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SUMMARY

In our age in which the use of electronic devices is expanding all over the world, their

reliability and miniaturization have become very crucial. The thesis is based on the study

of one of the most frequent failure mechanisms in semiconductor packages, the delamination

of interface or the separation of two bonded materials, in order to improve their adhesion

and a fortiori the reliability of microelectronic devices. It focuses on the metal (-oxide) /

polymer interfaces because they cover 95% of all existing interfaces.

Since several years, research activities at mesoscopic scale (1-10µm) have proved that the

more roughened the surface of the interface, i.e., presenting sharp asperities, the better

the adhesion between these two materials. Because roughness exhibits extremely complex

shapes, it is difficult to find a description that can be used for reliability analysis of interfaces.

In order to investigate quantitatively the effect of roughness variation on adhesion proper-

ties, studies have been carried out involving analytical fracture mechanics; then numerical

studies were conducted with Finite Element Analysis. Both were done in a deterministic

way by assuming an ideal profile which is repeated periodically.

With the development of statistical and stochastic roughness representation on the one

hand, and with the emergence of probabilistic fracture mechanics on the other, the present

work adds a stochastic framework to the previous studies. In fact, one of the Stochastic

Finite Element Methods, the Perturbation method is chosen for implementation, because

it can investigate the effect of the geometric variations on the mechanical response such as

displacement field. In addition, it can carry out at once what traditional Finite Element

Analysis does with numerous simulations which require changing geometric parameters each

time.

This method is developed analytically, then numerically by implementing a module in a

Finite Element package MSc. Marc/Mentat. In order to get acquainted and to validate the

implementation, the Perturbation method is applied analytically and numerically to the 3

xi



point bending test on a beam problem, because the input of the Perturbation method in

terms of roughness parameters is still being studied. The capabilities and limitations of the

implementation are outlined.

Finally, recommendations for using the implementation and for furture work on roughness

representation are discussed.
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Chapter I

INTRODUCTION

The present thesis is a part of the NanoInterface Project (see Appendix A) and deals

with one of the most frequent failure mechanisms in semiconductor packages, the delam-

ination of interface or the separation of two bonded materials (see Figure 1). Studying

the delamination of interface of the two materials under consideration must give solutions

for improving their adhesion and a fortiori the reliability of the semiconductor packaging.

Moreover, the work focuses especially on the metal (-oxide) / polymer interfaces, because

they cover 95% of interfaces in microelectronic devices.

Figure 1: Scheme showing types of failures which occur in semiconductor packaging and a
zoom on the delamination [Qu, 2004].

The following interactions play a role in adhesion, or cohesion of materials and interfaces:

• chemical interactions which consist of the primary atomic bonds, i.e., covalent, ionic or

metallic bonds. These kinds of interactions result in interface toughness of 1−4 J/m2,

• physical interactions which encompass the secondary atomic bonds such as Coulomb

forces or Lipschitz van der Waals forces. These interactions result in interface tough-

ness of 0.1− 0.3 J/m2,

• mechanical interlocking which takes place between material surfaces and even inside

the materials (see below for explanation) due to geometric effects at mesoscopic scale
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(1 − 10µm) (see Figure 2). This type of interaction results in interface toughness of

40−50 J/m2 or more, which underlines its dominant role in interface bonding [Noijen

et al., 2009].

Figure 2: Mechanical interlocking [Specialchem, 2011].

The geometry of the material surfaces is known as roughness with a typical dimension

of 1 − 10µm. As the project deals with metal(-oxide)/polymer interface, it can be

pointed out that the interface roughness refers to that of the metal surface. The

polymer is liquid at the beginning of the processing and solidifies during cure, taking

form complementary to the metal roughness at the interface.

At mesoscale, debonding interfaces involves two types of failure modes (or paths): the

adhesive (or interfacial) and the cohesive (or bulk) cracks. This can be understood by

recalling common daily experience when one removes adhesive tape from an object.

Residuals and glue are often left on the object especially when the adhesion strength

is high. Transposing this image at mesoscale, and based on the fact that since the

cohesive strength and toughness of metal(-oxide)/polymer interface are smaller than

that of the polymers which are much smaller than the strength and toughness of

metals, adhesion is higher when failures occur in the polymer and not at the interface.

The purpose is to increase the proportion of cohesive cracks in the polymer compared

to the interfacial adhesive cracks. This can be achieved when the surface of interface

is rough, i.e., when sharp asperities are presented. In fact, when the surface is smooth,

most failures are interfacial, whereas harshly roughened surface yields cohesive failures

and better adhesion. Intense research activities since several years have proved this

phenomenon [Kim et al., 2010, Lee and Qu, 2003, 2004, Noijen et al., 2009, Yao and

Qu, 2002]. Briefly, the more roughened the interfacial surface, the better the adhesion

between these two materials.
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One issue rises at this point. Because roughness shows extremely complex shapes, it is

difficult to find a description that can be used for reliability analysis of interfaces. One can

think of meshing entirely the roughness through Finite Element Analysis (FEA), but, it is

obvious that this will be neither effective nor efficient.

Studies based on analytical and numerical fracture mechanics have been carried out to

quantify the effect of roughness on adhesion by assuming an ideal profile which is repeated

periodically [Noijen et al., 2009, Yao and Qu, 2002] (see Figure 3).

Figure 3: Ideal Profile from [Yao and Qu, 2002].

With the development of statistical and stochastic roughness representation, and with the

emergence of probabilistic fracture mechanics, the present thesis adds a stochastic frame-

work to previous studies. Stochastic Finite Element Methods (SFEM) which are seen as

an extension of the classical deterministic Finite Element Analysis to stochastic dimen-

sion must be a good way to cope with our theme, since it offers tools which can combine

stochastic modeling of surface roughness and the Finite Element Analysis. The first method,

Monte Carlo simulations can assess the variability of mechanical response using statistics

by performing Finite Element Analysis. However, it requires numerous simulations and pa-

rameters have to be changed each time. Second, the Perturbation method can evaluate the

variability of the response, in particular the two first moments of the response, from those

of the input through only one simulation. Spectral Stochastic Finite Element Method is

specialized in studying the influence of material properties on mechnical response. Finally,

the Reliability method can estimate the probability of rare and undesirable event such as

failure (see Chapter 2, Appendix B and [Gutiérrez and Krenk, 2004, Stefanou, 2009, Sudret

and Der Kiureghian, 2000] for details).

Because the research is mainly dedicated to a better understanding of the influence of

interface roughness, the Perturbation method has been chosen. As the motivation is to
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investigate quantitatively the effect of roughness variation on adhesion properties by pre-

dicting the chance (probability) of the occurrence of cohesive and adhesive failures, the aim

of this thesis is to implement the Perturbation method in order to investigate the effect of

geometric variations on the displacement field. Once the variability of the displacement field

is assessed, the variability of the adhesion properties can be evaluated by failure mechan-

ics. Then, the probability of the occurence of failure modes can be estimate by Reliability

method. In addition, as any Stochastic Finite Element Method requires Variable sensitivity

computation. The variable can be a material or geometric parameter. As the geometric

variations are our main interest, the size is chosen as variable. That is why the Size sensitiv-

ity based Perturbation method is implemented as an explorative study for stochastic failure

analysis of a roughened bi-material interface. This mesoscale analysis has to be translated

to macroscale adhesion properties, as underlined above. This work, called homogenization,

has been carried out independently within the project [Lallemant, 2011].

In Chapter 2, the Perturbation method is derived analytically and applied to the so-called

3 point bending test on a beam problem in order to get acquainted with the method and

because the input of the Perturbation method in terms of roughness parameters is still be-

ing studied. Chapter 3 shows the implementation of the Size sensitivity based Perturbation

method in a commercial Finite Element package, MSc. Marc/Mentat which is the software

used in the project and is specialized in performing non-linear analysis (see [MSC.Software,

2011] for more details). The implementation is verified by performing the 3 point bending

test on a beam problem. Chapter 4 is devoted to drawing up recommendations on how

the roughness could be modeled by showing a preliminary analysis of the roughness of the

foil surface of the sample studied. From the roughness measurement data, the work uses

several softwares such as Matlab, and a well known package for industries, MountainsMaps

[DigitalSurf, 2011], to see what it currently offers in terms of analysis. Last but not least, it

deals with the capabilities and limitations of the implementation to roughness study. The

conclusion introduces another SFEM, the Reliability method, which can be useful for this

research.
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Chapter II

ANALYTIC STOCHASTIC ANALYSIS

The present Chapter aims to show the usefulness of the stochastic framework for me-

chanical problems and to introduce the Stochastic Finite Elements Methods (SFEM). It

especially focuses on one of the methods, the Perturbation method, and explains why it is

chosen for this thesis in section 2.1. In section 2.2, this method is developed analytically. A

typical mechanical problem, the 3 point bending test on a beam is chosen as the application

of this method, which is shown in section 2.3.

2.1 Introduction to stochastic analysis

The influence of inherent uncertainties on system behavior has led the scientific community

to recognize the importance of the stochastic approach to mechanical problems [Stefanou,

2009]. Uncertainties are involved in the evaluation of any types of loading, material or geo-

metric properties, and are characterized by means of statistics and probability theory. One

possible way of solving such problems is to formulate a stochastic differential equation to

describe the problem. However, finding out the solution requires tremendous work without

having the guarantee of even getting a response [Gutiérrez and Krenk, 2004].

An interesting alternative is to take advantage of the rapid development of computing tech-

nology in the mechanical field for use in this stochastic framework. Combining them has

created the field of computational stochastic mechanics. It has been recognized that the

computational methods permit the analysis and design of complex and large-scale engi-

neering systems and are widely used by the engineering and scientific communities. The

archetypal example is the Finite Element Method (FEM). The Stochastic Finite Element

Methods (SFEM) consist of an extension of the classical deterministic FE approach to the

stochastic framework. In fact, the analysis is performed by deterministic algorithm where

inputs and finite elements are characterized by statistical properties, and the response is a

stochastic field. The goal is to determine the variation in the displacement field (response),
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which depends on a stochastically distributed parameter, the roughness height (input). This

can be done by solving the well known global system of the equilibrium equation used in

FEM with stochastic properties which is:

K̃(s̃)ũs(s̃) = f̃(s̃), (1)

where ũs is the vector containing the values of displacements at the nodes – the superscript

s denotes that the term is scaled, K̃ is the stochastic system stiffness matrix and f̃ is the

stochastic loading. K̃ and f̃ depend on stochastic material or geometric properties s̃. Bold

capital letters refer to matrices, bold letters refer to vectors and tildes denote stochastic

variables.

SFEM offers two general types of analysis:

• Uncertainty analysis which consists in assessing how selected characteristics of the

input field such as the mean value and standard deviation, influence those of a re-

sponse field like the displacement field. This type of analysis can be performed by the

following three methods:

– Monte Carlo simulation (MCS): this method consists in performing a set of sim-

ulations where the input parameters are changed in each of them in order to

get a set of responses. The response variability of the system is calculated us-

ing simple statistical relationships. For instance, the first two moments which

are the mean value and the standard deviation of the displacement field can be

assessed. The accuracy of the estimation depends on the number of simulations

i.e., the number of responses. A small number of samples, like 50, permits only

a rough approximation of the first two moments of the response, while a larger

sample size, like 500, enables estimating the cumulative distribution function

(CDF) of the response. Besides this ’direct’ MCS, several variants such as the

fast MCS, importance sampling, subset simulation and line sampling exist. De-

sign of Experiments (DoE) and Response Surface Analysis (RSA) are based on
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MCS. To sum up, MCS is obviously the simplest method for calculating the re-

sponse variability in the framework of SFEM and can afford numerous variants

and analysis, but also the method that is the most computationally inefficient

and time-consuming.

– Perturbation method: this method calculates the two first moments (mean and

standard deviation) of the response from those of the input variables based on

the Taylor series expansion. This method is more thoroughly explained in section

2.2.

– Spectral formulation known as Spectral Stochastic Finite Element Method (SS-

FEM): this method is an extension of the deterministic finite element method

for the solution of boundary value problems with stochastic material properties.

It expresses the response as a serie developed in orthogonal polynomials which

is known as the Hermite polynomial or polynomial chaos expansion.

• Reliability analysis which provides an accurate approximation of the probability dis-

tribution of the response field from that of the input field.

– Monte Carlo simulation (MCS): (see above).

– Reliability method: this method is typically used in estimating the probability of

a rare and undesirable event such as failure. It consists in converting the original

stochastic input variables of the problem into independent normal variables, then

using geometric arguments to identify the most likely modes of ’failure’ and

the associated probabilities. Then, the probability density is a function of the

distance from the ’center’, representing the expected value.

For more details, see Appendix B and [Gutiérrez and Krenk, 2004, Stefanou, 2009,

Sudret and Der Kiureghian, 2000].

All these methods require the evaluation of the influence of the stochastic input variables,

representing stochastic fields such as material properties or geometric parameters, on the

response. This is done by means of the assessment of the derivatives of the response with
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respect to the stochastic input variables which is performed as Variable sensitivity compu-

tation.

Because this research is mainly dedicated to a better understanding of the influence of the

variation of interface roughness, the implementation of the Perturbation method is chosen.

Indeed, this method can investigate the effect of geometric variations on the mechanical re-

sponse. Plus, it can perform at the same time the simulations of different roughness profiles

which the traditional FEA does with numerous simulations which require changing material

and geometric parameters each time (i.e., MCS). In addition, as the geometric variations

are our main interest, the Size variable sensitivity computation will be implemented in

particular. Chapter 3 shows the implementation of the Size sensitivity computation based

Perturbation method.

The Perturbation method will be performed on a simple mechanical problem to validate

the implementation. The 3 point bending test on a beam problem has been chosen for that

purpose. This well known mechanical problem will be solved in an analytical and numerical

way to get acquainted with the Perturbation method.

2.2 Analytic Perturbation method

The present section shows the analytic method to evaluate the two first moments of the

response from those of the input variable in a general case.

In theory, several ways exist to determine the first two moments i.e., mean value and

standard deviation of ỹ, denoted µy and σy respectively, where ỹ takes the form ỹ = f(x̃).

The first two moments of ỹ are expressed as those of x̃ denoted µx and σx respectively.

