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 SUMMARY 

 

Electrodes in a solid oxide fuel cell (SOFC) must possess both adequate porosity 

and electronic conductivity to perform their functions in the cell. They must be porous to 

permit rapid mass transport of reactant and product gases and sufficiently conductive to 

permit efficient electron transfer. However, it is nearly impossible to simultaneously 

control porosity and conductivity using conventional design and fabrication techniques. 

In this dissertation, computational design and performance optimization of 

microarchitectured SOFCs is first investigated in order to achieve higher power density 

and thus higher efficiency than currently attainable in state-of-the-art SOFCs. This 

involves a coupled multiphysics simulation of mass transport, electrochemical charge 

transfer reaction, and current balance as a function of SOFC microarchitecture. Next, the 

fabrication of microarchitectured SOFCs consistent with the computational designs is 

addressed based on anode-supported SOFC button cells using the laser ablation 

technique. Finally, the performance of a fabricated SOFC unit cell is characterized and 

compared against the performance predicted by the computational model. The results 

show that the performance of microarchitectured SOFCs was improved against the 

baseline structure and measured experimental data were well matched to simulation 

results. 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

The objective of this chapter is to introduce the basic concept of a solid oxide fuel 

cell (SOFC), fabrication techniques for SOFCs, SOFC performance, and literature survey 

on microarchitectures in SOFC electodes. Section 1.5 provides an outline for this 

dissertation. 

1.1. The Solid Oxide Fuel Cell (SOFC) 

A solid oxide fuel cell (SOFC) is an energy conversion device which converts the 

chemical energy of gaseous fuels directly into electrical energy [1]. In principle, the 

SOFC consists of three main components: an anode also called the fuel electrode, a 

cathode also called the air electrode, and an electrolyte.  

 

 
Figure 1.1 Operating principle of a SOFC.  
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The cell is constructed with two porous electrodes which sandwich an electrolyte, 

as shown in Figure 1.1. Air flows along the cathode. At the cathode-electrolyte interface, 

molecular oxygen is reduced to oxygen ions using electrons supplied from an external 

circuit. The oxygen ions diffuse into the electrolyte material and migrate to the other side 

of the cell where they encounter the anode. Hydrogen fuel is fed into the anode of the fuel 

cell. By burning fuel containing hydrogen on one side of the electrolyte, the 

concentration of oxygen is dramatically reduced. Since there is a large amount of oxygen 

ions on the other side of the electrolyte, an oxygen concentration gradient is created 

across the electrolyte, which attracts oxygen ions from the cathode to the anode. The 

oxygen ions encounter the fuel at the anode-electrolyte interface and react catalytically, 

giving off water, carbon dioxide, heat, and most importantly electrons. The electrons are 

transported through the anode to the external circuit and back to the cathode, providing a 

source of useful electrical energy in an external circuit. The operating temperature of 

typical SOFCs is currently between 600 and 1000°C. 

The electrochemically active components of SOFCs have multifunctional 

performance requirements. The electrolyte should be a fully dense ionic conductor to 

prevent short circuiting of the reacting gases through it, and it must be thin to minimize 

resistive losses in the cell [1]. The anode and cathode layers of a SOFC must possess both 

electronic conductivity and porosity to allow electron transport between the electrode-

electrolyte interface and the external circuit, and to facilitate mass transport of reactant 

and product gases. The anode structure is typically fabricated with a porosity of 20% to 

40%. Similar to the anode, the cathode is a porous structure with a porosity of 20% to 

40%. Furthermore, both the anode and cathode must be electronically conductive since 
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the anode should easily transport electrons from the anode-electrolyte interface to the 

open circuit, while the cathode should transport electrons from the open circuit to the 

cathode-electrolyte interface.  

The material most often used as the electrolyte is yttria-stabilized zirconia (YSZ) 

due to its chemical and mechanical stability over a wide range of oxygen partial pressures 

and temperatures. Other alternative electrolytes are Samarium-doped ceria (SDC), and 

Gadolinium-doped ceria (GDC). The anode must be electronically conductive, be able to 

catalyze the oxidation of the fuel, and have a similar coefficient of thermal expansion 

(CTE) to that of the electrolyte. Anodes are typically fabricated from composite powder 

mixtures of electrolyte material (YSZ) and nickel-oxide NiO (the nickel oxide 

subsequently gets reduced to nickel metal during first start-up of the fuel cell operation), 

which serves to prevent sintering of the metal particles and to provide a CTE comparable 

to that of the electrolyte. Nickel provides electronic conductivity and catalytic activity. 

The cathode is typically an oxide material that catalyses the reduction of oxygen, and 

facilitates the transport of the ionic species to the electrolyte. Because most metals are 

oxidized in the presence of air at high temperature, the required cathode properties are 

typically achieved with lanthanum manganite (LaMnO3), a p-type perovskite. Typically, 

it is doped with rare earth elements such as Strontium (Sr), Cerium (Ce), and 

Praseodymium (Pr) to enhance its electronic conductivity. Most often, it is doped with 

Strontium and referred to as LSM. Finally, the cathode material must have a coefficient 

of thermal expansion (CTE) that is a reasonable match with that of the electrolyte. The 

triple phase boundary (TPB) of a fuel cell is the area of contact between the three phases 

necessary for electrochemical reactions at the electrode-electrolyte interface: the ion 
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conducting phase, the electron conducting phase, and the gas phase. A good fuel cell 

maximizes the TPB area, allowing the reaction to occur in more sites, thus maximizing 

current flow. In practice, this is achieved by the use of composite structures containing 

both ionically and electronically conducting materials. 

Carbon monoxide (CO) and hydrocarbons such as methane (CH4) can be used as 

fuels in SOFCs. It is feasible that the water-gas shift involving CO (CO + H2O→H2 + 

CO2) and steam reforming of CH4 (CH4 + H2O→ 3H2 + CO) could occur at the high 

temperature environment of SOFCs to produce H2 that is easily oxidized at the anode. 

The direct oxidation of CO in fuel cells is also well established [2]. 

Two popular design configurations for SOFCs have emerged: a planar design 

(Figure 1.2) and a tubular design (Figure 1.3). In the planar design, the components are 

assembled in flat stacks, with air and fuel flowing through channels built into the cathode 

and anode. In the tubular design, components are assembled in the form of a hollow tube, 

with the cell constructed in layers around a tubular cathode; air flows through the inside 

of the tube and fuel flows around the exterior.  

 
Figure 1.2 Configuration for a planar design SOFC.  
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Figure 1.3 Configuration for a tubular design SOFC. 

 

The planar-type SOFC is easier to stack in order to enhance the efficiency of the 

system, while tubular SOFC designs offer advantages over planar designs with good 

thermal shock resistance, high mechanical strength, easy sealing, and high volume 

manufacturing ability [3-8]. A disadvantage of the tubular design is the lower volumetric 

power packing density. As a result, for a given stack power, planar SOFC stacks will be 

smaller than tubular SOFC stacks. 

 
 

1.2. Advantages of a SOFC over the Other Fuel Cells 

The generation of energy by clean, efficient and environmentally-friendly means 

is one of the major challenges faced by the world. Fuel cells convert gaseous fuels 

(hydrogen, natural gas, gasified coal) via an electrochemical process directly into 

electricity, and are efficient and environmentally clean, since no combustion is required. 

Fuel cells are not constrained by the maximum Carnot cycle efficiency as are combustion 

engines, and pollutant output from fuel cells is significantly lower than that found in 
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conventional technologies. A fuel cell operates like a battery, but does not need to be 

recharged, and it continuously produces power, when supplied with fuel and oxidant [9]. 

Attempts to develop fuel cells as power sources have been made over many years. 

Fuel cells are generally classified by the chemical characteristics of the electrolyte used 

as the ionic conductor in the cell, as shown in Table 1.1. The first two types (PEMFC and 

PAFC) are characterized by their low to medium temperature of operation (60-200°C), 

and their relatively low electrical generation efficiencies (40-50% when operated on 

readily available fuels such as methanol and hydrocarbons, 50% when using pure 

hydrogen fuel). The latter two types (MCFC and SOFC) are characterized by their high 

temperature of operation (600-1000°C), their ability to utilize methane directly in the fuel 

cell, and thus their high inherent generation efficiency (45-60% for common fuels such as 

natural gas, 90% with heat recovery) [10]. 

 

Table 1.1 Types of fuel cells [10]. 
 Polymer 

Electrolyte 
Membrane Fuel 
Cell (PEMFC) 

Phosphoric 
Acid  
Fuel Cell  
(PAFC) 

Molten 
Carbonate  
Fuel Cell  
(MCFC) 

Solid Oxide Fuel 
Cell (SOFC) 

Electrolyte Ion exchange 
membrane 

Liquid 
phosphoric 
acid 

Molten carbonate 
salt 

Ceramic as 
stabilized 
zirconia and 
doped perovskite 

Operating 
Temperature  

60-100°C 150-200°C 630-650°C 600-1000°C 

Fuel Less pure 
hydrogen from 
hydrocarbons 
or methanol 

Hydrogen 
from 
hydrocarbons 
and alcohol 

Hydrogen, 
carbon 
monoxide, 
natural gas, 
propane, marine 
diesel 

Natural gas or 
propane 

Oxidant O2/Air O2/Air CO2/O2/Air O2/Air 
Efficiency  40-50% 40-50% 50-60% 45-60% 
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A Solid Oxide Fuel Cell (SOFC) has several advantages over the other types of 

fuel cells for the following reasons. SOFCs are the most efficient (fuel input to electricity 

output) fuel cell electricity generators currently being developed world-wide. They are 

flexible in the choice of fuel such as carbon-based fuels like natural gas. In addition, 

SOFCs are most suited to applications in the distributed generation (i.e. stationary power) 

market since their high conversion efficiency provides the greatest benefit when fuel 

costs are higher, due to long fuel delivery systems to customer premises. SOFCs have a 

modular and solid state construction and do not present any moving parts; thereby, they 

are quiet enough to be installed indoors. The high operating temperature of SOFCs 

produces high quality heat by-products which can be used for co-generation, or for use in 

combined cycle applications. Furthermore, SOFCs do not contain noble metals that could 

be problematic in high volume manufacture due to resource availability and price issues. 

SOFCs do not have problems with electrolyte management (liquid electrolytes, for 

example, are corrosive and difficult to handle). SOFCs have extremely low emissions by 

eliminating the danger of carbon monoxide in exhaust gases, as any CO produced is 

converted to CO2 at the high operating temperature. SOFCs have a potential long life 

expectancy of more than 40000-80000 h [10]. 

 
1.3. Fabrication Techniques for SOFCs 

A number of fabrication techniques to produce SOFC components have been 

investigated. Conventional techniques to fabricate SOFCs includes chemical vapor 

deposition (CVD), physical vapor deposition (PVD), electrochemical vapor deposition 

(EVD), electrophoresis deposition (EPD), atmospheric plasma spraying (APS), vacuum 

plasma spraying (VPS), sputtering, flame coating, laser ablation, sol-gel coat, and  
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ceramic forming techniques such as tape casting, tape calendaring, screen printing, and 

dry press formation. 

1.3.1. Plasma Spraying  

Plasma spraying of ceramics is a widely used process. Common applications 

include applying thermal barrier coatings for engine components and imparting corrosion 

protection and wear-resistance to pumps and printing presses. It is also used to apply thin 

coatings with specific insulating or conducting properties to resistors, to apply self-

lubricating coatings, and to apply color deposits. Plasma spraying is a one step high 

temperature process, which may not need to be followed by a separate sintering step. The 

atmospheric plasma spray process (APS) is the most common variant, conducted under 

normal atmospheric conditions. Another variant of plasma spraying is conducted in 

protective environments using vacuum chambers and is referred to as vacuum plasma 

spraying (VPS). Plasma spraying has been considered as a method for depositing both 

electrodes and electrolyte layers in SOFCs [11]. 

The plasma spray process (Figure 1.4) is basically the spraying of molten or heat 

softened material onto a surface to provide a coating. Material in the form of powder is 

injected into a very high temperature plasma flame, where it is rapidly heated and 

accelerated to a high velocity. The hot material impacts on the substrate surface and 

rapidly cools, forming a coating. This plasma spray process, carried out correctly, is 

called a "cold process" (relative to the substrate material being coated) as the substrate 

temperature can be kept low during processing, avoiding damage, metallurgical changes, 

and distortion to the substrate material. APS is widely used in manufacturing SOFCs, but 

the operating cost is very high. 
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Figure 1.4 Schematic diagram for plasma spraying process 

(http://www.plasmacoat.co.uk). 
 

1.3.2. Electrochemical Vapor Deposition (EVD)  

 The process of electrochemical vapor deposition (EVD), shown in Figure 1.5, was 

developed by Siemens Westinghouse Company. It is the key fabrication technique in the 

seamless tubular SOFC technology. All layers of tubular SOFCs are made by EVD. 

Dense layers of YSZ (40µm thick) have been fabricated by EVD on porous substrates 

[12]. 

 The EVD process, a modified chemical vapor deposition (CVD) technique, 

involves growing a dense layer of electron- or ion-conducting oxide on a porous substrate 

by exploiting the electrochemical potential energy as the driving force. An oxide layer is 

deposited by EVD in two stages: a pore closure CVD stage (stage 1) and a scale growth 

EVD stage (stage 2) [13]. Stage 2 involves the growth of YSZ over the closed pores by a 

Wagner oxidation process [14]. The oxide growth arises due to the presence of a large 

oxygen activity gradient across the substrate. In this stage, H2O is reduced at the water 
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vapor side of the growing oxide scale to produce oxygen ions. The oxygen ions diffuse 

through the film to the metal chloride gas phase side since oxygen ions are generally 

more mobile than metal ions. Under operating conditions of the EVD process, the 

thickness and uniformity of the layer are affected by the reaction temperature, flow 

velocity, relative concentrations of steam and metal chloride, and pore size of substrate, 

which should be strictly controlled [13]. 

