
MODELING SUSTAINABILITY IN COMPLEX URBAN 

TRANSPORTATION SYSTEMS 

 
 
 
 
 
 
 
 
 
 

A Thesis 
Presented to 

The Academic Faculty 
 
 
 

by 
 
 
 

Kyle K. Azevedo 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science in Mechanical Engineering in the 
George W. Woodruff School of Mechanical Engineering 

 
 
 
 
 
 

Georgia Institute of Technology 
 

December 2010 
 
 

COPYRIGHT 2010 BY KYLE AZEVEDO



MODELING SUSTAINABILITY IN COMPLEX URBAN 

TRANSPORTATION SYSTEMS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved by: 
 
Dr. Bert Bras, Advisor 
School of Mechanical Engineering 
Georgia Institute of Technology 
 
Dr. Chris Paredis 
School of Mechanical Engineering 
Georgia Institute of Technology 
 
Dr. Valerie Thomas 
School of Industrial and Systems Engineering 
Georgia Institute of Technology 
 
 
 
Date Approved:  August 25th, 2010 

 



  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To the students of the Georgia Institute of Technology, and my coworkers in the 
Sustainable Design and Manufacturing Program. 
  
 
 
 
 
 



 

iv 

ACKNOWLEDGEMENTS 

 

 I wish to thank Dr. Bert Bras for the opportunity, knowledge, and valuable 

guidance he has given me over the past several years.  My time at Georgia Tech has been 

a learning experience in every sense of the word.  Also, I owe thanks to Tina Guldberg 

for her own teachings, and for being the glue that keeps all of the SDM parts held 

together.  Thanks to my thesis committee, Dr. Chris Paredis and Dr. Valerie Thomas, for 

their guidance, support, and academic insight.  I owe thanks to the Georgia Institute of 

Technology and the Woodruff School of Mechanical Engineering for the opportunities 

they have afforded me.  I am grateful to all those who helped me perform my research in 

any way, including No Magic Inc., InterCAX Inc., all of my professors, my contacts at 

the City of Atlanta and Atlanta Regional Commission, and Ford Motor Company for their 

financial support.  Thanks to Dave Berdish for his mentorship and real-world teachings. 

Thanks to my coworkers in SDM for constantly being there, whether it be to 

discuss ideas, provide assistance on a tough problem, or simply just to share a laugh.  

Special thanks go to the viaCycle team: Koji Intlekofer, Mike Culler, Sid Doshi, Yuriy 

Romaniw, and Zach Zacharia.   They made day-to-day research a team effort, and above 

all, made it fun.  Thanks also to my friends elsewhere, for making hundreds or even 

thousands of miles a small hurdle.  

I owe thanks to my family, for everything.  My mother, father, brothers and their 

families, and grandmother have given so much love and support that I have no doubt I 

would not be where I am without them.  I can only hope to repay it in full whenever and 

wherever I am able. 



v 
 

Lastly, thanks to Katie.  Her love has carried me through the highs and lows of 

my time here in Atlanta, and has turned many of the latter into the former.  She is truly 

one of a kind. 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES viii 

LIST OF FIGURES x 

NOMENCLATURE xii 

SUMMARY xiv 

INTRODUCTION 1 
1.1. Motivation and Problem Definition 1 
1.2. Defining “Sustainable Urban Mobility” 4 
1.3. Research Questions and Hypotheses 7 
1.4. Research Strategy and Organization 9 

BACKGROUND AND LITERATURE REVIEW 12 
2.1. Urban Mobility and Transit Networks 12 
2.2. Multimodal Integration 14 
2.3. Transportation Life Cycle Analysis 18 
2.4. Integration with Urban Planning 23 
2.5. Complex Systems Modeling and Optimization 25 
2.6. Urban Systems Sustainability 27 
2.7. Summary 30 

APPROACH AND METHODOLOGY 32 
3.1. Model Based Systems Engineering 33 
3.2. Model Capture and Reuse 35 
3.3. Introduction to SysML 36 
3.4. Implementing MBSE in SysML 39 
3.5. SysML analysis models 40 
3.6. Linking to other analysis models 41 

IMPLEMENTATION 43 
4.1. Description 43 
4.2. SysML Model Structure 43 
4.3. Analysis Model 49 
4.4. Analysis Execution 58 

SCENARIO EVALUATION: ATLANTA CASE STUDY 64 
5.1. Description 64 
5.2. Inputs 66 
5.3. Results 69 
5.4. Validation 89 



vii 
 

5.5. Discussion 99 

CONCLUSIONS 102 
6.1. Summary 102 
6.2. Research Questions 103 
6.3. Future Work 106 

APPENDIX A 108 
A.1. Scenario Energy Use and CO2 Full Calculation Results 108 
A.2. MATLAB Analysis Execution Code 116 

REFERENCES 128 

 



viii 
 

LIST OF TABLES 

Table 1: Density, modal choice, and cost of urban transport in selected cities (Vivier and 
Mezghani 2001) 18 

Table 2: Fuel specifications within the GREET model (M. Q Wang 1999) 50 

Table 3: Vehicle mode statistics for the Atlanta area, 2010 base case 67 

Table 4: Power generation by primary fuel source in Georgia 69 

Table 5: Distance and passenger distance traveled in Atlanta network by vehicle mode – 
2010 base case 71 

Table 6: System-wide energy use and CO2 output by vehicle type – 2010 base case 72 

Table 7: Vehicle mode statistics for the Atlanta area - 2025 base case 73 

Table 8: Distance and passenger distance traveled in Atlanta network by vehicle mode – 
2025 base case 76 

Table 9: System-wide energy use and CO2 output by vehicle type – 2025 base case 77 

Table 10: Vehicle mode statistics for the Atlanta area - 2025 alternative scenario 79 

Table 11: Distance and passenger distance traveled in Atlanta network by vehicle mode – 
2025 alternative scenario 81 

Table 12: System-wide energy use and CO2 output by vehicle type – 2025 alternative 
scenario 81 

Table 13: Power generation by primary fuel source in Washington State 83 

Table 14: System-wide energy use and CO2 output by vehicle type – 2010, Washington 
State electricity generation 85 

Table 15: System-wide vehicle distance and passenger distance - 2010 increased 
occupancy 88 

Table 16: System-wide energy use and CO2 output – 2010 increased occupancy 88 

Table 17: GREET electricity generation mixes, combustion technology shares, and power 
plant energy conversion efficiencies 93 

Table 18: Well-to-Pump energy consumption and emissions: Btu or grams per mmBtu of 
fuel available at fuel station pumps 95 



ix 
 

Table 19: WTW energy use calculation results from SysML analysis model – Case 1, 
Atlanta 2010 base case 108 

Table 20: WTW CO2 output calculation results from SysML analysis model – Case 1, 
Atlanta 2010 base case 109 

Table 21: WTW energy use calculation results from SysML analysis model – Case 2, 
Atlanta 2025 base case 110 

Table 22: WTW CO2 output calculation results from SysML analysis model – Case 2, 
Atlanta 2025 base case 111 

Table 23: WTW energy use calculation results from SysML analysis model – Case 3, 
Atlanta 2025 alternative scenario 112 

Table 24: WTW CO2 output calculation results from SysML analysis model – Case 3, 
Atlanta 2025 alternative scenario 113 

Table 25: WTW energy use output calculation results from SysML analysis model – Case 
4, Sensitivity Analysis – Electricity Generation 114 

Table 26: WTW CO2 output calculation results from SysML analysis model – Case 4, 
Sensitivity Analysis – Electricity Generation 115 

 



x 
 

LIST OF FIGURES 

Figure 1: Average congestion indicators in United States urban areas (Schrank and 
Lomax 2009) 2 

Figure 2: Delivered U.S. energy consumption by sector (U.S. Energy Information 
Administration 2009) 3 

Figure 3: Vehicle-Kms versus gross regional product in 37 cities, 1990 (Litman and Felix 
Laube 2002) 16 

Figure 4:  Transport expenditures versus transit use (Litman and Felix Laube 2002) 17 

Figure 5: Illustration of LCA phases in ISO 14040 series standards. 19 

Figure 6: Stages covered in GREET fuel-cycle analysis (M. Q Wang 2001) 21 

Figure 7: Fuel pathways included in GREET as of version 1.7 (M. Q Wang 2001) 22 

Figure 8: Passenger factors affecting sustainability of a transportation system (Richardson 
2005) 25 

Figure 9: Typical life cycle pathway for petroleum-based fuels. 34 

Figure 10: The SysML diagram taxonomy (Object Modeling Group 2008) 38 

Figure 11: Transportation system package hierarchy. 44 

Figure 12: Model organization into various packages within SysML 45 

Figure 13: Block definition diagram of the overall transportation system structure. 46 

Figure 14: Block definition diagram of an onroad vehicle with an internal combustion 
powertrain. 48 

Figure 15: SysML block of vehicle energy source 49 

Figure 16: Parametric diagram of a fuel resource in SysML 52 

Figure 17: Energy use and greenhouse gas output per GJ of fuel energy available for end 
use 53 

Figure 18: SysML parametric diagram of an ICE automobile 56 

Figure 19: Parametric diagram for all internal combustion automobile types in SysML 58 

Figure 20: ParaMagic browser showing SysML transportation system model parametrics
 60 



xi 
 

Figure 21: Overview of SysML modeling framework using external analysis tools 63 

Figure 22: The Atlanta metropolitan area 65 

Figure 23: Energy use by vehicle type in Atlanta transportation network –2010 base case
 70 

Figure 24: CO2 output by vehicle type in Atlanta transportation network –2010 base case
 71 

Figure 25: Energy use by vehicle type in Atlanta transportation network – 2025 base case
 75 

Figure 26: CO2 output by vehicle type in Atlanta transportation network – 2025 base case
 76 

Figure 27: Energy use by vehicle type in Atlanta transportation network –2010, 
Washington State electricity generation 83 

Figure 28: CO2 output by vehicle type in Atlanta transportation network –2010, 
Washington State electricity generation 84 

Figure 29: Energy use per passenger distance vs. average occupancy for a typical 
MARTA diesel bus and ICE automobile 86 

Figure 30: CO2 output per passenger distance vs. average occupancy for a typical 
MARTA diesel bus and ICE automobile 87 

Figure 31: GREET sample WTW energy results using default U.S. input assumptions (M. 
Q Wang 2001) 98 

Figure 32: GREET sample WTW GHG emission results using default U.S. input 
assumptions (M. Q Wang 2001) 98 

 

 

 

 



xii 
 

NOMENCLATURE 

Cfuel Fuel carbon content by mass percentage 

CO2fuel Fuel CO2 output 

CO2out Pump-to-wheel CO2 output 

CO2rate CO2 output per unit of electricity produced 

CO2WTPE Well-to-pump CO2 production per unit energy 

EWTP Well-to-pump energy consumption per unit volume 

ηWTP Well-to-pump energy efficiency 

EPTW Pump-to-wheel energy consumption 

EWTW Well-to-wheel energy consumption 

HHV Higher heating value 

LHV   Lower heating value 

m   Mass 

Ocavg   Average occupancy 

PKT   Passenger kilometers traveled 

VMT   Vehicle miles traveled 

VKT   Vehicle kilometers traveled 

VDT   Vehicle distance traveled 

BRT Bus rapid-transit 

GREET Greenhouse gases, Regulated Emissions, and Energy use in 
Transportation 

 
ISO   International Organization for Standardization 

LCA   Life cycle analysis 

LCI   Life cycle inventory 



xiii 
 

MBSE   Model-based systems engineering 

OMG SysMLTM Object Management Group Systems Modeling Language 

UML   Unified Modeling Language 

WTP   Well to pump 

PTW   Pump to wheel 

 
 
 
 

 

 



xiv 
 

SUMMARY 

 
This thesis proposes a framework to design and analyze sustainability within 

complex urban transportation systems.  Urban transit systems have large variability in 

temporal and spatial resolution, and are common in lifecycle analyses and sustainability 

studies. Unlike analyses with smaller scope or broader resolution, these systems are 

composed of numerous interacting layers, each intricate enough to be a complete system 

on its own.  In addition, detailed interaction with the system environment is often not 

accounted for in lifecycle studies, despite its strong potential effects on the problem 

domain.  To manage such complexity, this thesis suggests a methodology that focuses on 

integrating existing modeling constructs in a transparent manner, and capturing structural 

and functional relationships for efficient model reuse.  The Systems Modeling Language 

(OMG SysML™) is used to formally implement the modeling framework.  To 

demonstrate the method, it is applied to a large scale multi-modal transportation network.  

Analysis of key network parameters such as emissions output, well-to-wheel energy use, 

and system capacity are presented in a case study of the Atlanta, Georgia metropolitan 

area. 

Results of the case study highlight several areas that differ from more traditional 

lifecycle analysis research.  External influences such as regional electricity generation are 

found to have extremely large effects on environmental impact of a regional mobility 

system.  The model is used to evaluate various future scenarios and finds that existing 

policy measures for curbing energy use and emissions are insufficient for reducing 

impact in a growing urban region. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation and Problem Definition 

As cities grow and the global demand for modern amenities increases, the design 

of sustainable urban systems has become an increasingly important topic.  Currently, over 

half of the world’s population resides in urban areas, with that proportion expected to 

increase to 70% by 2050 (United Nations 2005).  Within these population centers, 

accessibility to goods, services, and places of employment is crucial for economic growth 

and quality of life.   

In much of the developed world and the United States in particular, infrastructure 

has grown around the private automobile and related forms of travel.  Roadways handle 

80% of global motorized traffic volume, with automobiles contributing over 50%.   As 

population continues to centralize, road capacity cannot cope with subsequent demand.   

In the U.S. alone, 4.2 billion hours and 2.9 billion gallons of fuel were wasted in 2007 

because of congestion in urban regions, almost double the totals from a decade earlier 

(Schrank and Lomax 2009).  Figure 1 shows the growth in both of these indicators over a 

20 year period. 
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Figure 1: Average congestion indicators in United States urban areas (Schrank and Lomax 2009) 

Even disregarding capacity problems, motor vehicle use presents serious issues 

for energy consumption and the environment.  Transportation uses 39% of all energy 

consumed in the United States, and is the largest and fastest growing consumption sector. 

It is responsible for 32% of all U.S. greenhouse gas emissions, 97% of which are from 

the use of petroleum.  These contributions are expected to increase another 20% and 24% 

respectively by 2035 (Schafer 1998).  Amid growing evidence of global warming and 

eventual petroleum shortages, a departure is needed from the current state of affairs.   
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Figure 2: Delivered U.S. energy consumption by sector (U.S. Energy Information Administration 
2009) 

With so much urban growth and a clear body of evidence suggesting 

transportation is a serious environmental problem, intracity transit has been increasingly 

pushed into the spotlight. A wide body of literature exists on the topic of urban design, 

urban transportation and the sustainability of each.  Approaches differ widely, and no 

wonder; the topic spans technical, social, economic, and environmental landscapes, all 

with distinct goals.  Many authors emphasize the concept of “new mobility” (Goldman 

and Gorham 2006; Luca Bertolini and Dijst 2003; Zielinksi 2006), which utilizes a 

combination of location-based planning, virtualization, and integrated transport to solve 

the mobility dilemma.   

Since physical movement between locations is likely to remain important for the 

foreseeable future, the latter of these three approaches provides an interesting look at how 
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to increase sustainability within short time scales.  Linking transportation modes 

effectively within an integrated system has the potential to maximize multiple other 

investments, including transportation infrastructure, public transit systems, and adoption 

of new vehicle technologies such as hybrid or battery electric powertrains. 

However, difficulties arise when attempting to evaluate the sustainability of such 

integrated solutions.  What metrics should be used as the overall design goals?  Where 

should system boundaries be drawn?  Traditional problems in lifecycle analysis become 

compounded when dealing with complex systems-of-systems, composed of numerous 

interacting layers that have wide ranges of temporal and spatial resolution.  Taking a 

holistic view of these systems and understanding the functional relationships between 

them allows for solutions not apparent when examining a single system or component.   

1.2. Defining “Sustainable Urban Mobility” 

Although agreed upon as an admirable goal, sustainability is difficult to define, 

and current literature demonstrates a range of different interpretations and research 

angles.  The 1987 Brundtland Commission report (Brundtland 1987) is widely credited 

with formally defining the overall concept of ‘sustainable development’, as ‘development 

that meets the needs of the present without compromising the ability of future generations 

to meet their own needs’.  Generally, it is accepted that these ‘needs’ are not merely those 

of survival, but stem from economic, social, and environmental goals (Goldman and 

Gorham 2006).  These three pillars of sustainability are more colloquially known as the 

“triple bottom line”.  From an environmental perspective, preserving the ability to meet 

these needs depends on using resources so that they are renewable or replaceable as time 

goes on. 
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To apply this to the field of mobility, Black (Black 1996) suggests a simple 

restructuring of the Brundtland statement, defining ‘sustainable transportation’ as 

meeting current transport and mobility requirements without sacrificing future ability to 

do the same.  The difficulty in assessing sustainability now revolves around which 

resources need to be preserved: the choices include energy, land use, and time, amongst 

others.  Optimizing one may have adverse effects on the rest.  Choice of evaluation 

metrics is another source of variation.  Some advocate quantifiable measures of 

performance such as fuel consumption or total vehicle miles traveled (VMT) (Black 

1996; Small and Van Dender 2005), while others use broader concepts such as safety, 

congestion, and access (Richardson 2005).  In an effort to reduce sources of uncertainty, 

this thesis focuses primarily on the former category of concrete, measurable metrics.  

Energy consumption, VMT, and various types of emissions are used as primary 

indicators of sustainability within a given system. 

Further, a distinction should be made between transport and mobility.  While 

transport involves the movement of any object, mobility deals specifically with people.  

The freight industry is influenced by a unique set of factors when compared to personal 

transportation.  Though there is a great deal of overlap, the differences are large enough 

that it is useful to treat them as separate entities.  The primary focus of this thesis is on 

mobility, but conclusions that can be made about transportation as a whole are discussed 

in Chapter 6. 

Finally, the definition of a mobility ‘network’ needs to be refined.  Bertolini and 

Djist (Luca Bertolini and Dijst 2003) discuss mobility ‘environments’ that are both 

temporal and spatial entities, with their function defined by not only their location, but 
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how their purpose and demographics change throughout the day, month, or year. These 

environments form hubs that provide access to one or more forms of transportation.  A 

comprehensive ‘mobility network’ includes these hubs and the flow of both people and 

information between them. 

Combining these concepts results in a departure from traditional urban 

transportation.  Existing approaches to transit within cities has been ad-hoc at the network 

level: roads, bus systems, rail systems, etc, are added on an as-needed basis to wherever 

there is maximum demand.  Although each mode of transportation may be implemented 

in a way that optimizes its own routing and service level, multi-modal interaction has not 

been examined closely.  More recently, urban and regional planning commissions have 

begun to examine the effects of this symbiosis, but have only scratched the surface in 

terms of potential system connectivity. 

The concept of connectivity is central to urban mobility design.  The established 

goal of transportation is to connect people from their current location to wherever they 

need to be, preferably as quickly as possible.  Research has shown that proximity of 

location and trip time are paramount when providing a mobility service (Cervero and 

Kockelman 1997).  Therefore, mobility goals should be centered on reducing these 

variables in the most economical way possible.  In many cases, this means maximizing 

the impact of pre-existing transportation resources, through IT solutions, new routing 

possibilities, policy changes, and hub network design.  In order to evaluate such 

interconnected scenarios, new modeling and simulation approaches are needed to manage 

consistency, complexity, and reduce modeling effort across the entire system domain. 
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1.3. Research Questions and Hypotheses 

The evidence above suggests that despite recent focus on the integrated mobility 

network approach, holistic systems modeling seems to be a somewhat neglected aspect of 

sustainable transportation.  Current work in lifecycle analysis and sustainability 

evaluation tends to sacrifice system breadth in return for increased depth.  Energy inputs 

and outputs of a particular cycle are exhaustively catalogued, but studies often fail to note 

the effect such energy consumption has in a larger context, or even what research 

question is being answered by the evaluation (Delucchi 2004; Graham and Marvin 1996).  

The central goal of this thesis is to develop tools that allow for integration of multiple 

model scales without a loss of resolution or clarity.  This motivation leads to the central 

research question: 

How can high level environmental impacts of a transportation system be examined 

while maintaining high spatial and component granularity? 

Improving the design of transportation systems for sustainability requires 

considering each interacting subsystem in detail, but managing the resulting complexity 

in such a way that still allows for overarching system metrics and optimization criteria.  

In order to accomplish this, one must carefully consider the chosen methodology, tools to 

implement the methodology, and finally whether both tools and process can be expanded 

or improved to improve the desired multi-scale accuracy and performance. 

Each of these three elements leads to necessary sub-questions that must be 

answered in the course of proposing a hypothesis for the central problem.  The first 

element, methodology, involves consideration of how to organize and represent the 

various disciplines, stakeholders, objectives, and information within an urban 
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transportation system.  It is clear that an ad hoc method is not sufficient for such tasks.  

This leads to the first sub-question: 

What methodology should be used to model a transportation system in order 

to effectively evaluate it at multiple scales? 

A formalization of mobility network parameters, interactions, and subsequent 

outcomes could improve anticipation of the effects of infrastructure changes before they 

occur.  Planning of new networks in developing countries could also be improved.  With 

a formal ‘template’ for modeling an integrated mobility network, the task of evaluation 

and optimization requires less setup and less manual manipulation.  Concepts applied to 

mobility are largely transferrable to sustainable systems in general.  Therefore, this thesis 

proposes a hypothesis in answer to sub-question 1: 

Model-based systems engineering (MBSE) can increase evaluation consistency, 

reduce modeling effort, and integrate analysis tools when evaluating and designing 

sustainable mobility networks. 

In order to prove this, a specification and associated tools must be used to carry 

out the chosen methodology.  The Systems Modeling Language (SysML) is one 

possibility for implementing this formalization, when combined with existing lifecycle, 

resource, and emissions models.  It will be used here to demonstrate the modeling and 

analysis techniques necessary to provide an integrated multi-scale view of sustainable 

networks. 

Once a flexible modeling framework is in place, it may used to examine various 

mobility scenarios that are of interest to city planners, sustainability experts, and other 
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stakeholders.  By lowering modeling effort to the point where many result sets may be 

gained easily by various parties, possibilities for system-of-systems optimization are 

created.  In order to do this, the domain specific model must be tied to various executable 

analysis tools that simulate system conditions and make computations.  The next research 

question stems from this goal: 

How can a created modeling framework be used to integrate multiple executable 

models, in order to evaluate complex system designs and scenarios? 

The established engineering approach to creating sustainable systems is 

fundamentally reactive.  Systems are designed, and then evaluated for environmental and 

social impact using certain chosen metrics.  However, the use of MBSE and SysML for 

mobility networks opens up new possibilities for scenario analysis and optimization.  

With proper integration of input and output models, major changes can be evaluated well 

before implementation, transforming the design process into a proactive procedure.  In 

this case, SysML can act as a central point of consistency between different types of 

engineering analysis models, defining system structure and constraints which are then 

translated into the necessary analysis domains.  Therefore, it is proposed that: 

Through the use of model transformations and input/output mappings, SysML and 

MBSE can integrate executable models and provide traceable consistency within the 

framework. 

1.4. Research Strategy and Organization 

The questions outlined in section 1.3 are first investigated with a review of 

relevant literature in urban mobility and related modeling and simulation.  The review 
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begins with work on urban mobility and transit, discusses multi-modal integration, 

vehicle impact assessment, and integration of sustainability efforts in urban planning.  

Complex systems modeling is addressed, particularly with regard to environmental 

impact.  Problems with transportation lifecycle analysis and other assessments of 

sustainability are highlighted.  Finally, links are drawn between these issues and the 

chosen research questions, in order to provide context for the following methods, results, 

and conclusions. 

Chapter 3 discusses the chosen methodology for answering the proposed research 

questions.  Section 3.1 demonstrates the benefits of using MBSE for managing 

complexity, and section 3.2 discusses the advantages of model capture and reuse for 

complex system life-cycle inventories.  SysML is introduced as a model-based tool in 

section 3.3, and section 3.4 covers implementing MBSE within SysML. Once model 

information is captured, further functionality is obtained by making the SysML model 

executable, then linking it with other analysis models, as shown in sections 3.5 and 3.6. 

