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CHAPTER I

INTRODUCTION

The range of materials used in an electronic component has dramatically increased with

the size reduction of electronic devices. The mechanical reliability of these components has

become harder and harder to predict due to the different damage mechanisms occurring,

as described in Figure 1. The delamination mechanism which consists of the separation of

two different bonded materials has become crucial in the damage process. The accuracy

in modeling this phenomenon is a very challenging issue that is investigated in the Nano

Interface Project [17]. The aim of this project is to set up a numerical simulation tool

starting at the atomic scale. One of the applications will be characterizing the bonds

between the different materials involved in the Systems in Package. This will reduce the

use of expensive experimental testing in the design of electronic devices.

Figure 1: Different damage processes in a flip-chip package [35]

Many mechanisms are involved when two material are bound in the adhesion process.

At the molecular scale. Diffusion, interdiffusion, Lifshitz-Van der Waals interaction, molec-

ular interaction (acid-base interaction), and chemical adhesion (covalent liaisons) result in

an overall adhesive force [35]. Unfortunately, the overall adhesion force does not fully define
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the resulting macroscopic adhesion. A complex roughness profile characterizes the contact

between the two materials which modifies the behavior of the interface. Naturally, the

macroscopic adhesion force will be enhanced by the increase of contact area. These adhe-

sions forces will also be strongly modified by several dissipative effects occurring around the

rough interface. These forces include the friction at the interface as well as the plasticity and

other damage processes in the bulk materials. The main area of difficulty is incorporating

all these dissipative effects occurring at the microscopic scale into so-called homogenized

parameters reflecting the behavior of the interface at the macroscopic scale. This task is

not straightforward because there are complex numerical calculations used to accurately

model these dissipative mechanisms.

Usually, the cohesive properties characterizing the bond between two materials on a flat

interfaces are determined by the use of benchmarks [4, 7, 36]. These benchmarks use the

beam theory enhanced with fracture mechanics which is a commonly used technique. These

tests can be implemented in a Finite Element Method software. Unfortunately, the FEM

simulations do not accurately depict the effects occurring at the microscale. Numerically,

the models results would not be accurate because the computer would require a large number

of elements and the solvers would not always give converging results. This thesis aims at

providing a homogenization method to lump all microscopic dissipation mechanisms into

the macroscopic cohesive properties. In this report, the behavior of the interface will be

studied on a small portion, the Representative Volume Element. The difficulty is to define

the right boundary conditions and loadings to ensure the RVE is behaving in a realistic

manner. Afterwards, the transition from the microscopic state variables to the macroscopic

state variables will be computed using the macroscopic Traction Separation Law. Since

the dissipative effects are more pronounced for shear loading, the cohesive properties are

dependent on mode angle. For this reason, the experiment will be performed using mixed

mode loading.

Chapter II will present elements about the delamination process and an overview of

fracture mechanics. Then, the representation of the adhesive forces using Cohesive Zones

Elements (CZE) will be explained. At this point, some of the dissipative mechanisms

2



occuring at the microscale will be explained as well. In chapter III, a method used to

extract the cohesive properties will be presented. In chapter IV, the method to implement

these mechanisms using a FEM software will be described. Two benchmarks will also

be modeled to validate the results of the homogenization method on a simplified rough

interface. These results will be presented in the first section of chapter V, followed by an

explanation of the contact description. Finally, the last section is a description of the results

of the homogenization method applied to a copper - EMC interface.
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CHAPTER II

THEORY ABOUT DELAMINATION

2.1 An overview of fracture mechanics

Fracture mechanics is the field of mechanics dealing with crack propagation in a material.

The classical approach is to study the effects of an external loading in a material with an

existing crack. In some situations, it allows to predict the evolution of the crack depending

on its dimensions and position with respect to the applied loading. The loading is charac-

terized by its direction with respect to the crack, named as mode angle. Any loading can

be described as the superposition of three main mode angles, which are depicted in Figure

2. Any combination of these modes is called mixed-mode loading.[5]

Figure 2: Loading modes [27]

An energy-based criterion is defined for linear elastic materials in Griffith’s theory [8, 14]

to determine whether the crack will propagate. Let us first write the balance of energy for

a propagating crack in a system on which a force field is applied. A virtual area increasing

δA of the crack generates an energy GδA.

δP � �GδA (1)

Here, G represents the energy release rate, the energy available for crack propagation

per area unit, expressed in J/m2 or N/m. The potential energy of the system P can be
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linked to the work of elastic deformations W , and the work of the applied forces Text as

follows:

P �W � Text (2)

There is threshold value Gc called fracture toughness for which the crack produces more

energy than it produces. In this case, the crack propagation is not stable:

GδA ¡ GcδA (3)

Combining equations 1 and 2 allow an analytical expression of the energy release rate for

a linear material behavior. Let us consider a system containing a crack of length a, loaded

by a constant force F . We assume that the evolution of the force is linear with respect to

the displacement value u of the application point:

u � CF (4)

Here, the compliance C depends on the stiffness of the material, the geometry, and also

the crack length a. Let us consider a virtual increase of the crack length δa. This results

in a variation of the elastic deformation δW and the work of the external force δText:

δW � δ

�
1

2
Fu



δText � δ pFuq (5)

We can then write the expression of the toughness:

G � F 2

2e

dC

da
(6)

Another approach has been proposed by Irwin [13]. He described the stress field on a

point M around the crack tip of a loaded structure. Each term σij of the stress tensor is

proportional to 1?
2πr

, where r is the distance to the crack tip, multiplied by a function fij ,

taking in account the shape of the structure.

σijpMq � K?
2πr

fijpMq � oprq (7)

The parameter K is the stress intensity factor. It is different for each mode angle (figure

2) . The theory of plane elasticity can be used to determine an expression of K in the general

case:

K � ασ
?
πa (8)
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The parameter α is a correction term taking into consideration the shape of the crack

and configuration of the loading. It is possible to link the intensity factor with the energy

release rate. For an elastic material with stiffness E and Poisson ratio ν, we have:$'&
'%

G � K2

E p1 � ν2q for plane strain

G � K2

E for plane stress
(9)

Many techniques deal with the determination of the energy released rate for finite el-

ement models. The J-Integral has been set up by Eshelby [6] for elastic materials. This

integrand is performed on an arbitrary path surrounding the crack tip. The value is equal

to zero if no crack is present. It has been proved that when plasticity is neglected, this

integrand equals the energy release rate.

 

    

  

   

    

  

$'''&
'''%

J �
»

Γ
wdy � ti

Bui
Bx ds

w �
» ε

0

¯̄σ d¯̄ε

Figure 3: The J-integral

The Virtual Crack Closure Technique (VCCT), fully explained in [18], is another method

to evaluate the energy release rate. The crack is modeled in a FEM model by nodes having

the same coordinates but not connected together. Under an external loading, the mesh on

each part of the represented crack can then deform independently, as illustrated in figure

4. The crack propagation can be represented by successively releasing the nodes on an

assumed crack path. The energy dissipated during the crack propagation can be computed

by considering the variation of work at the crack tip when the next node on the path is

released. With the VCCT method, only one configuration with a given crack length is

actually represented. On figure 4, consider the configuration where the crack has the length

a, i.e. when the nodes l and l� were connected. The actual configuration represents a crack
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propagation ∆a in which the nodes l and l� are now released and have respective vertical

and horizontal displacements wl, ul, wl� and ul� due to the external loading. The shear and

opening forces on the crack tip, respectively Xi and Zi on node i, are assumed to have the

same value when the crack had the length a. The assumption is that the energy necessary

to ”open” the crack is the same as the energy needed to close it. This allows the following

expression for the energy release rate to be written as:$'&
'%

GI � �Zi pwl�wl� q
2∆a for mode I

GII � �Zi pul�ul� q2∆a for mode II
(10)

The VCCT has the advantage of not having severe assumption on the material proper-

ties. However, a symmetric mesh is required in the model.

Figure 4: The VCCT [18]

These two methods are interesting, but they cannot be applied directly if an existing

crack is not represented. One way to represent crack nucleation is the Area Release Energy

(ARE) method. It delivers an estimation of the risk of delamination at an interface [32].

The advantage of this technique is that it can be applied for complex 3D structures. An

energy release area value is calculated in a finite element model by suppressing the links

7



of the nodes surrounding an observed point. The advantage of performing the calculation

over a small area around the observed point is to get rid of the mesh dependency.

