementation are 

derived in standard fashion (cf. [144]) from the local forms of the linear and angular momentum balances 

given in Eqs (3.8).  The linear and angular momentum balance equations, neglecting body forces and 

inertial effects, are multiplied by arbitrary variations in the displacement, δu , and microrotation, δφ , 

fields, respectively, and integrated over an arbitrary volume, i.e., 

 ( ) 0
R

dVδ⋅ ∇ ⋅ =∫ uσ
L

 (4.1) 

 ( ): 0
R

dVδ⋅ ∇ − ⋅ =∫ m σ φ
L
ε  (4.2) 
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Integrating by parts and applying the divergence theorem, one obtains 

 :
R R

dS dVδ δ
∂

⋅ ⋅ = ∇∫ ∫u n uσ σ
L

 (4.3) 

 
( ): :

R R
dA dVδ δ δ

∂
⎡ ⎤⋅ ⋅ = ∇ + ⋅⎣ ⎦∫ ∫m n mφ φ σ φ

L
ε  (4.4) 

Adding Eqs. (4.3) and (4.4) and making use of the deformation-displacement relations given in Eqs. (3.4)-

(3.5) and the traction vector definitions given in Eqs. (2.24) and (3.9), the weak form of the mechanical 

equilibrium equations (principle of virtual work) suitable for the finite element implementation is obtained 

as 

 
( ) ( ): :

R R
dA dVδ δ δ δ

∂
⋅ + ⋅ = +∫ ∫T u M mφ σ ε κ  (4.5) 

 

4.2.2 Finite Element Discretization 

 The development of isoparametric linear quadrilateral and triangle elements appropriate for two-

dimensional plane problems is presented in this section.  The relevant degrees-of-freedom are the 

displacements in the 1x  and 2x  directions, 1u  and 2u , and the microrotation about the 3x  axis, 3φ .  

Therefore, the non-trivial components of the micropolar strain and torsion-curvature tensors are 11ε , 22ε , 

12ε , 21ε , 31κ , and 32κ .  In an isoparametric formulation, the element spatial coordinates and kinematic 

degrees are freedom are interpolated from the nodal values using the same set of shape functions, i.e., 

 I
i I iI

x N x= ∑  (4.6) 

 ,I I
i I i i I iI I

u N u Nφ φ= =∑ ∑  (4.7) 

where ix , iu , and iφ  are the continuum approximations within the element to the positional coordinate, 

displacement, and microrotation fields, respectively; I
ix , I

iu , and I
iφ  are the corresponding nodal values 

of the same fields for the thI  node, and IN  are the shape functions for the thI node. 
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Linear Quadrilateral Element 

 The parent element for the four-noded quadrilateral element (Q4) is shown in Figure 4.1, where 

the nodal coordinates are given with respect to the natural element basis.  The shape functions for this 

element are given as 

 ( )( )1
1 1 2 24

1 1I I
IN r r r r= + +  (4.8) 

where ( )1 2,I Ir r  are the natural coordinates of the thI  node.  The derivatives of the shape functions with 

respect to the global coordinate system which are needed to calculate the element strains are obtained by 

making use of the chain rule, i.e.,  

 
1 21 2i i ix I r I x r I xN N r N r∂ = ∂ ∂ + ∂ ∂  (4.9) 

where the notation ( )( )⋅∂ ∗  indicates the partial derivative of ( )∗  with respect to ( )⋅ .  The derivatives of the 

shape functions with respect to the natural coordinates are easily calculated from Eq. (4.8) and are given as  

 ( ) ( )
1 2

1 1
1 2 2 2 1 14 4

1 , 1I I I I
r I r IN r r r N r r r∂ = + ∂ = +  (4.10) 

The derivatives of the natural coordinates with respect to the global coordinates are not directly available; 

however, these expressions may be obtained by making use of the chain rule and Eq. (4.6) in the following 

manner.  The derivative of a given quantity ( )∗  with respect to the natural element coordinates may be 

expressed as 

 
1 21 2( ) ( ) ( )

i i ir r x r xx x∂ ∗ = ∂ ∂ ∗ + ∂ ∂ ∗  (4.11) 

The derivative of the global coordinates with respect to the element natural coordinates is determined from 

Eq. (4.6) as 

 
j j

I
r i r I iI
x N x∂ = ∂∑  (4.12) 
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Rewriting Eq. (4.11) in matrix form for convenience and inverting leads to an expression for the global 

coordinate derivatives in terms of readily computable quantities, i.e.,  

 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1
1 2 1 2

1 2 1 2

r r r x x r r r

r r r x x r r r

x x x x

x x x x

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥= ⇒ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭
 (4.13) 

where 
iij r jJ x= ∂  is the Jacobian matrix relating the natural coordinate derivatives to the global 

coordinate derivatives.  At this point, all of the necessary preliminaries are in order to derive the element 

matrices for the bilinear quadrilateral element. 

 

 

 

Figure 4.1:  Parent isoparametric element for the bilinear quadrilateral (Q4) element. 

 

 

 The micropolar continuum displacement vector, { }u , is expressed in terms of the shape functions 

and the nodal displacement vector by expressing Eqs. (4.6) and (4.7) in a compact matrix notation as 

 { } { } { }1 2 3u N a
T

u u φ ⎡ ⎤= = ⎣ ⎦  (4.14) 

r1 

r2 

(-1,-1) (1,-1) 

(1,1) (-1,1) 

1 2 

4 3 

1 

2 

3 

4 

x1 

x2 

Ωe 
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where the shape function matrix, N⎡ ⎤⎣ ⎦ , and the nodal displacement vector, { }a , are given as 

 
1 2 3 4

I

N N N N N

0 0

N 0 0 , 1,2,3,4

0 0

I

I

I

N

N I

N

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ = =⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.15) 

 

{ } { } { } { } { }{ }

{ } { }

1 2 3 4

I
1 2 3

a u u u u

u , 1,2, 3, 4

TT T T T

TI I Iu u Iφ

=

= =

 (4.16) 

where N⎡ ⎤⎣ ⎦  is a 3 ×  12 matrix and { }a  is a 12 ×  1 column vector and as before the superscript refers to 

the thI  node.  Introducing the micropolar strain vector, { }Ε , as 

 { } { }11 22 12 21 31 32

T
ε ε ε ε κ κΕ =  (4.17) 

the relationship between { }Ε  and the nodal displacement vector is symbolically expressed in terms of the  

strain-displacement matrix, B⎡ ⎤⎣ ⎦ , i.e.,  

 { } { }B a⎡ ⎤Ε = ⎣ ⎦  (4.18) 

where the strain-displacement matrix is populated with the appropriate components of the shape functions 

and their derivatives.  For a fully integrated Q4 element, the strain-displacement matrix has the form 

 

1

2

2

1

1

2

1 2 3 4

I

B B B B B

0 0

0 0

0
B , 1,2, 3, 4

0

0 0

0 0

x I

x I

x I I

x I I

x I

x I

N

N

N N
I

N N

N

N

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂⎢ ⎥⎡ ⎤ = =⎢ ⎥⎣ ⎦ ∂ −⎢ ⎥
⎢ ⎥

∂⎢ ⎥
⎢ ⎥
⎢ ⎥∂⎣ ⎦

 (4.19) 
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It is well-established that linear quadrilateral elements are prone to volumetric locking under plane strain 

conditions for incompressible or nearly incompressible material behavior when the element is fully 

integrated [144].  Several different techniques have been proposed to eliminate this limitation of the Q4 

element; the B  (read B-bar) method, which is a form of reduced integration developed by Hughes [145], is 

employed in this research.  The B  method is based on integrating the dilatational and deviatoric parts of 

the strain tensor independently, such that full integration is performed for the deviatoric components 

whereas the averaged (over the element) dilatational strain components are used in the formation of the 

element matrices.  The total strain tensor admits the aforementioned decomposition, i.e., 

 d h= +ε ε ε�  (4.20) 

where dε  and hε�  are the deviatoric and average dilatational (or hydrostatic) strains, respectively, and are 

given as 

 ( )1
3
trd = − Iε ε ε  (4.21) 

 ( )1 1
3

, tr
e e

h h h
V

dV
Ω

= =∫ Iε ε ε ε�  (4.22) 

To demonstrate how this assumption modifies the strain-displacement matrix, consider the 11ε  component 

of the strain tensor such that the deviatoric and average hydrostatic contributions for a state of plane strain 

are given as 

 ( )
1 1 2

1
11 1 1 23
d I I I

x I x I x II I
N u N u N uε = ∂ − ∂ + ∂∑ ∑  (4.23) 

 ( )
1 2

1
11 1 23
h I I

x I x II
N u N uε = ∂ + ∂∑ � ��  (4.24) 

where 
ix IN∂ �  are the volume averaged derivatives of the shape functions, i.e.,  

 1
e ei ix I x IV

N N dV
Ω

∂ = ∂∫�  (4.25) 
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Adding Eqs. (4.23) and (4.24), performing the analogous procedure for the 22ε  component of strain and 

appropriately regrouping the terms, allows one to write the strain-displacement matrix for the B  method as 

 

( ) ( )
( ) ( )

1 1 1 2 2

1 1 2 2 2

2

1

1

2

1 2 3 4

1 1
3 3

1 1
3 3

I

B B B B B

0

0

0
B , 1,2, 3, 4

0

0 0

0 0

x I x I x I x I x I

x I x I x I x I x I

x I I

x I I

x I

x I

N N N N N

N N N N N

N N
I

N N

N

N

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤∂ + ∂ − ∂ ∂ − ∂⎢ ⎥
⎢ ⎥∂ − ∂ ∂ + ∂ − ∂⎢ ⎥
⎢ ⎥

∂⎢ ⎥⎡ ⎤ = =⎢ ⎥⎣ ⎦ ⎢ ⎥∂ −
⎢ ⎥
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

� �

� �

(4.26) 

where the strain vector is now given as { } { }B a⎡ ⎤Ε = ⎣ ⎦ .  Comparing Eq. (4.26) to Eq. (4.19) it is clear that 

the differences between the two strain-displacement matrices are contained within the first two rows, i.e., 

those associated with the dilatational components of strain. 

 Introducing the stress, { }Σ , and traction vectors, { }Τ , the principle of virtual work given in Eq. 

(4.5) may be expressed in matrix notation as 

 { } { } { } { }u
e e

T T
dA dVδ δ

∂Ω Ω
Τ = Ε Σ∫ ∫  (4.27) 

where the stress and traction vectors are defined as 

 { } { }11 22 12 21 31 32

T
m mσ σ σ σΣ =  (4.28) 

 { } { }1 2 3

T
MΤ ΤΤ =  (4.29) 

Expressing the virtual continuum displacements and strains in terms of the nodal displacement vector, i.e., 

 { } { } { } { }u N a , B aδ δ δ δ⎡ ⎤ ⎡ ⎤= Ε =⎣ ⎦ ⎣ ⎦  (4.30) 

and substituting back into Eq. (4.27), gives 

 { } { } { } { }a N a B
e e

T T T T
dA dVδ δ

∂Ω Ω
⎡ ⎤ ⎡ ⎤Τ = Σ⎣ ⎦ ⎣ ⎦∫ ∫  (4.31) 
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where the virtual nodal displacement vector has been pulled outside of the volume integral.  Since the 

virtual nodal displacements are arbitrary, they may be dropped from the previous equation, which leads to 

the final form of the discretized finite element equations for the 2-D micropolar continuum with linear 

kinematics, i.e.,  

 { } { }N B
e e

T T
dA dV

∂Ω Ω
⎡ ⎤ ⎡ ⎤Τ = Σ⎣ ⎦ ⎣ ⎦∫ ∫  (4.32) 

where the LHS and RHS of Eq. (4.32) are the forces to due external and internal working, respectively.  As 

previously mentioned, the global element assembly operations and general solution procedures are 

performed by Abaqus [146].  Within the UEL subroutine call, the out-of-balance nodal load vector (the 

residual), { }R , and the tangent stiffness matrix, [ ]K , and the updated material state must be returned as 

arguments to the main program.  The residual vector and tangent stiffness matrix are defined, respectively, 

as 

 { } { } { }N B
e e

T T
dA dV

∂Ω Ω
⎡ ⎤ ⎡ ⎤= Τ − Σ⎣ ⎦ ⎣ ⎦∫ ∫R  (4.33) 

 
{ }
{ }

intf
B B

a e

T alg dV
Ω

∂ Δ
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦∂ Δ ∫K C  (4.34) 

where alg⎡ ⎤
⎢ ⎥⎣ ⎦C  is the constitutive tangent matrix and is obtained via consistent linearization of the 

constitutive update algorithm, which is subsequently discussed in Section 4.2.3.  The integration of the 

element matrices is performed numerically in standard fashion using 2 ×  2 Gaussian quadrature over the 

natural element coordinates such that a volume integral in the ambient space is calculated as 

 ( ) ( ) ( ) ( ) ( )e

Q Q Q
i i i i iQ

f x dV f r J dV f r J r w r
Ω Ω

= = ∑∫ ∫ ,
 (4.35) 

where ( )if x  is any arbitrary function, eΩ  is the element domain in the global coordinate system, Ω,  is 

the element domain in the natural coordinate system, J  is the determinant of the Jacobian matrix in Eq. 

(4.13), Q
ir  are the natural coordinates of the thQ  integration point, andw  is the combined weighting 

factor. 
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Linear Triangular Element 

The implementation of a linear triangular element is briefly covered in this section taking 

advantage of the concepts introduced in the previous section.  The triangular elements are employed 

sparingly in this research as they will be used only in situations where regular mapped meshes of 

quadrilateral elements cannot be efficiently created.  The local and global representation of the of the LT 

element are shown in Figure 4.2. 

 

 

 

Figure 4.2:  Parent isoparametric element for the linear triangular (LT) element. 

 

 

The isoparametric shape functions for the LT element are given as 

 1 1 2 2 1 3 21 , ,N r r N r N r= − − = =  (4.36) 

where the shape functions are the area coordinates [147] of a general point within the interior of the 

triangle, i.e., 

 1, 2, 3I
I

A
N I

A
= =  (4.37) 

r1 

r2 

(0,0) (1,0) 

(0,1) 

1 2 

3 

x1 

x2 

1 2 

3 

Ωe 

P 

A1 A2 

A3 
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The definition of the areas in Eq. (4.37) is given with respect to the interior point P  in Figure 4.2.  The 

shape function derivatives with respect to the natural coordinates are calculated from Eq. (4.36) as 

 
1 1 1

2 2 2

1 2 3

1 2 3

1, 1, 0

1, 0, 1

r r r

r r r

N N N

N N N

∂ = − ∂ = ∂ =

∂ = − ∂ = ∂ =

 (4.38) 

The derivatives of the shape functions with respect to global coordinates are determined as before by using 

Eqs. (4.13) and (4.6).  The shape function matrix and the strain-displacement matrix appropriate for the LT 

element are given by the expressions 

 1 2 3N N N N⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  (4.39) 

 1 2 3B B B B⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  (4.40) 

where IN⎡ ⎤⎣ ⎦  and IB⎡ ⎤⎣ ⎦  are defined by Eqs. (4.15) and (4.19), respectively.  With the substitution of Eqs. 

(4.36), (4.39), and (4.40) in for Eqs. (4.8), (4.15), and (4.19), respectively, the FE discretization and B  

method developed in the previous section applies to the LT element.  Unlike the classical theory, the strain 

for a micropolar continuum is not constant throughout the LT element due to the presence of the 

microrotations in the shear strain definition, e.g., the 33ε  component of IB⎡ ⎤⎣ ⎦  in Eq. (4.19).  Therefore, the 

element matrices are integrated with a 3-point Gaussian quadrature formula appropriate for triangular 

domains [147]. 

 

4.2.3 Constitutive Update 

 This section covers the algorithmic treatment for integrating the constitutive equations presented 

in Chapter 3 for both the single and multicriterion theories.  Within the context of the displacement-based 

implicit FE method, the integration procedure is strain/deformation driven.  That is to say the role of the 

constitutive update is to determine the stress and updated material state at the end of the time step based on 

the known equilibrium solution from the previous time step and the current approximation to the 

displacement field, i.e., given the strain increment, ΔΕ, and the previous equilibrium state defined by the 
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set, { }p, ,
t

Σ Ε ζ , determine the updated state expressed by { }p, ,
τ

Σ Ε ζ  where the left superscripts denote 

the total time at the end of the previous equilibrium solution, t , and current step, τ , respectively.  The 

generic elements in the previously introduced sets are meant to represent all relevant stress, Σ , plastic 

strain, pΕ , and internal state variable, ζ , measures for the continuum and constitutive model under 

consideration.  The constitutive integration algorithm presented is a rate-tangent modulus scheme which is 

an explicit method.  The rate-tangent method has been implemented in all versions of the UEL used in this 

research; however, it will be advantageous to move to a return-mapping algorithm for increased stability 

and computational efficiency when solving large scale problems. 

 

Rate-Tangent Integration Scheme 

 In the rate-tangent method, all variables except for the plastic increments are integrated via the 

forward Euler method, and the plastic increments are determined by solving a set of algebraic equations 

derived from forward-gradient expansions of the flow rules.  The rate-tangent theory applied to the 

classical theory of crystal plasticity is given by Peirce et al. [148], and it has also been adapted to the 

second gradient theory of Shu and Fleck [27].  Subsequent extensions to handle the micropolar constitutive 

models are covered in the following subsections.  The symbol “ Δ ” is used to denote an increment of a 

given variable, x ,  such that tx x xτΔ = −  where xτ  and t x  are the values of the variable at the end 

and the beginning of a time increment, respectively.  Although several variations of the constitutive models 

have been proposed in Chapter 3, the update procedure is only developed for one version of the multi- and 

single criterion models.  The relevant relations for any given strength model can be derived in procedurally 

similar fashion. 

 

Multicriterion Flow Rule 

The rate-tangent method is developed for the constitutive model referred to as “Strength Model 

Version 2” (see Section 3.4.2) in this section.  This particular strength model features a threshold stress for 

slip that depends on both SSD and GND densities and a curvature threshold stress that depends on the 

GND density.  The incremental constitutive relations for this model are given as 
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 tτ = + Δε ε ε  (4.41) 

 tτ = + Δκ κ κ  (4.42) 

 p pt tτ α α
α

λ= + Δ∑ Nε ε  (4.43) 

 p pt tτ α α
α

λ⊥ ⊥= + Δ∑ Nκ κ  (4.44) 

 
1 1

2t t t
S S c Sa y

b K
τ α α αβ β α α

β
λ

⎛ ⎞⎟⎜= + − ⎟Δ⎜ ⎟⎜ ⎟⎝ ⎠∑� � � �  (4.45) 

 ( ) ( )sgn sgnt t t
G G G

bL

α
τ α α α α

α

λ
π⊥

⊥ ,⊥
⊥

Δ
= −� � �  (4.46) 

 

( ) ( )

1 1
2

2

sgn sgn

t t t
c St

t t
G

c h
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 ( )p:τ τ τ= −σ ε εC  (4.49) 

 ( )p:τ τ τ= −m κ κD  (4.50) 

 

The plastic increments are determined from the generalized trapezoid rule as 

 ( )1 ttα α τ αλ θ λ θ λ⎡ ⎤Δ = Δ − +⎢ ⎥⎣ ⎦
� �  (4.51) 

 ( )1 ttα α τ αλ θ λ θ λ⊥ ⊥ ⊥
⎡ ⎤Δ = Δ − +⎢ ⎥⎣ ⎦

� �  (4.52) 

where θ  is an integration parameter that is equal to one for fully implicit backward Euler integration and 

equal to zero for forward Euler explicit integration.  The plastic parameters at the end of the time increment 

are approximated by forward-gradient expansions about the state at time t  as 
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where eff
ατ  is the resolved shear stress, απ⊥  is the resolved couple stress projected on the edge GND dyad, 

and the derivative terms in Eqs. (4.53)-(4.54) are equal to  
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t t tt

t t t t t t
eff eff eff
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r r r

α α αα

α α α α α α

λ λ λγ

τ τ τ

∂ ∂
= = −
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� � ��
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 (4.56) 

The resolved force and couple stress increments are expressed as 

 ( ): : :t t t
eff

β βα α α
β

τ λΔ = Δ = Δ − Δ∑Z Zσ ε Ν^  (4.57) 

 ( ): : :t t tα α α β β
β

π λ⊥ ⊥ ⊥ ⊥ ⊥Δ = Δ = Δ − Δ∑Y m Y NκD  (4.58) 

and the increments in the slip and curvature thresholds are given in Eqs. (4.47) and (4.48) as 
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Insertion of Eqs. (4.53)-(4.60) into the generalized trapezoid rules given in Eqs. (4.51)-(4.52) leads to a 

coupled set of algebraic equations for the plastic increments, i.e., 
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The tensors and matrices t α′Z , 1
tH αβ′ , 2

tH αβ′ , t α
⊥′Y , and 3

tH αβ′  are defined as 
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The terms containing the plastic increments in Eqs. (4.61) and (4.62) are gathered on the left hand side 

enabling them to be expressed in a more convenient matrix notation as 

 1 2 1M M Rαβ β αβ β α
β β

λ λ⊥Δ + Δ =∑ ∑  (4.68) 

 3 2M Rαβ β α
β

λ⊥Δ =∑  (4.69) 

where the matrices, 1M αβ , 2M αβ , and 3M αβ , and vectors, 1Rα  and 2Rα , are given by the expressions 

 ( )1 1: :t t tM t Hαβ αβ α β αβδ θ ′ ′= + Δ −Z NC  (4.70) 
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 2 2
tM t Hαβ αβθ ′= − Δ  (4.71) 

 ( )3 3: :t t tM t Hαβ αβ α β αβδ θ ⊥ ⊥′ ′= + Δ −Y ND  (4.72) 

 1 : :t tR t tα α αλ θ ′= Δ + Δ ΔZ ε� C  (4.73) 

 2 : :t tR t tα α αλ θ⊥ ⊥′= Δ + Δ ΔY κ� D  (4.74) 

Inspection of Eq. (4.69) reveals that the plastic rotation increments do not depend on the plastic slip 

increments; therefore, the plastic rotation increments may be determined first and can then be inserted into 

Eq. (4.68) to solve for the plastic slip increments. 

 In the most general case, an elastoplastic micropolar constitutive model has four sets of tangent 

moduli that need to be determined.  However, this is not the case for the multicriterion constitutive model 

presently being considered as the plastic rotational increments do not depend on the plastic slip increments, 

and is the reason that Eq. (4.69) could be solved directly.  The four sets of tangent moduli are defined as 

 ,
∂Δ ∂Δ

= =
∂Δ ∂Δ

σ σ
ε κ

C B  (4.75) 

 ,
∂Δ ∂Δ

= =
∂Δ ∂Δ
m m
κ ε

D A  (4.76) 

For the current model, = 0A .  The algorithmic moduli appropriate for the current constitutive model are 

determined by solving for the plastic increments using Eqs. (4.68) and (4.69), i.e., 

 1
3 2M Rα αβ β

β
λ −

⊥Δ = ∑  (4.77) 

 ( )11
1 1 2 3 2M R M M Rβχ χδα αβ β δ

β χ δ
λ −−Δ = −∑ ∑ ∑  (4.78) 

These expressions are substituted into the incremental stress-strain relations, i.e., 

 ( ): t α α
α

λΔ = Δ − Δ∑σ ε ΝC  (4.79) 

 ( ): t α α
α

λ⊥ ⊥Δ = Δ − Δ∑m NκD  (4.80) 
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which after differentiation yield the following 

 1
1: :alg t tt Mα αβ β

α β
θ − ′= − Δ ∑ ∑ N ZC C C C  (4.81) 

 11
1 2 3: :alg t tt M M Mβχ χδα αβ δ

α β χ δ
θ −−

⊥′= Δ ∑ ∑ ∑ ∑ N YB C D  (4.82) 

 1
3: :alg t tMα αβ β

α β
−

⊥ ⊥′= − ∑ ∑ N YD D D D  (4.83) 

 

Single Criterion Flow Rule 

 The rate-tangent integration method is developed for the single criterion model with an effective 

stress exponent of p = 2.  The incremental relations for the single criterion model are Eqs. (4.41)-(4.44) 

and (4.49)-(4.50), which are supplemented with the ISV incremental equations appropriate for this model, 

i.e., 
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The plastic increment is determined by the generalized trapezoid rule and plastic parameter at the end of the 

time increment is given by the appropriate forward-gradient expansion, i.e., 

 ( )1 ttα α τ αλ θ λ θ λ⎡ ⎤Δ = Δ − +⎢ ⎥⎣ ⎦
� �  (4.87) 
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For 2p = , the effective slip system flow stress has the following form for plane problems 
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Therefore, the derivatives of viscoplastic relation for the plastic parameter are given as 
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The incremental force and couple stress relations are the same as in Eqs. (4.57) and (4.58) while the 

threshold stress increment is given in Eq. (4.86) as 
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 (4.91) 

Combining Eqs. (4.87)-(4.91) leads to a single equation to be solved for the plastic increments, i.e.,  
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 M Rαβ β α
β

λΔ =∑  (4.93) 

where 1
tH αβ′ , M αβ  and Rα  are defined for the single criterion model as 
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 ( )1: : : :t t t t tM t Hαβ αβ α β α β αβδ θ ⊥ ⊥′ ′ ′= + Δ + −Z N Y NC D  (4.95) 

 ( ): : : :t t tR t tα α α αλ θ ⊥′ ′= Δ + Δ Δ + ΔZ Yε κ� C D  (4.96) 



 

~ 109 ~ 

The constitutive update is formally achieved as in the earlier developments by solving Eq. (4.93) for the 

plastic increments and then updating the incremental relations.  The constitutive tangent moduli for the 

single criterion model are given as 

 1: :alg t tt Mα αβ β
α β

θ − ′= − Δ ∑ ∑ N ZC C C C  (4.97) 

 1: :alg t tt Mα αβ β
α β

θ −
⊥′= − Δ ∑ ∑ N YB C D  (4.98) 

 1: :alg t tt Mα αβ β
α β

θ −
⊥ ⊥′= − Δ ∑ ∑ N YD D D D  (4.99) 

 1: :alg t a tt M αβ β
α β

θ −
⊥ ′= − Δ ∑ ∑ N ZA D C  (4.100) 

It is noted that the inherently coupled nature of plastic flow due to the use of a single yield criteria is 

reflected by the fact that all four sets of material tangent moduli are nonzero for the single criterion model.  

It is clear from the inspection of Eq. (4.95) that even in the absence of threshold stress evolution (i.e., 

1 0tH αβ′ = ), the cross-term tangent moduli, algB  and algA , are nonzero; this is not the case for a general 

multicriterion model. 

 

4.3 User Element Subroutine Benchmark and Validation 

 

The finite element formulation and implementation are verified by considering three initial-

boundary value problems: (i) simple shearing of a constrained semi-infinite layer, (ii) the stress 

concentration at a circular notch, and (iii) strain-localization in a strain-softening bar.  The first two 

problems are examined for an isotropic linearly elastic micropolar continuum and have well-known 

analytical solutions, which are used to demonstrate the basic performance of the element and to establish 

convergence rates for the kinematic solution variables as a function of FE discretization size.  The third 

problem does not have an analytical solution and is intended to demonstrate that the FE solutions for the 

regularized micropolar continuum display convergent behavior with mesh refinement, as distinct from 

pathological localization of solutions obtained using classical local continuum theory. 
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4.3.1 Simple Shear of a Constrained Semi-Infinite Layer 

 The initial-boundary value problem considered here is shown schematically in Figure 4.3.  The 

layer of material is assumed to be infinite in the direction of the applied displacement ( 1x -direction), 

thereby rendering the problem spatially 1-D with all field variables depending only on the 2x -coordinate.  

The relevant kinematic DOF are the displacement in the 1x -direction, 1 2( )u x , and the microrotation about 

the 3x -axis, 3 2( )xφ . 

 

 

 

Figure 4.3:  Geometry and boundary conditions for the constrained shear initial-boundary value 
problem. 