In order to implement the methodology described in Chapter 3, a specific 

approach is needed.  Chapter 4 details the series of steps taken to create a formal systems 

model and use it to evaluate sustainability.  First, a mobility system model and associated 

hierarchy is defined within SysML, including reusable part and model libraries and 

captured system parametrics.  Then, this model is linked to numerous external data 

sources and analysis tools.  Finally, a transformation is implemented that maps SysML 

model elements to an analysis language in order to run simulations and calculations on 

various system scenarios. 
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Chapter 5 evaluates the environmental impact of several urban mobility 

implementations using the developed framework.  Case studies of several cities are 

presented, including Atlanta and Washington DC.  Several scenarios for each city are 

discussed, along with implications for urban planning and mode split decisions.  Due to 

the ease of system evaluation using the MBSE framework, it is possible to investigate 

alternative objectives with a minimum of additional effort.    

Finally, Chapter 6 discusses the case study results and draws conclusions about 

their implication for transit policy as well as the adopted modeling methodology.  It is 

found that using SysML does help to manage model complexity, although analysis is still 

heavily dependent on the quality and quantity of large amounts of input data.  For the 

Atlanta case study, results suggest that current transportation policy will be ineffective 

for curbing growth in energy use and emissions output.  Several factors are presented as 

key drivers of this growth, including electricity generation methods, vehicle occupancy, 

and trip length.  Although Atlanta is extreme in several of these drivers, the results may 

imply a similar outcome for other U.S. cities.  Future work is suggested to improve the 

model and apply it to a larger domain.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1. Urban Mobility and Transit Networks 

While discussing urban environments, Bertolini notes that “the ability to provide 

opportunities for human interaction is an - if not the - essential reason for cities to exist” 

(Luca Bertolini and Dijst 2003).  These opportunities may be survival-based, structured 

around better access to food, goods, or safety in numbers, or they may be to serve higher 

level needs, such as companionship or work.  The central purpose of any area with high 

population density is to allow better access to places where these needs can be met.  

Upon examining this premise, it becomes clear that the most attractive cities are ones that 

minimize the costs associated with such interaction; thus placing a premium on the ability 

to get from one  interaction to the next.  Normally, people consider moving from 

interaction to interaction in spatial terms, placing emphasis on mobility between 

locations.  Graham and Marvin demonstrate that this is embodied in the development of 

many historical urban areas, which grew to be dense in order to minimize distance 

constraints (Graham and Marvin 1996).   

However, mobility from one interaction to the next can also happen on a temporal 

scale.  Many locations transfer their purpose or interaction potential over the course of 

the day, for example, a street that is busy with workers during the day may also house 

restaurants and bars that attract a different demographic at night.  In fact, with the advent 

of new communications technologies, mobility is even less tied to specific locations, as 

cell phones, videoconferencing, and the internet increase our access to interaction from 

almost anywhere in the world.  Because of this abstraction from movement through 
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space, “mobility environments” are defined as a combination of “accessibility and 

proximity features” (Luca Bertolini and Dijst 2003). 

In recent decades, the focus has shifted from minimizing distance constraints to 

minimizing time constraints.  Litman and Laube find that the rapid motorization of 

transit, increasing volume of roadways, and increased average speed of vehicles has led 

to less of a focus on distance due to its lessening impact on the overall cost of mobility 

(L. Bertolini et al. 2005; Litman and Felix Laube 2002).   

Addressing mobility constraints along one particular dimension over another is 

made more complicated by the complex feedback relationship between mobility, 

transportation, and temporal and spatial dynamics.  Priemus et al. provide an introduction 

to many of the issues associated with interactions.  They point out that as access to 

mobility within an area increases, so does the surrounding land value, changing 

development patterns.  Resulting effects are multiple-order and influence population 

behavior, density, and subsequent usage of the transportation system.  The authors argue 

that much closer cooperation is necessary between policy-making entities that govern 

transit and land-use development, in order to increase overall accessibility and align 

development with policy goals (Priemus et al. 2001). 

As urban areas swell in size, motorized transit can no longer overcome distance 

constraints with such ease.  The annual Urban Mobility Report by Schrank and Lomax 

provides clear evidence of growing congestion effects in the U.S. (Schrank and Lomax 

2009).  Tracking road-based congestion indicators in the U.S. for the better part of a 

decade, the report shows rising commute times, larger VMT, lower roadway speeds, and 

longer peak periods for travel.  Though international cities have arguably managed 
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growth in mobility demand more effectively than many locations in the United States, 

there are countless publications attesting to the universality of the problem (Black 1996; 

Kenworthy and Townsend 2002; Litman and Felix Laube 2002). 

2.2. Multimodal Integration 

To deal with demand for rapid location-based mobility, one established response 

is to provide such mobility in alternate forms.  Improving vehicle efficiency is certainly a 

valuable resource for increasing environmental impact (Turton 2006), but does not 

address the congestion problems that affect overall sustainability.  To combat the 

environmental, social, and economic aspects of congestion, strategies must be explored to 

reduce automobile dependence, or more generally, dependence on a single mode of 

transit.  The World Business Council for Sustainable Development recommends a two-

pronged approach, by increasing motorized transit options, and where possible, 

decreasing demand for motorized transit entirely (World Business Council for 

Sustainable Development 2001).   

In order to effectively increase transit options, and just as importantly, usage of 

those options, alternative modes of transit must be integrated effectively with both each 

other and the existing transportation infrastructure. The European Commission applies 

the term “intermodality” to describe such integration: “Intermodality is characteristic of a 

transport system that allows at least two different modes to be used in an integrated 

manner in a `door-to-door’ transport chain.  In  addition,  it  is  a  quality  indicator  of  

the  level  of integration   between   different   transport    modes.   In   that   respect   

more intermodality  means  more  integration  and  complementarity [sic]  between  
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modes, which  provides  scope  for  a  more  efficient  use  of  transport  systems” 

(European Commission 1997). 

Research on multimodal integration with regard to logistics is extensive, but 

definitive studies discussing passenger transport are less common.   Bailey et al. highlight 

a significant negative correlation between transit accessibility and automobile travel, 

regardless of actual transit usage numbers in a given area (Bailey et al. 2008).  Other 

studies establish a similar correlation between urban density and mixed transit use 

(Kenworthy and F Laube 2001). The pair of findings makes sense given that in a high 

density city, more of the population will have good access to transit given a fixed public 

transit system or number of facilities.  Janic points out that data concerning the impact of 

multimodal integration legislation in the EU is limited, despite numerous policy changes 

designed to encourage linked trips and increase ridership on transit modes other than the 

private automobile (Janic 2001).   

Litman and Laube suggest that reliance on motorized travel in general over a 

certain threshold produces a negative economic effect, as transport costs begin to 

outweigh the benefits.  Figure 3 demonstrates this lack of correlation between higher 

vehicle travel and overall wealth.   
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Figure 3: Vehicle-Kms versus gross regional product in 37 cities, 1990 (Litman and Felix Laube 
2002) 

However, no matter the overall level of transport use, the authors point out that 

total transportation costs tend to decline as transit use becomes increasingly multimodal.  

This is demonstrated in Figure 4.  Additionally, they find that since automobile 

expenditures are capital intensive and often imported, in most cases they provide less 

regional economic benefit than public transit expenditures.   
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Figure 4:  Transport expenditures versus transit use (Litman and Felix Laube 2002) 

The Millennium Cities Database is a collection of data from over 100 cities, 

compiled by the International Association of Public Transport (UITP).  The database 

compiles 69 indicators of population, growth, transit use, transportation efficiency, and 

number of vehicles.  Evidence from the Millennium Cities Database supports this claim, 

but also suggests that it may not be a causal relationship.  Population density likely also 

plays a large role, and data taken from numerous cities shows that as density increases, 

transit mode share increases and overall cost of transport drops (Vivier and Mezghani 

2001).   
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Table 1: Density, modal choice, and cost of urban transport in selected cities (Vivier and Mezghani 
2001) 

 

Of course, overall data on the subject of multimodality is not always conclusive, 

and some authors disagree that the expenditure necessary to achieve a multimodal system 

is worth it.  Stopher examines the effects of congestion policy using recent publications 

and argues that congestion in U.S. cities is not likely to decrease no matter what policy 

measures are taken.  He proposes that policy would be better served focusing on potential 

advantages of congestion, and finds that even doubling current transit ridership levels has 

a minimal impact on travel demand and traffic. 

2.3. Transportation Life Cycle Analysis 

Now that the need for integrated systems has been established, tools are necessary 

to evaluate their environmental impact.  Life cycle analysis, alternatively referred to as 

life cycle assessment (both abbreviated LCA), “stands as the pre-eminent tool for 

estimating environmental effects caused by products and processes from ‘cradle to grave’ 

or ‘cradle to cradle’” (Reap et al. 2008). 

A product, defined by the International Organization for Standardization as “any 

goods or service”, can be catalogued from the perspective of raw material production, 

manufacturing, distribution, and disposal, as well as transportation between each of these 

activities (International Organization for Standardization 2006).  The life cycle 
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assessment itself is divided by the ISO into four main phases: goal and scope definition, 

inventory analysis, impact assessment, and interpretation. 

Phases 1-3 must occur linearly; i.e. the goal and scope of the LCA must be 

defined before conducting an inventory analysis, which must be completed before 

assessing impact.  However, each of these three phases is subject to their own 

interpretation, including overall analysis, sensitivity analysis, and other metrics.  The 

results of each phase can have large effects on the execution of the remaining phases, and 

may dictate revisions to an earlier phase if necessary. 

 

Figure 5: Illustration of LCA phases in ISO 14040 series standards. 

One of the central problems with any sustainability analysis involves boundary 

selection.  When performing a study, limitations on time and resources dictate that 

choices must be made as to the components, systems, and domains included.  This in 

itself is an influential assumption, with potentially large effects on both results and the 

confidence of the decision maker that uses them (Delucchi 2004; Reap et al. 2008).  The 

final impact is difficult to quantify, due to the fact that anything outside the modeling 

boundary is inherently precluded from detailed examination.  To make matters worse, 
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since certain boundary assumptions occur during definition of the problem itself, they 

may not be immediately apparent when examining a chosen methodology.   

Also, current lifecycle and sustainability analyses often differ in the metrics they 

use to value one process over another.  Decisions on whether to account for different 

energy qualities, assignment of weights for equivalent greenhouse gas emissions, and 

even the definition of sustainability itself give rise to non-quantitative uncertainty 

(Greene and Wegener 1997; Lee et al. 1995; Pezzey and Toman 2002).  Choice of 

indicators and the importance they are given upon evaluation can have major effects on 

results, but this is often not addressed. 

Other efforts to compare life cycle costs of transportation systems include Fels, 

who examines the energy consumption of various modes of transport based on use-phase 

and manufacturing costs of both the vehicle and its required guideway.  The work 

contrasts each transit mode using direct comparison per passenger mile, but does not 

include factors related to travel demand, real-world use cases, or interlinking systems 

(Fels 1975).  The authors conclude that a vehicle’s use phase is by far the most dominant 

factor in lifecycle energy use.  Their findings suggest a general trend that manufacture of 

infrastructure to support a given vehicle type contributes an order of magnitude less 

energy consumption than vehicle manufacture, and vehicle manufacture contributes an 

order of magnitude less than vehicle use over the vehicle’s lifetime. 

A notable effort in life-cycle analysis as it relates to transportation is the Argonne 

National Laboratory Greenhouse gases, Regulated Emissions, and Energy use in 

Transportation (GREET) Model.  GREET is composed of two models, the GREET 1 

Series, which considers vehicle fuel life cycles from well to wheels, and the GREET 2 
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Series, which considers the life cycle of vehicles from manufacturing to disposal and 

material recovery (M. Q Wang 2001). 

The fuel-cycle portion of the GREET model covers several stages of activities, 

shown in Figure 6.  The well-to-pump stages are also known as the upstream portion of 

the cycle, while the pump-to-wheel stages comprise the downstream portion.   

 
Figure 6: Stages covered in GREET fuel-cycle analysis (M. Q Wang 2001) 

The model incorporates many conventional and alternative fuel pathways, 

including gasoline, diesel, natural gas, methanol, ethanol and various bio-fuels, hydrogen, 

and electric vehicles.  Each pathway incorporates the same set of stages, to ensure a 

consistent comparison across fuels and vehicle platforms wherever possible.  Figure 7 

demonstrates the fuel pathway hierarchy. 
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Figure 7: Fuel pathways included in GREET as of version 1.7 (M. Q Wang 2001) 

The GREET model has become a standard in fuel cycle evaluation, and is used by 

many government agencies and corporations.  However, it is designed to compare fuels 

and vehicles on an individual level. To examine the aggregate effect of multiple vehicle 

types interacting within an urban environment, further calculations are needed.   

This thesis uses the GREET model as input data for individual passenger transport 

vehicles, and integrates it with other data sources to create a comprehensive picture of 

urban transportation energy use and emissions.  Any regional model must incorporate 

higher level modeling techniques to account for demographics and changing market 

shares of conventional and alternative vehicle technologies. 

High level energy and emissions models are common among the literature, with 

varying scales and focus.  MARKAL, developed by the Energy Technology Systems 

Analysis Programme (ETSAP) of the International Energy Agency, and its successor, 
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TIMES, are high level energy system modeling tools, represent energy and emissions 

evolvement “top down” from a worldwide, national, or regional level (Seebregts et al. 

2001). 

More specific to transportation, the Argonne National Laboratory VISION model 

is designed to estimate energy use and emissions output of highway vehicles at an 

aggregate market level.  It is intended to be a user-friendly, rapid-response alternative to 

the Energy Information Agency’s National Energy Modeling System (NEMS), which 

itself is similar to MARKAL in that it simulates energy use across the entire U.S. 

economy, with subcomponents for industry, transportation, etc. (Singh et al. 2004).  

VISION is used as a data source for vehicle market shares within the regions specified in 

the case studies in Chapter 4. 

2.4. Integration with Urban Planning 

Transportation modeling is often closely combined with more general urban 

planning and land use studies.  Reasons for such a partnership stem from the simple fact 

that transportation is designed to move people or goods from where they are to where 

they need or would like to be, whereas urban planning decides where these current and 

desired locations are and how they interact with one another.  As mentioned in Section 

2.1, the two fields impact each other in complex ways. 

Many urban planners put a premium on fixed transportation infrastructure, such as 

rail transit systems or dedicated bus rapid-transit (BRT) lanes.  Access to mobility within 

station areas increases, and dedicated/reserved transit rights-of-way are more likely to be 

clearly routed and on more precise schedules.  Additionally, the high capital investment 

and physical permanence of rail lines (and to a lesser degree, dedicated lanes or 
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guideways) makes the local population more likely to invest long-term capital of their 

own to benefit from improved access.  Bollinger and Ihlanfeldt study the effects of the 

Metropolitan Atlanta Rapid Transit Authority rail system, after reviewing literature 

concerning other U.S. heavy rail transportation lines. They find that MARTA had little 

effect on employment and population near station areas at the time of the study.   

Other authors have reported mixed views on the same subject.  Nagurney 

highlights that complex networks do not always react as expected to changes in 

infrastructure.  She points out three common paradoxes within urban mobility networks, 

including emissions increases despite decreased travel demand, increased emissions when 

a road is added to a network, and increased emissions due to decreased transportation 

costs, despite no increase in demand.  She highlights the need to take into account 

network topology, cost structure, and travel demand structure when evaluating urban 

policies (Nagurney 2000). 

Richardson studies analysis frameworks for transport sustainability, and finds that 

indicators of sustainability are influenced by very different factors between freight and 

passenger transit.  For passenger transport, physical, psychological, and social needs 

primarily influence sustainability, while freight sustainability is dominated by market 

forces and government policy (Richardson 2005).  A framework showing feedback loops 

of various metrics is shown in Figure 8. 
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Figure 8: Passenger factors affecting sustainability of a transportation system (Richardson 2005) 

Other researchers integrate vehicle life cycle analysis with urban growth 

modeling.  Stone et al. study the effectiveness of “smart growth” policies and aggressive 

vehicle fleet hybridization in several Midwestern cities (Stone et al.).  They find that 

aggressive technology policies could reduce 50 year increases in emissions by 34%, and 

drastic increases in urban density could provide even larger emissions offsets. 

2.5. Complex Systems Modeling and Optimization 

In order to implement the MBSE process in a sustainability assessment, this thesis 

expands on previous work performed with the Systems Modeling Language, or OMG 

SysML™.    Using an open source profile of the Unified Modeling Language (UML), 

SysML eliminates the software-centric focus of UML and adds new functionality (Object 

Modeling Group 2008).   
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Jobe et al. (Jobe 2008) describe the use of multi-aspect component models 

(MAsCoMs) within SysML.  MAsCoMs enable connections between multiple analysis 

viewpoints of a particular component or structure within a system.  This approach allows 

for stakeholders to clearly identify analysis pathways, domain assumptions, and structural 

organization methods chosen by the system designers.   

Additional work has been performed on providing an interface between SysML 

and other existing modeling solutions.  For example, Johnson et al. (Johnson et al. 2007) 

demonstrate integration of continuous dynamic simulations into a larger SysML 

framework.  Using triple graph grammars, they provide a bidirectional mapping between 

existing SysML constructs and the Modelica simulation language, extending the 

functionality of both languages. 

More generally, models meant to facilitate the design of complex systems are 

common among the literature.  Bonabeau (Bonabeau 2002) discusses agent-based 

modeling, where systems are depicted as collections of independent decision-making 

entities. He outlines four general areas of application, and emphasizes that being able to 

model interactions between components is key to flexibility and complexity management.   

Smith et al. (Smith et al. 1995) examine an agent-based modeling approach for transit 

using TRANSIMS, which simulates individual travelers and freight quantities as they 

travel throughout a network.  Barth discusses the topic of transportation modeling as it 

relates to sustainability several times, notably with Norbeck (Barth and Norbeck 1994) 

while focusing on Intelligent Transportation Systems, and later with Todd (Barth and 

Todd 1999) on the subject of shared vehicles.   
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Other efforts at complex system optimization rely on carefully identifying 

relationships and feedback loops between different system elements.  System dynamics is 

one such methodology, which relies on causal loops and stock and flow modeling to 

understand the behavior of a target domain (Taylor 1999).  Actively growing since its 

invention in the 1950’s by Dr. Jay Forrester, it has been used more recently within the 

context of complex transportation systems and associated policy decisions (Jifeng Wang 

et al. 2008). 

Keating et al. (Keating et al. 2008) discuss underlying concepts of multi-level 

complex systems, and identify prevalent themes and problems to facilitate organization of 

future research.  The authors define “metasystems” as a system that “exists beyond, or 

transcends, the multiple complex systems it is intended to integrate”.  This thesis uses the 

principles of metasystems outlined there in an attempt to bring clarity to the problem of 

sustainability on multiple scales. 

2.6. Urban Systems Sustainability 

Efforts to comprehensively model sustainability in complex systems are limited, 

though several exist.  Many of these efforts focus on an urban area at an aggregate level, 

incorporating feedback from land use, migration, and other interactions at various levels 

of resolution.  In order to understand how urban systems work and their interactions with 

environmental systems, Alberti proposes a framework consisting of three parts: 

1. Key variables  to describe  urban  and  environmental  systems and  their 

interrelationships; 

2. Measurable  objectives and criteria that  enable  us to assess  these inter- 

relationships; 
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3. Feedback  mechanisms  that  enable  the  signals  of system  performance  

to  generate  behavioral  responses  from  the  urban  community  at  both 

individual  and  institutional  levels. 

Alberti specifies that the metrics and criteria chosen for the framework is 

dependent on how urban sustainability is defined (Alberti 1996).  Definitions are varied, 

and there is no consensus among the scientific community on which are superior, or what 

characteristics make a given urban ecosystem more sustainable than another.  He defines 

the “urban ecological space” as “ the  total natural  capital  and  flows  on  which  a  city  

depends  to  meet  the  long-term needs  of its inhabitants”, and proposes that urban 

sustainability cannot truly be addressed until links are established between the urban 

ecosystem of interest and the surrounding natural resource base. 

The flows established between the urban ecosystem and surrounding natural 

ecosystems govern the amounts of resource capital available to support human activities. 

There is a large amount of debate over how manufactured capital can replace natural 

capital; some researchers suggest a one-to-one relationship, while others argue that 

adequate substitution of certain non-renewable resources is unlikely or even impossible 

(Rees and Wackernagel 2008).  The only common conclusion is that living well below 

the surrounding ecosystems carrying capacity and disturbing natural capital as little as 

possible generally contributes to making an urban ecosystem more sustainable. 

When dealing specifically with transportation within an urban area, one must 

consider the types of vehicles used, their size and number, their manufacturing origin, 

what type of resources they consume, and the distance traversed and utility achieved by 

each vehicle. 
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In addition, tools for applying sustainability metrics to planning and policy of 

complex systems are not adaptable. While numerous examples of multi-criteria decision 

making exist in transportation publications (Turton 2006), many of these deal with a 

unique situation where the author has applied a general optimization approach to a 

singular vision of the problem.  The application of decision making to each topic allows 

for variable manipulation within a system, but has little or no universal component that 

allows comparisons across separate systems.  Furthermore, the prevailing strategy for 

appraising the effectiveness of transportation policy involves making a change, then 

evaluating data collected after the fact (Bollinger and Ihlanfeldt 1997). 

Existing sustainability modeling and simulation efforts focus heavily on extremes 

of scale.  Considerations of the life cycle of an individual product may take into account 

energy, material inputs, and costs for that product.  However, they may not account for 

other processes occurring at the place of manufacturing, market forces, future changes in 

technology, or many other factors.  Broader analyses of regions or ecosystems sacrifice 

detail in order to achieve the overall scope they intend. 

Including all of these factors is desirable, but attempting to append additional 

considerations to existing models quickly becomes cumbersome.  For example, the 

Lifecycle Emissions Model, or LEM, deals with fuels, transportation, heating and 

electricity use. It encompasses over 1200 pages of documentation and data, developed 

and refined across a period of more than 20 years (Delucchi 2003).  Certainly, this body 

of work is an extremely valuable contribution to lifecycle emissions research.   However, 

LEM inputs and outputs are predefined.  Adapting the chosen methodology to new 

geographical areas or system configurations would require extensive understanding of all 
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model documentation before deciding what inputs and constraints to modify.  Other LCA 

and energy models demonstrate similar characteristics. 

To remedy these problems, this thesis uses a MBSE methodology to integrate 

several existing models and use them to complement a central life-cycle inventory model 

of an urban transportation network.   

2.7. Summary 

A survey of the literature on urban transportation networks suggests that there is a 

great deal of optimism for integrated mobility systems, but investigation on potential 

benefits of such systems is lacking.  Authors have proposed that the key to more 

sustainable accessibility to goods, people, and places involves minimizing time and 

distance constraints through any methods available. 

Integrated multimodal systems are one such method for improving mobility.  In 

general, the literature finds positive impact in cities that have more transit modes readily 

available to the public.  However, some studies differ over some of the external benefits 

of extensive multimodal infrastructure and its effects on land use and population habits.  

In particular, the findings of  

Research on the lifecycles of transportation fuels and individual vehicle types is 

abundant.  Existing work supports the relative efficiency of large occupancy vehicles and 

alternative renewable fuels, finding that in most cases, the impact of fuel consumption 

vastly outweighs fuel and vehicle production over product lifetimes. 

Though exceptions exist, lifecycle analysis which takes into account regional and 

network-based context is notably lacking.  Existing environmental modeling efforts trend 

towards the individual vehicle level or a much higher scale.  Regional transportation 
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research is common with respect to traffic and congestion, but relies on complex static 

models.  Chapters 3 and 4 discuss this gap and how it may be addressed with model-

based techniques discussed by Peak, Johnson, and others.  Chapter 5 demonstrates the 

approach and provides an example of the information that can be made through a 

regional, system-based approach. 
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CHAPTER 3 

APPROACH AND METHODOLOGY 

 
When modeling a complex urban transportation system, there are several issues 

that must be addressed.  First, information transfer between multiple stakeholders must be 

taken into account.  Various interacting parties such as transit agencies, municipalities, 

and end users mean that there is more information to sift through.  Once sorted, the 

important facts and design constraints must be propagated throughout the system, as well 

as communicated to all vested parties. 