Gi � 1

2Ai
~Fj . ~uj Ai : released area

Figure 5: The ARE [32]

These methods based on the evaluation of the interface toughness do not appear very

efficient for modeling crack propagation. For a given loading, the model has to be re-meshed

several times before the equilibrium is reached, in other words, until the determination of

another crack length allowing an energy release rate value smaller than the toughness at the

crack tip. We chose to use Cohesive Zone Elements (CZE) to model the adhesion between

the layers [33, 26]. This approach allows combining both crack nucleation and propagation

without computationally expensive re-meshing. In a finite element model, specific elements

are inserted between the materials which might experience delamination. The adhesive

forces are represented by a traction-separation law.

2.2 The Cohesive Zone Elements (CZE)

Several models have been developed to define the behavior of the CZE. They are summarized

in [3]. Here, we will develop more on the exponential model which is already implemented in

the finite element software used for the simulations and explained in [33]. Relations between

the traction (in N{mm2) and the separation vectors, respectively ~t and ~δ, are defined using

scalar equivalents:

λ �
b
xδny2 � β2δ2

s ; τ �
a
t2n � β�2t2s (11)

Here, xxy � x� |x|
2

are McAuley brackets. The subscripts n and s stand respectively

for the normal and shear components. As a result of the McAuley brackets, the effective

8



undeformed
deformed

n

s t

x xx

Figure 6: Traction and displacement vectors [33]

displacement does not take in account the negative part of the normal separation, which

corresponds to inter-penetration between the two layers. These inter-penetration must be

prevented with the help of additional contact equations. β is the shear to normal ratio,

defined by:

β � ts,max
tn,max

(12)

The relation linking the effective traction and separation is defined by the so-called

traction-separation law (TSL). As it has been written above, we will use an exponential

law which is more robust in comparison with linear models, due to the continuity of the

function.

τ � τmax
λ

λc
exp

�
1 � λ

λc



(13)

x x
0 λc λ

τ

τmax

λc6

τ λ-
G = area belowc

curve

elastic (un)loading path

Figure 7: Effective traction-separation curve [33]

This law is fully described by two constitutive parameters, the tensile strength τmax and

the critical displacement λc. Another constitutive parameter is more commonly used: the

work of separation per unit area, or fracture toughness, Gc (J{m2). It is defined as the

9



integrand of the traction-displacement curve (see Figure 7).

Gc �
» �8

0
τpλqdλ � expp1qτmaxλc (14)

These parameters can be measured experimentally. When the CZE is loaded, its be-

havior follows the exponential curve. But when the CZE is unloaded, the TSL is modified

to represent the damaging of the bound. An new elastic (un)loading path is defined by

equation (15).

τ � Kp1 �Dqλ (15)

K is the virgin stiffness and D the damage variable, increasing from 0 for the undamaged

state to 1 when there is no adhesion anymore.

K � τmax
eλc

� Gc
λ2
c

(16)

D � 1 � expp�Qq (17)

Q is a history variable reminding the maximal value reached by the variable λ. It

satisfies Kuhn-Tucker conditions: $''''&
''''%

pQ� λq ¥ 0

9Q ¥ 0

9QpQ� λq ¥ 0

(18)

A further loading will be linear, until the exponential curve is reached (see Figure 7).

2.3 Some other dissipative mechanisms

Several dissipative mechanisms are occurring near the interface at the microscopic level

[27]. Because of these mechanisms, a higher amount of energy is required for the complete

decohesion. The dissipated energy contributes here to improve the macroscopic adhesion.

They also explain the dependency of the toughness on the mode angle since they are more

pronounced in mode II. For this reason, the adhesive force will be represented in the future

models with a shear to normal ration equal to one. We will study the influence of the

plasticity in the metal and the friction at the interface. In this section, we will also present

the concept of adhesive-cohesive failure, but it will not be investigated in this thesis.
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2.3.1 Elasto-plastic behavior of the metal [20]

Under uniaxial loading, the behavior of an elasto-plastic material can become non linear

when the applied stress σ overcomes the elastic limit or yield stress, σy. Beyond this point,

the slope of the stress-strain curve is lower. When the applied stress is larger than the

yield stress, a permanent plastic strain εp is then created. The original piece-wise linear

unloading path is then moved, as described in figure 8, but still keeps the same slope. The

total strain can then be decomposed in two parts:

εtot � εe � εp (19)

Here, εtot is the total strain and εe � σ
E the elastic strain, with E the young modulus.

It is the plastic deformation which is at the origin of the energy dissipation.

 

σy 

Stress 

Total strain 
εe εp 

Figure 8: Elasto-plastic behavior: stress-strain curve for uniaxial loading

Under combined stress directions, a plasticity criterion is used to determine whether

the behavior is still elastic or not. Several yield criteria can be used, the most popular

being Tresca and von Mises criteria, respectively described in equations (20) and (21). In

this formulation, the subscripts I, II and III refer to the principal components of the stress

tensor.

maxi�j |σi � σj | ¤ σe i, j P tI, II, IIIu (20)

1?
2

°
i�j pσi � σjq2 ¤ σe i, j P tI, II, IIIu (21)
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2.3.2 Friction at the interface [23]

Friction at this interface will be modeled using a Coulomb model. Here, the friction stress σf

is proportional to the normal stress σn to the interface and opposed to the relative movement

of the two layers. Two configurations are possible: a “stick” and a “slick” configuration. In

the first one, the Coulomb stress is sufficient to prevent the relative movement of the two

layers. In the second, the limit stress value is reached and limits the relative sliding.

|σf | ¤ µσn (22)

Here, µ is the friction coefficient. Since the transition from the “stick” to the “slick”

configurations cause discontinuities that are difficult to solve numerically, a bilinear model

is used as an approximation for the transition zone. Here is how this method has been

implemented in the FEM software used for this work (see figure 9). The friction stress

evolution is based on the incremental value of the tangential displacement of the layers in

contact, ∆ut. The “stick” and “slick” configuration are respectively related to reversible

and irreversible relative displacements. The behavior is the same as the behavior of elastic

perfectly plastic materials. The maximum stress value is reached when the relative displace-

ment is beyond a threshold value δ. Afterwards, when the relative displacement decreases,

the friction force is also reduced proportionally.

 

σf 

Δut 

µσn 

-µσn 

σf 

Δut 

µσn 

-µσn 

-δ 

δ Bilinear 
model 

Figure 9: Representation of the Coulomb friction

2.3.3 A cohesive-adhesive roughness model

The delamination process does not consist in the simple separation the two considered

layers at the interface only. After its initiation at the interface, a crack is able to propagate

12



in the weaker material. This phenomenon is called crack kinking and helps improving the

toughness of the bound between the metal and the polymer because the crack propagation in

the bulk material dissipates more energy than along the interface. It has been investigated

in [35, 24] for a metal-polymer interface. Indeed, the macroscopic delamination process

consists of a combination of adhesive (at the interface) and cohesive (in the bulk materials)

failures. This process, still under investigation, is difficult to model because of the softening

in the polymer which results in severe numerical issues when implemented in a finite element

code. For this reason, this mechanism will not be investigated in this thesis. It will still be

explained in this section as information.

Figure 10: Adhesive and cohesive failures on a simplified interface [35]

When separation is starting between the two layers, the assumption is made that the

crack initiation occurs at the interface, due to the lower value of the interface strength.

Griffith’s theory can be used to decide whether it propagates or not:

Gi ¥ Gic (23)

where the subscript ”i” stands for interface. The energy release rate Gi represents the

amount of energy available for the crack propagation. It includes the effects of the loading,

its position with respect to the crack tip and also captures geometric parameters. It is

compared to the ability of resisting to the crack growth, the fracture toughness Gic. During

the propagation along the interface, the point where crack kinking will occur is determined

13



using an energy released rate based criterion:

GR � Gi
Gp

¡ Gic
Gpc

ñ interfacial cracking

GR � Gi
Gp

  Gic
Gpc

ñ bulk cracking

(24)

Where Gi and Gp are the interface and polymer energy release rate of the interface and

the polymer, Gi,c and Gp,c are the interface and polymer toughness.
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CHAPTER III

DERIVATION OF THE MACROSCOPIC TRACTION

Several benchmark are available to extract adhesive properties from bounded materials.