 

 

Under these conditions, the nonzero generalized strain and stress components are given, respectively, as 

 
12 1,2 3 21 3

32 3,2

,uε φ ε φ

κ φ

= + = −

=
 (4.101) 

u1 = u∗ 

u2 = φ  = 0 

u1 = u2 = φ  = 0 

H 

x1 

x2 

upper boundary: 

lower boundary: 
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 (4.102) 

The non-trivially satisfied equilibrium equations are given as 
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σ

σ σ
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 (4.103) 

Insertion of Eqs. (4.101) and (4.102) into (4.103) yields the following set of coupled partial differential 

equations for the for two variables, 1u  and 3φ , i.e., 
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 (4.104) 

Using the simplified notation 1u u≡  and 3φ φ≡  and using “prime” to designate differentiation with 

respect to the 2x -coordinate, Eq. (4.104) may be concisely expressed as 
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2
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 (4.105) 

where the following relationships between micropolar elastic material constants have been used 

 2
1,c

c
c

N
μ β γ

μ μ μ
+

= =
+

A  (4.106) 

The Dirichlet boundary conditions are 
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where * * /u HΓ =  is the average macroscopically applied shear strain and the solution is given as 
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2 2

* 2 2 2
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2 2

sinh sinh sinh

2 cosh 1 sinhc

x H x H

x u
H H

N H
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 (4.109) 

where the additional material length scale, 2 1 / 2 cN=A A , has been introduced.  Therefore, in addition to 

layer thickness, H , the mechanical response depends on two material parameters, 1A  and 2A  (or 

alternatively cN ).  Recall, that the parameter cN  is related to the relative rotational stiffness of the 

micropolar continuum, such that the solution to the constrained shear problem not only depends on the 

intrinsic material bending stiffness, as manifested by 1A , but also on the difference between the material 

rotations and microrotations.  Analytical solutions to this problem have been previously developed in the 

works of Diebels and Steeb [149] and Neff and Münch [150].  The solution to this initial-boundary value 

problem for a full second-gradient continuum (for the displacement field) has been derived by Luscher 

[151] and is given here for comparison as 
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2 2 2

* * * * * *
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 (4.110) 

where the tilde has been added to Eq. (4.110) to distinguish it from the previously given micropolar 

displacement field.  A comparison of the two solutions reveals that they are quite similar with the 

distinction being that the second-gradient response is dependent only on a single material length scale, i.e., 
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( )* 3 42 /a a μ= +A  where 3a  and 4a  are higher-order material constants appropriate for the second-

gradient theory with units of force.  The analogy between the micropolar material length scale, 1A , given 

in Eq. (4.106)2 and the second-gradient length scale is obvious; however, the role played by each is 

different.  The functional dependence of the second-gradient solution on *A  is replaced by 2A  (not by 1A ) 

in the micropolar solution.  Only in the case where cN =  1 would the two solutions coincide where  

* 1 / 2=A A .  However, if cN =  1 the problem becomes ill-posed due to division by zero (see  

Eq. (4.105)2), and the strongest statement that can be made is that the two solutions will approximately 

coincide when cN ≈  1. 

 Prior to comparing the FE simulation results to those obtained from the analytical solution, it is 

useful to explore the range of predicted behaviors for different sets of material parameters.  For brevity, 

only a few representative solutions are given here.  The response of a 1μm thick layer is presented for two 

values of the micropolar coupling constant, cN ∈  {0.25, 0.99}, and for each value of cN  four different 

effective layer thicknesses are considered, i.e., 1/H ∈A  {2,10,50,1000}, leading to a total of 8 different 

simulation cases.  This range of material parameters has been chosen to explore a wide range of material 

response.  Films with smaller values of the coupling parameter will allow more deviation between the 

material rotations and microrotations, and films with smaller effective film thicknesses will have a higher 

bending stiffness.  A shear modulus representative of aluminum is used, μ =  26.3 GPa, and it assumed 

without loss of generality that α β=  (see Eq. (4.105)) so that 1A  is determined by a single constitutive 

parameter.  For ease of reference throughout the remainder of this subsection the simulated cases, labeled 

1-8, are listed with their corresponding material constants in Table 4.1. 
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Table 4.1:  Test cases and the associated nonlocal material parameters for the constrained shear 
simulations for an elastic material. 

Case cN  1/H A  β  (MPa-nm2) 

1A 0.25 1000 1.315E+04 
2A 0.25 50 5.260E+06 
3A 0.25 10 1.315E+08 
4A 0.25 2 3.288E+09 
5A 0.99 1000 1.315E+04 
6A 0.99 50 5.260E+06 
7A 0.99 10 1.315E+08 
8A 0.99 2 3.288E+09 

 

 

The analytical solutions for each case are presented in Figure 4.4 in terms of the normalized response 

variables, /φ φ  and / *u uΔ , where / 2φ = −Γ  is the material rotation angle that would be predicted 

by the classical theory of elasticity and 2u u xΔ = − Γ  is the shear difference [150].  The shear difference 

is chosen as the representative response variable instead of the displacement field to more clearly highlight 

how changes in material parameters influence the displacement field. 
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(a)  (b)  

(c)  (d)  

Figure 4.4:  Analytical solutions for the normalized response variables for Cases 1-4A ( cN =  0.25) 

(a) and (b) and for Cases 5-8A ( cN =  0.99) (c) and (d). 

 

 

An examination of the normalized microrotation profiles reveals that two different trends in 

behavior are exhibited for the different values of the coupling parameter as the length scale is varied.  For 

both values of the coupling parameter considered, the microrotations for the largest effective film 

thicknesses have a negligible boundary layer and display essentially uniform microrotations throughout the 

film thickness with the magnitude of the microrotation corresponding to that which would be predicted by a 

classical continuum model.  In other words, as the effective film thickness approaches infinity (negligible 

material length scales) the result approaches that of the classical continuum.  As the material length scale is 

increased for cN = 0.25, the boundary layer increases and the magnitude of the microrotation either 
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remains approximately the same (Case 2A) or decreases (Cases 3A and 4A) with respect to the baseline 

case.  In contrast, for cN = 0.99, an increase in the material length scale coincides with increases in the 

boundary layer width and the peak magnitude of the microrotation with respect to the baseline case.  

Turning attention to the shear difference plots ( */u uΔ ), different trends are also observed with respect to 

changes in the material length parameter for the different values of the coupling parameter.  It is 

noteworthy to point out that the shear difference is an order of magnitude lower for Cases 1-4A as 

compared to Cases 5-8A, and also that for cN =  0.25 continued increases in the material length scale do 

not correspond with increases in the peak magnitude of uΔ .  In this case, the peak magnitude of the shear 

difference increases with decreases in the effective film thickness (Cases 2A and 3A) up to a certain critical 

length scale, which lies somewhere between 10 1/H≥ ≥A  2.  Case 4A, which considers the smallest 

effective film thickness, exhibits a marked decrease in the maximum shear difference as compared to Cases 

2A and 3A.  On the other hand, in Cases 5-8A ( cN =  0.99) this type of transitional behavior is not seen, at 

least not for the material length scales considered here, and a consistent increase in the shear difference is 

seen to coincide with increases in the material length scale parameter. 

 To evaluate the performance of the UEL subroutine, a select number of simulation cases are 

considered which represent a broad range of the qualitative response characteristics displayed in Figure 4.4.  

Simulation cases with large (Case 8A), moderate (Case 2A), and negligible (Case 5A) boundary layer 

widths are considered, where the boundary layer width is defined in terms of the uniformity of the 

microrotation field throughout the layer.  For example, Case 5A has a nearly uniform microrotation field 

throughout the layer except for regions near the top and bottom surfaces (see Figure 4.7(a),(b)).  This is 

representative of a very narrow boundary layer.  On the other hand, the microrotation field for Case 8A is 

parabolic attaining a maximum value at the half-layer height as shown in Figure 4.6, and represents a large 

(over the entire thickness) boundary layer.  A fourth case, denoted Case 9A, is considered where the non-

traditional elastic constants are negligible, i.e., cN =  0.001 and 1/H =A  1000.  Although plots of the 

normalized response variables are not shown for Case 9A, their qualitative features are similar to those of 

Case 8A. 
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 The FE simulation results are given in Figure 4.5-Figure 4.7, where the normalized response 

variables are plotted versus the analytical solutions for various discretization sizes.  The mesh densities are 

uniform in the 2x -direction and a single element is used in the 1x -direction with appropriate periodic 

boundary conditions applied on the displacements and microrotations on the left and right faces of the 

mesh.  The mesh densities are indicated in the figure captions such that “Mesh 20” is indicative of a mesh 

that has 20 elements through the thickness of the layer.  Visual inspection of the results shown in Figure 4.5 

and Figure 4.6 indicate that mesh densities of 50 elements are sufficient for accurately capturing the 

kinematic response for Cases 2A and 8A; however, a significantly higher mesh density of 5000 elements, 

as shown in Figure 4.7(b), still does not quite match the analytical solution for Case 5A.  A quantitative 

analysis of the convergence behavior and the observed rates of convergence for the different simulation 

cases are given in Figure 4.8 and Table 4.2, respectively, for both the microrotation and displacement 

fields.  In determining the error between the FE and analytical solutions, an error ansatz must be adopted.  

A number of different error measures could be considered as discussed in Belytschko et al. [144], but in 

this work a measure employing the 2L  norm for continuous functions is adopted.  The 2L  norm is defined 

as 

 ( ) ( )
2

1/2
2

f x f x d
Ω

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤= Ω⎨ ⎬⎣ ⎦⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∫L

 (4.111) 

where ( )f x  denotes an arbitrary continuous function and Ω  is the domain of the function.  A normalized 

error measure is then introduced as 

 
( ) ( )

( )
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ˆ
error

ˆ

a x a x

a x

−
=

L

L

 (4.112) 

where (̂ )a x  is the solution field obtained from the FE analysis and ( )a x  is the field obtained from the 

analytical solution.  The error measure is assumed to behave asymptotically with respect to mesh 

refinement such that it can be described by the general power-law form, i.e., 
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 error
p

h
C

H

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 (4.113) 

where C  is a constant, h  is the element size, H  is the layer thickness (see Figure 4.3), and p  is the 

exponent indicating the order of convergence.  Figure 4.8 shows the computed error in the FE solutions 

plotted against the relative element thickness, /h H .  Except for the displacement field in simulation Case 

9A, all of the simulation results display monotonic convergence behavior with the rate of convergence 

given in Table 4.2.  Recall that for simulation Case 9A, the non-traditional elastic constants are negligible 

and it is not surprising that there is no improvement in the displacement field approximation with mesh 

refinement.  It is noteworthy that the order of convergence for all cases, excluding Case 5A (and the 

previously mentioned displacement field for Case 9A), is approximately p ≈ 1.7-2.0 even though the 

displacement and rotation fields are bilinearly interpolated throughout the element.  As might be expected, 

the simulation case with the sharpest boundary layer transition, Case 5A, displays the worst convergence 

behavior with orders of convergence equal to 0.42 and 0.67 for the microrotation and displacement fields, 

respectively.  The large gradients in the kinematic fields for this case are the cause of the slower rate of 

convergence.  Despite the lower-order of convergence for this particular simulation case, the element 

performance is deemed to be acceptable and enables one to conclude that the basic element functions and 

algorithms are performing as intended since the analytical solution is being approached. 
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(a)  (b)  

Figure 4.5:  Comparison of the normalized response variables obtained from the analytical solution 
to FE results for different discretization sizes for Case 2A (a) normalized microrotation and (b) 
normalized shear difference. 

 

 

(a)  (b)  

Figure 4.6:  Comparison of the normalized response variables obtained from the analytical solution 
to FE results for different discretization sizes for Case 8A (a) normalized microrotation and (b) 
normalized shear difference. 
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 (a)  (b)  

(c)  

Figure 4.7:  Comparison of the normalized response variables obtained from the analytical solution 
to FE results for different discretization sizes for Case 5A (a) normalized microrotation (b) exploded 
view of normalized microrotation and (c) normalized shear difference. 

 

 

 (a)  (b)  
Figure 4.8:  Normalized error plotted against the relative element thickness for different mesh sizes 
for the (a) microrotation and (b) displacement fields. 
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Table 4.2:  Observed order of convergence, p , for the error based on the 2L  norm for the 
microrotation and displacement fields for select simulation cases. 

Case cN  1/H A  β  (MPa-nm2) 
exponent p  
φ

 
u

2A 0.25 50 5.260E+06 2.08 2.02 
5A 0.99 1000 1.315E+04 0.42 0.67 
8A 0.99 2 3.288E+09 1.72 1.73 
9A 0.001 1000 1.315E+04 2.00 0 

 

 

4.3.2 Stress Concentration at a Circular Notch 

 Given that the implementation has been validated in the solution of the constrained shear problem 

with respect to accurately capturing the microrotation and displacement fields for a range of non-traditional 

elastic constants, a second initial-boundary value problem which features gradients in the stress fields is 

simulated to further test the UEL subroutine.  The initial-boundary value problem considered is a plate with 

a circular notch subjected to remote uniaxial tension, and the analytical distribution of the principal stress 

component and the stress concentration factor are compared to FE simulation results for different mesh 

sizes.  This is a fairly standard problem used to validate and benchmark the performance of various 

micropolar FE implementations [152-156].  The analytical solution to this problem can be found in Eringen 

[134] and was originally derived by Kaloni and Ariman [157].  Consider an infinite plate with circular 

notch of radius, R , subjected to a remote tension, P , at 1x = ∞  as shown in Figure 4.9. 
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Figure 4.9:  Geometry and boundary conditions for stress concentration initial-boundary value 
problem. 

 

 

Considering a cylindrical coordinate system whose origin is located at the center of the notch, the analytical 

solution for the θθσ  component of stress is given as  

 

( ) 1 2 4
2 4 4

2
5 2 2

0 12
2 2 2

6 6
1 cos2 cos2

2

2 3 6
1 cos2

A A AP

r r r

A r r
K K

r r r

θθσ θ θ

θ

⎛ ⎞⎟⎜ ⎟= − − + − ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎡ ⎛ ⎞ ⎤⎛ ⎞ ⎛ ⎞⎟⎜⎟ ⎟⎜ ⎜⎢ ⎥⎟⎟ ⎜ ⎟− + +⎜ ⎜⎟⎟ ⎟⎜⎢ ⎥⎜ ⎜⎟⎟ ⎟⎜ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

A A
A A A

 (4.114) 

where the constants iA  have the definitions 
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Here, 1F  is defined as 
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Both the stress concentration factor, ( 0, / 2) /K r Pσ θθσ θ π= = = , and the θθσ  stress component for 

/ 2θ π=  are compared to the results of the finite element simulations for the different combinations of 

non-traditional elastic constants listed in Table 4.3.  The classical elastic constants are taken to be  

μ =  25 GPa and ν =  0.3. 

 

 

Table 4.3:  Test cases and the associated nonlocal material parameters for the stress concentration 
simulations for an elastic material. 

Case cN  1/R A  β  (MPa-mm2) 

1B 10-4 10 1.25 
2B 10-4 1 12.5 
3B 10-4 0.1 12,500 
4B 0.5 10 1.25 
5B 0.5 1 12.5 
6B 0.5 0.1 12,500 
7B 0.99 10 1.25 
8B 0.99 1 12.5 
9B 0.99 0.1 12,500 

 

 

 The FE simulation is setup as a quarter symmetry model with symmetry boundary conditions 

applied along the bottom ( 2x =  0) and left ( 1x =  0) faces of the mesh, and the remote load has been 

applied in the 2x -direction.  Since the analytical solution is derived for an infinite plate, the edge length of 

the quarter symmetry FE model is taken to be 100H R=  in order to minimize the influence of boundary 

effects on the stress fields in the near-notch region.  It is noted that the analytical solution was derived for 

remote loading in the 1x  direction; accordingly, the stress distribution and stress concentration factor along 

the plane 2x =  0 and at point ( / 2, 0)R , respectively, from the FE simulations are compared with the 

analytical solution to account for the change in loading direction.  Three different mesh densities are 

considered, as shown in Figure 4.10, with 8, 16, and 32 elements, respectively, along the perimeter of the 

notch.  Figure 4.10(a) shows the typical mapped mesh pattern used in the far-field region.  A uniform 
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displacement boundary condition is applied to the top surface of the plate such that a unit 1 MPa remote 

22σ  stress field is induced.  The boundary conditions are stated as 

 

2 1 3 1

2 2 3 2

2 1

( , 0) ( ,0) 0

(0, ) (0, ) 0

( , ) 0.14 m

u x x

u x x

u x H

φ

φ

= =

= =

= μ

 (4.117) 

where H  is the edge length of the FE model. 

 

 

(a)  

 

 (b) (c) (d) 

Figure 4.10:  Finite element discretizations used in the mesh convergence study for the stress 
concentration at a circular notch (a) typical far-field mesh (b) Mesh 8 (c) Mesh 16 and (d) Mesh 32. 
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 The stress concentration factors obtained from the FE simulations for all considered cases are 

given in Table 4.4 along with the corresponding values obtained from the analytical solution, the relative 

error, and the order of convergence.  Unlike the previous error analysis for the constrained shear problem, a 

local error measure is employed here and is defined as 

 
ˆ

error
ˆ

K K

K
σ σ

σ

−
=  (4.118) 

where K̂σ  andKσ are the FE and analytical stress concentration factors, respectively.  Inspection of the 

results shows that all simulation test cases have an error of less than 5% for the finest discretization size, 

with all but Case 7B being characterized by an error of less than 2%.  As compared to the constrained shear 

FE solution, the order of convergence for the stress concentration factor is generally lower and ranges from 

p = 1.08-1.41.  Interestingly, slightly higher convergence rates are observed for Cases 7-9B which employ 

large values of the micropolar coupling parameter ( cN =  0.99) as compared to the other cases, and is 

counter to the trend observed in the constrained shear problem.  It is also noted that, as in the constrained 

shear problem, the simulation cases associated with the largest values of the micropolar coupling parameter 

display larger errors with respect to the analytical solution regardless of the mesh density, and the largest 

error observed in the solution of both initial-boundary value problems corresponds to cases with large 

micropolar coupling constants and small elastic material length scales, i.e., Cases 5A and 7B.  The 

connection between material descriptions using a large value of cN  and the associated increase in error can 

be rationalized in terms of the significant increase in the element stiffness that results from using very large 

values of the micropolar coupling parameter.  To further demonstrate the element performance, the 22σ  

component of the stress tensor is plotted versus position from the notch for select simulation cases as 

shown in Figure 4.11.  These plots reveal that for Case 7B (the simulation with the largest error in Kσ ), 

that very good agreement between the FE and analytical solutions is obtained within a few element 

spacings from the notch root, even for the coarsest mesh.  This implies that if a global error measure such 

as that introduced in Eq. (4.112) had been used to evaluate the element performance for this initial-

boundary value problem that the measured discrepancy between the two solutions would be even less.  To 
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further illustrate this point, the 22σ  contours are shown in Figure 4.12 for Case 7B, where the legend has 

been cropped to have a maximum value equal to that predicted by the analytical solution.  Figure 4.11 

demonstrates, at least for the two finest meshes, that changes in the predicted stress field in the near-notch 

region are primarily restricted to the first few rows of elements in from the notch perimeter. 

 

 

Table 4.4:  A comparison of the analytical and FE stress concentration factors for three different 
mesh densities. 

Case Analytical Mesh 8 error Mesh 16 error Mesh 32 error p

1B 3.000 2.801 0.0710 2.904 0.0331 2.953 0.0159 1.08 
2B 3.000 2.801 0.0710 2.904 0.0331 2.953 0.0159 1.08 
3B 3.000 2.801 0.0710 2.904 0.0331 2.953 0.0159 1.08 
4B 2.978 2.775 0.0732 2.881 0.0337 2.933 0.0153 1.13 
5B 2.641 2.489 0.0611 2.566 0.0292 2.605 0.0138 1.07 
6B 2.487 2.354 0.0565 2.421 0.0273 2.455 0.0130 1.06 
7B 2.975 2.366 0.2574 2.679 0.1105 2.858 0.0409 1.33 
8B 2.340 2.116 0.1059 2.239 0.0451 2.299 0.0178 1.28 
9B 1.865 1.726 0.0806 1.811 0.0299 1.844 0.0114 1.41 

 

 

 (a)  (b)  

Figure 4.11: Representative plots of 22σ  versus position along the line 2 0x =  for the different mesh 
densities: (a) Case 5B and (b) Case 7B. 
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 (a) (b) (c) 

Figure 4.12:  Contours of 22σ  in the near-notch region for Case 7B (a) Mesh 8 (b) Mesh 16 and (c) 
Mesh 32. 

 

 

4.3.3 Strain Localization in a Strain-Softening Bar 

 The previous two code validation problems have demonstrated that the element is performing as 

intended in the solution of elastic initial-boundary value problems.  In an effort to establish that the 

constitutive update is performing adequately for the full range of capabilities, an initial-boundary value 

problem utilizing an elastic-plastic constitutive description is solved. The specific problem examined is that 

of strain-softening plate subjected to a uniform axial displacement, as shown in Figure 4.13.  This sort of 

initial-boundary value problem is often used to demonstrate and establish the mesh regularization 

capabilities of nonlocal continuum theories, as compared to the classical local continuum theory which 

yields non-convergent solutions to such problems due to the lack of material length scale in the governing 

equations.  Similar strain localization studies using micropolar continuum theories have been performed by 

de Borst [158], de Borst and Sluys [159], and Sharbati and Naghdabadi [155].  Convergence of both the 

global response given in terms of the force-displacement curve and the local response given in terms of the 

peak principal plastic strain component across the midsection of the plate are investigated and 

demonstrated. 
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Figure 4.13:  Geometry and boundary conditions for the strain-localization initial-boundary value 
problem. 

 

 

 The geometry and boundary conditions applied to the rectangular plate of dimensions 120 mm ×  

60 mm are given in Figure 4.13.  The left edge of the plate is constrained against displacement in the 1x -

direction and the midpoint along this edge also constrained from displacement in the 2x -direction to 

eliminate rigid body modes of deformation.  The top and bottom surfaces are traction free and a uniform 

displacement, δ , is applied to the right edge of the plate.  The formal statement of the boundary conditions 

is given as 
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The single criterion constitutive model is used in this series of simulations with the slip systems oriented 

such that a single system ( 2s ) is aligned along the 1x -axis (see Figure 4.13), and the material parameters 

are given in Table 4.5 and have been taken in accord with those used in Sharbati and Naghdabadi [155].  

To this end, one should not pay too much attention to the actual values of the constants in relation to their 

physical meaning since the model advanced by them is phenomenological and the simulation is intended, 

H 

δ 
W/2 

W 

weakened element 

x1 

x2 2s  

1s  



 

~ 129 ~ 

as in the present case, merely to serve as a computational exercise to demonstrate the numerical 

performance of the FE implementation.  The strain-softening constitutive behavior is prescribed be setting 

the dislocation segment length constant, K , to zero while specifying the capture radius, cy , to a positive 

value.  This is equivalent to specifying a linear softening modulus.  A weakened element with a lower 

initial slip threshold strength ( 0S =�  2.85×1010 mm-2), as shown in Figure 4.13, is used to trigger the strain 

localization. 
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Table 4.5:  Material parameters used in strain localization simulations for an elastic-viscopolastic 
material. 

Parameter Symbol Magnitude Unit 
Young’s modulus E 4 GPa 
Poisson’s ratio ν 0.49 - 
Coupling parameter cN  0.75 - 

Elastic length scale eA  4 mm 

Plastic length scale L⊥ 4 mm 

Reference threshold stress 0r  0 MPa 

Threshold stress strength coefficient 1c  0.5 - 
Burgers vector magnitude b 0.3 nm 
Dislocation interaction coefficients hαβ αβδ  - 

Initial SSD density 0S�  3.02×1010 mm-2 

Dislocation immobilization coefficients aαβ αβδ  - 
Dislocation segment length constant K 0 - 
Dislocation capture radius cy  0.75 nm 

Reference slip rate 0γ�  10-3 s-1 
Drag stress g 8 MPa 
Inverse rate sensitivity exponent  m 20 - 

 

 

 The FE simulations are performed for a number of mesh discretizations; the meshes are comprised 

of uniform distributions of the Q4 element, and the mesh density is indicated in the results by the number 

of elements in the 1x -direction.  For example, “Mesh 400” indicates that 400 elements have been used 

along the width of the plate.  Prior to delving into the results obtained using the micropolar model of crystal 

plasticity, simulation results acquired using a classical local crystal plasticity constitutive description are 

examined.  Figure 4.14 shows the force-deflection response predicted by the classical theory for four 

different mesh densities.  While the initial post-yield behavior is the same for each discretization, a mesh-

dependent deviation in the simulated response curves is seen to occur around an applied displacement of 

approximately δ ≈  3.3 mm.  The general trends observed in the force-deflection responses as a function 

mesh density are such that the coarser meshes begin deviate at lower applied displacements and display 

smaller load drops, whereas simulations with finer discretizations maintain the linear softening behavior for 

a longer duration and exhibit much larger load drops.  For example, the force-displacement curve for Mesh 

20 begins to depart from the linear behavior around δ ≈  3.3 mm and the load drop between this point and 
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the final applied displacement is approximately 20fΔ ≈  900 N, whereas for Mesh 280 there is an abrupt 

load drop at δ ≈  4 mm equal to 280fΔ ≈  3600 N.  Since there is no regularizing length scale in the local 

constitutive formulation, the element size dictates the localization behavior such that as the mesh is refined, 

the peak intensity of the plastic strains within the localization zone increases and the localization band 

decreases in thickness, as shown in Figure 4.15 and Figure 4.16, respectively.  Figure 4.16 contains contour 

plots of p
11ε  for the four discretizations considered where the contour legend has been cropped in 

accordance with the micropolar results that are as of yet to be presented.  The main points to take away 

from this Figure are the decreasing thickness in the localization band with continued mesh refinement, and 

also that for the two finest discretizations secondary and tertiary localization bands are seen to form, which 

further underscores that the simulations are not converging to a unique solution.  This claim is also 

supported by the plots shown in Figure 4.15 where it is seen that the maximum value of p
11ε  along the 

midsection of the plate increases in divergent manner with decreases in element size.  These are well-

known limitations of classical continuum theories that arise in the numerical solution of initial-boundary 

value problems exhibiting localization behavior. 
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Figure 4.14:  Force-displacement curves for the strain-softening plate obtained using the classical 
local crystal plasticity model for different FE discretizations. 

 

 

 (a)  (b)  

Figure 4.15:  (a) Plot of p
11ε  versus normalized position along the line 2 / 2x H=  for the strain-

softening plate as predicted by classical crystal plasticity for various mesh densities and (b) the peak 
value of p

11ε  along this line plotted as a function of normalized element size. 
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 (a)  (b)  

 

 (c)  (d)  

Figure 4.16:  Contours of p
11ε  for the strain-softening plate obtained using the classical crystal 

plasticity model for different FE discretizations (a) Mesh 20 (b) Mesh 40 (c) Mesh 100 and (d) Mesh 
280. 

 

 

 Turning attention to the results of the FE simulations employing the micropolar crystal plasticity 

constitutive model, it is seen in Figure 4.17 that the global response is stable and does in fact converge to a 

unique solution when the mesh density is increased.  The exploded view of the force-deflection response 

given in Figure 4.17(b) reveals some slight deviations for the coarser meshes (Mesh 20 and Mesh 100), and 

identical results for the remaining discretizations indicating that the solution has converged with respect to 

this aspect of the deformation behavior.  In Figure 4.18, the distributions of p
11ε  along the midspan of the 

plate are shown for various mesh densities, and it is in contrast to the results obtained from the classical 

theory that the micropolar model appears to be converging to a unique solution, albeit rather slowly.  
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 (a)  (b)  

Figure 4.17:  Force-displacement curves for the strain-softening plate obtained using the micropolar 
crystal plasticity model for different FE discretizations (a) normal view and (b) zoomed view. 

 

 

 

Figure 4.18:  Distributions of p
11ε  versus normalized position along the midspan ( 2 / 2x H= ) of the 

strain-softening plate obtained using the micropolar crystal plasticity model for different FE 
discretizations. 
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To determine the rate of convergence for this local aspect of the deformation response, the peak value of 

p
11ε  along the midplane of the plate for each mesh density is plotted as a function of normalized element 

size as shown in Figure 4.19(a).  These results indicate that the convergence behavior is non-monotonic 

over the entire range of discretization sizes considered, and in fact the solution is seen to decrease in 

accuracy with mesh refinement when the normalized element size is in the range of 0.017 /h W≤ ≤  

0.06.  However, below a certain critical size ( /h W =  0.012) the solutions display the expected 

monotonic convergence behavior with further decreases in element size.  Since an analytical solution is 

unavailable for this initial-boundary value problem, an estimated solution is obtained by extrapolating the 

converging series of results as shown in Figure 4.19(b).  The extrapolated maximum value is calculated to 

be p
11ε =  0.017, and the error in the FE simulations calculated based on this approximate solution are given 

in Figure 4.19(c) where a local error measure as introduced in Eq. (4.118) has been used.  The order of 

convergence for the local response has been determined to be p =  1.84, and is in agreement with the 

convergence rates obtained for the previous validation problems given in Sections 4.3.1 and 4.3.2.  