Approximations of the mean value and the standard deviation of ỹ can be obtained by

utilizing Taylor series expansion about the mean of x̃ up to the second order (the higher

terms are negligible compared to the first two orders):

ỹ = f(µx) + (x̃− µx)f ′(µx) +
1

2
(x̃− µx)2f ′′(µx) + · · · . (2)

where f ′ and f ′′ are the first and the second derivatives of f with respect to x̃.

Some statistical definitions and notations are introduced as follows:

• the expectation of ỹ, the mean value, is denoted E(ỹ) = µy,
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• the variance of ỹ is defined as the square of the standard deviation, i.e.,

V (ỹ) = σ2
y = V [(x̃− µx)2].

From that, the expectation of the response is expressed as:

E(ỹ) = E[f(µx)] + E[(x̃− µx)f ′(µx)] +
1

2
E[(x̃− µx)2)f ′′(µx)] + · · · . (3)

By the definitions and properties of the expectation and the variance, the expectation of ỹ

reads:

E(ỹ) w f [E(x̃)] +
1

2
f ′′[E(x̃)]V (x̃), i.e., µy w f [µx] +

1

2
f ′′(µx)σ2

x. (4)

Note that the first order term vanishes because of the linearity of the expectation.

In the same way, variance is assessed from Taylor series expansion up to the first order (the

second order term is negligible compared to the first order term):

V (ỹ) = V [f(µx)] + V [(x̃− µx)f ′(µx)] + · · · . (5)

By the properties of variance, (5) becomes:

V (ỹ) w f ′[(E(x̃)]
2
V (x̃), i.e., σy w f ′(µx)σx. (6)

See [Hines et al., 2009] for more details.

Then, the analytic Perturbation method is put forward: it gives the mean value and the

standard deviation of the response from those of the input even if their relationship is

complicated.

2.3 3 point bending test on a beam

2.3.1 Derivation of the deflection

The typical 3 point bending test on a beam problem has been chosen to get acquainted with

the Perturbation method analytically and numerically. A horizontal beam with a rectan-

gular section A, clamped in x and y directions in the left extremity, in y direction in the

right extremity, is subject to the load P at middle (see Figure 4).
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Figure 4: 3 point bending test on a beam problem.

In this Figure, l the beam length, h the height, b the thickness, P the load, E the Young

modulus, µ the Poisson ratio, and ρ the density. The study focuses on the influence of the

beam length l on the displacement field in y direction denoted as uy, because their relation-

ship is not linear (see below). First, the deflection of the beam is briefly presented; then, the

analytic derivation and numerical application of the Perturbation method are performed in

sections 2.3.2 and 2.3.3.

Based on the Euler-Bernoulli beam theory, the expression and the distribution of the reac-

tion force, the moment through z axis, strain, stress and the displacement fields are given

as function of the loading and the beam parameters. The distribution of the reaction force

T , the moment Mf through z axis and the displacement through y direction uy are given

and drawn in Figure 43.

Figure 5: Distributions of the reaction force T , moment Mf and the displacement through
y, uy, of the 3 point bending test on a beam problem [Dau, 2005].
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From that, the deflection, δ, can be derived, which is the displacement uy, at the middle of

the beam, l/2, as follows:

δ = uy(x =
l

2
) =

Pl3

48EIGz
with IGz =

bh3

12
, (7)

where IGz is the area moment of inertia for the rectangular cross section. See Appendix C

for the derivation of the deflection.

As the focus is on the influence of the beam length l on deflection δ, the equation reads:

δ = al3 with a =
P

48EIGz
. (8)

The deflection δ is a function of the beam length l to the power of 3. As the relationship

is not linear, assessing the first two moments of the deflection δ is not straightforward from

those of the beam length l by simple stastistics. That is why using the Perturbation method

is interesting at this point. Sections 2.3.2 and 2.3.3 show that.

2.3.2 Analytic application

Based on (8), the beam length l is the input variable and the deflection δ is the response.

Therefore, let the beam length l be a stochastic variable with its two first moments known,

and let the other parameters remain deterministic. The response becomes a stochastic

variable and is expressed as:

δ̃ = al̃3 with a =
P

48EIz
. (9)

The purpose of this section is to determine the mean and the variance of the stochastic

deflection δ̃ from those of the stochastic length l̃ knowing that their relationship is not

straightforward.

The analytic Perturbation method developed in section 2.2 is introduced as follows:

δ̃ = al̃3 with a =
P

48EIz
takes the form ỹ = ax̃3 with x̃ = l̃ and ỹ = δ̃, (10)

i.e., the relationship between the response and the input is:

f(x̃) = ax̃3, f ′(x̃) = 3ax̃2, and f ′′(x̃) = 6ax̃. (11)
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By applying (4) and (5) of the Perturbation method, the mean and the standard deviation

of stochastic deflection δ̃ are evaluated from those of the stochastic beam length l̃ such that:

µδ w aµl(µ
2
l + 3σ2

l ) and σδ w 3aµ2
l σl, (12)

where µl and σl are the mean and the standard deviation of stochastic beam length l̃, µδ

and σδ are those of the stochastic deflection δ̃.

2.3.3 Numerical application

Regarding the numerical application of the analytic Perturbation method, taking the ex-

ample of an animal hanging on a wooden beam with a rectangle shaped section leads to

the following values: E = 10000MPa, ν = 0.4, b = 50mm, h = 50mm, P = 1500N . The

parameter a gathering all the deterministic parameters can be calculated such that:

δ̃ = al̃3 with a =
P

48EIGz
= 6e−9 mm−2. (13)

The numerical application is performed with the beam length l̃ as Gaussian distributed, and

then as uniformly distributed. Both are varying from 1m = 1000mm to 7m = 7000mm.

This means that when a set of beams is considered, it is characterized by the beam length

distribution. For instance, an uniformly distributed set of beams means that the set consists

of the same number of beams with a given length, i.e., there are as many 1m beams as 2m

beam or 3m beams and so on.

According to (13), the deflection δ for a beam length l of 4000mm is δ = 384mm.

Let the length of the beam l̃ be considered as Gaussian distributed such that its mean is

4m = 4000mm and its standard deviation is 0.4m = 400mm, i.e., statistically speaking

µl = 4000mm,σL = 400mm.

Note that the standard deviation σL is equal to 10% of the value of the expectation for

usual experimental simulations.

The application gives:

µδ w 396mm, and σδ w 115mm. (14)

Let the stochastic beam length l̃ be uniformly distributed such that a=1m=1000mm and b =

7m=7000mm; then, µl = a+b
2 = 4000mm and V (l̃) = (b−a)2

12 = 3e6mm2 i.e., σl = 1732mm.
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The application gives:

µδ w 600mm, and σδ w 499mm. (15)

Note that this is also the solution for a Gaussian distribution with µl = 4000 and σl =

1732mm.

Compared to the deflection of 384mm for a 4000m beam, 389mm means that it is the

mean value of deflections calculated from (13) for each beam of a set characterized by a

mean of 4000mm and a standard deviation of 400mm. For any set of beams, the traditional

method or MCS would be to calculate the deflection for each beam, then obtaining the ex-

pectation and its variance, but this is inefficient. The Perturbation method does that at

once. This shows the added value of the Perturbation method and a fortiori the Stochastic

Finite Element Methods over the traditional Finite Element Method. Chapter 3 deals with

the implementation of this Perturbation Method on a commercial Finite Element package,

MSc. Marc/Mentat, used in the project.
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Chapter III

STOCHASTIC FINITE ELEMENT ANALYSIS

This Chapter shows the numerical implementation of the Perturbation method by

means of the Finite Element Methods. As presented in section 2.1, this method requires Size

sensitivity computation. The entire implementation is integrated in the commercial Finite

Element package used in the project, MSc. Marc/Mentat, through the user-defined element

subroutine (see [MSC.Software, 2011] for more details). Section 3.1 explains and shows

the equations which govern the implementation of the Size sensitivity based Perturbation

method through user subroutine. Section 3.2 presents the implementation itself. Last,

the implementation is applied to the one element tensile test and the 3 point bending test

problem in order to verify its consistency with the analytic Perturbation method presented

in section 3.3.

3.1 Equations of Size sensitivity computation and Perturbation method

The development of the present implementation is based on the Size sensitivity computa-

tion for uniform scaling, non-linear and fracture problem shown in [Gutierrez and De Borst,

2003], the Variable sensitivity computation, Perturbation method of Stochastic Finite Ele-

ment Methods [Gutiérrez and Krenk, 2004], and the theory of the Finite Element Method

[Zienkiewicz and Taylor, 2005].

Modeling roughness requires studying the size-influence in three dimensions, i.e., in the

three directions (x, y and z). Models are built in 2D plane strain condition at the first

stage of the project. So, the present scaling are in two directions, x and y, whether they are

independent or depedent on each other. Therefore, the uniform Size sensitivity computa-

tion for the non-linear and fracture problem presented in [Gutierrez and De Borst, 2003] has

been adapted to the so called non-uniform scaling. Actually, a ’general’ case is computed

here.
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Sensitivity computation examines the influence of the stochastic input variables, represent-

ing stochastic fields such as material properties or geometric parameters, on the response.

This is done by assessing the derivatives of the response with respect to the stochastic in-

put variables. Three techniques exist for the computation of basic Variable sensitivity, the

Direct Differentiation Method (DDM), the Adjoint System Method (ASM) and the Finite

Difference Method (FDM). The DDM is chosen, because of its applicability to geometri-

cally and physically nonlinear problems for the evaluation of material parameters and shape

sensitivities [Gutiérrez and Krenk, 2004]. Here, sensitivity in terms of size is of interest,

because the influence of the interface roughness shape is the focus. The DDM is applied to

Size sensitivity computation.

Based on (1), the general equilibrium equation adapted to both size sensitivity compu-

tation and Perturbation method, is expressed as follows:

K(ŝ)us(ŝ) = f(ŝ), (16)

where ŝ represents the scaling of the system as an input, K is the stiffness matrix, f the

internal force vector and us is the response which has to be determined – the superscript s

denotes that the term is scaled.

When sensitivity computation is performed, ŝ denotes the scaling factors sx and sy of the

system in x and y directions respectively. While Perturbation method is performed, ŝ

supplies the mean value, the standard deviation of the scaling in x and y directions, and

the correlation coefficient between them. These are denoted µsx , σsx , µsy , σsy and ρsx−sy

respectively. The correlation coefficient informs on the degree of dependence between the

scaling in x and in y directions. Indeed, ŝ is deterministic for sensitivity computation, and

becomes stochastic for Perturbation method. This is the root of the relationship between

sensitivity computation and Perturbation method.

In the same way as presented in section 2.2, the response, represented by the displace-

ment field, is expressed by the second order Taylor expansion at the mean of the scaling
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µs = (sx, sy):

u(s) = u(µs) +
∂u

∂si
(µs)(si − µsi) +

1

2

∂2u

∂si∂sj
(µs)(si − µsi)(sj − µsj ) + · · ·

for i ∈ {x, y}
(17)

The mean and the standard deviation of the displacement are expressed as follows:

µu ≈ u(µsx , µsy) +
1

2
Σsx,sx

∂2u

∂s2
x

(µsx , µsy) +
1

2
Σsx,sy

∂2u

∂sx∂sy
(µsx , µsy)

+
1

2
Σsx,sy

∂2u

∂sy∂sx
(µsx , µsy) +

1

2
Σsy ,sy

∂2u

∂s2
y

(µsx , µsy), (18)

σ2
u ≈

∂u

∂sx
(µsx , µsy)Σsx,sx

∂u

∂sx
(µsx , µsy)T +

∂u

∂sx
(µsx , µsy)Σsx,sy

∂u

∂sy
(µsx , µsy)T

+
∂u

∂sy
(µsx , µsy)Σsx,sy

∂u

∂sx
(µsx , µsy)T +

∂u

∂sy
(µsx , µsy)Σsx,sy

∂u

∂sy
(µsx , µsy)T , (19)

where Σsi,sj for (i, j) ∈ {(x, y), (y, x)} are components of the covariance matrix Σsx,sy and

T the transpose operator.

The following underlined derivatives:

• ∂ux
∂sx

,
∂ux
∂sy

,
∂uy
∂sx

,
∂uy
∂sy

,

• ∂2ux
∂s2

x

,
∂2ux
∂s2

y

,
∂2ux
∂sx∂sy

,
∂2uy
∂sy∂sx

,
∂2uy
∂s2

x

,
∂2uy
∂s2

y

,
∂2uy
∂sx∂sy

and
∂2uy
∂sy∂sx

,

(20)

are equivalent to the derivatives of the function f of section 2.2, f ′ and f ′′. It is the aim of

the Size sensitivity computation to obtain them.

The method for computing the Size sensitivity consists first of incorporating the scale factor

into the discretized equilibrium equations, then formulating the derivatives of the displace-

ment with respect to the scale factor. This is the aim of the sections 3.1.1, 3.1.2 and

3.1.3.

3.1.1 Boundary value problem

Based on the reference solid Ωr under plane strain assumption, a scaled solid Ωs is introduced

by means of the so-called scale factor matrix denoted by s:

Ωs =
{
Y s ∈ R2 | Y s = sXr

}
(21)
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with Y s =

(
xs

ys

)
, s =

 sx 0

0 sy

 ∈ R2 ×R2 and Xr =

(
xr

yr

)
∈ Ωr which is equivalent to

(
xs

ys

)
=

(
sxx

r

syyr

)
.

Note that the scaling factors sx and sy are not additional degrees of freedom but parameters.

In the absence of body forces, the equations of the boundary value problem are as follows:

∇ · σs = 0 in Ω(s), (22a)

us = sτur on ∂Ω
(s)
1 , (22b)

σs · n =τ σ on ∂Ω
(s)
2 , (22c)

where ∂Ω
(s)
1 ∪ ∂Ω

(s)
2 = ∂Ω(s), σs is the stress tensor, us is the displacement field, τur are

the prescribed boundary displacements in the reference solid, (ur is the displacement field

in the reference solid Ωr), n is the outward normal vector to ∂Ω(s), and τσ is the prescribed

boundary loading.

Since prescribed boundary conditions in displacements and in loading are scaled, the stress

field does not depend on scaling:

∂σs

∂sx
=
∂σs

∂sy
= 0, (23)

whereas the displacement does, so that:

us = sur. (24)

In addition, the strain field does not depend on the scaling, because:

∂σs

∂si
= D

∂εs

∂si
⇒ ∂εs

∂si
= 0 for i ∈ {x, y}, (25)

where D is the stiffness matrix. fFor more details see 31.