 

 
Figure 1.5 Principle of electrochemical vapor deposition [13]. 

 

 The EVD technology can produce thin and good gas-resistant layers, which have 

good conduction and coherence between the layers. However, the EVD process must 

operate at high temperature, more than 1000°C, and requires high vacuum and a suitable 

substrate. The equipment is complex and needs to be controlled strictly. Therefore, the 

efficiency is low. It is difficult to manufacture a large-scale product at low cost. 
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1.3.3. Sol-gel Process 

The sol-gel process, shown in Figure 1.6, involves the deposition of a layer from a 

colloidal dispersion [15]. The sol-gel process is a versatile solution process for making 

ceramic and glass materials.  In general, the sol-gel process involves the transition of a 

system from a liquid "sol" (mostly colloidal) into a solid "gel" phase.   

 

 
Figure 1.6 Sol-gel technology and their products (http://www.chemat.com). 

 

Applying the sol-gel process, it is possible to fabricate ceramic or glass materials 

in a wide variety of forms: ultra-fine or spherical shaped powders, thin film coatings, 

ceramic fibers, microporous inorganic membranes, monolithic ceramics and glasses, or 

extremely porous aerogel materials.  
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Thin films can be produced on a piece of substrate by spin-coating or dip-

coating.  When the sol is cast into a mold, a wet gel will form.  With further drying and 

heat-treatment, the gel is converted into dense ceramic or glass articles. Using the sol-gel 

technique, YSZ films have been deposited on porous LSM cathode substrates [16]. 

 

1.3.4. Ceramic Forming Techniques 

 All components of SOFCs are typically ceramic materials. An oxide layer is 

deposited by ceramic forming techniques in four steps: manufacturing suitable powder, 

preparing the slurries, shaping the layers by tape casting, tape calendaring, or screen 

printing, and sintering. 

Tape casting is a common process for producing thin ceramic sheets or ceramic 

loaded polymer sheets for use in the electronics industry. Tape casting is commonly used 

for preparing the “green” or unsintered electrolyte, and often used for preparing the anode 

and cathode layers as well. Ceramic powder and solvent are mixed to form a slurry, 

which is treated with various additives and binders, homogenized, and then pumped 

directly to a tape-casting machine. There the slurry is continuously cast onto the surface 

of a moving carrier film. The edge of a smooth knife, generally called a doctor blade, 

spreads the slurry onto the carrier film at a specified thickness, thereby generating a 

flexible tape. Heat lamps gently evaporate the solvent, and then cut to size with an auto 

punch or other green-machining device. If needed, multiple layers (cathode, electrolyte, 

and anode) can be cast on top of one another, laminated together, and then co-sintered in 

a furnace. 
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Figure 1.7 Schematic diagram for tape casting process  

(http://www.britannica.com). 
 
 

Tape calendaring is a processing method most frequently used in the paper 

industry and for rubber and plastic sheets. Binders and plasticizers are added to the 

ceramic oxide to form a doughy consistency (roughly 20 wt% additives). This material is 

then squeezed between two rollers, forming a thin tape. 

Screen printing is an inexpensive method of applying thin layers on a substrate. In 

many SOFC designs, the anode and cathode layers are screen-printed onto the electrolyte, 

and the resulting multiple layers are then sintered. Screen printing ink is applied to the 

substrate by placing a screen over the material. Ink with a paint-like consistency is placed 

onto the top of the screen. Ink is then forced through the fine mesh openings using a 

squeegee that is drawn across the screen, applying pressure thereby forcing the ink 
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through the open areas of the screen. Ink will pass through only in areas where no stencil 

is applied, thus forming an image on the printing substrate. 

 

 
Figure 1.8 Schematic diagram for SOFC fabrication using tape calendaring process 
[17]. 
 

 
Figure 1.9 Schematic diagram for screen printing process  

(http://www.g-e-m.com). 
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1.4. SOFC Performance 

A schematic representation of a current-voltage (i-V) curve for a SOFC is shown 

in Figure 1.10. The open cell voltage is lowered when the cell is loaded, and a typical i-V 

curve is obtained.  

 

 
Figure 1.10 Current-voltage curve for a fuel cell. 

 

The cell voltage can be expressed as cell NernstE E   where ENernst is the open cell 

voltage given by: 

             2 2

2

1/ 2
0 ln

2
H O

Nernst
H O

P PRT
E E

F P
                                                                                (1.1)                         

where E0 is the standard electrode potential, R is the universal gas constant, T is 

the temperature, F is the Faraday’s constant, and Px  is the partial pressure of species x. 

The Nernst potential is the cell voltage determined from reversible thermodynamic 

properties. As the cell begins to supply current to an external load, it moves away from a 

state of equilibrium, and the operating voltage drops due to irreversibilities associated 
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with internal charge transfer, conduction, and diffusion processes. These irreversibilities 

are individually categorized as activation, ohmic, and concentration polarization (also 

often called mass transport losses), respectively. These polarizations can be considered as 

voltage losses and are given as follows: 

             act ohm conc                                                                                            (1.2) 

Activation polarization (ηact) or charge transfer is due to the energy barrier that 

must be surpassed before an electrochemical reaction can take place. Because the 

reaction rate increases with increasing temperature, the activation loss decreases with 

increasing temperature. At the high operating temperature of SOFC’s, the activation loss 

or charge transfer is usually small. 

Ohmic polarization (ηohm) is caused by the ohmic resistance of the cell materials 

and is linearly dependent on the current and current path. Both electrodes contribute 

through their resistance towards electron conduction and the electrolyte contributes 

through its resistance towards ion transport. Because both the electrolyte and electrodes 

obey Ohm’s law, the ohmic losses can be expressed by the equation 

            ohm iR                                                                                                             (1.3) 

where i is the current flowing through the cell, and R is the total cell resistance, 

which includes electronic, ionic, and contact resistance: 

            electronic ionic contactR R R R                                                                              (1.4) 

Concentration polarization (ηconc) is the voltage loss due to resistance towards 

diffusion of the gaseous species in the electrodes. The gases entering the SOFC normally 

flow over the electrodes in a laminar manner. Diffusion therefore must take care of the 

transport of the reacting species through the electrodes to and from the TPBs. At high 
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current densities, the relatively slow diffusion processes may limit the electrochemical 

conversion. Additionally, as the electrochemical reactions proceed, the reaction products 

formed at the anode dilute the fuel, and the diffusion resistance increases. Diffusion or 

concentration polarization occurs, for instance, when reaction products are removed 

slower than the formation of these products, or when the reactant feed is lower than the 

transport that may be reached on the basis of the discharge current of the cell, i.e., the 

reactant conversion has reached 100%. 

1.5. Literature Survey 

The current scientific literature on areas central to this doctoral dissertation deals 

with various aspects and is rather expansive. The following sub-sections intend to give a 

literature review of the following key areas: research on fabrication and SOFC modeling 

of microarchitectures in SOFC electodes.  

1.5.1. Fabrication of Microarchitectures in SOFC Electrodes  

Functionally graded materials (FGM) have been applied to SOFC and have 

provided the possibility to enhance the cell performance [18-22]. The purpose of grading 

is to optimize the electronic/ionic conductivity, to increase the electrochemical reactivity 

of the electrode, or to minimize the mass transport resistance to gas mixtures.  

Hart et al. fabricated functionally graded SOFC cathodes from the mixtures of 

strontium-doped LSM and gadolinia-doped ceria (CGO) using slurry spraying techniques 

[18]. Similar samples were also prepared from the mixtures of LSM and YSZ. The first 

layer comprises a mixture of 50 wt% LSM and 50 wt% YSZ or CGO and the second 

layer consists of 100 wt% LSM. The cathodes incorporating CGO into the structure gave 

improved performance over those fabricated using YSZ. 
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Holtappels et al. presented the multilayered cathodes composed of LSM and YSZ 

[19]. Some cathodes additionally carried a number of layers with a graded transition from 

LSM to strontium doped lanthanum cobaltite (LSC) to add an electronically highly 

efficient current collector. The cathodes were prepared by spray printing and low 

temperature sintering. The multilayered cathodes gave improved electrochemical 

performances compared to that of conventional cathodes. 

Liu et al. fabricated nanostructured composite cathodes graded in both 

composition and microstructure using combustion CVD process [20]. The first layer 

comprises a 10 μm thick fine-grained 60 wt% LSM and 40 wt% GDC on the YSZ 

electrolyte. The second layer consists of 30 wt% LSM, 30 wt% LSC and 40 wt% GDC. 

Sequentially, a coarse layer of 60 wt% LSC and 40 wt% GDC was deposited on top of 

the cathode, as shown in Figure 1.11. The functionally graded structures of these 

cathodes dramatically increased the rates of electrode reactions and enhanced the 

transport of oxygen molecules to the active reaction sites. As a result, low interfacial 

polarization resistances and high power densities were achieved. 

 

 
Figure 1.11 Schematic diagram of the functionally graded SOFC configuration [20]. 



 19

Instead of FGMs, pore channels were applied to the SOFC electrode layers for 

improved SOFC performance. The “multistage nanoporous nickel substrate,” which has 

channels connecting both sides of the substrate, was fabricated for a SOFC anode, as 

shown in Figure 1.12 [23]. The term “multistage nanoporous nickel substrate” means that 

the pore size changes along the thickness direction of the substrate. The transition of pore 

size from 20 to 200nm takes place within 500nm from the 20nm surface. These channels 

enhance the delivery of fuel gas and the removal of H2O vapor.  

 

 

Figure 1.12 Schematics of thin-film SOFC fabricated on the multistage nanohole 
array nickel substrate [23]. 
 

1.5.2. SOFC Modeling of Microarchitectures in SOFC Electrodes 

Mathematical modeling in fuel cell research has been successfully used for more 

than a decade now. Since experimental studies on SOFC are expensive, time-consuming 

and labor-intensive, quantitative mechanistic models are essential for SOFC technology 

development. A validated mechanistic model offers detailed insights into the complex 

physical phenomena governing SOFC performance. Therefore, it can be used as a 

numerical tool for cell design and optimization. 

A mathematical model was developed for modeling the performance of SOFC 

with functionally graded electrodes (FGE) at the micro-scale level [24, 25]. Comparison 
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between conventional non-graded (uniform random composites) electrodes and two types 

of FGEs, namely particle size graded and porosity graded SOFC anodes shown in Figure 

1.13, were conducted to evaluate the potential of FGE for SOFC. Improved performance 

of both types of FGEs was observed due to reduced mass transport resistance and 

increased volumetric reactive surface area close to the electrode-electrolyte interface. It 

was found that the particle size graded SOFC anode showed the best performance. 

 

 

                               (a)                                                                   (b) 

Figure 1.13 Schematics of functionally graded electrodes: (a) porosity grading, and 
(b) particle size grading [24, 25]. 
 

 

Modeling of SOFC incorporating pore channels in the electrodes was conducted. 

Two types of planar SOFCs, which have channels in both the anode and the cathode, 

were computationally analyzed, as shown in Figure 1.14 [26].  A fully three-dimensional 

numerical analysis of the fluid dynamics and electrochemical kinetics was conducted for 

planar SOFCs. It was found that the fuel and air flow is progressively heated up along 

with the flow direction, and the hotspot locates at the end of the anode near the 
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electrolyte, when the air and fuel stream is the co-flow. The output voltage measured in 

experiments and calculated using models agreed well. 

 

 

Figure 1.14 Schematics of two types of planar SOFCs [26]. 
 

1.6. Dissertation Outline 

The remainder of this dissertation is divided into four chapters.  

Chapter 2 presents the motivation to improve SOFC performance by controlling 

the distribution of the electrode layer materials. The limitation of conventional techniques 

to fabricate SOFCs with precise control over the orientation, placement, architecture, and 

distribution of conducting and porous pathways is discussed. A concept incorporating 

conducting wires and designed porous channels in the electrodes is proposed for 

improving the transport of electrons, reactant and product gases, which can result in 

improved overall performance of a SOFC. 
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 Chapter 3 describes the development of a fundamental computational model-

based approach to enhance the performance of SOFCs with a microarchitectured design. 

The performance improvement of mircoarchitectured SOFCs by applying this 

computational model to a typical SOFC is investigated and predicted. Moreover, the 

analysis of thermal stresses in the microarchitectured SOFC is investigated to examine 

the possibility of failure due to the presence of designed pore channels. 

Chapter 4 focuses a proof-of-concept microarchitectured SOFC based on anode-

supported SOFC button cells. Fabrication of microarchitectured SOFCs through laser 

ablation technique is demonstrated. The performance of a fabricated SOFC unit cell is 

characterized and compared against the performance predicted by the computational 

model. 

Chapter 5 revisits the research objectives of this dissertation and summarizes the 

contributions of this dissertation. Recommendations for future work are also addressed. 
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CHAPTER 2 

MOTIVATION AND STATEMENT OF RESEARCH 

 

This chapter presents the limitations of conventional techniques to fabricate 

SOFCs with precise control over the orientation, placement, architecture, and distribution 

of conducting and porous pathways. The scientific basis and the motivation to improve 

SOFC performance by controlling the distribution of the electrode layer materials are 

presented. A concept incorporating conducting wires and designed porous channels in the 

electrodes is proposed for further investigation with the objective of achieving improved 

SOFC performance via improved transport of electrons, reactant and product gases. 