They can be easily implemented using a finite element software in the case of a planar

interface. The main difficulty is that in the case of this study, these benchmarks should also

include the roughness and all the dissipative mechanisms described in the previous chapter,

which occur at the micro-scale. The FEM models would require an incredibly large number

of elements and very long computational times. The homogenization method provides a

mean to prevent this problem. The principle is to read the interface behavior on a small

portion to extract global properties that can be used at a wider scale.

Homogenization methods are widely used to obtain mechanical properties of heteroge-

neous materials. For instance, analytical homogenization works have been done in this way

by Eshelby, Hashin, and Strikmann [15]. In our case, because of the non linearity of the

dissipative mechanisms and the complexity of the geometry from the roughness representa-

tion, numerical homogenization will be used. Here, the behavior of the overall structure is

calculated via a finite element model representing a small part of the structure only. This

small part is called Representative Volume Element (RVE). This thesis aims at providing a

homogenization method for a rough interface. The method will then be tested for a metal-

polymer interface with different dissipative mechanisms such as the plasticity in the metal

layer and the friction at the interface. Although it contributes to the macroscopic adhesion,

the failure in the polymer will not be considered here, because of numerical issues during

the resolution. As a simplification, a linear elastic behavior will be used for the polymer.

The microscopic adhesion will be modeled by CZE, having the same response under shear

or normal loading.

The principle of the homogenization method proposed here is to capture the traction-

separation curve of the rough interface using the RVE. As a simplification, the roughness
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profile is assumed to be perfectly periodic. In this case, enough information can be found

in a RVE containing only a period of the roughness profile. This kind of RVE is also called

unit cell [19]. The difficulty is to choose the right boundary conditions, so that the RVE

behaves in the same manner as it would inside the actual structure. A method must then

be set up to capture the traction-separation curve.

The following development has been inspired by several cases of interface properties

homogenization. Most of these articles deal with homogenization of heterogeneous adhesives

[1, 11, 10, 21, 30, 29, 34]. It is interesting to compare these cases to our in the sense that

the short area surrounding the roughness profile could be considered as a heterogeneous

adhesive layer.

3.1 The macro and the micro scales

The homogenization method implies a multi scale description of the interface. The dis-

tinction is made between the macro and the micro scales, as depicted in Figure 11. Their

description has been inspired from [1, 34].
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Figure 11: The macro and the micro scales

At the macro scale, a domain ΩM is considered, with traction and displacement bound-

ary conditions ~tM,0 and ~uM,0 respectively over boundaries ΓMt and ΓMu . The interface ΓMint
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is considered straight. The equilibrium equations at a point M located at the interface read:

$'''''''&
'''''''%

σMij,jpMq � 0, M P ΩM

σMij pMqnjpMq � tM,0
i pMq, M P ΓMt

uMi pMq � uM,0
i pMq, M P ΓMu

σMij pMqnjpMq � tM,0
i pMq, M P ΓMint

(25)

σMij represents the term of the macroscopic stress tensor, and uMi is the term of the

macroscopic displacement. Here, the body forces have been neglected. Furthermore, the

interface can be considered as an external boundary. The fourth line in (25) is a result of

the equilibrium equations considering the interface as an external boundary. Applying the

principle of virtual displacements under small strain hypothesis leads to:

»
ΩM

σMij δε
M
ij dΩM �

»
ΓM
int

tMi δvuMi wdΓMint

loooooooooomoooooooooon
δWM

coh

�
»

ΓM
t

tMi δu
M
i dΓMt (26)

Here, vuMi w represents the macroscopic displacement jump across the interface, δWM
coh

the cohesive work at the interface.

For each point M belonging to the interface at the macro scale is assigned a micro domain

Ωm subjected to traction and displacement boundary conditions ~t0 and ~u0 respectively over

boundaries Γmu and Γmt . The interface Γmint is represented with its roughness profile. Similar

to (25) and (26), equilibrium equations and the principle of virtual displacements read:

$'''''''&
'''''''%

σmij,jpMq � 0, M P Ωm

σmij pMqnjpMq � t0i pMq, M P Γmt

uipMq � u0
i pMq, M P Γmt

σmij pMqnjpMq � t0i pMq, M P ΓMint

(27)

»
Ωm

σmij δε
m
ijdΩm �

»
Γm
coh

tmi δvuiwdΓmint �
»

Γm
t

tmi δuidΓmt (28)

σmij represents the term of the microscopic stress tensor, ui and ti are the terms of

respectively the microscopic displacement and the microscopic traction.
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The link between the macro and the micro scales can be shown in separating the micro-

scopic displacement field in two components:

uipxMj , xmk q � uMi pxMj q � ũipxmk q (29)

ũi represents the displacement fluctuations due to the roughness profile at the micro

scale.

3.2 Definition of the Representative Volume Element (RVE)

Let us recall that the aim of this homogenization method is to capture the macroscopic

traction-displacement evolution of the interface, which is the macroscopic response incor-

porating the microscopic adhesion forces, the effect of the roughness profile and all the

other dissipative mechanisms when the two considered layers are debounding. As explained

previously, we assume a periodic roughness profile. This allows to model only one period of

the roughness profile in the RVE built from the mean roughness values. For the RVE to be

representative of the actual interface, the right boundary conditions have to be chosen to

mimic the presence of the surrounding material. To achieve this, the left and right sides of

the unit cell are subjected to periodic boundary conditions to take in account the repeata-

bility of the structure along the horizontal direction. These periodic boundary conditions

remain an approximation. Indeed, they assume a periodicity of the displacements and stress

fields, and in this way, they do not allow the representation of a crack propagating along the

interface. But in this case, this approximation is not penalizing since we are more interested

in the evolution of the macroscopic adhesion forces (macroscopic traction separation law of

the interface) than in describing the crack propagation itself. On the top and bottom sides,

the loading is applied in a rigid way, which means that the edges are constrained to remain

straight. These boundary conditions are depicted in figure 12. They have been also used in

other works on the homogenization of heterogeneous adhesives [29, 11, 10, 34]. The global

mode angle is defined as θ � Arctanp vw q [29, 11]. The superscripts L, R, B and T stand to

refer to the vectorial quantities on respectively the left, right, bottom or top border of the

unit cell.
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Figure 12: The unit cell for mode angle θ

Furthermore, [1] proposed another set of boundary conditions labeled as ”case 2” in

Figure 13 which allows to both layers in the RVE to compress or expand during the load-

ing. However, in our model, for a non normal loading , i.e. θ � 0, this set of boundary

conditions cannot really be implemented in the FEM model because the two components

of the displacement are already imposed on the top side, which means that the eventual

dilatation or expansion of the top layer is not possible anymore. It can still be easily ap-

plied for normal loading by imposing only a normal displacement on the top side. Further

investigations will be done in order to find which boundary condition case can lead to the

most accurate effective properties after computation.

Considering ũ, the displacement fluctuation defined in 29, the periodic boundary con-

ditions can be formulated as:

ũLi psq � ũRi psq
tLi psq � �tRi psq

(30)

Here, s is the local coordinates along the vertical sides of the RVE. The displacement

fluctuations are constrained to be identical on the left and right sides. The equations related

to the tractions ensure the total work of the periodic boundary conditions to be equal to

zero. In this configuration, the displacements of the four nodes on the corners correspond

to the macroscopic displacement. The displacement jump across the adhesive layer can be

expressed by:

vuMi w � uM,T
i � uM,B

i � u4
i � u1

i � u3
i � u2

i (31)
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The periodic displacement boundary conditions can then be written as:

uRi psq � uLi psq � u2
i � u1

i

� uLi psq � u3
i � u4

i

(32)

An alternative to the use of periodic boundary conditions could be the so-called minimal

kinematic boundary conditions, which are used in [22, 12] for a unit cell including inho-

mogeneities. The uniqueness of the solution has been already proven for linear problems.

These boundary conditions don’t require a symmetric mesh and could be used to simulate

non symmetric crack growth. Their disadvantages are that they don’t perform very well

when the inhomogeneities are close to the border. They won’t be tested in this study be-

cause of the complexity of their implementation, but it could be interesting to explore this

way in further works.

In the case of mode I loading, the unit cell model can be simplified. Since the loading

is symmetric, if the roughness profile is symmetric as well, half of the unit cell only can be

represented. In this case, the horizontal displacement is suppressed on the sides of the unit

cell (see Figure 13).