3.1.2 Finite element formulation

The Finite element formulation implies a finite element discretization {Ωs
e} of the scaled

solid Ωs and the isoparametric domain Ω0. In addition, the formulation has to be based on
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a specific element. The so-called linear, four-node, isoparametric, plane strain, quadrilateral

element (see Figure 6) is used on numerical models of the interface delamination studied in

the framework of the project.

Figure 6: Linear, four-node, quadrilateral element.

Generally, the models of mechanical problems we are involved in, often rely on this element.

This element is noted on Marc/Mentat as 11.

The element is a rectangular linear element which belongs to either Lagrangian or Serendip-

ity family. As we have 4 nodes with 2 degrees of freedom per node (horizontal and vertical

displacements, denoted as ux and uy respectively), the shape function takes the form:

u = α1 + α2x+ α3y + α4xy. (26)

Hence, the variable transformation can be expressed as:

Y s =
∑
i

Y s
i Ni(ξ, η) =

∑
i

sXr
iNi(ξ, η)

⇔
(
xs

ys

)
=
∑
i

(
sxx

r
i

syyri

)
Ni(ξ, η)⇔


xs =

∑
i

sxx
r
iNi(ξ, η)

ys =
∑
i

syy
r
iNi(ξ, η)

(27)

where Xr
i ∈ Ωe, Y

s
i ∈ Ωs

e, both of which are global coordinates, and Ni the shape function,

ξ and η isoparametric coordinates. See Figure 7 which depicts variable transformations.
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

(s)

e

0

reference solid

scaled solid

e
(s)
discretized scaled solid

discretized solid

isoparametric solid

discretization discretization
y=yiNi(»)=sxiNi(»)

JJ(s)

x=xiNi(»)

Figure 7: Size sensitivity finite element formulation for non-uniform scaling.

In this Figure, Jr and Js are Jacobians of the isoparametric transformations.

Based on nodal coordinates, the shape function and its derivatives are expressed in the

isoparametric domain such that:

• Ni(ξ, η) =
1

4
(1 + ξξi)(1 + ηηi)

•



∂Ni

∂ξ
(ξ, η) =

1

4
ξi(1 + ηηi)

∂Ni

∂η
(ξ, η) =

1

4
ηi(1 + ξξi).

(28)

Note that the shape function and its derivatives do not depend on the scaling, because they

belong to the isoparametric domain.

Concerning the Jacobian, the Jacobian matrix is expressed as follows:

Js =

 j11 j12

j21 j22

 =

 sx
∂x

∂ξ
sy
∂y

∂ξ

sx
∂x

∂η
sy
∂y

∂η

 =


∑
i

∂Ni

∂ξ
sxxi

∑
i

∂Ni

∂ξ
syyi∑

i

∂Ni

∂η
sxxi

∑
i

∂Ni

∂η
syyi

 .

The Jacobian is the determinant of the above matrix:

Js = |Js| = j11j22 − j12j21 = sxsyJ
r. (29)
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Regarding the strain displacement matrix denoted as Bs
e , the derivatives of the shape

function according to the global coordinate system read:
N s
i,x

N s
i,y

 =


∂N s

i

∂x

∂N s
i

∂y

 =
1

Js


sy
∂y

∂η
−sy

∂y

∂ξ

−sx
∂x

∂η
sx
∂x

∂ξ




∂Ni

∂ξ

∂Ni

∂η

 .

Hence, 

∂N s
i

∂x
=

1

sx

∂Ni

∂x

∂N s
i

∂y
=

1

sy

∂Ni

∂y
.

(30)

As the solid is a homogeneous, isotropic, elastic medium in plane strain condition, Hooke’s

law can be applied such that:

σs = Deε
s, (31)

where De =


D11 D12 0

D12 D11 0

0 0 D33

 which does not depend on the scaling, (32)

with D11 = E
(1− ν)

(1 + ν)(1− 2ν)
, (33)

D12 =
νD11

(1− ν)
=

νE

(1 + ν)(1− 2ν)
, (34)

D33 =
D11 −D12

2
=

E

2(1− ν)
. (35)

The element stiffness matrix Ks
e is expressed by Bs

e and De such that:

Ks
e =

∫
V e

BsT
e DeB

s
edV =

∫
Ve

K̂s
edV (36)
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with components of K̂s
e :

k̂se ij =

 N s
i,xD11N

s
j,x +N s

i,yD33N
s
j,y N s

i,xD12N
s
j,y +N s

i,yD33N
s
j,x

N s
i,yD12N

s
j,x +N s

i,xD33N
s
j,y N s

i,yD11N
s
j,y +N s

i,xD33N
s
j,x

 . (37)

The strain, stress, and internal force matrices, εs, σs and f se are expressed as follows:

εs = Bs
eu

s with us as the nodal displacement vector,

σs = Deε
s = DeB

s
eu

s,

fs
e i = −

∫
Ve

BsT
e σ

sdV.

(38)

The integration of the element stiffness and the internal force matrices is treated by means

of Gaussian integration method, which consists in adding weighted integrands at several

points, as (39) and Table 1 show:∫ 1

−1

∫ 1

−1
g(ξ, η)dξdη ≈

4∑
i=1

4∑
j=1

g(ξi, ηj)wiwj . (39)

Table 1: Four integration points in the rectangle.

location of the integration points
ni point ξ η wi
4 1 -0.57735 -0.57735 1

2 0.57735 -0.57735 1
3 -0.57735 0.57735 1
4 0.57735 0.57735 1

Finally, the following equilibrium equation at element level can be computed:

Ks
e(s)use(s) = f se (s)⇔Ks

e(sx, sy)u
s
e(sx, sy) = f se (sx, sy). (40)

After matrix assembly and calculation, the displacement us, strain εs and stress σs fields

are obtained.
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3.1.3 The scale factor sensitivity

In this section, the sensitivity of system response, the displacement, with respect to scale

factors are studied, i.e., the derivatives ∂ux
∂sx

, ∂ux
∂sy

,
∂uy
∂sx

,
∂uy
∂sy

, ∂2ux
∂s2x

, ∂2ux
∂s2y

, ∂2ux
∂sx∂sy

,
∂2uy
∂sy∂sx

,
∂2uy
∂s2x

,

∂2uy
∂s2y

,
∂2uy
∂sx∂sy

and
∂2uy
∂sy∂sx

. To get them, the equilibrium equation at the element level 40 is

derived with respect to the scale factors sx and sy by means of direct differentiation method

(DDM) as follows,

1st order :
∂Ks

e

∂si
use +Ks

e

∂use
∂si

=
∂f se
∂si

for i ∈ {x, y}, (41)

2nd order :



∂2Ks
e

∂s2
i

use +2
∂Ks

e

∂si

∂use
∂si

+Ks
e

∂2use
∂s2

i

=
∂2f se
∂s2

i

for i ∈ {x, y},

∂2Ks
e

∂sisj
use +

∂Ks
e

∂si

∂use
∂sj

+
∂Ks

e

∂sj

∂use
∂si

+Ks
e

∂2use
∂sisj

=
∂2f se
∂sisj

for (i, j) ∈ {(x, y), (y, x)}

(42)

where Ks
e remains the same as the one in 40; ∂us

e
∂si

, ∂2us
e

∂s2i
and ∂2us

e
∂sisj

are unknown; ∂Ks
e

∂si
, ∂fs

e
∂si

,

∂2Ks
e

∂s2i
, ∂2fs

e

∂s2i
, ∂2Ks

e
∂sisj

and ∂2fs
e

∂sisj
are expressed in Appendix D.1; and use is the displacement

calculated in (40).

These equations can be integrated into the following system and solved at once:
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∂Ks
e

∂sx
Ks
e 0 0 0 0 0
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e
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e
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
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=
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∂fs
e

∂sx

∂fs
e

∂sy

∂2fs
e
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e

∂s2y

∂2fs
e
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

. (43)

Each component of the stiffness system matrix ∂Ks
e

∂si
, ∂2Ks

e

∂s2i
and ∂2Ks

e
∂sisj

as well as those of the

internal force vector ∂fs
e

∂si
,∂

2fs
e

∂s2i
and ∂2fs

e
∂sisj

for (i, j) ∈ {(x, y), (y, x)} are derived and presented

in Appendix D.1. An important of aspect of singularity of the element stiffness matrix Ks
e ,
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a fortiori its derivatives and the entire above system comming from body motions, which

have to be suppressed by prescriptions in displacement in order to make the system regular

such that the calculation yields an unique solution, is also discussed in Appendix D.2.

(43) and equations in Appendix D.1 of the Size sensitivity computation, and (18) and (19)

of the Perturbation method have been derived for the implementation of the Size sentivity

based Perturbation method. Section 3.2 presents the implementation.

3.2 Presentation and utilization of the Size sensitivity based Perturba-
tion method user-defined element 11 subroutine

From the equations in section 3.1, and the pattern of user defined element subroutine avail-

able in Marc/Mentat [MSC.Software, 2011], the so-called Size sensitivity based Perturbation

method user-defined element 11 is implemented. Figure 8 describes the overall presentation

of the implementation. It allows performing:

• simulations with the linear, four-node, isoparametric, plane strain, quadrilateral ele-

ment itself,

• Size sensitivity computation in which the scaling can be either uniform or non uni-

form. Input is composed of scale factors in x and y directions, denoted as sx and

sy respectively. and the output of reaction force, displacement, stress, strain and

derivatives of the displacement fields,

• Perturbation method where the Size sensitivity computation is run with the mean, the

variance and the coefficient of correlation of the scale factors as input, denoted as µs,

σs, ρsx−sy respectively. Mean µu, standard deviation σu of the displacement field

as output are calculated by post-processing from the output of the Size sensitivity

computation.

See .

The code and the utilization of the implementation is thoroughly shown and explained in

Appendix E).
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Figure 8: Overview of the implementation.

To sum up, the implementation gives the variability of the displacement field u with its

mean µu and standard deviation σu at each node besides what the generic linear, four-

node, isoparametric, plane strain, quadrilateral element can offer such as reaction force,

displacement, stress, strain fields. Section 3.3 presents simulations with this implementa-

tion, in particular it aims to show the validation process of the implementation through

benchmarks, which is an important aspect.

3.3 Benchmarks for validation

Simulations have been performed to check each step of the code and validate the entire

implementation. The one element tensile test has been at the base of the verification

process. Its analytic derivation and results are presented and compared to the numerical

results from simulations. Last, the implementation is applied to the 3 point bending test to

verify that the numerical results are the same as the ones derived analytically in Chapter

2.

3.3.1 One element tensile test

From the beginning to the validation of the user element, the one element plane strain ten-

sile test in one direction, y direction, is performed. Figure 9 shows the model with boundary

conditions, which can be viewed on the Mentat interface.
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Figure 9: Model of the tensile test on one element.

Node 1 is clamped, node 2 is clamped in y direction and pulled in x direction in the amount

of dx = ūx = 0.01, node 3 is pulled in x direction in the amount of dx = ūx = 0.01, and

node 4 is clamped in x direction. The material and geometric properties are the same as

the ones for the 3 point bending test on a beam problem, i.e., E = 10000, ν = 0.4 and

thickness = 50.

The aim of the implementation is to get the right displacement, the one analytically calcu-

lated which is the same as the one performed with the Marc/Mentat element 11. For that,

the stiffness matrix has been checked first, then the internal force vector and the displace-

ment, as well as the strain and stress fields has been verified. Then, the Size sensitivity

computation and the Perturbation method are verified by comparing the derivatives and

the first two moments of the displacement derived analytically.

3.3.1.1 Analytic derivation

This problem is derived analytically, in order to get the expected results and understand

them in detail.

From the boundary conditions and Hooke’s law, the strain and stress fields are expressed

as follows:

• Regarding the displacement, strain and stress fields,

– boundary condition: ūx = 0.01 and εxx = ūx
sx

= 0.01
sx

,

– εyy =
ūy
sy

= −0.00667
sx

,

– plane strain problem: εzz = 0,
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– pure tensile test: εxy = 0,

– Hooke’s law: σxx = Eεxx
1−ν2 = Eūx

sx(1−ν2)
= 119.0476

sx
,

– boundary condition: σyy = 0,

– Hooke’s law: σzz = Eνεxx
1−ν2 = Eνūx

sx(1−ν2)
= 47.619

sx
,

– pure tensile test: σxy = 0.

Note that the strain and the stress fields are homogeneous in the element due to the

essence of the problem.

• Concerning the Size sensitivity computation and the Perturbation method:

– as node 1 is clamped, its nodal displacement, derivatives and the first two mo-

ments of the displacement are null,

– for nodes 2 and 3, the displacement in x direction is equal to the prescription

ux,2 = ūx = 0.01, the mean is µux = ūx = 0.01, the standard derivation is null

because the prescription is a constant independent of the scaling,

as node 2 is clamped in y direction, its nodal y displacement, derivatives and the

first two moments of the displacement are null,

– for nodes 3 and 4 in y direction, the displacement is uy = −0.00667
sy
sx

, and the

derivatives are:

∗ ∂uy
sx

= −uy sys2x =
−0.00667sy

s2x
,

∗ ∂uy
sy

=
uy
sx

= −0.00667
sy

,

∗ ∂2uy
s2x

= 2uy
sy
s3x

=
0.01334sy

s3x
,

∗ ∂2uy
s2x

=
−uy
s2x

= 0.00667
s2x

,

from the expression of the displacement, the mean is expressed as:

µuy = −0.00667
µsy
µsx

, (44)

and the standard deviation is equal to:

σuy = 0.00667

√
µ2
sy

µ2
sx

+ σ2
sx

µ2
sy

µ4
sx

− 2ρ
µsy
µ3
sx

σsxσsy ≈ 0, (45)
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– node 4 is clamped in x direction, its nodal x displacement, derivatives and the

first two moments of the displacement are null.

3.3.1.2 Numerical simulations

The deformed shape in Figure 10 with the total displacement field is obtained:

Figure 10: Deformed shape of the tensile test on one element.