Next, multiple stakeholder objectives must be dealt with effectively.  Due to the 

presence of multiple interacting systems, stakeholders involved in each system rarely 

have the same goals or desires when moving through the design process.  Improving one 

area of a system may adversely impact another area, or even have an impact on the 

external environment.  For example, transit users are likely to have spatial and temporal 

transit availability as their primary objectives, while operating agencies are likely to 

prioritize operating cost.  The modeler needs to be careful to address these impacts and 

minimize exclusion of stakeholders during boundary selection.  Even with all relevant 

objectives included, they must be properly weighted and combined into a single multi-

attribute objective function in order to produce meaningful results. 

Finally, boundaries between various interacting domains must be defined.  In a 

transportation system, there are sources of goods, including manufacturing pathways for 

vehicles and infrastructure, sources of energy, including fossil fuels, electricity, and 

various methods of producing electricity, as well as the vehicles themselves and the area 

and infrastructure they reside in.  A modeler must take care to ensure that functional units 
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for each domain are equivalent and converted effectively when crossing domain 

boundaries. 

3.1. Model Based Systems Engineering 

The use of models to represent system components already takes steps towards 

mitigating the difficulties in representing a complex transportation system.  Traditional 

system engineering is normally characterized as being document-centric, using a 

systematic process to record objectives and requirements, then transform them into an 

overall system description.  Such approaches include the Pahl and Beitz method, which 

uses transformations to convert requirements and stakeholder objectives into a system 

description (Pahl and Beitz 1988), or the VEE Model, used to structure the system 

development lifecycle (K. Forsberg et al. 1998).  Although such requirements may 

contain quantitative information, they are normally conveyed in a qualitative way, using 

natural language.  This leads to ambiguity, obscuring and amplifying the problems 

discussed in Sections 2.3 and 2.6. 

To attempt to remedy these issues, large system-of-systems can be analyzed using 

formal techniques to document links between various structural components, as well as 

relationships among different interaction levels and scales. One method to accomplish 

this is through an application of model-based systems engineering (MBSE).  MBSE uses 

modeling to support analysis, design, specification, and verification of a system 

(Friedenthal et al. 2008).  By developing a coherent system model and corresponding 

model repository, necessary information can be captured in a way that improves 

traceability of flows and requirements, as well as the ability to share knowledge.  This 
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mitigates the difficulty of moving between multiple scales and subdomains of a large 

system.   

Once properly described, system relationships have extremely high potential for 

reuse (Jobe et al. 2008).  Most complex systems have subsystems that satisfy similar 

objectives; this is especially true in domains for which sustainability is a focus, such as 

manufacturing and transportation.   For example, the well-to-wheel energy pathway for a 

light-duty internal combustion engine (ICE) automobile powered by conventional 

gasoline is extremely similar to that of a heavy-duty gasoline-fueled truck.  It can even be 

compared relatively directly to a well-to-wheel petroleum diesel pathway, if differences 

in refining and processing efficiencies are properly accounted for.  When abstracted to 

universal building blocks and energy flows, a lifecycle inventory process can be 

standardized and used as a template for multiple scenarios.  Functional relationships are 

left intact, leaving only application-specific details to be modified. 

 

Figure 9: Typical life cycle pathway for petroleum-based fuels. 

This examination suggests that one approach to effectively analyzing a complex 

system is by first breaking down energy inventory techniques into smaller, modular 
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components, rather than immediately broadening scope to include additional modes.  

Once this is accomplished, an integrated analysis using MBSE is less daunting and more 

clearly defined than formulating a single “meta-system” model. 

3.2. Model Capture and Reuse 

With MBSE as a basis for an approach to the problem, one can outline a method 

for developing a reusable system model: 

• Define the desired system boundaries and surrounding domain 

• Define a hierarchical model structure that corresponds to a central 

viewpoint and includes all necessary scales 

• Identify relevant system constraints and associated object variables 

• Use analysis tools to automatically build system parametrics based on 

model structure and specified constraints 

• Map SysML object variables to appropriate variables in the analysis tool 

• Execute system parametrics to obtain calculation results at each level of 

the system hierarchy 

• Define other system viewpoints and analyses as needed 

The first step, defining system boundaries, is extremely important because of 

interactions between a complex system and its environment as mentioned in Chapter 2.  

Due to time and effort limitations, a modeler cannot depict the surrounding environment 

and domain at the same level of detail as the entire system, but must take care to clearly 

define connections, transfers of energy and mass between the system and its external 

environment, and where modeling resolution changes. 
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The model structure contains information on design, specification, requirements, 

analysis, and verification.  Elements are organized by their relationship to the parent 

system.  SysML provides diagram types for specific model viewpoints deemed important, 

such as system structure, behavior, requirements, and parametrics (governing equations). 

Parametrics form a set of constraints that govern how the system behaves as well 

as mathematical relationships between various model elements.  In this thesis, 

parametrics are often used to conform to first principles of thermodynamics during 

energy and mass transfer calculations.  Parametrics are key differentiator between SysML 

and UML, and are a large part of why SysML is capable of modeling physical systems. 

In order to formalize a useful set of parametrics within a model, the modeler must 

decide which variables are most relevant to the system’s behavior and the desired 

modeling viewpoints.  There are an infinite number of value properties that may be 

represented within a SysML model, but the model may become unmanageable without 

significant paring and careful selection of design parameters.  Once these properties are 

modeled, the constraints imposed by parametric diagrams support other viewpoints 

specific to engineering analysis.  These constraints can be applied to each alternative 

within a particular design space in order to perform optimization and trade studies. 

Also, the addition of parametrics enables the use of external analysis tools in 

conjunction with the user’s SysML modeling environment.   

3.3. Introduction to SysML 

The Systems Modeling Language (OMG SysMLTM) is a general purpose 

modeling language built upon the base of the Unified Modeling Language (UML).  UML 

is also a general purpose modeling language, but is designed specifically for the field of 
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object-oriented software engineering.  The UML standard is managed and updated by the 

Object Management Group, with inputs from many other working groups.   

UML and other graphical modeling languages of its kind are not development 

methods by themselves, but rather are tools designed to facilitate leading object-oriented 

design methods (Hunt 2000).  The current UML specification has 14 diagram types used 

to formally represent system artifacts.  Seven of these types represent structural 

information about a system, while the other seven are used to represent various types of 

behavior and interactions either within the system or between the system and its domain. 

SysML uses a subset of the UML 2.1 specification, and extends it in the following 

ways: 

• Support for parametric and requirements modeling 

• Flexible allocation tables 

• Management constructs to support models, viewpoints, and views 

• Additional systems-related semantics 

• Flow ports  

Figure 10 shows the SysML diagram taxonomy, which uses a subset of existing 

UML diagram types and adds two new types in support of parametric and requirements 

modeling as mentioned above. 
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Figure 10: The SysML diagram taxonomy (Object Modeling Group 2008) 

In general, SysML semantics tend to be more flexible and expressive, although in 

practice this can contribute to a lack of formalism that some authors claim as a limitation 

(Herzog et al. 2005).   

The universal structural unit in SysML is the block.  Blocks can be used to model 

physical objects, hardware, software, or any number of abstract entities that describe a 

system (Friedenthal et al. 2008).  Each block describes a set of instances, or individual 

objects that exhibit the features of their defining block but also have an explicit and 

unique identity within the model.  Blocks may be composed of other blocks, or be 

associated with them in a variety of ways.  Within each block, quantitative characteristics 

are stored by value properties.  These properties must conform to a value type, which 

defines the relevant units, dimension, and a range of possible values. 

Relationships between blocks are captured and displayed by a block definition 

diagram (BDD).  BDDs can visually represent a composition hierarchy between a set of 

blocks, or a classification hierarchy that defines generalization and specialization 

pathways.   
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Behavior and interaction between blocks is defined through the use of ports.  

Standard ports specify behaviors that are required or provided, while flow ports specify 

an item that can enter or leave a block.  Ports with similar specification can be connected 

to each other to model interaction or indicate transfer of energy or material.  Internal 

block diagrams show ports and connections between blocks, rather than structural 

associations such as those found in a block definition diagram. Other behaviors that 

govern how a block responds to external stimuli are handled by several SysML language 

facilities, including activities, interactions, and state machines.  Each of these is 

associated with a diagram type used to properly represent the behavior being modeled. 

Capturing system equations is accomplished through constraint blocks that define 

equations and the parameters within them.  Constraint blocks are included in a 

parametric diagram to show connections between constraint parameters as well as value 

properties from various parts of the model.  

3.4. Implementing MBSE in SysML 

Strategies for explicitly defining analysis viewpoints are extremely applicable to 

sustainable lifecycle assessment.  In particular, the use of MBSE in SysML serves to 

mitigate LCA boundary selection problems.  Including multiple viewpoints of the model 

that formally define the modeling domain, goals, assumptions, and constraints reduces 

uncertainty where assumptions of boundary and scope occur.  If these boundaries are 

refined during the design process, the refinements can be formally documented by 

keeping a history of SysML iterations, clearly showing the evolution of an LCA model 

and further reducing questions about the design decision process. 
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SysML also provides a unique method of mapping existing LCA tools to a 

system-of-systems model such as a transportation system.  By acting as an interface 

between various existing tools, SysML allows system designers to significantly expand 

the scope of their system domain with little increase in associated costs.  It should be 

noted that this does negate some of the benefits of formally modeling every component of 

interest within SysML, but in some cases this may be undesirable or even impossible.   

3.5. SysML analysis models 

While one approach to defining system parametrics involves specifying 

constraints within the SysML block that they operate on, this is not required, and 

sometimes not the optimal approach.  For example, many analysis viewpoints may 

require properties of multiple blocks to be used as constraint inputs, or multiple 

constraints may be applied to a block or set of blocks.  For a multi-scale model, the 

ability to decouple analyses from the system structure is invaluable, since the desired 

resolution of an analysis may change depending on the system or subsystem to which it is 

applied.  An analysis model is composed of constraint blocks that are separate from 

structural elements of the system.  Much like other elements intended for model reuse, 

they may be kept in pre-existing libraries so as to avoid modeling repetition when dealing 

with common constraints. 

The power of analysis models lies in their ability to act as a bridge between the 

SysML modeling environment and external analysis tools.  Although SysML has the 

ability to define system parametrics, the created parametric structure must be interpreted 

and solved.  By decoupling constraints from the structural model, these constraints may 
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be passed to any number of specialized software packages or solvers, such as MATLAB, 

Mathematica, or others. 

By using a consistent transformation protocol between the SysML analysis model 

and a solver, the analysis model can be made executable to automate calculations.  The 

transformation takes system structure and parametrics stored in SysML and translates 

them into semantics native to the tool of choice.  This assumes that SysML and the 

chosen external tools have equivalent language functions, or at least close 

approximations.   

3.6. Linking to other analysis models 

Another strength of SysML comes from an objective stated within the SysML 

language specification: “SysML is intended to unify the diverse modeling languages 

currently used by systems engineers” (Object Modeling Group 2008).  Because complex 

systems involve multiple analysis domains, it is often difficult to integrate models and 

simulations from each domain, many of which rely on proprietary, non-exchangeable 

languages and tools.   

Just as SysML can act as an interface between various LCI data inputs as 

mentioned previously, it also provides a neutral exchange format to interface between 

analysis models.  Flexibility in semantics allows stereotypes to be created for various data 

input and output types.  When linked with a parser and execution engine, the overarching 

system model created in SysML can provide a bridge between data from CAD/FEA 

models, statistical simulation modeling packages, and other engineering software 

programs. 



42 
 

The SysML specification stores model information using Extensible Markup 

Language, or XML, which is an open source standard for electronic document encoding.  

Since XML is widely used and openly maintained, storing SysML information using 

XML formatting increases interoperability.  Several authors have discussed the merits of 

XML-based information exchange for creating engineering models.  Since UML also 

relies on XML standards and is a much older specification, it has a large body of 

literature dedicated to model transformations and code generation using XML exchange. 

Overall, MBSE implementation using SysML appears to offer several major 

advantages over more traditional modeling and systems design methods.  Model capture 

leads to reusable components and an object-oriented modeling environment, reducing the 

amount of complexity that is presented to a modeler.  Organizing this information into 

diagrams using formal relationships and semantics reduces complexity for end users and 

stakeholders.  Using captured model information to generate analysis models provides a 

way to automate simulations and trade studies, and also provides a method and format for 

integrating external analyses and exchanging input and output data.  The end result is that 

a model’s domain boundary can be extended well beyond what would be possible with a 

document-centric or less formal approach.  
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CHAPTER 4 

IMPLEMENTATION 

4.1. Description 

This chapter demonstrates the use of a SysML model to assist in an LCI of the 

use-phase of various vehicle types within a regional urban mobility network.  An 

organizational scheme is outlined, and the network structure and parametrics relevant to 

the model are defined.  The model is exported to an external file for use with external 

analysis tools.   Parametrics are analyzed using ParaMagic/Mathematica as well as 

MATLAB as an external parser and solver.  Data for each vehicle type is taken from a 

lifecycle inventory of fuel pathways commonly used in transportation vehicles.  Statistics 

from the region are used to look at each vehicle type in the context of its use within a 

larger transportation system.   

4.2. SysML Model Structure 

The SysML model is divided into several key packages.   Broadly, these packages 

organize the model elements by in two categories: function (such as constraints or value 

types), and structure (infrastructure, vehicles, etc. of the transportation system being 

modeled).  Together, the packages form a hierarchical structure, as seen in Figure 11. 



44 
 

 

Figure 11: Transportation system package hierarchy. 

The top level package is called Transportation System, to signify the overall 

system in question.  Within it, there are several major structural subdivisions.  First, the 

system structure is designated by transportation modes within the network, which are 

contained within the “Network Structure” package.   
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Figure 12: Model organization into various packages within SysML 

In this case, the major modes to be examined are air, road, and rail.  To make the 

system abstract and applicable to multiple domains, other modes such as maritime 

transport are modeled as well.  However, since this case study the project was designed to 

examine Atlanta as the primary system instance, and Atlanta has no maritime passenger 

transport, the level of maritime detail modeled is lower than in other modes.  For the 

purposes of this analysis, air travel is also not modeled in detail, since it deals with trips 

between urban regions and not within one. 
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Figure 13: Block definition diagram of the overall transportation system structure. 

Figure 13 demonstrates the overall structure of the system.  Within each of the 

applicable travel modes, relevant vehicle types are modeled as part properties.  In this 

case, there are part properties for three general types of vehicle propulsion source: 

electric vehicles, internal combustion vehicles, and vehicles powered by human-

generated mechanical effort.  Since each of these propulsion methods deals with energy 

in a fundamentally different way, it is useful to model them separately for later analysis.  

Each of the vehicle part properties are an abstraction of multiple real-world vehicle types.  

Instances are used to provide finer grained specification between vehicles, which will be 

discussed below. 

Each transportation mode has value properties that store how many of each 

vehicle type exists within that mode.  For example, the “Road” block contains an array 
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“num_auto”, which has an element for the multiplicity of each type of automobile 

instance (number of gasoline automobiles, number of hybrids, number of electric autos, 

etc) that exist within the road subsystem.  The road block also has value properties for 

total pump-to-wheel (PTW) energy consumed by all road vehicles, as well as total CO2 

output, vehicle distance, and passenger distance.  Other major modes such as “Rail” have 

similar corresponding value properties.  The calculation of these values will be covered in 

detail in Section 4.3. 

Examining an individual vehicle type shows the general model structure used for 

various vehicles.  Figure 14 demonstrates the structure of an onroad vehicle with an 

internal combustion powertrain.  The vehicle, which can be considered a system in and of 

itself, is laid out into three main subsystems, the chassis, the powertrain, and the electrical 

subsystem.  The subsystems of interest have individual parts that are specified, such as 

the motor and in this case, the choice of fuel.  Individual parts as well as subassemblies of 

parts (such as powertrains) are stored in a library called “Part Library”, since many are 

found in multiple vehicle types and are intended for reuse. 
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Figure 14: Block definition diagram of an onroad vehicle with an internal combustion powertrain. 

Other vehicle types have similar basic structure, but with modifications to reflect 

fundamental structural differences.  For example, an air vehicle has a “Wing” part, and a 

rail vehicle has different multiplicity for the number of wheels.  Details of each vehicle, 

such as mass, fuel efficiency, and energy consumption, can be specified at the instance 

level.  Using the parts library to facilitate object-oriented creation of vehicle models 

means that most parts can be reused in multiple vehicle blocks, greatly increasing model 

utility.   
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Fuel types for each vehicle are modeled as a generic “Energy Source” at the base 

level, as in Figure 15.  The Energy Source block is used as a generalization of more 

specific types of fuel, such as liquid or gaseous fuel resources.  Universal properties of all 

energy sources consumed, such as CO2 output from production processes, are included 

within the generalizing class, while the specific classes contain information unique to 

their resource type.  For example, the “Fuel” block contains part properties for mass 

density in kilograms per liter, energy density in the form of the fuel’s lower heating value 

(LHV), and CO2 per unit energy density based on carbon content. 

 
Figure 15: SysML block of vehicle energy source 

4.3. Analysis Model 

4.3.1 Fuel pathway constraints 

The analysis model begins with low level fuel resources consumed by vehicles 

within the transportation network. Established well-to-pump (WTP) efficiencies for 

different fuel types are used to provide a basis for estimation of CO2 production.  

Although fossil fuel recovery and refining techniques do change over time, their rates of 

change are slow compared to the vehicles themselves, and certain energy inputs for 

mining, recovery, and transport remain relatively constant.  Multiple assessments of fuel 

feedstock recovery, transportation, production, and distribution have been carried out and 
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provide a solid basis for model calculations (Michael Wang 2002; M. Q Wang 1999).  

Table 2 shows input values for a number of common transportation fuels. 

Table 2: Fuel specifications within the GREET model (M. Q Wang 1999) 

 

To perform useful analysis on any given fuel type, first the fuel’s energy content 

is required.  In the U.S., this is normally taken to be the fuel’s higher heating value 

(HHV), and therefore HHV will be used in the following calculations.  This should be 

emphasized when reporting results, since some other parts of the world, particularly 
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Europe, perform calculations using the lower heating value (LHV).  GREET uses LHV 

for calculations by default, but has the option to make calculations using HHV as well, 

which has been chosen for the following results.  HHV refers to a fuel’s gross calorific 

value, and accounts for the amount of heat released by combustion once all reaction 

products have returned to a standard temperature of 25°C.  The resulting measurement 

takes into account the latent heat of vaporization of water in the fuel’s combustion 

products, whereas LHV assumes that combustion products are returned to 150°C.  At this 

temperature, water content remains in vapor form at the end of combustion, and therefore 

is not recovered.  The difference in the two values for any given fuel depends on the 

fuel’s hydrogen content.  The HHV tends to be approximately 6-12% higher than the 

LHV for common hydrocarbons. 

Volumetric energy density (MJ/L) is used to facilitate calculations involving 

vehicle fuel efficiencies, which are normally given in distance traveled per unit volume of 

fuel consumed.  By multiplying the fuel’s energy density by the WTP efficiency factor, 

the total WTP energy consumption per unit volume of fuel available for end use can be 

obtained.   

𝑬𝑾𝑻𝑷 = 𝑯𝑯𝑽 ∗ (𝟏 − 𝜼𝑾𝑻𝑷) 
(1) 

CO2 output per unit energy is calculated using known CO2 generation per unit 

mass, based on carbon content and normal combustion conditions, as well as the fuel’s 

energy density. 

𝑪𝑶𝟐𝑾𝑻𝑷𝑬 = 𝑪𝑶𝟐𝒇𝒖𝒆𝒍/𝑯𝑯𝑽 
(2) 
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The SysML parametric diagram for a fuel resource is shown in Figure 16.  Energy 

density is imported during GREET model execution, and therefore is not included in the 

SysML parametric structure. 

 

 

Figure 16: Parametric diagram of a fuel resource in SysML 

WTP calculations for common fuels used in most U.S. urban areas are shown in 

Figure 17.  CG denotes conventional gasoline, RFG refers to reformulated gasoline as 

specified by the U.S. EPA Clean Air Act (Environmental Protection Agency 1994), and 

EtOH FFV is an 85% ethanol/15% gasoline mixture using corn ethanol (commonly 

available as “E85” at refueling stations).  The results for electricity shown below are for 

the U.S. average generation mix (Energy Information Administration 2009; Luna-Camara 

et al. 2009).  As opposed to other fuel types, electricity exhibits high CO2 output upon 

reaching the “pump” (end-use outlet) because combustion of input fuels has already 

occurred.  WTP efficiency, or the ratio of energy expended to energy extracted and 

produced, varies widely.  This is due to differences in production techniques.  While 

fossil fuels such as gasoline and natural gas can be extracted from the earth directly and 

refined with relatively low energy expenditure, bio-fuels such as corn ethanol must 

undergo a great deal of energy intensive processing after harvest in order to be used as a 

transportation fuel.  As mentioned before, electricity often must combust another fuel 

type as input fuel for its production, leading to the lowest WTP production efficiency, but 

normally a much higher use-phase (PTW) efficiency.  Whether well-to-wheel efficiency 
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for an electric propulsion pathway is higher or lower than fossil fuels is highly dependent 

on electricity generation methods and a vehicle’s individual use case.  These factors will 

be discussed further in the following case studies. 

 

Figure 17: Energy use and greenhouse gas output per GJ of fuel energy available for end use 

4.3.2 Vehicle constraints 

Moving upwards in the system hierarchy, the analysis model computes statistics 

for an individual vehicle type.  Each vehicle has a defined fuel type, which allows it to 

inherit the fuel’s well-to-pump efficiency factor.  Vehicles sold in the U.S. are required to 

be rated with a standardized fuel economy, based on drive-cycle tests developed by the 

EPA.  This fuel economy is taken as the pump-to-wheel (PTW) energy consumption, i.e. 

accounting solely for the use phase of the fuel.  The PTW rating is divided by the WTP 

efficiency factor to produce numbers for well-to-wheel (WTW) energy use. 

𝑬𝑾𝑻𝑾 = 𝑬𝑷𝑻𝑾/𝜼𝑾𝑻𝑷 (3) 

Carbon content is multiplied by fuel economy and a combustion ratio to produce 

CO2 output per kilometer.  The proper ratio is given by the atomic weight of CO2 divided 
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by the atomic weight of standard carbon, resulting in 44/12.  Researchers must take care 

to account for only the fuel that is oxidized during the combustion process, which is 

approximately 99% for common fuels (Garg and Pulles 2006). 

𝑪𝑶𝟐𝒐𝒖𝒕 = 𝑬𝑷𝑻𝑾 ∗ 𝒎𝒇𝒖𝒆𝒍 ∗ 𝑪𝒇𝒖𝒆𝒍 ∗ 𝟎.𝟗𝟗 ∗ (
𝟒𝟒
𝟏𝟐

) 
(4) 

  This approach also provides a method for seamlessly comparing internal 

combustion vehicles with those that rely on electric motors or other forms of propulsion: 

the well-to-wheel energy calculation results in a number that defines distance traveled per 

unit of energy used, such as km/MJ.   This figure is also commonly tested and published 

for any alternative fuel vehicle (essentially, the “fuel economy” of a battery powered 

vehicle or similar), which can then be combined with regional data on standard grid 

electricity production to arrive at the same well-to-wheel energy use and emissions 

output. 

In the case of electric vehicles, it is not possible to do a simple carbon content 

calculation as is outlined above.  Instead, the generation of electricity used for propulsion 

must be considered.  Depending on the source fuels and methods used for generation, this 

can have an extremely large effect on overall efficiency and emissions.  Similar to the 

pathway shown in Figure 9 for a petroleum fuel lifecycle, power generation has distinct 

stages, each with their own efficiency ranges.  Also, power plants in the U.S. are 

carefully regulated, and normally are required to record their production totals as well as 

their emissions output.  To determine the average rate of emissions produced by the 

generation of electricity in an area, the annual CO2 emissions from each plant are 

summed during model analysis using the eGRID national database of U.S. powerplants, 
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then divided by the sum of total annual plant energy generation.  The result is the amount 

of CO2 per unit of electricity produced within the chosen region. 