3.3 Derivation of the macroscopic traction

The determination of the traction is based on Hill’s lemma on average work [9], which states

that the average work at the micro scale is equal to the work of the average stress and the

average strain over the unit cell [1]. That allows writing:

�δWm � δwMcoh, with δwMcoh � tMi δvuMi w (33)

The average virtual work at the micro scale can be written using the principle of the

virtual work under small deformation assumption:

�δWm � 1

b

»
Γm
t

tiδuidΓmt � 1

b

�
��»

Γm
t

tiδu
M
i dΓmt �

»
Γm
t

tiδũ
M
i dΓmt

�
�
 (34)

where Γmt is the boundary for the traction boundary conditions and b the thickness of

the unit cell.
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Figure 13: The two sets of boundary conditions and the simplification of the RVE for normal
loading based on the symmetry of the model

Using the periodic and rigid boundary conditions on the edges of the unit cell leads to

the nullification of the second integrand in equation (34). On the other hand, the integrand

including the macroscopic displacement can be simplified to:

»
Γm
t

tiδu
M
i dΓmt �

»
Γm
L

tLi δu
M,L
i dΓmL�

»
Γm
R

tRi δu
M,R
i dΓmR�

»
Γm
B

tBi δu
M,B
i dΓmB�

»
Γm
T

tTi δu
M,T
i dΓmT (35)

3.3.1 Case 1 of boundary conditions

We will establish the macroscopic traction vector in the case of any loading mode for the

case 1 of boundary conditions.

Let us have a look at the integrands over the left and right sides of the unit cell in
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equation (35). From the definition of the periodic boundary conditions in (30) and (32), we

have: »
Γm
t

tRi

�
δuM,R

i � δuM,L
i

	
ds � �δu2

i � δu1
i

� »
Γm
t

tRi ds (36)

For case 1, the loading on the upper and lower sides is such that the displacement of

vertice 1 and 2 is null: the integrand (36) vanishes.

The integrands over the top and bottom sides in (35) will now be investigated. Since the

bottom of the unit cell is clamped, the integrand over ΓmB is equal to zero. The integrand

(35) becomes: »
Γm
t

tiδu
M
i dΓmt �

»
Γm
T

tTi δu
M,T
i ds � δu4

i

»
Γm
T

tTi ds (37)

The displacement term can be replaced by the displacement value at node 4 and then

extracted from the integrand thanks to the displacement boundary conditions on the top

side. Using (33), the fact that u1
i � 0, (34), (35) and (37) imply:

tMi δvuMi w � tMi δu
4
i �

1

b
δu4

i

»
Γm
T

tTi ds (38)

The macroscopic traction can then be expressed as the average microscopic traction over

the upper side of the unit cell.

3.3.2 Case 2 of boundary conditions

Here, we are only developing the calculations for the normal loading. Similarly to case 1,

equation (36) can be written using the periodic boundary conditions. The definition of the

boundary conditions for case 2 reads:$''''''&
''''''%

δu1
1 � δu1

2 � 0

δu2
2 � 0»

Γm
R

tR1 dΓmR � 0

(39)

The possibility of the unit cell to contract or expand in xm1 direction implies the average

traction equals zero in this direction. In the end, the integrand in (39) disappears.
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The integrands over the top and bottom sides in (35) give:»
Γm
T

tTi δu
M,T
i ds�

»
Γm
B

tTi δu
M,B
i ds

�
»

Γm
T

tT1 δu
M,T
1 ds�

»
Γm
T

tT2 δu
M,T
2 ds�

»
Γm
B

tT1 δu
M,B
1 ds�

»
Γm
B

tT2 δu
M,B
2 ds

�
»

Γm
T

tT2 δu
M,T
2 ds�

»
Γm
B

tT2 δu
M,B
2 ds

�
»

Γm
T

tT2 δu
M,T
2 ds

(40)

The integrands in the xm1 direction vanish because the displacement is let free in this

direction. Moreover, the displacement on the xm2 direction is forbidden on the bottom side.

Equation (35) becomes:

»
Γm
t

tiδu
M
i dΓmt �

»
Γm
T

tT2 δu
M,T
2 ds � δu4

2

»
Γm
T

tT2 ds (41)

Then, combining (33), (34), (35) and (41) leads to:

tMi δvuMi w � 1

b
δu4

2

»
Γm
T

tTi ds (42)

Since vertex 1 is clamped and the unit cell is subjected to normal loading, the displace-

ment jump is equal to the vertical displacement of vertex 4. Finally, the expression of the

macroscopic traction is valid for case 1 for any loading mode and for case 2 for normal

loading:

tMi � 1

b

»
Γm
T

tTi ds (43)
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CHAPTER IV

NUMERICAL IMPLEMENTATION

4.1 Extraction of the macroscopic TSL

The homogenization method is applied with a Korn shell script on Unix OS (see figure

14). The first goal of this script is to create parametric models allowing a variation of

the geometry and mesh, which is not directly feasible in the commercial package. First,

the parameters of the finite element model are entered in a format compatible with the

procedure file format used by the finite element modeler, Mentat, to build the model.

These parameters include the geometry, mesh size, material properties, and the resolution

option. Then, depending on the chosen options, the right procedure file is assembled and

used in the modeler to create a model readable by the solver. In a second time, some other

options that cannot be directly included using the procedure file are added using several

sub scripts. They primarily deal with the creation of servo links, which can be used, for

instance, to generate the periodic boundary conditions. This final model is then submitted

to the solver, MARC, and two output files are generated. The first one is a post-processing

file, which can be read with the post-processing component of the modeler to check the

deformation of the RVE during the simulation. Several output values can be investigated,

such as the deformed shape, the stress or strain fields, the damage values in the cohesive

zone, etc. The second file contains the values of displacement and reaction force at the

constrained node of the unit cell, named “vertex 4” in figure 12. This file is imported in

Matlab to draw the traction-displacement curve and extract the homogenized values.

For a given mode angle, three cohesive parameters are identified. The interface toughness

Gc is computed as the integrand below this curve, which is computed using the trapeze

method. Here, N is the number of recorded points.

G �
N�1̧

i�1

pδi�1 � δiq pτi�1 � τiq
2

(44)

The interface strength τ corresponds to the maximum traction, and the corresponding
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Figure 14: The homogenization script

displacement value is recorded as the critical displacement value. The homogenized inter-

facial properties values can then be used in a macroscopic TSL. Here, we choose to use

an exponential law, as described in equation (13), using the toughness and the strength

values only. The error between the fitted (subscript fit) and the experimental TSL (sub-

script sim) is expressed proportionally to the strength value to allow comparison between

different curves.

error � 1

N

Ņ

i�1

|τsim,i � τfit,i|
τsim,max

(45)

This script has been tested for a flat interface between two identical elastic materials.

In order to capture the separation of the interface, the interface strength value must be

small enough that elongation in the bulk material may be neglected. For this reason, two

kinds of results can be observed, as depicted in figure 15. In the test 1 depicted in figure

15a, the strength is set up at 10.34 MPa with a Young modulus of 126,000 MPa for the

elastic material. When the load is applied, the CZE is damaged before the bulk material is

deformed. The homogenized traction separation law in this case only captures the original

TSL of the RVE. On the other hand, test 2, as shown in figure 15b, does not allow a direct

reading of the TSL of the interface. Here, the same value is used for the interface strength,

but the stiffness is reduced to 500 MPa. The traction necessary to separate the layers is

now such that the deformation in the bulk layers can no longer be neglected. The effect is
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clearly visible in the traction-displacement curve for test 2: the exponential fitting of test 2

does not fit the experimental points as well as test 1, as reflected by the values of the error

in fitting listed in table 1.
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(a) Test1: Cohesive properties small with respect to the bulk material properties (E =
126,000 MPa)
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(b) Test2: Cohesive properties large with respect to the bulk material properties (E =
500 MPa)

Figure 15: The homogenization of a flat interface for a load angle θ � 45� with tmax=10.34
MPa and Gc=0.281 N/mm. Results listed in table 1

Table 1: CZE properties and homogenized results for a flat interface

Critical displacement Strength Toughness Error

CZE 0.01 mm 10.34 MPa 0.281 N/mm

Test1 0.01 mm 10.34 MPa 0.2808 N/mm 1.11 x10�6

Test2 0.0185 mm 10.35 MPa 0.2887 N/mm 1.88 x10�2

4.2 Reference benchmarks

Several benchmarks are used to determine interface toughness. In this section, we focus on

the Double Cantilever Beam (DCB) and the 3-point End Notched Flexure (3ENF) tests,

two of the most widely documented tests for mode I and II loading. The method involves
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performing a fitting of the analytical solutions of these benchmarks to the curves obtained

with the numerical solution.