Although, it is again pointed out that this convergence rate has been determined from a limited subset of the 

available FE simulation data.  As a final demonstration of the convergent behavior of the FE solutions and 

also to contrast with the results from the classical theory given in Figure 4.16, contours of p
11ε  for various 

FE discretizations obtained using the micropolar constitutive model are given in Figure 4.20.  The contour 

plots reveal that as the mesh density is increased, unlike the FE results obtained using the classical theory, 

the width of the localization band stabilizes and no additional localization bands are formed.   
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 (a)  (b)  

(c)  

Figure 4.19:  Local response and error analysis for the strain-softening plate obtained using the 
micropolar constitutive model (a) maximum value of p

11ε  along the midspan plotted versus 

normalized element size, (b) extrapolated solution for maximum value of p
11ε  along the midspan as 

determined from converging FE results and (c) error in FE simulations calculated with respect to the 
extrapolated solution. 
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 (a)  (b)  

 (c)  (d)  

(e)  

Figure 4.20: Contours of p
11ε  for the strain-softening plate obtained using the micropolar crystal 

plasticity model for select FE discretizations:  (a) Mesh 20, (b) Mesh 100, (c) Mesh 220, (d) Mesh 320 
and (e) Mesh 400. 

 

 

4.4 Summary 

 

 This chapter has presented the development, implementation, and validation of a 2-D plane strain 

FE formulation of the micropolar single crystal plasticity theory given in Chapter 3.  The governing 

equations for both bilinear quadrilateral (Q4) and linear triangle (LT) elements have been derived and 

discussed.  A rate-tangent modulus integration scheme appropriate for the constitutive models introduced in 

Chapter 3 has been developed for both single and multicriterion flow criteria.  The element-level equations 

have been implemented in the commercial FE software Abaqus/Standard [146] as a UEL subroutine, and 

the numerical implementation has been verified through a series of benchmarks and validation procedures 
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to ensure that the element performs as intended.  The validation process has demonstrated that the element 

is functioning properly, and provides confidence in the results obtained for more complex initial-boundary 

value problems in the remainder of the research. 
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CHAPTER 5 

NUMERICAL SIMULATIONS:  SINGLE CRYSTALS 

 

 

5.1 Introduction 

 

 This chapter presents an application of the micropolar single crystal elastic-viscoplastic 

constitutive formulations given in Chapter 3 to solve several prototypical initial-boundary value problems 

that frequently appear in the generalized continuum literature.  Specifically, the problems to be considered 

are:  (i) simple shearing of constrained thin films (ii) pure bending of thin films and (iii) simple shearing of 

metal matrix composite with stiff elastic inclusions.  These particular initial-boundary value problems are 

appealing because there is a relatively large body of literature concerning their solution using both nonlocal 

continuum theories as well as discrete dislocation dynamics.  As such, these related works give insight into 

the characteristics of the expected material response and provide valuable comparison points for the 

developed models.  The chapter begins with an exploratory exercise in which various aspects of the 

different multi- and single criterion flow theories are compared and contrasted via the solution to the 

constrained shear problem.  The intention is to gain an understanding not only of how results obtained from 

the two frameworks differ, but also to develop intuition as to how the non-classical material constants both 

qualitatively and quantitatively affect different aspects of the deformation behavior.  With this knowledge 

in hand, the micropolar models are then calibrated to discrete dislocation dynamics simulations of 

equivalent initial-boundary value problems. 

 

5.2 Constitutive Model Parametric Study and Comparison 

 

 The initial-boundary value problem of simple shearing of a constrained thin film, as considered in 

the numerical validation study in Chapter 4 for a purely elastic material, is studied here for an elastic-

viscoplastic single crystal.  The goal of this study is to systematically explore the influence of the non-
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classical material parameters on the deformation behavior of the single crystal.  The geometry and 

boundary conditions are identical to those considered in Chapter 4, and are given again in Figure 5.1 for 

ease of reference.  The slip systems, denoted by the slip directions 1s  and 2s  in the figure, are separated by 

60° and the crystal orientation is defined by the angle ϑ  which is the angle between the 1x  axis and 1s .  

The film has thickness, H , in the 2x -direction and is infinite in the 1x -direction.  The bottom surface is 

rigidly clamped against displacements and microrotations, and a uniform displacement is applied at the top 

surface while the vertical displacement and microrotation are constrained.  In each simulation, the films are 

subjected to an average macroscopic shear strain, * /u HΓ = =  0.03, which is applied at a rate of  

Γ =�  10-3 s-1 and then unloaded back to zero strain at the same rate. 

 

 

 

Figure 5.1:  Geometry and boundary conditions for the constrained shear initial-boundary value 
problem. 
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The boundary conditions are stated as 

 1 1 2 1 1( , 0, ) ( , 0, ) ( , 0, ) 0u x t u x t x tφ= = =  (5.1) 

 1 1 2 1 1( , , ) ( ) , ( , , ) ( , , ) 0u x H t t H u x H t x H tφ= Γ = =  (5.2) 

 
1 2 1 2 2 2 2 22 2 2 2

2 22 2

( , , ) ( , , ) , ( , , ) ( , , )

( , , ) ( , , )

W W W W

W W

u x t u x t u x t u x t

x t x tφ φ

+ = − + = −

+ = −

 (5.3) 

Due to the periodicity of the problem, a simple FE discretization is employed with 200 elements in the 2x -

direction and a single element in the 1x -direction with appropriate boundary conditions applied to the 1x+  

and 1x−  faces (see Eq. (5.3)).  The periodic boundary conditions are implemented in Abaqus via linear 

multi-point constraints. 

 Previous works that have studied this simple, yet illustrative initial-boundary value problem with 

generalized crystal plasticity models are those due to Shu et al. [160], Bittencourt et al. [23], Svendsen and 

Reese [161], Arsenlis et al. [78], Evers et al. [14], Sedlacek and Werner [79], Yefimov and Van der 

Giessen [162] Kuroda and Tvergaard [66], Roy and Acharya [95], Gurtin et al. [18], Hunter and Koslowski 

[163], and Limkumnerd and Van der Giessen [90].  The majority of these previous contributions have 

focused on comparing the nonlocal crystal plasticity simulation results to those obtained from the discrete 

dislocation dynamics simulations of Shu et al. [160], and such a comparison with respect to the micropolar 

models is presented in Section 5.3.1.  Herein, the focus is on performing simulations to elucidate the 

various sources of material strengthening within the micropolar theory, their impact on the resulting 

deformation behavior, and to highlight the differences between the single and multicriterion formulations.  

Connections between the micropolar and alternative nonlocal crystal plasticity theories are made where 

possible. 

 Reducing the 3-D inelastic constitutive equations given in Chapter 3 to the problem at hand 

eliminates all terms associated with plastic torsion and therefore GN screw dislocations. As such, several of 

the non-standard material parameters are eliminated.  As compared to an analogous classical crystal 

plasticity formulation, the number of additional model parameters needed to define the viscoplastic 
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response for the multi- and single criterion theories developed in Chapter 3 for the various strength models 

is summarized in Table 5.1, where the slip system superscripts have been suppressed for notational 

convenience and hαβ
⊥  is the GND interaction matrix.  It is clear from Table 5.1 that several additional 

material parameters are required to define the inelastic response for the multi- as compared to the single 

criterion model.  To simplify matters, the following assumptions are made regarding the additional material 

parameters for the multicriterion model:  0 0ϕ γ⊥ =� � , g g⊥ = , 7 1c c= , and h hαβ αβ
⊥ = , and n m⊥ = .  

The remaining plastic curvature flow rule parameters, L⊥  and 0r⊥ , are given on a case-by-case basis for 

each set of simulations.  To facilitate comparisons with prior related studies [18, 23, 90, 160, 162], material 

parameters similar to those used by Shu et al. [160] have been employed.  The set of fixed parameters is 

listed in Table 5.2 and the rest are explicitly stated during the discussion of the results, and it is noted that 

the interaction matrices, hαβ , hαβ
⊥ , and aαβ , are given by the second-order identity matrix, αβδ .  The 

majority of the simulations are performed with ϑ = 60° in accordance with the prior related works; 

however, this section concludes with a brief look at how the mechanical response changes for different 

crystal orientations.  For ease of reference, the key features of the various multicriterion strength models 

are briefly recalled here (see Chapter 3 for full detail). 

 

Multicriterion Version 1 (MCV1) 

◊ Slip threshold is governed by a generalized Taylor relation, 0 1 ( )S Gr r c b hα α αβ α α
β

μ= + +∑ � � . 

◊ Curvature threshold is constant, 0r rα α
⊥ ⊥= . 

 

Multicriterion Version 2 (MCV2) 

◊ Slip threshold is goverened by a generalized Taylor relation, 0 1 ( )S Gr r c b hα α αβ α α
β

μ= + +∑ � � . 

◊ Curvature threshold is governed by the GND density, 7 ,Gr r c b h βα α αβ
β

μ⊥ ⊥0 ⊥ ⊥= + ∑ � . 
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Multicriterion Version 3 (MCV3) 

◊ Slip threshold is goverened by a generalized Taylor relation, 0 1 Sr r c b hα α αβ α
β

μ= + ∑ � . 

◊ Curvature threshold is governed by the GND density, 7 ,Gr r c b h βα α αβ
β

μ⊥ ⊥0 ⊥ ⊥= + ∑ � . 

 

 

Table 5.1:  Nonlocal inelastic constitutive parameters that are required for the various micropolar 
models in addition to those that are needed to define an analogous local model. 

Model Nonlocal Inelastic Constitutive Parameters 
Multicriterion Version 1 L⊥ , 0ϕ⊥� , 0r⊥ , g⊥ , n⊥  

Multicriterion Versions 2 & 3 L⊥ , 0ϕ⊥� , 0r⊥ , 7c , hαβ
⊥ , g⊥ , n⊥  

Single Criterion Model L⊥  

 

 

Table 5.2:  Fixed material parameters used in the parametric study of the constrained shear 
simulations for an elastic-viscoplastic single crystal. 

Parameter Symbol Magnitude Unit 
Shear modulus μ 26.3 GPa 
Poisson’s ratio ν 0.33 - 
Coupling parameter cN  0.95 - 

Reference slip threshold stress 0r  0 MPa 

Threshold stress strength coefficients 1 7,c c  0.5 - 
Burgers vector magnitude b 0.3 nm 
Dislocation interaction coefficients ,h hαβ αβ

⊥  αβδ  - 

Initial SSD density 0S�  10.5 μm-2 
Dislocation immobilization coefficients aαβ αβδ  - 

Dislocation capture radius cy  0 nm 

Reference slip and curvature rates 0 0,γ ϕ⊥� �  10-3 s-1 

Slip and curvature drag stresses ,g g⊥  5 MPa 

Inverse rate sensitivity exponents ,m n⊥  20 - 
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 The following series of simulations are performed in a sequential and selective manner to 

individually highlight the different sources of material strengthening.  In order to restrict the nonlinear 

stress-strain response to that caused by the influence of GNDs, the dynamic recovery term in the SSD 

evolution equation has been suppressed ( cy = 0).  The results are quantified by the average shear stress-

strain response as well as the local distributions of shear strain ( 1,2u ) and GND density as functions of 

normalized film depth.  The stress-strain response is characterized by the normalized surface traction, 

0/ τΤ , (calculated from the nodal reaction forces) where 
0

τ =  50 MPa is the nucleation source strength 

used in the discrete dislocation simulations [160] and the applied shear strain, Γ .  From this point forward, 

the notational substitution pL L⊥≡  is made, and all single criterion results shown are for an effective 

stress exponent p = 2. 

 

Linear Gradient-Induced Kinematic Hardening { e ≥A  0, K =  0} 

 Figure 5.2 shows the average shear stress-strain response and shear strain distributions as 

functions of normalized film depth, respectively, for a material where only linear kinematic hardening is 

active and the film thickness is taken to be H = 1 μm.  This strengthening description is achieved by 

suppressing slip threshold hardening and plastic-torsion curvature effects.  The plastic torsion-curvature is 

suppressed within the multicriterion framework by specifying an infinite initial plastic curvature threshold (

0r⊥ =   ∞), and alternatively within the single criterion framework by specifying a large value of /p eL A , 

i.e., /p eL =A  1000.  The multi- and single criterion models yield the same deformation behavior under 

these conditions, and all of the material hardening is due to the elastic curvature effects entering via the 

back stress term.  Increasing the elastic length scale leads to an increased hardening rate with the tangent 

modulus scaling linearly with 2
eA .  When e =A  0 the stress-strain response is elastic-perfectly plastic since 

this choice suppresses the curvature-induced back stress.  The elastic-plastic transition in both forward and 

reverse loading is quite sharp for all of the cases considered, and is due to the absence of slip threshold 

hardening.  As shown in Figure 5.2(b), when e >A  0, the strain profiles at the maximum applied strain are 
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parabolic and although the average stress-strain responses vary quite substantially, there is little discernable 

difference in their shapes and peak magnitudes.  Upon unloading, all of the shear strain distributions for 

non-zero elastic length scales are tightly centered about zero, which is to be contrasted with the case of 

e =A 0, where locally negative shear strains on the order of 7.5 ×  10-3 are present in the near boundary 

regions.  This type of kinematic hardening is analogous to the so-called “energetic-gradient hardening” of 

the Gurtin-type models; however, it is noted that in the absence of such hardening ( e =A 0) the micropolar 

theory does not predict a uniform distribution of strain as does theirs, as shown in Gurtin et al. [18] (see 

Figure 5.3).  The simulation results presented from the work of Gurtin et al. [18] were carried out using 

different sets of material parameters, so attention is focused on the trends in behavior as opposed the actual 

magnitudes of the response variables. 

 

(a)  (b)  

Figure 5.2:  (a) Average stress-strain response and (b) shear strain distributions at Γ =  0.03 and 
after unloading for different values of the elastic length scale.  Slip threshold hardening and plastic 
curvature are suppressed. 
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(a)  (b)  

Figure 5.3:  (a) Average shear stress-strain curves and (b) plastic shear strain distribution at  
Γ =  0.02 with “energetic-gradient” hardening, but not “dissipative-gradient” strengthening or slip 
resistance hardening as reported by Gurtin et al. [18]. 

 

 

Linear Slip Threshold Hardening { e =A  0, K ≥  0} 

 Figure 5.4 shows the average shear stress-strain response and shear strain distributions as a 

function of normalized film depth, respectively, for a material with only linear slip threshold hardening 

active.  This hardening description is achieved by suppressing the elastic length scale effects ( e =A 0) and 

the plastic curvature evolution.  As in the case of linear kinematic hardening, the multi- and single criterion 

models give the same deformation behavior under these conditions, and the rate of linear hardening is 

quantified by the parameter, 1 / 2A c Kμ= .  Distinct from the stress-strain response for the linear 

kinematic hardening material, the elastic-plastic transition upon reverse yielding for a linear slip threshold 

hardening material is more gradual and becomes more pronounced with increases in the hardening rate.  

This difference in behavior is due to the differential yielding of the film upon reverse loading, and was 

previously pointed out by Kuroda and Tvergaard [13] but from the perspective of slip gradient-based 

models of crystal plasticity.  Figure 5.4(b) shows that the strain profiles become more blunted and the 

boundary layer width decreases with increases in the hardening rate.  The narrowing of the boundary layer 

is also apparent from inspection of the profiles at zero applied strain where the “jets” of locally negative 

strains become more compressed as the rate of hardening increases.  As noted by Kuroda and Tvergaard 

[13], the decrease of the boundary layer width with increasing hardening rates is the result of a more 
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uniform distribution of effective film strength.  The imposition of the microhard boundary conditions leads 

to the boundary regions being significantly more resistant to deformation than the bulk (as evidenced by the 

shear strain distributions), but as the slip threshold hardening rate is increased, the disparity between the 

bulk and boundary layer region diminishes leading to more uniform plastic flow.  Similar trends are 

observed within the Gurtin-type framework [23] for changes in the slip threshold hardening (see Figure 

5.5). 

 To this point, the two sources of linear material hardening within the micropolar framework have 

been demonstrated.  As with any type of constitutive model featuring combined isotropic and kinematic 

hardening, information concerning other aspects of the deformation behavior in addition to the 

unidirectional loading response is needed to properly calibrate the model.  For example, consider the stress-

strain curves in Figure 5.6(a) which are identical under forward loading.  The material constants have been 

specified for two different scenarios - one in which kinematic hardening dominates ( / eH =A  50; 

0
/A τ =  2.5) and the other where slip threshold hardening ( / eH =A  200; 

0
/A τ =  8) is dominant.  

This illustrative example underscores the importance of considering multiple aspects of the deformation 

fields, including unloading behavior, when determining the material parameters for the micropolar and 

other types of generalized crystal plasticity theories. 

 

 

(a) (b)  

Figure 5.4:  (a) Average shear stress-strain response and (b) shear strain distributions at Γ =  0.03 
and after unloading for different linear slip threshold hardening coefficients.  Elastic length scale 
hardening and plastic curvature are suppressed. 
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Figure 5.5:  Shear strain distributions at Γ =  0.0218 for various values of linear slip resistance 
hardening, 0 / refH τ , as reported by Bittencourt et al. [23]. 

 

 

(a) (b)  

Figure 5.6:  (a)  Average shear stress-strain response and (b) shear strain distributions at Γ =  0.03 
and after unloading for two combinations of material properties that give identical stress-strain 
responses up to the point of reverse yielding.  Plastic curvature is suppressed. 
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parameters, although in the case of the multicriterion model the additional viscoplastic torsion-curvature 

parameters will also have an influence, especially the torsion-curvature threshold stresses.  The nonlinear 

kinematic hardening response is controlled by two main material parameters:  the effective film thickness,

/ eH A , and the ratio of plastic to elastic length scale, /p eL A .  The magnitude of the elastic length scale,

eA , dictates the initial kinematic hardening modulus, and the ratio /p eL A  determines the transient 

response.  The multi- and single criterion models behave differently when plastic torsion-curvature is 

activated; this is due to the fundamental difference in which they are formulated.  Namely, the 

multicriterion model employs separate kinetic equations for slip and plastic torsion-curvature, whereas the 

single criterion model is defined in terms of single kinetic equation.  To illustrate the differences between 

the two models and to highlight the influence of the controlling material parameters, two sets of simulations 

are considered.  In the first set, a fixed value of /p eL =A 5 is considered for different relative film 

thicknesses, and the second examines a material with fixed relative film thickness, / eH =A 20, for 

different ratios of the plastic to elastic length scale.  Slip and curvature threshold hardening is suppressed in 

both sets of simulations.  This constitutive description is achieved within the multicriterion framework by 

using strength model version 3 and by setting 2c = 0. 

 The stress-strain response for the first set of simulations is shown in Figure 5.7(a) for both the 

multi-(black) and single (red) criterion models for three different values of the elastic length scale.  Since 

there is no distinction between the threshold for plastic slip and torsion-curvature in the single criterion 

model, the plastic curvature threshold stress for the multicriterion model has been chosen such that plastic 

curvature initiates simultaneously with slip to make the comparison between the two models meaningful.  

As such, different plastic curvature thresholds are used for each elastic length scale considered and are 

given as 0r⊥ =  0, 2.25, and 2.9 MPa, respectively, for / eH =A  1000, 20, and 10.  The stress-strain 

curves show that the hardening response saturates more quickly for the multi- as compared to the single 

criterion model, and that the differences between the two become more pronounced for larger elastic length 

scales.  This type of hardening is similar to, although not strictly analogous to, the “dissipative-gradient 

strengthening” in the model of Gurtin et al. [18] in that it results in increases in the (offset) yield strength 
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for larger values of the elastic length scale.  The distinction between the two strengthening effects is that 

there is a change in the initial offset yield strength that arises due to the elastic length scale kinematic 

hardening in the micropolar model, whereas in the model of Gurtin et al. [18], as shown in Figure 5.8, there 

is a change in the proportional limit. 

 Further differences between the two model results are seen in the shear strain and GND density 

distributions, as shown in Figure 5.7 (b) and (c), respectively.  The strain profiles for the multicriterion 

model are nearly identical for the two length scales shown and are characterized by largely uniform strain 

distributions with a narrow boundary layer on the order of approximately 0.08H .  On the other hand, the 

strain profiles predicted by the single criterion model have a parabolic shape with a boundary layer on the 

order of 0.02H .  The maximum local shear strain is observed to decrease with increases in the elastic 

length scale for both models, but this effect is more pronounced for the single criterion model results.  It is 

rather surprising to see such uniform shear strain profiles predicted by the multicriterion model for a 

constitutive description that does not include slip threshold hardening.  Given the results shown in Figure 

5.2 and Figure 5.4, it was anticipated that the shear strain profiles would have a parabolic shape.  Further 

investigation of the shear strain profiles as a function of the applied deformation obtained using the 

multicriterion model reveal that they do have a parabolic shape up until an applied macroscopic strain of 

Γ = 0.01, at which point they begin to blunt and transition into the shape shown in Figure 5.4(b).  This 

behavior could be rationalized in some sense as a deterioration of the elastic length scale effects, as 

evidenced by the saturation of the stress-strain curve; however, this does not explain why a similar trend is 

not observed for the results of the single criterion model.  The GND distributions, shown in Figure 5.4(c), 

are not markedly different for either choice of elastic length scale or model type.  The key distinction 

between the GND density distributions for the multi- as compared to the single criterion model are the 

aforementioned differences in boundary layer width, as well as the bilinear variation of the GND density 

between the two boundary layers that is displayed for the single criterion model.  In contrast, there is a 

region of zero GND density connecting the two boundary layers for the multicriterion model. 

 The stress-strain responses for the second set of simulations are shown for the single and 

multicriterion models in Figure 5.9(a) and (b), respectively for a fixed elastic length scale and three values 

of /p eL A .  As in the previous simulations, the plastic curvature threshold stress has been specified such 
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that plastic curvature initiates simultaneously with slip.  In Figure 5.9, the stress-strain responses for the 

three selected values of /p eL A  are plotted along with the curve for linear gradient-induced kinematic 

hardening for comparison purposes.  Increasing the plastic length scale leads to a higher saturation stress, 

and also to slower developing transients which increase noticeably in duration for the single criterion 

model.  On the other hand, the transition from the initial hardening rate to the saturation stress level is 

rather abrupt in the responses obtained from the multicriterion model.  The shear strain and GND 

distributions for these simulations are not shown for the sake of brevity as the individual variations for 

increases in pL  for each class of model are rather moderate.  The general trends predicted by the single and 

multicriterion models for these distributions are qualitatively similar to those shown in Figure 5.7(b) and 

(c), respectively. 
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(a) (b)  

(c)  

Figure 5.7:  (a) Average shear stress-strain response (b) shear strain distributions at Γ =  0.03 and 
after unloading and (c) GND density distribution for different elastic length scales with a fixed value 
of /p eL =A  5.  Slip and curvature threshold hardening is suppressed. 
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Figure 5.8:  Average shear stress-strain response for the constrained shear problem at Γ = 0.02 
predicted by a Gurtin type model of generalized single crystal plasticity for different values of 
dissipative-gradient strengthening, /l h ≥ 0, but no energetic-gradient hardening or slip resistance 
hardening as reported in [18]. 

 

 

(a) (b)  

Figure 5.9:  Average shear stress-strain response predicted by the (a) single and (b) multicriterion 
models for different values of /p eL A  for a fixed elastic length scale, / eH =A  20.  Slip and 
curvature threshold hardening is suppressed. 
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All Hardening Components Active { e =A 20 nm, pL = 100 nm, K = 50, 0r⊥ = 2} 

 Previously, the various material strengthening mechanisms have been isolated and examined with 

respect to their influence on the deformation behavior of the constrained thin film.  The following set of 

simulations explores the full model capabilities for the single criterion model and the three versions of 

multicriterion model presented in Chapter 3.  In the earlier studied carried out using the multicriterion 

model, the initial plastic curvature threshold was changed on a case-by-case basis to ensure that plastic 

curvature and slip initiated simultaneously; however, in these simulations a fixed value is used, 0r⊥ = 2 

MPa.  This value has been chosen such that the activation of plastic curvature and slip coincides for the 

smallest effective film thickness, / eH =A 20, and this means that slip will precede plastic curvature for 

the thicker films.  In comparing the models, attention is focused on the stress-strain response and the local 

distributions of shear strain, SSD density, and GND density.  The constitutive model used for each set of 

results is indicated in the lower right hand corner of the plots, e.g., single criterion (SC), muli-criterion 

strength model version 1 (MCV1), etc.  

 The stress-strain curves for the various models are shown in Figure 5.10, and it is seen that model 

MCV1 displays the most pronounced size-dependence while the SC model exhibits the least.  The most 

interesting stress-strain responses are obtained for the MCV1 model (see Figure 5.10(b)) and they are 

characterized by an extraordinary amount of slip threshold hardening that arises because of the slip 

threshold dependence on the GND density and the absence of curvature threshold hardening which leads to 

much higher GND densities as compared to the other models.  The stress-strain curves for the MCV1 

model display a noticeable concavity around an applied macroscopic strain of 0.003-0.006 and exhibit a 

softening behavior during reversed loading in the post-yield regime.  This behavior is atypical as compared 

to that of the other constitutive models, and is be due to material instabilities caused by the lack of 

curvature threshold hardening.  As shown in Figure 5.10(b) and (c), respectively, the stress-strain responses 

for the MCV2 and MCV3 models are qualitatively quite similar, and the main difference between the two 

is that the MCV2 leads to stiffer material behavior due to the GND contribution to slip threshold hardening.  

This additional slip threshold hardening for the MCV2 model also leads to a much more rounded elastic-
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plastic transition as compared to the MCV3 model and is a manifestation of more pronounced differential 

yielding. 

 

 

(a) (b)  

(c)  (d)  

Figure 5.10:  Average shear stress-strain responses predicted by the (a) single and multicriterion (b) 
version 1 (c) version 2 and (d) version 3 for fixed elastic length scale, e =A  20 nm, and fixed value 

/p eL =A  5 for different film thicknesses. 
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 The shear strain profiles are shown in Figure 5.11 for the different models at the maximum applied 

macroscopic strain, Γ = 0.03.  As might be expected, the most interesting results are obtained for the 

MCV1 model which shows pointed, triangular shaped profiles for the three thinnest films.  This result is to 

be contrasted to those of the other models, which are characterized by parabolic strain profiles.  The 

peculiar result for the MCV1 model is again due to the combined effect of having the slip threshold stress 

depend on the GND density without including plastic curvature hardening which would otherwise retard 

the generation of GNDs.  Comparing the strain fields from the MCV1 (Figure 5.11(b)) and the MCV2 

(Figure 5.11(c) models, it is seen that, although the strain profiles for the MCV2 model are slightly more 

pointed than those for the SC and MCV3 models, the evolution into the triangular shape has been prevented 

by including curvature threshold hardening into the constitutive description.  The shear strain profiles for 

the SC and MCV3 models are practically identical, and do not exhibit any unexpected or noteworthy 

features. 