𝑪𝑶𝟐𝒓𝒂𝒕𝒆 = ∑𝐂𝐎𝟐𝐚𝐧𝐧𝐮𝐚𝐥
∑𝚸𝐚𝐧𝐧𝐮𝐚𝐥
�  

(5) 

When determining vehicle inputs, GREET data is used for calculations 

concerning on-road light-duty cars and trucks.  Gasoline equivalent fuel efficiencies for a 

light-duty fleet vehicle of average size and weight are used to calculate use-phase energy 

consumption, and molecular composition and relevant combustion reactions leads to 

average vehicle emissions by fuel type.  Average fleet fuel economy of 10.77 km/(L 

gasoline) is used as a basis for consumption equations (M. Q Wang 2001; Michael Wang 

2002).  In addition to internal combustion vehicles using the fuels outlined above, 

gasoline and diesel hybrid vehicles, plug-in hybrids, and pure electric vehicles are 

included in the light-duty fleet.  The resulting well-to-wheel pathways are only a small 

cross section that are possible with the GREET model, but represent the vast majority of 

current conditions for the chosen networks.  The VISION model incorporated for vehicle 

market shares uses statistics from U.S. Department of Energy and Office of 

Transportation Technologies to form a base case of vehicle market penetration, and 

subsequently project future penetration and energy-related statistics (Singh et al. 2004). 

Once constraints are in place for each vehicle type, and specific values defined for 

each specific vehicle, overall emissions and vehicle-km-traveled (VKT) can be computed 

within each infrastructure subsystem.  VKT is currently calculated using a bottom-up 

approach: the total number of units for each vehicle type is multiplied by that type’s 

average daily travel distance: 
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𝑽𝑲𝑻𝒅𝒂𝒊𝒍𝒚 = 𝒏 ∗ 𝒙𝒂𝒗𝒈 
(6) 

The average travel distance by vehicle type is the largest source of uncertainty 

within the model.  Figures for public transportation such as trains and buses can be 

calculated with some level of certainty, but trip lengths for nonpublic vehicles can vary 

widely.  However, metropolitan transportation organizations commonly record some type 

of total mileage data, allowing trip length assumptions to be checked.  As discussed in the 

results section, using an average daily distance provides reasonable results for computing 

total VKT for the chosen case studies outlined.  The SysML parametric diagram for an 

ICE automobile is shown in Figure 18. 

 
Figure 18: SysML parametric diagram of an ICE automobile 

By introducing separate modes of transportation into the analysis, however, new 

complications arise.  Public transit vehicles are larger and heavier than their automobile 

counterparts, meaning that directly comparing vehicle efficiency is a fruitless exercise.  

To better determine which mode is best at moving passengers from A to B, energy use 
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per passenger-distance is compared.  Passenger-distance is defined as a distance traveled 

multiplied by the number of people that have traveled it.  Since the SI system has been 

used thus far, the passenger-kilometer is a reasonable choice of unit, and is simply 

defined as one person moved a distance of one kilometer.  Calculating VKT and vehicle 

efficiencies in terms of passenger-km takes each vehicle’s occupancy into account, and 

gives much more insight into the effectiveness of a particular mode. 

The relevant equations involving passenger distance are total passenger distance 

for a vehicle type, seen below. 

𝑷𝑲𝑻𝒅𝒂𝒊𝒍𝒚 = 𝑽𝑲𝑻𝒅𝒂𝒊𝒍𝒚 ∗ 𝑶𝒄𝒂𝒗𝒈 
(7) 

Vehicle energy use and CO2 are also redefined in terms of this parameter. 

𝑬𝑷𝑲𝑻 = 𝑬𝑾𝑻𝑾
𝑶𝒄𝒂𝒗𝒈�  

(8) 

𝑪𝑶𝟐𝑷𝑲𝑻 = 𝑪𝑶𝟐𝑾𝑻𝑾
𝑶𝒄𝒂𝒗𝒈�  

(9) 

Performing these calculations gives energy and CO2 output statistics for 

individual vehicle types.  The number of each vehicle type is known and used as an input 

variable, and so calculation results are multiplied by unit number and summed where 

appropriate to create regional results for the case study area. 

In terms of average use characteristics and overall fuel energy efficiency, many 

public transit vehicles have not been subjected to the same level of research scrutiny as 

the light-duty fleet.  Therefore, empirical data from a variety of sources is used to build 

comprehensive inputs for case study transit modes.    
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Small vehicles such as bicycles and motorcycles, as well as pedestrians, are also 

included in the framework.  Their energy and emission contributions are valuable for 

purposes of further research, but are negligible in the scenario presented here, and as such 

are not included in all of the presented results. 

4.3.3 System constraints 

Remaining constraints for the transportation system are derived from system 

usage data and recorded statistics concerning vehicle distance traveled.  Distance and 

passenger distance for each vehicle type are summed by mode, and then summed with 

each other to obtain total distance traveled by the entire network.  Mode calculations for 

the road subsystem are shown in Figure 19. 

 
Figure 19: Parametric diagram for all internal combustion automobile types in SysML 

4.4. Analysis Execution 

Since SysML has no inherent execution capability, external tools must be applied 

to execute various analyses using parametrics contained within a SysML model.  The 

model in this thesis tested two methods of analysis execution.  First, parametrics were 
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executed using the ParaMagicTM plugin, developed by InterCAX, an Atlanta based 

software company.   

4.4.1 ParaMagic Plugin 

ParaMagic was originally developed from ongoing SysML research by Dr. 

Russell Peak and others at the Georgia Institute of Technology.  It relies on the theory of 

composable objects (COBs) to parse information from model instances and execute 

parametrics contained within the model structure. 

The tool currently exists as a plugin for MagicDraw, a UML modeling software 

package developed by No Magic, Inc.  MagicDraw has a mature SysML plugin, and is 

the chosen software package to create the SysML models used in this thesis.  Since 

ParaMagic is tightly integrated with MagicDraw software and also continues to have a 

close affiliation with Georgia Tech, it was a natural first choice for model execution. 

ParaMagic reads instance information and displays it within a separate browser 

window within MagicDraw.  In the browser window, the user can see instance values 

relevant to parametrics of the top level instance specification.  Figure 20 shows the 

browser and the instance values for the transportation system model. 
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Figure 20: ParaMagic browser showing SysML transportation system model parametrics 

Instance values have a causality assigned to them, which signifies whether the 

ParaMagic solver should treat them as given inputs, ancillary calculation results, or 

targets of the analysis.  When all causality has been properly assigned, the user can 

choose to solve for designated targets.  ParaMagic accomplishes the actual solving by 

parsing SysML data into a single system of symbolic equations, and passing these 

equations to Mathematica software by Wolfram Inc., which acts as the actual solution 

engine.   

The ParaMagic plugin offers good integration with the MagicDraw SysML 

plugin, but is still under heavy development, and hence suffers from a number of maturity 

issues.  It can only handle a subset of Mathematica compatible equation syntax, and can 

only handle certain types of nested structures, vector and matrix operations, and other 
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structural features.  Although development is continuing rapidly, initial analysis results 

from ParaMagic were mixed, and included a great deal of additional effort tracking down 

and repairing compatibility problems between the model structure and ParaMagic 

functionality. 

4.4.2 External Solver Using MATLAB 

To attempt to address difficulties with ParaMagic, an alternate execution method 

was investigated that relied on the MATLAB programming environment and Java 

scripting.  A custom MATLAB program using Java XML parsing classes was written to 

read SysML parametric information, then parse instance input values from designated 

sources using Microsoft Excel spreadsheets.  The parametrics are solved within 

MATLAB and stored as a repeatable symbolic solution, and results are passed back to 

designated worksheets within Excel for easy formatting and external display, and also to 

the relevant target instance values within SysML. 

The decision to develop a custom MATLAB script to execute SysML parametrics 

involves several relevant pros and cons.  First, using a custom analysis solution 

eliminates some of the interoperability advantages of SysML modeling.  Unless the 

developer chooses a well-planned, widely inclusive parsing schema, the script may have 

to be modified to accept certain input sources or modeling elements if they are not 

included from the beginning.  The sheer variety of possible domains and parametric 

techniques available to SysML modelers means that a single tool is unlikely to 

encompass them all.  This applies to all execution tools; ParaMagic included, and is not 

unique to a custom executable.  However, commercial or open source tools are more 

likely to include significant collaboration from others knowledgeable in the field.  



62 
 

Computer science is not a particular focus of this author’s expertise, and so while others 

were consulted on how to best construct an analysis tool, there are likely overlooked 

practices that could improve the current implementation. 

Benefits of developing a custom tool include a more integrated end to end 

package.  The MagicDraw/ParaMagic combination, while commercially supported, is not 

yet mature enough to provide a stable platform for complex model development.  A 

modeler may spend hours finding a workaround for a specific execution or validation 

problem, only to find that their original method is allowable in the latest software release.  

End users of a model and associated analysis may be frustrated by lack of functionality or 

a lack of configuration options.  Developing a custom set of scripts means that desired 

functionality can be included from the beginning, and analysis evaluation for an end user 

proceeds in a consistent and stable manner. 

The overall modeling framework using this method assumes a form demonstrated 

in Figure 21.  Data flow occurs first between stakeholders and modelers when defining 

system requirements.  Requirements are next used to develop formal specification of 

system behavior, structure, and the resulting parametrics for determining performance as 

well as simulating desired metrics.  In an existing urban transportation system, the 

general requirements, structure, and behavior of the system is often already specified, 

although these viewpoints and system objectives may evolve over time. 
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Figure 21: Overview of SysML modeling framework using external analysis tools 

Once modeled in SysML, the transportation system model is linked to relevant 

environment variables, which may include input data necessary to populate SysML 

instance specifications directly, or applicable external models which do not deal directly 

with the transportation system itself, but serve to expand the system domain and increase 

subsequent analysis accuracy.  External tools are used to execute the SysML model 

parametrics (and linked external models simultaneously, if necessary) using specified 

instance data, then provide analysis results to populate target properties within the 

SysML instance.  These results can be exported either from SysML or from the analysis 

tool directly into other forms that are convenient for data visualization, optimization, or 

further analysis.  
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CHAPTER 5 

SCENARIO EVALUATION: ATLANTA CASE STUDY 

5.1. Description 

5.1.1 Goal 

This chapter aims to provide insight into using a created SysML transportation 

network model to evaluate specific design alternatives and potential future scenarios 

within a regional system.  Several scenarios will be evaluated.  Evaluation will occur 

from a modeling perspective to determine model ease of use and accuracy, and from an 

environmental design perspective to determine impact and sustainability of the scenarios 

under consideration. 

5.1.2 Scope 

The SysML model is used to create an instance specification and fuel pathway 

LCI results of the Atlanta, GA metropolitan area, shown in Figure 22.  With a large 

population of approximately 5.3 million (U.S. Census Bureau, Population Division 

2008), the City of Atlanta provides an interesting boundary for the problem domain.  The 

region supports many commuters, most of whom live in areas of low population density.  

Urban sprawl contributes to heavy reliance on the road system.  Air quality, traffic 

congestion, and sustainability are major issues that the city is attempting to address 

(Chapman and Frank 2004).   
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Figure 22: The Atlanta metropolitan area 

Inputs to the model include common vehicle types used within the network, their 

number, and use parameters.  Use parameters include metrics describing distance per trip, 

average occupancy, and average efficiency.  Outputs include overall energy use, overall 

carbon dioxide output, energy use and CO2 output by vehicle type and mode, as well as 

energy use and CO2 output per unit of passenger distance for each of the three previous 

categories.   

Several sets of input data are examined to determine the utility of using the 

SysML model to evaluate design and policy alternatives.  First, a base case scenario is 

evaluated.  This scenario reflects current conditions in Atlanta (as of 2009).  It is 

compared to known energy use and emissions data to assess the accuracy of the model.  

Next, several potential future scenarios are modeled, to demonstrate model reuse and 

assess ease of analysis iteration.  A “business as usual” scenario for 2025 is evaluated 

using current growth rates for population, vehicle travel, and vehicle market share.  The 

2025 base case is compared to an alternative scenario using assumptions of increased use 

of renewable energy and hybrid vehicles.  These assumptions are designed to reflect 
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conditions similar to the goals laid out in the current U.S. Presidential Administration’s 

“New Energy for America” plan, which identifies a number of policy objectives aimed at 

increasing energy independence and reducing overall energy use and greenhouse gas 

emissions.  While not a complete evaluation of design alternatives, the two scenarios are 

designed to evaluate ease of comparison using the SysML model and associated analysis 

results. 

5.2. Inputs 

5.2.1 Fuel Pathways 

Fuel pathways for the Atlanta system are assumed to use U.S. national averages, 

taken from the GREET model as described previously.  Unlike electricity, petroleum-

based fuels used within a region are not necessarily likely to be supplied by 

geographically nearby entities.  Extraction, refinement, and processing occurs far offsite, 

and thus using data specific to Atlanta or the State of Georgia is inappropriate for such 

calculations.   

5.2.2 Vehicle Types 

Most large U.S. cities have a central agency that provides the majority of public 

transit within the metro region.  In Atlanta, the Metropolitan Atlanta Regional 

Transportation Authority (MARTA) coordinates public transit within the city limits and 

in Fulton and Dekalb counties.  Although other counties within the metro area are served 

by various independent commuter bus providers, MARTA ridership greatly outweighs 

the contribution of any other provider in the region.  Because of this, heavy-duty vehicles 

operated by MARTA have been modeled explicitly.  These include two types of 
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compressed natural gas buses (Chandler et al. 1999), a low emissions diesel bus, and the 

three types of heavy rail cars currently in use in the city (Metropolitan Atlanta Rapid 

Transit Authority 2007; Federal Transit Administration 2007; Ansaldobreda 2007; 

Dawson 2008).  Fuel efficiency for these transit vehicles has been taken from the sources 

cited about.  For transportation providers with lower vehicle usage within metro area 

limits, such as the Georgia Regional Transit Authority (GRTA), inputs for average fleet 

vehicles are used (Davis et al. 2008).  In the current model iteration, smaller transit 

providers are grouped together, while MARTA exists as separately calculated instances 

within each vehicle type. 

Table 3 lists input data for the analyzed vehicle types within the Atlanta case 

study.  Fuel efficiencies for private vehicles are assumed to be that of the national fleet 

average, and are taken from the GREET model (M. Q Wang 2001). 

Table 3: Vehicle mode statistics for the Atlanta area, 2010 base case 

Vehicle Type 
# in Operation, Peak 

(units) 
Capacity 
(persons) 

Avg. Occupancy 
(persons) 

Daily Unit Distance 
(km) 

Avg. Diesel Bus 1948 84 8.8 60.9 
MARTA CNG Bus 385 84 8.8 237.5 

MARTA Clean Diesel Bus 136 84 8.8 237.5 
MARTA Heavy Rail 182 262 21.8 655.7 

SI CG/RFG Automobile 766358 5 1.2 57 
EV Automobile 8 5 1.2 57 

E85 FFV Automobile 87081 5 1.2 57 
DI CD/LSD Automobile 29477 5 1.2 57 

SI CNG Automobile 195 5 1.2 57 
SI HEV Automobile 32375 5 1.2 57 

Diesel HEV Automobile 47 5 1.2 57 
SI PHEV Automobile 0 5 1.2 57 

Diesel PHEV Automobile 0 5 1.2 57 
Gaseous H2 FC Automobile 0 5 1.2 57 

Bicycle 3315 1 1 5 
Walking 35321 1 1 3 
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5.2.3 System Constraints 

The number of commuters in Atlanta and their chosen modes of transportation 

provide an estimate of overall system capacity (American Community Survey: 2008), 

under the assumption that workdays represent the busiest periods for the transportation 

system.  MARTA ridership data strongly supports this assumption (Federal Transit 

Administration 2007).  Overall, the Atlanta mobility network experiences approximately 

three million users and over 57 million vehicle kilometers per day, most of these 

accounted for by single-occupant or low-occupancy vehicles (American Community 

Survey: 2008; Georgia Department of Transportation 2007a, b). 

5.2.4 Environment 

Power generation was calculated using data from the Emissions & Generation 

Resource Integrated Database (eGRID), developed by the EPA.  EGRID is a tabulated 

record of every major electricity producer in the United States at the time of last release 

(currently incorporating up to year 2005 data).  This record was used to sum power 

production and emissions totals to determine average CO2 output.  Primary fuel type of 

each plant is accounted to provide a snapshot of the power generation mixture by state or 

region.  Since the model calculates emissions based on transportation energy usage and 

not on total current production, varying production totals in a given year does not have a 

significant effect on results.  However, recent construction of a new major power plant in 

a given region could skew the profile distribution.  The distribution of generation fuels 

for the state of Georgia is shown in Table 4, and provided inputs for the initial Atlanta 

analysis. 
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Table 4: Power generation by primary fuel source in Georgia 

Fuel Type Total Annual Generation (MWh) % of Profile 
Coal 87235509 63.9% 
Nuclear 31534259 23.1% 
Oil 1006253 0.7% 
Gas 9773531 7.2% 
Hydro 3820290 2.8% 
Biomass 3196376 2.3% 
Other Fossil Fuels 51224 0.0% 
Total 136617442 100.0% 

Since regional power generation can have a large effect on these outputs, 

emissions output and efficiency factors are computed separately using emissions by 

generation method and power generation profiles for the U.S. average and the state of 

Georgia (Luna-Camara et al. 2009).  These differences will be covered further in Section 

5.3. 

5.3. Results 

5.3.1 Case 1: Base Case, 2010 Conditions 

5.3.1.1 

Figure 23

Fuel Pathways 

 and Figure 24 show calculation results for energy use and CO2 

emissions by vehicle type in Atlanta, respectively.  On a total well-to-wheel basis, every 

alternative light-duty pathway except E85 ethanol is more efficient per passenger-km 

than conventional gasoline.  The majority of ethanol WTW energy use, about 55%, is 

expended in non use-phase processes, and is by far the least efficient well-to-pump 

pathway out of any combustion fuel.  Other light-duty pathways, such as hybrid and plug-

in hybrid vehicles, show significant energy savings (21-73%) over conventional ICEs.  

Interestingly, out of all primary public transit options in the Atlanta area, only heavy rail 

provides energy savings over light-duty choices, and it is the most efficient transit choice 
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overall.  Diesel buses come close to matching the efficiency of a standard automobile, but 

MARTA CNG buses are noticeably less efficient.  At 1.29 MJ/passenger-km, rail uses 

62% less total energy than an average gasoline car.  Among private vehicles, gasoline and 

diesel PHEV automobiles are the two most efficient forms of travel in the Atlanta area, at 

1.63 and 1.54 MJ expended for every passenger-kilometer traveled.   

 
Figure 23: Energy use by vehicle type in Atlanta transportation network –2010 base case 

The CO2 output by vehicle type portrays a slightly different outcome.  Again, 

both variations of PHEV top the list as having the least total CO2 emissions, at 93.7 and 

92.7 g/passenger-km.  However, as opposed to the energy use calculations, CO2 output 

from E85 ethanol is comparable with other automobile configurations, at approximately 

140.9 g of CO2 per passenger-km.  Again, other than heavy rail, public transportation still 

gives no clear advantages over the alternatives.  Compressed natural gas buses show 

slight (4-11%) improvement over a gasoline automobile, while diesel buses demonstrate 
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slightly (8 and 14%) higher emissions in the same comparison.  The large WTP 

contributions of electric energy pathways stand out, although all have fewer emissions 

than standard gasoline.  Public rail emits 109.1 g/passenger-km, a 51% decrease vs. base 

case gasoline automobiles. 

 
Figure 24: CO2 output by vehicle type in Atlanta transportation network –2010 base case 

5.3.1.2 

Table 5: Distance and passenger distance traveled in Atlanta network by vehicle mode – 2010 base 
case 

System Statistics 

Vehicle Type 
Vehicle Distance 

(km/day) % of Total 
Vehicle Passenger 

Distance (p-km/day) % of Total 
Light-duty road 52185894 99.08% 62623073 92.78% 
MARTA 243738 0.46% 3704890 5.49% 

(MARTA Bus) (123738) (0.19%) (1088890) (1.61%) 
(MARTA Rail) (120000) (0.15%) (2616000) (3.88%) 

Other public transit 118741 0.23% 1044924 1.55% 
Pedestrian 105963 0.20% 105963 0.16% 
Bicycle 16575 0.03% 16575 0.02% 
Total Atlanta System 52670911 100.00% 67495424 100.00% 
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Table 5 shows model results for daily vehicle distance and passenger traveled 

throughout the system.  Light-duty road vehicles represent the vast majority of traffic 

within the Atlanta mobility network, accounting for over 99% of all vehicle kilometers 

traveled.  MARTA vehicles capture around 0.5% of daily vehicle distance, with buses 

and heavy rail each accounting for a similar share.  All other modes capture less than a 

quarter of one percent of total system distance.  However, public transportation, by nature 

of its higher average occupancy, accounts for a higher percentage of passenger distance.  

MARTA is responsible for 5.49% of all passenger-kilometers, about two thirds of that 

portion from rail travel. 

Table 6: System-wide energy use and CO2 output by vehicle type – 2010 base case 

Vehicle Type 
System WTW Energy 

Use (GJ/day) % of Total 
System WTW CO2 
Output (kg/day) % of Total 

Light-duty road 224414 95.39% 13188567 94.81% 
MARTA 7487 3.18% 488550 3.51% 

(MARTA Bus) (4109) (1.7%) (202955) (1.5%) 
(MARTA Rail) (3377) (1.4%) (285594) (2.1%) 

Other public transit 3327 1.41% 232577 1.67% 
Pedestrian 35 0.01% 624 0.00% 
Bicycle 2 0.00% 49 0.00% 
Total Atlanta System 235265 100.00% 13910366 100.00% 

 

Examining energy use across the entire transportation system reveals that light-

duty vehicles use slightly higher amounts of energy and have a higher carbon footprint in 

comparison to public transport for the amount of people they move, accounting for 95% 

of energy use and total CO2 despite their lower percentage of passenger distance.  

However, the overall proportional differences are small.  This is not surprising 

considering the similar efficiency of standard automobiles when compared to most public 

transit in the Atlanta region.  Although public transit vehicles have the potential for much 
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higher efficiency, low average occupancy rates lead to higher energy expenditures per 

passenger mile versus private vehicles. 

5.3.2 Case 2: Base Case, 2025 Conditions 

Table 7 shows modified vehicle input data to reflect a base case scenario in the 

year 2025.  Vehicle demand is predicted to increase based on population increases.  The 

Atlanta metro area population is assumed to have a 1.6% compound annual growth rate 

(CAGR), based on census data and analysis from the Atlanta Regional Commission 

(ARC) (U.S. Census Bureau, Population Division 2008).  This CAGR is lower than in 

previous decades, primarily due to economic recession and declines in the housing 

market.  Even with such assumptions, Atlanta remains one of the fastest growing urban 

regions in the United States.   

Table 7: Vehicle mode statistics for the Atlanta area - 2025 base case 

Vehicle Type 

# in 
Operation, 
Peak (units) 

Capacity 
(persons)  

Avg. 
Occupancy 
(persons)  

Daily Unit 
Distance 

(km) 

Energy 
Efficiency 
(MJ/km) 

Avg. Diesel Bus 2468 84 10 61 23.20 
MARTA CNG Bus 486 84 10 238 32.17 

MARTA Clean Diesel Bus 172 84 10 238 29.91 
MARTA Heavy Rail 182 262 27 656 10.70 

SI CG/RFG Automobile 643819 5 1.2 68.4 2.94 
EV Automobile 1829 5 1.2 68.4 0.81 

E85 FFV Automobile 160881 5 1.2 68.4 2.94 
DI CD/LSD Automobile 146010 5 1.2 68.4 2.45 

SI CNG Automobile 707 5 1.2 68.4 3.10 
SI HEV Automobile 191396 5 1.2 68.4 2.10 

Diesel HEV Automobile 299 5 1.2 68.4 1.84 
SI PHEV Automobile 20042 5 1.2 68.4 1.15 

Diesel PHEV Automobile 0 5 1.2 68.4 1.11 
Gaseous H2 FC Automobile 517 5 1.2 68.4 1.28 

Bicycle 4205 1 1 5 0.12 
Walking 44799 1 1 3 0.33 
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Daily unit distance traveled for public transit vehicles remains constant in 

comparison to the 2010 base case, assuming that any expansion in system service 

frequencies or geographic availability has been handled by additional vehicles.  