The implementation has been verified at each step of the calculations for the 1D tensile

test. The displacement, strain and stress fields are the same in analytic derivations or

simulation with the generic Marc/Mentat element or with the implementation. In addition,

all the derivatives of the displacement with respect to the scaling factors and the mean

and standard deviation of the displacement are the same in either analytic derivations or

simulation with the implementation.

3.3.2 3 point bending test on a beam

The 3 point bending test on a beam as shown in Figure 4 was performed (see Figure 11).

Figure 11: Numerical simulation of the 3 point bending test on a beam problem.
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The subroutine and the generic element 11 lead to the same displacement field. The deflec-

tion is 384mm.

One point can be raised here. The analytical derivation involves the Euler Bernoulli beam

theory whereas the numerical simulation involves plane strain condition. Results can be

comparable if the stiffness takes into account the factor 1
1−ν2 because the plane strain con-

dition is in two dimensions so it does not allow the material to move in the third direction,

which makes the system stiffer. To sum up, Eanalytical = Enumerical
1−ν2 .

In addition, the result depends on the number of elements regarding meshing. Indeed, the

deflection comes up to the same value as the one derived analytically with Euler Bernoulli

beam theory (384mm) with 25600 elements. This is called mesh convergence.

In the same way, the assumed strain option which allows enhancing the bending state of

simulations with the linear quadrilateral element can be added. This makes plane strain

simulations reflect the same bending state of the 3 point bending test on a beam modelized

with the Euler Bernoulli beam theory with less elements – 1600 elements.

This is also confirmed by using the eight-node, isoparametric, plane strain, quadrilateral

element which is adapted to bending behavior with a much lesser number of elements – 400

elements.

Finally, the implementation of the Size sensitivity based Perturbation method user de-

fined element 11 is verified by means of the previously analytically derived 3 point bending

test on beam.

Recall that the analytical Perturbation method yields a mean of deflection of 396 mm and

a deviation of 115mm from the mean input of 4000mm and the deviation of 400mm, given

that the deflection is 384mm with a 4m beam.

Regarding numerical simulations, as mentionned above, the assumed strain enhancement

is not in the implementation, therefore the value of deflection is reached only by increasing

the number of elements in the model to 25600 elements. With that, the numerical Per-

turbation method using the implementation for a model with 1000m beam and the same

height, thickness and material properties, and with µx = 4 and σx = 0.4, leads to the same
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value of deflection and its first two moments.

This proves the consistency of the implementation of the Perturbation method.

3.4 Computational cost of the implementation

Last, the computational cost, which an important aspect regarding the implementation, is

presented here. Time of computation and storage are compared. As the one element tensile

test consists of only one element, it does not lead to significant values for comparison. The

3 point bending test on a beam problem yields to meaningful comparative values. Two

types of simulations are chosen:

1. 4m beam which consists of the generic Marc/Mentat elements 11,

2. 1 beam in which the implementation is applied to all elements with the following

parameters: µsx = 4, µsy = 1, σsx = 0.4, σsy = 0, ρsx−sy = 0, which leads to the same

simulation of the first one and gives in addition the variability of the displacement

field with mean µu and standard deviation σu.

Table 2: Computational cost comparative table of the implementation based on the 3 point
bending test on a beam problem.

Simulations Number of Number of Computation Storage
elements increments time (in s) (in MB)

4m beam with generic 6400 1 2.15 104
Marc/Mentat element 11 25600 1 7.73 18

1m beam with implementation
with µsx = 4, µsy = 1, 6400 1 19.83 717

σsx = 0.4, σsy = 0, ρsx−sy = 0 25600 1 148.8 3313

The Table 2 shows that for less than 10000 element models, the computation time and the

storage of simulations with the implementation is about 10 times bigger than simulations

without it. However, the computation time is no more than several minutes, and it is even

counted in seconds for more than 20000 element models, which means that simualtions are

still instantaneous.
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As a conclusion, the Size sensitivity based Perturbation method has been implemented

through user defined element subroutine and recall that it allows performing:

• the linear, four-node, isoparametric, plane strain, quadrilateral element itself,

• the Size sensitivity computation in which scaling can be either uniform or non uniform

so that the input is composed of scale factors in x and y directions and the output of

reaction force, displacement, stress, strain and derivatives of the displacement fields,

• the Perturbation method where Size sensitivity computation is run with the mean,

the variance and the coefficient of correlation of the scale factors as input. Mean

and standard deviation of the displacement field as output are calculated by post-

processing of the output of the Size sensitivity computation.
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Chapter IV

APPLICATION TO ROUGHNESS MODELS

As the size sensitivity based Perturbation method has been implemented, the present

Chapter aims to draw up some recommendations for its application to roughness models.

To a large extent, in the framework of the project, the development at mesoscopic scale of a

stochastic model of surface roughness of the metal(-oxide)/polymer interface which predicts

the chance of different failure modes (cohesive or adhesive) during its delamination, needs

some input data reflecting roughness parameters at the first stage.

The notion of roughness is discussed first. Engineers are used to the idea that materi-

als have intrinsic bulk properties such as density, elastic modulus, etc. Similarly, surfaces

representing material boundaries have intrinsic properties. Surface roughness is one of them.

It may be thought that this notion seems more difficult to define, because it depends on the

scale of observation. Because roughness shows extremely complex shapes, it is difficult to

find a description that can be used for reliability analysis of interfaces. Figure 12 illustrates

this issue.

Figure 12: Surface Roughness.

31



In fact, meshing roughness in a Finite Element Analysis is almost impossible, and the com-

putation will be inefficient or even ineffective. This chapter reexamines the meaning of

roughness and develops some models of roughness representation.

Roughness can be characterized by a measure of the texture of a surface. From the idea of

a perfectly flat surface, the roughness of an actual surface quantifies the vertical deviations,

called imperfections or errors. If these deviations are large, the surface is considered as

rough; if they are small, the surface is smooth.

Concerning this project which deals with the metal(-oxide)/polymer interface, the interface

roughness refers to the surface roughness of the metal, because the polymer is liquid at the

beginning and solidifies at cure, taking form complementary to the metal roughness at the

interface.

Several ways to develop roughness models can be identified:

• the deterministic method which gives height amplitudes parameters,

• the statistical method which can be considered as an extension of the previous one

dealing with average values and distribution representations of roughness,

• the stochastic models which study the height variation or slope and is really useful in

distinguishing surfaces with similar types of roughness and which considers roughness

as a random process and field.

See [Thomas, 1999] for more details.

The present Chapter consists of:

• gathering roughness data: this task takes advantage of the technical process carried

out previously in the NanoInterface project by Philips [PhilipsAppliedTechnologies,

2009], especially, it takes advantage of the experimental investigation of failure paths

at roughened copper/epoxy interfaces,

• 2D analysis on a trace which is a cross section of the surface, 3D analysis on the

entire surface roughness (plots, height distribution) with Matlab, and the comparison

between them with some Gaussian distribution,
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• using slightly a third party software, MountainsMaps [DigitalSurf, 2011], which is

specialized in roughness analysis to see which types of parameters are currently used

by institutions.

4.1 Preliminary analysis: roughness measurement and model

4.1.1 Presentation of the studied sample

High quality electro-deposited copper foils called TWS have been selected due to their

noticeable surface roughness (see Appendix F). From these, 4 types of copper foils have

been chosen according to the following characteristics:

• Thickness: 35 or 70µm (see Figures 13 and 14),

• Roughness treatment of each side: TWS copper foils have a smooth side and a rough

one, whereas TWS-TWS copper foils are rough on both sides.

Figure 13: TWS 35µm copper foil. Figure 14: TWS 70µm copper foil.

4.1.2 Measurements

For each foil side presented previously, the white light interferometry examination (Ap-

pendix G) has been performed, which gives the height value z(x,y) for the entire surface

roughness. Then, the surface map and the main roughness parameters are deduced (see

Figure 15 which presents the roughness information of the TWS-TWS 70µm copper foil #2

side 1).

Table 3 shows the main roughness parameter values of all of the examined TWS-TWS cop-

per foils.
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Figure 15: White Light Interferometry measurement on TWS-TWS 70µm copper foil #2
side 1 [PhilipsAppliedTechnologies, 2009].

Note that:

• PV = Maximum height of the profile Rt, which is the easiest manipulation and mea-

sure, one could perform it by picking the highest and lowest points of the profile/sur-

face and calculating the distance between them.

• Ra = arithmetic average of absolute values, i.e., Ra = 1
LxLy

∫ Lx

0

∫ Ly

0 |z(x, y)|dxdy,

• Rz = average distance between the 5 highest peaks and the 5 deepest valleys.

The TWS-TWS 70µm copper foil #2 side 1 is chosen as illustration for the following anal-

ysis.
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Table 3: Overview of TWS-TWS copper foils roughness parameters (values in µm).

foil thickness foil# side Ra Rt Rz

35µm 1 1 0.476 6.905 6.6
2 1.375 10.729 10.11

2 1 0.584 6.858 6.61
2 1.499 11.206 10.33

3 1 0.537 6.686 6.16
2 1.824 14.396 10.65

4 1 0.505 6.565 6.04
2 1.917 14.269 11.58

5 1 0.497 6.179 5.8
2 1.681 12.474 11.65

70µm 1 1 1.592 11.759 10.08
2 0.466 6.652 6.24

2 1 1.615 11.816 10.13
2 0.506 7.298 6.74

3 1 1.594 12.302 11.02
2 0.62 7.982 7.37

4 1 1.7 12.073 9.31
2 0.558 6.903 6.63

5 1 1.547 11.158 10.15
2 0.602 7.944 7.49

4.1.3 2D roughness analysis on foil trace

4.1.3.1 Roughness Profile of the diagonal trace

The measurement consists of the height values of the diagonal trace (cross section of one of

the diagonals of the foil shown in the first map on Figure 15) of the TWS-TWS 70µm copper

foil #2 side 1 on y coordinate with respect to x coordinate with a constant measurement

interval called pitch. The first analysis is to plot (Figure 16) and determine the pitch, which

is called roughness profile.

Note that the pitch is a constant calculated by x(i+1)-x(i).

From that, the following roughness parameters have been obtained:

• Amplitude parameter: Rt=9.197µm,

• Average parameters: Ra=1.629µm, Rms=1.996µm, where Rms is the root mean

square roughness such that Rms =
√

1
LxLy

∫ Lx

0

∫ Ly

0 |z(x, y)|2dxdy

35



Figure 16: Diagonal trace of the studied sample.

4.1.3.2 Height distribution

The roughness profile from the trace plot can be drawn in such a way that the x coordinate

and the y coordinate are inversed so that the number of height points encountered for each

given level of height is underlined (see Figure 17).

Figure 17: Height distribution of the diagonal trace of the studied sample.

The number of bins influences the distribution. It has been shown that 10 – 20 bins are

sufficient to obtain the roughness information [Thomas, 1999]. Let the number of bins be

reduced so that peak (curve) fitting can be performed easily to see which known distributions

describe the height distribution the best (see Figure 18). It is obvious that the current case

is not far from being a normal distribution. It can be seen that the Dagum (4P) suits better

than before the Lognormal and normal ones.

Note that the Dagum (4P) distribution fits the best with k=79.507, α=72.257, β=0.11328,
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Figure 18: Peak fitting of the diagonal trace height distribution of the studied sample.

γ=-0.12133. Then, there is the Lognormal (3P) one with deviation of σ=0.29578, mean

of µ=5.0111, γ=-0.00896. And, the Normal distribution suits with deviation of σ=0.00208

and mean of µ ≈ 0.

4.1.3.3 Stochastic descriptions

Physically speaking, up to here, roughness has been depicted only coarsely in terms of

amplitude, but it is of utmost importance to know how quickly the height changes with

position i.e., how to describe slopes (see Figure 19). This refers mainly to the utilization of

random process and field which describe roughness stochastically. Stochastic modeling of

surface roughness, surface height, slope, topography wavelengths, etc. have to be considered

as a random variable from probability distribution and are modeled by height distribution

functions, density functions, power spectrum, and auto-correlation functions.

Figure 19: Basic description of fluctuation [Thomas, 1999].

Describing slopes, called also fluctuations corresponds to a large extent in depicting surface

texture by distribution of those fluctuations. This is done by investigating the correlation

between pairs of points which vary.
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Core roughness Rk, peak height Rpk and valley depth Rvk are obtained as Figure 20

suggests. Core roughness Rk represents the central and the flattest portion. It is calculated

as the distance between the two intersections of the straight template covering 40% of the

total bearing area curve with zero and maximal values of the cumulative distribution. Peak

height Rpk and valley depth Rvk are defined as the area above and below the core rough-

ness Rk respectively.

Figure 20: Core roughness, peak height and valley depth of the studied sample [DigitalSurf,
2011].

In the same way, the spectrum of the trace is performed (see Figure 21).

Figure 21: Spectrum of the diagonal trace of the studied sample [DigitalSurf, 2011].

The power spectrum is an expression of the fluctuation in frequency space. In detail, random

fluctuation is grasped as the consolidation of multiple wave forms of different wavelengths

and amplitudes in frequency space. It is derived from Fourier transformation expressing

the squared average of fluctuations as a function of spatial coordinate x, which can be seen
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as the power distribution:

P (fx) = lim
T→∞

1

T 2
|
∫ T/2

−T/2
y(x)e−ı2π(fxx)dx|2, (46)

where the assessment length varies from −T/2 to T/2, fx is the reciprocal of the wavelength

in x direction and y the height.

Small values of the horizontal axis in Figure 21 correspond to small wavelengths or high

fluctuations whereas higher values reflect the curvatures of the profile.

Some typical roughness information taken from a trace has been presented. Section 4.1.4

shows the analysis of the surface roughness. A comparison between them will be discussed

in the conclusion.

4.1.4 3D roughness analysis on foil surface

4.1.4.1 Surface roughness profile

Here are the 3D and 2D plots (see Figures 22 and 23) showing the roughness of the entire

surface of TWS-TWS 70µm copper foil #2 side 1.

Figure 22: Surface Roughness in 3D of the studied sample.

From that, the following roughness parameters have been obtained:

• Amplitude parameters: St=11.5µm, Sp=5.51µm, Sv=5.96µm, Sz=11µm,

• Average parameters: Sa=1.54µm, Sq=1.91µm,

• Higher moments: SSkewness=0.423, SKurtosis=2.79.
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Figure 23: Surface Roughness in 2D of the studied sample.