2.1. Drawbacks of State-of-the-Art SOFC Manufacturing Techniques 

Conventional techniques to fabricate SOFCs includes chemical vapor deposition 

(CVD), physical vapor deposition (PVD), electrochemical vapor deposition (EVD), 

electrophoresis deposition (EPD), atmospheric plasma spraying (APS), vacuum plasma 

spraying (VPS), sputtering, flame coating, laser ablation, sol-gel coat, and ceramic 

forming techniques such as tape casting, tape calendaring, screen printing, and dry press 

formation. These manufacturing techniques are not adequate for precise control over the 

orientation, placement, architecture, and distribution of conducting and porous pathways. 

Figure 2.1 shows a schematic of a typical SOFC made by conventional techniques and 

the random distribution of conducting particles and interconnected porosity that results as 

a function of the manufacturing technique. 

Efforts to reduce ohmic polarization and concentration polarization are needed to 

achieve higher performance in the SOFCs, since the activation loss or charge transfer is 
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usually small at the high operating temperature of SOFC’s. This can be accomplished by 

controlling the distribution of the anode and cathode layer materials so as to optimize 

both electronic conductivity and gaseous mass transport.  

 

 

(a) 

 
                                                                       (b) 

Figure 2.1 (a) Conventional planar SOFC architecture with random distribution of 
conducting particles and interconnected porosity that results from the conventional 
manufacturing techniques, and (b) Scanning electron micrograph of a SOFC made 
by conventional techniques [27]. 
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The electronic conductivity of the anode, which is a cermet of metal and YSZ, can 

be expressed by the equation of the generalized effective media theory (GEM) [28]: 
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where O
metal is the conductivity of pure metal at 25°C, Vp and VYSZ are the volume fractions 

of pores and YSZ, respectively, Viso,c is the critical volume fraction of isolating phases, 

where the first percolation pathways are formed by metal, and n is an empirical exponent. 

To reduce ohmic polarization in the electrodes, for instance, straight metal wires from the 

electrode-electrolyte interface to the current collector can be formed inside the electrode. 

For the straight metal wire, the electronic conductivity is directly O
metal , which will 

increase the overall electronic conductivity of the electrode, i.e., it will decrease Relectronic 

value in equation (1.4). 

The mass diffusion coefficient for species i in a gaseous mixture is computed as 
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where Xi is the molar fraction of species i, and Dij is the binary mass diffusion coefficient 

of a mixture of species i and j.  

The binary diffusion coefficient Dij of a mixture species i and j is computed using 

the Fuller et al. expression [29]: 
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where 12(1/ 1/ )ij i jM M M   , M is molecular weight in kg/kmol, υ is the special Fuller et 

al. diffusion volume in m3/kmol, T is the absolute temperature in K, and P  is the pressure 

in Pa. 
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For straight and round pores [30], Knudsen diffusion is given by 

            97.0K p
i

T
D r

M
                                                                                                (2.4) 

where DK is Knudsen diffusion coefficient in m2/s, rp is the average radius of the pore in 

m, T is the absolute temperature in K, and Mi is molecular weight of species i in kg/kmol. 

Due to the tortuous pathways and constrictions in the pores, the diffusivity is 

corrected by a tortuosity factor, τ, and porosity of porous medium, ε. The tortuosity factor 

accounts for both the effects of altered diffusion path length and the changing cross-

sectional area in constrictions. A lower value of tortuosity implies a shorter mean 

diffusion path length and hence higher diffusivity. 

Thus, the overall effective diffusion coefficient is given by [30] 
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                                                                                      (2.5) 

Therefore, if straight porous channels are constructed inside the electrodes, the tortuosity 

factor will be decreased and the overall effective diffusion coefficient will be increased. 

This results in improved mass transport, decrease in the conc  value in Equation (1.2), and 

therefore reduction in concentration polarization losses. 

It is clear that simultaneously increasing electronic conductivity and diffusivity 

(through porosity control) in the electrodes leads to improved SOFC performance. 

However, from a SOFC design and manufacturing perspective, these objectives are 

conflicting. Conventional SOFC manufacturing techniques create tortuous porosity 

pathways and random distribution of electronically conducting networks in the 

electrodes. They do not provide adequate control over the orientation, placement, 

architecture, and distribution of conducting and porous pathways so as to fully optimize 
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SOFC performance. Fabrication of SOFCs with optimized material microarchitectures 

thus requires new computational design and novel manufacturing techniques. 

 

2.2. Simultaneous Optimization of Mass Transport and Conductivity 

In a majority of conventional techniques that are used to produce the films of 

SOFC materials, SOFC components are mixed with molten resin before processing, 

which causes tortuous porosity pathways and random distribution of electronically 

conducting networks in the electrodes. The fabrication of a SOFC with intentionally 

designed conducting wires and porous channels is nearly impossible using these 

techniques. Therefore, new and novel fabrication techniques that enable controlled 

distribution of SOFC materials are needed. Alternatively, additional fabrication processes 

should follow conventional techniques. 

Researchers around the world have focused their efforts on the development of 

new SOFC materials and on new fabrication techniques to enhance the performance of 

SOFCs. Studies to incorporate the microarchitectures in the electrode layer materials for 

the performance improvement of SOFCs have also been investigated, as discussed in 

section 1.5. However, SOFCs with FGMs still have the random distributions of electrode 

materials and porosity. This can cause inconsistent performance of SOFCs. On the other 

hand, by incorporating conducting wires and designed porous channels in the electrodes, 

the distribution of electrode materials and porosity can be intentionally designed. 

Therefore, mass transport and electron transport in the electrode can be decoupled and 

controlled individually. This can result in more consistent SOFC performance while 

providing opportunities to perform more systematic design optimization. A few studies 

investigated incorporating pore channels in the electrodes [23, 26]. However, electrodes 
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including predefined porous channel dimensions for both studies were fabricated or 

simulated. Systematic approaches to the computational design and performance 

optimization of microarchitectured SOFCs were not developed.   

A schematic cross-section of a SOFC concept that better addresses the 

multifunctional requirements elaborated in chapter 1 is shown in Figures 2.2 (a) and (b). 

This concept incorporates conducting wires and designed porous channels in the 

electrodes, for improved transport of electrons, reactant and product gases, which can 

result in improved overall performance of a SOFC. This dissertation focuses on the 

computational design optimization and experimental validation of one aspect, the anode 

side porous channels, of this concept. 

 

    

 
                                 (a)                                                                       (b) 

Figure 2.2 Schematic cross-section of a SOFC with (a) designed porous channels, 
and (b) designed conducting wires and designed porous channels. 
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2.3. Statement of Research 

The main objectives of this dissertation are to: 

1. Investigate the computational design and performance optimization of 

microarchitectured SOFCs that simultaneously optimize mass transport and 

electron transfer so that SOFC performance could be greatly improved over 

currently attainable performance in state-of-the-art SOFCs. A coupled 

multiphysics simulation of mass transport, electrochemical charge transfer 

reaction, and current balance will be developed and tested as a function of 

SOFC microarchitecture.  

2. Demonstrate the fabrication of microarchitectured SOFCs, based on anode-

supported SOFC button cells through laser ablation technique.  A 

femtosecond laser will be utilized to micromachine pore channels in the 

button cell. Micromachining process parameters will be optimized to achieve 

the desired pore size, geometry, and depth. Micromachined pores will be 

characterized using interferometry-based non-contact profilometry and 

scanning electron microscopy. 

3. Characterize the performance of micromachined SOFC unit cells and compare 

it against the performance of a “baseline” unmicromachined cell, as well as 

against the performance predicted by the computational model, as a proof-of-

concept. Performance characterization of SOFC button cells will include 

power output performance and electrochemical impedance spectroscopy. The 

fundamental computational model developed earlier will be applied to the 
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specific SOFC to compare experimentally measured performance data against 

the model’s predictions. 

4. Present recommendations for future work on further optimization of SOFC 

performance and for scale-up fabrication of microarchitectured SOFCs. 
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CHAPTER 3 

COMPUTATIONAL DESIGN OF OPTIMAL 

MICROARCHITECTURES 

 

The objective of this chapter is to develop a fundamental computational model-

based approach to enhance the performance of SOFCs with microarchitecture design and 

to investigate and predict the performance improvement of mircoarchitectured SOFCs by 

applying this computational model to a typical SOFC.  

3.1. Design Optimization for a Typical SOFC Unit Cell 

3.1.1. Baseline Unit Cell Geometry and Modeling Assumptions 

Button cells are widely used in SOFC experimental studies due to their simple 

experimental set up and operation. Therefore, the anode-supported SOFC button cell will 

be used for model validation, computational design, and performance optimization of 

microarchitectured SOFCs that simultaneously optimize mass transport and electron 

transfer.  

For the sake of simplicity of calculation, one repeating cell unit is analyzed in this 

simulation. The size of one baseline unit is 1mm (l) × 1mm (w) × 1.06mm (h) with 1mm 

thick Ni-YSZ anode, 10µm thick YSZ electrolyte, and 50µm thick LSM-YSZ cathode as 

shown in Figure 3.1.  
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Figure 3.1 Schematic of a SOFC button cell and baseline unit cell geometry. 

 

The assumptions made in the analysis are as follows: 

 The SOFC operates at steady state. 

 The reactant gas mixture is approximated as an ideal gas. 

 The model is assumed to be isothermal and the cell runs at 800°C. 

 Convection flux is neglected and only diffusion is considered in the porous electrode.  

 Pressure gradients in the porous electrode are also neglected. 

 The mathematical simulation is performed at 0.7V, which is the typical operating 

voltage of SOFCs. 

 A reaction zone layer where electrochemical reactions occur is assumed in both 

electrodes. 
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3.1.2. Modeling Methodology 

The modeling methodology is illustrated in Figure 3.2. The ionic and electronic 

charge balance, the mass balance, and the electrochemical charge transfer reactions are 

considered for modeling, as shown in Figure 3.2. In this study, the open-circuit state is 

chosen as the reference state. The simulations produce average current density and 

polarization curves as the outputs. With the coupled governing equations, the operating 

conditions and the microarchitecture design as the inputs, the model is validated and 

performance optimization is executed. 

 

 

Figure 3.2 Modeling methodology. 

 

 The electronic and ionic potential in the current balance is explained more clearly 

as follows. The continuity of current in a conducting material can be stated as follows:         
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0i                                                                                                               (3.1) 

where i stands for the current density vector. Two types of charges are present in fuel cell 

systems—electrons and ions. Since both types of charges are generated from originally 

neutral species (hydrogen and/or oxygen), overall charge neutrality must be conserved, as 

follows: 

0el ioni i                                                                                                  (3.2) 

where iion stands for the ionic current density through an ion-conducting phase such as a 

catalyst layer or an electrolyte membrane, and iel stands for an electronic current density 

in an electron-conducting phase such as a catalyst layer or an electrode. Equation 3.2 can 

be rearranged and related to local current density, j, as follows: 

ion el TPBi i S j                                                                                         (3.3) 

By incorporating Ohm’s law into this equation, we get 

 ( ) ( )ion ion el el TPBS j                                                               (3.4) 

where Фion and Фel are the electric potentials in the ionic and electronic conductors, 

respectively, σion and σel are the ionic and electronic conductivities, respectively, and STPB 

is the electrochemically active area per unit volume of the electrode. 

 The electric potential distribution of an SOFC [31] is shown schematically in 

Figure 3.3. The measured cell voltage is given as the difference between the electric 

potentials of the current collectors at the anode and the cathode. The cell voltage is then 

described by: 

, ,( ) ( ) ( )el ca el anE i i i                                                                                 (3.5) 

where Фel is the electric potential in an electronic conducting phase.  
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Figure 3.3 Electric potential distribution in a polarized SOFC with porous 
composite electrodes. 

 

The electrodes are at different potentials due to the two electric potential steps, 

∆Фan and ∆Фca, that form at the electrical double layers at the anode/electrolyte and 

cathode/electrolyte interfaces, respectively. 

, ,( ) ( )an el an ion any y                                                                           (3.6) 

, ,( ) ( )ca el ca ion cay y     

where Фion is the electric potential in an ionic conducting phase. Since composite 

electrodes consist of electronic and ionic conducting phases, the potential steps depend 

on the spatial position y along the electrode thickness. Additionally, there is a potential 

gradient inside solid electrolyte due to ohmic resistance, resulting in a potential drop over 

the solid electrolyte. All potentials depend on the cell current density. 
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 If flat electrodes and no gradients within electrodes are assumed, the cell voltage 

can be represented by combining Equation (3.5) and (3.6) and subtracting the potential 

drop over the solid electrolyte: 

( ) ( ) ( )ca an elytE i i i iR                                                                      (3.7) 

where Relyt is the ohmic resistance of the electrolyte. 

The transfer of charges between the electronic and ionic conductor is illustrated in 

Figure 3.4 and described by the polarization equation that can be written in the general 

Butler-Volmer form, as follows: 

 0 exp exp (1 )prodreact e e
bulk bulk
react prod
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j j

C RT C RT
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                                  (3.8) 

where j0 is the exchange current density; α the charge transfer coefficient; ne the electrons 

transferred per reaction; F the Faraday constant; R the gas constant; T the temperature; 

reactc , bulk
reactc , prodc , bulk

prodc  are the reactant and product concentrations at the reaction active 

sites and the electrode-gas channel interface; and η is the local overpotential. 

 
Figure 3.4 Charge transfer between electronic and ionic conductor. 

 
 The operating cell voltage, E(i), is usually much lower than the Nernst potential 

due to irreversibilities as mentioned in section 1.4. Thus, E(i) can be written as: 
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( ) ( ) ( )Nernst an ca elytE i E i i iR                                                               (3.9) 

where ENernst is the Nernst potential, ηan and ηca are the potential losses in the anode and 

cathode, respectively, and Relyt is the ohmic resistance of the electrolyte. 