Automobile daily travel distance has increased by 20%, from 57 km/day to 68.4 km/day.  

This is a key assumption, implying that travelers are making longer or more frequent 

trips.  While trip frequency may stay relatively constant under a variety of input 

conditions, increasing trip length implies that population growth by geographic location 

has not reflected existing population density, i.e. the region has experienced significant 

sprawl or suburbanization.  Atlanta has been identified as having one of the highest rates 

of urban sprawl in the country.  Although efforts have been made to reduce rapid land use 

and geographic expansion, it is reasonable to assume that this will continue to some 

extent in the next 15 years (Yang and Lo 2003).   

Occupancy rates for public transit vehicles have increased to reflect higher area 

population and subsequent increased demand.   Automobile occupancy is assumed to 

remain constant, in the absence of statistically significant behavior modification by the 

local population.  Significant changes in transportation costs such as rising fuel prices, 

congestion pricing, or other transportation policy measures could alter this input 

assumption. 

Fuel economy has been altered based on output from the 2009 VISION model, 

which predicts changes in powertrain energy efficiency based on technological 

improvements.  Also, since the SysML analysis model links to GREET, GREET outputs 

for the year 2025 are used to obtain WTP fuel data for the new scenario. 
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5.3.2.1 

 

Fuel Pathways 

Figure 25: Energy use by vehicle type in Atlanta transportation network – 2025 base case 

Figure 25 shows results by vehicle type for the revised set of inputs in the 2025 

base case.  Under the given input assumptions, fuel pathways do not change significantly 

vs. the 2010 scenario.  PTW efficiency across all vehicles has increased slightly, although 

this is somewhat offset by higher WTP energy costs due to resource scarcity.  Public 

transit fuel pathways exhibit noticeably lower energy consumption in comparison to the 

2010 case, approximately 26% for heavy rail and 12% for buses.  The decrease is due to 

increased demand and higher average occupancy rates.   
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Figure 26: CO2 output by vehicle type in Atlanta transportation network – 2025 base case 

Figure 26 shows CO2 output calculation results from the new scenario.  Results 

and trends show similar changes as the energy use calculations when compared to the 

2010 base case. 

5.3.2.2 

Table 8: Distance and passenger distance traveled in Atlanta network by vehicle mode – 2025 base 
case 

System Statistics 

Vehicle Type 
Vehicle Distance 

(km/day) % of Total 
Vehicle Passenger 

Distance (p-km/day) % of Total 
Light-duty road 79720200 99.32% 95664240 93.70% 
MARTA 276275.00 0.34% 4802750 4.70% 

(MARTA Bus) (156275) (0.19%) (1562750) (1.53%) 
(MARTA Rail) (120000) (0.15%) (3240000) (3.17%) 

Other public transit 150438.17 0.19% 1504381.74 1.47% 
Pedestrian 105963 0.13% 105963 0.10% 
Bicycle 16575 0.02% 16575 0.02% 
Total Atlanta System 80269451 100.00% 102093910 100.00% 
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Table 8 shows system level analysis results for vehicle and passenger distance 

traveled, organized by mode and vehicle type. Within the public transit sector, the 

proportion of transit passenger distance in relation to the Atlanta transportation system 

has gone down.  However, the percentage of bus transit has gone up in relation to public 

transit as a whole, from 36% of all transit passenger distance in 2010 to 42% in 2025.  

The primary factor for this shift is assumed system capacity and service levels.  Bus and 

rail ridership both increase due to rising trip demand.  However, while buses have been 

added to the system to keep pace with population growth, no increase in rail 

infrastructure has been assumed.  This may change, particularly due to several 

development plans such as the Atlanta Beltline project (Garvin 2006).  Such changes in 

fixed transit infrastructure would affect the available transit service and subsequent 

proportions of transit mode choice within the metro area. 

Table 9: System-wide energy use and CO2 output by vehicle type – 2025 base case  

Vehicle Type 
System WTW Energy 

Use (GJ/day) % of Total 
System WTW CO2 
Output (kg/day) % of Total 

Light-duty road 308712 96.01% 17161756 95.35% 
MARTA 8557 2.66% 541826 3.01% 

(MARTA Bus) (5173) (1.61%) (255687) (1.42%) 
(MARTA Rail) (3384) (1.05%) (286139) (1.59%) 

Other public transit 4213 1.31% 294691 1.64% 
Bicycle 3 0.00% 62 0.00% 
Pedestrian 44 0.01% 791 0.00% 
Total Atlanta System 321529 100.00% 17999126 100.00% 

 

Table 9 demonstrates system energy use and CO2 calculations from the analysis 

model with year 2025 inputs.  The effects of increased population, trip distance, and 

transportation demand are immediately apparent.  Overall system energy use increases by 

36.6%, from 235,265 GJ/day to 321,529 GJ/day.   CO2 output also increases from 13.9 

million kg to 18.0 million kg per day, or 29.5%.  Light-duty road vehicles are the primary 
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source of these increases.  This suggests that under the baseline conditions and given 

assumptions, continuing sprawl and increasing population will lead to further reliance on 

personal motorized transport.  Self-propelled transportation, including bicycles and 

pedestrian traffic, also increase, but their effect is negligible on system energy use and 

emissions impact.   

5.3.3 Case 3: Alternative Technology Pathways, 2025 Conditions 

Next, a third case was examined to evaluate the Atlanta transportation system 

under a set of alternate, more environmentally sustainable conditions for the year 2025.  

Population growth estimates remain the same, as do density, land-use, and trip length 

assumptions that are included in the model.   

Input values for vehicle choice among the private sector are changed significantly.  

Market share assumptions used in the VISION model inputs are modified to reflect 

national transportation policy that encourages adoption of alternative vehicle powertrains, 

particularly PHEV and fully electric (EV) automobiles.  Using the U.S. government’s 

stated goal of 1 million PHEVs and EVs on U.S. roads by 2015, the sales and overall 

ownership percentages needed to reach this target were extrapolated to 2025 using the 

VISION model.  Average ownership percentage of each vehicle type was then applied to 

the existing Atlanta transportation demand to result in new vehicle type percentages 

throughout the Atlanta system. 

Although vehicle market share conditions in Atlanta may not match national averages, 

the input assumptions serve as a reasonable approximation of a future scenario where 

aggressive vehicle electrification policies have been adopted and enforced.  These 

policies may be enacted in a number of different ways, whether through higher petroleum 
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based fuel taxes and other negative reinforcements, or electric vehicle tax incentives and 

various positive measures.  The resulting vehicle choice inputs are shown in Table 10 

below. 

Table 10: Vehicle mode statistics for the Atlanta area - 2025 alternative scenario 

Vehicle Type 

# in 
Operation, 
Peak (units)  

Capacity 
(persons)  

Avg. 
Occupancy 
(persons)  

Daily Unit 
Distance 

(km) 

Energy 
Efficiency 
(MJ/km) 

Avg. Diesel Bus 2468 84 10 60.9 23.20 
MARTA CNG Bus 486 84 10 237.5 32.17 

MARTA Clean Diesel Bus 172 84 10 237.5 29.91 
MARTA Heavy Rail 182 262 27 655.7 10.70 

SI CG/RFG LV 602489 5 1.2 68.4 2.94 
EV LV 8321 5 1.2 68.4 0.81 

E85 FFV LV 160881 5 1.2 68.4 2.94 
DI CD/LSD LV 146010 5 1.2 68.4 2.45 

SI CNG LV 707 5 1.2 68.4 3.10 
SI HEV LV 191396 5 1.2 68.4 2.10 

Diesel HEV LV 299 5 1.2 68.4 1.84 
SI PHEV LV 54881 5 1.2 68.4 1.15 

Diesel PHEV LV 0 5 1.2 68.4 1.11 
Gaseous H2 FC LV 517 5 1.2 68.4 1.28 

Bicycle 4205 1 1 5 0.12 
Walking 44799 1 1 3 0.33 
 

When compared to the 2025 base case, PHEV and EV units in operation have 

increased significantly, at the expense of traditional petroleum pathways such as 

conventional gasoline and diesel-powered vehicles.  In terms of percentages, Case 3 

assumes that 6% of automobiles and 3% of light trucks within the Atlanta area are 

PHEVs, as well as 0.8% and 0.6% EV ownership for the same categories.  This is a 

significant increase from Case 2, where PHEVs constitute only 3% of automobiles and 

0.01% of light truck ownership, and EVs make up only 0.2% and 0.1% of the two vehicle 

types. 

Note that only private vehicle mode choice has been modified, while transit mode 

share stays the same as in the 2025 base case.  In reality, policy measures designed to 
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encourage alternative technology adoption may also affect general transportation mode 

choice, particularly in low income population segments where upgrading their vehicle or 

purchasing a new vehicle is not an option.  However, predicting mode choice based on 

economic factors involves detailed choice modeling and analysis that has not yet been 

implemented into the existing framework, and therefore it will not be included here.  The 

addition of further choice-based trip modeling capacity is discussed in Section 6.3 as a 

promising area of future work. 

5.3.3.1 

Since only vehicle ownership shares have been modified from Case 2 to Case 3, 

the analysis results for fuel pathways remain the same.  Refer to 

Fuel Pathways 

Figure 25 and Figure 26 

for WTP energy use and CO2 output for various fuel pathways used in the Case 3 

analysis. 

5.3.3.2 

 

System Statistics 

Table 11 contains analysis results for vehicle and passenger distance of the 

Atlanta system for the 2025 alternative scenario.  As stated previously, the input 

assumptions for this case do not assume changes in travel demand or mode choice, and 

thus the VKT and PKT for each mode type remain the same as in Case 2.   
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Table 11: Distance and passenger distance traveled in Atlanta network by vehicle mode – 2025 
alternative scenario 

Vehicle Type 
Vehicle Distance 

(km/day) % of Total 
Vehicle Passenger 

Distance (p-km/day) % of Total 
Light-duty road 79720200 99.28% 95664240 93.67% 
MARTA 276275.00 0.34% 4802750 4.70% 

(MARTA Bus) (156275) (0.19%) (1562750) (1.53%) 
(MARTA Rail) (120000) (0.15%) (3240000) (3.17%) 

Other public transit 150438 0.19% 1504382 1.47% 
Pedestrian 134397 0.17% 134397 0.13% 
Bicycle 21025 0.03% 21025 0.02% 
Total Atlanta System 80302335 100.00% 102126794 100.00% 

 

Moving to energy use and CO2 output, the results portray only a slightly modified 

environmental picture despite aggressive market share assumptions.  System energy use 

has dropped by approximately 1.8%, from 321,529 to 315,684 GJ per day.  CO2 output 

drops 2.3%, from 18.0 million to 17.6 million kg per day.  

Table 12: System-wide energy use and CO2 output by vehicle type – 2025 alternative scenario 

Vehicle Type 
System WTW 

Energy Use (GJ/day) % of Total 
System WTW CO2 
Output (kg/day) % of Total 

Light-duty road 302867 95.94% 16772807 95.24% 
MARTA 8557 2.71% 541826 3.08% 

(MARTA Bus) (5173) (1.6%) (255687) (1.5%) 
(MARTA Rail) (3384) (1.1%) (286139) (1.6%) 

Other public transit 4213 1.33% 294691 1.67% 
Bicycle 3 0.00% 62 0.00% 
Pedestrian 44 0.01% 791 0.00% 
Total Atlanta System 315684 100.00% 17610177 100.00% 

 

Compared to the 2010 base case, the calculated alternative 2025 figures still 

represent large increases in both energy use and emissions.  Energy use by the Atlanta 

system is up by 34% over 2010 conditions.  CO2 output has climbed by 27%.  These 

numbers suggest that aggressive adoption policies for alternative vehicle technology are 

not enough to offset rising mobility demand.   
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5.3.4 Case 4 – Sensitivity Analysis, Electricity Generation 

As stated in previous case studies, vehicles reliant on electricity for their primary 

PTW energy source exhibit large WTW energy use and emissions when compared to 

other energy pathways.  To examine the effects that electricity generation has on the 

characteristics of each transportation mode, the WTW calculations were repeated using 

alternate input data for electricity generation.  Since Georgia is heavily reliant on coal 

and petroleum as primary generation fuel sources, generation characteristics from 

Washington State were used to provide a significant contrast.  Washington produces 71% 

of its electricity using hydroelectric sources, so the choice is a good hypothetical scenario 

to simulate conditions in a city of Atlanta’s size with increased (but realistic) access to 

“renewable” energy.  For the purposes of these calculations, renewable energy sources 

such as wind, water and solar are assumed to be 100% efficient, since any energy within 

spent fuel that is not captured is not “wasted” in the same sense that combustion of fossil 

fuels lead to unrecoverable thermal energy.  Also, the use of these fuels produces no 

emissions during the generation phase, making it unnecessary to consider conversion 

efficiency.  In practice, issues such as land use, plant lifecycles, and cost lead to 

efficiency concerns for every generation type, but such considerations are beyond the 

scope of the model in its current form.  A graph of the power profile used for the new 

calculations is shown below. 
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Table 13: Power generation by primary fuel source in Washington State 

Fuel Type Total Annual Generation (MWh) % of Profile 
Coal 10506174 10.3% 
Nuclear 8242273 8.1% 
Oil 102038 0.1% 
Gas 8581295 8.4% 
Hydro 72080734 70.7% 
Biomass 1586837 1.6% 
Wind 498470 0.5% 
Other 377765 0.4% 
Total 101975587 100.0% 

 

5.3.4.1 

Figure 27

Fuel Pathways 

 and Figure 28 provide results of energy use and CO2 emissions for each 

vehicle type using the new power generation input assumptions. 

 

Figure 27: Energy use by vehicle type in Atlanta transportation network –2010, Washington State 
electricity generation 
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The differences are immediately apparent.  Well-to-pump energy use drops 

slightly for every vehicle type considered, based on increased efficiency of fuel 

production processes that involve electricity.  The largest changes are seen in vehicles 

that rely heavily on electricity during their use phase.  MARTA heavy rail remains the 

most efficient way to get around Atlanta under these conditions, at 0.74 MJ/passenger-

km.  Perhaps most strikingly, battery powered electric automobiles move to the second 

most efficient spot, at 0.96 MJ/passenger-km. 

 
Figure 28: CO2 output by vehicle type in Atlanta transportation network –2010, Washington State 

electricity generation 

CO2 output calculations demonstrate similar changes, with electric vehicles 

showing marked improvements.  The heavy emissions reductions from using 

hydroelectricity give rail and electric autos even larger advantages in terms of emissions 
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than in energy consumption.  Overall CO2 output falls by at least a small amount for all 

vehicles, again due to changes in fuel lifecycle processes. 

5.3.4.2 

Table 14: System-wide energy use and CO2 output by vehicle type – 2010, Washington State 
electricity generation 

System Statistics 

Vehicle Type 
System WTW Energy 

Use (GJ/day) % of Total 
System WTW CO2 
Output (kg/day) % of Total 

Light-duty road 207996 95.75% 12686929 89.56% 
MARTA 5929 2.73% 258287 1.82% 

(MARTA Bus) (3997) (1.8%) (196317) (1.4%) 
(MARTA Rail) (1932) (0.9%) (61970) (0.4%) 

Other public transit 3260 1.50% 206412 1.46% 
Pedestrian 35 0.02% 624 0.00% 
Bicycle 2 0.00% 49 0.00% 
Total Atlanta System 217222 100.00% 14166307 92.84% 

 

The improvements seen in vehicle WTW environmental metrics propagate 

predictably throughout the system.  Since transit supply and demand assumptions have 

not changed, reductions in system-wide energy use and emissions are relatively linear 

with respect to changes in WTP performance of electric vehicles.  A small amount of 

additional improvement is afforded by decreased energy consumption and emissions for 

fossil fuel extraction, processing, and transportation. 

5.3.5 Case 5 – Sensitivity Analysis, Vehicle Occupancy 

Another prominent characteristic of previous case studies was the poor overall 

performance of public transit vehicle types in comparison to private transportation within 

the Atlanta region.  Public transit is designed to increase access and connectivity within a 

region at reduced cost to stakeholders, but normally has secondary objectives of reducing 

congestion, emissions, and overall resource use.  Primary factors affecting the efficiency 
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of public transit are trip length and vehicle occupancy.  While trip length is difficult to 

effectively analyze without incorporating extremely complex GIS and ridership data, 

occupancy is an input variable that can be quickly analyzed using the SysML framework.  

Results were calculated using a range of average occupancy values for several types of 

typical system vehicles. 

 
Figure 29: Energy use per passenger distance vs. average occupancy for a typical MARTA diesel bus 

and ICE automobile 
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Figure 30: CO2 output per passenger distance vs. average occupancy for a typical MARTA diesel bus 

and ICE automobile 

Figure 29 and Figure 30 show the effects of occupancy on WTW results for a 

standard ICE automobile and a MARTA low-sulfur diesel bus.  The amount of people 

each vehicle carries has a large effect on whether they are efficient transportation 

solutions.  Although there are diminishing returns as occupancy rises, getting more 

people into each vehicle drastically increases transportation effectiveness, even when 

accounting for increased vehicle mass. 

To evaluate the effectiveness of increased occupancy on the entire transportation 

system, an analysis was run using 10% higher average occupancies for each vehicle type.  

It is assumed that the current transit infrastructure remains the same, and therefore 

increased vehicle occupancy primarily affects automobile trips. 
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Table 15: System-wide vehicle distance and passenger distance - 2010 increased occupancy 

Vehicle Type 
Vehicle Distance 

(km/day) % of Total 
Vehicle Passenger Distance 

(p-km/day) % of Total 
Light-duty road 43836151 98.91% 48435073 90.06% 
MARTA 243738 0.55% 4075379 7.58% 

(MARTA Bus) (123738) (0.28%) (1197779) (2.23%) 
(MARTA Rail) (120000) (0.27%) (2877600) (5.35%) 

Other public transit 118741 0.27% 1149416 2.14% 
Pedestrian 105963 0.24% 105963 0.20% 
Bicycle 16575 0.04% 16575 0.03% 
Total Atlanta System 44321168 100.00% 53782406 100.00% 

 

In Table 15, the decrease in automobile VKT is clearly apparent, decreasing from 

52.1 million to 43.8 million km/day, a 15.9% drop.  Automobile passenger distance is 

down from 62.6 million to 48.4 million p-km/day, a difference of 22.6%.   

Table 16: System-wide energy use and CO2 output – 2010 increased occupancy 

Vehicle Type 
Systemwide WTW 

Energy Use (GJ/day) % of Total 
Systemwide WTW CO2 

Output (kg/day) % of Total 
Light-duty road 192573 94.67% 11255587 93.97% 
MARTA 7487 3.68% 488550 4.08% 

(MARTA Bus) (4109) (2.0%) (202955) (1.7%) 
(MARTA Rail) (3377) (1.7%) (285594) (2.4%) 

Other public transit 3327 1.64% 232577 1.94% 
Pedestrian 35 0.02% 624 0.01% 
Bicycle 2 0.00% 49 0.00% 
Total Atlanta System 203424 100.00% 11977387 100.00% 

 

Occupancy also has a remarkable effect on system energy use and CO2 output.  

System-wide WTW energy consumption drops by 13.5%, from 235,265 to 203,424 

GJ/day.  CO2 output undergoes a similar decrease of 13.7%, from 13.9 million to 12.0 

million kg/day. 
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5.4. Validation 

5.4.1 Model Calibration and General Validation 

In order to check the validity of the analysis results, the values obtained in the 

2010 base case (Case 1) were checked for accuracy against several published figures 

concerning the Atlanta transportation system. 

The analysis model predicts a system capacity of 2.953 million persons during 

peak travel demand, which is assumed to be during rush hour on weekdays.  According to 

the 2008 American Communities Survey, peak demand is approximately 2.819 million 

persons, a difference of 4.7% over the actual figure.  This is an acceptable error range, 

especially when growth is taken into account.  The model has been calibrated to reflect 

current conditions, while the most recent available commuter data for the Atlanta metro 

region is from 2008.  The metro area has seen 2.6% average annual growth since 2000, so 

current peak travel demand may actually be extremely close to the model’s determined 

result (U.S. Census Bureau 2007). 

Concerning vehicle distance traveled, the Georgia Department of Transportation 

reports average daily VMT for Fulton County to be 31.29 million miles, or 52.15 million 

kilometers (Georgia Department of Transportation 2007a).  The model predicts daily 

VMT of 52.43 million kilometers, a difference of 0.43%.  This is likely low for 2010 

conditions, given the established growth rate in travel demand.  However, it shows that 

the model is closely aligned to established data concerning the mobility network. 

5.4.2 Validation of Specific Calculations and Data Sources 

To ensure that all parametric elements of the model are performing adequately, it 

is necessary to provide examples of model calculations throughout the automated 
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analysis process.  The following paragraphs demonstrate a single calculation iteration for 

a single vehicle type, highlighting all equations used and all sources of data input. 

For the purposes of this example, a MARTA heavy rail train car is highlighted, 

within the “Rail” subsystem of the top level “Transportation System” block.  MARTA 

heavy rail trains are propelled by electric motors which receive their electricity via a third 

rail on the track. 

MARTA currently has three types of married-pair rail cars in service: 118 CQ310 

class cars, built by Société Franco-Belge, 120 CQ311 class cars, built by Hitachi, and 100 

CQ312 class, built by AnsaldoBreda (Metropolitan Atlanta Rapid Transit Authority 

2007).  The CQ312 class cars are the newest to enter service (2001-2005), though the 

CQ310 and CQ311 units were rebuilt from 2006 to 2009 to allow them to meet modern 

specifications (Metropolitan Atlanta Rapid Transit Authority 2009).  The three types of 

cars are modeled separately, but they are assumed to be broadly similar in terms of 

operating characteristics.   

The AnsaldoBreda Atlanta Heavy Rail Vehicle (HRV) has a tare weight of 80,200 

lbs (36,768 kg) and a maximum rated capacity of 262 persons.  It operates on a nominal 

voltage of 750 VDC, and utilizes 2 AC traction motors per wheel truck for a 560 kW 

continuous power rating per car (Ansaldobreda 2007). 

MARTA’s 2007 annual operating report lists average weekday rail ridership of 

230,000.  MARTA trains travel 15,000 miles on average each weekday, with 72,000 car 

miles (an average of 4.8 cars per train) and 1,560,000 total passenger miles (Metropolitan 

Atlanta Rapid Transit Authority 2007).  Dividing average passenger miles by average car 

miles traveled results in an average weekday occupancy of 21.6 riders per car.  This 

http://en.wikipedia.org/wiki/Soci%C3%A9t%C3%A9_Franco-Belge�
http://en.wikipedia.org/wiki/Hitachi,_Ltd.�
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number is used as default input for the SysML model.  Although MARTA owns 338 rail 

vehicles in total, the 2007 National Transit Database (NTD) states that a maximum of 

182 cars are operated simultaneously during peak service (Federal Transit Administration 

2007).  An estimate of daily VKT per rail vehicle is obtained by dividing this operating 

number by total daily vehicle kilometers, which results in 659.0 km/day.  This is also 

used as a default SysML input. 