4.1.4.2 Height distribution

The height distribution and the peak fitting can be performed. Here the distribution can

be approximated to a normal distribution, then the Lognormal as well as the Wakeby

distribution (see Figures 24 and 25).

Figure 24: Surface roughness distribution of the studied sample.

Note that the Wakeby fits the best with α=0.02411, β=12.962, γ=0.00325, δ=-0.35304 and

ξ=-0.00413. The Lognormal (3P) one suits with deviation σ=0.17988, mean of µ=-4.5102

and γ=-0.01118. And the normal one fits with deviation of σ=0.00202, mean of µ ≈0.

4.1.4.3 Stochastic descriptions

The core roughness Rk, the peak height Rpk and the valley depth Rvk can be obtained as

Figure 26 suggests.

40



Figure 25: Peak fitting of the surface roughness distribution of the studied sample.

Figure 26: Core roughness, peak height, valley depth of the studied sample [DigitalSurf,
2011].

This section is a preliminary application of the surface roughness representation. Determin-

istic models such as amplitude parameters, and statistical ones, such as average parameters,

core roughness, peak height and valley depth were obtained. Some stochastic representa-

tions like power spectrum were obtained.

It can be underlined that, even if at first glance, both the diagonal trace extended to any

trace, and the surface have the same roughness information in terms of amplitude and av-

erage parameters, their height distribution is different. The trace distribution tends to be

a Dagum one, while the surface distribution looks as a Gaussian one. This is confirmed by
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core roughness, peak height and valley depth parameters. Any trace can catch the ampli-

tude of the surface roughness, whereas the surface roughness fluctuations are not perceived

in the same way as in a trace. Hence, traces are not representative of the surface roughness.

In conclusion, maximum height Rz, average roughness Ra, average wavelength λa (see

[Thomas, 1999, Yao and Qu, 2002]), moments from the height distributions and the core

roughness describe roughness easily and straightforwardly and are means of comparing

roughnesses.

This work can be continued in order to get more rigorous and thorough representations and

to define in a rigorous way the stochastic variables which depict the surface roughness.

4.2 Application of the Size sensitivity based Perturbation method to
Finite Element roughness model

Typical roughness model used in the project which is taken from [Lallemant, 2011] (see

Figure 27).

Figure 27: Numerical simulation of the delamination of a roughened copper/metal interface
[Lallemant, 2011].

Briefly, this model comes from the constitution of a unit cell which can be understood

as a pattern of the ideal profile from [Yao and Qu, 2002] (see Figure 3). It consists of

the upper polymer layer and the lower metal (copper for example) layer, both discretized

with linear, four-node, isoparametric, plane strain, quadrilateral elements, and a layer of

cohesive zone element modeling the adhesion between them by the traction separation

law. More explicitly, when the upper and the lower layers are pulled out through prescribed

displacement at the top left side, the upper layer is delaminated from the lower one, and the

adhesion properties are stocked in the cohesive zone element drawing the traction separation
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law curve (see Figure 28). The main adhesion properties can be determined from this curve:

Figure 28: Traction separation law curve.

• the maximum of the curve representing the adhesion strength of the interface,

• the area below the curve representing the toughness G of the adhesion,

• the ’openness’ of the curve showing the ductility or the brittleness.

The aim is to increase the adhesion strength and toughness of the interface.

The main question that can posed at this point is how the Size sensitivity based Per-

turbation method implementation and especially the scaling of Size sensitivity computation

influences the Finite Element roughness modeling? Also, does the scaling take place glob-

ally or locally? The scaling on elements which are in the ’right’ direction, i.e., x and y

directions, like all applications done up to here (one element tensile test, 3 point bending

test on a beam) is obviously scaled in x and y directions. However, one might wonder how

an element which is neither placed in x nor y direction, is treated with this Size sensitivity

computation.

One element tensile test in which the element is in oblique is considered as in Figure 29.
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Figure 29: 1D tensile test with one element 11 in oblique.

The influence of a scaling in the vertical direction is studied.

In this Figure, the prescribed displacement in x direction in node 3 is 0.01 and others are

fixed.

This model will run with and without a scaling factor of 3 in y direction. The results are

gathered and compared in Table 4.

Table 4: Comparison of the displacement field of a scaled and a non scaled 1D oblique one
element tensile test.

Displacement field sy = 1 sy = 3

Node 1 x 0 0
Node 1 y 0 0
Node 2 x 0.05 0.05
Node 2 y 0.00333 0.001
Node 3 x 0 0
Node 3 y 0.01 0.01
Node 4 x 0.05 0.05
Node 4 y -0.00333 -0.001

This means that whichever the orientation of the element, scaling affects the displacement

field such that the element is scaled only in the direction considered without taking into

account the direction of elements. Moreover, even if the element is scaled locally at the el-

ement level, the scaling can be considered in a global way, i.e., if scaling of 2 in the vertical

direction (at the element level) is chosen, the vertical amplitude (Ra) of the roughness will

be twice higher so that the roughness will be sharper.
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From the simple roughness model based on the previous one with the average roughness

and wavelength as descriptor parameters, Figure 30 illustrates this purpose:

Figure 30: Influence of the scaling on the roughness modeling.

Scaling in x direction increases the average wavelength such that the roughness becomes

smoother, whereas scaling in y direction makes the average roughness higher so that it

becomes sharper.

Moreover, the study of the variability of the displacement field at the interface roughness is

wanted (see Figure 31). This is the main purpose of the Size sensitivity based Perturbation

method.

Figure 31: Varibility of displacement field at the roughness.

Therefore, the following numerical simuation is carried out (see Figure 32). The variability

of displacement field in y direction is studied by pulling the roughness pattern in x direction

(see Figure 33). The left extremity is clamped while the right extremity is pulled of the

amount of dx = 5% of the roughness pattern. The bottom part and the top right node
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Figure 32: Scheme of the numerical simulation of the varibility of displacement field at the
roughness.

Figure 33: Numerical simulation of the varibility of displacement field at the roughness.

are clamped in y direction. The opening of the roughness is π
4 . And, µsx = 1, µsy = 1,

σsx = 0.1, σsy = 0.1 and ρsx−sy = 0.

The implementation gives the variability of the displacement field at the interface roughness.

Figure 34 shows the contour bands drawing the evolution of the mean of y displacement.

Figure 34: Contour bands drawing the mean of the y displacement.

The Size sensitivity based Perturbation can evaluate the variability of the displacement
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field.

The variability of adhesion properties are based on the variability of the displacement field.

The implementation can be integrated to the metal(-oxide)/polymer roughened interface

adhesion properties calculation based on numerical fracture mechanics simulations, with for

instance cohesive zone element, presented briefly above and in [Noijen et al., 2009]. There-

fore, the variability of adhesion properties such as strength and toughness can be obtained.

To sum up, the Size sensitivity based Perturbation method implementation:

• requires as input, the mean, standard deviation and the coefficient of correlation of

the scaling in x and y directions,

• gives as output, the displacement, strain, stress fields (plus other outputs available

in the post processing of Marc/Mentat with linear, four-node, isoparametric, plane

strain, quadrilateral element), and the first two moments of the displacements fields

at each node.

Lastly, a limitation seen here is that the model with the scaling is not drawn on the Mentat

interface, since the Size sensitivity computation is within the element calculation as the

name suggests.

The variation on the strain and stress fields can be evaluated from the current output of

the implementation.

In addition this Size sensitivity based Perturbation method can be applied to other elements

such as quadratic quadrilateral element, etc.
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Chapter V

CONCLUSION AND RECOMMENDATIONS

The Size sensitivity based Perturbation method of the Stochastic Finite Element Methods

has been implemented to ameliorate the development of Finite Element roughness mod-

els. The Perturbation method is chosen, because it can investigate the effect of geometric

variations on the mechanical response, and it can carry out at once what traditional Fi-

nite Element Analysis does with numerous simulations that require changing geometric

parameters each time. This was computed on an user defined element reproducing the lin-

ear, four-node, isoparametric, plane strain, quadrilateral element, because roughness models

use mainly this element, and it works as a module on the FE software. It allows performing:

• linear, four-node, isoparametric, plane strain, quadrilateral element itself,

• Size sensitivity computation in which the scaling can be either uniform or non uni-

form so that the input is composed of scale factors in x and y directions and the

output composed of reaction force, displacement, stress, strain and derivatives of the

displacement fields,

• Perturbation method where the Size sensitivity computation is run with the mean,

the variance and the coefficient of correlation of the scale factors as input. The mean,

the standard deviation of the displacement field as output are calculated by post-

processing of the output of the Size sensitivity computation.

The Perturbation method has been derived analytically and applied to the so-called 3 point

bending test on a beam problem as reference to verify that the implementation leads to the

same result. Moreover, a preliminary analysis of roughness modeling which has been shown,

motivates giving recommendations to define a better statistical and stochastic roughness

representation.

48



As a recommendation, the implementation of the Reliability method can be carried out

to complete the investigation of predicting the chance of different failure modes (cohesive or

adhesive) during the delamination process. Indeed this method is typically used to estimate

the probability of a rare and undesirable event such as failure.

Based on linear elastic fracture mechanics from [Noijen et al., 2009], the following limit state

functions can be defined: g1 =
Gi,c

Gp,c
− Gi

Gp
and g2 = Gi−Gi,c where Gi and Gp are the crack

tip energy release rates along the interface and in the polymer, respectively, and Gi,c and

Gp,c are the respective interface toughness and polymer toughness. If g1 > 0 and g2 > 0,

the interfacial crack goes into the polymer, i.e., crack kinking occurs, which means that the

failure mode changes from adhesive to cohesive. This phenomenon has to be reached most

of the time and the Reliability method can assess its probability by approximation, from

some roughness parameters such as the average roughness z1 = Ra, the average wavelength

z2 = λa as inputs.

Figure 35: The domain for Reliability method with linear approximation [Gutiérrez and
Krenk, 2004].

This completes the research, and the implementation of the Perturbation method shows

the way to add a stochastic framework in the Finite Element model of surface roughness on

the metal oxide polymer interface in order to predict the chance of different failure modes

(cohesive or adhesive) during delamination. The roughness can be modeled such that the

adhesion properties of metal(-oxide)/polymer interface is enhanced by the mechanical in-

terlocking phenomenon so that semiconductors can become more reliable.
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Appendix A

NANOINTERFACE PROJECT

The present thesis is a part of the NanoInterface Project [PhilipsAppliedTechnologies, 2009],

partially funded by the seventh framework program of the European Commission, FP7,

which aims to develop a new powerful, quantitative, knowledge-based, multi-scale model-

ing technique in order to develop new micro- and nano-electronic products with tailored

properties and which are more reliable, so that trial-and-error-based reliability testing for

those new technologies can also be considerably reduced. Ten partners shown in Figure 36

coming from industry, research laboratories and educational institutions are involved.

The project relies on the direct coupling of molecular and continuum models, and involves

multi-disciplinary approach, multi-scale modeling methods (see Figure 37), and new micro-

and nano-scale measurement techniques.

Industrial Partners

• Philips Applied Technologies

• NXP Semiconductors

• Infineon Technologies

• Honeywell

• Accelrys

Research Partners

• Fraunhofer IZM

• AMIC

Educational Partners

• Georgia Institute of Technology Lorraine

• Delft University of Technology

• St. Petersburg Electrotechnical University

 

Figure 36: NanoInterface partners.
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Figure 37: Introduction to multi-scale modeling [Van der Sluis, 2006b].
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Appendix B

STOCHASTIC FINITE ELEMENT METHODS

This Chapter aims to explain the basics of the most interesting SFEM in the framework of

the project: Monte Carlo Simulations, Perturbation method and the Reliability methods.

The general formulation of each method will be esoteric. So, each method is carried out in

the same generic mechanical problem – 1D tensile test in order to understand its principle.

B.1 1D tensile test

The 1D tensile test consists of a homogeneous, isotropic, linear elastic bar with stiffness k

subjected to an axial load q:

Figure 38: 1D tensile test [Gutiérrez and Krenk, 2004].

The problem is governed by:

ku = q ↔ u =
q

k
, (47)

where u is the vector containing the values of displacements at the nodes, k is the stiffness

matrix, and q is the loading.

The goal is to find out the statistical properties (mean and standard deviation) of the

random displacement ũ from those of the random stiffness, k̃, i.e.:

ũ =
q

k̃
. (48)

The mean and the standard deviation of the displacement are:

µu = µ1/kq and σu = σ1/kq. (49)

As the FEA suggests, the bar is discretized into n identical elements with k̃i stiffness, as
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Figure 39 shows. The assembled stiffness becomes:

Figure 39: Discretized 1D tensile test [Gutiérrez and Krenk, 2004].

1

k̃
=

1

k̃1

+ · · ·+ 1

k̃n
. (50)

As all elements are identical, the mean and the standard deviation of the displacement are:

µ1/k = nµ1/k1 and σ2
1/k = σ2

1/k1
[n

1 + ρ

1− ρ
− 2ρ

1− ρn

(1− ρ)2
], (51)

where −1 < ρ < 1 is the correlation coefficient between each element. If ρ = 0 the property

of individual elements are independent, if not they are correlated. If ρ tends to 1, elements

are fully correlated and σ1/k = nσ1/k1 .

As the first two moments of the assembled stiffness, those of the displacement are known.

B.2 Monte Carlo simulation (MCS)

Monte Carlo simulation consists in performing NSIM simulations as the traditional FEA

does but with stochastic system matrix. MCS is obviously the simplest method for treating

the response variability calculation in the framework of SFEM. This method leads to a set

of the response vector. Based on this set, the response variability of the system is calculated

using simple relationships of statistics. If we take the example of the nodal displacement

ũi, its mean and standard deviation are:

µui =
1

NSIM

NSIM∑
j=1

ui(j) and σui =

√√√√ 1

NSIM − 1
[

NSIM∑
j=1

u2
i (j)−NSIME2(ui)]. (52)

The accuracy of these estimations depends on the number of samples NSIM. Moreover, the

estimation of standard deviation is inversely proportional to
√
NSIM . A small number

of samples, like 50, permits only a rough approximation of the mean value and standard

deviation of the response. While, a larger sample size, like 500, enables to estimate the

Cumulative Distribution Function of the response.
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Besides this direct MCS, several variants MCS, such as the fast MCS exist [Gutiérrez and

Krenk, 2004, Stefanou, 2009]. This method is closely linked with the reliability method

which will be treated below. Methods such as importance sampling, subset simulation and

line sampling are both variants of MCS and are based on the reliability method.