 Attention is now turned to the dislocation density distributions shown in Figure 5.12 (SSD) and 

Figure 5.13 (GND) for the various models.  Unlike the shear strain distributions, the dislocation density 

distributions have distinct features and trends for each model considered.  In what follows, the discussion 

will neglect the results for the thickest film, / eH =A 500, since all of the models are equivalent for 

diminishing scale effects.  The SSD distributions for the SC model shown in Figure 5.12(a) have the shape 

of the capital Greek letter sigma, and this shape, rather than a parabolic profile, is a result of S��  being 

defined in terms of the equivalent slip system deformation rate in the SC model.  For thinner films, the 

maximum value of the SSD density occurs at the boundary, whereas for thicker films it occurs in the 

central region.  Excluding the differences that are observed in the near boundary regions that are caused by 

the additional accumulation of SSDs due to plastic curvature, the SSD density profiles do not vary 

appreciably with changes in film thickness.  Much like the strain profiles, the SSD density distributions for 

the MCV1 model are triangular in shape but contain pronounced dimples centered about the midline of the 

film as shown in Figure 5.12(b).  These dimples are due to diminished SSD storage in the central region of 

the film because this region is GND density-free as shown in Figure 5.13(b), and in contrast to the SC 

model the SSD density profiles for the MCV1 model away from the boundaries is strong function of film 

thickness with thinner films being characterized by higher maximum values of SSD density (at the edge of 
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the dimples).  Additionally, the maximum SSD densities for any given film thickness are 1.5-2 times higher 

for the MCV1 model as compared to the other models.  In contrast to the other models, the morphology of 

the SSD density distributions predicted by the MCV2 model varies as a function of film thickness.  As the 

effective film thickness, / eH A , is decreased from 50 to 35 the SSD density distribution transitions from a 

parabolic to a blunted shape, and the profile for the thinnest film is bimodal with off-centered twin peaks 

separated by a dimpled center region that is similar to but not as pronounced as that observed for the MCV1 

model.  The SSD density distributions obtained using the MCV3 model are parabolic in shape and do not 

strongly depend on the film thickness as shown Figure 5.12(d).  A comparison of the SSD and GND 

density distributions for a given film thickness reveals that the maximum GND densities are 1-2 orders of 

magnitude higher than the SSD densities for all constitutive models, and it is also seen that the peak GND 

densities for the SC and MCV1 models are approximately an order of magnitude higher than those obtained 

from the MCV2 and MCV3 models. 

 The GND density distributions predicted by all models except for MCV1 display the same general 

trend:  the maximum values occur at the boundary due microhard boundary condition, and then transition to 

zero GND density at the central region of the film.  The nature of this transition is model dependent.  In the 

case of the SC model (see Figure 5.13(a)), there is a steep gradient in GND density in the near boundary 

region (≤ 0.1H ) which transitions to a zone characterized by milder GND density gradients that connects 

the boundary layer to the GND density-free zone at the midsection of the film.  On the other hand, the 

GND density profiles for the MCV1 (see Figure 5.13(b)) model exhibit a boundary layer region also 

characterized by strong GND density gradients, but then maintain a nearly constant, albeit oscillatory, value 

of GND density between the boundary layer and midsection of the film.  As discussed with regard to the 

earlier results, this is due to the lack of plastic curvature hardening which leads to these abrupt transitions 

and oscillatory behavior.  The GND density profiles for the MCV2 (Figure 5.13(c)) and MCV3 (Figure 

5.13(d)) models are similar in morphology to those of the SC model.  The profiles for the MCV2 model are 

characterized by stronger transitional gradients between the boundary layer and GND density-free zone and 

slightly lower peak GND densities as compared to those for the MCV1 model which feature more gradual 

gradients and have parabolic shape. 
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 (a)  (b)  

(c)  (d)  

Figure 5.11:  Shear strain distributions at Γ =  0.03 predicted by the (a) single and multicriterion (b) 
version 1 (c) version 2 and (d) version 3 for fixed elastic length scale, e =A  20 nm, and fixed ratio 

/p eL =A  5 for different film thicknesses. 
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 (a)  (b)  

(c)  (d)  

Figure 5.12:  SSD density distributions at Γ =  0.03 predicted by the (a) single and multicriterion (b) 
version 1 (c) version 2 and (d) version 3 for fixed elastic length scale, e =A  20 nm, and fixed ratio 

/p eL =A  5 for different film thicknesses. 
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(a)  (b)  

(c)  (d)  

Figure 5.13:  GND density distributions at Γ =  0.03 predicted by the (a) single and multicriterion 
(b) version 1 (c) version 2 and (d) version 3 for fixed elastic length scale, e =A  20 nm, and fixed ratio 

/p eL =A  5 for different film thicknesses. 
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 To conclude this section, the dependence of the mechanical response on crystal orientation is 

investigated using the SC model and the same material parameters as in the previous study.  In related 

works that give solutions to the constrained shear problem [14, 18, 23, 90, 160, 162], the orientation 

dependence of the mechanical response is largely neglected.  Typically, attention is focused solely on the 

60° orientation because this is the configuration for which discrete dislocation dynamics results are readily 

available.  These simulations are intended to demonstrate that:  (i) for a given film thickness the stress-

strain curves for different crystal orientations have different characteristic features and (ii) the magnitude of 

the size-dependent behavior is a function of the crystal orientation. 

 The shear stress-strain curves for a 400 nm thick film are shown below in Figure 5.14 for five 

different slip system orientations (see Figure 5.1) spanning the range from symmetrically aligned about the 

1x -axis ( ϑ = -30°) to symmetrically aligned about the 2x -axis ( ϑ = 60°), and the corresponding shear 

strain, SSD and GND density distributions are given in Figure 5.15.  In addition to the variations in initial 

yield strength which are due to having more favorably aligned slip systems with higher Schmid factors for 

certain orientations, it is seen that the shapes of the stress-strain curves also vary with orientation.  For 

example, for ϑ =  -30° and 15° the elastic-plastic transition is abrupt indicating that there is not a large 

component of gradient-induced kinematic hardening for these orientations.  This is further confirmed 

through inspection of the GND density distributions for these orientations shown in Figure 5.15(c) which 

are much smaller in magnitude than for the 37.5° and 60° orientations.  For these orientations, a strong 

nonlinearity is observed after initial yield due to gradient-induced back stresses.  A somewhat unexpected 

result is observed for the ϑ = -7.5° orientation, where the stress-strain curve shows some mild nonlinearity 

just after initial yield, yet the GND density is negligible and this is out of character with what would be 

anticipated in light of such behavior.  At first, it was unclear as to what caused this transitional region since 

the current mechanistic understanding of the model could not be used to explain the relationship between 

the distributions of the local deformation fields and the stress-strain response for this orientation.  

Recognizing that the shear strain profile is distinctly different for this orientation as compared to the others, 

there was a motivation to look more in-depth at the deformation fields which revealed that for this 

orientation the film is deforming predominantly via single slip.  This explains the observed stress-strain 

behavior as single slip is a type of constrained deformation mode which leads to an apparent strengthening 
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effect due to the incompatibility of the slip system orientation with respect to the direction of the applied 

displacement. 

 

 

 

Figure 5.14:  Average shear stress-strain responses predicted by the SC model for different crystal 
orientations for a 400 nm thick film. 

 

 

 To demonstrate that the magnitude of the mechanical size effect is a function of crystal 

orientation, the stress-strain curves for three different film thicknesses with non-negligible material length 

scales have been plotted in Figure 5.16 for the five previously considered orientations.  It is clear from the 

figure that orientations ϑ =  15°, 37.5°, and 60° have more pronounced size effects than the other 

orientations.  This is not unexpected since, as shown in Figure 5.15(c), there are higher GND densities for 

these orientations for a given film thickness.  The fact that the mechanical size effect is dependent on the 

crystal orientation is not unexpected since the strength of the gradients in the deformation fields obviously 

varies with crystal orientation.  This limited set of simulations investigating the interrelationship between 

crystal orientation and gradient-dependent deformation is not intended to explore the full range of 

ramifications for all of the constitutive models; rather, it is intended to set the stage for subsequent 
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discussions that arise later in the work regarding the orientation dependence of certain inelastic constitutive 

parameters related to the defect substructure evolution and by proxy the mechanical response. 

 

 

(a)  

 (b)  (c)  

Figure 5.15:  (a) Shear strain (b) SSD density and (c) GND density distributions for a 400 nm thick 
film at Γ = 0.03 for various crystal orientations. 

 

u1,2

0.00 0.01 0.02 0.03 0.04 0.05

x 2
 /

 H

0.0

0.2

0.4

0.6

0.8

1.0

ϑ = -30°

ϑ = -7.5°

ϑ = 15°

ϑ = 37.5°

ϑ = 60°

�S (μm-2)

20 30 40 50 60 70

x 2
 /

 H

0.0

0.2

0.4

0.6

0.8

1.0

ϑ = -30°

ϑ = -7.5°

ϑ = 15°

ϑ = 37.5°

ϑ = 60°

�G (μm-2)

0 1000 2000 3000 4000 5000

x 2
 /

 H

0.0

0.2

0.4

0.6

0.8

1.0

ϑ = -30°

ϑ = -7.5°

ϑ = 15°

ϑ = 37.5°

ϑ = 60°



 

~ 164 ~ 

 (a)  (b)  

 (c)  (d)  

(e)  

Figure 5.16:  Average shear stress-strain response as predicted by the single criterion model for 
different film thicknesses (a) ϑ =  -30° (b) ϑ =  -7.5° (c) ϑ =  15° (d) ϑ =  37.5° and (e) ϑ =  60°. 
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5.3 Comparison to Discrete Dislocation Dynamics Simulations 

 

 The remainder of this chapter presents the solutions to three initial-boundary value problems that 

have been obtained using the micropolar single crystal plasticity models and discrete dislocation dynamics.  

The three initial boundary value problems are:  (i) the previously examined constrained shearing of a thin 

layer, (ii) thin films subjected to pure bending, and (iii) simple shearing of a metal matrix composite.  The 

discrete dislocation simulation results have been taken from the literature and are based on the Van der 

Giessen and Needleman [57] model, as reviewed in Chapter 2.  The pertinent references for the discrete 

dislocation results are given in the appropriate subsections. 

 

5.3.1 Simple Shear of Constrained Thin Films 

 The geometry and boundary conditions for the constrained shear initial-boundary value problem 

have been shown in Figure 5.1 and outlined in Section 5.2 and are not repeated here.  A mesh density of 

200 uniformly sized elements have been chosen for the discretization of the strip in the 2x -direction.  This 

density has been chosen as a balance between an effective resolution of the deformation fields and the 

computational cost, as a large number of simulations have been run to calibrate and tune the model to the 

discrete dislocation results.  As has been shown in Section 4.3.3, the mesh required to obtain a converged 

solution in terms of local extrema in field variables can be computationally prohibitive for certain boundary 

value problems.  The discrete dislocation results shown in the following figures are from the work of Shu et 

al. [160] and have been extracted using the DataThief III software [164].  The micropolar models are 

calibrated to the discrete dislocation simulations for a 1 μm thick film since this is the only height for 

which all of the relevant deformation fields are available.  For this film thickness, the macroscopic stress-

strain response, shear strain profiles at different levels of applied strain, and the GND density profiles are 

known, whereas only the stress-strain response is given for other film thicknesses.  It is noted that as 

demonstrated in Section 5.2 and also in the subsequent results, knowledge of only the stress-strain behavior 

is insufficient for obtaining an unambiguous calibration of the micropolar models.  Nevertheless, the 

material parameters determined from best-fits to the discrete dislocation data for H = 1 μm will be used to 
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simulate the mechanical response of films of varying thickness to assess scale-dependence of the flow 

stress and strain-hardening rate. 

 The discrete dislocation simulations are carried out for a material that is initially dislocation-free 

and contains a random spatial distribution of dislocation sources which have varying dislocation source 

strengths.  The dislocation source strengths are assumed to have a Gaussian distribution with a mean 

nucleation strength, 0τ , equal to 50 MPa with a standard deviation of 10 MPa.  For a given source, the 

strength is determined by randomly sampling this distribution and as a result the initial yield strengths 

observed in the discrete dislocation simulations are going to have some statistical variance related to the 

number and position of the weaker sources.  In the related study of Yefimov and Van der Giessen [162] as 

much as 20% variation in the initial yield strengths have been observed for different realizations of source 

distributions for a fixed film thickness.  The fact that the source strengths are statistically distributed also 

leads to the serrated nature of the stress-strain response which reflects the load drops that occur when 

different sources are activated.  The dislocation distribution that emerges in the discrete dislocation 

simulations is characterized by intense boundary layers of like-signed dislocations that pile up at the rigid 

boundaries as shown in Figure 5.17.  The central region of the film is relatively free of dislocations and the 

top and bottom boundary layers are densely populated with negatively and positively signed dislocations, 

respectively.  It is often argued that this type of slip constraint is similar to the situation that arises at grain 

boundaries in polycrystals.  Shu et al. [160] have reported that the boundary layers are roughly 0.2H  thick 

and that they increase in size with deformation.  The boundary layer thickening corresponds with the 

lengthening of the dislocation pile-ups emanating from the impenetrable boundaries. 
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Figure 5.17:  Dislocation distribution at Γ = 0.015 for a 1 μm thick film from a discrete dislocation 
dynamics simulation [162].  Positive dislocations are denoted by “+” and negative ones by “-“. 

 

 

 The procedural logic used to fit the micropolar models to the discrete dislocation simulation 

results is now briefly described.  The initial yield point was chosen, as in Shu et al. [160], to coincide with 

the back-extrapolated flow stress that was determined from a linear best fit of the post-yield stress-strain 

curve of the discrete dislocation data.  Given a fixed initial yield point, approximate upper bounds can be 

established for eA  and K  by considering in succession material strengthening due solely to linear gradient-

induced kinematic hardening and linear slip threshold hardening.  For example, given a target stress-strain 

curve the value the maximum value of eA  can be determined by assuming that all of the material hardening 

is due to the gradient-induced back stresses, whereas the maximum value of K  is determined by assuming 

that all of the material hardening is due to isotropic slip threshold hardening.  In reality the material 

strengthening for the constrained shear initial-boundary value problem will have both isotropic and 

kinematic hardening components.  As discussed in Section 5.2, either the unloading behavior or the shape 

of the strain distributions can be used to determine the relative proportions of each hardening mode.  Since 

unloading data is unavailable, the strain-profiles are achieve this goal by recalling that blunted profiles are 

associated with more prevalent slip threshold hardening whereas parabolic profiles indicate the gradient-

induced kinematic hardening is more dominant.  Finally, the plastic length scale is determined by fitting the 



 

~ 168 ~ 

GND density distributions.  It has previously been demonstrated that the ratio of the plastic to elastic length 

scales influences the nonlinear stress strain behavior, but it also dictates the maximum values of the GND 

density fields.  For a fixed value of /p eL A , the peak GND density at the rigid boundary will remain 

approximately the same as eA  is varied. 

 The calibrated material parameters are listed in Table 5.3 and have been specified in accordance 

with the discrete dislocation simulations performed by Shu et al. [160].  In accordance with this previous 

work and also the related work of Bittencourt et al. [23] only linear slip threshold hardening has been 

considered ( cy = 0), and the interaction matrices only account for self-hardening, i.e., 

h h aαβ αβ αβ αβδ⊥= = = .  The initial flow strength is specified in terms of a reference slip threshold 

stress, 0r , rather than an initial SSD density, 0S� , because the material is assumed to be initially 

dislocation free in the discrete dislocation simulations.  However, to avoid null SSD density evolution a 

negligibly small but nonzero (10-6 μm-2) value of initial SSD density has been specified for each slip 

system.  The curvature viscoplastic flow parameters for the multicriterion models, i.e., the reference 

curvature rate, strength coefficient, threshold stress, drag stress, and inverse rate sensitivity exponent are 

taken to be equal to their plastic slip counterparts.  For each constitutive model considered, the results of 

prospective best-fits are presented for multiple values of the elastic and plastic length scales to demonstrate 

how the results are affected by slight changes in the material length scale parameters in the vicinity of the 

optimum choice. 
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Table 5.3:  Fixed material parameters for the constrained shear simulations for an elastic-
viscoplastic single crystal. 

Parameter Symbol Magnitude Unit 
Shear modulus μ 26.3 GPa 
Poisson’s ratio ν 0.33 - 
Coupling parameter cN  0.95 - 

Reference slip threshold stress 0r  12.78 MPa 

Slip threshold stress strength coefficient 1c  0.5 - 
Burgers vector magnitude b 0.25 nm 
Dislocation interaction coefficients hαβ αβδ  - 

Initial SSD density 0S�  10-6 μm-2 
Dislocation immobilization coefficients aαβ αβδ  - 
Dislocation segment length constant K 20 - 
Dislocation capture radius cy  0 nm 

Reference slip rate 0γ�  10-3 s-1 
Slip drag stress g 5 MPa 
Inverse rate sensitivity exponent for slip m 20 - 
Reference curvature threshold stress 0r⊥  12.78 MPa 

Curvature threshold strength coefficient 7c  0.5 - 

Dislocation interaction coefficients hαβ
⊥  αβδ  - 

Reference rotational rate 0ϕ⊥�  10-3 s-1 

Curvature drag stress g⊥  5 MPa 

Inverse rate sensitivity exponent for curvature n⊥  20 - 
 

 

Single Criterion Model (SC) 

 The stress-strain curves for four different values of the elastic length scale ranging from 5-20 nm 

(colored lines) are plotted against the discrete dislocation stress-strain curve in Figure 5.18, and judging 

solely on this response variable it could be argued that each curve represents a good approximation to the 

discrete dislocation data.  To further discern the quality of the fits, the local shear strain distributions for 

each parameter set are given in Figure 5.19 for several different levels of applied strain.  These distributions 

indicate that for e =A 5 nm that there is too much slip threshold hardening, whereas for e =A 20 nm the 

gradient-induced kinematic hardening is slightly over pronounced.  The shear strain distributions for  

e =A 10 nm and 15 nm both give quality fits to the discrete dislocation data, with the distributions for the 
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former displaying some minor blunting indicating that slip threshold hardening is still making a significant 

contribution to the total strengthening behavior. 

 

 

 

Figure 5.18:  Average stress-strain response for the calibrated single criterion model for different 
elastic length scales with /p eL ≈A 4.5 plotted against the discrete dislocation (DD) results [160].  

H =  1 μm. 

 

 

 The signed GND density distributions for each set of simulations are shown in Figure 5.20 and it 

is noted that the plastic to elastic length scale ratio determined to provide the best correlation with the 

discrete dislocation data is /p eL ≈�A 4.5.  In Figure 5.20(a), the micropolar results are plotted against the 

discrete dislocation results at Γ = 0.0068, and in Figure 5.20(b) they are plotted against the statistical 

dislocation model of Limkumnerd and Van der Giessen [90] at Γ = 0.0218.  The signed GND density 

distributions for both e =A 10 nm and 15 nm agree reasonably well with both the discrete dislocation and 

statistical dislocation model results.  The statistical dislocation model of Limkumnerd and Van der Giessen 

[90] is a type of non-work-conjugate higher-order theory discussed in Section 2.3.4 that couples the 

standard crystal plasticity mechanical boundary value problem with the dislocation transport problem.  It 

may seem odd that the micropolar model is being compared to another type of nonlocal continuum model 
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as part of a model parameter validation; however, these types of statistical crystal plasticity models are very 

similar to discrete dislocation dynamics models in that they explicitly model the transport and annihilation 

of dislocations, and it has been demonstrated that they are able to capture the dislocation substructure 

evolution exceptionally well for a wide-range of initial-boundary value problems [74, 90, 162, 165-168].  

Because of this and due to the limited amount of discrete dislocation dynamics data available, it is 

beneficial and justified to use this additional data as a model cross-check. It is emphasized that the 

micropolar models are fit to the discrete dislocations simulations and only compared to the statistical 

crystal plasticity model.  The SSD and total dislocation density distributions are plotted for the single 

criterion model in Figure 5.21(a) and (b), respectively, and it is shown that the SSDs are negligible as 

compared to the GNDs with the maximum SSD density ranging from approximately 5-9 μm-2 for the 

different values of the elastic length scale, whereas the maximum GND density is on the order of  

1000 μm-2. 
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 (a)  (b)  

 (c)  (d)  

Figure 5.19: Shear strain distributions at Γ = 0.0068, 0.0118, 0.0168, and 0.0218 for the calibrated 
single criterion model (MP) with (a) e =A 5 nm (b) e =A 10 nm (c) e =A 15 nm and (d) e =A 20 nm 

with /p eL ≈A 4.5 plotted versus discrete dislocation dynamics results [160].  H = 1 μm. 
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 (a)  (b)  

Figure 5.20: Signed GND density distributions for the calibrated single criterion model for different 
elastic length scales with /p eL ≈A 4.5 (a) at Γ = 0.0168 as compared to the discrete dislocation 
results [160] and (b) at Γ = 0.0218 as compared to the statistical dislocation model of Limkumnerd 
and Van der Giessen [90].  H = 1 μm. 

 

 

 (a)  (b)  

Figure 5.21:  (a) SSD and (b) total dislocation density distributions at Γ = 0.0168 for the calibrated 
single criterion model for different elastic length scales with /p eL ≈A 4.5.  H = 1 μm. 
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Multicriterion Model Version 1 (MCV1) 

 The stress-strain curves for various sets of length scale parameters are given in Figure 5.22 for the 

MCV1 model.  The deformation responses for three different elastic length scales, e =A 5, 10, and 15 nm, 

have been simulated and none of the simulations are able to adequately capture the relevant aspects of all 

deformation fields.  Just considering the stress-strain response and the shear strain distributions shown in 

Figure 5.22 and Figure 5.23, respectively, it seems that the simulations performed with e =A 5 nm provide 

the best correlation with the discrete dislocation data; however, the signed GND density distributions 

shown for this set of material parameters shown in Figure 5.24(a) are completely at odds with the discrete 

dislocation simulation results.  In fact, there is at least an order of magnitude difference between the signed 

GND density distributions predicted by the micropolar model for all sets of material constants considered 

and the discrete dislocation results.  For this reason, the discrete dislocation results have not been included 

in the GND density plots shown in Figure 5.24(a) as they totally obscure the results of the micropolar 

simulations.  In contrast to the last set of simulations, different values of /p eL A  have been employed for 

each elastic length scale, and that as anticipated the peak magnitude of the GND densities at the boundaries 

varies from one set of simulations to another with smaller values of /p eL A  being associated with larger 

magnitudes.  One might be inclined to think that /p eL A  should be further decreased to bring the 

micropolar model results into better agreement with the discrete dislocation results; however, doing so 

would lead to a significant increase in strain hardening similar to what is seen in Figure 5.10(b), thereby 

introducing disagreement between the micropolar and discrete dislocation stress-strain responses.  For the 

sake of completeness, the SSD and total dislocation density distributions are given in Figure 5.24(b) and 

(c), respectively.  In addition to the disagreement between the MCV1 and discrete dislocation models with 

respect to the magnitude of the GND and total dislocation density distributions, the general shapes of the 

distributions are at odds with discrete dislocation results as well (see Figure 5.20(a)).   
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Figure 5.22:  Average stress-strain response for the calibrated multicriterion model (version 1) for 
different elastic and plastic length scales plotted against the discrete dislocation (DD) results [160]. 
H = 1 μm. 

 

 

 The inability to establish a material parameter set that captures the essential features of all relevant 

deformation fields indicates that the MCV1 model is inadequate.  This does not come as a surprise as 

concerns over the model’s stability and fidelity with respect to physical reality have previously been raised 

in the parametric study performed in Section 5.2.  The recognition of these limitations is important since 

this type of model has been used rather extensively to simulate mechanical size effects [34, 37, 40, 41, 

128].  Such a model has also been advocated by the present authors [169], and in fact these revelations 

provided the impetus for pursuing multicriterion models that incorporate curvature threshold hardening. 
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 (a)  (b)  

(c)  

Figure 5.23:  Shear strain distributions at Γ = 0.0068, 0.0118, 0.0168, and 0.0218 for the calibrated 
multicriterion model (version 1) with (a) e =A 5 nm (b) e =A 10 nm and (c) e =A 15 nm plotted 
versus discrete dislocation dynamics results [160].  H = 1 μm. 
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 (a)  (b)  

(c)  

Figure 5.24:  (a) Signed GND (b) SSD and (c) total dislocation densities at Γ = 0.0168 for the 
calibrated multicriterion model (version 1) for different elastic and plastic length scales.  H = 1 μm. 

 

 

Multicriterion Model Version 2 (MCV2) 

 The stress-strain curves and local shear strain distributions from simulations using the MCV2 

model are plotted against the discrete dislocation simulation results in Figure 5.25 and Figure 5.26, 

respectively, for two sets of material length scale parameters.  Two different values of /p eL A  have been 

considered; /p eL =A 1 for e =A 5 nm and /p eL =A 4 for e =A 15 nm.  While the stress-strain curves 

obtained from the MCV2 model compare quite well with the discrete dislocation result, the shear strain 

profiles do not.  During earlier stages of the deformation ( Γ = 0.0068 and 0.0118), there is good agreement 

between the two simulation results; however, as the deformation progresses and the effects of slip threshold 
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hardening due to GNDs becomes more pronounced, the shear profiles predicted by the MCV2 model began 

to narrow and grow in intensity more rapidly that in the discrete dislocation simulation.  This behavior is 

more pronounced for the simulation with e =A 5 nm since /p eL =A 1 since, as previously discussed, a 

lower value of this ratio leads to an increase in the magnitude of the GND density field.  This fact is 

verified in Figure 5.27(a) which shows the signed GND density distributions for both simulations, and the 

maximum GND density when /p eL =A 1 is approximately 50 μm-2 and 10 μm-2 when /p eL =A 4. 

 As in the case of the MCV1 model, the MCV2 model also underpredicts the magnitude of the 

GND density field by an order of magnitude (again see Figure 5.20(a)).  In order to get a GND density field 

whose magnitude is within the range of that predicted by the discrete dislocation simulations, a ratio 

/p eL <A 1 must be used.  However, when a plastic to elastic length scale ratio of less than unity is 

employed in conjunction with the MCV2 model, there is an artificially pronounced increase in the strain 

hardening response that is similar to that displayed by the MCV1 model in Figure 5.10(b).  Furthermore, it 

has already been shown in Figure 5.26(a) that using a plastic to elastic length scale ratio of one  

( /p eL =�A 1) already leads to poor agreement between the micropolar and discrete dislocation strain 

profiles due to the GND contribution to the slip threshold stress.  Therefore, decreasing /p eL A  to increase 

the magnitude of the GND density field will have the adverse effect of introducing significant error into the 

correlation between the micropolar and discrete dislocation stress-strain curves and shear strain 

distributions.  As before with the MCV1 model, this implies that the MCV2 model cannot capture all of the 

relevant trends in the deformation fields for a single set of material parameters and is therefore inadequate. 
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Figure 5.25:  Average stress-strain response for the calibrated multicriterion model (version 2) for 
different elastic and plastic length scales plotted against the discrete dislocation results [160].  
H = 1 μm. 

 

 

 (a)  (b)  

Figure 5.26:  Shear strain distributions at Γ = 0.0068, 0.0118, 0.0168, and 0.0218 for the calibrated 
multicriterion model (version 2) with (a) e =A 5 nm and (b) e =A 15 nm plotted versus discrete 
dislocation dynamics results [160].  H = 1 μm. 
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 (a)  (b)  

(c)  

Figure 5.27:  (a) Signed GND (b) SSD and (c) total dislocation densities at Γ =  0.0168 for the 
calibrated multicriterion model (version 2) for different elastic and plastic length scales.   
H =  1 μm. 

 

 

Multicriterion Model Version 3 (MCV3) 
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with the discrete dislocation simulations and are nearly indistinguishable from one another.  Turning 

attention now to the signed GND density plots shown in Figure 5.30(a) against the discrete dislocation 

result at Γ = 0.0068 and in Figure 5.30(b) against the statistical dislocation crystal plasticity model results 

of Limkumnerd and Van der Giessen [90] at Γ = 0.0218, it is shown that the MCV3 model is in good 

qualitative and quantitative agreement with each result for both sets of material parameters.  However, the 

signed GND density predicted by the MCV3 model with e =A 20 nm more closely coincides with both the 

discrete and statistical dislocation models.  The SSD and total dislocation density distributions are given in 

Figure 5.31(a) and (b), respectively, for the MCV3 model.  The maximum SSD density at the center of the 

film for the MCV3 model with e =A 10 nm is 6.8 μm-2 as compared to 3.8 μm-2 when e =A 20 nm, and in 

both cases the SSD densities are negligible as compared to the GND densities as evidenced by the total 

dislocation density distributions shown in Figure 5.31(b). 

 

 

 

Figure 5.28:  Average stress-strain response for the calibrated multicriterion model (version 3) for 
different elastic and plastic length scales plotted against the discrete dislocation results [160].  
H = 1 μm. 
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 (a)  (b)  

Figure 5.29:  Shear strain distributions at Γ = 0.0068, 0.0118, 0.0168, and 0.0218 for the calibrated 
multicriterion model (version 3) with (a) e =A 20 nm and (b) e =A 10 nm plotted versus discrete 
dislocation dynamics results [160].  H = 1 μm. 