Data from the 2007 NTD specifies that the MARTA heavy rail system consumes 

1,983 BTU (2.09 MJ) per passenger mile (O'Toole 2008).  Multiplying this figure by total 

passenger miles per day (1,560,000) results in 3.260*106 MJ WTW daily energy 

consumption.  Dividing total daily energy consumption by daily train car miles gives an 

estimate of train car WTW energy consumption per VMT (45.28 MJ/mi) which is then 

converted to energy consumption per VKT (28.13 MJ/km).  Note that this is energy 

consumption per car assuming average occupancy.  Since an average passenger of 177 

lbs is only 0.22% of the Atlanta HRV’s unloaded weight, it is assumed for the purposes 

of this case study that the additional energy needed to propel one additional passenger is 

negligible.  Therefore, energy consumption is held constant across the range of 

occupancies tested in each scenario.  However, for further accuracy, future work for the 

model should include modifications to account for the effects of changing vehicle weight, 

particularly if calculations are performed at the extremes of the potential occupancy range 

(either at capacity or completely unloaded). 

For clarity, the model’s calculations will be followed starting with the energy 

source and moving upwards in the model hierarchy, although during an actual analysis 
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the equations are solved as a system except external model executions that must be 

performed first. 

Beginning with the source energy, the model takes input on the mix of generation 

fuels used during electricity production from the U.S. EPA’s eGRID database.  The 

database aggregates plant specific data from the EPA, EIA, and Federal Energy 

Regulatory Commission (FERC) in order to compile a comprehensive listing of 

environmental attributes for U.S. electric power systems.  The model assumes that the 

electricity consumed by system vehicles is produced within the local region, and 

therefore uses an aggregate mix of all regional power plants to determine net percentages 

of input fuels.  This region is set as a model input.  For the Atlanta case study, the State 

of Georgia is used as the input region.  On execution, the model passes this region to a 

simple Excel spreadsheet which sums all Georgia powerplants in the eGRID database and 

divides the portion of each fuel type by total Georgia electricity generation.  These values 

are seen within section 5.2.4, in Table 4.  They are read into the SysML model as value 

properties of the Electricity instance specification.  Since the most recent version of 

eGRID at the time of writing utilizes data from 2005, Georgia’s generation profile may 

have changed since then.  Rothschild et al. discuss eGRID, its development, and 

suggested usage in further detail (Rothschild et al. 2009). 

The imported electricity profile is then passed from SysML into the attached 

GREET model as inputs into GREET’s own electricity WTP calculations.  The imported 

generation mix and GREET assumptions for combustion technology and power plant 

energy conversion efficiencies are shown in Table 17. 
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Table 17: GREET electricity generation mixes, combustion technology shares, and power plant 
energy conversion efficiencies 
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Residual Oil-Fired Power Plants 0.7% 0.7% 
  

34.8% 34.8% 39.0% 
     Utility boiler 

  
100.0% 100.0% 34.8% 34.8%   

Natural Gas-Fired Power Plants 7.2% 7.2%     42.8% 42.8% 43.0% 
     Utility boiler 

  
14.0% 14.0% 34.8% 34.8%   

     Simple-cycle gas turbine 
  

38.0% 38.0% 33.5% 33.5%   
     Combined-cycle gas turbine     48.0% 48.0% 60.0% 60.0%   
Coal-Fired Power Plants 63.9% 63.9% 

  
34.7% 34.7% 16.0% 

     Utility boiler 
  

97.0% 97.0% 34.4% 34.4%   
     IGCC 

  
3.0% 3.0% 50.0% 50.0%   

Biomass Power Plants 2.3% 2.3%     32.7% 32.7% 0.0% 
     Utility boiler 

  
97.0% 97.0% 32.4% 32.4%   

     IGCC     3.0% 3.0% 45.0% 45.0%   
Nuclear Power Plants 23.1% 23.1% 

  
100.0% 100.0% 11.0% 

Other Power Plants (hydro, wind, 
geothermal, etc.) 2.8% 2.8%     100.0% 100.0%   

 

GREET methodology involves summing the energy use and emissions of each 

upstream stage in a fuel cycle to determine total WTP characteristics.  These stages 

involve production and transportation of feedstock fuels, and production and distribution 

of product fuels for any given fuel pathway, which includes electricity.  In general terms, 

emissions generated by these process fuels are calculated as  

𝑬𝑴𝒄𝒎,𝒊 = ���𝐄𝐅𝐢,𝐣,𝐤 ∗ 𝐄𝐂𝐣,𝐤
𝐤𝐣

� 𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎�  
(10) 

Where, 

EMcm,i = Combustion emissions of pollutant i in g/106 Btu of fuel throughput, 

EFi,j,k = Emission factor of pollutant i for process fuel j with combustion technology 

k (g/106 Btu of fuel burned), and 
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ECj,k = Consumption of process fuel j with combustion technology k (Btu/106 Btu of 

fuel throughput). 

During production, process fuels may be consumed, meaning that the production 

and transportation of those fuels must be considered, creating an iterative calculation 

model.  Calculation of total energy use or emissions for a given upstream stage is given 

by the equation below. 

𝑬𝑴𝒊 = ���𝐄𝐌𝐜𝐦,𝐢,𝐣 + 𝐄𝐅𝐮𝐩,𝐢,𝐣�
𝐣

∗ 𝐄𝐂𝐣� 𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎�  
(11) 

In this case, 

EMi = Emissions of pollutant I in g/106 Btu of fuel throughput from a given stage; 

EMcm,i,j = Combustion emissions of pollutant i in g/106 Btu of process fuel j burned 

EFup,i,j = Upstream emissions of pollutant i in g/106 Btu of process fuel j to produce 

and distribute the process fuel to the stage (considered within GREET through 

circular calculation programming); and 

ECj = Energy consumption of fuel j during the stage. 

GREET uses EPA default emissions factors for various combustion and 

transportation technologies.  More information on these factors and their origins is given 

in (M. Q Wang 1999), particularly in Section 4: Parametric Assumptions and Their Data 

Sources. 

After summing all upstream stages and assuming additional losses of 8% from 

distribution, GREET arrives at a net WTP efficiency factor (net energy out/net energy in) 

and measures of energy consumption and various emissions outputs per unit of energy 

made available for end use. 
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Table 18: Well-to-Pump energy consumption and emissions: Btu or grams per mmBtu of fuel 
available at fuel station pumps 

  
Electricity 

(transportation) 
Total Energy           1,630,268  
WTP Efficiency 38.0% 
Fossil Fuels          1,405,986  
Coal          1,248,020  
Natural Gas             123,641  
Petroleum               34,325  
CO2 (w/ C in VOC & CO) 234,573 
CH4 277.339 
N2O 3.585 
GHGs 242,575 
VOC: Total 19.313 
CO: Total 56.326 
NOx: Total 219.289 
PM10: Total 356.381 
PM2.5: Total 92.905 
SOx: Total 482.809 
VOC: Urban 0.771 
CO: Urban 8.844 
NOx: Urban 33.726 
PM10: Urban 2.630 
PM2.5: Urban 1.415 
SOx: Urban 77.822 

 

Table 18 demonstrates these measures for electricity consumed by transportation, 

which includes the electricity that is consumed by MARTA rail vehicles during 

propulsion.  GREET results give WTP energy consumption of 1.63 million Btu and 

234,573 grams of CO2 per 1 million Btu electricity produced, equivalent to 1.63 MJ and 

222.4 grams CO2 per MJ produced.  This output allows us to determine PTW energy 

consumption per VKT and PKT by MARTA HRVs, by multiplying WTW values by 

WTP efficiency, 0.380.  The result is 10.70 MJ/km and 0.49 MJ/pers*km for each 

vehicle. 

Note that in this example case involving rail transit, a large amount of preliminary 

calculation must be performed to obtain necessary SysML model inputs.  For most 

vehicles types, there exists a larger variety of input data sources.  These sources often 

provide figures such as average vehicle distance and average occupancy directly, making 
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instance specification easier than shown here.  The Atlanta HRV calculations are shown 

to highlight the maximum amount of preparatory work necessary to setup the model. 

From this point onwards, further calculations are handled within the SysML 

parametric structure as outlined in the Analysis Model, Section 4.3.  Following them 

upwards from the energy source begins with WTP CO2 and energy calculations based on 

the derived GREET data.  As opposed to fossil fuel calculations, there are no energy 

density conversions required for electricity, so the GREET WTP energy use and CO2 

output figures can be used directly. 

𝑬𝑾𝑻𝑷 = 𝟏,𝟔𝟑𝟎,𝟐𝟔𝟖 𝑩𝑻𝑼𝑾𝑻𝑷
𝟏𝟎𝟔𝑩𝑻𝑼𝑷𝑻𝑾

= 𝟏.𝟔𝟑𝟎𝑴𝑱𝑾𝑻𝑷
𝑴𝑱𝑷𝑻𝑾

 
(12) 

 

𝑪𝑶𝟐𝑾𝑻𝑷𝑬 = 𝟐𝟑𝟒,𝟓𝟕𝟑 𝐠

𝟏𝟎𝟔𝐁𝐓𝐔
= 𝟐𝟐𝟐.𝟑 𝐠

𝐌𝐉
 

(13) 

Next, net energy consumption and CO2 output per unit distance are calculated. 

𝑬𝑾𝑻𝑾 =
𝑬𝑷𝑻𝑾
𝜼𝑾𝑻𝑷

=  
𝟏𝟎.𝟕𝟎 𝐌𝐉𝐤𝐦

.𝟑𝟖
= 𝟐𝟖.𝟏𝟑𝐌𝐉

𝐤𝐦
 

(14) 

 

𝑪𝑶𝟐𝑾𝑻𝑾 = 𝑪𝑶𝟐𝑾𝑻𝑷𝑬 ∗ 𝐄𝐖𝐓𝐏 = 𝟐𝟐𝟐.𝟑 𝐠
𝐌𝐉
∗  𝟏𝟎.𝟕𝟎 𝐌𝐉

𝐤𝐦
= 𝟐𝟑𝟕𝟗 𝐠

𝐤𝐦
 (15) 

 

For the Atlanta HRV vehicle type, average daily distance is computed using the 

number of units during peak operation, multiplied by average distance for each rail car.  

𝑽𝑲𝑻𝒅𝒂𝒊𝒍𝒚 = 𝟏𝟖𝟐 𝒗𝒆𝒉𝒊𝒄𝒍𝒆𝒔 ∗ 𝟔𝟓𝟗.𝟎 𝒌𝒎
𝒅𝒂𝒚/𝒗𝒆𝒉𝒊𝒄𝒍𝒆

= 𝟏.𝟐𝟎𝟎 ∗ 𝟏𝟎𝟓 𝒌𝒎
𝒅𝒂𝒚

 
(16) 

As expected, this matches MARTA’s published value of daily train car miles, 

cited above.  Daily PKT is calculated by multiplying this by the cited average occupancy. 
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𝑷𝑲𝑻𝒅𝒂𝒊𝒍𝒚 = 𝟏.𝟐𝟎 ∗ 𝟏𝟎𝟓 𝒌𝒎
𝒅𝒂𝒚

∗ 𝟐𝟏.𝟖𝐩𝐞𝐫𝐬𝐨𝐧𝐬
𝐯𝐞𝐡𝐢𝐜𝐥𝐞

= 𝟐.𝟔𝟐 ∗ 𝟏𝟎𝟔𝒑𝒆𝒓𝒔𝒐𝒏∗𝒌𝒎
𝒅𝒂𝒚

 
(17) 

Energy and CO2 per unit of passenger distance are calculated by dividing vehicle 

energy consumption and CO2 output by occupancy, respectively. 

𝑬𝑷𝑲𝑻 =
28.13 MJ

vehicle∗km
𝟐𝟏.𝟖𝐩𝐞𝐫𝐬𝐨𝐧𝐬𝐯𝐞𝐡𝐢𝐜𝐥𝐞
� = 𝟏.𝟐𝟗 𝐌𝐉

𝐩𝐞𝐫𝐬𝐨𝐧∗𝐤𝐦
 

(18) 

𝑪𝑶𝟐𝑷𝑲𝑻 =
2379 g

vehicle∗km
𝟐𝟏.𝟖𝐩𝐞𝐫𝐬𝐨𝐧𝐬𝐯𝐞𝐡𝐢𝐜𝐥𝐞
� = 𝟏𝟎𝟗 𝐠

𝐩𝐞𝐫𝐬𝐨𝐧∗𝐤𝐦
 

(19) 

Finally, total energy use and CO2 production by vehicle type are determined by 

multiplying per-unit-distance figures by vehicle type daily VKT. 

𝑬𝒅𝒂𝒊𝒍𝒚 = 𝟐𝟖.𝟏𝟑𝐌𝐉
𝐤𝐦

∗ 𝟏.𝟐𝟎 ∗ 𝟏𝟎𝟓𝐤𝐦
𝐝𝐚𝐲

= 𝟑.𝟑𝟕𝟔 ∗ 𝟏𝟎𝟔 𝐌𝐉
𝐝𝐚𝐲

 
(20) 

 

𝑪𝑶𝟐𝒅𝒂𝒊𝒍𝒚 = 𝟐𝟑𝟕𝟗 𝐠
𝐤𝐦

∗ 𝟏.𝟐𝟎 ∗ 𝟏𝟎𝟓𝐤𝐦
𝐝𝐚𝐲

= 𝟐.𝟖𝟓𝟓 ∗ 𝟏𝟎𝟖 𝐠
𝐝𝐚𝐲

 (21) 

The values obtained here match the model outputs for MARTA heavy rail in the 

2010 base case, demonstrating the validity of SysML parametric results. 

Additionally, in certain cases, vehicle type results may be compared against 

existing studies perform a general validity check.  For example, the SysML calculations 

for private vehicles have analogues using the GREET model.  Although this thesis uses 

GREET results solely for fuel pathway assumptions, many authors have done full WTW 

analyses using GREET results for standard U.S. fleet conditions. 
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Figure 31: GREET sample WTW energy results using default U.S. input assumptions (M. Q Wang 
2001) 

 

Figure 32: GREET sample WTW GHG emission results using default U.S. input assumptions (M. Q 
Wang 2001) 

Figure 31 and Figure 32 show GREET energy use and GHG emission results 

using default U.S. input assumptions.  They can be compared most directly with Figure 
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23 and Figure 24, which show the same outputs for the SysML model in the Atlanta 2010 

base case.  Although net results differ slightly due to differences in the Atlanta input data, 

there is a great deal of similarity in fuel pathway trends between the two models.  For 

example, the 6,000 BTU/mile WTW energy consumption of current SI gasoline vehicles 

translates to 3.93 MJ/km, whereas the SysML model predicts WTW consumption of 4.10 

MJ/km for the same vehicle type within the Atlanta region.  Trends between different 

fuel technologies also remain intact: the relatively high energy use by ethanol and poor 

energy and emissions performance by electricity pathways are easily identified in both 

sets of results.   

5.5. Discussion 

5.5.1 Transportation System Evaluation 

The series of case studies on the Atlanta mobility network give insight into what 

factors are most important in achieving sustainable mobility.  The initial case study 

results show an extremely automobile dominated environment, in terms of vehicle 

numbers, use percentage, and energy/emissions footprint.  It is well established that 

Atlanta suffers from sprawl and other issues preventing widespread use of public 

transport, but similar prevalence of light-duty vehicles can be found to some extent in 

urban areas all over the country.  This dominance by private vehicles suggests that any 

strategy to reduce impact must directly address automobile use to achieve meaningful 

results.  Possible solutions include reducing distance traveled (land use), reducing users 

or increasing vehicle occupancy (improved public transit, car sharing, etc), or changing 

automobile technology and its adoption.   
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Vehicle occupancy in particular has a huge effect on environmental impact across 

the entire system.  Convincing automobile drivers to take on a single passenger 50% of 

the time would produce emissions reductions equal to or better than many highly touted 

alternative energy solutions, at no additional cost.  Increasing occupancy of public transit 

vehicles during operating hours would have similar drastic effect.  Bus and rail transit are 

potentially many times more efficient than light-duty vehicles, but this potential is not 

even close to being realized.  MARTA buses have an 84 person capacity, and each 

MARTA rail car can hold 264 passengers.  In practice, average occupancy of these 

vehicles is 8.8 and 22 passengers, resulting in 10.5% and 8.3% of capacity, respectively.  

Obviously, operating at 100% capacity at all hours of the day is not a realistic goal, but 

the margin for improvement is large. 

5.5.2 Impact on Research Questions 

Based on the results seen here, the framework demonstrates clear potential for 

model reuse during evaluation of complex multi-scale transportation systems.  The three 

case studies analyzed here were completed without any changes to the model structure or 

model parametrics.  Only input data was modified between each case.  Once proper 

inputs are inserted as an instance specification, the analysis model was executed to 

perform necessary calculations. 

Eliminating model creation and verification does not mean that analyses become 

truly inexpensive in terms of time or effort.  A large amount of input data is necessary to 

perform each case study.  Many of the assumption calculations for the 2025 cases were 

automated, and relied on either a single set of base data or external model inputs that 

predicted future conditions.  Overall, however, the amount of inputs required to perform a 
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full analysis is still a limiting factor for turnaround time and scenario evaluation.  Each 

set of inputs (vehicle efficiency, travel demand, average VKT, etc) requires extensive 

research and verification before insertion into a case study.  Many inputs come from 

different sources, requiring conversion to a common data format or different methods of 

verification.  Modeling effort is reduced, but instance specification remains a burden that 

the SysML framework can only partially address. 
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CHAPTER 6 

CONCLUSIONS 

6.1. Summary 

The results obtained from this research show potential for effective model reuse in 

evaluation of complex multi-scale transportation systems.  Through the use of formal 

modeling constructs and SysML, problems arising from complexity management within a 

large, multi-layered mobility network are partially addressed and mitigated.   

The Atlanta case study demonstrates the ability to interface between existing 

modeling systems to obtain more complete results.  The Argonne National Laboratory 

GREET model and VISION model were synchronized with relevant inputs from the 

SysML instance specification, executed, and their results used as inputs for SysML model 

parametrics.  Also, the Atlanta study demonstrated significant model reuse.  The model 

structure remained unchanged throughout each of the examined cases, with only model 

inputs undergoing modification.  SysML provided an effective way to visualize and 

organize model and parametric structure, which is similar to the results of previous 

research discussed in the literature review. 

 The framework presented here shows potential for simulating and understanding 

sustainable system behavior.  The included calculations concerning well-to-wheel energy 

use are similar to those found in other studies, but they serve as an example of reduced 

modeling effort and provide system specific measures of energy use and emissions 

output.  Also, they address the identified lack of sustainable transportation research at a 

regional level.  Since broad calculations of energy use can suffer from extreme 

variability, integration of models with regional, local, and unit scales can be extremely 
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beneficial to researchers and policy makers alike.  The flexible analysis domain afforded 

by SysML modeling allows system inputs to be as specific or global as desired. 

6.2. Research Questions 

6.2.1 Transportation Modeling Methodology 

The first research sub-question concerned what methodology would be effective 

for modeling complex transportation systems at multiple scales.  A hypothesis was 

proposed that suggests using MBSE to increase consistency, reduce modeling effort, and 

integrate analysis tools when evaluating transportation and mobility networks. 

Results obtained during the course of research confirm this hypothesis.  MBSE 

has been proven as an effective method to build and maintain a transportation model, 

using a variety of viewpoints.  Multiple scales are handled relatively well, depending on 

the level of modeling detail and the accuracy of parametric relations.  Although not 

without problems and room for improvement, SysML is effective as an MBSE language, 

and existing SysML tools provide flexible capability for creating an extensive and usable 

model. 

6.2.2 Executable Modeling Framework 

The next research sub-question asked how a modeling framework can be used to 

integrate multiple executable models, in order to properly evaluate complex systems and 

their potential environmental impact.  The following hypothesis proposed using the 

MBSE SysML model as the basis for an executable and integrated analysis platform. 

This hypothesis was also successfully confirmed, although on a more limited 

basis than the first.  The created SysML transportation model and associated parametric 
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structure was integrated with other models with various transformations and input/output 

mappings.  The resulting overall analysis was executed using external tools to obtain 

quantifiable information about different instance specifications within the model. 

Executing complex analyses on the SysML model proved to be a relatively 

difficult task.  The first method employed, the ParaMagic MagicDraw plugin, was usable 

for analyses, but its feature set and performance was not robust enough to successfully 

achieve all modeling objectives.  The time and effort required to run full system analyses 

using ParaMagic required structural workarounds in some cases.  The changes also 

negated certain prior MBSE advantages such as reduced modeling effort, consistent 

model reuse, and ease of optimization and scenario analysis.  In addition, ParaMagic 

provided little to no functionality for linking the SysML parametric structure to other pre-

existing models.  All of these reasons prompted a search for alternate methods of making 

the model executable. 

The next attempt at executing analyses was more successful, though not without 

reservations.  A custom MATLAB script was written to parse parametric and instance 

data from the SysML model, link it to any specified external inputs, then solve the 

resulting system of equations.  The MATLAB script was successful in executing SysML 

model parametrics, but at the expense of usability and ease of reuse.  The script can be 

used for other models with relatively small modifications, but has not been rigorously 

tested or debugged under varied operating conditions. 

A central difficulty to creating an accurate multi-scale analysis model relies on the 

quantity and accuracy of input data at the desired levels of resolution.  Although the 

SysML framework reduces effort in integrating multiple sources, it is still time 
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consuming for the modeler to collect, track, and verify all sources of input during 

instance specification.  For this task, MBSE does not provide significant advantages over 

other systems engineering methods.  

It should be stated that SysML is still a relatively new language, and is thus 

undergoing significant changes, as are the tools that utilize it.  While ParaMagic was not 

ideal for this particular application, the stated development goals of InterCAX have 

similarities with those of this thesis, and may lead to better compatibility in the future.   

6.2.3 High Level Transportation System Impacts 

The model tested in this thesis was able to provide several insights about a 

regional transportation system when supplied with inputs for the Atlanta, GA 

metropolitan area.  Atlanta was found to have an extremely high percentage of 

automobile travel with respect to overall vehicle distance and passenger distance.  Also, 

WTW LCI analysis of common fuel pathways revealed that electric vehicles in the 

Atlanta area are particularly unattractive with regards to overall energy use and emissions 

output. 

In Section 0, these results were used to identify likely barriers to creating a more 

environmentally sustainable transportation system.  Automobile dominance and the low 

occupancy of private vehicles suggest that significant transit mode shifts are needed to 

reduce the network’s environmental footprint.   

Primary energy sources also require further investigation.  Georgia’s strong 

reliance on coal for electricity generation is the likely cause of large CO2 emissions by 

electric vehicles.  Renewable energy infrastructure is a valuable and perhaps necessary 

step in reducing Atlanta’s transportation footprint. 
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The results of case study scenarios for 2025 suggest that urban growth is an 

alarming problem with regards to transportation demand.  Under the given set of 

assumptions, even aggressive policy measures to encourage alternative transportation 

technology adoption would be vastly insufficient to curb sharp increases in energy 

demand and emissions output.  Given that the region is already portrayed as one of the 

worst in the nation in terms of traffic congestion and air quality, drastic changes are 

necessary to prevent these problems from worsening.   

6.3. Future Work 

In the future, SysML modeling can provide a unique opportunity for optimization 

within the demonstrated mobility network concept.  Developing the model further will 

allow for evaluation of the impacts of various modes of transportation on other modes, 

and allow investigation of what system changes would provide maximum benefits to 

sustainability.   

Now that the modeling framework has been proven as an effective method to 

manage system complexity, it should be expanded to increase analysis accuracy and 

incorporate more refined algorithms.  Currently, the GREET model provides a basis for 

fuel LCI inputs, and VISION provides vehicle market share inputs.  However, the model 

does not fully account for detailed aspects of transportation supply and demand in the 

region.  Economic considerations of energy and vehicle choice are not addressed, nor are 

more detailed calculations of trip demand such as choice based models, discussed in 

Section 2.5.  The utility of the model’s parametrics would greatly increase if these 

elements were incorporated.  Additionally, the model could be enlarged to account for 
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manufacturing energy and material inputs of vehicles.  This would expand LCI capability 

beyond its current state, which only accounts for the full lifecycle of transportation fuels. 

Another benefit of future model expansion concerns the availability of input data.  