 By comparing Equation (3.7) and (3.9), the local overpotential is defined as: 

( )el ion ref                                                                                   (3.10)                         

where Фion and Фel are the electric potentials in the ionic and electronic conductors, Фref 

is the relative potential difference between the electronic and ionic conductors at the 

reference state, ψ=1 in the anode, and ψ=-1 in the cathode. In this study, the open-circuit 

state is chosen as the reference state. By setting Фref,an to zero, the cathode reference 

potential Фref,ca becomes the open circuit voltage. Therefore, Фref,ca can be obtained from 

the Nernst equation. 

Diffusion inside the porous media is important for fuel cell reactions. Diffusion in 

a porous medium is usually described by molecular diffusion and Knudsen diffusion. 

Knudsen diffusion occurs when the diameter of the pores in the porous medium is small 

compared with the mean free path of the gas molecules, i.e. Knudsen number Kn>>1. 

Molecular diffusion occurs when the pore diameter is large compared with the mean free 

path of the gas molecules, i.e. Kn<<1. For SOFCs, both Knudsen and molecular diffusion 

processes have to be considered since, in general, Kn≈1 [26]. Therefore, the effective gas 

diffusion coefficient for component i in the porous media can be expressed as a 

combination of the Knudsen diffusion and molecular diffusion (Equation (2.5)). The 

mass balance for the species at steady state in the macroscopic structure is governed by 

the equation below, neglecting the convection term: 

, )i eff i iD c R                                                                                         (3.11) 
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where ci is the concentration and Ri is the source term of mass balance and can be 

formulated as the reaction rate of the electrochemical and chemical reactions. 

In the reaction active sites of the cathode, the relationship between the mass 

balance source term and the current source term can be stated according to the Faraday’s 

law as: 

2

,

4
trans ca TPB

O

j S
R

F
                                                                                          (3.12) 

where jtrans,ca is local charge transfer current density at the cathode, STPB is the three-phase 

boundary active area per unit volume, and F is the Faraday constant. 

In the reaction active sites of the anode, the reactions include the electrochemical 

reactions of hydrogen and carbon monoxide and the shifting reactions. Similar to the 

cathode, the relationship between the mass balance source term and the current source 

term can be built: 
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F
                                                                                           (3.14) 

In the remaining electrode regions, the mass balance source term is equal to zero, 

that is, Ri = 0. In the designed porous channels, only molecular diffusion processes are 

considered, since Kn<<1. Therefore, the effective gas diffusion coefficient in the 

designed porous channels can be expressed as Equation (2.3). Furthermore, Ri = 0 

because there is no source or sink in the designed porous channels. 

In the reaction active sites of the cathode, the ionic charge balance can be 

described as:  
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, , ,)ion ca ion ca trans ca TPBj S                                                             (3.15) 

Similar to the ionic charge balance, the electronic charge balance in the reaction 

active sites of the cathode can be described as: 

, , ,)el ca el ca trans ca TPBj S                                                                  (3.16) 

Similar to the cathode, the ionic charge balance and the electronic charge balance 

in the reaction active sites of the anode can be described as: 

, , ,)ion an ion an trans an TPBj S                                                              (3.17) 

, , ,)el an el an trans an TPBj S                                                               (3.18) 

In the remaining electrode regions, the current balance source term is equal to 

zero. Within the electrolyte layer, there is only ion conduction and there are no current 

sources or sinks. Consequently, only ohmic polarization exists in the electrolyte and the 

charge balance governing equation can be described as: 

, , ) 0ion electrolyte ion electrolyte                                                             (3.19) 

3.1.3. Simulation Results 

3.1.3.1. Baseline Unit Cell 

Electrochemical charge transfer reactions in a SOFC are likely to occur in an 

electrochemically active region, the TPB area, close to the electrolyte. The thickness of 

the electrochemically active region can be varied with different fabrication methods. A 

spray painted LSM-YSZ cathode showed decreasing interfacial resistance with increasing 

cathode thickness but reached a saturation value at  approximately 10µm [32]. Tape-cast 

LSM-YSZ cathodes showed no performance change between 20 and 50µm [33]. The 

electrochemically active region typically extends 10 to 20μm from the electrolyte 
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boundary into the electrode [33-36]. In order to remove ambiguity, the thickness of the 

electrochemically active region is chosen to be 10µm or 20µm in this study. The average 

current density at locations along the SOFC cell thickness is computed by averaging the 

current density distribution across the entire planar area at each location. The electronic 

and ionic current density distributions at the typical operating voltage of SOFCs, 0.7V, in 

the anode, cathode, and electrolyte along the cell thickness direction, with the assumption 

of a 10µm thick reaction zone layer are shown in Figures 3.5 (a) and (b). The electronic 

and ionic current density distributions at the typical operating voltage of SOFCs, 0.7V, in 

the anode, cathode, and electrolyte along the cell thickness direction, with the assumption 

of a 20µm thick reaction zone layer are shown in Figures 3.6 (a) and (b). Most ions are 

eliminated or generated near the electrode-electrolyte interface where most electrons are 

generated or eliminated, respectively. The results display typically expected variation of 

electronic and ionic current density since the electrochemical charge transfer reactions 

occur in the TPB region close to the electrolyte. The concentration distributions of H2 and 

H2O in the anode along the cell thickness direction, with the assumption of 20µm thick 

reaction zone layer are shown in Figure 3.7 (a) and (b), respectively. It can be observed 

that the concentration of H2 decreases in the anode from fuel channel/anode interface to 

anode/electrolyte interface, while the concentration of H2O increases. This is due to the 

electrochemical oxidation of H2 at the reaction active sites resulting in the production of 

H2O. Consumption of H2 at the anode/electrolyte interface results in the depletion of H2 

within the anode. The concentration of H2 falls from its bulk value at the fuel channel to a 

much lower value at the reaction active sites, while the concentration of H2O rises since it 

is the product. 
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(a)                                                                

 
(b) 

Figure 3.5 (a) Current density distribution and (b) Magnified view of current 
density distribution with the assumption of 10µm thick reaction zone layer. 
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(a) 

 
 (b) 

Figure 3.6 (a) Current density distribution and (b) Magnified view of current 
density distribution with the assumption of 20µm thick reaction zone layer. 
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(a) 

  
(b) 

Figure 3.7 (a) H2 and (b) H2O concentration (mol/m3) in the anode along the cell 
thickness direction, with the assumption of 20µm thick reaction zone layer. 
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3.1.3.2. Model Validation 

The model was validated against two sets of experimental results published in the 

literature. The polarization curves obtained by this model’s simulations were compared 

with experimental data in the literature.  

First Experimental Validation 

Experimental parameters input to model [37, 38] (from experimental measurement by 

W.A. Rogers et al.) are as follows: 

 Electrolyte thickness: 10 µm 

 Anode electrode layer thickness: 1 mm 

 Anode reaction zone layer thickness: 20 µm 

 Cathode electrode layer thickness: 50 µm 

 Cathode reaction zone layer thickness: 20 µm 

 Electrode porosity: 37.5 % 

 Fuel composition: H2 95 % H2O 5 % 

 Oxidant: air 

The other input parameters to model are described in Table 3.1. 

 

Table 3.1 The other input parameters to model [30, 39-42]. 
 
Cathode exchange current density, j0,ca (A m-2) 
Anode exchange current density, j0,an (A m-2) 
Transfer coefficient, α 
Temperature, T (K) 
Average pore radius, rp (µm) 
Ionic conductor conductivity, σion (S m-1)  
Cathode electronic conductor conductivity, σelec,ca (S m-1) 
Anode electronic conductor conductivity, σelec,an (S m-1) 

 
2000 
5300 
0.5 
1073.15 
0.5 
3.34×104exp(-10,300/T) 
42×106exp(-1,200/T) 
95×106exp(-1,150/T) 
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Since the tortuosity value for SOFC electrodes is a difficult parameter to measure 

through experiment, the tortuosity value is treated as an adjustable parameter to assure 

the agreement of the modeling results and experimental data. The typical tortuosity value 

reported for SOFC electrodes is in the range of 2-6 [43, 44]. The value of tortuosity is 

varied to obtain the best agreement between the present model predictions and the 

experimental results. A tortuosity value of 2.75, used in the present model, is in the 

typical range for SOFC electrodes and provides the best agreement with the experimental 

results, as shown in Figure 3.8.   

 
Figure 3.8 j-V curve for model and experimental data by Rogers et al.. 

 

Second Experimental Validation 

Experimental parameters input to model [36, 45] (From experimental measurement by 

Feng Zhao et al.) are as follows: 

 Electrolyte thickness: 8 µm 
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 Anode electrode layer thickness: 1 mm 

 Anode reaction zone layer thickness: 20 µm 

 Cathode electrode layer thickness: 50 µm 

 Cathode reaction zone layer thickness: 20 µm 

 Anode porosity: 48 % 

 Fuel composition: H2 97 % H2O 3 % 

 Oxidant: air 

The other input parameters to model are the same as in Table 3.1. 

 The value of tortuosity is varied as in the previous model validation. A tortuosity 

value of 3, used in the present model, is in the typical range for SOFC electrodes and 

provides the best agreement with the experimental results, as shown in Figure 3.9. 

 

 
Figure 3.9 j-V curve for model and experimental data by Zhao et al.. 
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3.1.3.3. Microarchitectured SOFC Structure 

A cylindrical pore channel is applied in the center of the anode layer as shown in 

Figure 3.10. A gap between the anode-electrolyte interface and the cylindrical pore 

bottom is included in order to provide a space for the electrochemically active region.  

The diameter of the cylindrical pore channel is varied from 100 to 900µm in order to 

investigate the effect of the size of the cylindrical pore channel. 

 

 

(a) 

 

(b)                                                                     (c) 

Figure 3.10 SOFC with a cylindrical pore channel on the anode side (a) Top view, 
(b) Isometric view, and (c) Side view. 
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Through electronic current density distributions in the anode, cathode, and 

electrolyte along the cell thickness direction as shown in Figures 3.5 and 3.6, it can be 

found that the electronic current density is saturated near the electrode-electrolyte 

interface. This saturation current density, multiplied by the operating voltage, will be the 

power density of the SOFC cell. The saturation current density at the typical operating 

voltage of SOFCs, 0.7V, is plotted against the diameter of the microarchitectured pores in 

Figures 3.11 and 3.12 with the assumption of 10µm thick reaction zone layer and 20µm 

thick reaction zone layer, respectively.  

 

   
Figure 3.11 Current density vs. cylindrical pore diameter with the assumption of 
10µm thick reaction zone layer. 
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Figure 3.12 Current density vs. cylindrical pore diameter with the assumption of 
20µm thick reaction zone layer. 
 

 

The plots show continuous and smooth variation of the current density as a 

function of pore diameter consistent with the model’s predictions. The saturation current 

density is proportional to the diameter of the microarchitectured pore. With a 10µm thick 

reaction zone layer and a 900µm diameter pore channel, an improvement in the current 

density of 59% over the baseline structure is achieved. With a 20µm thick reaction zone 

layer and a 900µm diameter pore channel, an improvement in the current density of 66% 

over the baseline structure is achieved. 

Next, an array of cylindrical pore channels is applied, keeping the pore area 

fraction the same as for the 900µm diameter cylindrical pore channel. Pore channel 

arrays of 2×2, 3×3, and 4×4 configurations are considered as described in Figure 3.13.  
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Figure 3.13 Top view of anode and cylindrical pore channels. 

 

The saturation current density at the typical operating voltage of SOFCs, 0.7V, is 

plotted against the number of anode cylindrical pores in Figures 3.14 (a) and (b) with the 

assumption of a 10µm thick reaction zone layer and a 20µm thick reaction zone layer, 

respectively. The saturation current density is increased as the number of anode 

cylindrical pores is increased. With the 10µm thick reaction zone layer and a pore 

channel array of 4×4 configuration, an improvement in the current density of 62% over 

the baseline structure is achieved. With the 20µm thick reaction zone layer and a pore 

channel array of 4×4 configuration, an improvement in the current density of 70% over 

the baseline structure is achieved.  

 

 

 

900µm 

 

 
450µm

 

  

 
 300µm   

   

   

 
225µm
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(a) 

  
(b) 

Figure 3.14 Current density vs. number of cylindrical pores (a) with the assumption 
of 10µm thick reaction zone layer and (b) with the assumption of 20µm thick 
reaction zone layer. 
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The improvement in current density flattens out after a pore channel array of 3×3 

configuration. There is no significant difference between pore channel arrays of 3×3 

configuration and 4×4 configuration. The incremental improvement in the current density 

of less than 0.3 % between pore channel arrays of 3×3 configuration and 4×4 

configuration is achieved. This result indicates that there is no more significant effect on 

distributing the pore area evenly throughout the entire anode layer after a pore channel 

array of 3×3 configuration. 

The distributions of species concentration in the anode are shown in Figure 3.15 

and 3.16. In Figure 3.15 (a), the H2 concentration of the baseline structure reduces rapidly 

along the z direction. In Figure 3.15 (b), the H2 concentration of the SOFC with a pore 

channel array of 4×4 configuration is more uniform throughout the entire anode layer 

than the baseline structure. This can be observed when comparing the minimum 

concentrations of baseline structure and the SOFC with a pore channel array.  

When the H2 concentration in the reaction zone layer is integrated, there are 

1.98E-10 mol and 2.17E-10 mol of H2 in the reaction zone layer for the baseline structure 

and the SOFC with a pore channel array, respectively. 