 

 

 (a)  (b)  

Figure 5.30:  Signed GND density distributions for the calibrated multicriterion model (version 3) for 
different elastic and plastic length scales (a) at Γ = 0.0168 as compared to the discrete dislocation 
results [160] and (b) at Γ = 0.0218 as compared to the statistical dislocation model of Limkumnerd 
and Van der Giessen [90].  H = 1 μm. 
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 (a)  (b)  

Figure 5.31: (a) SSD and (b) total dislocation densities at Γ = 0.0168 for the calibrated multicriterion 
model (version 3) for different elastic and plastic length scales.  H = 1 μm. 
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Table 5.4:  Optimum single criterion (SC) and multicriterion (MCV3) free model parameters for the 
constrained shear simulations for an elastic-viscoplastic single crystal as determined by fitting to 
discrete dislocation results for H = 1 μm. 

Parameter Symbol Magnitude Unit 
SC Model 

Elastic length scale eA  10 nm 

Plastic length scale pL  47 nm 
MCV3 Model 

Elastic length scale eA  20 nm 

Plastic length scale pL  10 nm 

 

 

 (a)  (b)  

(c)  

Figure 5.32:  Average stress-strain response for the calibrated single and multicriteiron (version 3) 
models using the optimum values of the free fitting parameters for different film thicknesses plotted 
against the discrete dislocation results [160] (a) H = 500 nm (b) H = 1 μm and (c) H = 2 μm. 
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 The SSD and GND densities are plotted for both models as a function of normalized position in 

Figure 5.33 at Γ = 0.03 for all three film thicknesses to demonstrate the size-dependence of the relative 

SSD and GND contributions.  Discrete dislocation results are not available for H = 500 nm and 2 μm.  

These plots show that GND fraction of the total dislocation density dominates regardless of film thickness, 

as the peak GND density values are approximately two orders of magnitude larger than the peak SSD 

densities.  However, as expected, as the film thickness is increased the SSD density profiles bcome more 

blunted and the boundary layer width decreases.  A comparison of Figure 5.33(a) to Figure 5.33(c), shows 

that this behavior is more pronounced for the SC model as compared to the MCV3 model since the 

maximum difference in peak SSD density is approximately 9 μm-2 for the SC model and 2.5 μm-2 for the 

MCV3 model.  The GND density profiles for the various film thicknesses, as shown in Figure 5.33(b) and 

(d) are quite similar for both models in terms of peak magnitude at the boundaries and also in terms of 

shape and boundary layer width, especially for the 1 μm and 2 μm thick films.  However, the change in the 

GND density as a function of normalized position for the 500 nm thick film is much more rapid for the SC 

model as compared to the MCV3 model; a fact that is underscored by the development of a boundary layer 

of the entire film thickness for the SC model, whereas a finite boundary layer is observed for the MCV3 

model. 
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 (a)  (b)  

 (c)  (d)  

Figure 5.33:  (a) & (c) SSD density and (b) & (d) GND densities at Γ = 0.03 for the calibrated single 
criterion (top) and multicriterion (MCV3) (bottom) models using the optimum free fitting 
parameters. 
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and Van der Giessen [162].  These studies examine both single and double slip configurations.  The 

advantage of studying the single slip configuration is that it enables the constitutive models to be evaluated 

when there are no slip system interactions.  Results are presented for the single and multicriterion (MCV3) 

models for the single slip configuration, and for the single criterion model for the double slip configuration.  

Naturally, the single slip configuration is examined first. 

 A 2-D thin film of width, W , and thickness, H , is subjected to pure bending in a state of plane 

strain as sketched in Figure 5.34.  The 1 2x x−  plane is taken as the bending plane and a coordinate system 

is attached to the midpoint of the film.  The deformation is defined through the edge rotation angle, Θ , and 

is prescribed through a linear variation of the 1x  displacement component as a function of distance from 

the neutral axis as 

 1 2 22
( , , ) ( )Wu x t t x± = ±Θ  (5.4) 

A constant macroscopic rotation rate, Θ =� 10-3 s-1, is imposed until the final rotation angle is achieved, and 

the top and bottom surfaces of the beam are prescribed to be traction-free.  As shown in Figure 5.34, a 

single slip system is oriented at an angle ϑ  with respect to the 1x -axis, and slip is constrained to occur 

within are interior to the angled black lines.  This restriction has been imposed in the discrete dislocation 

simulations in order to avoid the complication of having dislocations exit the crystal through the lateral 

faces where the displacement boundary conditions are prescribed.  For the single slip configuration, two 

different film thicknesses are considered, H = 2 and 4 μm, and the films are taken to have the same width-

to-thickness ratio, /W H = 3.  Slip system orientations of 30° and 60° are studied and will be referred to 

30ϑ  and 60ϑ  in the following.  The average macroscopic response is quantified by the bending moment,M

, work-conjugate to Θ  which is given by 

 
/2

11 2 2 22/2
( , )

H
W

H
M x x dxσ

−
= ±∫  (5.5) 

A thickness-independent measure of the macroscopic response is given by the normalized bending 

moment, / refM M , with the reference bending moment, refM , defined as 
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where nucτ =50 MPa is the mean critical nucleation stress used in the discrete dislocation simulations.  

The reference moment is that which would induce a linear stress distribution over the height of the beam 

equal to 2 / ( / 2)nucx Hτ .  Uniform finite element meshes of bilinear quadrilateral elements are used in 

each simulation with mesh densities of 66 ×  38 for 30ϑ  and 155 ×  30 for 60ϑ . 

 

 

 

Figure 5.34:  Schematic of the geometry and boundary conditions for the single slip bending 
simulations as used in Yefimov et al. [168]. 
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related to the generation of SSDs are taken to be zero.  In the present context, the slip system threshold 

stress is defined solely by 0r  which is related to the source strength in the discrete dislocation simulations, 

and should not necessarily be treated as an absolute material constant due to the statistical variations in the 

source strength and placement used in the discrete dislocation simulations.  The initial yield point in the 

discrete simulations will significantly depend on the availability of weak sources near the top and bottom 

surfaces of the film where the stresses are higher.  This indicates that the stochastic component of the initial 

yield scale-dependence in the discrete simulations may be even more pronounced in bending than for the 

constrained shear problem.  The free fitting parameters are { 0, ,er L⊥A } for the single criterion model and  

{ 0 0, , , ,er r g L⊥ ⊥ ⊥A } for the multicriterion model, and are given along with subsequent discussion of results. 

 

 

 (a)  

 (b)  

Figure 5.35:  Dislocation distributions at Θ = 0.015 for the 4 μm thick films for (a) ϑ = 30° and (b) 
ϑ = 60° as obtained from the discrete dislocation simulations [168]. 
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Table 5.5:  Fixed material parameters used in the single slip pure bending simulations for an elastic-
viscoplastic single crystal. 

Parameter Symbol Magnitude Unit 
Shear modulus μ 26.3 GPa 
Poisson’s ratio ν 0.33 - 
Coupling parameter cN  0.95 - 

Slip threshold stress strength coefficient 1c  N/A - 
Burgers vector magnitude b 0.25 nm 
Dislocation interaction coefficients hαβ N/A - 
Initial SSD density 0S�  N/A μm-2 
Dislocation immobilization coefficients aαβ N/A - 
Dislocation segment length constant K N/A - 
Dislocation capture radius cy  N/A nm 

Reference slip rate 0γ�  10-3 s-1 
Slip drag stress g 5 MPa 
Inverse rate sensitivity exponent for slip m 20 - 
Curvature threshold strength coefficient 7c  0.5 - 

Dislocation interaction coefficients 11h⊥  1 - 

Reference rotational rate 0ϕ⊥�  10-3 s-1 

Inverse rate sensitivity exponent for curvature n⊥  20 - 
 

 

Single Criterion Model (SC) 

 The calibrated normalized moment-rotation plots for both slip system orientations and thicknesses 

are plotted in Figure 5.36 for the SC model, and they are in reasonably good agreement with the discrete 

dislocation results with respect to both the orientation and scale-dependence.  The calibrated values of the 

free fitting parameters for this set of results are given in Table 5.6, and it is noted that the same values of 

reference slip threshold stress and elastic length scale have been used for both orientations.  Except for the 

2 μm thick film for 60ϑ , the SC model results are in good quantitative agreement with the initial yield 

strengths predicted by the discrete dislocation model.  According to the discrete dislocation model, the 

yield strength for the 2 μm thick film for 60ϑ  is actually lower than that of the 4 μm film, and this is due to 

the stochastic variation in the dislocation source strengths.  The inherent differences between the discrete 

and nonlocal continuum formulations forces one to calibrate the continuum model to either the initial yield 
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or a best-fit of the total response as both aspects of the deformation cannot be simultaneously captured.  

The results in Figure 5.36(a) conform to the former strategy instead of the latter. 

 

 

Table 5.6:  Calibrated SC free model parameters used in the single slip pure bending simulations for 
an elastic-viscoplastic single crystal. 

Parameter Symbol Magnitude Unit 
Reference slip threshold stress 0r  10 MPa 

Elastic length scale eA  125 nm 

Plastic length scale ( ϑ = 30°) pL  562 nm 

Plastic length scale ( ϑ = 60°) pL  250 nm 

 

 

 (a)  (b)  

Figure 5.36: Normalized moment-rotation response for the calibrated single criterion model (MP) for 
both film thicknesses plotted against the discrete dislocation dynamics results [168] for (a) ϑ =  30° 
and (b) ϑ =  60°. 
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constitutive model, but rather reflective of the way the boundary value problem is constructed with distinct 

elastic and plastic zones.  In these simulations, the films are composite elastic-plastic materials and the 

plastic zone size is much smaller for 30ϑ .  Therefore, the outer elastic regions contribute significantly to the 

substantially higher apparent hardening rates due to the increased effective film stiffness for this 

orientation.  In fact, a traditional (local) model of crystal plasticity with an elastic-perfectly plastic slip 

system level response would yield an apparent hardening rate comparable to, albeit lower than that shown 

in Figure 5.36(a).  Clearly, there is also a contribution to the differences in the apparent hardening rates for 

the two orientations that arises due to the relative misalignment of the slip direction and the direction of the 

imposed deformation, i.e., the 1x  direction.  This portion is that attributed to the orientation dependent 

GND distributions that develop.  To more clearly sort out the GND component of hardening for the 

different orientations, a set of simulations should be performed in which the total area fractions of the 

elastic and plastic zones are equal. 

 The cumulative plastic slip distributions are shown for the SC model in Figure 5.37 and Figure 

5.38 for 30ϑ  and 60ϑ , respectively, at Θ = 0.015.  In both cases the maximum values of cumulative slip 

occur at the free surface, but distinct differences in the overall slip morphologies are readily apparent.  For 

30ϑ  the region of high intensity slip is highly concentrated and extends from the free surface in a linear 

fashion and parallel to the elastic-plastic interface. In contrast, the crystal with 60ϑ  is characterized by 

smooth semi-circular lobes of high intensity slip that are more evenly distributed along the free surfaces.  

Because slip is more evenly distributed in the crystal with 60ϑ , the maximum values of cumulative slop are 

lower for this orientation as compared to 30ϑ .  For both orientations there are only minor, almost 

unperceivable, changes in the field contours with film thickness.  The localized, high intensity contour 

regions are slightly more pronounced for the thicker films in both cases with maximum values of 

cumulative slip equal to 0.037 and 0.035 for the 4 μm and 2 μm thick films, respectively, for 30ϑ  and equal 

to 0.025 and 0.024 for the 4 μm and 2 μm thick films, respectively, for 60ϑ . 
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(a)  

(b)  

Figure 5.37:  Contours of cumulative plastic slip for the calibrated single criterion model at  
Θ = 0.015 for ϑ = 30° (a) H = 2 μm and (b) H = 4 μm. 

 

 

(a)  

(b)  

Figure 5.38:  Contours of cumulative plastic slip for the calibrated single criterion model at  
Θ = 0.015 for ϑ = 60° (a) H = 2 μm and (b) H = 4 μm. 
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 The dislocation configurations predicted by the discrete dislocation simulations consist of a few 

populated slip planes in which large numbers of like-signed dislocations are arranged in long pile-up 

configurations as shown in Figure 5.35.  As previously discussed, dislocations of both signs are emitted 

from the sources, but those not required for compatibility exit through the free surfaces.  Therefore, the 

total dislocation density coincides with the GND density ( S =� 0); an observation that is consistent with 

the predictions of the statistical dislocation crystal plasticity model of Yefimov et al. [168] (henceforth 

YVG).  The dislocation density contour plot for both film thicknesses are shown in Figure 5.39 for 30ϑ  at 

an Θ = 0.015.  The 2 μm thick film has a maximum local dislocation density of 39.8 μm-2 and the 4 μm 

thick film has a maximum value of 22.6 μm-2, and both films exhibit clear dislocation-free zones along the 

neutral axis.  The thickness of the dislocation-free region is approximately 3-4 times larger for the 4 μm 

thick film.  It is also noted that the highly slipped regions for this crystal orientation, as shown in Figure 

5.37, overlap with the regions of high dislocation density as shown in Figure 5.39 even though there is no 

slip-induced SSD generation for the single slip configuration. 

 Figure 5.40 shows the contour plots of the total dislocation density distribution at Θ =  0.015 for 

the 4 μm thick film with 30ϑ  as predicted by the model of YVG and the SC model, and good qualitative 

agreement is found with respect to the morphology of the distribution.  The maximum local dislocation 

density predicted by YVG is approximately 68 μm-2, which is three times larger than the 23 μm-2 predicted 

by the SC model.  Although the peak local densities predicted by the micropolar model are substantially 

lower, it is demonstrated subsequently that the evolution of the total dislocation density computed over the 

entire film is captured quite well by the SC model as compared to the discrete dislocation results.  These 

two observations imply that the dislocation distribution is more homogeneously distributed for the 

micropolar material; a fact that is underscored in the uncropped dislocation density plot in given in Figure 

5.40(c).  In addition to the heavily dislocated triangular-shaped lobes located on either side of the neutral 

axis, there are also mild dislocation distributions spread throughout the rest of plastic zone which are not 

present in the results of the YVG model.  Figure 5.40 also shows that the YVG model develops distinct 

dislocation-free regions near the free surfaces, whereas the micropolar model does not.  In fact, the 

micropolar model yields a rather high dislocation density at the free surfaces near the elastic-plastic 
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interfaces which are generated because of the strong rotational gradients that arise due to the compliance 

mismatch.  The dislocation-free zones are seen in both the discrete dislocation and YVG nonlocal 

continuum models for this orientation, and are evidently a manifestation of an image force effect that 

naturally emerges in these theories.  In fact, the lack of the image force effect in the micropolar model 

could potentially explain the lower dislocation density values that are observed.  The image forces 

conceivably would force the dislocations contained in the outer layers of the foils towards the center of the 

film thereby increasing the maximum local density in the triangular lobe regions.  Additionally, the image 

forces would serve to decrease the thickness of the dislocation-free zone predicted by the micropolar model 

which is seen to be 4-5 times thicker than that predicted by the YVG model.  It is possible that such an 

image force effect might be achievable within the micropolar framework through an appropriately specified 

couple traction along the free surfaces; however, it is not apparent at this time as to how this would be 

accomplished. 

 

 

(a)  

(b)  

Figure 5.39:  Contours of total dislocation density for the calibrated single criterion model at  
Θ = 0.015 for ϑ = 30° (a) H = 2 μm and (b) H = 4 μm.  Dislocation density is reported in units of  
μm-2. 
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(a)  

(b)  

(c)  

Figure 5.40:  Contours of total dislocation density for ϑ = 30° at Θ =  0.015 for the 4 μm thick film 
according to the (a) statistical dislocation dynamics model (YVG) [168] and (b) and (c) for the 
calibrated single criterion model (MP).  Dislocation density is reported in units of  
μm-2. 
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and 4 μm thick films, respectively, and occurs at the free surface.  This is in contrast to the films with 30ϑ  

where the maximum value of the dislocation density occurs in the center of the subsurface high intensity 

zone (see Figure 5.40(c)).  It is also seen in Figure 5.41(a) that there is no dislocation-free zone adjacent to 

the neutral axis for the 2 μm thick film.  Whereas the cumulative slip and dislocation density contours were 

quite similar in shape and hot-spot distribution for the 30ϑ  films, the same cannot be said for the 60ϑ  films 

whose corresponding distributions are markedly dissimilar as seen by comparing Figure 5.38 and Figure 

5.41. 

 

 

(a)  

(b)   

Figure 5.41:  Contours of total dislocation density for the calibrated single criterion model at  
Θ = 0.015 for ϑ = 60° (a) H = 2 μm and (b) H = 4 μm.  Dislocation density is reported in units of 
μm-2. 

 

 

 For comparison purposes, the dislocation density contours for the 60ϑ  films are now plotted along 

with those obtained from the YVG model at Θ = 0.01 as shown in Figure 5.42.  As in the simulations with 

30ϑ , the peak local values of the distribution predicted by the micropolar model are slightly lower than 

those obtained by the YVG model.  The maximum values of dislocation density predicted by the 
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micropolar model are 50 μm-2 and 74 μm-2, respectively, for the 4 μm and 2 μm thick films.  The maximum 

local values of obtained by the YVG model are approximately 100 μm-2 for both film thicknesses, but for 

the 2 μm thick film there are several more hot spots located throughout the plastic zone as compared to the 

thicker film.  Both models predict a broadening of the dislocation distribution (along the minor axis of the 

ellipsoid) and a reduction in the thickness of the dislocation-free zone with a decrease in the film thickness.  

The fields from the YVG model display a certain amount of discreteness as evidenced by the slip bands of 

alternating intensity, whereas the micropolar model gives much smoother dislocation fields.  Unlike the 

situation for the films with 30ϑ , there does not appear to be a clearly defined dislocation-free region near 

the free surfaces predicted by the YVG model; however, the micropolar model still shows higher 

dislocation density contour levels along the free surface in comparison.  Again, this is believed to be due to 

the lack of image force effects that are present in the YVG model, and according to the previous argument 

explains the discrepancies between the maximum local values of dislocation density obtained from the two 

models. 
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(a)  

(b)   

(c)  

(d)  

Figure 5.42:  Contours of total dislocation density for ϑ = 60° at Θ = 0.01 according to the statistical 
dislocation dynamics model (YVG) [168] for the (a) 4 μm and (c) 2 μm thick films and for the 
calibrated single criterion model (MP) for the (b) 4 μm and (d) 2μm thick films.  Dislocation density 
is reported in units of μm-2. 

 

 

 It has been demonstrated in Figure 5.40 and Figure 5.42, that the SC micropolar model generally 
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the total (computed over the entire volume) dislocation density as function of the imposed deformation. 
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The evolution of the total dislocation density is plotted for the 4 μm thick film for both crystal orientations 

as a function the rotation angle in Figure 5.439(a) and as a function of the macroscopic plastic curvature, 

pΚ , in Figure 5.43(b).  As shown by Nye [70] and Ashby [11] the theoretical GND density required for 

accommodating an imposed bending angle, Θ , can be calculated from knowledge of the average 

macroscopic plastic curvature which is defined as [172] 

 p 2 M

W EI

Θ
Κ = −  (5.7) 

where the plane strain bending stiffness is 3 / 6(1 )EI Hμ ν= − .  The theoretical GND density is then 

defined as 

 
p

1
Ĝ b

Κ
=�  (5.8) 

where 1 cosb b ϑ=  is the magnitude of the 1x -component of the Burgers vector.  The macroscopic plastic 

curvatures in Figure 5.43(b) have been calculated via Eq. (5.7) and the dislocation densities have been 

computed by volume averaging the centroidal element values over the FE mesh.  It is seen in Figure 

5.43(b) that in agreement with Eq. (5.8), the dislocation density increases in an approximately linear 

fashion with respect to the plastic curvature for both sets of simulations.  Also, as expected from Eq. (5.8), 

the dislocation density at a given level of plastic curvature is higher for the 60ϑ  film.  Since the component 

of the Burgers vector along the axis of deformation is smaller for this orientation, more dislocations are 

needed to accommodate the deformation.  Different ratios of /p eL A  have been used for each orientation 

to achieve good agreement with the discrete dislocation results shown in Figure 5.43.  Recall that this ratio 

is directly related to the total dislocation density in the film with smaller values being associated with larger 

total densities.  Changing either the elastic or plastic length scale while keeping their ratio fixed does not 

alter the total dislocation density of the film; therefore, using a fixed ratio for both orientations would lead 

to a disagreement between the micropolar and discrete dislocation results for one of the crystal orientations. 
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 (a)  (b)  

Figure 5.43:  Evolution of the total dislocation density versus (a) imposed rotation angle (DD data are 
not available for ϑ = 60°) and (b) macroscopic plastic curvature predicted by the calibrated single 
criterion (MP) and discrete dislocation (DD) [168] models for the 4 μm thick film. 

 

 

Multicriterion Version 3 (MCV3) 

 The results of the calibrated multicriterion model (MCV3) are briefly presented prior to moving on 

to the study of the double slip configuration.  An abbreviated discussion is warranted because there are only 

minor differences between the results of the SC and MCV3 micropolar models, and attention is focused on 

highlighting these differences as well as demonstrating their agreement with the discrete dislocation results.  

The adjustable model parameters for the MCV3 model are given in Table 5.7, and all of the parameters 

except for the plastic lengths scale are the same for both orientations.  The initial curvature threshold and 

drag stresses have been chosen such that plastic curvature activates simultaneously with slip for the 4 μm 

thick film with 60ϑ , and such that the ratio of threshold stress to drag stress for slip and curvature are equal, 

i.e., 0 0/ /r g r g⊥ ⊥= .  Figure 5.44 shows the normalized moment-rotation responses for the MCV3 

model plotted against the discrete dislocation results and good agreement is demonstrated.  The results are 

nearly identical to those of the SC model, but there is a higher hardening rate for the 60ϑ  films for the 

MCV3 model. 
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Table 5.7:  Calibrated MCV3 free model parameters used in the single slip pure bending simulations 
for an elastic-viscoplastic single crystal. 

Parameter Symbol Magnitude Unit 
Reference slip threshold stress 0r  10 MPa 

Elastic length scale eA  125 nm 

Reference curvature threshold stress 0r⊥  1.4 MPa 

Curvature drag stress g⊥  0.7 MPa 

Plastic length scale ( ϑ = 30°) pL  150 nm 

Plastic length scale ( ϑ = 60°) pL  70 nm 

 

 

 (a)  (b)  

Figure 5.44:  Normalized moment-rotation response for the calibrated mulit-criterion (MP) model 
for both film thicknesses plotted against the discrete dislocation dynamics results [168] for (a)  
ϑ = 30° and (b) ϑ = 60°. 

 

 

 The cumulative slip fields for the MCV3 model are not shown as they are identical to those for the 

SC model shown in Figure 5.37 and Figure 5.38.  Figure 5.45 gives the total dislocation density contour 

plots for the MCV3 model for the 30ϑ  films at Θ = 0.015, and are to be compared with the analogous 

contour plots for the SC model that are given in Figure 5.39.  The dislocation density contours for the 

MCV3 model for both film thicknesses are contiguous across the neutral axis and therefore do not exhibit a 

dislocation-free zone at this level of deformation.  Although the maximum local values of dislocation 

density are similar to that predicted by the SC model, 41 μm-2 and 28.3 μm-2 for the 2 and 4 μm thick films, 
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respectively, the contour hot spots have delocalized from a narrow band along the elastic-plastic interface 

and have begun to merge as demonstrated in Figure 5.45(a) for the 2 μm thick film.  In contrast to the SC 

model, the maximum dislocation density values for the MCV3 model occur at the intersection of the 

elastic-plastic interface with the free surface.  As compared to the dislocation density contour plot from the 

YVG model for the 30ϑ  film that is shown in Figure 5.40(a), the SC model is seen to be in better 

agreement with this result. 

 

 

(a)  

(b)  

Figure 5.45:  Contours of total dislocation density for the calibrated multicriterion model at  
Θ = 0.015 for ϑ = 30° (a) H = 2 μm and (b) H = 4 μm.  Dislocation density is reported in units of 
μm-2. 

 

 

 In Figure 5.46, the dislocation density contours for the 60ϑ  films at Θ = 0.01 are shown for both 

the YVG and MCV3 models and they are seen to be in good agreement.  The maximum dislocation 

densities, which occur at the intersection of the elastic-plastic interface with the free surface, are larger than 

those predicted by the SC model and are 95.8 μm-2 for the 2 μm thick film and 59.1 μm-2 for the 4 μm thick 

film.  As was the case for the 30ϑ  films, there is a negligible or non-existent dislocation-free zone adjacent 
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to the neutral axis for the MCV3 model, and as shown in Figure 5.46 is in good agreement with the result 

from the YVG model. 

 

 

(a)  

(b)  

(c)  

(d)  

Figure 5.46:  Contours of total dislocation density for ϑ = 60° at Θ =  0.01 according to the 
statistical dislocation dynamics model (YVG) [168] for the (a) 4 μm and (c) 2 μm thick films and for 
the calibrated multicriterion (MP) model  for the (b) 4 μm and (d) 2μm thick films.  Dislocation 
density is reported in units of μm-2. 
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 Finally, the evolution of the total film dislocation density calculated by both the discrete 

dislocation and MCV3 models is plotted as function of the imposed rotation and macroscopic plastic 

curvature for the 4 μm thick film as shown in Figure 5.47.  The results from the MCV3 model are in good 

agreement with those available from the discrete dislocation simulations.  It has been demonstrated that 

both the SC and MCV3 micropolar models are able to accurately reproduce the general deformation 

behavior, in terms of both the macroscopic response and the dislocation evolution density evolution.  While 

there are subtle differences between the deformation fields predicted by the two micropolar models, there 

does not seem to be a distinct advantage of one versus the other than the fact that the single criterion model 

requires fewer model parameters and is therefore easier to calibrate.  That being said, a scenario could arise 

such that the increased flexibility of the multicriterion is necessary and/or desirable.  This type of situation 

has not been encountered this research and the single criterion model will be exclusively employed for the 

remainder of this work unless otherwise noted. 

 

 

 (a)  (b)  

Figure 5.47:  Evolution of the total dislocation density versus (a) imposed rotation angle (DD data is 
not available for ϑ = 60°) and (b) macroscopic plastic curvature predicted by the calibrated 
multicriterion (MP) and discrete dislocation (DD) [168] models for the 4 μm thick film. 

 

 

 Attention is now turned to the double slip configuration shown in Figure 5.48  As in the single slip 

case, two orientations are considered, 30ϑ  and 60ϑ  where the orientation angle is defined as before as the 
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angle between the 1x -axis and the slip direction for slip system 1.  For each orientation, the second slip 

system is symmetrically aligned with respect to the 2x -axis, and the angle between the 1x -direction and 

the slip direction for the second system is 150° for 30ϑ  and 120° for 60ϑ .  The films have been partitioned 

into distinct elastic and plastic zones as before and in analogy to the discrete dislocation and statistical 

dislocation crystal plasticity simulations performed by Yefimov and Van der Giessen [162] (henceforth 

YV).  The elastic zones are the triangular regions located at the top, bottom, left, and right ends of the film 

as shown in Figure 5.48, and each slip system is active in the diagonal strip of material parallel to the slip 

direction as also indicated in the Figure.  For slip system 1, this diagonal strip extends from the lower left 

hand corner to the upper right hand corner of the film, and for slip system 2 the diagonal strip extends from 

the upper left hand corner to the bottom right hand corner.  The plastic zone can be divided into five 

regions:  four single slip regions (two for each slip system) that are the outermost regions of the diagonal 

strips and a double slip region located at the intersection of the two diagonal strips which is indicated by the 

blue dotted lines in Figure 5.48.  The boundary conditions, analysis methods, and FE meshes are the same 

as for the single slip configuration.  Two different film thicknesses are simulated, H = 4 μm and 8 μm, 

with the ratio /W H = 3 fixed. 