4.2.1 Double Cantilever Beam (DCB)

The interface toughness under mode I loading can be checked using DCB benchmark [4, 36].

Two layers of equal material properties and length L are bounded. An initial crack of length

a0 is inserted at one of the tips of the interface. In the finite element model, this crack is

represented by the absence of Cohesive Zone Elements. The mode I loading at the interface

is obtained by applying a vertical displacement u on the beginning of the cracked part at

the extremity of both layers.
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Figure 16: The Double Cantilever Beam

During the loading, the behavior of the layers can be divided in three parts, as described

in figure 16. First, before the crack propagates, the DCB behaves in the same manner as a

simple cantilever beam of length a0 (Zone 1). Then, delamination occurs (Zone 2) until the

crack reaches the end of the beam. Finally, the traction-separation curve reaches the result

of a cantilever beam of length L (Zone 3).

In the following, the analytical expression of the delamination part is developed [4, 36].

The first step is to write the energy release rate, which can be expressed in terms of the

change in compliance, as described by:

GI � F 2

2w

BC
Ba (46)
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The compliance C can be written using beam theory for elastic materials. E is the

elastic stiffness of the material.

C � u

F
� a3

3EI
with I � wh3

12
(47)

Deriving the expression of the compliance in (47) and substituting in expression (46)

allows simplification of the energy release rate expression:

GI � F 2a2

wEI
(48)

The expression of the compliance can also be used for expressing the crack length, a:

a �
�

3EIu

F


1{3
(49)

This expression can be replaced in the expression of the energy release rate:

GI � 1

wEI

�
3F 2EIu

�2{3
(50)

Clearly, in this experiment, the energy release rate equals the toughness value.

The DCB simulation is performed in Marc-Mentat and the reaction forces and displace-

ment values on the loading point written in a data file. Expression (50) is evaluated for each

point in the delamination part of the traction-displacement curve (see figure 17), which is

assumed to be identified using the following expression:

u P ruds � k1 ; ude � k2s (51)

Here uds and ude are the displacement values at the start and the end of the delamina-

tion, respectively, which are determined by the change of sign of the slope of the traction-

displacement curve. To avoid the transition state between the different zones, two adjustable

parameters k1 and k2 have been included to select the portion of the curve where the nu-

merical result fits the analytical curve best. GIc is then computed as the mean value of the

expression (50) for u, assuming condition (51). The stars on figure 17 represent the start

and end of delamination considered for the toughness computation.

Figure 17 shows the results of the DCB test for a straight interface. The material and

geometric properties used are summarized in table 2. The simulations are performed under
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Table 2: Material and geometric properties of the specimens used in the benchmarks

L h a0 w E ν λc Gc
100 mm 1.5 mm 30 mm 30 mm 126 GPa 0.281 0.01 mm 0.281 N/mm
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Simulation nelem=1340, nstep=200
Averaged delamination (GIc=0.2812N/mm)
Delamination start
Delamination end

Figure 17: Traction-displacement curve for the DCB

plane strain conditions. The output is a toughness value of 0.2815 N/mm, which matches

the actual toughness used for the CZE with an error of only 0.07%.

The DCB can also be used to capture the total traction-separation curve of the interface.

This method is presented in [2, 16]. The inverse solution is theoretically developed in [25]:

at the tip of the initial crack, the local stress value σ can be expressed as a function of the

opening δn, the reaction force F , and the rotation α of the loaded edges of the DCB and

rotation of the load using the following equation:

σ � 2

w

dpFθq
dδn

(52)

This equation is then used to draw the traction-separation law of the interface from

experimental results of a DCB test. In addition to the reaction force at the loaded edges,

this method requires recording the evolution of θ, identified as the angle between the edge

of one of the layers of the DCB sample, and the opening value at the location of the initial

crack tip, δn,exp. From the data, the Fθ-δn,exp curve is drawn (figure 18a) by interpolating

the simulation points with spline functions. The curve obtained is then differentiated to δn

and multiplied by 2
w to obtain the curve of the traction-separation at the interface (figure
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(a) Fθ-δn,exp curve from simulation data
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Figure 18: Extracting the TSL using a DCB specimen

The TSL obtained illustrates that the aforementioned method can indeed be used to

extract the TSL from a mode I test. However, there is a disadvantage to this method: the

data used for the establishment of the TSL are taken at one point of the interface only.

Therefore, the results cannot represent an entire roughness profile. This issue can be solved

by capturing the average opening on a small zone around the initial crack tip.

4.2.2 3-point bend End-Notched Flexure test (3ENF)

The 3ENF test [4, 36, 7] is widely used to obtain experimental values of mode II toughness.

Here, the two layers are bounded in a manner similar to the DCB test. The only differences

are the loads and boundary conditions, illustrated in figure 19. The displacement u in the

center of the model is called deflection.

 

u, F 

L 

a0 L/2 

2h

h 

Figure 19: The 3-point bend End-Notched Flexure test
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The expression for the ERR can be developed the same way as for the DCB. The

expression of the energy release rate (46) based on the change of compliance is still valid.

For the 3ENF, the expression of the compliance is shown below. There are two different

expressions, depending on whether the crack tip is before or after the loaded point. From

these expressions, the crack length is written in (54).

C � u

F
�

$'&
'%

L3 � 12a3

384EI
for a ¤ L

2
L3 � 3 pL� aq3

96EI
for a ¥ L

2

with I � wh3

12
(53)

a �

$'''&
'''%

�
32EI

u

F
� L3

12


1{3
for a ¤ L

2

L�
�

32EI
u

F
� L3

3


1{3
for a ¥ L

2

(54)

The derivative of the compliance with respect to the crack length can be computed from

(53) and then be inserted into (46). When the expression of the effective crack length in

(54) is also used, one can formulate an expression for the ERR (here, for mode II):

GII �

$'''&
'''%

3F 2

8wEI

�
32EI

u

F
� L3

12


2{3
for a ¤ L

2

3F 2

64wEI

�
32EI

u

F
� L3
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2{3
for a ¥ L

2

(55)

This energy release rate equals the fracture toughness during the delamination. The

expression of GII for the first delamination part is used to determine the toughness value

because it requires a smaller simulation time. The method used is the exact same method

used to determine the GIc with the DCB.

Figure 20 shows the results of the 3ENF test: the traction-displacement curve, and the

evolution of the Energy Release Rate (ERR) from equation (55) for the first delamination

part. The parameters used in the models are the same as the DCB (see table 2). Two

values have been taken for the interface strength, 10.54 MPa (which corresponds to the

initial λc=0.01 mm in table 2) and 80 MPa.

One can notice that the response is rather sensitive to the chosen strength: low strength

correlates with experimental points too far from the analytical solution. In this situation,

the ERR is not constant in the delamination zone, which can be observed from figure

20b. When τmax = 10.54 MPa, it is hard to identify the toughness of the interface. After
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(b) Evolution of the Energy Release Rate

Figure 20: Results and post-processing for the 3ENF simulation

Table 3: Evaluation of the Energy Release Ratio for different strength values

Strength GIIc value Error Method

10.54 MPa 0.2903 N/mm 3.3% Inflexion point

80 MPa 0.2818 N/mm 0.28% Average

comparing the toughness value implemented in the CZE with the evolution of the ERR in

figure 20b, it appears that the ERR reaches the toughness value near the inflection point of

the deflection-reaction curve, marked with a star on figure 20a. In this case, the toughness

is evaluated as 0.2903 N/mm, with an error of 3.3%. Increasing the strength gives better

results, as shown in figure 20b. For τmax = 80 MPa, the toughness is evaluated to 0.2818

N/mm, which results in an error of only 0.28%. One can conclude that the 3ENF is not

well-adapted to capture mode II toughness when the interface strength is too low.
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CHAPTER V

EFFECT OF A ROUGH SURFACE ON MACROSCOPIC ADHESION

This chapter presents how the tools discussed previously are used to capture the macroscopic

traction-separation laws of a rough interface between two layered materials. In the first part,

the simulations are performed on a model using a triangular roughness profile separating two

elastic materials having the same properties. The second part explains the improvements

to the model introduced to properly describe the contact between the two layers in the

simulations. The third part demonstrates the results of the extraction of the macroscopic

TSL for a rough interface between a copper layer and an Epoxy Mold Compound (EMC).