In Figure 3.16 (a), the H2O concentration of the baseline structure rises along the 

z direction in contrast to the H2 concentration. Similar to H2 concentration, the H2O 

concentration of the SOFC with a pore channel array of 4×4 configuration is more 

uniform throughout the entire anode layer than the baseline structure in Figure 3.16 (b). 

This can be observed by comparing the maximum concentrations of the baseline structure 

and the SOFC with a pore channel array.  
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(a) 

 

(b) 
Figure 3.15 H2 concentration (mol/m3) of (a) baseline structure and (b) SOFC with a 
pore channel array of 4×4 configuration (20µm thick reaction zone layer). 
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(a) 

 
(b) 

Figure 3.16 H2O concentration (mol/m3) of (a) baseline structure and (b) SOFC with 
a pore channel array of 4×4 configuration (20µm thick reaction zone layer). 
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When the H2O concentration in the reaction zone layer is integrated, there are 

4.92E-11 mol and 1.14E-11 mol of H2O in the reaction zone layer for the baseline 

structure and the SOFC with a pore channel array, respectively.  

Therefore, it is observed that with pore channels, reactants can easily reach the 

reaction active region, and products can also be removed faster through pore channels 

from the reaction active region. 

 
3.2. Analysis of Thermal Stresses 

This section presents the analysis of thermal stresses in the microarchitectured 

SOFC. The objective is to examine the possibility of failure due to the presence of 

designed pore channels. 

3.2.1. Modeling Assumptions and Model Geometry 

The assumptions made in this analysis are as follows: 

 The model is assumed to be isothermal and at steady state. 

 The thermal expansion coefficients are constant over the considered range of 

temperature, e.g. values from the literature applicable over a range of 273-1300K. 

 The value of Young’s modulus and Poisson’s ratio at room temperature are used. 

Their precise dependency on temperature is not modeled. 

 The value of the zero stress temperature is of the highest importance for the 

determination of the magnitude of the stresses. A uniform zero-stress temperature of 

1400K is used in the present study. 
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The value of the zero stress temperature is of the highest importance for the 

determination of the magnitude of the stresses. Numerical computation is carried out for 

ΔT = -1102°C. In reference to the physical problem, this means the stress-free state is 

assumed at the manufacturing temperature at which the layers are joined (1400K) and the 

thermal stresses are examined at the room temperature (298K).  

Due to symmetry, one quarter of the cell is modeled as shown in Figure 3.17.  The 

anode-supported button cell is modeled with a 1mm thick Ni-YSZ anode, a 10µm thick 

YSZ electrolyte, and a 50µm thick LSM-YSZ cathode. The diameter of the anode-

supported button cell is 10mm and the cathode area is 0.3cm2. The gap between the 

anode-electrolyte interface and the cylindrical pore bottom is 20 µm. The diameter of the 

cylindrical pore channel is 225µm.  

 

 
Figure 3.17 Model geometry. 
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Simulations have been conducted using ABAQUS commercial software using 

published input parameters [46-50]. 

 

 Table 3.2 Material properties of SOFC components [46-50]. 
Component Young’s 

modulus, E 
(GPa) 

Poisson’s 
ratio, υ 

Coefficient of 
thermal 
expansion, α 
(×10-6K-1) 

Modulus of 
rupture (MPa) 

Cathode 
(LSM) 
Electrolyte 
(YSZ) 
   1073K 
   298K 
Anode  
(NiO-YSZ) 

35 
 
 
 
183 
212 
57 

0.25 
 
 
 
0.313 
0.32 
0.28 

11.7 
 
 
 
10.8 
 
12.2 

46 
 
 
 
377 
 
56 

 

3.2.2. Simulation Results 

Fracture in the ceramic will occur when the maximum principal stress exceeds the 

modulus of rupture or the ultimate tensile strength of the ceramic [51]. The distribution of 

the maximum principal stresses is shown in Figure 3.18. The largest maximum principal 

stress, located at the interface between electrolyte and anode, is 47.62MPa. This stress 

value is below the modulus of rupture of the NiO-YSZ anode, which is 56MPa. This 

indicates there is no fracture with porous channels being present. 
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Figure 3.18 Distribution of the maximum principal stress.  

 

3.3. Conclusions 

A fundamental computational model-based approach to enhance the performance 

of SOFCs with microarchitectured design was developed. The SOFC model developed 

during this work was validated against two different sets of published experimental data. 

The performance of microarchitectured SOFCs was optimized in order to achieve higher 

power density than currently attainable in state-of-the-art SOFCs. An improvement of 

60~70% in the current density was predicted by using porous channels in the anode layer 

over the baseline structure. 

Furthermore, the analysis of thermal stresses in the microarchitectured SOFC was 

investigated to examine the possibility of failure due to the presence of designed pore 

channels. The result indicated there is no fracture with porous channels being present. 
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CHAPTER 4 

FABRICATION AND CHARACTERIZATION 

 

The objective of this chapter is to prove that the performance of 

microarchitectured SOFCs can be improved as predicted by the fundamental 

computational model. As a proof-of-concept, a real and specific SOFC is chosen, 

fabricated and characterized. Furthermore, the developed fundamental computational 

model is applied to this SOFC. Experimentally measured performance data is compared 

against the model’s predictions. This chapter describes the SOFC button cell fabrication 

technique using sintering and laser ablation, pore size and geometry characterization 

using interferometry-based surface profilometry and scanning electron microscopy, 

SOFC button cell performance testing including power output performance and 

electrochemical impedance spectroscopy, and modeling of a realistic SOFC button cell. 

 

4.1. Fabrication of Anode-supported Button Cell 

As mentioned in chapter 2, in a majority of conventional techniques used to 

fabricate SOFCs, SOFC components are mixed with molten resin before processing. This 

results in tortuous porosity pathways and random distribution of electronically 

conducting networks in the electrodes. The fabrication of a SOFC with intentionally 

designed conducting wires and porous channels is nearly impossible using these 

techniques. Therefore, new and novel fabrication techniques that enable controlled 

distribution of SOFC materials are needed. Alternatively, additional fabrication processes 

should follow conventional techniques. In this study, anode-supported SOFC button cells 



 60

are first fabricated by powder pressing and sintering. Laser ablation techniques are 

investigated to produce pore channels in the SOFC anode layer due to relatively easier 

fabrication. The fabrication of SOFC button cells consists of three main steps as follows. 

4.1.1. Fabrication of NiO-YSZ Anode Supports 

NiO and YSZ in a weight ratio of 65:35 with 5wt% corn starch are used as the 

raw materials. Starch is used as a pore former to enhance the porosity of the Ni/YSZ 

anode. Button anode supports are processed by pressing NiO-YSZ uniaxially under a 

pressure of 250MPa using a 13mm diameter die, and pre-calcined at 900°C for 2h in air.  

4.1.2. Fabrication of YSZ Membrane on Anode Supports 

A thin YSZ electrolyte on the button NiO-YSZ anode supports is prepared by a 

refined particle suspension coating technique [52]. The YSZ suspension is prepared by 

dispersing 3 g YSZ (TZ-8Y Tosoh, Japan) powders in 30 g ethanol with a small amount 

of organic ingredients, such as binder and dispersant, added. The YSZ membrane is then 

prepared by drop-coating the YSZ suspension on the button anode. The thickness of the 

YSZ membrane is exactly controlled by the volume of drop-coating. The coatings are 

dried in air for several minutes without any heating or cooling process and they are then 

co-sintered at 1400°C for 5 hours. The heating rate is 1°C / min before 550°C and 2°C / 

min from 550 to 1400°C. 

4.1.3. Preparation of Cathode 

Lanthanum strontium cobalt ferrite (LSCF) is used as the cathode. In order to 

avoid the reaction of LSCF and YSZ, a thin layer of Sm0.2Ce0.8O1.95 (SDC) is used as the 

buffer layer, which is co-fired with LSCF at 1080°C for 2h. The cathode area is 0.3cm2. 
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The schematic of a fabricated anode-supported button cell with a 700µm thick 

NiO-YSZ anode, a 15µm thick YSZ electrolyte, a 2µm thick SDC buffer layer, and a 

50µm thick LSCF cathode is shown in Figure 4.1. 

 

SDC

YSZ

NiO-YSZ

LSCF

SDC

YSZ

NiO-YSZ

LSCF

    
                          (a)                                                                    (b) 

Figure 4.1 (a) Schematic of anode-supported SOFC button cell and (b) actual 
fabricated button cell. 

 

4.2. Fabrication of SOFC Microarchitectures Using Laser Ablation 

4.2.1. Laser Ablation 

 Laser ablation is the removal of material from a surface as a result of absorption 

of laser radiation. The depth over which the laser energy is absorbed, and thus the amount 

of material removed by a single laser pulse, depends on the material's optical properties 

and the laser wavelength. The simplest application of laser ablation is to remove material 

from a solid surface in a controlled fashion. Laser machining and particularly laser 

drilling are examples; pulsed lasers can drill extremely small, deep holes through very 

hard materials. Solid-state lasers for materials processing are led by the Nd:YAG laser. 

Unlike the CO2 laser, the Nd:YAG can be efficiently converted to its harmonic 
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wavelengths of 532, 355, and 266nm, particularly when it is operating in a pulsed Q-

switched mode. This wavelength conversion feature permits more flexibility in 

applications. Another laser is the Ti:sapphire laser. The great advantage of this laser is its 

tunability near the fundamental wavelength of 800nm. The Ti:sapphire laser can also be 

efficiently frequency-doubled to provide tunable near-UV output. Additionally, mode 

locking of this laser creates femtosecond pulses [53]. The extremely high power density 

is available from femtosecond lasers. A femtosecond laser is able to ablate material with 

minimal damage to surrounding material.  

 

        
                          (a)                                                                    (b) 

Figure 4.2 Channels made in 1mm thick INVAR (nickel/iron alloy) (a) with long 
(nanosecond) pulses (b) with ultrafast (femtosecond) pulses [54]. 
 

 

Figure 4.2 (a) shows a channel made in 1mm thick INVAR (nickel/iron alloy) 

with long (nanosecond) pulses. It is observed that the machining process under these 

conditions is not very clean. A recast layer can be clearly seen near the edges of the 
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channel. Figure 4.2 (b) describes a channel machined in 1 mm thick INVAR under the 

same experimental conditions as the long pulse channel in Figure 4.2 (a), but with 

ultrafast pulses. This channel was machined with 200 femtosecond pulses, 0.5mJ energy 

per pulse. It is obvious that the channel machined with femtosecond pulses is cleaner than 

the sample machined with nanosecond pulses. The absence of a recast layer can be also 

observed. 

  

 
                        (a)                                                              (b) 

 
                         (c)                                                               (d) 

Figure 4.3 Holes in Al2O3: (a) entrance (b) exit (λ=355nm, fp=5kHz, Ep=0.22mJ) and 
holes in ZrO2: (c) entrance (d) exit (λ=355nm, fp=5kHz, Ep=0.23mJ) [55]. 
 

 



 64

Holes in Al2O3 and ZrO2 with diameters ≥ 5µm and the thickness of 250µm were 

fabricated using a Nd:YAG laser by Hellrung et al. [55], as shown in Figure 4.3. The 

absorption of many ceramics is poor for the fundamental wavelength of the Nd:YAG 

laser. The frequency-tripled Q-Switch Nd:YAG laser was used since the absorption is 

higher in the UV-range. 

 Dear et al. [56] micromachined a zircornia ceramic using an Nd:YAG laser with 

millisecond pulses at 1064nm. Multipulse drilled holes and the internal surface of the 

drilled hole are shown in Figure 4.4. 

 

 
Figure 4.4 Multipulse (eight pulses) drilled holes in yttria-stabilized zirconia for (a) 
an 18.5J pulse energy with the sample 4mm below focus (b) 18.5J pulse energy with 
the sample 2mm below focus (c) 18.5J pulse energy with the sample on focus (d) an 
8.5J pulse energy with the sample on focus, and (e) a 3J pulse energy with the 
sample on focus [56]. 
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 Shah et al. [57] demonstrated that a femtosecond laser with a wavelength of 

845nm, a pulse energy of 1.5mJ and a pulse duration of 110fs can be used to produce 

microscopic holes (<100µm diameter) with macroscopic depth (>1mm) in silicate glasses 

at atmospheric pressures, as shown in Figure 4.5. A femtosecond laser which delivered 

775nm wavelength, 150fs pulses at 1kHz was used to machine holes of few tens of 

micrometers through glass plates of about 150µm thick by Kuriyama et al. [58]. 

 

 

Figure 4.5 Femtosecond laser machined holes in soda-lime silicate glass [57]. 
 

 

 A femtosecond laser located at Optical Direct-Write Materials Processing and 

Manufacturing Lab in the Georgia Institute of Technology was used to micromachine 

pore channels in the button cell. A schematic of the laser ablation setup is shown in 

Figure 4.6. A laser beam from a laser head is reflected by the reflection mirror and goes 

through a polarizer and a wave plate. The polarizer and the wave plate are used to adjust 

the laser power. After a beam splitter, 90% of the laser beam transmits and 10% is 
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reflected to a power meter. The transmitted laser beam passes through a shutter which is 

used for controlling the exposure time. The laser beam is focused on the sample surface. 

In order to fabricate pore channel arrays of 20 × 20 in the sample, the sample is mounted 

on the 2-D stage to position the sample surface under the laser beam for each pore and to 

control the center-to-center distance between pore channels. The fabrication time per pore 

channel was 5s. 

 

 
Figure 4.6 Schematic of laser ablation. 

 

Laser processing parameters used for experiments are listed in Table 4.1. 

Table 4.1 Laser processing parameters.  
 