The model currently relies on existing trip data for each vehicle type to estimate distance 

traveled.  This method is relatively accurate for calculations involving current conditions, 

but when evaluating future scenarios, errors in trip length assumptions are likely to 

compound, due to unforeseen changes in demographics or land use.  Relying on 

established research concerning trip choice generation would enable the model to use 

more predictable data as direct inputs, such as population, population density, or 

databases with spatial information about existing mobility infrastructure. 



108 
 

APPENDIX A 

A.1. Scenario Energy Use and CO2 Full Calculation Results 

Table 19: WTW energy use calculation results from SysML analysis model – Case 1, Atlanta 2010 base case 

Vehicle Type 
WTP Energy 
Use (MJ/km) 

PTW Energy 
Use (MJ/km) 

WTW Energy 
Use (MJ/km) 

Systemwide WTW 
Energy Use (GJ/day) 

WTP Energy Use 
Per Passenger Km 
(MJ/km) 

PTW Energy Use 
Per Passenger Km 
(MJ/km) 

Energy Use Per 
Passenger Km 
(MJ/km) 

Avg Diesel Bus [6] 4.82 23.20 28.02 3327 0.55 2.64 3.18 
MARTA CNG Bus [7] 4.88 32.17 37.05 1505 0.55 3.66 4.21 
MARTA CNG Bus 4.54 29.91 34.45 1751 0.52 3.40 3.91 
MARTA Cl.  Diesel Bus 4.54 21.88 26.42 853 0.52 2.49 3.00 
MARTA Heavy Rail [2] 17.44 10.70 28.14 3377 0.80 0.49 1.29 
MARTA Rail Car 17.44 10.70 28.14 997 0.80 0.49 1.29 
MARTA Rail Car 17.44 10.70 28.14 1200 0.80 0.49 1.29 
MARTA Rail Car 17.44 10.70 28.14 1181 0.80 0.49 1.29 
Autos               
SI CG/RFG 0.94 3.16 4.10 180674 0.78 2.63 3.42 
EV 1.33 0.82 2.15 1 1.11 0.68 1.79 
E85 FFV 3.92 3.16 7.08 33221 3.27 2.63 5.90 
DI CD/LSD  0.55 2.63 3.18 4971 0.46 2.20 2.65 
SI CNG  0.47 3.07 3.53 38 0.39 2.56 2.95 
SI HEV  0.67 2.26 2.93 5502 0.56 1.88 2.44 
Diesel HEV  0.41 1.98 2.39 7 0.34 1.65 1.99 
SI PHEV  0.61 1.34 1.95 0 0.51 1.12 1.63 
Diesel PHEV  0.53 1.32 1.84 0 0.44 1.10 1.54 
G Hydrogen FC  0.92 1.30 2.22 0 0.77 1.08 1.85 
Bicycle   0.12 0.12 2 0.00 0.12 0.12 
Walking   0.33 0.33 35 0.00 0.33 0.33 
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Table 20: WTW CO2 output calculation results from SysML analysis model – Case 1, Atlanta 2010 base case 

Vehicle Type 
WTP Carbon 
Output (g/km) 

PTW Carbon 
Output (g/km) 

WTW Carbon 
Output (g/km) 

Systemwide WTW 
Carbon Output 
(kg/day) 

WTP Carbon Output 
Per Pass-Km (g/km) 

PTW Carbon Output 
Per Pass-Km (g/km) 

WTW Carbon Output 
Per Pass-Km (g/km) 

Avg Diesel Bus 366.57 1592.11 1958.68 232577 41.66 180.92 222.58 
MARTA CNG Bus 369.50 1261.48 1630.99 66238 41.99 143.35 185.34 
MARTA CNG Bus 343.52 1172.78 1516.31 77066 39.04 133.27 172.31 
MARTA Clean Diesel Bus 345.63 1501.13 1846.76 59650 39.28 170.58 209.86 
MARTA Heavy Rail 2379.95 0.00 2379.95 285594 109.17 0.00 109.17 
MARTA Rail Car 2379.95 0.00 2379.95 84274 109.17 0.00 109.17 
MARTA Rail Car 2379.95 0.00 2379.95 101441 109.17 0.00 109.17 
MARTA Rail Car 2379.95 0.00 2379.95 99880 109.17 0.00 109.17 
Autos               
SI CG/RFG 52.60 212.83 265.43 11689392 43.83 177.36 221.19 
EV 181.47 0.00 181.47 83 151.23 0.00 151.23 
E85 FFV -31.61 200.72 169.11 793465 -26.34 167.27 140.92 
DI CD/LSD  41.62 180.76 222.38 347453 34.68 150.63 185.32 
SI CNG  35.25 120.34 155.59 1694 29.37 100.29 129.66 
SI HEV  37.57 152.02 189.59 355975 31.31 126.69 157.99 
Diesel HEV  31.21 135.57 166.79 504 26.01 112.98 138.99 
SI PHEV  22.29 90.21 112.50 0 18.58 75.17 93.75 
Diesel PHEV  20.81 90.40 111.21 0 17.34 75.33 92.67 
G Hydrogen FC  134.57 0 134.57 0 112.14 0.00 112.14 
Bicycle 0.00 2.94 2.94 49 0.00 2.94 2.94 
Walking 0.00 5.89 5.89 624 0.00 5.89 5.89 
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Table 21: WTW energy use calculation results from SysML analysis model – Case 2, Atlanta 2025 base case 

Vehicle Type 
WTP Energy 
Use (MJ/km) 

PTW Energy 
Use (MJ/km) 

WTW Energy 
Use (MJ/km) 

Systemwide WTW 
Energy Use (GJ/day) 

WTP Energy Use 
Per Pass-Km 
(MJ/km) 

PTW Energy Use 
Per Pass-Km 
(MJ/km) 

Energy Use Per 
Pass-Km (MJ/km) 

Avg Diesel Bus 4.80 23.20 28.01 4213 0.48 2.32 2.80 
MARTA CNG Bus 4.88 32.17 37.06 1672 0.49 3.22 3.71 
MARTA CNG Bus 4.54 29.91 34.45 2422 0.45 2.99 3.45 
MARTA Cl.  Diesel Bus 4.53 21.88 26.41 1079 0.45 2.19 2.64 
MARTA Heavy Rail 17.50 10.70 28.20 3384 0.65 0.40 1.04 
MARTA Rail Car 17.50 10.70 28.20 998 0.65 0.40 1.04 
MARTA Rail Car 17.50 10.70 28.20 1202 0.65 0.40 1.04 
MARTA Rail Car 17.50 10.70 28.20 1183 0.65 0.40 1.04 
Autos 

       SI CG/RFG  0.87 2.94 3.82 168086 0.73 2.45 3.18 
DI CD/LSD  0.51 2.45 2.96 29563 0.42 2.04 2.47 
E85 FFV  3.65 2.94 6.59 72510 3.04 2.45 5.49 
SI CNG  0.47 3.10 3.57 173 0.39 2.58 2.97 
SI HEV  0.62 2.10 2.73 35692 0.52 1.75 2.27 
Diesel HEV  0.38 1.84 2.22 45 0.32 1.53 1.85 
SI PHEV  0.53 1.15 1.68 2298 0.44 0.95 1.40 
Diesel PHEV 0.45 1.11 1.56 0 0.38 0.93 1.30 
G Hydrogen FC  0.91 1.28 2.18 77 0.75 1.07 1.82 
EV  1.33 0.81 2.14 268 1.11 0.68 1.78 
Bicycle 

  
0.12 0.12 3 0.00 0.12 

Walking 
  

0.33 0.33 44 0.00 0.33 
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Table 22: WTW CO2 output calculation results from SysML analysis model – Case 2, Atlanta 2025 base case 

Vehicle Type 
WTP Carbon 
Output (g/km) 

PTW Carbon 
Output (g/km) 

WTW Carbon 
Output (g/km) 

Systemwide WTW Carbon 
Output (kg/day) 

WTP Carbon Output 
Per Passenger Km 
(g/km) 

PTW Carbon Output 
Per Passenger Km 
(g/km) 

WTW Carbon Output 
Per Passenger Km 
(g/km) 

Avg Diesel Bus 366.77 1592.11 1958.89 294691 36.68 159.21   
MARTA CNG Bus 369.91 1261.48 1631.39 73616 36.99 126.15 163.14 
MARTA CNG Bus 343.90 1172.78 1516.68 106623 34.39 117.28 151.67 
MARTA Clean Diesel 
Bus 345.81 1501.13 1846.95 75448 34.58 150.11 184.69 
MARTA Heavy Rail 2384.49 0.00 2384.49 286139 88.31 0.00   
MARTA Rail Car 2384.49 0.00 2384.49 84434 88.31 0.00 88.31 
MARTA Rail Car 2384.49 0.00 2384.49 101634 88.31 0.00 88.31 
MARTA Rail Car 2384.49 0.00 2384.49 100070 88.31 0.00 88.31 
Autos               
SI CG/RFG Automobile 48.97 198.13 247.10 10881570 40.81 165.11 205.92 
DI CD/LSD Automobile 38.76 168.27 207.03 2067664 32.30 140.22 172.53 
E85 FFV Automobile -29.46 186.85 157.38 1731902 -24.55 155.71 131.15 
SI CNG Automobile 35.62 121.46 157.08 7596 29.68 101.22 130.90 
SI HEV Automobile 34.98 141.52 176.50 2310642 29.15 117.93 147.08 
Diesel HEV Automobile 29.07 126.20 155.28 3176 24.23 105.17 129.40 
SI PHEV Automobile 19.07 77.14 96.20 131884 15.89 64.28 80.17 
Diesel PHEV 
Automobile 17.59 76.35 93.94 0 14.66 63.62 78.28 
G Hydrogen FC 
Automobile 132.58 0.00 132.58 4689 110.49 0.00 110.49 
EV Automobile 180.92 0.00 180.92 22634 150.77 0.00 150.77 
Bicycle   2.94 2.94 62 0.00 2.94 2.94 
Walking   5.89 5.89 791 0.00 5.89 5.89 
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Table 23: WTW energy use calculation results from SysML analysis model – Case 3, Atlanta 2025 alternative scenario 

Vehicle Type 
WTP Energy 
Use (MJ/km) 

PTW Energy 
Use (MJ/km) 

WTW Energy 
Use (MJ/km) 

Systemwide WTW 
Energy Use 
(GJ/day) 

WTP Energy Use 
Per Passenger Km 
(MJ/km) 

PTW Energy Use 
Per Passenger Km 
(MJ/km) 

Energy Use Per 
Passenger Km 
(MJ/km) 

Avg Diesel Bus 4.80 23.20 28.01 4213 0.48 2.32 2.80 
MARTA CNG Bus 4.88 32.17 37.06 1672 0.49 3.22 3.71 
MARTA CNG Bus 4.54 29.91 34.45 2422 0.45 2.99 3.45 
MARTA Clean Diesel Bus 4.53 21.88 26.41 1079 0.45 2.19 2.64 
MARTA Heavy Rail 17.50 10.70 28.20 3384 0.65 0.40 1.04 
MARTA Rail Car 17.50 10.70 28.20 998 0.65 0.40 1.04 
MARTA Rail Car 17.50 10.70 28.20 1202 0.65 0.40 1.04 
MARTA Rail Car 17.50 10.70 28.20 1183 0.65 0.40 1.04 
Autos 

      
  

SI CG/RFG  0.87 2.94 3.82 157295 0.73 2.45 3.18 
DI CD/LSD  0.51 2.45 2.96 29563 0.42 2.04 2.47 
E85 FFV  3.65 2.94 6.59 72510 3.04 2.45 5.49 
SI CNG  0.47 3.10 3.57 173 0.39 2.58 2.97 
SI HEV  0.62 2.10 2.73 35692 0.52 1.75 2.27 
Diesel HEV  0.38 1.84 2.22 45 0.32 1.53 1.85 
SI PHEV  0.53 1.15 1.68 6294 0.44 0.95 1.40 
Diesel PHEV  0.45 1.11 1.56 0 0.38 0.93 1.30 
G Hydrogen FC  0.91 1.28 2.18 77 0.75 1.07 1.82 
EV Automobile 1.33 0.81 2.14 1218 1.11 0.68 1.78 
Bicycle 

 
0.12 0.12 3 0.00 0.12 0.12 

Walking   0.33 0.33 44 0.00 0.33 0.33 
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Table 24: WTW CO2 output calculation results from SysML analysis model – Case 3, Atlanta 2025 alternative scenario 

Vehicle Type 
WTP Carbon 
Output (g/km) 

PTW Carbon 
Output (g/km) 

WTW Carbon 
Output (g/km) 

Systemwide WTW 
Carbon Output 
(kg/day) 

WTP Carbon Output 
Per Passenger Km 
(g/km) 

PTW Carbon Output 
Per Passenger Km 
(g/km) 

WTW Carbon Output 
Per Passenger Km 
(g/km) 

Avg Diesel Bus 366.77 1592.11 1958.89 294691 36.68 159.21   
MARTA CNG Bus 369.91 1261.48 1631.39 73616 36.99 126.15 163.14 
MARTA CNG Bus 343.90 1172.78 1516.68 106623 34.39 117.28 151.67 
MARTA Clean Diesel 
Bus 345.81 1501.13 1846.95 75448 34.58 150.11 184.69 
MARTA Heavy Rail 2384.49 0.00 2384.49 286139 88.31 0.00   
MARTA Rail Car 2384.49 0.00 2384.49 84434 88.31 0.00 88.31 
MARTA Rail Car 2384.49 0.00 2384.49 101634 88.31 0.00 88.31 
MARTA Rail Car 2384.49 0.00 2384.49 100070 88.31 0.00 88.31 
Autos               
SI CG/RFG  48.97 198.13 247.10 10183027 40.81 165.11 205.92 
DI CD/LSD  38.76 168.27 207.03 2067664 32.30 140.22 172.53 
E85 FFV  -29.46 186.85 157.38 1731902 -24.55 155.71 131.15 
SI CNG  35.62 121.46 157.08 7596 29.68 101.22 130.90 
SI HEV  34.98 141.52 176.50 2310642 29.15 117.93 147.08 
Diesel HEV  29.07 126.20 155.28 3176 24.23 105.17 129.40 
SI PHEV  19.07 77.14 96.20 361139 15.89 64.28 80.17 
Diesel PHEV  17.59 76.35 93.94 0 14.66 63.62 78.28 
G Hydrogen FC  132.58 0.00 132.58 4689 110.49 0.00 110.49 
EV Automobile 180.92 0.00 180.92 102974 150.77 0.00 150.77 
Bicycle 0.00 2.94 2.94 62 0.00 2.94 2.94 
Walking 0.00 5.89 5.89 791 0.00 5.89 5.89 
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Table 25: WTW energy use output calculation results from SysML analysis model – Case 4, Sensitivity Analysis – Electricity Generation 

Vehicle Type 
WTP Energy 
Use (MJ/km) 

PTW Energy 
Use (MJ/km) 

WTW Energy 
Use (MJ/km) 

Systemwide WTW 
Energy Use (GJ/day) 

WTP Energy Use Per 
Passenger Km 
(MJ/km) 

PTW Energy Use Per 
Passenger Km 
(MJ/km) 

Energy Use Per 
Passenger Mile 
(MJ/km) 

Avg Diesel Bus 4.25 23.20 27.45 3260 0.48 2.64 3.12 
MARTA CNG Bus 3.80 32.17 35.98 1461 0.43 3.66 4.09 
MARTA CNG Bus 3.53 29.91 33.45 1700 0.40 3.40 3.80 
MARTA Clean Diesel Bus 4.00 21.88 25.88 836 0.46 2.49 2.94 
MARTA Heavy Rail  5.40 10.70 16.10 1932 0.25 0.49 0.74 
MARTA Rail Car 5.40 10.70 16.10 570 0.25 0.49 0.74 
MARTA Rail Car 5.40 10.70 16.10 686 0.25 0.49 0.74 
MARTA Rail Car 5.40 10.70 16.10 676 0.25 0.49 0.74 
Autos               
SI CG/RFG 0.66 3.16 3.82 168221 0.55 2.63 3.18 
EV 0.42 0.82 1.24 1 0.35 0.68 1.03 
E85 FFV 3.28 3.16 6.45 30241 2.74 2.63 5.37 
DI CD/LSD  0.34 2.63 2.98 4654 0.29 2.20 2.48 
SI CNG  0.47 3.07 3.54 39 0.39 2.56 2.95 
SI HEV  0.32 2.26 2.57 4834 0.26 1.88 2.15 
Diesel HEV  0.28 1.98 2.26 7 0.23 1.65 1.88 
SI PHEV  0.19 1.34 1.53 0 0.16 1.12 1.28 
Diesel PHEV  0.77 1.32 2.09 0 0.64 1.10 1.74 
G Hydrogen FC  0.39 1.30 1.68 0 0.32 1.08 1.40 
Bicycle   0.12 0.12 2 0.00 0.12 0.12 
Walking   0.33 0.33 35 0.00 0.33 0.33 
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Table 26: WTW CO2 output calculation results from SysML analysis model – Case 4, Sensitivity Analysis – Electricity Generation 

Vehicle Type 

WTP Carbon 
Output 
(g/km) 

PTW Carbon 
Output 
(g/km) 

WTW Carbon 
Output 
(g/km) 

Systemwide WTW 
Carbon Output 
(kg/day) 

WTP Carbon Output 
Per Passenger Km 
(g/km) 

PTW Carbon Output 
Per Passenger Km 
(g/km) 

WTW Carbon Output 
Per Passenger Km 
(g/km) 

Avg Diesel Bus 146.22 1592.11 1738.34 206412 16.62 180.92 197.54 
MARTA CNG Bus 370.33 1261.48 1631.81 66272 42.08 143.35 185.43 
MARTA CNG Bus 344.29 1172.78 1517.07 77105 39.12 133.27 172.39 
MARTA Clean Diesel Bus 137.87 1501.13 1639.00 52940 15.67 170.58 186.25 
MARTA Heavy Rail 516.42 0.00 516.42 61970 23.69 0.00 23.69 
MARTA Rail Car 516.42 0.00 516.42 18286 23.69 0.00 23.69 
MARTA Rail Car 516.42 0.00 516.42 22011 23.69 0.00 23.69 
MARTA Rail Car 516.42 0.00 516.42 21673 23.69 0.00 23.69 
Autos               
SI CG/RFG 44.67 212.83 257.50 11340379 37.23 177.36 214.59 
EV 39.38 0.00 39.38 18 32.81 0.00 32.81 
E85 FFV -53.52 200.72 147.20 690678 -44.60 167.27 122.67 
DI CD/LSD  16.60 180.76 197.36 308366 13.83 150.63 164.47 
SI CNG  35.33 120.34 155.67 1695 29.44 100.29 129.73 
SI HEV  31.91 152.02 183.93 345347 26.59 126.69 153.28 
Diesel HEV  12.45 135.57 148.02 447 10.38 112.98 123.35 
SI PHEV  18.93 90.21 109.14 0 15.78 75.17 90.95 
Diesel PHEV  8.30 90.40 98.70 0 6.92 75.33 82.25 
G Hydrogen FC  134.57 0 134.57 0 112.14 0.00 112.14 
Bicycle 0.00 2.94 2.94 49 0.00 2.94 2.94 
Walking 0.00 5.89 5.89 624 0.00 5.89 5.89 
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A.2. MATLAB Analysis Execution Code 

tic 
clear 
% clc 
 
% import java String class so MATLAB can process it as a normal string 
import java.lang.String; 
 
% create DOM of Magicdraw XML file 
filename = 'C:\Users\Kyle\Documents\SRL\SysML\Thesis results\XML Test 
Files\trans329.xml' 
xDoc = xmlread(filename); 
 
% find connectors, attributes, and nested connectors within DOM 
XMLPackagedElements = xDoc.getElementsByTagName('packagedElement'); 
XMLRuleNodesConn = xDoc.getElementsByTagName('ownedConnector'); 
XMLRuleNodesAttr = xDoc.getElementsByTagName('ownedAttribute'); 
XMLRuleNodesNestedConn = 
xDoc.getElementsByTagName('Blocks:NestedConnectorEnd'); 
 
% initialize blocks, ports, and properties list 
block = cell(XMLPackagedElements.getLength,3); 
block{1,1} = 'XMI ID#'; 
block{1,2} = 'Name'; 
block{1,3} = 'XMLRuleNodesAttr Item#'; 
 
port = cell(XMLRuleNodesAttr.getLength,3); 
port{1,1} = 'XMI ID#'; 
port{1,2} = 'Name'; 
port{1,3} = 'XMLRuleNodesAttr Item#'; 
 
prop = cell(XMLRuleNodesAttr.getLength,5); 
prop{1,1} = 'XMI ID#'; 
prop{1,2} = 'Name'; 
prop{1,3} = 'XMLRuleNodesAttr Item#'; 
prop{1,4} = 'Parent Block'; 
prop{1,5} = 'Type'; 
 
inst = cell(XMLRuleNodesAttr.getLength,5); 
inst{1,1} = 'XMI ID#'; 
inst{1,2} = 'Name'; 
inst{1,3} = 'XMLRuleNodesAttr Item#'; 
inst{1,4} = 'Parent Element'; 
inst{1,5} = 'Classifier'; 
 
portnum = 2; 
propnum = 2; 
blocknum = 2; 
instnum = 2; 
 
% populate block list 
for ind = 0:XMLPackagedElements.getLength - 1 
    if 
strcmp('uml:Class',char(XMLPackagedElements.item(ind).getAttributes.getNamedIte
m('xmi:type').getValue)) 
        block{blocknum,1} = 
char(XMLPackagedElements.item(ind).getAttributes.getNamedItem('xmi:id').getValu
e); 



117 
 

        block{blocknum,2} = 
char(XMLPackagedElements.item(ind).getAttributes.getNamedItem('name').getValue)
; 
        block{blocknum,3} = num2str(ind); 
        blocknum = blocknum+1; 
    elseif 
strcmp('uml:InstanceSpecification',char(XMLPackagedElements.item(ind).getAttrib
ute('xmi:type'))) 
        inst{instnum,1} = 
char(XMLPackagedElements.item(ind).getAttributes.getNamedItem('xmi:id').getValu
e); 
        inst{instnum,2} = 
char(XMLPackagedElements.item(ind).getAttributes.getNamedItem('name').getValue)
; 
        inst{instnum,3} = num2str(ind); 
        if XMLPackagedElements.item(ind).hasChildNodes 
            inst{instnum,5} = 
char(XMLPackagedElements.item(ind).getChildNodes.item(1).getAttribute('xmi:idre
f')); 
        end 
        instnum = instnum+1; 
    end 
end 
 
% populate ports and properties list to avoid having to search through ALL 
% attributes later 
for jnd = 0:XMLRuleNodesAttr.getLength - 1 
    if 
strcmp('uml:Port',char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('x
mi:type').getValue)) 
            port{portnum,1} = 
char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('xmi:id').getValue); 
            port{portnum,2} = 
char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('name').getValue); 
            port{portnum,3} = num2str(jnd); 
            portnum = portnum+1; 
    elseif 
strcmp('uml:Property',char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedIte
m('xmi:type').getValue)) %&& 
strcmp('public',char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('vis
ibility').getValue)) 
            prop{propnum,1} = 
char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('xmi:id').getValue); 
            prop{propnum,2} = 
char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('name').getValue); 
            prop{propnum,3} = num2str(jnd); 
            prop{propnum,4} = 
char(XMLRuleNodesAttr.item(jnd).getParentNode.getAttributes.getNamedItem('name'
).getValue); 
%             prop{propnum,5} = 
char(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('type').getValue); 
            propnum = propnum+1; 
    end 
end 
 
% trim unused list rows 
while length(block)>blocknum-1 
    block(blocknum,:) = []; 
end 
 
while length(inst)>instnum-1 
    inst(instnum,:) = []; 
end 
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while length(port)>portnum-1 
    port(portnum,:) = []; 
end 
 
while length(prop)>propnum-1 
    prop(propnum,:) = []; 
end 
 
% find instance classifiers and enter their block name in instance list 
for ind = 1:length(inst) 
    for jnd = 1:length(block) 
        if strcmp(inst{ind,5},block{jnd,1}) 
            inst{ind,4} = block{jnd,2}; 
        end 
    end 
end 
 