In this last part, the effects of two dissipative mechanisms, the plasticity in the Cu and the

friction at the interface, are also presented.

5.1 Triangular roughness profile between two identical elastic materials

A first roughness profile has been inspired by [24] and is illustrated in figure 21. The interface

is located in a way that the average height is equal in both layers. For this roughness profile,

the macroscopic TSL has been computed following section 4.1 for different mode angles.

These results have then been compared with the results of the DCB and 3ENF benchmarks.

The decohesion is the only dissipative process considered, modeled by CZEs with Gc = 0.281

N/mm, τ = 10.34 MPa and λc = 0.01mm. Elastic material is used with E = 126 GPa and

ν = 0.263 for both layers. The RVE is loaded with different mode angles. Because of the

geometry of the roughness profile, illustrated in figure 21, two situations can be considered.

When the loading angle θ is above θc, contact constraints have to be defined to prevent

the penetration of the layers. These constraints result in contact stress at the interface

between the two layers, including - or not - a friction law. The influence of the friction will

be investigated later in section 5.3.3. In this section, we will first present the results of a

separation of the bounded layers without contact, i.e. when there is no eventual penetration

to prevent, and then we will show the results when the bulk layers are deformed due to the
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contact constraints.

2λ

h1

h2

2R

S0

Ɵ0

Figure 21: Geometry of the roughness profile. For this section, the values are h1 = h2 =
0.2 mm, λ = 0.25 mm, s0 = λ

2 , R = 0.05 mm and θc = 51�

5.1.1 Separation without contact

For a loading angle θ   θc, the separation of the two layers only involves the damage

of the adhesion force, represented by the CZE inserted at the rough interface. Here, the

traction separation law of the Cohesive zone elements has a shear to normal ratio of 1.

For this reason, the macroscopic traction does not depend on the shape of the roughness

profile. In the model, the interface strength interface strength, 10.34 MPa, is negligible in

comparison to the elastic stiffness value of the bulk layers, 126 GPa. In this case, during the

delamination, the macroscopic traction required for the complete opening of the cohesive

zone elements is not enough to produce a significant deformation of the bulk layers. Since

the dissipative mechanisms have not been included here, the only effect of the roughness

will be an increase in the contact area between the bulk layers. This increase can be easily

computed as follows:

A% �
S0 �

b
p2Rq2 � pλ� S0q2

λ
(56)

With the actual values, the increase of area is 14%. This contact area increase will then

result in an increase in the total macroscopic adhesive force on the entire RVE. The results

are presented in figure 22. As explained in section 4.1, the magnitude of the macroscopic

reaction stress computed from 38 is plotted with respect to the norm of the imposed dis-

placement. From this experimental curve, the adhesive parameters are extracted (they are

listed in table 4). These parameters are also used to apply an exponential fitting to the
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experimental curve. The results are the same for normal loading (case1 and case2 for the

boundary conditions) and for each mode angle value strictly below θc. As expected from

theory, the response still fits the exponential behavior chosen for the CZE behavior, which

is confirmed by the very low value of the error between the experimental values and the

exponential fitting, calculated from (45). Table 4 confirms that the macroscopic adhesive

stress increases following A%.
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Figure 22: Traction-displacement curve for the unit cell including rough profile for θ   θc.
The error on the exponential fitting is 1.11�10�6

Table 4: Microscopic (CZE) vs. macroscopic (RVE) adhesive properties

Critical displacement Strength Toughness

CZE 0.01 mm 10.34 MPa 0.281 N/mm

Homogenized values 0.01 mm 11.79 MPa 0.3202 N/mm

Ratio 1 1.140 1.140

To validate these results, a simulation has been performed on a DCB sample with the

same rough interface. The dimensions of the geometry are the same as chosen in table 2.

The output is presented in figure 23. The resulting toughness, 0.3195 N/mm, is very close

to the one extracted using the homogenization method, 0.3202 N/mm.

5.1.2 Separation with contact

To represent the situation in which θ = θc, the definition of the load has been modified to

allow the upper layer to “slide” on the lower one. To achieve this, the y displacement of the
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(a) Crack tip with damage in the CZEs
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Figure 23: Results of the DCB test for a rough interface

top edge of the RVE has been set free. The nodes on the top edge of the RVE are however

still supposed to remain straight by tyings. The results are presented in figure 24. The same

method as the previous section has been used to determine the curves. We observe that

the homogenized adhesion is higher in this case than when the separation occurs without

contact.
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Figure 24: Separation of the layers of the RVE by “sliding” mode. The homogenized values
are GMc = 0.4101 N/mm, τMmax = 15.11 MPa and λMc = 0.01016 mm. The TSL for normal
loading is included for comparison.

Figure 25 shows the curves of the reaction stress vs. the imposed displacement. For

different values of θ, the graph shows the x and y components, the magnitude of the total

reaction and an exponential fitting. Here, the maximum value of the displacement has been
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chosen to allow a complete separation of the two layers, as illustrated by figure 26. For

a loading angle greater than θ � Arctan
�
λ

2R

� � 68�, two periods of the roughness profile

have been drawn for the lower layer to ensure the continuity of the contact.
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(a) θ � 55�
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(b) θ � 60�
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(c) θ � 70�
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(d) θ � 80�

Figure 25: Traction-displacement curves – separation with contact between the bulk layers

Figure 26: Separation of the layers of the RVE

In these simulations, the layers start deforming and the bulk material behavior modifies

the overall response. Since the interface strength is negligible in front of the elastic modulus

of the bulk layers, the effect of the CZEs is not visible in the curves. Indeed, the computed

stress values are extremely high: with a realistic material, failure would have occurred

before the end of the loading path. We can observe that the response is repulsive (negative

normal component of the reaction force) and that the shape of the total reaction cannot be

accurately fitted using an exponential law. One can notice the oscillations in the curves.
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They are resulting from a non respect of the contact between the two layers, see figure 27.

(a) Light penetration between the control
nodes

(b) The nodes of the upper layer are stuck
into the other one

Figure 27: Penetration issues during the collision of the two bulk layers

The contact conditions are set up with a node-based control algorithm. However, pen-

etration can still occur between the controlling nodes, which results in some oscillations in

the traction response (see figure 27a). Reducing the mesh size near the contact area can help

reduce these oscillations. In the worst case, several nodes of one of the layers can become

stuck inside the other layer (figure 27b), which is reflected in the traction-displacement

curve by an increase in the apparent stiffness. Even if the simulation can converge, the re-

sults are not realistic at all. Reducing the time stepping during the resolution or the mesh

size of the model is not enough to avoid these problems. For example, figure 28 shows the

different results for a mesh refinement starting from a meshing of 4x40 elements for each

layer (reference mesh size). Another model has been done from the same model to which a

mesh refinement has been done at the interface (mesh size /3 at the interface). Two other

simulations have been performed with meshes of respectively 8x80 (mesh size /2), 12x120

(mesh size /3) for each layers. Although the oscillation period decreases, the layers become

more likely to get stuck. In short, this model does not allow the extraction of macroscopic

adhesive properties.

A 3ENF test has been performed on a rough interface for the first roughness profile

(see figure 29). The toughness has been computed for a CZEs having an strength of 10.34

MPa, but also for 80 MPa for validation. Indeed, it has been shown in section 4.2.2 that
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Figure 28: Effect of the mesh refinement on the traction-displacement curve. The simula-
tions have been performed for a load angle of 80�.

the results for the 3ENF are more accurate for a higher toughness of the interface. The

computed values are respectively 0.3156 N/mm and 0.3171 N/mm: the two values are close

to one another, so we can consider that the results are acceptable.

Table 5 sums up the results from the RVE simulations and the benchmarks. We can see

that for the chosen parameters the 3ENF and the DCB give results similar to the results of

a RVE loaded with a mode angle strictly below θc. The results for a “sliding” configuration

result in higher homogenized adhesive properties.