Wavelength (nm) 
Pulse duration (fs) 
Energy per pulse (mJ/pulse)  
Repetition rate (kHz) 
Beam diameter (mm) 

 
810 
95 
1 
1 
10 
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4.2.2. Experimental Results 

After a thin YSZ electrolyte has been formed on the button NiO-YSZ anode 

supports, pore channels are generated in button NiO-YSZ anode supports by using laser 

ablation. Subsequently, thin layers of SDC and LSCF are deposited on the YSZ 

electrolyte. Preliminary experiments were conducted in order to determine laser 

parameters for the desired diameter and depth of pore channels in the anode layer. A 

femtosecond laser described in section 4.2.1 is used. The laser power was set to 1W and 

exposure time was varied to achieve the desired diameter and depth of pore channels. A 

non-contact profilometer (Zygo, NewView 200) with sub-nanometer resolution in the 

vertical direction and sub-micrometer resolution in the lateral direction was used to 

measure the diameter and depth of the pore channels.  

In Figure 4.7, it can be observed that the depth of the pore channels increases as 

the exposure time of the femtosecond laser is increased. The relationship between the 

exposure time and ablation depth is almost linear. With 6 sec exposure time, the depth of 

the pore channel is 550µm, which means that the gap between the electrolyte and the 

bottom of the pore channels is 150µm, since the thickness of the anode layer is 700µm. 

Pore channel arrays of 20 × 20 are fabricated in the center of the anode layer. 

Figure 4.8 shows a macroscopic image of one such micromachined anode layer. Three 

anode-supported button cells were micromachined to have gaps of 150µm, 230µm, and 

250µm between the electrolytes and the bottoms of the pore channels. The diameter of 

the fabricated pore channels was 225µm and the center-to-center distance of the pore 

channels was 250µm. 
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Figure 4.7 Depth of pore channel vs. exposure time. 

 

 
Figure 4.8 Magnified photograph of a laser micromachined anode layer showing 
20×20 array of pore channels (Scale bar is in mm). 

 

The shape of the micromachined pore channels was investigated using non-

contact profilometry and scanning electron microscopy (SEM). Figure 4.9 shows the non-
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contact profilometer images. Figure 4.9 (a) is a top view and Figure 4.9 (b) is an oblique 

view plot. Figure 4.10 shows SEM images. Figure 4.10 (a) is a top view and Figure 4.10 

(b) is a cross-sectional view.  

 

 
(a)                                                               

 
(b)                                                               

Figure 4.9 Non-contact profilometer images of micromachined pore channels (a) top 
view (b) oblique view plot.  
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(a)                                                               

 
(b)                                                               

Figure 4.10 SEM images of micromachined pore channels (a) top view (b) cross-
sectional view.  
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From these figures, it can be found that the shape of the pore channels produced 

by laser ablation is conical. Micromachined holes are uniform and regularly spaced. For 

micromachined SOFC button cells containing pore channels with the diameter of 

approximately 225µm and the depth of approximately 550µm, 50 pore channels were 

analyzed.  The measured diameter is 222.5µm ± 2.8%. The measure depth is 551.3µm ± 

3%. The absence of a recast layer can be also observed. The femtosecond laser 

micromachining technique is able to provide excellent repeatability. It is a good rapid 

prototyping technique. 

 
4.3. Performance Testing 

4.3.1. Test Procedure 

The single cell was attached and sealed on an alumina tube by using ceramic paste 

and tested on a laboratory-developed-cell-testing system as shown in Figure 4.11. The 

cell was tested with humidified hydrogen (3% H2O) as the fuel and ambient air as the 

oxidant. The cell was heated to 800°C and NiO was reduced to Ni in situ. The power 

output performances and AC impedance spectra were measured using a Solartron 1255 

frequency response analyzer in combination with a potentiostat/galvanostat (EG&G PAR 

273). The frequency range of electrochemical impedance spectroscopy (EIS) is 100kHz 

to 0.1Hz and the signal amplitude is 20mV. Button cells fabricated from the same batch 

were used for performance testing in order to avoid uncertain errors which can be 

generated during fabrication process and to minimize cell-to-cell difference. 
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 Figure 4.11 Schematic of single cell testing system. 

 

4.3.2. Test Results 

Performance characterization was executed with two kinds of electrochemical 

characterization techniques: The j-V characteristic measurement and EIS. One way to 

characterize the performance of a fuel cell consists of measuring a steady-state j-V curve, 

which is the most popular method. From such a curve, information about the entire fuel 

cell, comprising the sum of the electrochemical behavior of the electrode/electrolyte 

interfaces, conductivity of the electrolyte, the influences of the gas supply and the 

electrical contacts between individual components can be obtained [59]. Another method 

to characterize the performance is EIS. This more sophisticated technique can accurately 

differentiate between all the major sources of loss in a fuel cell [60]. 

 

 

  

Electric heater

Thermocouple

Fuel in

Fuel out 

Ag wire (+)
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4.3.2.1. j-V Characteristic 

Figures 4.12-4.15 shows the measured j-V characteristics of the baseline button 

cell and micromachined button cells as a function of different fuel flow rates. Three 

micromachined anode-supported button cells, having 150µm, 230µm, and 250µm gaps 

between the electrolyte and the bottom of pore channels were tested. Different fuel flow 

rates were applied to each cell with 10, 20, 30, and 40 standard cubic centimeters per 

minute (sccm). For all fuel flow rate conditions at the same voltage, the micromachined 

cells have a higher current density than the baseline cells. The difference in current 

densities between the baseline and micromachined cells at the same voltage increases as 

the voltage drops. This result is reasonable since the concentration loss becomes 

dominant as the current density moves from low to high. The peak power densities of 

micromachined cells are larger than those of the baseline cell.  

 

Figure 4.12 j-V characteristics of baseline and micromachined button cells with 
10sccm fuel flow rate. 
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Figure 4.13 j-V characteristics of baseline and micromachined button cells with 
20sccm fuel flow rate. 

 
Figure 4.14 j-V characteristics of baseline and micromachined button cells with 
30sccm fuel flow rate. 
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Figure 4.15 j-V characteristics of baseline and micromachined button cells with 
40sccm fuel flow rate. 
 
 

Figure 4.16 (a) shows the comparison of the current density at 0.7V between the 

baseline and the micromachined button cells at different fuel flow rates. The comparison 

is performed at 0.7V which is the typical operating voltage of SOFCs. As the fuel flow 

rate increases from 10 to 40sccm, the measured current density also increases. This 

indicates that an increase of flow rate decreases the overpotential related to gas diffusion 

at the electrode, because the increase in the diffusion of gas increases the gas exchange at 

the electrode [61]. It was also found that at the same fuel flow rate, micromachined cells 

have larger current density than the baseline cell. Furthermore, the increase in the 

performance of the micromachined button cell over the baseline button cell increases 

with a decrease of the gap between the electrolyte and the bottom of the pore channels. 

The smaller the gap between the electrolyte and the bottom of pore channels is, the more 
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easily and faster the reactant can reach the reaction active region, which makes more 

chemical reactions occur at the reaction active region. Reaction products can also be 

removed faster through pore channels close to the reaction active region. These effects 

enhance the performance of micromachined button cells. However, the current density at 

0.7V with a 250µm gap is a little higher than with 230µm gap at low flow rate (10 and 

20sccm). With a 250µm gap, an averaged improvement in the current density of 9% over 

the baseline structure is achieved. With the 230µm gap, an average improvement in the 

current density of 9% over the baseline structure is achieved. With a 150µm gap, an 

average improvement in the current density of 17% over the baseline structure is 

achieved.  

Figure 4.16 (b) describes the comparison of the peak power density between the 

baseline and the micromachined button cells at different fuel flow rates. Similar to the 

current density, the measured peak power density increases with an increase of flow rate. 

At the same fuel flow rate, micromachined cells have higher peak power density than the 

baseline cells. The micromachined button cell shows more improvement of the peak 

power density over the baseline button cell when the gap between the electrolyte and the 

bottom of the pore channels is decreased. With the 250µm gap, an average improvement 

in the peak power density of 7% over the baseline structure is achieved. With the 230µm 

gap, an average improvement in the peak power density of 14% over the baseline 

structure is achieved. With a 150µm gap, an average improvement in the peak power 

density of 19% over the baseline structure is achieved. 
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(a) 
 

 
(b) 

Figure 4.16 Comparison of j-V characteristic results (a) current density at 0.7V, and 
(b) peak power density. 



 78

4.3.2.2. Electrochemical Impedance Spectroscopy (EIS) 

The impedance, Z, is a measure of the ability of a system to impede the flow of 

electrical current. A sinusoidal perturbation (usually a voltage perturbation) is applied to 

a system and the amplitude and phase shift of the resulting current response are 

measured. Measurements can be conducted over a wide range of frequencies, resulting in 

the construction of an impedance spectrum [60]. The following characteristic parameters 

are obtained from the impedance data: 

1. The polarization resistance, Rp, which is responsible for the anode and 

cathode polarization losses. It can be determined by the distance from the high 

frequency real-axis impedance intercept to the low frequency real-axis 

impedance intercept (Figure 4.17). 

2. The so-called electrolyte resistance, Re, which is the ohmic resistance caused 

by a certain contribution of the electrolyte. It can be determined from the high 

frequency part of the Nyquist plot at the intersection of the impedance data 

with the real axis (Figure 4.17). 

 

Figure 4.17 Schematic representation of Nyquist plot for a simple fuel cell [62]. 
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Impedance measurements are conducted at open circuit voltage (OCV). Figure 

4.18 shows EIS characterization results with the baseline button cell and the 

micromachined button cells with 150µm gap.  

When the electrolyte resistance, Re, is compared, both the baseline and the 

micromachined button cells have nearly the same value, approximately 0.2Ω/cm2. Since 

these button cells were fabricated from the same batch of starting materials, this can be 

expected from the assumption of almost identical electrolytes in the baseline and the 

micromachined button cell. 

When the polarization resistance, Rp, is compared at the same flow rate, the 

micromachined button cell has a smaller Rp than the baseline button cell. The percent 

decrease in RP is relatively constant (22-26%) over the 10-40sccm range of fuel flow 

rates tested, as shown in Table 4.2.  

 
Table 4.2 Polarization resistance, RP (Ωcm2) vs. Flow rate (sccm). 

Flow rate (sccm) 
Polarization resistance, Rp (Ωcm2) Decrease in R

P
 (%) 

Baseline cell Micromachined cell 
10 0.62 0.46 25.8 
20 0.69 0.525 23.9 
30 0.73 0.56 23.3 
40 0.77 0.6 22.1 
 
 

 Since the button cells were fabricated from the same batch, it can be assumed that 

the electrolytes and cathodes of the baseline and micromachined button cells are the 

same, and the only difference arises from microachitecture in the anode layer.  
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(a) 

 
(b) 

Figure 4.18 EIS characterization results (a) baseline, and (b) micromachined button 
cell with 150µm gap. 
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For the anode-supported SOFC, the cathode activation polarization and the anode 

activation and concentration polarization losses are significant [30, 63], as shown in 

Figure 4.19. The anode concentration polarization is much higher than that of the cathode 

because of the thick anode used.  

 

 
Figure 4.19 Cell voltage, polarization and power density vs. current density of 
typical anode-supported cells [30]. 

 
 

From EIS characterization results, it can be confirmed that a SOFC with 

micromachined pore channels enhances performance by decreasing the anode 

concentration polarization loss since reactants can easily reach the reaction active region 

and products can also be removed from the reaction active region faster through 

micromachined pore channels. 
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4.4. Modeling of Realistic Button Cell Performance 
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Figure 4.20 Modeling methodology. 
 

Since pore channels with conical shapes were fabricated using laser ablation, as 

seen in section 4.2, performance simulations of microarchitectured SOFC button cells 

were modified to include conical shaped pore channels in the anode layer instead of 

cylindrical shaped pore channels. Furthermore, since different flow rates were applied on 

the side of anode layer during the performance tests, fluid dynamics, which represents 

momentum conservation, is considered in order to predict realistic performance of button 

cells. Also, the cathode material properties are changed because LSCF is used instead of 

LSM for the fabrication of anode-supported button cells.  

4.4.1. Fluid Dynamics 

In order to include fluid dynamics in the simulation, momentum as described by 

the Navier-Stokes equation is considered:  
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( ) ( )eff vP S        UU U                                                      (4.1) 

where ε is the porosity of porous electrodes, ρ is the effective density of the multi-

component gas mixture, U is the velocity vector, P is pressure, Sv is the momentum 

source in the porous electrodes, and µeff is the effective dynamic viscosity of the mixture 

gas. Momentum is then calculated by using the ideal gas mixing law based on kinetic 

theory (MixKin) [64]: 
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 where yi is the mole fraction of species i, Mi and Mk are molecular weight of species i 

and k, respectively, and µi and µk are dynamic viscosities of species i and k, respectively.  

The dynamic viscosities of the gas components are defined as a function of 

temperature by using Sutherland’s viscosity law. Sutherland’s viscosity law results from 

the kinetic theory by Sutherland (1893), using an idealized intermolecular-force potential. 

Sutherland’s law with three coefficients is [65, 66]: 

3/ 2
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0
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T T S
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    

                                                                                      (4.4) 

where  µ0 is the reference value of viscosity, T0 is a reference temperature, and S is an 

effective temperature, the Sutherland constant, which is characteristic of the gas. The 

parameters of Sutherland’s law for gas components are listed in Table 4.3. 
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Table 4.3 Coefficients of Sutherland’s viscosity law for different gas components 
[65, 66]. 