B.3 Perturbation Method

The perturbation method aims to calculate the two first moments (mean and standard

deviation) of the response from the moments of the input variable. This is based on the

Taylor series expansion at mean of the input, as follows:

u(k) = u(µk) + ∂ku(µk)(k − µk) +
1

2
∂2
kku(µk)(k − µk)2 + · · · (53)

The response is written as follows in 1D case:

µu ≈ u(µk) +
1

2
∂2
kku(µk)σ

2
k and σu ≈ ∂ku(µk)σk. (54)

This method is applied to the 1D tensile test. The difficult part here is to determine the first

and the second derivative of stiffness. The way to get them is to differentiate the equation

47 with respect to the stiffness:

u+ k∂ku = 0. (55)

Substituting for k = µk and solving reads:

∂ku(µk) = − q

µ2
k

. (56)

Differentiating again, i.e., to the second order, the equation 47 permits to obtain the second

derivative of the stiffness:

2∂ku+ k∂2
kku = 0. (57)

Hence,

∂2
kku(µk) =

2q

µ3
k

. (58)

By the way, the zero order term is provided by k = µk directly:

u(µk) = − q

µk
. (59)
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Finally, we get a measure of the statistical variability of the response ũ by its mean and

standard deviation:

µu ≈
q

µk
[1 + (

σk
µk

)2] and σu =
qσk
µ2
k

. (60)

B.4 Spectral Finite Element Method

The spectral finite element method is an extension of the deterministic finite element method

for the solution of boundary value problems with random material properties. This method

is in stand by along the study because it is more dedicated to the material sensitivity.

However, the reader is referred to [Gutiérrez and Krenk, 2004, Stefanou, 2009, Sudret and

Der Kiureghian, 2000] for details. However, note that the method expresses the response as

a series development in orthogonal polynomials, which is known as the Hermite polynomial,

or polynomial chaos expansion.

B.5 Reliability Method

This method is typically used to estimate the probability of a rare and undesirable event

such as failure. This probability can only be obtained in an approximate sense.

The most well known and general version is based on converting the original stochastic vari-

ables of the problem into independent normal variables and then using geometric arguments

to identify the most likely modes of failure and the associated probabilities. An adequacy by

construction between the geometric space and the normal distribution of converted input is

carried out. Then the probability density is only a function of the distance from the center,

representing the expected value.

This method is illustrated with the 1D tensile test discretized in 2 elements. Two stiffnesses

take place in the analysis. The generic definition is presented in the following.

The random stiffness k̃ is assumed to follow a normal distribution with expectation µk and

standard deviation σk, and is expressed in terms of a standard normal variable z̃ such that:

k̃ = µk + σkz̃. (61)
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The displacement must not exceed the threshold u0 which is equal to q/k0. This value is

converted in the normalized variable z̃ as:

z0 =
k0

σk
− σk
µk
. (62)

The so-called limit state function can be introduced such that:

g̃ = u0 − ũ = u0 − q(
1

(µk + σk)z̃1
+

1

(µk + σk)z̃2
) (63)

This function marks the limit between the ‘safe’ domain, g̃ > 0, from the ‘unsafe’ one,

g̃ < 0, as the following Figure shows.

Figure 40: The domain for reliability method with the linear approximation [Gutiérrez and
Krenk, 2004].

The probability that ũ exceeds u0 is given by:

Pr(ũ > u0) = Pr(g̃ < 0) =

∫
g<0

φ2(z1, z2, 0)dz1dz2 (64)

where φ2 represents the bivariate standard normal probability density function with the

correlation coefficient as the third argument which is equal to 0 here because z̃1 and z̃2 are

independent.

But the curve g̃ is far from being easy to find out. The essence of the geometric reliability

method is to approximate the boundary g = 0 by a simpler curve such as a line (First Order

Reliability Method) or a quadratic curve (Second Order Reliability Method).

The linear approximation of g is expressed as:

ḡ = α1z1 + α2z2 + β = αT z + β (65)
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where α is a unit normal vector and β is the distance from the line to the center of the

coordinate system (see Figure 40).

The approximation point is chosen such that the line ḡ = 0 is tangent to the limit state

g = 0 at the point closest to the origin. So, the best linear approximation to the probability

is: ∫
g<0

φ2(z1, z2, 0)dz1dz2 = Φ(−β), (66)

where β is called design point or β-point of the reliability index. It is also observed that α

represents the outward normal vector to the set g < 0 at the approximation point, which

consequently has coordinates z = α. Here the solution is explicitly:

β =
√

2| 2q

σu0
− 1| and α = [

1√
2

1√
2

]T . (67)

This solution is illustrated in Figure 41. The method is easily generalized to n elements,

but in that case, the correlation between the stiffness of the individual elements must be

taken into account.

Figure 41: Geometric interpretation of the design point [Gutiérrez and Krenk, 2004].

The principles of Monte Carlo Simulations, Perturbation method and Reliability method

have been presented by means of application to a generic mechanical problem – 1D tensile

test. The modeling of the uncertainty characterizing input using the theory of stochastic

functions – processes/fields was not dealt here even if it is a huge part of the SFEM. However,

the general idea and the aim of each method are intended to be understood.
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Appendix C

DEFLECTION OF THE 3 POINT BENDING TEST ON A BEAM

Figure 42 presents the 3 point bending test on a beam problem.

Figure 42: 3 point bending test on a beam problem.

This section is devoted to expressing the deflection.

C.1 Geometric property

The second moment through z, IGz, of the rectangular cross section is expressed as:

IGz =

∫∫
A
y2dS =

∫ b/2

−b/2
dz

∫ h/2

−h/2
(68)

Hence,

IGz =
bh3

12
. (69)

C.2 Boundary condition

The beam is subject to the following external forces:

Fext→beam =
P

2
eyδx=0 − Peyδx=l/2 +

P

2
eyδx=l. (70)

C.3 Tensor of cohesion

The equilibrum equation leads to the equivalence of the tensor of cohesion and tensor of

external force such that:

• if l/2 < x < l,

the reaction force T = P
2 ey,

the moment Mf = (l − x)P2 ez,
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• if 0 < x < l/2,

the reaction force T = −P
2 ey,

the moment Mf = xP2 ez.

C.4 Displacement field

The Euler Bernoulli beam theory states that:

∂2uy
∂x2

=
Mf

EIGz
. (71)

Hence, the dispalcement in y direction reads:

uy(x) =
Px

4EIGz
(
x2

3
− l2

4
). (72)

Then, the deflection is expressed as:

δ = |uy(l/2)| = Pl3

48EIGz
. (73)

The following Figure sums up the distribution of the reaction force T , moment Mf and the

displacement through y, uy.

Figure 43: Distributions of the reaction force T , moment Mf and the displacement through
y, uy, of the 3 point bending test on a beam problem [Dau, 2005].
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Appendix D

ON THE EQUILIBRUM SYSTEM

D.1 Derivation of the components of stiffness system matrix and the
internal force vector

The derivation of ∂Ks
e

∂si
, ∂2Ks

e

∂s2i
and ∂2Ks

e
∂sisj

for (i, j) ∈ {(x, y), (y, x)} of the equilibrum system

43 are presented here.

From section 3.1.2, components of the stiffness matrix, Ks
e , can be expressed as:

kse ij =
∑
ij

ωiωjJ
s

 N s
i,xD11N

s
j,x +N s

i,yD33N
s
j,y N s

i,xD12N
s
j,y +N s

i,yD33N
s
j,x

N s
i,yD12N

s
j,x +N s

i,xD33N
s
j,y N s

i,yD11N
s
j,y +N s

i,xD33N
s
j,x

 . (74)

By expanding terms with sx and sy:

kse ij =
∑
ij

ωiωjJ

 sy
sx
Ni,xD11Nj,x + sx

sy
Ni,yD33Nj,y Ni,xD12Nj,y +Ni,yD33Nj,x

Ni,yD12Nj,x +Ni,xD33Nj,y
sx
sy
Ni,yD11Nj,y +

sy
sx
Ni,xD33Nj,x

 .

(75)

Hence, the first and second order derivatives of the stiffness matrix are expressed as follows:

∂kse ij
∂sx

=
∑
ij

ωiωjJ

 −sy
s2x
Ni,xD11Nj,x + 1

sy
Ni,yD33Nj,y 0

0 1
sy
Ni,yD11Nj,y +

−sy
s2x
Ni,xD33Nj,x

 ,

(76)

∂kse ij
∂sy

=
∑
ij

ωiωjJ

 1
sx
Ni,xD11Nj,x + −sx

s2y
Ni,yD33Nj,y 0

0 −sx
s2y
Ni,yD11Nj,y + 1

sx
Ni,xD33Nj,x

 ,

(77)

∂2kse ij
∂s2

x

=
∑
ij

ωiωjJ
2sy
s3
x

 Ni,xD11Nj,x 0

0 Ni,xD33Nj,x

 , (78)

∂2kse ij
∂s2

y

=
∑
ij

ωiωjJ
2sx
s3
y

 Ni,yD33Nj,y 0

0 Ni,yD11Nj,y

 , (79)

∂2kse ij
∂sxsy

=
∑
ij

ωiωjJ

 −1
s2x
Ni,xD11Nj,x + −1

s2y
Ni,yD33Nj,y 0

0 −1
s2y
Ni,yD11Nj,y + −1

s2x
Ni,xD33Nj,x

 ,

(80)
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∂2kse ij
∂sysx

=
∑
ij

ωiωjJ

 −1
s2x
Ni,xD11Nj,x + −1

s2y
Ni,yD33Nj,y 0

0 −1
s2y
Ni,yD11Nj,y + −1

s2x
Ni,xD33Nj,x

 .

(81)

Note that:
∂2kse ij
∂sxsy

=
∂2kse ij
∂sysx

. (82)

At each integration point, the strain, stress and internal force vectors are calculated.

Regarding the strain, an incremental strain vector is calculated then summed to get the

total strain vector. For clarity, here is the derivation:

εsinc = Bs
eu

s
e with use as the nodal displacement vector

=
∑
i


N s
i,x 0

0 N s
i,y

N s
i,y N s

i,x


 usx,i

usy,i

 with usj,i as the i nodal displacement

in the j direction

=
∑
i


1
sx
Ni,xu

s
x,i

1
sy
Ni,yu

s
y,i

1
sy
Ni,yu

s
x,i + 1

sx
N s
i,xu

s
y,i

 . (83)

Then,

εs =
∑
inc

εsinc. (84)

Concerning the stress:

σs = Deε
s(= DeB

s
eu

s
e)

=
∑
i



D11
sx
Ni,xu

s
x,i + D12

sy
Ni,yu

s
y,i

D12
sx
Ni,xu

s
x,i + D11

sy
Ni,yu

s
y,i

ν(σs11 + σs22)

D33( 1
sy
Ni,yu

s
x,i + 1

sx
N s
i,xu

s
y,i)


. (85)
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In the same way ∂fs
e

∂si
,∂

2fs
e

∂s2i
and ∂2fs

e
∂sisj

for (i, j) ∈ {(x, y), (y, x)} can be calculated:

f se i = −
∫
Ve

BsT
e σ

sdV

= −
∫
Ve

∑
i

 N s
i,x 0 N s

i,y

0 N s
i,y N s

i,x




σs11

σs22

σs12

 dV

= −
∑
i

∑
jk

ωjωkJ
s

 N s
i,xσ

s
11 +N s

i,yσ
s
12

N s
i,yσ

s
22 +N s

i,xσ
s
12


= −

∑
i

∑
jk

ωjωkJ

 Ni,x(
sy
sx
D11Ni,xu

s
x,i +D12Ni,yu

s
y,i)

Ni,y(D12Ni,xu
s
x,i + sx

sy
D11Ni,yu

s
y,i)

+Ni,yD33( sxsyNi,yu
s
x,i +Ni,xu

s
y,i)

+Ni,xD33(Ni,yu
s
x,i +

sy
sx
Ni,xu

s
y,i)

 . (86)

The first and second derivatives of the internal force vector are expressed as follows:

∂f se i
∂sx

= −
∑
i

∑
jk

ωjωkJ

 Ni,x(
−sy
s2x
D11Ni,xu

s
x,i) +Ni,yD33( 1

sy
Ni,yu

s
x,i)

Ni,y(
1
sy
D11Ni,yu

s
y,i) +Ni,xD33(

−sy
s2x
Ni,xu

s
y,i)

 , (87)

∂f se i
∂sy

= −
∑
i

∑
jk

ωjωkJ

 Ni,x( 1
sx
D11Ni,xu

s
x,i) +Ni,yD33(−sx

s2y
Ni,yu

s
x,i)

Ni,y(
−sx
s2y
D11Ni,yu

s
y,i) +Ni,xD33( 1

sx
Ni,xu

s
y,i)

 , (88)

∂2f se i
∂s2

x

= −
∑
i

∑
jk

ωjωkJ
2sy
s3
x

 Ni,x(D11Ni,xu
s
x,i)

Ni,xD33(Ni,xu
s
y,i)

 , (89)

∂2f se i
∂s2

y

= −
∑
i

∑
jk

ωjωkJ
2sx
s3
y

 Ni,yD33(Ni,yu
s
x,i)

Ni,y(D11Ni,yu
s
y,i)

 , (90)

∂2f se i
∂sxsy

= −
∑
i

∑
jk

ωjωkJ

 Ni,x(−1
s2x
D11Ni,xu

s
x,i) +Ni,yD33(−1

s2y
Ni,yu

s
x,i)

Ni,y(
−1
s2y
D11Ni,yu

s
y,i) +Ni,xD33(−1

s2x
Ni,xu

s
y,i)

 , (91)

∂2f se i
∂sysx

= −
∑
i

∑
jk

ωjωkJ

 Ni,x(−1
s2x
D11Ni,xu

s
x,i) +Ni,yD33(−1

s2y
Ni,yu

s
x,i)

Ni,y(
−1
s2y
D11Ni,yu

s
y,i) +Ni,xD33(−1

s2x
Ni,xu

s
y,i)

 . (92)
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Note that:

∂2f se i
∂sxsy

=
∂2f se i
∂sysx

. (93)

D.2 Singularity of the element stiffness matrix

At increment 0, iteration 0, the simulation runs with no prescription which allows to get the

element stiffness matrix. The generic user element, the element 11 has the same stiffness,

see Figure 44:

Figure 44: Element stiffness matrix.