Table 5: Computed toughness values for different simulations

RVE: θ   θc RVE: θ � θc DCB 3ENF

0.3202 N/mm 0.4101 N/mm 0.3195 N/mm 0.3156 N/mm
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(a) Crack tip and beginning with damage value in the 3ENF
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(b) Traction-displacement curve for strength values at
the interface 10.34 and 80 MPa

Figure 29: Results of the 3ENF test for a rough interface

5.2 Contact improvement

The simulations on the first rough profile have shown that an improvement of the contact

definition is required. Let us first explain the principle of the contact algorithm used in the

FEM software [23]. From the contact point of view, the two layers in the model are defined

by the elements composing them, the nodes of the outside frontier which are considered as

likely to contact the other layer, and the edges describing the outside border. When the

two layers start touching each other, penetration is prevented by the following rule. First,

the algorithm determines which layer is touching the other. Penetration is then defined
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as occurring when a node of the touching layer is crossing the outside border of the other

layer. To prevent this, a contact force normal to the outside border of the touched layer is

applied to the penetrating node, as depicted in figure 30.

 

Touched layer 

Touching node 

outside edges normal contact 

force 

NO CONTACT CONTACT 

Figure 30: Definition of the contact algorithm

This explanation of the contact algorithm gives several possibilities to improve the con-

tact between the two layers. First, one can remark that the contact would be easier to

describe if the touched layer deforms less than the touching one. It is interesting for this

study since the final simulations will be run for a metal-polymer interface, which implies

a notable difference in stiffness for the two layers. Seconds, an interesting possibility is to

change the shape of the roughness profile into a spline to facilitate the continuous determi-

nation of the normal of the touched layer. Indeed, even if the mesh at the interface seams

to discretize the border, the normal at the contact can still be defined using the analytical

definition of the spline. The last idea is to use a finer mesh for the touching layer, in first

place because it will undergo more deformation, and also because it will help when a node

of the touching layer is passing from one edge of the touched layer to the other. However,

this solution may cause meshing and continuity issues for the stress fields. Due to the use

of CZE at the interface, some nodes of the interface elements will have to be inserted in the

edges of the elements composing the layer with the coarse mesh, see figure 31.

The above changes have been tested for a Copper - Epoxy Mold Compound (EMC)

interface. The model properties are listed in table 6. The geometric values have been

taken from [24]. As a simplification, an elastic behavior is used for both layers. Three

kinds of models have been used. The first one uses rigid contact, where the copper layer
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Figure 31: Mesh refinement near the interface: a finer mesh is inserted in the soft layer.
Tyings are set up to have a compatible displacement field when passing from one mesh to
the other.
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Figure 32: Roughness profile based on splines

is modeled by a rigid line. This will be used as reference solution for the contact since the

rigid contact is easier to compute and gives more accurate results. Then, two other models

with deformable contact are used, one with the same element density in each layer, another

with a finer mesh inserted near the interface in the EMC layer. In each case, the unit cell

has been loaded under shear loading (θ � 90�) to create the most severe conditions for the

contact. The response is x-periodic in the X and Y components of the reaction force with

period 2λ.

Table 6: Geometric, material and cohesive parameters for contact simulations

Geometry Cu EMC CZE

λ = 8 µm height = 2R height = 2R Gc = 0.010 N/mm
R = 0.8 µm E = 126.4 GPa E = 19 GPa tmax = 10 MPa
S0 = 3.52 µm ν = 0.33 ν = 0.35
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The resulting traction-displacement curves are shown in figure 33. As expected, the

rigid contact shows a higher value for the macroscopic reaction force. The curves for the

deformable contact also have the same shape, which proves that the contact conditions are

well respected. One can also notice that the model with local refinement at the interface

gives a better definition of the contact. For the rigid contact and the deformable contact

including a local refinement on the interface, we can observe from the reaction force -

displacement curve that a very refined model is not required in order obtain an accurate

solution.

Figure 34 shows that the continuity of the stress field at the interface is slightly altered

by the presence of the inserts. This can be seen with the small oscillations on the curve 34c.

Because these oscillations are not detectable in the macroscopic response, these oscillations

can be neglected. Thus, all simulations involving contact between the two layers will be

performed on a model with local refinement in the EMC layer from now on.

5.3 Results on a rough Cu-EMC interface

The homogenization method, enhanced with the improvements for the contact definition,

is now applied for an actual rough Cu-EMC interface. The objective of this section is to

capture the different dissipative effects happening on a microscopic scale. In the following

subsections, we will first focus on the effects of the roughness on the macroscopic cohesion

by using elastic behavior on each layer. Then, plasticity will be added in the copper layer.

Finally, we will have a look at the effects of the friction at the interface.

5.3.1 Elastic behavior

Other studies have already been performed to extract the adhesive properties of rough in-

terface between two elastic materials having the same properties [28, 37]. In their approach,

they compute macroscopic adhesive properties by investigating the effects of a crack prop-

agating at the interface. The effects of several parameters is investigated, including the

influence of the microscopic adhesive properties. The studies suggest that the effects of the

roughness profile are only visible for a substantially brittle interface, i.e. having a small

critical length value with respect to the roughness dimension and a high strength with
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(a) Coarse (360 elements) and fine (3400 elements) meshing for rigid contact simulation

 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000
Deformable contact

Displacement (mm)

T
ra

ct
io

n 
(M

pa
)

 

 

fx - 960 elements
fy - 960 elements
fx - 9,800 elements
fy - 9,800 elements

(b) Coarse (960 elements) and fine (9,800 elements) meshing for deformable contact simulation with regular
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Figure 33: Traction-displacement curves for a rough profile based on splines under shear
loading.

respect to the layers stiffness. This can be explained using the notion of process zone. It

corresponds to the area in which the CZEs are passing from the undamaged to the damaged
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Figure 34: y-component of the stress along the interface for a horizontal displacement equal
to a half period of the roughness profile

state when the propagation of a crack is simulated. When the interface is brittle, the process

zone becomes smaller. The tip of the crack is more localized which makes the delamination

more sensible to the crack path, which is also the roughness profile. Indeed, the first results

obtained in section 5.1.1 show that for a ductile interface, the results are only dependent

on the change in area created by the roughness. The difficulty is that modeling brittle

interfaces require a very robust solver to obtain converging solutions. For these reasons,

larger values than what has been taken in section 5.1 are used for the next simulations. The

strength value should however remain smaller than the loading limit of the EMC layer.

The materials and geometric properties for the unit cell are presented in table 7. The
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simulations will be lead under different mode angles.

Table 7: Geometric and material parameters for elastic simulations

Geometry Cu EMC

λ = 8 µm height = 2R height = 2R
R = 0.8 µm E = 83.275 GPa E = 19 GPa
S0 = 3.52 µm ν = 0.3 ν = 0.35

The first simulations have been computed for different mode angle values below θc (see

figure 32) from 0� to 70�. Another simulation has been added, labeled as “sliding” in table 8

in which the copper layer is constrained to slide on the interface, similar to the investigation

on the triangular interface (see figure 24). Additional simulations have been done for mode

angles of 75� and 80�. The microscopic interface toughness is Gmc = 0.02 N/mm for all

simulations. The microscopic interface strength τmmax has been chosen from 50 MPa to 150

MPa. The simulation would not be realistic if the the strength were higher, since we would

be too close to the rupture point of the EMC.

Table 8: Effect of the microscopic strength on the homogenized values for θ ¤ θc

τmmax = 50 MPa τmmax = 100 MPa

θ GM
c (N/m) τMmax (MPa) λMc (nm) GM

c (N/m) τMmax (MPa) λMc (nm)

0� 20.57 51.45 147.1 20.58 103.04 80.9
20� 20.58 51.49 154.5 20.63 103.14 80.9
40� 20.60 51.54 154.5 20.67 102.77 88.3
60� 20.60 51.54 154.5 20.69 102.66 95.6
70� 20.60 51.55 161.9 20.65 102.57 99.3

sliding 21.70 54.28 160.2 21.38 103.29 103.3
75� 21.10 51.70 161.9 21.10 103.30 95.6
80� 22.40 51.50 161.9 21.40 103.20 103.0

τmmax = 150 MPa

θ GM
c (N/m) τMmax (MPa) λMc (nm)

0� 20.57 154.0 58.8
20� 20.67 154.0 61.3
40� 20.88 153.7 66.2
60� 20.93 152.9 78.5
70� 20.83 152.3 83.4

sliding 21.34 155.9 90.9
75� 21.10 153.2 83.4
70� 21.40 153.0 88.3

One can observe that the influence of the mode angle increases with the value of the
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microscopic interface strength. The results show that the macroscopic toughness increases

slightly either the mode angle of the microscopic strength rises. However, when the mode

angle changes, only the value of the critical displacement is significantly modified. Figure

35 shows the effects on the macroscopic TSL.