Gas species µ0 (kgm-1s-1) T0 (K) S (K) 

H2 
H2O 

8.411E-6 
1.703E-5 

273.11 
416.67 

96.67 
861.11 

 
 

The effective density ρ in the porous medium is determined by a local volume-

averaging method along with the ideal gas law: 

i i

P
y M

RT
                                                                                               (4.5) 

The momentum equation has been modified to be valid for both the porous layer 

and the flow duct by including a source term Sv: 

eff
v iS BU
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U                                                                              (4.6) 

where K is the porous electrode permeability, and Ui is the velocity component in the i 

direction, and B is inertial coefficient, described further below. Because of the simplicity 

and reasonable performance within a certain range of applications, the Darcy model has 

been used for the majority of existing studies on gas flow in porous media. For a single-

phase fully developed flow through a porous medium, the Darcy model has a linear 

feature, i.e., the volumetrically averaged velocity in any direction in space is proportional 

to the pressure gradient in that direction, and inversely proportional to the viscosity. 

However, the Darcy model cannot predict the viscous effect and the flow development. It 

also breaks down when flow velocity is not small, which is the case when the inertial 

forces are not negligible [67, 68]. Therefore, the Forchheimer-extended Darcy model [66-

70] has been applied in this study to assess the inertial force effects. 
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The first term on the right-hand side accounts for the linear relationship between 

the pressure gradient and the flow rate in the Darcy law.  The second term is the 

Forchheimer term, which takes into account the inertial effects, i.e., the non-linear 

relationship between pressure drop and flow rate. The inertial coefficient B in the second 

term is an empirical function depending on the microstructure of the porous medium 

[68]: 
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  

 
                                                                                           (4.7) 

where ε is the porosity of porous electrodes and K is the porous electrode permeability. 

The above equation is limited to gas flows in the porous anode layers, while for 

forced convection in the fuel channels and micromachined pore channels  Sv = 0. 

Since fluid dynamics is included in the simulation, the species conservation 

equation should be modified by adding a convection term, the second term on the left-

hand side: 

,( )i eff i i iD c c R     U                                                                          (4.8) 

where ci is the concentration and Ri is the source term of mass balance and can be 

formulated as the reaction rate of the electrochemical and chemical reactions. 
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4.4.2. Model Geometry and Input Parameters 

Figure 4.21 shows a cross sectional view of a SOFC button cell and fuel channels. 

 

 

 Figure 4.21 Cross sectional view of SOFC button cell and fuel channels. 
 

 

To incorporate fluid dynamics in the simulation, the whole structure, instead of 

the unit cell, has to be considered because the fuel inlet and outlet have to be included. As 

seen in Figure 4.22, the pore channel array of 20 × 20 is fabricated in the center of the 

anode layer. Using the symmetric condition, one-eighth of the button cell is simulated, to 

reduce calculation time, as shown in Figure 4.22. An inner tube has 1.5785mm (0.0625in) 

inner diameter (ID) and 3.175mm (0.125in) outer diameter (OD) and an outer tube has 

6.35mm (0.25in) ID and 9.525mm (0.375in) OD. The gap between the end of the inner 

tube and the bottom of anode layer is 2mm. 
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Figure 4.22 Schematic of SOFC button cell and fuel channels. 
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At 800ºC, YSZ has ionic conductivity of approximately 3 S/m while the ionic 

conductivity of SDC is approximately 10 S/m at the same temperature [71, 72]. 

Furthermore, the thickness of the SDC layer used as the buffer layer is 2µm, which is 

very thin compared with the thickness of the other layers. Therefore, a thin SDC layer is 

omitted in the simulation to save calculation time and to facilitate meshing. The input 

parameters to the model are the same as the parameters described in Table 3.1 except for 

the parameters shown in Table 4.4.  

 

Table 4.4 The other input parameters to model [66, 68-70, 73-75].  
 
Electrode porosity, ε (%) 
Cathode exchange current density, j0,ca (A m-2) 
Cathode ionic conductor conductivity, σion (S m-1)  
Cathode electronic conductor conductivity, σelec,ca (S m-1) 
Electrode permeability, K (m2) 

 
40 
5720 
0.2 
28000 
1.7E-10 
 

 

 

The value of tortuosity is varied to obtain the best agreement between the model 

predictions and the experimental results. The tortuosity value of 3, used in the model 

predictions, is in the typical range for SOFC electrodes and provides the best agreement 

with the experimental results. 

In Figure 4.23, the simulation results show trends similar to the experimental data 

described in Figure 4.16 (a). As the fuel flow rate increases from 10 to 40sccm, the 

measured current density also increases. It can also be observed that at the same fuel flow 

rate, the micromachined cells have a higher current density than the baseline cell. 

Furthermore, the improvement in performance of the micromachined button cell over the 
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baseline button cell increases with a decrease in the gap between the electrolyte and the 

bottom of the pore channels.  

 
Figure 4.23 Simulation results of current density at 0.7V.  

 

4.5. Comparison between Modeling and Experimental Results 

Figures 4.24 and 4.25 compares the experimental data and the simulation results. 

The suffix “Ex” stands for experimental data while the suffix “Sim” stands for simulation 

results. It can be seen that the simulation results agree very well with the experimental 

data, with less than 5% difference. These results confirm the validity of the model 

incorporating conical pore channels, momentum transport through fluid dynamics, and 

material properties of the specific SOFC tested. 
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 (a) 

 
(b) 

Figure 4.24 Comparison between simulation results and experimental results (a) 
baseline and (b) 250μm gap. 
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(a) 

 
(b) 

Figure 4.25 Comparison between simulation results and experimental results (a) 
230μm and (b) 150μm gap. 
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4.6. Conclusions 

In this chapter, it was proved that the performance of microarchitectured SOFCs 

can be improved as predicted by the fundamental computational model. A real and 

specific SOFC was chosen and fabricated. SOFC button cell fabrication technique using 

sintering and laser ablation was demonstrated. Pore size and geometry were characterized 

by interferometry-based surface profilometry and scanning electron microscopy. The 

SOFC button cell performance testing including power output performance and 

electrochemical impedance spectroscopy was performed. Performance simulations of 

microarchitectured SOFC button cells described in chapter 3 were modified to 

incorporate conical shaped pore channels, momentum transport through fluid dynamics, 

and material properties of the specific SOFC tested. The developed fundamental 

computational model was applied to the specific SOFC, and experimentally measured 

performance data was compared against the model’s predictions. Simulation results 

agreed very well with the experimental data with less than 5% difference, further 

confirming the validity of the model. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

This chapter presents a summary of the research presented in this dissertation and 

recommendations for future work. 

5.1. Summary of the Dissertation 

The objective of this dissertation was to investigate and develop a new approach 

to enhance the performance of SOFCs. It was found that SOFC performance could be 

greatly improved with computationally designed microarchitectures that simultaneously 

optimize mass transport and electron transfer.  

Chapter 2 suggested the scientific basis of the motivation to improve SOFC 

performance by controlling the distribution of the electrode layer materials. By 

controlling the distribution of the anode and cathode layer materials, both electronic 

conductivity and gaseous mass transport can be optimized. The concept incorporating 

conducting wires and designed porous channels in the electrodes was suggested for 

improved transport of electrons, reactant and product gases. 

Chapter 3 developed the fundamental computational model-based approach to 

enhance the performance of SOFCs with a microarchitectured design. This involved 

coupled multiphysics simulation of mass transport, electrochemical charge transfer 

reaction, and current balance as a function of SOFC microarchitecture. The performance 

improvement of mircoarchitectured SOFCs by applying this computational model to a 

typical SOFC was investigated and predicted. An improvement of 60~70% in the current 

density was predicted by using porous channels in the anode layer over the baseline 
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structure. The analysis of thermal stresses in the microarchitectured SOFC was also 

investigated to examine the possibility of failure due to the presence of designed pore 

channels. 

Chapter 4 demonstrated that the performance of microarchitectured SOFCs can be 

improved as predicted by the fundamental computational model. As a proof of concept, a 

real and specific SOFC was chosen, fabricated and characterized. Performance 

simulations of microarchitectured SOFC button cells described in chapter 3 were 

modified to incorporate conical shaped pore channels, momentum transport through fluid 

dynamics, and material properties of specific SOFC tested. Furthermore, the developed 

fundamental computational model was applied to the specific SOFC and measured 

experimental data were well matched to simulation results.  

5.2. Contributions 

The contributions of this dissertation can be divided into the following categories: 

1. Development of a new approach to enhance the performance of SOFCs with 

computationally designed microarchitectures.  

2. Experimental demonstration of the improved performance of 

microarchitectured SOFCs with a real and specific SOFC. 

5.2.1. New Approach to Enhance the Performance of SOFCs 

This dissertation has offered a new and fundamental computational model-based 

approach to enhance the performance of SOFCs with a microarchitectured design, which 

has a broad range of application. This approach can be applied to other types of SOFCs, 

new SOFC materials, and even other kinds of fuel cells if proper material properties are 
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known and the optimal microarchitectured SOFC structure can be determined for each 

type of a SOFC.  

Microarchitectured SOFC designs hold the promise of potentially enhancing 

current generation efficiency, and therefore increasing power density over a baseline 

SOFC unit cell at standard operating conditions. For identical SOFC stack geometries, 

and considering even comparable costs of scale-up manufacturing for conventional 

versus microarchitectured designs, the cost of power generation in SOFCs could be 

reduced significantly. 

In chapter 2, conducting wires and porous channels were proposed for improved 

transport of electrons, reactant and product gases, which can result in improved overall 

performance of a SOFC. However, only porous channels in the anode layer were 

considered for simulations. The same approach to enhancing SOFC performance with 

porous channels can be applied to the cathode layer. 

Furthermore, a hybrid approach can be investigated. Since conducting metal wires 

have high thermal expansion coefficients relative to SOFC materials, the use of such 

wires can result in the fracture of SOFCs. Nonetheless, microarchitectured SOFC designs 

provide the foundation for further improvement by using a hybrid approach involving 

incorporation of nanoparticles or thin films of catalysts inside the designed porous 

channels. Such a hybrid approach has the potential for simultaneously increasing reactant 

gas mass transport through the electrodes and overall surface area of catalyst thereby 

increasing the number of sites for electrochemical reaction, and therefore the reaction 

rate.  
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Most catalysts to date have been discovered with a trial-error approach. Finding 

optimal catalysts by this approach is time consuming and expensive. Fortunately, a cost-

effective systematic approach involving simulations followed by experimental 

verification has recently become possible [60]. Quantum mechanics can provide good 

qualitative insight into how a catalyst works. Therefore, the macroscopic model 

developed in this dissertation coupled with quantum mechanics will be a powerful tool to 

investigate this hybrid approach. 

5.2.2. Experimental Demonstration of the Improved Performance of 

Microarchitectured SOFCs 

This dissertation demonstrated that the performance of microarchitectured SOFCs 

can be improved as predicted by the fundamental computational model. By conventional 

techniques to fabricate SOFCs, anode-supported SOFC button cells were fabricated and 

laser ablation followed to micromachine pore channels in the button cell. However, a new 

fabrication method is needed for scale-up production. 

5.3. Future Work 

Based on the work done in this dissertation, several recommendations for future 

work can be made.   

First, a hybrid approach involving incorporation of nanoparticles or thin films of 

catalysts inside the designed porous channels can be investigated. Infiltration has been 

widely used in surface modification of porous electrodes in SOFCs. The larger surface 

area and heterogeneous microstructure created by infiltration can dramatically enhance 

the surface catalytic behavior as well as the ionic and electronic conductivity. It is 

expected that surface modification with a proper catalyst has the potential to increase 
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both performance and stability of the state-of-the-art SOFC electrodes [76-78]. During 

the infiltration process, more nanoparticles can be easily delivered to sites for 

electrochemical reaction through porous channels, as illustrated in Figure 5.1. Therefore, 

the reaction rate in a TPB layer will be increased and the resultant performance of the 

SOFC will be enhanced. 

 

 

(a)                                                                                  (b) 

Figure 5.1 Infiltration of nanoparticles in the electrode (a) baseline, and (b) 
micromachined cell. 

 

Nanoparticles or thin films of catalysts inside the designed porous channels can be 

selected through the quantum mechanical simulation. Once nanoparticles or thin films of 

catalysts inside the designed porous channels are selected, macroscale multiphysics 

modeling approach with properties of selected nanoparticles or thin films of catalysts can 

be conducted in order to determine the amount and location of nanoparticles or thin films 

of catalysts. For this approach, the infiltration process should be coupled with the 

macroscale multiphysics model developed in this dissertation and supercomputing may 

be needed since quantum mechanical problems consists of the equations of hundreds of 

atoms. 

Second, the efforts to develop this technique for scale-up production are needed. 

Figure 5.2 shows how porous channel microarchitectures can be imparted to the 

TPB layer 

Nanoparticle
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electrodes by using screen printing with UV-curable electrode inks and with UV-curable 

or thermal phase-change, hardenable, fugitive porogen inks.  Starting with a tape cast or 

dry-pressed, and sintered YSZ substrate, a thin (10-20m) conformal anode layer is 

deposited onto the electrolyte and hardened through UV curing. Next, a thick film of 

fugitive ink is screen-printed in the locations of the designed porous channels and 

hardened by UV curing, bonding the ink to the previously cured anode layer and securing 

the fugitive ink pillars in place. Finally, a thick film of the anode ink is screen-printed to 

surround the fugitive ink pillars and to occupy all other areas of the anode layer. The 

anode-electrolyte assembly will be thermally processed through a careful fugitive ink 

burnout (or sublimation), binder burnout, and sintering process to produce the anode-

supported electrolyte assembly. Subsequently, the LSM cathode layer will be screen-

printed using steps similar to those described above on the other side of the YSZ 

electrolyte and fired to produce the SOFC assembly. 