 

 

 

Figure 5.48:  Schematic of the geometry and slip system configuration for the double slip bending 
simulations as used in Yefimov and Van der Giessen [162]. 
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 Distinct from the simulations performed for the single slip configuration and because of the 

potential for slip system interaction in the double slip configuration, slip system hardening due to SSD 

evolution cannot be ignored.  The interaction of dislocations on intersecting slip planes is clearly evident in 

the dislocation distributions obtained from discrete simulations and shown for both orientations in Figure 

5.49.  This presents an additional complexity as compared to the single slip configuration as the material 

parameters governing the SSD generation, annihilation, and contribution to slip threshold hardening must 

be determined in addition to the usual free parameters for the single criterion model, i.e., { 0, ,er L⊥A }.  The 

additional material parameters that must specified are: 1c , hαβ , 0S� , aαβ , K , and cy .  Most of these 

material parameters are known and/or can be specified with confidence based on typical values used in the 

literature.  Accordingly, the dislocation segment length constant, K , is taken to be the only additional 

fitting parameter.  The fixed material parameters for the double slip configuration micropolar simulations 

are listed in Table 5.8, and the calibrated free parameters are given with along with the discussion of 

results.  The dislocation interaction and immobilization coefficients are assumed to be isotropic, i.e., 

h aαβ αβ= = 1.  All simulation results for the double slip configuration have been obtained with the 

single criterion model. 
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 (a)  

 (b)  

Figure 5.49:  Dislocation distributions at Θ = 0.015 for the 4 μm thick films for (a) ϑ = 30° and (b) 
ϑ = 60° as obtained from the discrete dislocation simulations [162]. 

 

 

Table 5.8:  Fixed SC model parameters used in the double slip pure bending simulations for an 
elastic-viscoplastic single crystal. 

Parameter Symbol Magnitude Unit 
Shear modulus μ 26.3 GPa 
Poisson’s ratio ν 0.33 - 
Coupling parameter cN  0.95 - 

Threshold stress strength coefficient 1c  0.5 - 
Burgers vector magnitude b 0.25 nm 
Dislocation interaction coefficients hαβ 1.0 - 
Initial SSD density 0S�  10-6 μm-2 
Dislocation immobilization coefficients aαβ 1.0 - 

Dislocation capture radius cy  1.5 nm 

Reference slip rate 0γ�  10-3 s-1 
Drag stress g 5 MPa 
Inverse rate sensitivity exponent m 20 - 

 

 

 The calibrated normalized moment-rotation responses for both film thicknesses and both 

orientations are shown in Figure 5.50 for the micropolar and discrete dislocation models.  The calibrated 

free fitting parameters are listed in Table 5.9, and in contrast to the single slip bending simulations different 



 

~ 209 ~ 

elastic length scales have been specified for each orientation.  Different dislocation segment length 

constants, i.e., those that govern SSD production, have been used for each orientation as well.  It is noted 

that the micropolar model has been fitted to the average post-yield behavior instead of the initial yield 

point.  The response in terms of both the initial yield point and hardening rate is similar for both 

orientations unlike the single slip configuration, where the hardening rate was much higher for the 30ϑ  

films due to larger effective film thickness resulting from the dominant influence of the elastic regions.  

The scale-dependence of the macroscopic behavior is more pronounced for the 60ϑ  films as demonstrated 

in Figure 5.50(b). 

 

 

Table 5.9:  Calibrated SC free model parameters used in the double slip pure bending simulations for 
an elastic-viscoplastic single crystal. 

Parameter Symbol Magnitude Unit 
Reference slip threshold stress 0r  10 MPa 

Elastic length scale ( ϑ = 30°) eA  300 nm 

Elastic length scale ( ϑ = 60°) eA  600  
Dislocation segment length constant ( ϑ = 30°) K 160  
Dislocation segment length constant ( ϑ = 60°) K 26  
Plastic length scale ( ϑ = 30°) pL  750 nm 

Plastic length scale ( ϑ = 60°) pL  700 nm 
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 (a)  (b)  

Figure 5.50: Normalized moment-rotation response for the calibrated single criterion model (MP) for 
both film thicknesses plotted against the discrete dislocation dynamics (DD) results [162] for (a)  
ϑ = 30° and (b) ϑ = 60°. 

 

 

 Contours of the SSD density fields for the 30ϑ  films are given in Figure 5.51 as obtained from the 

micropolar model at Θ = 0.02.  The contours show maximums in the SSD density located along the free 

surfaces in the outer quadrants where single slip is taking place, and the majority of the SSD density is seen 

to be stored in these quadrants as opposed to the central region of the film where slip system interaction 

should be the strongest.  There is almost negligible scale-dependence of the SSD density distribution with 

the only noticeable difference being the slight increase in intensity of the circular nodules located at the top 

and bottom corners of the diamond-shaped double slip region for the 4 μm thick film.  The maximum SSD 

densities are 0.069 μm-2 and 0.066 μm-2 for the 4 μm and 8 μm thick films, respectively. 
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(a)  

(b)  

Figure 5.51:  Contours of SSD density for the calibrated single criterion model at Θ = 0.02 for  
ϑ = 30° (a) H = 4 μm and (b) H = 8 μm.  Dislocation density is reported in units of μm-2. 

 

 

 Figure 5.52 shows the total dislocation density contour plots for the 30ϑ  films at Θ = 0.02, and it 

is revealed that the magnitude of the total dislocation density field is approximately three orders of 

magnitude larger than that of the SSD density field indicating that the total density field is predominantly 

geometrically necessary.  The peaks in total density occur at the free surfaces near the centrally located 

elastic-plastic interfaces for both film thicknesses, and the maximum values are 57.7 μm-2 and 32.3 μm-2 for 

the 4 μm and 8 μm thick films, respectively.  In the case of the 8 mm thick film, there is dislocation-limited 

region (not dislocation-free) adjacent to the neutral axis in between the regions of higher dislocation 

density, whereas the high intensity regions have merged and become interconnected for the 4 μm thick 

film.  Recall that the dislocation density fields that develop for the single slip configuration, as shown in 

Figure 5.39, have maximum dislocation density values in the subsurface region and high intensity zones of 

dislocation density that grow parallel to and alongside the elastic-plastic interface.  On the other hand, the 

maximum dislocation density values for the double slip configuration occur at the free surfaces, as shown 

in Figure 5.52(a), and there are bands of dislocations of slightly lower intensity that grow inward and nearly 

perpendicular to the slip direction for any given quadrant. 
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(a)  

(b)  

Figure 5.52:  Contours of total dislocation density for the calibrated single criterion model at  
Θ = 0.02 for ϑ = 30° (a) H = 4 μm and (b) H = 8 μm.  Dislocation density is reported in units of 
μm-2. 

 

 

 In Figure 5.53 the total and GND density fields on slip system 1 are plotted for both the 

micropolar and YV models at Θ = 0.015 for the 4 μm thick film.  Once again, the micropolar model 

underestimates the maximum local values of both the total and GND density, and recall that this is believed 

to be due to the lack of an image force effect in the micropolar framework.  As in the single slip 

configuration, there are significant dislocation-free regions near the free surfaces in the results of YV as 

shown in Figure 5.53(a) and (c), but the micropolar model, as most clearly shown in Figure 5.53(b) yields a 

more uniform distribution of the dislocation density from the bottom to the top of the film.  Although it is 

hard to see from the figure, since the micropolar results have been plotted on the same contour scale as the 

YV results, the morphologies of the total dislocation density distributions are in good agreement as can be 

inferred from comparing the uncropped total dislocation density contour plot given in Figure 5.52(a) to that 

given for the YV model in Figure 5.53(a).  The general shape of the GND density distribution and the 

location of hot spots for the micropolar model are also found to be in general agreement with that shown in 

Figure 5.53(c).  The most notable difference between the dislocation density fields (both total and GND) 

predicted by both models is that the micropolar model does not capture the appropriate relative intensity of 
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the dislocation density bands parallel to the slip direction and located in the central, double slip zone.  This 

would be rectified through the image force effect which would serve to concentrate the dislocation density 

fields in more central regions of the film. 

 

 

(a)  

(b)  

(c)  

(d)  

Figure 5.53:  Contours of dislocation density on slip system 1 at Θ = 0.015 for the 4 μm thick film:  
(a) total dislocation density for the statistical dislocation dynamics model (YV) [162] (b) total 
dislocation density for the calibrated single criterion model (MP) (c) GND density for the statistical 
dislocation dynamics model and (d) GND dislocation density for the calibrated single criterion 
model. 
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 The micropolar model SSD density fields are plotted for the 60ϑ  films at Θ = 0.02 in Figure 5.54.  

The maximum values of the SSD density, which occur at the free surfaces and are relatively size-

independent, are 2.38 μm-2 and 2.28 μm-2 for the 4 μm and 8 μm thick films, respectively.  While the 

maximum SSD density values do not vary much with changes in film thickness, Figure 5.54 shows that the 

localized corner regions of high density in the 8 μm thick film transition into a more uniformly distributed 

high intensity band spreading across the top and bottom surfaces of the 4 μm thick film.  In contrast to the 

films with 30ϑ , there are large, pronounced SSD density-free zones located at the center of the 60ϑ  films.  

It is also noted that the magnitude of the SSD density field is larger for the 60ϑ  oriented crystals, but this is 

expected since a smaller value of K  (more SSD generation) has been used for this orientation. 

 

 

(a)  

(b)  

Figure 5.54:  Contours of SSD density for the calibrated single criterion model at Θ = 0.02 for  
ϑ = 60° (a) H = 4 μm and (b) H = 8 μm.  Dislocation density is reported in units of μm-2. 

 

 

 The total dislocation density fields for the 60ϑ  oriented films are plotted for the micropolar model 

at Θ = 0.02 in Figure 5.55, and for the YV and micropolar models Θ = 0.015 in Figure 5.56.  As 
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evidenced by the magnitude of the total dislocation density, it is again concluded that the overwhelming 

majority of the density field is geometrically necessary.  The maximum total dislocation density values 

occur at the free surfaces for both film thicknesses and are given as 53.9 μm-2 and 22.9 μm-2 for the 4 μm 

and 8 μm thick films, respectively.  The geometrical configuration of the elastic and plastic phases for the 

60ϑ  oriented crystal is such that there is no centrally located elastic zone.  Therefore, as shown in Figure 

5.54 and Figure 5.55, the dislocation density fields are continuous and smooth, whereas for the 30ϑ  

orientation the dislocation density contours have a checkered type of pattern.  As shown in Figure 5.54, 

there is a narrow dislocation-free zone adjacent to the neutral axis for the 8 μm thick film; however, no 

such region exists for the 4 μm thick film.  Figure 5.56 demonstrates that the total dislocation density field 

predicted by the micropolar model for the 60ϑ  oriented crystal is good general agreement with the YV 

model for the 4 μm thick film, although the by now usual discrepancies between the two models results are 

present.  Namely, there is no image force effect and associated dislocation stand-off distance near the free 

surfaces in the micropolar model, and therefore the maximum local values of dislocation density are 

underestimated.  Additionally, the YV model results show a slight decrease in the intensity of the 

dislocation density along the neutral axis of the film as seen in Figure 5.56(a) that is not present in the 

micropolar model results. 
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(a)  

(b)  

Figure 5.55:  Contours of total dislocation density for the calibrated single criterion model at  
Θ = 0.02 for ϑ = 60° (a) H = 4 μm and (b) H = 8 μm.  Dislocation density is reported in units of 
μm-2. 

 

 

(a)  

(b)  

Figure 5.56:  Contours of total dislocation density on both slip systems at Θ = 0.015 for the 4 μm 
thick film for (a) the statistical dislocation dynamics model (YV) [162] and (b) calibrated single 
criterion model (MP). 
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 The evolution of the total film dislocation density is plotted for both film orientations and 

thicknesses versus the macroscopic plastic curvature in Figure 5.57(a) and (b), respectively, and the total 

versus the applied rotation for the 4 μm thick film in Figure 5.57(c).  In general, the micropolar results 

compare favorably to the discrete dislocation results, but slightly underestimate the total dislocation 

densities.  The micropolar model is able to capture the change in slope of the dislocation density-plastic 

curvature plot with the change in thickness for the 30ϑ  oriented films (see Figure 5.57(a)), but not for the 

60ϑ  oriented films (see Figure 5.57(b)).  The dislocation density-plastic curvature plots obtained from the 

micropolar model for the 60ϑ  oriented films overlap, whereas the discrete dislocation curve for the 8 μm 

thick film shows an increase in slope with increasing macroscopic plastic curvature, while the slope for the 

4 μm remains essentially constant.  It is unclear as to why the micropolar model does not predict a similar 

trend for this orientation.  The evolution of the total film dislocation density as a function of the applied 

rotation angle for the 4 μm thick film according to the micropolar model and discrete dislocation model is 

given in Figure 5.57(c), and the micropolar model demonstrates excellent agreement with discrete 

dislocation result for the 30ϑ  oriented film.  No discrete dislocation data are available for the 60ϑ  oriented 

film. 
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 (a)  (b)  

(c)  

Figure 5.57:  Evolution of the total film dislocation density versus macroscopic plastic curvature as 
predicted by the calibrated single criterion (MP) and discrete dislocation (DD) [162] models (a) ϑ =
30° and (b) ϑ = 60° and (c) versus the imposed rotation angle (DD data are not available for ϑ =
60°).H = 4 μm. 

 

 

5.3.3 Simple Shear of a Metal Matrix Composite 

 This section presents a comparison of the micropolar model to discrete dislocation simulations of 

particle strengthening in metal matrix composites.  An idealized material system is considered as shown in 

Figure 5.58, and consists of an elastic-plastic matrix phase (white) with a single slip system parallel to the 

1x -direction that is reinforced by a periodic distribution of elastic particles (gray).  Due to the periodicity 

of the microstructure, a unit cell of dimensions 2 2W H×  ( 3W H= ) is modeled and the particles have 
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dimensions of 2 2f fW H× .  Two distinct particle morphologies with different aspect ratios but the same 

area fraction, fA = 0.2, are studied: 

I. Square particles where f fW H= = 0.416H . 

II. Rectangular particles where fH = 2 fW = 0.588H  

The key distinction between the two morphologies is that there is an unobstructed vein of matrix material 

that extends from one side of the unit cell to the other for Material I, whereas no such clear path exists for 

Material II (as demonstrated in Figure 5.58).  Therefore, any differences in material strengthening that are 

observed for the two materials are due to heterogeneous deformation (phase morphology) and not phase 

volume fraction effects.  In the analysis, the unit cells are subjected to simple shear through horizontal 

displacements applied to top and bottom surfaces and periodic conditions are enforced in the 1x -direction.  

This initial-boundary value problem was initially posed and analyzed via discrete dislocation dynamics by 

Cleveringa et al. [183, 184].  Subsequent works devoted to the comparison of various nonlocal crystal 

plasticity solutions to the discrete dislocation results have been carried out by Bassani et al.[185], 

Bittencourt et al. [23], and Yefimov et al. [74].  Related numerical studies of sub-micron scale crystal 

plasticity and mechanical size-effects for two-phase elastic-plastic composites have been carried out by 

Shenoy et al. [186], Needleman and Van der Giessen [187], Forest and Sedlacek [39], Schwarz et al. [188], 

Yassar et al. [189], and Taupin et al. [190].  The current analysis is carried out in accord with and to be 

compared to the discrete dislocation simulations of Yefimov et al. [74].   
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Figure 5.58:  Schematic of the geometry and slip system configuration for the metal matrix 
composition initial-boundary value problem as outlined in Yefimov et al. [74]. 

 

 

 The 2-D unit cell is deformed in plane strain simple shear which is prescribed through 

displacements applied in the 1x -direction to the top and bottom surfaces.  The unit cell is subjected to 

macroscopic shear strain of Γ = 0.01 which is applied at a rate of Γ =� 10-3 s-1 and then unloaded back to 

zero strain.  The top and bottom surfaces are restrained against vertical displacements and periodic 

conditions are applied on the lateral faces.  The boundary conditions are stated as 
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Baseline simulations are performed for Materials I and II with a unit cell half-height of H C= = 4000b , 

and additional simulations are performed for Material II with H = 0.5C  and H = 2C  to study the size-
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dependence of the mechanical response.  Results from simulations of Material I for different unit cell sizes 

are not shown because they do not elicit scale dependence due to the geometrical configuration of the 

particles.  The FE mesh consists of 106×61 bilinear quadrilateral elements, and all simulations have been 

performed with the single criterion micropolar model.  The material parameters used in the simulations are 

given in Table 5.10, and are representative of silicon carbide particles embedded in an aluminum matrix 

[184]. 

 

 

Table 5.10:  Material parameters used in the metal matrix composite simulations for an elastic-
viscoplastic single crystal matrix phase. 

Parameter Symbol Magnitude Unit 
Shear modulus μ 26.3 GPa 
Poisson’s ratio ν 0.33 - 
Coupling parameter cN  0.95 - 

Elastic length scale eA 125 nm 

Plastic length scale pL 125 nm 

Threshold stress 0r  21 MPa 

Threshold stress strength coefficients 1c  N/A - 
Burgers vector magnitude b 0.25 nm 
Dislocation interaction coefficients hαβ N/A - 

Initial SSD density 0S�  N/A μm-2 
Dislocation immobilization coefficients aαβ N/A - 
Dislocation segment length constant K N/A  
Dislocation capture radius cy  N/A nm 

Reference slip rate 0γ�  10-3 s-1 
Drag stress g 5 MPa 
Inverse rate sensitivity exponent m 20 - 

 

 

 The discrete dislocation simulations of Yefimov et al. [74] have been carried out for a matrix 

material that is initially free of dislocations and point obstacles.  Therefore, the yield strength is governed 

by the dislocation source characteristics and material strengthening is due solely to dislocation-dislocation 

and dislocation-particle interactions.  The dislocation sources are randomly distributed with a uniform 

source density and the source strengths are randomly chosen from a Gaussian distribution with mean and 
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standard deviation of 50 MPa and 10 MPa, respectively.  The average stress-strain responses predicted by 

the discrete simulations are markedly different for the two morphologies.  An essentially elastic-perfectly 

plastic response is observed for Material I, whereas Material II displays an approximately linear hardening 

rate.  These differences in behavior are due to the fact that Material I contains an unblocked matrix channel.  

Dislocations nucleated in this channel are highly mobile and able to traverse the entire unit cell, and as a 

result only a small number of dislocations are needed to accommodate the imposed deformation.  On the 

other hand, mobile dislocations in Material II are obstructed and form pileups originating at the matrix-

particle interface, and these pileups generate strong back stresses which lead to the observed material 

strengthening for this particle morphology.  The validity of this analysis is confirmed upon inspection of 

the dislocation distributions for the two particle morphologies shown in Figure 5.59 at an applied strain of 

0.6% and also the unloading behavior as shown in Figure 5.60(c).  Figure 5.59shows an extremely low 

dislocation density for Material I, and a much higher density for Material II with many dislocations located 

at the matrix-particle interfaces.  The dislocation arrangement for Material II is characterized by tilt wall 

type configurations on the lateral faces of the central particle which form to maintain compatibility between 

the matrix and the inclusion as argued by Ashby [11], and also by extended pileups which are clearly seen 

in the outermost quadrants of the unit cell.  The unloading curves offer further evidence that material 

strengthening is governed by the development of GND induced back stresses since a strong Bauschinger 

effect is observed for Material II while unloading is essentially elastic for Material I. 

 

 

 (a)  (b)  

Figure 5.59:  Dislocation density distributions at Γ = 0.006 from the discrete dislocation simulations 
[74] for (a) Material I and (b) Material II. 
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 It is noted (see Table 5.10) that guided by the analysis of the discrete dislocation results that terms 

associated with the SSD strengthening and evolution have been suppressed.  Recall that the same 

assumption has been made in the single slip configuration bending simulations presented in Section 5.3.2 

because there, as in the current case, were no short-range obstacles to slip (point obstacles or intersecting 

slip planes).  The calibrated material parameters have been determined by fitting the micropolar model to 

the discrete dislocation results with H C= .  Given that SSD density evolution is neglected, there are 

three free fitting parameters: 0r , eA , and pL .  The initial threshold stress, 0r , is determined by fitting 

stress-strain response for Material I, and the elastic and plastic length scales have been determined by 

fitting to the hardening behavior and dislocation density evolution of Material II.  The average shear stress-

strain responses from the micropolar and discrete dislocation simulations for Material I and II with 

H C=  are shown in Figure 5.60(a).  The micropolar stress-strain curves are in good agreement with the 

discrete dislocation results for both Materials I and II during forward loading; however, the Bauschinger 

effect observed for Material II during unloading is significantly underestimated by the micropolar model.

 Figure 5.60(b) shows the stress-strain curves for Material II for three different unit cell sizes as 

obtained from the micropolar model using the calibrated set of material parameters. There micropolar 

model results display a clear “smaller is stronger” trend with respect to the observed hardening slope, but in 

contrast to the discrete simulations there is no difference in the initial yield strengths among the three 

specimens considered.  The strong variation in initial yield strength seen in the discrete simulations is 

governed by the statistics of the dislocation sources, and cannot be captured in a continuum model that 

treats all (matrix) material points as equally potent sources for initiating plastic flow.  If the initial threshold 

stress is treated as an additional fitting parameter for each unit cell size, reflecting the statistical variations 

in the source strengths, then excellent agreement between the micropolar and discrete dislocation stress-

strain curves is obtained as shown in Figure 5.60(c).  The modified threshold stresses used in these 

simulations are 13 MPa and 30 MPa for H = 2C  and H = 0.5C , respectively. 
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(a)  

 (b)  (c)  

Figure 5.60:  Average stress-strain response for (a) both Material I and II with H C=  (b) Material 
II for different specimen heights with fixed initial slip threshold (c) and Material II with variable slip 
threshold. 

 

 

 The cumulative plastic slip distribution for Material I with H C=  at Γ = 0.006 as predicted by 

the micropolar model and the statistical dislocation dynamics model of Yefimov et al. [74] is shown in 

Figure 5.61.  Both models yield cumulative slip fields that are similar in morphology and magnitude, that 

are characterized by the intense localization of plasticity in the unreinforced veins of matrix material.  It is 

noted that the localized zones of slip are symmetric for the micropolar model, whereas there is an obvious 

asymmetry for the statistical dislocation dynamics model owing to the distribution of source strengths.  The 

maximum values of cumulative slip are 0.037 and 0.04 for the micropolar and YGV models, respectively. 
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 (a)  

 (b)  

Figure 5.61:  Contours of cumulative slip at Γ = 0.006 for Material I (a) calibrated single criterion 
micropolar model (MP) and (b) statistical dislocation dynamics model (YGV) [74].  H C= . 

 

 

 Contours of the total dislocation (GND) density fields are shown in Figure 5.62 for Material I at 

Γ = 0.006 for the micropolar and YGV model, and it is seen that both models predict maximum local 

values of dislocation density at the corners of the central particle.  It is noted that the maximum value of 

dislocation density is approximately 13 times higher for the YGV model as compared to the micropolar 

model, and because of this difference in magnitude the results have been plotted on separate contour scales.  

The exact nature of this discrepancy is unclear, but it could be related to the fact that there is no SSD 

production in the micropolar model.  Even though there is no SSD (or any) hardening for Material I, as 

indicated in the discrete dislocation stress-strain curve shown in Figure 5.60(a), there will still be some 

amount of statistically stored dislocations, e.g., dipolar configurations, within the matrix.  This is an aspect 

of the discrete simulations that the YGV model will inherently pickup, whereas the micropolar model will 

not (due to the a priori zero SSD assumption).  Dislocation-based continuum crystal plasticity formulations 

MP

YGV
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(either local or nonlocal) describe material strengthening through the evolution of the dislocation density, 

and in the absence of material strengthening there is rarely a “need” to track the dislocation density 

evolution.  To remedy this discrepancy, a non-null evolution of SSDs could be specified while ignoring 

their contribution to strengthening, but this is typically not done because this is in fact how the effect of 

SSDs on material response is quantified.  Continuum theories which treat the dislocation dynamics sub-

problem explicitly, such as the YGV model, do not suffer from these same limitations because of the way 

the SSD and GND density evolution is naturally coupled through the dislocation conservation equations. 

 

 

 (a)  

 (b)  

Figure 5.62:  Contours of dislocation density at Γ = 0.006 for Material I (a) calibrated single 
criterion micropolar model (MP) and (b) statistical dislocation dynamics model (YGV) [74].   
H C= . 
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 The cumulative slip contours for Material II at Γ = 0.006 are shown in Figure 5.63 for the 

micropolar and YGV models, and there is good agreement between the morphologies of the two 

distributions.  The morphologies are characterized by highly localized slip bands that form along the top 

and bottom faces of the particles, but do not extend across the full width of the unit cell due the obstruction 

provided by the particle overlap.  It is significant that the cumulative slip distribution for the micropolar 

model is qualitatively similar to that of the YGV model, as it has been pointed out [74] that the nonlocal 

theories of Bassani et al. [185] and Bittencourt et al. [23] do not capture the appropriate trends.  This is 

demonstrated in Figure 5.64 which shows cumulative slip contours at Γ = 0.0096 for the Gurtin-type 

model [23] for (a) a local crystal plasticity model and for (b) the nonlocal model with microclamped (zero 

plastic strain) boundary conditions imposed at the matrix-particle interface.  In addition to the localized slip 

bands parallel to the direction of shearing, both the local and nonlocal theories display a significant amount 

slip at the matrix-particle interface.  The slip contours shown in Bassani et al. [185] display similar trends, 

and these results are inconsistent with the discrete dislocation simulations which show almost no slip near 

the vertical faces of the particles.  It is also important to note that the model used in Bassani et al. [185] is a 

low-order type of nonlocal theory, whereas the results presented in Bittencourt et al. [23] are for a Gurtin-

type work-conjugate higher-order theory.  In other words, the limitations of these two models with respect 

to capturing the cumulative slip distributions cannot solely be attributed one type of nonlocal formulation 

versus the other.  It was argued by Yefimov et al. [74] that this limitation is due to the fact that dislocation 

nucleation is assumed to be instantaneous and unlimited in these types of theories.  However, the 

micropolar model is able to capture the same cumulative slip morphology without explicitly treating 

dislocation nucleation and its statistical variance, so there must be an alternative and/or supplemental 

explanation for this behavior.  Although the micropolar model is in good agreement with the YGV model 

in terms of the overall cumulative slip distribution, it is pointed out that the intensity of slip bands is 

noticeably higher for the micropolar model as seen in Figure 5.63(a).  To facilitate comparison of the two 

results the contour bar for the micropolar cumulative slip plot has been clipped such that any value greater 

than 0.025 is shown as red.  It seen that the overwhelming majority of plastic deformation is accommodated 

by the slip bands for the micropolar model, whereas the slip is more evenly distributed for the YGV model.  
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The maximum value of cumulative slip predicted by the micropolar model is 0.053 which is approximately 

twice the value reported for the YGV model. 

 

 

 (a)  

 (b)  

Figure 5.63:  Contours of cumulative slip at Γ = 0.006 for Material II (a) calibrated single criterion 
micropolar model (MP) and (b) statistical dislocation dynamics model (YGV) [74].  H C= . 
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(a) (b)  

Figure 5.64:  Contours of cumulative slip at Γ = 0.0096 for Material II (a) local theory and (b) 
Gurtin-type nonlocal theory with microclamped interfacial boundary conditions according to 
Bittencourt et al. [23]. 

 

 

 The total dislocation density contour plots for Material II at Γ = 0.006 are given in Figure 5.65 

for both the micropolar and YGV models.  In agreement with the discrete dislocation simulations, both 

models show large numbers of dislocations along the vertical faces of the matrix-particle interface and very 

few dislocations distributed throughout the matrix.  These interfacial dislocations are geometrically 

necessary and are generated to accommodate the rotational gradients that develop.  In contrast to the 

bending simulations where the micropolar models consistently underestimated the maximum local values 

of dislocation density observed in YGV model results, the magnitude of the dislocation density fields are 

much more congruent for this initial-boundary value problem.  This is not unexpected since it has 

previously been demonstrated for the constrained shear problem, i.e., another problem with microrigid 

boundary conditions, that the micropolar model is capable of capturing the peak dislocation density 

magnitude.  One feature of the dislocation distribution that is seen in the discrete dislocation (see Figure 

5.59(b)) and YGV model results, but not for the micropolar model is the dislocation pileups emanating 

from the particles.  The lack of this characteristic feature in the micropolar simulations can be related back 

to the prior discussion of the dislocation configuration observed in Material I, where it was argued that the 

disagreement between the micropolar and YGV models is related to a certain amount of dislocation density 

that exists within the actively slipped regions that does not have a significant impact on the material 

strengthening behavior.  The situation is slightly different here since the previous arguments made in 

reference to Material I revolved around an unaccounted for SSD density, whereas the “missing” 
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dislocations in the current scenario are arranged in pileups and are by definition GNDs.  These subtle but 

important differences aside, the limiting feature and cause of the discrepancy between the micropolar and 

YGV models for both Materials I and II is the same; namely, that the unaccounted for dislocation density in 

the micropolar is due to the assumption that there is no dislocation generation (either SSDs or 

phenomenological GNDs) associated with slip.  This argument is supported by the observation, as in the 

case for Material I, that these dislocation pileups are found to be collinear with the intensely sheared slip 

bands as can be seen by comparing Figure 5.63(b) and Figure 5.65(b).  As previously discussed, the YGV 

model is able to pick up these features of the dislocation distribution that are observed in the discrete 

dislocation simulations because it treats the dislocation dynamics sub-problem explicitly.  As such, the 

dislocation pileups at interfaces naturally emerge due to the direct treatment and impedance of dislocation 

flux. 
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 (a)  

 (b)  

Figure 5.65:  Contours of total  dislocation density at Γ = 0.006 for Material II (a) calibrated single 
criterion micropolar model (MP) and (b) statistical dislocation dynamics model (YGV) [74].   
H C= . 