Recall that any element stiffness matrix is a square matrix and has to be singular because

of body motions. The body motions in a planar problem are the displacements in two

directions plus one rotation. Hence, the determinant of the stiffness matrix is null, and its

rank is equal to its dimension minus three (of the body motion). At least three boundary
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conditions in displacement need to be prescribed to prevent those body motions and make

the system regular and solvable, which will give an unique solution.

NB: Computationally, the significant digit is important here. If it is not sufficient, the

singularity of the matrix cannot be proved even if it is. If 5 significant digits are used as

the usual print does (fortran format: e13.5), the determinant of the matrix is a very large

number, and its rank is equal to its dimension. 17 significant digits (e25.17) are needed to

get the determinant null and the rank at 5 as Figure 44 shows.

This singularity of the element stiffness matrix is applied to its derivatives so that derivatives

of the prescribed displacements with respect to the scaling factors are necessary in order to

make the whole system 43 regular.
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Appendix E

THE SIZE SENSITIVITY BASED PERTURBATION METHOD

USER-DEFINED ELEMENT 11 SUBROUTINES CODE

E.1 Presentation

From the equations of the section 3.1, and the pattern of user defined element subroutine

available in Marc/Mentat, the so-called Size sensitivity based Perturbation method user-

defined element 11 is implemented.

Recall that the user defined element subroutine [MSC.Software, 2011], called USELEM

coded in Fortran 77 [Fortran, 2011], allows the user in particular to calculate his own finite

element stiffness and can be used as interface with other numerical techniques which are

Size sensitivity computation and Perturbation method in our case. This user subroutine

is called a multiple number of times. The calls and the user’s requirements are defined by

iflag as follows:

• iflag=1 calculation returns the equivalent nodal loads (F) given distributed surface or

body loads which is not needed in our case,

• iflag=2 calculation returns the element tangent stiffness matrix (K). For an elastic

analysis, this is the usual stiffness,

• iflag=3 returns the mass matrix (M) for a dynamic analysis which is not needed in

our case,

• iflag=4 calculates the incremental strains (DE), generalized stresses (GSIGS) and the

internal force (R),

• iflag=5 outputs Size sensitivity and Perturbation method results in our case.

Here is a brief description of the coding step showing how the implementation has been

done:
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• Variable types statements, and inputs and outputs signification,

• Declaration of variables’ dimension,

• Including common blocks which allows getting information with the entire program

such as material and geometrical data, and calculation advancements such as the

number of cycles and iterations,

• Declaration of internal variables (type and dimension),

• Checking inputs such as material, geometric data, and calculation advancements,

• Iflag independent and iflag dependent initialization according to the following calcu-

lation process,

• Calculation which consists of:

– iflag independent calculation where the shape functions, their derivatives, the B

matrix, the Jacobian and the material are computed,

– iflag dependent calculation where

∗ iflag 2 stiffness matrix and internal force vector are calculated,

∗ iflag 4 incremental and total strains, stresses and internal force vectors are

assessed.

∗ iflag 5 output which is used for calculating the first two moments of the

displacement field for the Perturbation method.

The implementation of the Size sensitivity based Perturbation method allows to perform:

• the generic linear, fournode, isoparametric, plane strain, quadrilateral Marc/Mentat

element 11,

• the Size effect analysis on either x or y direction,

• the Perturbation analysis of displacement field.
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It is implemented in such modular design that it can be incorporated in any model involving

the element 11 with slight modifications and runs on Marc/Mentat 2008 r1 (2008r1i4) and

2010.1.0 (2010r1i8) at least.

It consists of:

• M data module containing dynamic arrays storing results for the postprocessing,

• USDATA user subroutine to read the scale factor input of the model,

• USELEM userdefined element subroutine performing the size sensitivity based per-

turbation method on the base of the userdefined element 11 (linear, fournode, isopara-

metric, plane strain, quadrilateral Marc/Mentat element 11),

• UFCONN user subroutine of MSc. Marc to add/modify element connectivity,

• UPSTNO user subroutine to postprocess nodal displacements, derivatives, means,

standard deviations and covariance,

• cb size pm uselem 11 v2011 03 common block storing the scale factors read from the

USDATA subroutine.

NB: All write statements are in comment c, uncomment them if prints are needed.

E.2 Utilization

1. Put the following 3 files in the same directory:

• The model file: model1.mud,

• The subroutine file of the Size sensitivity based Perturbation method implemen-

tation: size pm uselem 11 v2011 03.f,

• The common block file: cb size pm uselem 11 v2011 03.com.

2. Make the FE model as usual with element 11 without the prescribed force boundary

conditions. Indeed, the present deals with point load boundary condition. The reader

is referred to the Marc/Mentat manual Vol. C (see [MSC.Software, 2011]) for param-

eterizing other types of loadings such as surface force, thermal loading, etc., and for

using the trick described in 6., point load statement.
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3. In the model file, specify the utilization of the size pm uselem 11 v2011 03.f in the

run job, user subroutine file option.

4. In the run job, solver option, check in addition the non-symmetric solution.

For the following, red statements are the command which has to be written in the

model file and ’ ’ has to be replaced by value (or name).

5. Create a set called all elements containing all elements 11 of the model.

6. In the additional input text file, parameter section option, specify

• ELEMENTS,11

• USER,11,14,4,4,4,2,4,3,1,5,0,,31

• ALIAS,1,11,11

in order to run correctly the USELEM such that it sets 11 as the element number, 14

degrees of freedom per node, 4 nodes per element, 2 coordinates per node, 4 integration

points, plain strain mechanical model as element class and 4node quadrilateral (linear)

topology class.

7. In the additional input text file, model definition option, specify

• UFCONN

• all elements

which calls the UFCONN subroutine for all elements 11.

• USDATA,5

• ’µsx ’, ’µsy ’, ’σsx ’, ’σsy ’, ’ρ’

where µsx is the mean of the scaling factor in x direction sx, µsy is the mean of sy,

σsx is the standard deviation of sx, σsy is the standard deviation of sy, rho is the

correlation function between sx and sy (1≤ ρ ≤1).

If the user wants to perform the Size effect analysis, replace µsx by sx value, µsy by
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sy , and leave the other input parameters null.

this calls the USDATA subroutine to read the input.

• POINT LOAD

• 1,0,0,0,0,0,’name of the prescribed point load x’

• ’fx’,’fy’,0,0,0,0,0,0,C

• 0,0,0,0,0,0

• 0,0,0,0,0,0,0,0,C

• 0,0,0,0,0,0

• 2

• ’list of applied nodes’

where fx and fy are the component of the force in x and y direction respectively.

which defined the point load type traction boundary condition.

This has to be done for each type of point load.

Any prescribed load point has to be defined in this way and cannot be done through

the Mentat interface, because the number of degree of freedom is 14. Indeed, the C

statement allows to define the degree of freedom beyond the 6 usual ones available in

the Mentat interface.

Other types of loading such as surface force, thermal loading can be parameterized,

referring to the Marc/Mentat manual Vol. C (see [MSC.Software, 2011]) by using this

method if necessary.

• FIXED DISP

•

• 1,0,0,0,1,0, ’prescribed displacement name x’dx

• 0,0,0,0,0,0

• 0,0,0,0,0,0

• 3,5,7,9,11,13
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• 2

• ’list of applied nodes’

which prescribed the sx derivatives of the displacement for nodes with fixed (both

null and nonnull) prescribed displacement boundary condition.

Then add immediately,

• 1,0,0,0,1,0, ’prescribed displacement name x’dy

• 0,0,0,0,0,0

• 0,0,0,0,0,0

• 4,6,8,10,12,14

• 2

• ’list of applied nodes’

which prescribed the sy derivatives of the displacement for nodes with fixed (both null

and nonnull) prescribed displacement boundary condition.

• LOADCASE

• ’total number of boundary condition’

• ’name of the prescribed point load 1’

• ’name of the prescribed point load 2’

• ...

• ’prescribed displacement name 1’

• ’prescribed displacement name 1’dx

• ’prescribed displacement name 1’dy

• ’prescribed displacement name 2’

• ’prescribed displacement name 2’dx

• ’prescribed displacement name 2’dy

• ...
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which sets up the loadcase with all the boundary conditions.

Attention: Since the number of prescriptions are increased with the prescriptions

of derivatives of the displacement for nodes with fixed (both null and nonnull) pre-

scribed displacement boundary condition, all of them have to be taken account into

the loadcase.

8. In the run job results option, select the user nodal quantity 1 to 19 (User Sub UP-

STNO).

Now, the model can be run!

E.3 Results and Postprocessing

In the postprocessing, the user nodal quantity refers as follows,

1. is the displacement in x direction,

2. is the displacement in y direction,

3. is the first order derivative of the x displacement wrt sx,

4. is the first order derivative of the y displacement wrt sx,

5. is the first order derivative of the x displacement wrt sy,

6. is the first order derivative of the y displacement wrt sy,

7. is the second derivative of the x displacement wrt s2
x,

8. is the second derivative of the y displacement wrt s2
x,

9. is the second derivative of the x displacement wrt s2
y ,

10. is the second derivative of the y displacement wrt s2
y,

11. is the second derivative of the x displacement wrt sxsy,

12. is the second derivative of the y displacement wrt sxsy,

13. is the second derivative of the x displacement wrt sysx, which is equal to 11,
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14. is the second derivative of the y displacement wrt sysx, which is equal to 12,

15. is the mean of the x displacement,

16. is the mean of the y displacement,

17. is the standard deviation of the x displacement,

18. is the standard deviation of the y displacement,

19. is the covariance of the x and y displacement.

To sum up the Size sensitivity based Perturbation method implementation:

• requires as input, the mean, standard deviation and the coefficient of correlation of

the scaling in x and y direction,

• gives as output, the displacement, strain, stress fields (plus other outputs available

in the post-processing of Marc/Mentat with linear, fournode, isoparametric, plane

strain, quadrilateral element), and the first two moments of the displacements fields

at each node.

E.4 Remarks

The limitation which can be seen is that the model with the scaling is not drawn on the

Mentat interface, since the Size sensitivity computation is within the element calculation.

In addition, the method can be implemented in other elements such as quadratic quadri-

lateral element and so on.

Last, it is possible to perform a multi-increment calculation such as constant step.
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E.5 Codes

Here is the size pm uselem 11 v2011 03.f code:

1 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
c S i z e s e n s i t i v i t y based per turbat i on method user−de f ined element 11 c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Running on Marc/Mentat 2008 r1 (2008 r1−i 4 ) and 2010 . 1 . 0 (2010 r 1 i 8 ) c
c at l e a s t . c
c Set o f module , common block and user subrout ine s which a l l ows to c
c perform : c
c − the g ene r i c l i n e a r , four−node , i soparametr i c , p lane s t r a in , c
c a r b i t r a r y qu ad r i l a t e r a l Marc/Mentat element 11 , c
c − the s i z e s e n s i t i v i t y computation on x and y d i r e c t i o n (non−uniform c

11 c s c a l i n g ) , c
c − the pe r turbat i on method o f s t o c h a s t i c f i n i t e element methods based c
c on the above s i z e s e n s i t i v i t y computation . c
c c
c Contents : c
c − M data module conta in ing dynamic ar rays s t o r i n g r e s u l t s f o r c
c the post−proce s s ing , c
c − USDATA user subrout ine to read the s c a l e f a c t o r input o f the model , c
c − USELEM user−de f ined element subrout ine per forming the s i z e c
c s e n s i t i v i t y based per turbat i on method user−de f ined element 11 c

21 c ( l i n e a r , four−node , i soparametr i c , p lane s t r a in , a r b i t r a r y c
c q u ad r i l a t e r a l Marc/Mentat element 11) , c
c − UFCONN user subrout ine o f MSC−Marc to add/modify element c
c connec t i v i ty , c
c − UPSTNO user subrout ine to post−proce s s nodal d isp lacements , and c
c i t s d e r i v a t i v e s , mean , var iance and covar iance with r e sp e c t to the c
c s c a l e f a c t o r s , c
c − cb s i z e pm use l em 11 v2011 03 common block s t o r i n g the s c a l e c
c f a c t o r s read from the USDATA subrout ine . c
c NB: Write statements are in comment c , uncomment them i f p r i n t s are c

31 c needed . c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
c M data module f o r the post−pro c e s s i ng c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Contents : c
c − e l e con ( l ,m) : g ene ra l node number o f l o c a l node l o f element m, c
c − r e s u l t ( ndeg , numnp) : array where d isp lacement f i e l d , i t s c
c d e r i v a t i v e s wrt the s c a l i n g uc ( ndeg , nnode ) , and i t s f i r s t two c
c moment f i e l d meanu (2 , nnode ) , dev (2 , nnode ) , and cov ( nnode ) are c

41 c s to r ed . c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

module M data
C

imp l i c i t none
C
c Dynamic ar rays

in t ege r , dimension ( : , : ) , allocatable : : elecon
∗ e l e con ( l ,m) : Node number o f l o c a l node l o f element m

r e a l ∗8 , dimension ( : , : ) , allocatable : : result
51 ∗ r e s u l t ( i , j ) : i−>ndeg , j−>numnp

C
end module M data

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
c USDATA user subrout ine to read s c a l e f a c t o r input o f the model c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Running with the add i t i o na l input f i l e t ex t − model d e f i n i t i o n c
c s e c t i o n opt ion command : c
c USDATA,5 c
c sx or mean o f sx , sy or mean o f sy , dev o f sx , dev o f sy , cov o f sx c

61 c and sy c

73



c NB: Deta i l ed d e s c r i p t i o n in the above Content , c
c In genera l , dev i s not more than 10% of the mean . c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Content : c
c − s c a l i n g (5 ) : vec to r o f 5 components s t o r i n g s c a l e f a c t o r s sx and c
c sy and/or the mean , the var iance dev , the c o r r e l a t i o n c o e f f i c i e n t c
c cov o f the element l ength on x and y d i r e c t i o n v ia usdata c
c subrout ine and add i t i o na l input f i l e t ex t − model d e f i n i t i o n c
c s e c t i o n opt ion command . c