% populate list of all nested connections 
nested = cell(XMLRuleNodesNestedConn.getLength,2); 
nested{1,1} = 'base connector end id#'; 
nested{1,2} = 'property path id#'; 
num = 2; 
for jnd = 0:XMLRuleNodesNestedConn.getLength-1 
    nested{num,1} = 
char(XMLRuleNodesNestedConn.item(jnd).getAttributes.getNamedItem('base_Connecto
rEnd').getValue); 
    nested{num,2} = 
char(XMLRuleNodesNestedConn.item(jnd).getAttributes.getNamedItem('propertyPath'
).getValue); 
    num = num+1; 
end 
 
% initialize connector path lists 
bpath = cell(XMLRuleNodesConn.getLength,1); 
brole = cell(XMLRuleNodesConn.getLength,1); 
cpath = cell(XMLRuleNodesConn.getLength,1); 
crole = cell(XMLRuleNodesConn.getLength,1); 
 
bpropflag = zeros(length(bpath)); 
cpropflag = zeros(length(cpath)); 
 
for i = 1:XMLRuleNodesConn.getLength 
    tempNode = XMLRuleNodesConn.item(i-1); 
    childNodes = tempNode.getChildNodes; 
%         Find the destination variable id# of each connector 
            bpath{i} = 
char(childNodes.item(1).getAttributes.getNamedItem('xmi:id').getValue); 
            brole{i} = 
char(childNodes.item(1).getAttributes.getNamedItem('role').getValue); 
 
    %         Find the source variable id# of each connector 
            cpath{i} = 
char(childNodes.item(3).getAttributes.getNamedItem('xmi:id').getValue); 
            crole{i} = 
char(childNodes.item(3).getAttributes.getNamedItem('role').getValue); 
 
end 
 
% counter variables used for debugging whether all id#s had been substituted 
    % unfilledb = 0; 
    % unfilledc = 0; 
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% search for matching portprop to each connector end and assign the port name 
[~,loc] = ismember(brole,port(:,1)); 
for i = 1:length(loc) 
    if loc(i) ~= 0 
        brole{i} =  port{loc(i),2}; 
    end 
end 
 
[~,loc] = ismember(brole,prop(:,1)); 
for i = 1:length(loc) 
    if loc(i) ~= 0 
        brole{i} =  [prop{loc(i),4},'.',prop{loc(i),2}]; 
        bpropflag(i) = 1; 
    end 
end 
 
[~,loc] = ismember(crole,port(:,1)); 
for i = 1:length(loc) 
    if loc(i) ~= 0 
        crole{i} =  port{loc(i),2}; 
    end 
end 
 
[~,loc] = ismember(crole,prop(:,1)); 
for i = 1:length(loc) 
    if loc(i) ~= 0 
        crole{i} =  [prop{loc(i),4},'.',prop{loc(i),2}]; 
        cpropflag(i) = 1; 
    end 
end 
 
% check to see if connector is nested, if so, assign nested path id 
[~,loc] = ismember(bpath,nested); 
for i = 1:length(loc) 
    if loc(i) == 0 
        bpath{i} = ''; 
    else 
        bpath{i} = nested{loc(i),2}; 
%         unfilledb = unfilledb + 1; 
    end 
end 
 
% check for occurences of property id#'s in the path and substitute 
% their names 
for i = 1:length(prop) 
    k = strfind(bpath, prop{i,1}); 
    for j = 1:length(k) 
        if k{j,1} > 0 
            bpath{j} = 
strrep(bpath{j},prop{i,1},['.',prop{i,4},'.',prop{i,2},'.']); 
%             unfilledb = unfilledb - 1; 
        end 
    end 
end 
 
 
% repeat both processes for other end of connectors 
[ind,loc] = ismember(cpath,nested); 
for i = 1:length(loc) 
    if loc(i) == 0 
        cpath{i} = ''; 
    else 
        cpath{i} = nested{loc(i),2}; 
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%         unfilledc = unfilledc + 1; 
    end 
end 
 
for i = 1:length(prop) 
    k = strfind(cpath, prop{i,1}); 
    for j = 1:length(k) 
        if k{j,1} > 0 
            cpath{j} = 
strrep(cpath{j},prop{i,1},['.',prop{i,4},'.',prop{i,2},'.']); 
%             unfilledc = unfilledc - 1; 
        end 
    end 
end 
 
% properly format path names 
for i = 1:length(brole) 
        bpath{i} = bpath{i}(2:length(bpath{i})); 
        bpath{i} = strrep(bpath{i},' ',''); 
        bpath{i} = strrep(bpath{i}, '..', '.'); 
        bpath{i} = strcat(bpath{i},brole{i}); 
 
        cpath{i} = cpath{i}(2:length(cpath{i})); 
        cpath{i} = strrep(cpath{i}, ' ', ''); 
        cpath{i} = strrep(cpath{i}, '..', '.'); 
        cpath{i} = strcat(cpath{i},crole{i}); 
end 
 
for ind = 1:length(bpath) 
    if bpropflag(ind) == 1 
        propvars{ind,1} = bpath{ind}; 
        portvars{ind,1} = cpath{ind}; 
    else 
        propvars{ind,1} = cpath{ind}; 
        portvars{ind,1} = bpath{ind}; 
    end 
end 
 
filename = 
 
C:\Users\Kyle\Documents\SRL\SysML\Thesis results\XML Test Files\trans329.xml 
 
%     find constraints 
    XMLRuleNodes = xDoc.getElementsByTagName('ownedRule'); 
 
    ct = 0; 
    varPaths = cell(1); 
    varExp = cell(1); 
 
    for ind = 0:XMLRuleNodes.getLength - 1 
%         First ownedRule and finding its specification 
%         try %need to get this to go to nextIter if error 
            if isempty(XMLRuleNodes.item(ind).getChildNodes.item(3)) 
                continue 
            end 
 
        eqn = 
char(XMLRuleNodes.item(ind).getChildNodes.item(3).getAttributes.getNamedItem('b
ody').getValue); 
 
        lhs = eqn(1:strfind(eqn, '=')-1); 
        rhs = eqn(strfind(eqn, '=')+1:length(eqn)); 
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%         Process Variable Names (constraint variables must start with an 
%         alphabetic character or underscore) 
%         invars = regexp(rhs,'[a-zA-Z_]\w*','match'); 
 
        invars = getVarNames2(rhs); 
 
        outvars = getVarNames2(lhs); 
 
%         Find Parent Class 
%         Set tempNode = XMLRuleNodes.item(0).parentNode 
%         Do While Not tempNode.baseName = 'packagedElement' 
%             Set tempNode = tempNode.parentNode 
%         'Loop 
        eqnOrig = eqn; 
%         Find all Attributes of this class 
        for jnd = 0:XMLRuleNodesAttr.getLength - 1 
 
            if 
isempty(XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('type')) 
                continue 
            end 
 
            if 
XMLRuleNodes.item(ind).getChildNodes.item(1).getAttribute('xmi:idref') == 
XMLRuleNodesAttr.item(jnd).getAttributes.getNamedItem('type').getValue 
 
                eqn = rhs; 
 
                for knd = 1:length(invars) 
                    varPaths{ct + knd,1} = 
[char(XMLRuleNodesAttr.item(jnd).getParentNode.getAttribute('name')),'.',char(X
MLRuleNodesAttr.item(jnd).getAttribute('name')),'.',invars{knd}]; 
                    varExp{ct + knd,1} = 'SYSML_INPUT_VARIABLE'; 
                    eqn = regexprep(eqn, ['\<',invars{knd},'(?!\.)'], 
['(',varPaths{ct + knd,1},')']); 
                end 
                ct = ct + length(invars); 
 
                varPaths{ct + 1,1} = 
[char(XMLRuleNodesAttr.item(jnd).getParentNode.getAttribute('name')),'.',char(X
MLRuleNodesAttr.item(jnd).getAttribute('name')),'.',outvars{1}]; 
%                 eqn = regexprep(eqn, 
['\<',outvars{1},'(?!\.)'],['(',varPaths{ct + 1,1},')']) 
                eqn = regexprep(eqn,'ln\s?\(?','log('); 
                varExp{ct + 1,1} = eqn; 
 
                ct = ct + 1; 
            end 
        end 
% nextiter: 
 
%         catch ME 
 
%            continue 
%         end 
    end 
 
%     ' Substitute connectors and add project name to variable paths 
varPathsOrig = varPaths; 
    for ind = 1:length(varPaths) 
        for jnd = 1:length(portvars) 
            if strcmp(varPaths{ind},portvars{jnd}) 
                varPaths{ind} = propvars{jnd}; 
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            end 
        end 
    end 
 
 
%     Substitute expressions if equation variables match alias variables 
varExpOrig = varExp; 
    for ind = 1:length(varPaths) 
        if ~strcmp(varExp{ind},'SYSML_INPUT_VARIABLE') 
            for jnd = 1:length(propvars) 
                varExp{ind} = regexprep(varExp{ind}, ['\(',portvars{jnd},'\)'], 
['(',propvars{jnd},')']); 
            end 
        end 
    end 
 
 
%     populate final cell matrix with all unique variable names 
varPaths2 = varPaths; 
cells = cell(length(varPaths),7); 
    numUnique = 0; 
    uniqueFlag = 1; 
     for ind = 1:length(varPaths) 
%         for jnd = 1:ind 
%             if strcmp(varPaths{ind},cells{jnd, 1}) 
%                 uniqueFlag = 0; 
%                 break 
%             end 
%         end 
        if uniqueFlag == 1 
            numUnique = numUnique + 1; 
            cells{numUnique, 1} = varPaths{ind}; 
        end 
        uniqueFlag = 1; 
 
% uniqueVarskip: 
     end 
 
while length(cells)>numUnique 
    cells(numUnique+1,:) = []; 
end 
 
    ct = length(varPaths); 
%     assign causalities and expressions for each unique variable 
    for ind = 1:numUnique 
        ct = 1; 
%         Check to see if any input/output variable matches, with outputs 
%         getting priority (note: this leaves duplicate variables not 
%         flagged as done, but I don't think it affects functionality) 
        for jnd = 1:length(varPaths) 
            if strcmp(varPaths{jnd},cells{ind, 1}) & ~ 
strcmp(varExp{jnd},'SYSML_INPUT_VARIABLE') 
                ct = jnd; 
                cells{ind, 3} = 'Target'; 
                break 
            elseif strcmp(varPaths{jnd},cells{ind, 1}) & 
strcmp(varExp{jnd},'SYSML_INPUT_VARIABLE') 
                cells{ind, 3} = 'Given'; 
                ct = jnd; 
            end 
        end 
        if ~ strcmp(varPaths{ct},'done') 
            if ~strcmp(varExp{ct}, 'SYSML_INPUT_VARIABLE') 
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                cells{ind, 2} = strcat('=',varExp{ct}); 
            end 
            varPaths{ct} = 'done'; 
        end 
    end 
 
% initialize inputs 
 
%     x = cells{:,6}; 
for i = 1:length(cells) 
%     regexprep(cells{i,1},'.','_'); 
    cells{i,4} = ['x(',num2str(i),')']; 
    eval([cells{i,4},' = 0;']) 
    cells{i,6} = '0'; 
    if strcmp(cells{i,3}, 'Given') 
        cells{i,2} = '0'; 
    end 
     cells{i,7} = sym(cells{i,4}); 
end 
 
% find inputs that match specified Excel connections and insert them 
excelfile = 'inputs.xlsx'; 
excelworksheet = 'Main Inputs'; 
[data,text,raw,cells] = excelinputs(excelfile,excelworksheet,cells,2); 
 
for i = 1:length(cells) 
    if strcmp(cells{i,3},'Given') 
        for j = 1:length(cells) 
            if ~isempty(regexp(cells{i,1},[cells{j,1},'(?!\w)'],'once')) & 
strcmp(cells{j,3},'Target') 
                cells{i,2} = cells{j,2}; 
                cells{i,3} = 'Target'; 
            end 
        end 
    end 
end 
 
cells(:,5) = cells(:,2); 
 
for i = 1:length(cells) 
    cells{i,2} = regexprep(cells{i,2},'=',''); 
    for j = 1:length(cells) 
        if ~strcmp(cells{j,3},'Given') 
            cells{j,5} = 
regexprep(cells{j,5},['\(',cells{i,1},'\)'],['(','x(',num2str(i),'))']); 
        end 
    end 
end 
 
for i = 1:length(cells) 
    cells{i,2} = [cells{i,1},' = ',cells{i,2},';']; 
    cells{i,5} = [cells{i,4},' = ',cells{i,5},';']; 
    if length(cells{i,5}) > 1 
        if strcmp(cells{i,5}(1:2),'if') 
            cells{i,3} = 'Conditional'; 
            cells{i,5} = ifwrapper(cells{i,4},cells{i,5}); 
        end 
    end 
end 
 
givnum = 1; 
tarnum = 1; 
for i = 1:length(cells) 
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    if strcmp(cells{i,3},'Given') 
        givenList{givnum,1} = cells{i,2}; 
        givnum = givnum+1; 
    elseif strcmp(cells{i,3},'Target') 
        targetList{tarnum,1} = cells{i,2}; 
        tarnum = tarnum+1; 
    end 
end 
 
targetList = unique(targetList); 
% evaluate list of inputs to initialize all input variables 
for i = 1:length(givenList) 
    eval(givenList{i,1}) 
end 
 
% iterate system of equations and sort which eqs are successfully solved 
% vs. which are still unresolved.  Loop continues until system is fully 
% solved 
done = 0; 
order = zeros(length(targetList),1); 
iter = 0; 
while done == 0 
    done = 1; 
    for i = 1:length(targetList) 
        try 
            eval(targetList{i,1}) 
        catch ME 
            ME; 
            done = 0; 
            order(i) = order(i) + 1; 
            [order,ix] = sort(order); 
            continue 
        end 
    end 
    targetList = targetList(ix); 
    iter = iter+1; 
end 
 
% format inputs (givens) and expressions for formal output 
givenList = unique(givenList); 
expList = char(cat(1,givenList,targetList)) 
 
toc 
 
% Unused Code Snippets: 
% -------------------------- 
 
% % for ind = 1:length(cells) 
% %     for jnd = 1:length(propvars) 
% %         cells{ind,1} = regexprep(cells{ind,1}, portvars{jnd}, 
propvars{jnd}); 
% %     end 
% % end 
% 
% 
% for i = 1:numUnique 
%     propvars{i} = regexprep(propvars{i},'\.','_'); 
%     portvars{i} = regexprep(portvars{i},'\.','_'); 
%     if isempty(cells{i,2}) 
%          cells{i,2} = '0'; 
%     else 
%         cells{i,2} = regexprep(cells{i,2},'=',''); 
%         cells{i,2} = regexprep(cells{i,2},'\.','_'); 
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%     end 
%     cells{i,1} = regexprep(cells{i,1},'\.','_'); 
% 
% end 
% 
 
% for ct = 1:5 
%     for i = 1:length(cells) 
%         if strcmp(cells{i,3},'Conditional'); 
%             eval(cells{i,5}); 
%             cells{i,6} = eval([cells{i,4},';']); 
%         else 
%             eval([cells{i,4},'=',cells{i,5},';']) 
%             eval([cells{i,5}]); 
%         end 
 
%     end 
% end 
 
expList = 
 
AirVehicle.ptrain.Powertrain_Turbine.motor.Motor_Turbine.fuelChoice.Fuel.LHV = 
0;                                                                                                 
AirVehicle.ptrain.Powertrain_Turbine.turbFuelEfficiency = 0;                                                                                                                      
AirVehicle.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                                         
Fuel.LHV = 0;                                                                                                                                                                     
Fuel.co2Density = 0;                                                                                                                                                              
OnroadVehicleElec.totalCO2Factor = 0;                                                                                                                                             
OnroadVehicleElec.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                                  
OnroadVehicleElec.wtwEfficiency = 0;                                                                                                                                              
OnroadVehicleHuman.ptwEfficiency = 0;                                                                                                                                             
OnroadVehicleHuman.totalCO2Factor = 0;                                                                                                                                            
OnroadVehicleHuman.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                                 
OnroadVehicleICE.ptrain.Powertrain_ICE.iceFuelEfficiency = 0;                                                                                                                     
OnroadVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.LHV = 0;                                                                                                   
OnroadVehicleICE.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                                   
Rail.martaRail.RailVehicleElec.vehicleParam.VehicleParameters.occupancy = 0;                                                                                                      
Rail.martaRail.RailVehicleElec.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                     
Rail.num_rail = 0;                                                                                                                                                                
RailVehicleElec.totalCO2Factor = 0;                                                                                                                                               
RailVehicleElec.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                                    
RailVehicleElec.wtwEfficiency = 0;                                                                                                                                                
RailVehicleICE.ptrain.Powertrain_ICE.iceFuelEfficiency = 0;                                                                                                                       
RailVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.LHV = 0;                                                                                                     
RailVehicleICE.totalCO2Factor = 0;                                                                                                                                                
RailVehicleICE.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                                     
Road.autoICE.OnroadVehicleICE.vehicleParam.VehicleParameters.occupancy = 0;                                                                                                       
Road.autoICE.OnroadVehicleICE.vehicleParam.VehicleParameters.travelDist = 0;                                                                                                      
Road.num_auto = 0;                                                                                                                                                                
AirVehicle.ptrain.Powertrain_Turbine.motor.Motor_Turbine.fuelChoice.Fuel.co2Fac
tor =  (Fuel.co2Density) / (Fuel.LHV);                                                             
AirVehicle.ptwCO2Output =  
(AirVehicle.ptrain.Powertrain_Turbine.motor.Motor_Turbine.fuelChoice.Fuel.co2Fa
ctor) * (AirVehicle.ptwEnergyConsumption);                              
AirVehicle.ptwEfficiency =  (AirVehicle.ptwEnergyConsumption) / 
(AirVehicle.vehicleParam.VehicleParameters.travelDist);                                                           
AirVehicle.ptwEnergyConsumption =  
(AirVehicle.ptrain.Powertrain_Turbine.motor.Motor_Turbine.fuelChoice.Fuel.LHV) 
* (AirVehicle.ptwLiquidFuelConsumption);                        
AirVehicle.ptwLiquidFuelConsumption =  
(AirVehicle.vehicleParam.VehicleParameters.travelDist) / 
(AirVehicle.ptrain.Powertrain_Turbine.turbFuelEfficiency);                        
Fuel.co2Factor =  (Fuel.co2Density) / (Fuel.LHV);                                                                                                                                 
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OnroadVehicleElec.ptwCO2Output =  (OnroadVehicleElec.totalCO2Factor) * 
(OnroadVehicleElec.ptwEnergyConsumption);                                                                  
OnroadVehicleElec.ptwEfficiency =  (OnroadVehicleElec.ptwEnergyConsumption) / 
(OnroadVehicleElec.vehicleParam.VehicleParameters.travelDist);                                      
OnroadVehicleElec.ptwEnergyConsumption =  (OnroadVehicleElec.wtwEfficiency) * 
(OnroadVehicleElec.vehicleParam.VehicleParameters.travelDist);                                      
OnroadVehicleHuman.ptwCO2Output =  (OnroadVehicleHuman.totalCO2Factor) * 
(OnroadVehicleHuman.ptwEnergyConsumption);                                                               
OnroadVehicleHuman.ptwEnergyConsumption =  (OnroadVehicleHuman.ptwEfficiency) * 
(OnroadVehicleHuman.vehicleParam.VehicleParameters.travelDist);                                   
OnroadVehicleHuman.wtwEfficiency =  (OnroadVehicleHuman.ptwEnergyConsumption) / 
(OnroadVehicleHuman.vehicleParam.VehicleParameters.travelDist);                                   
OnroadVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.co2Facto
r =  (Fuel.co2Density) / (Fuel.LHV);                                                               
OnroadVehicleICE.ptwCO2Output =  
(OnroadVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.co2Fact
or) * (OnroadVehicleICE.ptwEnergyConsumption);                    
OnroadVehicleICE.ptwEfficiency =  (OnroadVehicleICE.ptwEnergyConsumption) / 
(OnroadVehicleICE.vehicleParam.VehicleParameters.travelDist);                                         
OnroadVehicleICE.ptwEnergyConsumption =  
(OnroadVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.LHV) * 
(OnroadVehicleICE.ptwLiquidFuelConsumption);              
OnroadVehicleICE.ptwLiquidFuelConsumption =  
(OnroadVehicleICE.vehicleParam.VehicleParameters.travelDist) / 
(OnroadVehicleICE.ptrain.Powertrain_ICE.iceFuelEfficiency);           
Rail.martaRail.RailVehicleElec.ptwCO2Output =  (RailVehicleElec.totalCO2Factor) 
* (RailVehicleElec.ptwEnergyConsumption);                                                         
Rail.martaRail.RailVehicleElec.ptwEnergyConsumption =  
(RailVehicleElec.wtwEfficiency) * 
(RailVehicleElec.vehicleParam.VehicleParameters.travelDist);                             
Rail.railDist =  
(Rail.martaRail.RailVehicleElec.vehicleParam.VehicleParameters.travelDist) * 
(Rail.num_rail);                                                                    
Rail.railPTWCO2Output =  (Rail.martaRail.RailVehicleElec.ptwCO2Output) * 
(Rail.num_rail);                                                                                         
Rail.railPTWEnergyUse =  (Rail.num_rail) * 
(Rail.martaRail.RailVehicleElec.ptwEnergyConsumption);                                                                                 
Rail.railPass =  
(Rail.martaRail.RailVehicleElec.vehicleParam.VehicleParameters.occupancy) * 
(Rail.num_rail);                                                                     
Rail.railPassDist =  (Rail.railDist) * (Rail.railPass);                                                                                                                           
RailVehicleElec.ptwCO2Output =  (RailVehicleElec.totalCO2Factor) * 
(RailVehicleElec.ptwEnergyConsumption);                                                                        
RailVehicleElec.ptwEfficiency =  (RailVehicleElec.ptwEnergyConsumption) / 
(RailVehicleElec.vehicleParam.VehicleParameters.travelDist);                                            
RailVehicleElec.ptwEnergyConsumption =  (RailVehicleElec.wtwEfficiency) * 
(RailVehicleElec.vehicleParam.VehicleParameters.travelDist);                                            
RailVehicleICE.ptwCO2Output =  (RailVehicleICE.totalCO2Factor) * 
(RailVehicleICE.ptwEnergyConsumption);                
RailVehicleICE.ptwLiquidFuelConsumption =  
(RailVehicleICE.vehicleParam.VehicleParameters.travelDist) / 
(RailVehicleICE.ptrain.Powertrain_ICE.iceFuelEfficiency);                 
RailVehicleICE.ptwEfficiency =  (RailVehicleICE.ptwEnergyConsumption) / 
(RailVehicleICE.vehicleParam.VehicleParameters.travelDist);                                               
RailVehicleICE.ptwEnergyConsumption =  
(RailVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.LHV) * 
(RailVehicleICE.ptwLiquidFuelConsumption);                    
Road.autoICE.OnroadVehicleICE.ptwCO2Output =  
(OnroadVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.co2Fact
or) * (OnroadVehicleICE.ptwEnergyConsumption);       
Road.autoICE.OnroadVehicleICE.ptwEnergyConsumption =  
(OnroadVehicleICE.ptrain.Powertrain_ICE.motor.Motor_ICE.fuelChoice.Fuel.LHV) * 
(OnroadVehicleICE.ptwLiquidFuelConsumption); 
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Road.roadDist =  
(Road.autoICE.OnroadVehicleICE.vehicleParam.VehicleParameters.travelDist) * 
(Road.num_auto);             
Road.roadPTWEnergyUse =  (Road.autoICE.OnroadVehicleICE.ptwEnergyConsumption) * 
(Road.num_auto);                
Road.roadPass = 
(Road.autoICE.OnroadVehicleICE.vehicleParam.VehicleParameters.occupancy) * 
(Road.num_auto);       
Road.roadPTWCO2Output =  (Road.autoICE.OnroadVehicleICE.ptwCO2Output) * 
(Road.num_auto);  
 
Elapsed time is 32.974516 seconds. 

 
Published with MATLAB® 7.9 
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