 

 

 The size-dependence of the dislocation distribution and evolution is demonstrated in Figure 5.66 

and Figure 5.67, respectively.  Figure 5.66 gives the total dislocation density contour plots for Material II at 

Γ = 0.006 for the three different unit cell sizes.  There is nothing particularly interesting about the 

individual plots as they all have the same morphology, and as expected the magnitude of the dislocation 

density increases with decreasing unit cell size.  The maximum local dislocation density values predicted 

by the micropolar model at this applied strain level are 417 μm-2, 363.1 μm-2, and 259.6 μm-2 for  

H = 0.5C , H C= , and H = 2C , respectively.  The total dislocation density in the matrix is plotted as 

a function of applied shear strain for both the micropolar and discrete dislocation models for the three unit 

cell sizes in Figure 5.67.  The micropolar model results are in good agreement with the discrete dislocation 

simulations for the two largest unit cell sizes, but there is a rather modest discrepancy for the smallest unit 

MP

YGV



 

~ 232 ~ 

cell size.  It is noted that the material parameters have been determined by fitting to the discrete dislocation 

results for the middle unit cell size, H C= , and then held fixed for the other simulations.  Consequently, 

the micropolar and discrete dislocation results for this unit cell size are the most closely aligned.  

Interestingly, the micropolar model overestimates the total dislocation density for the largest unit cell size 

and underestimates it for the smallest one.  The lack of a consistent trend with respect to the variation of 

dislocation density evolution as a function of unit cell size might indicate that different material length 

scale parameters need to be used for each simulation.  This would be in contrast to the pure bending 

simulations where different material length scale parameters are required for different crystal orientations, 

but not for different film thicknesses.  The justification for using different material length scale parameters 

for varying crystal orientations is rather straight-forward since the nature of the dislocation configuration 

changes as a function of crystal orientation.  However, it is unclear as to what the physical justification 

would be for varying the material length scale parameters as function of specimen thickness since the 

orientational nature of the dislocation distribution does not change.  It is conceivable that some other non-

orientational aspect of the dislocation distribution necessitates such specimen size-dependent material 

length scale parameters, but it is impossible to draw any definitive conclusions in this regard with the 

limited amount of discrete dislocation simulation data that are available. 
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(a)  (b)  

(c)  

Figure 5.66:  Contours of total dislocation density for Material II at Γ = 0.006 for the calibrated 
single criterion model (a) H = 2C  (b) H C= , and (c) H = 0.5C . 

 

 

 

Figure 5.67:  Evolution of total matrix dislocation density versus applied strain as predicted by the 
calibrated single criterion model (MP) and discrete dislocation dynamics (DD) [74] for various unit 
cell sizes. 
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5.4 Summary 

 

 This chapter presents the results of single crystal simulations performed using the micropolar 

crystal plasticity models developed in Chapter 3.  The first part of the chapter was devoted to a parametric 

study of the various models in order to gain an understanding as to how the non-classical material 

parameters influence different aspects of the deformation behavior, and also to assess the variation in 

model predictions for a common and well-understood initial-boundary value problem.  The second part of 

the chapter used the insight gained during the parametric study to then calibrate the micropolar model to 

discrete dislocation dynamics simulations of three equivalent initial-boundary value problems.  

Specifically, the initial-boundary value problems that have been studied are: (i) constrained shearing of thin 

films, (ii) pure bending films, and (iii) simple shearing of a metal matrix composite.  It has been 

demonstrated that the micropolar models are in general agreement with the discrete dislocation simulations, 

and are capable of reproducing many of the their characteristic features.  Attention has also been called to 

the limitations of the theory.  Notable among these are the limitations of strength model versions 1 (MCV1) 

and 2 (MCV2) proposed for the multicriterion theory.  These strengthening descriptions have proven 

incapable of capturing all relevant aspects of the discrete dislocation simulations simultaneously with a 

single set of material parameters.  As such, these models have been deemed physically invalid, and have 

been discarded as viable material descriptions. 
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CHAPTER 6 

NUMERICAL SIMULATIONS:  POLYCRYSTALS 

 

 

6.1 Introduction 

 

 This chapter presents a study of polycrystalline deformation via numerical simulations employing 

the micropolar single crystal plasticity constitutive models developed in Chapter 3.  A primary motivation 

for the development of single crystal plasticity constitutive models is the desire to compute mechanical 

response of polycrystals as the aggregate behavior of an ensemble of single crystals, and this is a relatively 

more daunting task for discrete dislocation models.  Simulations of this kind allow the connection between 

local microstructural arrangement and polycrystalline deformation behavior to be studied.  Typical 

quantities of interest in such analyses are the homogenized stress-strain response, the evolution of texture, 

the development and distribution of microplasticity, shear localization, etc.  There has been a recent interest 

in applying nonlocal crystal plasticity models to study the scale-dependent behavior of polycrystals.  In 

particular, the scaling behavior of the flow stress with grain size is sought.  It is well known that the flow 

strength in polycrystals scales as a power of the inverse grain size with a scaling exponent typically 

reported to be in the range 0.3 n≤ ≤ 1 [191] where n = 0.5 corresponds to the classical Hall-Petch 

exponent [1, 2].  While modeling the grain size dependence of yield strength and flow stress in 

polycrystalline metals is often cited as a motivation for developing nonlocal crystal plasticity theories, there 

are relatively few computational studies devoted to direct numerical simulation of explicitly rendered (i.e., 

non-homogenized) polycrystals using such theories [15, 34, 41, 104, 106, 111, 192-198].  The simulations 

performed in the sequel are not exhaustive, and are only intended to demonstrate the general range and 

nature of scale effects that can be achieved with the micropolar crystal plasticity models. 
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6.2 Polycrystal Representation and FE Model 

 

 In the following, two different polycrystalline representations are considered.  One representation, 

which will be termed “traditional”, makes no distinction between the grain interior and grain boundary 

regions and employs the micropolar crystal plasticity model up the grain boundaries, and the other treats 

the polycrystal as being comprised of core (grain interior) and mantle (grain boundary) regions.  The 

former approach is typical of how polycrystals have traditionally been modeled with single crystal 

plasticity, and the core-mantle representation is a more recent trend that has been used invoked as a means 

of describing scale-dependent behavior.  The rationale behind the core-mantle description is based on the 

notion that there is a grain boundary affected zone where the material properties (i.e., slip behavior) will 

differ from those in the interior of the grain.  In core-mantle models based on local constitutive theories, the 

grain boundaries, being sites of high GND density, are usually specified a constitutive character that is 

stiffer (higher yield strength and strain hardening rates) than the grain interiors such that as the volume 

fraction of GBs changes the material the material elicits a size dependent response due to the composite 

nature of the material model.  The core-mantle methodology is not often used in conjunction with nonlocal 

constitutive theories as a natural scale-dependence and delineation between grain interiors and boundary 

regions will emerge due to the concentration of strain gradients in the vicinity of GBs.  This is precisely 

what happens when the micropolar theory is used in a traditional polycrystalline model. 

 The core-mantle methodology is used here in a different context and is motivated by the desire to 

draw an analogy between the micropolar and higher-order slip gradient-based polycrystal simulations.  It 

has previously been discussed with respect to the higher-order slip gradient-based crystal plasticity theories 

that while they admit the specification of arbitrary interfacial boundary conditions in general, only two 

types of conditions (microfree and microclamped) have been used in practice.  The microfree condition is 

used to model free surfaces and grain boundaries are almost exclusively modeled with the microrigid 

condition [15, 197].  Several works have discussed various types of intermediate micro boundary 

conditions from a theoretical perspective [78, 93, 114, 199], but very little has been done in this regard in 

terms of applications and numerical simulations.  The microrigid condition enforces a zero plastic 

deformation constraint, thereby creating thin boundary layer (mantle) of essentially elastic material 
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adjacent to the grain boundary.  As an analog to this, a core-mantle model is developed where the grain 

core’s constitutive response is described by micropolar crystal viscoplasticity and the mantle region is 

described by micropolar elasticity.  Similar studies of scale-dependent mechanical behavior have been 

carried out at the single crystal level using micropolar and micromorphic crystal plasticity by Forest and 

Sedlacek [39], Forest [38], and Cordero et al. [33] through the analysis of two-phase laminates.  In their 

works, a simplified unit cell with a single slip system oriented perpendicular to the phase interface is 

analyzed.  The core-mantle polycrystal simulations in this thesis represent a generalization and extension of 

these earlier contributions. 

 In the following simulations, the mechanical response of a small statistical volume element (SVE) 

containing 30 randomly oriented grains is investigated for remote uniaxial loading conditions.  As shown in 

Figure 6.1, the grains are modeled as regular hexagons and the grain boundary regions are specified to be 

0.025d  thick, where d  is the grain diameter.  The same FE discretization is used for both the traditional 

and core-mantle representations of the polycrystal.  A mapped mesh comprised of 72 (3×6 in each 

quadrant) bilinear quadrilateral elements is used for the grain interiors and the grain boundary regions have 

three elements through the thickness.  Polycrystals with four different grain sizes are simulated,  

d ∈ {250, 500, 1000, 10000} nm, and three SVE instantiations with different orientation distributions are 

studied for each grain size.  Periodic displacement and rotation boundary conditions are applied in both the 

1x - and 2x -directions of the SVE and the remote tension applied through a displacement boundary 

condition on control node D  in the vertical direction as indicated in Figure 6.2  The periodic boundary 

conditions have been implemented via linear multi-point constraints according to the developments in van 

der Sluis et al. [200].  The boundary conditions are stated as 
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for the rotations.  In each simulation, the SVE is subjected to an average true strain of 0.05 that is applied at 

a rate of 10-3 s-1 where the SVE nominal uniaxial strain is defined as 22 2(0, , ) /u H t Hε = .  The single 

criterion theory is used in all of the polycrystal simulations, and the material parameters used in the 

simulations are given in Table 6.1.  It has been demonstrated in Chapter 5 that the micropolar material 

parameters required for reproducing the behavior of single crystal discrete dislocation dynamics 

simulations are orientation and initial-boundary value problem dependent.  Therefore, it is reasonable to 

assume that the material parameters for each grain should be a function of its orientation and also the 

orientation of its nearest neighbors since this will define the local boundary conditions for each grain.  On 

the other hand, there is no way to determine what the grain-by-grain material parameters should be a priori; 

therefore, all of the grains are assumed to have identical material properties.  In this regard, the following 

studies are intended only to highlight general trends in the deformation behavior and not to corroborate 

with experimental or finer scale simulation results as there is insufficient data available for this purpose.  It 

is to be understood that the list of material parameters given in Table 6.1 apply to the grain cores only.  The 

micropolar elastic material parameters used for the grain boundary regions in the core-mantle simulations is 

covered in more detail during the discussion of those results. 
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Figure 6.1:  Finite element discretization used for polycrystalline simulations.  Entire SVE (left) and 
individual grain (right). 

 

 

 

Figure 6.2:  Schematic of geometry and periodic boundary conditions for the SVE polycrystal 
simulations. 
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Table 6.1:  Single crystal elastic-viscoplastic material parameters used in the polycrystalline 
simulations. 

Parameter Symbol Magnitude Unit 
Shear modulus μ 26.3 GPa 
Poisson’s ratio ν 0.33 - 
Coupling parameter cN  0.95 - 

Plastic-elastic length scale ratio /p eL A 4.5 - 

Threshold stress 0r  12.8 MPa 

Threshold stress strength coefficients 1c  0.5 - 
Burgers vector magnitude b 0.25 nm 
Dislocation interaction coefficients hαβ 1.0 - 

Initial SSD density 0S�  10-6 μm-2 
Dislocation immobilization coefficients aαβ 0.1 - 
Dislocation segment length constant K 40  
Dislocation capture radius cy  1.5 nm 

Reference slip rate 0γ�  10-3 s-1 
Drag stress g 5 MPa 
Inverse rate sensitivity exponent m 20 - 

 

 

6.3 Results and Discussion 

 

 Three different sets of results are presented in the following discussion.  Two values of the elastic 

length scale parameter e ∈A {10, 250} nm are used in the simulations with the traditional polycrystalline 

representation and a single elastic length scale, e =A 10 nm is considered for the core-mantle simulations.  

In the following analysis, attention is focused on the macroscopic stress-strain behavior, the scaling of flow 

stress with (inverse) grain size and the distributions of the lattice rotation, SSD, GND and cumulative slip 

fields.  The cumulative slip fields are defined for each slip system as 

 dtα αγ γ= ∫ ��  (6.4) 

The macroscopic uniaxial true stress-strain response is calculated from the previously given definition of 

nominal SVE strain, i.e., 22 ( ) /e U t H= , and the SVE nominal stress which is defined in terms of the 
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vertical component of the reaction force, 2
fr , at control node D  as 22 2 ( ) /fs r D W=  where unit 

thickness has been assumed in the out-of-plane direction.  The scaling of macroscopic flow stress as a 

function of grain size is defined in terms of an extended Hall-Petch [1, 2, 201] relation, i.e., 

 ( )
0( ) ( ) ( ) n

HPk d εσ ε σ ε ε −= +  (6.5) 

where σ  is the macroscopic flow stress, 0σ  is a constant reference flow stress, HPk  is a proportionality 

constant, d  is the grain size, and n  is the scaling exponent.  The explicit dependence of the arguments on 

the applied strain is included to underscore that the scaling behavior will be studied at multiple points in the 

deformation history.  The reference flow stress is defined as the corresponding macroscopic stress at 

vanishing length scale effects, i.e., the flow stress that would be obtained from an identical simulation using 

a classical (local) theory of crystal plasticity.  In the following analysis, the reference stress-strain response 

is taken to be that of a polycrystal with / ed =A 1000.  In order to keep the number of figures to a 

minimum in the following presentation of results, the deformation field contour plots are given for a single 

SVE instantiation (SVE2).  While the local fields vary from one SVE to another, the general trends 

observed for a single SVE will apply to the others as well.  To facilitate discussion of certain aspects of the 

deformation fields, a grain identification scheme is shown along with the grain orientations in Figure 6.3.  

The grain orientation is depicted by a pair of intersecting red lines that are parallel to the slip directions. 
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Figure 6.3:  Grain numbering scheme (left) and slip system orientation (right) for the SVE2 model 
polycrystal. 

 

 

6.3.1 Traditional Polycrystal Representation 

 The macroscopic stress-strain curves from the simulations employing the traditional polycrystal 

representation with e =A 250 nm are shown for each SVE and grain size in Figure 6.4, and it is clear that 

there is a pronounced scale-dependence on the material response.  Each set of stress-strain curves have 

been plotted using the same scale along the stress axis, and a moderate amount of variability in the 

magnitude and scope of the size effect is demonstrated for the different SVE instantiations.  The trends in 

the stress-strain behavior are quantitatively similar for SVE1 and SVE3, whereas the size effects for SVE2 

are much smaller in comparison.  The marked increase in flow stress with decreasing grain size for this 

series of simulations is not surprising since a large value of the elastic length scale has been used 

corresponding to effective grain sizes of / ed ∈A {1,2,4,400}.  Recall that the elastic length scales 

determined by calibrating the micropolar model to single crystal discrete dislocation simulations yielded 

effective material thicknesses in the range 15 / eH≤ ≤A 100 where H  is the critical dimension of the 

single crystal.  The magnitude of the flow stress size effect is quantified by determining the extended Hall-

1 

10 

16 

22 

28 

2 
3 

7 

11 

13 

19 

25 

17 

23 

29 
2 

4 
5

8 

12

14 

20 

26 

18

24

30
4 

6
1

9

10

15

21

27

16

22

27
6



 

~ 243 ~ 

Petch parameters for three levels of applied strain ε ∈ {0.01,0.03,0.05}.  The extended Hall-Petch 

parameters are determined from a least-squares regression analysis of the average SVE response.  The 

results are shown in Figure 6.5 where the filled markers represent the mean SVE value and the error bars 

indicate the maximum and minimum values among the three SVEs considered.  The scaling exponents for 

the three strain levels, as indicated in the figure, are n = 0.20, 0.31, and 0.45.  It is noted that the data 

points for d = 10 μm have not been included in the fitting procedure since the scale effects have 

significantly diminished for this effective grain size ( / ed =A 400) and the data is inconsistent with the 

trend exhibited by the other grain sizes.  The scaling exponent is an increasing function of strain and this 

can be rationalized by the fact that lattice torsion-curvature (strain gradients) becomes more pronounced 

with continued deformation. 
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(a) (b)  

(c)  

Figure 6.4:  Macroscopic true uniaxial stress-strain curves for the traditional polycrystal model with 

e =A 250 nm. (a) SVE1, (b) SVE2, and (c) SVE3. 
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Figure 6.5:  Scaling of macroscopic flow stress as a function of grain size for the traditional 
polycrystal representation with e =A 250 nm. 

 

 

 Next, the change in GND density fields as a function of grain size is examined.  It is anticipated 

according to physical intuition that the peak magnitude and overall intensity of the GND density 

distribution should increase with decreasing grain size as discussed in the works of Ashby [11] and Fleck et 

al. [5], amongst others, and that they should be concentrated near the grain boundaries.  Figure 6.6 shows 

the GND density contour plots for SVE2 for each grain size on a fixed contour scale that has been clipped 

such that values ≥ 4×108 mm-2 are colored red to assist visualization of the field variations.  Counter to 

expectations, the intensity of the GND density field is observed to increase with increasing grain size with 

maximum local values of 1.55×108, 4.99×108, 1.59×109, and 2.90×109 mm-2 for grain sizes of 250, 500, 

1000, and 10,000 nm, respectively.  This unexpected behavior mandates a more in-depth look at the 

deformation fields in search of an explanation for this phenomenon, and it was found that the polycrystals 

are exceedingly rotationally stiff due to the large effective grain sizes considered.  In support of this 

assertion, the lattice rotation fields for SVE2 are shown for each grain size in Figure 6.7.  Each contour plot 

1 / d (nm-1)

0.0001 0.001 0.01

σ 
- 

σ 0
 (

M
P

a)

1

10

100

ε = 0.01

ε = 0.03

ε = 0.05

n = 0.45

n = 0.31

n = 0.20



 

~ 246 ~ 

has been given along with its own unique legend in order to clearly illustrate to full range of the lattice 

rotations for each grain size.  Attention is drawn to the overall uniformity of the lattice rotation fields for 

the three smallest grain sizes as compared to that of the largest.  The range of the former is approximately 

3° φ≤ ≤ 5°, whereas a much wider range of lattice rotations, -0.2° φ≤ ≤ 7.5°, develop for the polycrystal 

with d = 10 μm.  The uniformity of the intergranular lattice rotation fields for the smaller grain sizes 

means that the individual grains are constrained against deforming independently, and instead must act in a 

cooperative manner, thereby leading to the pronounced strengthening evidenced in stress-strain curves 

shown in Figure 6.4.  Additionally, a more uniform lattice rotation field results in diminished lattice 

curvature and, therefore, less GNDs.  This explains the counterintuitive trend displayed in Figure 6.6. 

 

 

(a) (b)  

(c) (d)  

Figure 6.6:  GND density distributions at 22ε = 0.05 for the traditional polycrystal representation 
(SVE2) with e =A 250 nm (a) d = 250 nm (b) d = 500 nm (c) d = 1 μm and (d) d = 10 μm. 
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(a) (b)  

(c) (d)  

Figure 6.7:  Lattice rotation distributions at 22ε = 0.05 for the traditional polycrystal representation 
(SVE2) with e =A 250 nm (a) d = 250 nm (b) d = 500 nm (c) d = 1 μm and (d) d = 10 μm. 

 

 

 Although this anomalous behavior, i.e., GND density increasing with increasing grain size, was 

not anticipated prior to performing the simulations, it is not totally unexpected.  As previously discussed, 

the three smallest effective grain sizes used in this study, i.e., / ed =A 1, 2 and 4 are much smaller than 

what was required to reproduce the results of the single crystal discrete dislocation simulations presented in 

Chapter 5.  However, since the initial-boundary value problems studied in the single crystal simulations 

involved either microfree (bending) or microrigid (constrained shear and matrix-inclusion) boundary 

conditions, it was expected that larger effective grain thicknesses would be admissible due to the 

intermediate nature of the intergranular constraints in the traditional representation of the polycrystal 

without causing unphysical behavior.  In fact, additional simulations that are not shown here have been 

performed for a much smaller model polycrystal in an effort to establish a lower bound for the effective 

grain size above which this contradictory behavior is not observed.  The lower bound was determined to be 

/ ed ≈A 5, and above this value the appropriate trend between the grain size and the intensity of the GND 
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density field is maintained.  In light of the physically questionable results obtained for the traditional 

representation of the polycrystal with e =A 250 nm, further examination of the cumulative slip and SSD 

density fields for this material description is not pursued.  Instead, the analysis of the traditional polycrystal 

representation is continued for a material description that employs a more realistic value of the elastic 

length scale parameter. 

 The stress-strain curves for the traditional polycrystal with e =A 10 nm are shown in Figure 6.8 

for each of the three SVEs, and it is noted the magnitude of the size effect on flow stress has significantly 

diminished as compared to the previously considered material description.  The maximum difference in the 

macroscopic stress at 22ε = 0.05 between the polycrystals with the largest and smallest grain sizes amongst 

all SVEs is only 8 MPa for the material description with e =A 10 nm as compared to 65 MPa when  

e =A  250 nm.  The flow stress scaling behavior is shown in Figure 6.9, and the scaling exponents have 

been determined to be n = 1.02, 1.09, and 1.12 for the three increasing levels of applied strain.  These 

results indicate that the flow stress scales approximately with the inverse grain size, and the flow exponent 

increases with deformation although by a much smaller amount than the previously considered case where 

a increase by factor of two was observed.  Therefore, both the magnitude and evolution of the flow stress 

scaling behavior is a function of effective grain thickness, / ed A , for the traditional polycrystal 

representation. 
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 (a)  (b)  

(c)  

Figure 6.8:  Macroscopic true uniaxial stress-strain curves for the traditional polycrystal model with 
e =A 10 nm. (a) SVE1, (b) SVE2, and (c) SVE3. 
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Figure 6.9:  Scaling of macroscopic flow stress as a function of grain size for the traditional 
polycrystal representation with e =A 10 nm. 

 

 

 The cumulative slip field contour plots for both slip systems at 22ε = 0.05 are shown for SVE2 

with grain sizes of 250 nm and 10 μm in Figure 6.10.  Contour plots for the other two grain sizes have not 

been included in the figure because they do not reveal any additional insight as to how the fields vary with 

diminishing microstructural length scales.  The contours have been cropped such that cumulative slip 

values greater than 0.25 appear as red to assist the visualization of the local field variations.  The maximum 

local values of cumulative slip are relatively insensitive to changes in grain size, and are given as  
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maxγ =� 0.58 and 2
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maxγ =� 0.59 and 2
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Furthermore, there is no general tendency for the local slip fields to increase/decrease in intensity with 

changes in grain size.  Rather, it is seen that decreasing the grain size leads to an increase in the local 

cumulative slip magnitudes in some grains and decreases in others.  This is reflective of the orientation-
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weaker size-dependent strengthening.  Gaining an in-depth understanding of this type of scale-dependent 

cooperative grain deformation could prove useful to those concerned with tailoring local microstructural 

arrangements and grain orientation/misorienation to achieve maximum flow resistance near critical 

component features.  Lastly, attention is called to the fact that about half of the grains are deforming 

primarily by single slip, and that a large fraction of the actively deforming grains have rather uniform 

cumulative slip distributions as there are only a few grains that exhibit hot spots.  It is also worth pointing 

out that the few observed hot spots all emanate from the grain boundary regions. 

 

 

(a) (b)  

(c) (d)  

Figure 6.10:  Cumulative slip distributions at 22ε = 0.05 for the traditional polycrystal 

representation (SVE2) with e =A 10 nm (a) d = 250 nm slip system 1 (b) d = 250 nm slip system 2 
(c) d = 10 μm slip system 1 and (d) d = 10 μm slip system 2. 
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 The SSD and GND density contour plots are for SVE2 at 22ε = 0.05 are shown for all four grain 

sizes in Figure 6.11 and Figure 6.12, respectively.  The contour plots have been cropped such that values 

above 1×108 mm-2 appear as red, and the maximum local values of SSD density are 2.58×108 mm-2 (d =

250 nm), 2.40×108 mm-2 (d = 500 nm), 1.86×108 mm-2 (d = 1 μm), and 1.45×108 mm-2 (d = 10 μm).  

The SSD density fields essentially follow the same trends with respect to changes in grain size as the 

cumulative slip fields, although there are some subtle differences due to the fact that the SSD density 

evolution equation is defined as a function of the effective inelastic slip system deformation rate instead of 

the magnitude of the slip rate.  Most notably, there is a higher propensity for the SSD density to concentrate 

in grain boundary regions with decreasing grain size.  This is most readily apparent for the  

250 nm and 500 nm grain sizes which are shown in Figure 6.11(a) and (b).  While the intensity of the SSD 

density fields is relatively scale insensitive, it is demonstrated in Figure 6.12 that the GND density fields 

are substantially enhanced as the grain size is decreased.  The GND density contours have been cropped 

such that values greater than 9×109 mm-2 appear red in the Figure, and the maximum local values are  

9.45×1010 mm-2 (d = 250 nm), 6.68×1010 mm-2 (d = 500 nm), 4.73×1010 mm-2 (d = 1 μm), and 7.31×

109 mm-2 (d = 10 μm).  Not only do the peak GND densities increase with decreasing grain size, but there 

is also a notable increase in the GND density boundary layer width.  This is most evident for the 250 nm 

grain size where in a few instances the boundary layer has extended well into or entirely over the interior 

region of the grain. 
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(a) (b)  

(c) (d)  

Figure 6.11:  SSD density distributions at 22ε = 0.05 for the traditional polycrystal representation 
(SVE2) with e =A 10 nm (a) d = 250 nm (b) d = 500 nm (c) d = 1 μm and (d) d = 10 μm. 
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(a) (b)  

(c) (d)  

Figure 6.12:  GND density distributions at 22ε = 0.05 for the traditional polycrystal representation 
(SVE2) with e =A 10 nm (a) d = 250 nm (b) d = 500 nm (c) d = 1 μm and (d) d = 10 μm. 

 

 

6.3.2 Core-Mantle Polycrystal Representation 

 Recall that the core-mantle model developed in this work has been motivated by the periodic 

single crystal two-phase laminate studies of Sedlacek and Forest [202], Forest and Sedlacek [39], Forest 
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between two elastic adherends with a single slip system aligned perpendicular to the material interface.  

The material system is then subjected to a macroscopic simple shear and the size-dependent mechanical 

behavior is studied by varying the length of the single crystal phase.  This initial-boundary value problem is 

similar to the constrained shear problem that has been solved in Chapters 4 and 5; however, the distinction 

here is that intermediate types of interfacial conditions can be explored instead of assuming a completely 

microrigid interface.  The compliance of the interface is determined by the mismatch in the non-traditional 
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micropolar elastic constants, eA  and cμ , between the core and mantle region.  However, the simulations 

performed in this section will only consider a mismatch of the micropolar coupling modulus, cμ .  

Physically, the coupling modulus mismatch between phases can be understood in terms of how easily the 

couple stresses that arise at the interface can be mitigated.  The couple stresses will remain concentrated at 

the interface for equal values of the coupling modulus, but will be diffused through the elastic phase when 

the mantle coupling modulus is lower than that of the core.  It is noted that in addition to the geometrical 

simplifications made in the two-phase laminate analysis discussed above; the constitutive description has 

also been simplified as compared to the following polycrystal analysis.  Those analyses considered a 

micropolar material description with no plastic curvature and no slip threshold hardening.  In other words, 

all of the scale-dependent strengthening effects reported in those works are due to the linear form of 

gradient induced kinematic hardening. 