 

Figure 5.2 Procedure of screen printing with UV-curable inks. 
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This method for manufacturing microarchitectured SOFCs uses standard screen-

printing technology, but with UV-curable electrode inks and fugitive porogen inks.  

Screen-printing is commercially available off-the-shelf (COTS) technology already in use 

for making planar SOFCs. This method takes advantage of UV-curable inks that can be 

converted to porous ceramic electrodes through binder burnout and sintering, and through 

the use of fugitive porogen inks that can be thermally decomposed or sublimed to leave 

behind well-formed microarchitectured porous channels inside the electrode structures. 

The design and printing of both types of inks is well understood.  Therefore, 

manufacturing steps, complexity, and cost are bound to be reduced. Further, 

incorporating functionally graded materials (FGMs) into the microarchitectured SOFC 

designs, if desired, is relatively straightforward with additional screen-printing steps in 

this approach. 
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APPENDIX A 

COMSOL MODEL REPORT 

1. Table of Contents 

 Title - COMSOL Model Report  

 Table of Contents  

 Model Properties  

 Constants  

 Global Expressions  

 Geometry  

 Geom1  

 Solver Settings  

 Postprocessing  

2. Model Properties 

Property Value 
Model name Baseline 
Author Chan Yoon 
Company Georgia Tech 
Department Mechanical Eng. 
Reference   
URL   
Saved date Jul 21, 2009 5:13:34 PM 
Creation date Mar 26, 2008 12:19:13 PM
COMSOL version COMSOL 3.5.0.603 
 

File name: C:\Documents and Settings\Chan\Desktop\Baseline.mph 

Application modes and modules used in this model: 

Geom1 (3D)  

 Conductive Media DC  
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 Conductive Media DC  

 Conductive Media DC  

 Diffusion  

 Diffusion  

 Diffusion 

3. Constants 

Name Expression Value Description 
DH2 4.887e-5 4.887e-5 Diffusion coefficient H2 
DO2 1.155e-5 1.155e-5 Diffusion coefficient O2 
DH2O 2.613e-5 2.613e-5 Diffusion coefficient H2O 
alfa 0.5 0.5 Transfer coefficient 
F 96485 96485 Faraday's constant 
Temp 800+273.15 1073.15 Temperature 
R 8.314 8.314 Gas constant 
Vrefa 0 0 Anode reference potential 
Vrefc 1.08 1.08 Cathode reference potential 
CO2Bulk 2.38 2.38 Oxygen concentration at the 

electrode/gas chamber interface  
CH2Bulk 11.03 11.03 Hydrogen concentration at the 

electrode/gas chamber interface  
CH2OBulk 0.35 0.35 Water vapor concentration at the 

electrode/gas chamber interface  
I0a 5300 5300 Anode exchange current density  
I0c 2000 2000 Cathode exchange current density  
Stpb 3.225e5 3.225e5 TPB area per unit volume  
Kionc 3.34e4*exp(-

10300/Temp) 
2.266867 Cathode ionic conductor 

conductivity  
Kione 3.34e4*exp(-

10300/Temp) 
2.266867 Electrolyte ionic conductor 

conductivity  
Kiona 3.34e4*exp(-

10300/Temp) 
2.266867 Anode ionic conductor 

conductivity  
Kelecc (42e6/Temp)*exp(-

1200/Temp) 
12792.613699 Cathode electronic conductor 

conductivity   
Keleca (95e6/Temp)*exp(-

1150/Temp) 
30315.739469 Anode electronic conductor 

conductivity  
Vcell 0.7 0.7 Cell voltage 
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4. Global Expressions 

Name Expression 
Itransc I0c*((CO2/CO2Bulk)*exp(alfa*nec*F*(-Velecc+Vion+Vrefc)/(R*Temp))-exp(-

(1-alfa)*nec*F*(-Velecc+Vion+Vrefc)/(R*Temp))) 
Itransa I0a*((CH2/CH2Bulk)*exp(alfa*nea*F*(Veleca-Vion-Vrefa)/(R*Temp))-

(CH2O/CH2OBulk)*exp(-(1-alfa)*nea*F*(Veleca-Vion-Vrefa)/(R*Temp))) 

5. Geometry 

Number of geometries: 1 

5.1. Geom1 
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5.1.1. Point mode 
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5.1.2. Edge mode 
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5.1.3. Boundary mode 
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5.1.4. Subdomain mode 

 

6. Geom1 

Space dimensions: 3D 

Independent variables: x, y, z 

6.1. Mesh 

6.1.1. Mesh Statistics 

Number of degrees of freedom 176032

1 

2 
3 
4 
5 
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Number of mesh points 7664 
Number of elements 39191 
Tetrahedral 39191 
Prism 0 
Hexahedral 0 
Number of boundary elements 15256 
Triangular 15256 
Quadrilateral 0 
Number of edge elements 674 
Number of vertex elements 24 
Minimum element quality 0.1416 
Element volume ratio 1.62E-5
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6.2. Application Mode: Conductive Media DC (ionic) 

Application mode type: Conductive Media DC 

Application mode name: ionic 

6.2.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

6.2.2. Variables 

Dependent variables: Vion 

Shape functions: shlag(2,'Vion') 

Interior boundaries active 

6.2.3. Boundary Settings 

Boundary   1-5, 7-8, 10-11, 13-14, 16-26 6, 15 9 
Type   Electric insulation Continuity Continuity
Normal current density (Jn) A/m2 0 0 Itransa
 

Boundary   12 
Type   Continuity
Normal current density (Jn) A/m2 Itransc

6.2.4. Subdomain Settings 

Subdomain   1 2 3 
Electric 
conductivity 
(sigma) 

S/m {Kiona,0,0;0,Kiona,
0;0,0,Kiona} 

{Kiona,0,0;0,Kiona,
0;0,0,Kiona} 

{Kione,0,0;0,Kione,
0;0,0,Kione} 

Temperature 
coefficient 
(alpha) 

1/K 0 0 0 

Temperature 
(T) 

K 0 0 0 
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Reference 
temperature 
(T0) 

K 0 0 0 

Current 
source (Qj) 

A/m3 0 Itransa*Stpb 0 

 

Subdomain   4 5 
Electric 
conductivity 
(sigma) 

S/m {Kionc,0,0;0,Kionc,0;0,0,Kionc} {Kionc,0,0;0,Kionc,0;0,0,Kionc}

Temperature 
coefficient 
(alpha) 

1/K 0 0 

Temperature 
(T) 

K 0 0 

Reference 
temperature 
(T0) 

K 0 0 

Current 
source (Qj) 

A/m3 -Itransc*Stpb 0 

6.3. Application Mode: Conductive Media DC (electronic_anode) 

Application mode type: Conductive Media DC 

Application mode name: electronic_anode 

6.3.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

6.3.2. Variables 

Dependent variables: Veleca 

Shape functions: shlag(2,'Veleca') 

Interior boundaries active 
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6.3.3. Boundary Settings 

Boundary   1-2, 4-5, 17-18, 22-23 3 6, 12, 15 
Type   Electric insulation Electric potential Continuity
Normal current density (Jn) A/m2 0 0 0 
 

Boundary   7-8, 10-11, 13-14, 16, 19-21, 24-26 9 
Type   Ground Electric insulation
Normal current density (Jn) A/m2 0 -Itransa

6.3.4. Subdomain Settings 

Subdomain   1 2 
Electric 
conductivity 
(sigma) 

S/m {Keleca,0,0;0,Keleca,0;0,0,
Keleca} 

{Keleca,0,0;0,Keleca,0;0,0,Ke
leca} 

Temperature 
coefficient 
(alpha) 

1/K 0 0 

Temperature 
(T) 

K 0 0 

Reference 
temperature 
(T0) 

K 0 0 

Current 
source (Qj) 

A/m3 0 -Itransa*Stpb 

6.4. Application Mode: Conductive Media DC (electronic_cathode) 

Application mode type: Conductive Media DC 

Application mode name: electronic_cathode 

6.4.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

6.4.2. Variables 
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Dependent variables: Velecc 

Shape functions: shlag(2,'Velecc') 

Interior boundaries active 

6.4.3. Boundary Settings 

Boundary   1-5, 7-8, 17-19, 22-
24 

6, 9, 15 10-11, 13-14, 20-21, 25-
26 

Type   Ground Continuity Electric insulation 
Normal current density 
(Jn) 

A/m2 0 0 0 

Electric potential (V0) V 0 0 0 
 

Boundary   12 16 
Type   Electric insulation Electric potential 
Normal current density (Jn) A/m2 -Itransc 0 
Electric potential (V0) V 0 Vcell

6.4.4. Subdomain Settings 

Subdomain   4 5 
Electric 
conductivity 
(sigma) 

S/m {Kelecc,0,0;0,Kelecc,0;0,0,
Kelecc} 

{Kelecc,0,0;0,Kelecc,0;0,0,
Kelecc} 

Temperature 
coefficient 
(alpha) 

1/K 0 0 

Temperature 
(T) 

K 0 0 

Reference 
temperature 
(T0) 

K 0 0 

Current 
source (Qj) 

A/m3 Itransc*Stpb 0 

6.5. Application Mode: Diffusion (H2) 

Application mode type: Diffusion 

Application mode name: H2 
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6.5.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Analysis type Stationary 
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

6.5.2. Variables 

Dependent variables: CH2 

Shape functions: shlag(2,'CH2') 

Interior boundaries active 

6.5.3. Boundary Settings 

Boundary   1-2, 4-5, 17-18, 22-
23 

3 6-8, 10-16, 19-21, 
24-26 

Type   Insulation/Symmetry Concentration Continuity 
Inward flux (N) mol/(m2·s) 0 0 0 

Concentration 
(c0) 

mol/m3 0 CH2Bulk 0 

 

Boundary   9 
Type   Insulation/Symmetry
Inward flux (N) mol/(m2·s) -Itransa/(2*F) 

Concentration (c0) mol/m3 0 

6.5.4. Subdomain Settings 

Subdomain   1 2 
Diffusion coefficient (D) m2/s DH2 DH2
Reaction rate (R) mol/(m3·s) 0 -Itransa*Stpb/(2*F)

6.6. Application Mode: Diffusion (H2O) 

Application mode type: Diffusion 

Application mode name: H2O 
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6.6.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Analysis type Stationary 
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

6.6.2. Variables 

Dependent variables: CH2O 

Shape functions: shlag(2,'CH2O') 

Interior boundaries active 

6.6.3. Boundary Settings 

Boundary   1-2, 4-5, 17-18, 22-
23 

3 6-8, 10-16, 19-21, 
24-26 

Type   Insulation/Symmetry Concentration Continuity 
Inward flux (N) mol/(m2·s) 0 0 0 

Concentration 
(c0) 

mol/m3 0 CH2OBulk 0 

 

Boundary   9 
Type   Insulation/Symmetry
Inward flux (N) mol/(m2·s) Itransa/(2*F) 

Concentration (c0) mol/m3 0 

6.6.4. Subdomain Settings 

Subdomain   1 2 
Diffusion coefficient (D) m2/s DH2O DH2O
Reaction rate (R) mol/(m3·s) 0 Itransa*Stpb/(2*F)

6.7. Application Mode: Diffusion (O2) 

Application mode type: Diffusion 

Application mode name: O2 
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6.7.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Analysis type Stationary 
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

6.7.2. Variables 

Dependent variables: CO2 

Shape functions: shlag(2,'CO2') 

Interior boundaries active 

6.7.3. Boundary Settings 

Boundary   1-9, 15, 17-
19, 22-24 

10-11, 13-14, 20-21, 
25-26 

12 

Type   Continuity Insulation/Symmetry Insulation/Symmetry
Inward flux 
(N) 

mol/(m2·s) 0 0 Itransc/(4*F) 

Concentration 
(c0) 

mol/m3 0 0 0 

 

Boundary   16 
Type   Concentration
Inward flux (N) mol/(m2·s) 0 

Concentration (c0) mol/m3 CO2Bulk

6.7.4. Subdomain Settings 

Subdomain   4 5 
Diffusion coefficient (D) m2/s DO2 DO2
Reaction rate (R) mol/(m3·s) -Itransc*Stpb/(4*F) 0 

7. Solver Settings 

Solve using a script: off 
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Auto select solver On 
Solver Stationary
Solution form Automatic
Symmetric auto 
Adaptive mesh refinement Off 
Optimization/Sensitivity Off 
Plot while solving  Off 

7.1. Direct (PARDISO) 

Solver type: Linear system solver 

Parameter Value 
Preordering algorithm Nested dissection
Row preordering On 
Bunch-Kaufmann Off 
Pivoting perturbation 1.0E-8 
Relative tolerance 1.0E-6 
Factor in error estimate 400.0 
Check tolerances On 

7.2. Stationary 

Parameter Value 
Linearity Automatic
Relative tolerance 1.0E-6 
Maximum number of iterations 25 
Manual tuning of damping parameters Off 
Highly nonlinear problem Off 
Initial damping factor 1.0 
Minimum damping factor 1.0E-4 
Restriction for step size update 10.0 

7.3. Advanced 

Parameter Value 
Constraint handling method Elimination
Null-space function Automatic 
Automatic assembly block size On 
Assembly block size 5000 
Use Hermitian transpose of constraint matrix and in symmetry detection Off 
Use complex functions with real input Off 
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Stop if error due to undefined operation On 
Store solution on file Off 
Type of scaling Automatic 
Manual scaling   
Row equilibration On 
Manual control of reassembly Off 
Load constant On 
Constraint constant On 
Mass constant On 
Damping (mass) constant On 
Jacobian constant On 
Constraint Jacobian constant On 
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8. Postprocessing 
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