0 1 2 3 4 5

x 10
-4

0

20

40

60

80

100

120

140

160

Displacement (mm)

T
ra

ct
io

n 
(M

pa
)

 

 

θ = 0
θ = 70

Figure 35: Increase of the macroscopic critical displacement with the mode angle. Here are
presented the results for a microscopic interface strength of 150 MPa.

When the simulation have been performed for mode angles 75� and 80�, the method

used was the same as the other mode angles. Here, the two layers are deforming because

of the contact during the separation. It results in an elastic response to which is added the

behavior of the interface, illustrated in figure 36.
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Figure 36: Macroscopic TSL when the separation occurs for θ ¡ θc
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The difficulty has been to remove the contribution of the deformation of the bulk layers

from the curve in order to define homogenized cohesive parameters for these simulations. To

do so, we have performed a loading-unloading simulation on the RVE. The RVE has been

loaded in displacement with a mode angle θ, as usual, until the CZE at the interface can be

considered as totally damaged. We consider the CZE totally damaged when the imposed

displacement reaches ten times the critical length of the CZE. Then, the same displacement

has been applied, but in the opposite direction to come back in the original configuration.

Since the elastic contribution is the same for the loading or the unloading, the path defined

by the traction displacement curve during the unloading is identified as the actual elastic

contribution. In order to obtain the macroscopic TSL, the elastic contribution in the x and

y components of the traction has been removed to come up with corrected curves, see figure

37. Taking the square mean of these two curves gives the expected result.
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Figure 37: Removal of the contribution of the elastic deformation of the two bulk layers on
each component of the macroscopic traction. In this example, τmmax = 150 MPa and θ=75�.

5.3.2 Plasticity in the Cu layer

We are now using an elasto-plastic behavior for the copper layer [38]. The elastic properties

remain the same as shown in table 7, but an additional evolution of the yield stress is
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included (see figure 38), provided by [31]. These investigations are similar to the results of

the previous section.
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Figure 38: Plasticity law integrated in the Cu layer [31]

The results of the macroscopic cohesive parameters are presented in table 9 for the

separations without a deformation of the layers due to the contact. In order to have visible

effects of the plastic deformation of the metal, a high value has been chosen for the interface

strength (150 MPa).

Table 9: Effect of the microscopic strength on the homogenized values for θ ¤ θc, plasticity
represented in the copper layer

τmmax = 150 MPa

θ GM
c (N/m) τMmax (MPa) λMc (nm)

0� 20.60 154.2 58.8
20� 20.68 154.0 61.3
40� 20.88 153.7 66.2
60� 21.05 153.1 78.5
70� 21.08 152.6 83.4
sliding 21.34 155.9 90.9

Table 9 allows us to say that for a separation with a mode angle below θc, the toughness

is increased due to the dissipation of energy when the copper deforms plastically. However,

the improvements are not tremendous in this case since the copper do not deform much in

comparison to the EMC layer.

When the separation occurs with deformation of the bulk layer, we have tried the same
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method as previously to extract the macroscopic TSL. Figure 39 shows the curves of the

X and Y components of the macroscopic traction when the mode angle is 75 and 80�. The

curves have been compared with the results for an elastic behavior only in the copper.

During the separation, the copper undergoes permanent plastic deformations. Because of

that, when the EMC layer is constrained to come back at its originate position after the CZE

have been totally damaged, the roughness profile is modified and additional deformations

are also occurring. This effect is more pronounced for θ = 80�. Because of that, the

unloading path cannot be used here to extract the macroscopic TSL.

5.3.3 Friction at the interface

In this section, we will investigate the effects of the friction, modeled as was described in

section 2.3.2, with a friction coefficient µ = 0.1. The simulations are performed for the

“sliding” configuration and for load angles of 75� and 80�. To have a better representation

of the effects of the friction stresses at the interface, the adhesion microscopic interface

strength τm has been set to 50 MPa to reduce the influence of the microscopic adhesion

forces in the macroscopic response.

Table 10: Influence of the friction on the homogenized cohesive values from adapted TSL
for sliding configuration

Elastic copper Elasto-plastic copper

θ GM
c (N/m) τMmax (MPa) λMc (nm) GM

c (N/m) τMmax (MPa) λMc (nm)

sliding 22.43 55.96 160.2 22.43 55.96 160.2

For the “sliding” configuration, the results clearly show that the friction improves the

macroscopic adhesion of the interface, as confirmed by figure 40.

When the simulations are performed for a mode angle beyond θc, we also observe that

energy dissipation occurs when the EMC layer is constrained to come back to its origin.

When we look at each component of the macroscopic traction (see figure 41), we have a

better understanding of what is happening. The friction adds additional stress compared to

the relative displacement of the interface. For this reason, the x-component, compared to

the separation, is increased by the friction, and the y-component, favoring the separation,

in reduced.
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(b) Y-component of the macroscopic traction for θ=75�
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(c) X-component of the macroscopic traction for θ=80�
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(d) Y-component of the macroscopic traction for θ=80�

Figure 39: Influence of plasticity on the macroscopic TSL when the separation occurs for
θ ¡ θc
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Figure 40: Influence of the friction at the interface on the macroscopic TSL in sliding
configuration

0 0.5 1 1.5

x 10
-3

-200

-150

-100

-50

0

50

100

Displacement (mm)

T
ra

ct
io

n 
(M

pa
)

 

 

friction
no friction

(a) Elastic behavior for the copper layer and θ=75�

0 0.5 1 1.5

x 10
-3

-200

-150

-100

-50

0

50

100

Displacement (mm)

T
ra

ct
io

n 
(M

pa
)

 

 

friction
no friction

(b) Elastic behavior for the copper layer and θ=75�

Figure 41: X and Y components of the macroscopic reaction for elastic and elasto-plasctic
copper.

52



CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this study, a homogenization method was developed to extract the cohesive properties

of a rough interface between two materials using a finite element model that includes sev-

eral dissipative effects, such as the cohesion at the interface, the plasticity inside the bulk

material and the friction at the interface. The traction-displacement curve of the inter-

face was drawn and the cohesive parameters, such as the interface toughness and strength,

were extracted. Different mode angles were investigated, and two sets of boundary condi-

tions were proposed for the normal loading. These results were compared to the solutions

from the DCB and the 3ENF tests, two benchmark tests widely used for the experimental

determination of the interface toughness, respectively under modes I and II.

This method aims at being applied to a rough metal-polymer interface. Several simplified

simulations have been performed, however, it was not possible to model the softening of the

bulk material and include processes similar to crack kinking because of numerical issues. In

the simulations, the only implemented damage process was the cohesion at the interface.

Other dissipative processes, plasticity and friction, were investigated. The Representative

Volume Element was loaded under several loading modes. A ”critical mode angle” was

defined as the limit between separation with or without contact occurring between the

two bulk layers. When the separation is occurring for a mode angle above this critical

mode angle, the macroscopic cohesive properties were not directly accessible because of the

additional reaction force generated from the contact forces preventing the penetration of

the mesh of one the layers into the other one.

The first investigations revealed that for a soft interface, the enhanced cohesive proper-

ties were only dependent on the augmentation of the contact area involved by the roughness

profile. With the increase of the interface strength of the CZEs, the study revealed the mode

angle dependency of the macroscopic cohesive properties. In particular, the macroscopic
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critical displacement is sensitive to the other parameters. The study of the dissipative mech-

anisms has shown, for this model, that the macroscopic toughness was actually increasing

when the friction or the plasticity in the copper was used. Under the assumption of a fragile

layer of EMC, the friction is still more likely to affect the macroscopic adhesive properties

since it would be difficult to deform plastically the copper layer without damaging the EMC

layer first.

This study showed that the method proposed to extract the macroscopic Traction-

Separation Law of a rough interface was able to capture the effects of the dissipative effects

of the friction and the plasticity. It did, however, show some difficulties to extract the

macroscopic cohesive properties when contact is occurring between the layers when dissi-

pative mechanisms were modeled. One solution for this problem could be, for example,

the definition of others unloading condition. Otherwise, one could try an alternative to the

choice of the periodic boundary conditions for the RVE by exploring the minimal kinematic

boundary conditions [22, 12].
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