 The material properties for the grain cores used in these simulations are given in Table 6.1, and 

the elastic length scale is specified to be the same for both the grain and core phases as e =A 10 nm.  This 

value has been chosen so that the results of the current study can be compared to those obtained for the 

traditional polycrystal representation presented in the previous section.  The coupling modulus mismatch is 

chosen to be /C M
c cμ μ = 104 where the “C” and “M” superscripts refer to the core and mantle, 

respectively.  This coupling modulus mismatch value was chosen in an effort to keep the scale effects from 

what we consider to be too extreme.  The effect of the coupling modulus mismatch on the macroscopic 

stress-strain response is demonstrated in Figure 6.13 for SVE1 with d = 250 nm. 
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Figure 6.13:  Macroscopic true uniaxial stress-strain curves for the core-mantle polycrystal model 
(SVE1) with d = 250 nm and e =A 10 nm for various values of the coupling modulus mismatch. 

 

 

 The macroscopic uniaxial true stress-strain curves for the core-mantle polycrystal representation 

are given for each SVE in Figure 6.14.  As compared to the stress-strain responses obtained from the 

analysis of the traditional polycrystal model, the core-mantle model results show very little variability 

between the individual SVE responses and also exhibit a significantly higher hardening rate.  In fact, the 

core-mantle stress strain curves even have a hardening rate greater than that of the traditional model with 

e =A 250 nm.  Of course, this is due to the fact that the mantle is not allowed to plastically deform, and 

this represents a much more rigid constraint, even with a relaxed couple modulus, than is present in the 

traditional polycrystal simulations.  The scaling behavior of the macroscopic flow stress is shown in Figure 

6.15, and the scaling exponents for the three increasing strain levels are determined to be n = 0.79, 0.84, 

and 0.96.  These values are intermediate to those obtained in the analysis of the traditional polycrystal 
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model with e =A 10 nm and 250 nm, yet in agreement with the previous analyses it is seen that the scaling 

exponent is larger for higher levels of applied strain. 

 

 

 (a)  (b)  

(c)  

Figure 6.14:  Macroscopic true uniaxial stress-strain curves for the core-mantle polycrystal model 
with e =A 10 nm. (a) SVE1, (b) SVE2, and (c) SVE3. 
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Figure 6.15:  Scaling of macroscopic flow stress as a function of grain size for the core-mantle 
polycrystal representation with e =A 10 nm. 

 

 

 Contour plots of the cumulative slip fields for both slip systems at 22ε = 0.05 for SVE2 with grain 

sizes of 250 nm and 10 μm are shown in Figure 6.16.  The contour plots have been cropped such that 

values of cumulative slip greater that 0.25 are shown as red and the maximum local values are  
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in the cumulative slip fields; some grains exhibit more intense shearing when the grain diameter is 

decreased whereas others are less prone to plastically deform.  As compared to the traditional polycrystal 

simulations, the maximum cumulative slip values in the core-mantle simulations are significantly lower.  

This is explained by noting that the peaks in the cumulative slip fields occur exclusively in the grain 

boundary regions for the traditional polycrystal representation, while they remain elastic in the current 

material description.  Thus, plastic slip is prevented from localizing into these areas leading to a more 
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uniform distribution of slip throughout the grain interiors and lower peak intensity cumulative slip hot 

spots.  The inability of the grain boundaries to plastically deform also leads to additional slip system 

activity.  For example, several of the grains that primarily deform via single slip in the traditional 

polycrystal model, show increased levels of slip on the secondary slip system in the core-mantle model. 

 

 

(a) (b)  

(c) (d)  

Figure 6.16:  Cumulative slip distributions at 22ε = 0.05 for the core-mantle polycrystal 

representation (SVE2) with e =A 10 nm (a) d = 250 nm slip system 1 (b) d = 250 nm slip system 2 
(c) d = 10 μm slip system 1 and (d) d = 10 μm slip system 2. 

 

 

 SSD and GND density contour plots are shown for SVE2 for all grain sizes in Figure 6.17 and 

Figure 6.18, respectively.  The SSD density fields exhibit limited sensitivity to changes in grain size and 

the maximum values span a much narrower spectrum, 1.23×108 mm-2 (d = 250 nm) - 1.32×108 mm-2  
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(d = 10 μm), as compared to the traditional polycrystal representation.  Again, this is due to the no slip 

restriction in the grain boundary regions.  For the most part, the SSD density is concentrated within the 

grain interiors with decreasing field intensity as the grain boundaries are approached; however, a few grains 

contain tear-shaped hot spots that originate at the core-mantle interface and extend into the core region.  

Figure 6.18 demonstrates that the magnitude of the GND density distribution depends strongly on the grain 

size, and this sensitivity is more pronounced for the core-mantle as compared to the traditional polycrystal 

representation.  The contour plots have been cropped such that values greater than 9×109 mm-2 are shown 

in red and the maximum values are 1.48×1010 mm-2 (d = 250 nm), 8.33×109 mm-2 (d = 500 nm),  

4.14×109 mm-2 (d =  1 μm), and 4.68×108 mm-2 (d = 10 μm).  As expected, the GND density fields are 

concentrated near the core-mantle interface, and the development of well-defined boundary layers is clearly 

evident.  The boundary layers tend to have a preferential alignment where parallel regions of higher GND 

density are separated by a relatively low GND density zone, but the boundary layers in some of the grains 

are multi-directional leaving only a small globular core of low GND density in the grain interior.  It is also 

pointed out that the hot spots of GND density (see Figure 6.18(a)) do not always occur at the core-mantle 

interface, and there are in fact far more instances where the intragranular GND density peaks occur at 

points slightly offset from the interfaces. 
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(a) (b)  

(c) (d)  

Figure 6.17:  SSD density distributions at 22ε = 0.05 for the core-mantle polycrystal representation 
(SVE2) with e =A 10 nm (a) d = 250 nm (b) d = 500 nm (c) d = 1 μm and (d) d = 10 μm. 
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(a) (b)  

(c) (d)  

Figure 6.18:  GND density distributions at 22ε = 0.05 for the core-mantle polycrystal representation 
(SVE2) with e =A 10 nm (a) d = 250 nm (b) d = 500 nm (c) d = 1 μm and (d) d = 10 μm. 

 

 

 Finally, this subsection is concluded with side-by-side deformation field contour plots for both the 

traditional and core-mantle polycrystal representations at 22ε = 0.05 for SVE2 with d = 250 nm and 

e =A 10 nm as shown in Figure 6.19.  All of the plots have been previously shown and the various trends 

have been discussed, but they are given here on the same contour scale to offer a more direct comparison.  

Since many the similarities and differences between the two sets of polycrystalline results have already 

been discussed in detail, the previous commentary is only briefly reviewed.  The cumulative slip fields in 

the traditional polycrystal tend to localize in the grain boundary regions leading to larger maximum local 

peaks as compared to the core mantle model.  As a result of the additional deformation constraints imposed 

by the elastic grain boundary mantle, more slip activity is observed on secondary slip systems in the core-

mantle model.  Similar trends are also seen with respect to the SSD density field as they tend to localize 
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into the grain boundary regions in the traditional model, whereas the peak intensities primarily occur in the 

grain interiors in the core-mantle model.  The GND density fields for the traditional model are much more 

highly localized near the grain boundaries (thinner boundary layers) than for the core-mantle model, and as 

a result the peak GND density values are consistently higher for this polycrystal description.  While only a 

few grains exhibit local GND density hot spots in the traditional model, a higher percentage of grains 

display significant GND accumulation in the core-mantle model.  This occurs because the GNDs cannot 

localize into the grain boundary regions in the core-mantle model, and therefore other grains must develop 

appreciable GND density fields in order to accommodate the imposed deformation.  Finally, the lattice 

rotation fields are observed to be more uniform for the traditional model, a fact that is not surprising.  By 

decreasing the couple modulus of the mantle region with respect to the grain core, the intergranular 

rotational constraints have been relaxed for the core-mantle model which gives the individual grains more 

freedom to deform independently and leads to the greater variations in lattice rotation.  On the other hand, 

the intergranular rotations are tightly coupled in the traditional model and the result is a less heterogeneous 

lattice rotation field.  
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(a) (b)  

(c) (d)  

(e) (f)  

(g) (h)  

Figure 6.19:  Comparison of deformation fields for traditional (left column) and core-mantle (right 
column) polycrystal representations for / ed =A 25 at 22ε = 0.05.  (a) and (b) cumulative slip on slip 
system 1 (c) and (d) SSD density (e) and (f) GND density and (g) and (h) lattice rotation. 
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6.4 Summary 

 

 This chapter has presented a study of the scale-dependent mechanical response of small 

polycrystalline ensembles using the micropolar crystal plasticity theory developed in Chapter 3.  Two 

different representations of the polycrystal have been studied: a traditional model and a core-mantle model.  

The traditional polycrystal representation does not delineate the grain interior from the grain boundary 

region, whereas the core-mantle model does.  Each grain is treated as a micropolar elastic-viscoplastic 

constituent in the former type of model where the intergranular responses are coupled through shared lattice 

rotational degrees-of-freedom at the grain boundaries.  The core-mantle description treats the polycrystal as 

a collection of micropolar elastic-viscoplastic grains (cores) embedded in a micropolar elastic matrix 

(mantle).  In the core-mantle model, the size-dependent response of the polycrystal is governed by the 

mismatch in the micropolar couple modulus between the core and mantle phases.  The relative couple 

modulus mismatch determines how the couple stresses are diffused at the core-mantle interface.  When the 

couple modulus is equal in the two phases, the couple stresses remain concentrated and give a very strong 

size-dependent response.  As the couple modulus of the mantle is lowered with respect to the core, the 

couple stresses become more diffuse and the size-effect becomes less pronounced.  A limited number of 

simulations have been performed to highlight the general features of the deformation fields for the two 

polycrystal representations, and the scaling of the mechanical response with grain size has been both 

qualitatively and quantitatively discussed. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

 

7.1 Summary 

 

 This research is concerned with the development of models of micropolar single crystal plasticity 

as an alternative to the more common slip gradient-based models of generalized single crystal plasticity.  A 

micropolar continuum is a type of higher-order work-conjugate continuum that has the desired model 

features stated at the outset of the work, i.e., the model: 

◊ maintains the standard treatment of elastic-plastic thermodynamics, 
 

◊ avoids treating the plastic slips as generalized displacements, 
 

◊ admits higher-order (non-standard) boundary conditions, and 
 

◊ offers a simpler and more efficient numerical implementation as compared to the slip gradient-
based approaches 

 

The three main objectives of this work are to: 

◊ Develop physically-based models of micropolar single crystal elasto-viscoplasticity. 
 

◊ Implement the constitutive models in a finite element code. 
 

◊ Apply the models to simulate the scale-dependent mechanical response of single and 

polycrystalline metals, benchmark against discrete dislocation simulations, and conduct parametric 

studies to shed light on more appropriate forms of constitutive relations within the micropolar 

crystal plasticity construct. 
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 In conjunction with these stated objectives, two distinct viscoplastic modeling frameworks - the 

so-called single- and multicriterion theories are developed.  Dislocation-based strength models are 

proposed for each theory are developed which enables clear connections between the micropolar theory and 

various aspects of slip gradient-based generalized crystal plasticity theories to be established.  The 

dislocation-based strength models provide a physically-based description of scale-dependent strengthening 

and make the framework amenable for comparing to finer scale simulation results more directly.  The 

development of the single-criterion flow rule has been motivated by related earlier works in 

phenomenological macroscopic micropolar elastoplasticity, and also by the desire to minimize the number 

of non-standard constitutive parameters.  This work represents the first attempt of employing a single-

criterion flow rule within a theory of micropolar single crystal plasticity.  Several variations of the 

dislocation-based strength models appropriate for each theory have been proposed and evaluated via direct 

numerical simulation.  It has been demonstrated that strength models in which the slip threshold is given by 

a generalized Taylor relation (dependence on the summed SSD and GND densities) are incapable of 

accurately capturing the deformation behavior observed in discrete dislocation simulations of an equivalent 

initial-boundary value problem.  This is an important observation since generalized crystal plasticity 

models typically include this type of isotropic hardening description, and our results show that, at least for 

the micropolar framework, this is a physically questionable assumption. 

 Two-dimensional versions of the constitutive theories have been numerically implemented via a 

user element (UEL) subroutine in the implicit commercial finite element code Abaqus/Standard.  The 

element performance is validated through the solution of elastic initial-boundary value problems with 

closed-form solutions, and the convergence behavior is also demonstrated for an elastic-plastic initial-

boundary value problem exhibiting strain localization thereby verifying the mesh regularizing features of 

the nonlocal formulation.  Convergence has been demonstrated both in terms of the global, e.g., the stress-

strain behavior, and local response, and it has been observed that the rate of convergence for the global 

response is much higher than for local behavior.   

 The constitutive models are then employed to solve several standard initial-boundary value 

problems for heterogeneously deforming single crystals including: simple shearing of a constrained thin 

film, pure bending of thin films, and simple shearing of a metal matrix composite with elastic inclusions.  
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First, the general performance of the constitutive models is demonstrated via solution of the constrained 

shear problem in order to gain an understanding of how the non-classical inelastic material constants affect 

the mechanical response and the resulting deformation fields.  It is seen that the elastic length scale governs 

the gradient induced kinematica hardening response where larger values of the elastic length scale lead to 

higher rates of kinematic hardening.  Additionally, the ratio of plastic-to-elastic length scale dictates the 

accumulation of GND density and the transient nonlinear kinematic harderning response.  Smaller ratios of 

plastic-to-elastic length scale are associated with larger accumulated GND densities and more rapid 

saturation of the kinematic hardening, whereas larger ratios lead to converse behavior. 

This information is then used to guide calibration of the micropolar models to results of equivalent 

initial-boundary value problems solved using discrete dislocation dynamics.  The deformation behavior 

predicted by the calibrated micropolar models is then compared to results obtained from both discrete 

dislocation dynamics simulations as well as alternative generalized crystal plasticity theories.  Comparison 

and calibration with respect to the former provides guidance in the specification of non-traditional material 

intrinsic length scale parameters, and demonstrates the developed models’ ability to capture the relevant 

heterogeneous deformation fields and size-dependent mechanical behavior predicted by a finer scale 

constitutive description.  Comparison to results obtained using other generalized crystal plasticity theories 

has demonstrated that the deformation behavior predicted by these alternative theories can be qualitatively 

and quantitatively reproduced by the micropolar theory.  A few notable results have emerged from the 

single crystal studies and the comparison to discrete dislocation dynamics simulations.  It has been 

demonstrated that all substructure evolution parameters - not just the length scales - are sensitive to the 

specific boundary value problem being solved.  The micropolar theory has demonstrated that it can 

accurately describe the dislocation substructure evolution in the presence of microrigid boundaries; 

however, as observed in the pure bending simulations, there is a deficiency in modeling microfree surfaces 

due to the lack of an image force effect.  Finally, it has been observed in the metal matrix composite 

simulations that the micropolar theory accurately captures the development of compatibility maintaining 

dislocation structures, e.g., tilt walls, but does not predict other types of non-redundant dislocation 

structures, e.g., dislocation pileups, that may develop.  These findings suggest that the micropolar model 

needs to be improved in an effort to represent these additional long-range interaction fields due to the 
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presence of free surfaces and the development of dislocation structures that are not accounted for in the 

current formulation. 

 Finally, the models are applied to simulate the deformation behavior of small polycrystalline 

ensembles.  Due to the previously outlined model limitations that have emerged out of the single crystal 

simulations, only a limited number of polycrystal simulations have been peformed.  These limitations 

should be addressed within the single crystal constitutive description prior to performing more extensive 

polycrystal simulations.  Two different polycrystal representations are considered:  a traditional 

representation in which the micropolar model is employed up to the grain boundary and a core-mantle 

representation in which the grain boundary regions are treated as elastic.  Direct numerical simulations are 

performed for a range of grain sizes using both polycrystal representations in order to evaluate the 

aggregate mechanical response, and the scale-dependent deformation behavior is subsequently analyzed.  

For the limited cases studied in this work, it has been observed that the flow stress scales exponentially 

with the inverse grain size with scaling exponents in the range 0.2 n≤ ≤ 1.1 and the scaling exponent 

increases with deformation.  It has also been determined that there is a critical limiting effective grain size, 

/ ed =A 5, for the traditional representation below which the simulations yield aphysical results.  This is 

due to the polycrystal being overly stiff with respect to the development of lattice curvature for effective 

grain sizes smaller than this. 

 

 

7.2 Novel Contributions 

 

The unique contributions of this dissertation as summarized as follows: 

Constitutive Model Development 

 Two new physically-based theories of micropolar single crystal plasticity have been developed. 

 A multicriterion flow theory with a dislocation-based strength model has been proposed and is an 

extension of the phenomenological strength model of Forest et al. [34].  The replacement of the 

phenomenological strength model with a dislocation-based model is a necessary step for relating 
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the current developments to existing physically-based models, and also for making direct 

comparisons to finer scale simulations, i.e., discrete dislocation dynamics. 

 A novel single-criterion flow theory with a dislocation-based strength model has also been 

proposed.  Single-criterion flow rules are commonly used in other types of higher-order nonlocal 

crystal plasticity theories, and are advantageous because they significantly reduce the number of 

non-standard material constants as compared to multicriterion theories. 

 Several variations of the dislocation-based strength models have been proposed and their 

performance has been evaluated via direct numerical simulation.  It has been demonstrated that 

some of the strength models do not produce deformation behavior consistent with observations 

from finer scale discrete dislocation simulations. 

 The relationship between the developed models and the more common slip gradient-based theories has 

been established. 

 A focused effort has been made to relate the models to the prominent and highly cited model due 

to Gurtin [17], which is a significant contribution since the proposed models offer a simpler 

numerical implementation than the former.  This has important implications in the practical 

application of the model in 3-D numerical simulations. 

 

Numerical Simulations 

 A numerical implementation of the model has been developed and incorporated into the commercial 

finite element code Abaqus/Standard as a user element subroutine. 

 The numerical implementation has been validated through the solution of boundary value problems 

with known analytical solutions, and the convergence behavior for an inelastic problem featuring strain 

localization has been studied and the mesh regularization properties have been demonstrated. 

 The role of the model length scale parameters has been clearly defined in terms of their effect on the 

mechanical response and the development of heterogeneous deformation fields.  This understanding is 

critical to ascribing physical significance to the nonlocal material parameters. 

 The viability of the models has been established through a comparison to discrete dislocation dynamics 

simulations of equivalent initial-boundary value problems.  This not only demonstrates that the models 

are capable of capturing the physics of lower length scale deformation processes in meaningful way, 

but also suggests they could be incorporated as part of a multi-scale modeling framework. 
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 A pathway and methodology for calibrating the micropolar model parameters to discrete dislocation 

dynamics simulations has been established.  Knowledge of how the nonlocal material parameters relate 

to various aspects of the finer scale simulations lends confidence that the calibrated values are 

physically meaningful. 

 

7.3 Conclusions 

 

The following conclusions are drawn from the work presented in this dissertation: 

 The developed micropolar models are capable of accurately modeling the size-dependent 

mechanical response exhibited by fine scale discrete dislocation dynamics simulations. 

 

 The size-effects in the model are related to the development of gradients in lattice rotation, i.e., 

lattice torsion curvature.  As a result, there is minimal scale-dependence in the initial yield point.  

This, however, should not be viewed as a limitation as there is a growing amount of evidence that 

scale-dependence of initial yield strength is a source-controlled phenomenon which should be 

incorporate in the model through variations in the initial slip system threshold stress. 

 

 The strength models based on an additive superposition of the SSD and GND densities in the slip 

threshold stress yield results inconsistent with discrete dislocation dynamics simulations.  Namely, 

they overestimate the amount of isotropic hardening. 

 

 The multicriterion strength model based on a constant curvature threshold stress leads to material 

instability and excessive isotropic hardening due to the unlimited generation of GNDs. 

 

 The single-criterion model has proven capable of describing the full range of material behavior as 

the multicriterion model with significantly fewer nonlocal material parameters. 

 

 The single crystal simulations calibrated to discrete dislocation dynamics results have 

demonstrated that the both model length scale parameters and the dislocation substructure 

evolution constants depend not only on the boundary value problem being considered, but also on 

the crystal orientation.  This suggests that using uniform length scale and dislocation substructure 



 

~ 272 ~ 

parameters for each grain in a polycrystal analysis is not justified, since the orientations and local 

boundary conditions at each grain boundary will vary from one grain to another. 

 

 The model length scale parameters control transients in the gradient induced kinematic hardening.   
 

 In the absence of plastic curvature, a linear kinematic hardening response that is 

proportional to the square of the elastic length scale is obtained. 

 

 The magnitude of the scale-dependent linear kinematic hardening modulus depends on 

the orientation of the crystal, because the crystal orientation will dictate the strength of 

the curvatures that develop. 

 

 When plastic curvature is non-negligible, a nonlinear kinematic hardening response is 

obtained.  Larger ratios /p eL A  lead to slower developing transients, where as lower 

ratios lead to faster saturation behavior. 

 

 The ratio /p eL A  dictates the total accumulated GND density in the continuum. 
 

 The mesh regularization properties of the micropolar model have been demonstrated for the 

initial-boundary value problem of strain localization in a strain softening material.  The 

macroscopic (force-deflection) behavior converges much more rapidly than the peak local field 

values. 

 

 The micropolar model has been shown to have striking similarities to the Gurtin-type slip 

gradient-based single crystal plasticity model. 

 

 The micropolar model has demonstrated good agreement with discrete dislocation simulations that 

feature microrigid boundary conditions; however, as the problems of pure bending have shown, 

there seems to be a deficiency in modeling the microfree boundary condition.  The image force 

effect is not accurately reflected in the micropolar model, and significant GND density is seen to 

accumulate at the free surface. 

 

 The micropolar theory does an adequate job of predicting the development compatibility 

maintaining dislocation structures, i.e., those do to pure bending or those that gather in a tilt wall 

configuration in the metal matrix composite problem, but are unable to predict other types of non-
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redundant dislocation structures such as dislocation pileups that develop simply due to slip 

obstruction.  This is due to the inherent decoupling of the plastic slip and curvature responses 

within the micropolar theory.  In fact, the underestimation of the Bauschinger effect for the metal 

matrix composite problem is believed to be partially due to the unaccounted back stresses caused 

by these neglected pileup configurations. 

 

 The scaling behavior of the polycrystalline flow stress has been quantified for two polycrystalline 

representations. 

 

 The flow stress scaling exponents were in the range of 0.2 n≤ ≤ 1.1 and increase with 

increase with applied deformation. 

 

 A critical limiting value of the effective grain size, / ed ≈A 5, was determined for the 

traditional polycrystal representation.  Using smaller values of effective grain size lead to 

enhanced size-effects, but also the unphysical situation of increasing GND density with 

increasing grain size. 

 

 The traditional polycrystal representation tends to feature both SSD and GND densities 

which localize into the grain boundary regions, whereas in the core-mantle representation 

the SSDs tend to be more centrally located in the grain interiors and the GNDs primarily 

form directional boundary layers that grow with decreasing grain size. 

 

 The cumulative slip and SSD density fields are relatively insensitive to changes in grain 

size as compared to the GND density distributions. 

 

7.4 Recommendations for Future Work 

 

 This research has focused on the development, implementation, and application of a micropolar 

model of single crystal plasticity as a more computationally efficient alternative to slip gradient-based 

models of generalized crystal plasticity.  Furthermore, a clear connection between the two approaches has 

been put forth both theoretically in terms of model structure, and also computationally in terms of the way 
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various model components affect different aspects of the deformation fields and macroscopic response 

during heterogeneous deformation.  However, there is still one fundamental difference between the two 

classes of higher-order theories; namely, the disparity between the types of micro boundary conditions that 

can be applied.  In slip gradient-based higher-order theories, the admissible types of micro boundary 

conditions are either in terms of slip and higher-order microcouple tractions (work conjugate) or slip and 

GND density (non-work conjugate), while the micro boundary conditions in the micropolar model are in 

terms of lattice rotations or couple tractions.  The relationship between the two types of micro boundary 

conditions has only been qualitatively discussed in the present work, and it may be fruitful to try and 

establish a more rigorous connection between them, if such a direct connection exists.  In particular, this 

knowledge could be potentially used to apply an appropriate constraint or couple traction on the free 

surface in bending to create the image force effect that is present in the discrete and statistical dislocation 

simulations, but is absent in the micropolar simulations.  Furthermore, it is envisioned that an 

understanding of the interrelationship between the two sets of micro boundary conditions is essential to 

prescribing conditions at grain boundaries that are intermediate to the microfree and microrigid constraints.  

These intermediate boundary conditions presumably would reflect partial slip transfer and slip blockage at 

the boundaries, but would ultimately be doing so in an indirect manner.  This disconnect between the 

physics of slip transfer and the micro boundary conditions is a weakness of the micropolar theory, but it is 

also this aspect that makes the framework more computationally tractable. 

 It has been demonstrated that the micropolar models are able to reproduce both the macroscopic 

mechanical response and dislocation substructure evolution predicted by discrete dislocation dynamics 

simulations quite well.  On the other hand, it has been seen that the micropolar length scale parameters 

must be changed from one boundary value problem to the next, and also for solutions to the same boundary 

value problem when the crystal orientation is changed.  Further study of the interrelationship between the 

type of boundary value problem, the crystal orientation, and the length scale parameters required to 

reproduce discrete dislocation dynamics results would be highly beneficial.  In particular, it would be 

interesting to extend the developed micropolar theories to include thermal strains, and to compare to the 

thermal cycling experiments of passivated thin films bonded to rigid substrates performed by Nicola et al. 

[6].  It would be especially significant if enough insight could be gained such that the micropolar 
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parameters could be estimated prior to performing the discrete dislocation simulations.  Such knowledge 

would then imbue the micropolar models with true predictive capability. 

 Finally, several model enhancements are recommended in order of increasing difficulty and/or 

utility.  It is suggested that the model should be extended to 

 include an additional kinematic hardening component to account for the back stress contributions 

due to dislocation pileups, 

 

 three dimensions, and 

 

 finite deformation. 

 

The first suggested enhancement addresses to the inability of the current version of the micropolar model to 

capture the back stress contribution due to dislocation pileups as illustrated in the composite shear initial-

boundary value problem.  Typically, the only nonlocal back stress component incorporated in nonlocal 

crystal plasticity models is that due to the compatibility induced GNDs; however, the current research 

suggests that this assumption is insufficient in certain situations.  The importance of an additional 

contribution to back stress due to highly ordered dislocation structures (e.g., stacks of dislocation pileups) 

has been noted by Roy et al. [203], Mesarovic et al. [204], and Baskaran et al. [205].  The extension of the 

model to 3-D should be relatively straight-forward, and will enable the model to be more closely compared 

with experimental observations as well as a more diverse set of computational studies.  For example, an 

extension to 3-D will facilitate a comparison to the more advanced 3-D discrete dislocation dynamics 

frameworks (e.g.,  Zbib et al. [59], Ghoniem et al. [54], and Weygand et al. [58]), and will also allow for 

the effects of GN screw dislocations to be studied.  Lastly, the extension of the model to account for finite 

deformations, while theoretically challenging, will enable to model to be applied to problems such as metal 

forming where large lattice rotations are observed.  A study of texture evolution predicted by a 3-D finite 

deformation micropolar crystal plasticity model has not been done to date, and it would be informative to 

evaluate the micropolar model predictions with respect to experimental observations and results from a 

classical crystal plasticity theory.  As an intermediate step to implementing a full finite deformation theory 

with both elastic-plastic strain and torsion-curvature, a theory with only elastic torsion-curvature could be 
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pursued thereby avoiding issues associated with the elastic-plastic decomposition of the finite lattice 

torsion-curvature.  In fact, recently Forest [38] and Cordero et al. [33] have advocated micropolar 

approaches neglecting plastic torsion-curvature within an infinitesimal deformation framework.  This 

approach was not pursued in this research because it results in a linear gradient-induced kinematic 

hardening and a more general description was favored; however, this methodology should be sufficient for 

initial studies of finite deformation micropolar crystal plasticity. 
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