71 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Input and output v a r i a b l e s exp lanat ion :
c kin = input un i t
c kou = output un i t
c i c = 1 : pre−reader
c = 2 : r e a l r eader
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

subrout ine usdata (kin ,kou , ic )
C

include ’ . . / common/ imp l i c i t ’
81 include ’ . . / common/concom ’

C
include ’ cb s i z e pm use l em 11 v2011 03 . com ’

C
c ∗∗ Star t o f generated type statements ∗∗

i n t e g e r ic , kin , kou
c ∗∗ End o f generated type statements ∗∗
C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

read (KIN, ∗ ) scaling
c wr i t e (0 ,∗ ) ’USDATA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

91 c wr i t e ( 0 , ’ ( ’ ’ mu x = ’ ’ , e13 . 5 , 2 x , ’ ’ mu y = ’ ’ , e13 . 5 , 2 x , ’ ’ dev x = ’ ’ ,
c 1 e13 . 5 , 2 x , ’ ’ dev y = ’ ’ , e13 . 5 , 2 x , ’ ’ rho = ’ ’ , e13 . 5 ) ’ )
c 2( s c a l i n g ( i ) , i =1 ,5)
C

return
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
c USELEM user−de f ined element subrout ine per forming the s i z e c
c s e n s i t i v i t y based per turbat i on method user−de f ined element 11 c
c ( l i n e a r , four−node , i soparametr i c , p lane s t r a in , a r b i t r a r y c

101 c qu ad r i l a t e r a l Marc/Mentat element 11) c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Input and output v a r i a b l e s exp lanat ion : c
c m user element number
c xk s t i f f n e s s matrix
c xm mass matrix
c nnode number o f nodes per element
c ndeg maximum number o f degree s o f freedom per node
c f e x t e r n a l l y app l i ed equ iva l en t nodal l oads
c r i n t e r n a l f o r c e s

111 c j type user element type ( negat ive )
c d i sp t t o t a l nodal d i sp lacements o f t h i s element
c d i sp incrementa l nodal d i sp lacements o f t h i s element
c ndi number o f d i r e c t components o f s t r e s s
c nshear number o f shear components o f s t r e s s
c here named i p a s s s in order to avoid the con fus i on with the i p a s s
c be long ing to the common block concom
c i pa s s f l a g to i nd i c a t e which pass f o r coupled ana l y s i s
c i p a s s=1 s t r e s s a n a l y s i s pass
c i p a s s=2 heat t r a n s f e r pass

121 c i p a s s=3 f l u i d pass
c i p a s s=4 j ou l e heat ing pass
c i p a s s=5 pore p r e s su r e pass
c i p a s s=6 e l e c t r o s t a t i c pass
c i p a s s=7 magnetostat i c pass
c i p a s s=8 e l e c t r omagne t i c pass
c n s t a t s number o f s t a t e v a r i a b l e s
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c ngene l number o f g en e r a l i z e d s t r a i n s
c i n t e l number o f i n t e g r a t i o n po in t s
c coord nodal o r i g i n a l c oo rd ina t e s

131 c ncrd maximum number o f coo rd ina t e s per node
c
c i f l a g i n d i c a t e s what i s to be returned by the user
c i f l a g=1 c a l l e d by opre s s
c user r e tu rn s f
c i f l a g=2 c a l l e d by oasemb
c user r e tu rn s xk , r
c i f l a g=3 c a l l e d by oasmas
c user r e tu rn s xm
c i f l a g=4 c a l l e d by oge t s t

141 c user r e tu rn s r , g s i g s , de , etota , s i gxx
c i f l a g=5 c a l l e d by scimp
c user p r i n t s r e s u l t s
C
c i d s s s i z e o f element s t i f f n e s s matrix ( ndeg∗nnode )
c t s t a t e v a r i a b l e s
c dt increment o f s t a t e v a r i a b l e s
c e to ta t o t a l s t r a i n
c g s i g s g en e r a l i z e d s t r e s s e s
c de increment o f s t r a i n

151 c geom geometr ic parameters
c jgeom tab l e i d s f o r geometr ic parameter
c s i gxx s t r e s s e s ( equal to g s i g s f o r continuums )
c nstrmu number o f s t r e s s e s per i n t e g r a t i o n po int
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

subrout ine uselem (m,xk ,xm,nnode ,ndegg , f , r ,
∗ jtype , dispt , disp , ndi , nshear , ipasss , nstats , ngenel ,
∗ intel , coord ,ncrdd , i f lag , idsss , t ,dt , etota , gsigs ,de ,
∗ geom, jgeom , sigxx ,nstrmu)

C
161 use M data

C
include ’ . . / common/ imp l i c i t ’

C
c inc lude cb s i z e pm use l em 11 v2011 03 . com common block f o r g e t t i n g
c the s c a l e f a c t o r s

include ’ cb s i z e pm use l em 11 v2011 03 . com ’
C
c inc lude the commonblock matdat f o r mate r i a l data
c f o r young modulus et (1 ) and poisson ’ s r a t i o xu (1 )

171 include ’ matdat ’
C
c inc lude the common block concom and dimen f o r obta in ing
c the increment number inc , i t e r a t i o n number ncyc l e and number o f
c nodal po in t s numnp

include ’ concom ’
include ’ . . / common/dimen ’

C
c ∗∗ Star t o f generated type statements ∗∗

r e a l ∗8 coord , de , disp , dispt , dt , etota , f , geom, gsigs
181 i n t e g e r idsss , i f lag , intel , ipasss , jgeom , jtype , m, ncrdd , ndegg

i n t e g e r ndi , ngenel , nnode , nshear , nstats , nstrmu
r e a l ∗8 r , sigxx , t , xk , xm

c ∗∗ End o f generated type statements ∗∗
C

dimension xk( idss , idss ) ,xm( idss , idss ) ,dispt (ndeg , ∗ ) ,disp (ndeg , ∗ )
dimension t (nstats , ∗ ) ,dt (nstats , ∗ ) ,coord (ncrd , ∗ )
dimension etota (ngenel , ∗ ) , gsigs (ngenel , ∗ ) ,de(ngenel , ∗ )
dimension f (ndeg , ∗ ) , r (ndeg , ∗ ) , sigxx (nstrmu , ∗ ) ,geom(∗ ) , jgeom (∗ )

C
191 c i n t e r n a l v a r i a b l e s

i n t e g e r a l l s ta
r e a l ∗8 shp (nnode) ,dshp (2 ,nnode) , xi i (nnode) , etai (nnode)
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r e a l ∗8 uc (ndeg ,nnode)
r e a l ∗8 xj (nnode ,nnode) , xjs (nnode ,nnode) ,dj , djs
r e a l ∗8 b(3 , 2 ,nnode) ,dshpg (2 ,nnode)
r e a l ∗8 bs (3 , 2 ,nnode) , dshpgs (2 ,nnode)
r e a l ∗8 d(3 )
r e a l ∗8 wg( inte l )
r e a l ∗8 gxi ( inte l ) ,geta ( inte l )

201 r e a l ∗8 meanu(2 ,nnode) ,dev (2 ,nnode) ,cov (nnode)
i f ( . not . allocated ( result ) ) then

allocate ( result (ndeg+5,numnp) , stat=a l l s ta )
end i f

C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
c Checking inputs c
C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
c wr i t e (0 ,∗ ) ’USELEM Checking inputs−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
C
c wr i t e (0 ,∗ ) ’ Program ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’

211 c wr i t e ( 0 , ’ ( ’ ’ i n c = ’ ’ , i5 , 2 x , ’ ’ ncyc l e = ’ ’ , i5 , 2 x , ’ ’ i p a s s = ’ ’ , i5 , 2 x ,
c ∗ ’ ’ i f l a g = ’ ’ , i5 , 2 x , ’ ’m = ’ ’ , i 5 ) ’ ) inc , ncyc le , i pa s s s , i f l a g ,m
C
c wr i t e (0 ,∗ ) ’ Parameters ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
c wr i t e ( 0 , ’ ( ’ ’ nnode = ’ ’ , i5 , 2 x , ’ ’ ndeg = ’ ’ , i5 , 2 x ,
c 1 ’ ’ j type = ’ ’ , i5 , 2 x , ’ ’ ndi = ’ ’ , i5 , 2 x , ’ ’ nshear = ’ ’ , i5 , 2 x ,
c 2 ’ ’ n s t a t s = ’ ’ , i5 , 2 x , ’ ’ ngene l = ’ ’ , i5 , 2 x , ’ ’ i n t e l = ’ ’ , i2 , 2 x ,
c 3 ’ ’ ncrd = ’ ’ , i5 , 2 x , ’ ’ i d s s = ’ ’ , i5 , 2 x , ’ ’ nstrmu = ’ ’ , i5 , 2 x , ’ ’ numnp = ’ ’ ,
c 4 i 5 ) ’ ) nnode , ndeg , j type , ndi , nshear , ns tats , ngenel , i n t e l , ncrd , id s s ,
c 5nstrmu , numnp

221 C
c wr i t e ( 0 , ’ ( ’ ’E = ’ ’ , e13 . 5 , 2 x , ’ ’ nu = ’ ’ , f 2 . 1 , 2 x , ’ ’ t h i c kne s s = ’ ’ ,
c ∗ f 8 . 2 ) ’ ) e t (1 ) , xu (1 ) , geom(1)
C
c wr i t e (0 ,∗ ) ’ Vectors ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’
c wr i t e ( 0 ,∗ ) ’ coord ’
c do inode=1,nnode
c wr i t e ( 0 , ’ ( ’ ’ node = ’ ’ , i5 , 2 x , ’ ’ coord = ’ ’ , 2 e13 . 5 ) ’ ) inode ,
c ∗( coord ( incrd , inode ) , inc rd=1,ncrd )
c enddo

231 C
c wr i t e (0 ,∗ ) ’ d i spt ’
c do inode=1,nnode
c wr i t e ( 0 , ’ ( ’ ’ node = ’ ’ , i5 , 2 x , ’ ’ d i sp t = ’ ’ , 14 e13 . 5 ) ’ ) inode ,
c ∗( d i sp t ( indeg , inode ) , indeg=1,ndeg )
c enddo
C
c wr i t e (0 ,∗ ) ’ disp ’
c do inode=1,nnode
c wr i t e ( 0 , ’ ( ’ ’ node = ’ ’ , i5 , 2 x , ’ ’ d i sp = ’ ’ , 14 e13 . 5 ) ’ ) inode ,

241 c ∗( d i sp ( indeg , inode ) , indeg=1,ndeg )
c enddo
C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
c I n i t i a l i z a t i o n c
C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
c wr i t e (0 ,∗ ) ’ I n i t i a l i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
∗ note : t h i s i n i t i a l i z a t i o n i s f o r each element ,
∗ so f o r a l l i n t p o i with in the element
c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ i f l a g independent i n i t i a l i z a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c wr i t e (0 ,∗ ) ’ i f l a g independent i n i t i a l i z a t i o n ∗∗∗∗∗∗∗∗∗∗ ’

251 C
xi i (1 )=−1d0
xi i (2 )=1d0
xi i (3 )=1d0
xi i (nnode)=−1d0
etai (1 )=−1d0
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etai (2 )=−1d0
etai (3 )=1d0
etai (nnode)=1d0

C
261 do i = 1 ,nnode

shp ( i ) = 0d0
dshp (1 , i ) = 0d0
dshp (2 , i ) = 0d0

enddo
C

substitution = 0d0
C

do i = 1 ,nnode
dshpg (1 , i ) = 0d0

271 dshpg (2 , i ) = 0d0
dshpgs (1 , i ) = 0d0
dshpgs (2 , i ) = 0d0

enddo
C

do i=1,ndeg
do j=1,nnode

uc ( i , j ) = 0d0
enddo

enddo
281 C

dj=0d0
C

do 100 i = 1 ,3
do 100 j = 1 ,2
do 100 k = 1 ,nnode
b( i , j ,k) = 0d0
bs ( i , j ,k) = 0d0

100 cont inue
C

291 do i=1,3
d( i )=0d0
enddo

C
wg(1 ) = 1d0
wg(2 ) = 1d0
wg(3 ) = 1d0
wg(4 ) = 1d0

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ i f l a g dependent i n i t i a l i z a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c wr i t e (0 ,∗ ) ’ i f l a g dependent i n i t i a l i z a t i o n ∗∗∗∗∗∗∗∗∗∗∗ ’

301 C
i f ( i f l ag . eq . 2 ) then
do i = 1 , idss

do j = 1 , idss
xk( i , j ) = 0d0

enddo
enddo

C
do i = 1 ,ndeg

do j = 1 ,nnode
311 r ( i , j ) = 0d0

enddo
enddo

C
e l s e i f ( i f l ag . eq . 4 ) then
do i = 1 ,ndeg

do j = 1 ,nnode
r ( i , j ) = 0d0

enddo
enddo

321 C
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do i=1,ngenel
do j=1, inte l

etota ( i , j )=0d0
enddo

enddo
C

do i=1,ngenel
do j=1, inte l

gsigs ( i , j )=0d0
331 enddo

enddo
C

do i=1,ngenel
do j=1, inte l

de( i , j )=0d0
enddo

enddo
C

do i=1,nstrmu
341 do j=1, inte l

sigxx ( i , j )=0d0
enddo

enddo
C

e l s e i f ( i f l ag . eq . 5 ) then
do i=1,nnode

meanu(1 , i )=0d0
meanu(2 , i )=0d0
dev (1 , i )=0d0

351 dev (2 , i )=0d0
cov ( i )=0d0

enddo
C

end i f
C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
c Ca l cu l a t i on s c
C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
c wr i t e (0 ,∗ ) ’ Ca lcu lat ion−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ i f l a g −independent c a l c u l a t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

361 c wr i t e (0 ,∗ ) ’ i f l a g independent c a l c u l a t i o n s ∗∗∗∗∗∗∗∗∗∗∗ ’
C

gxi (1 ) =−0.57735d0
gxi (2 ) =0.57735d0
gxi (3 ) =−0.57735d0
gxi (4 ) =0.57735d0
geta (1 ) =−0.57735d0
geta (2 ) =−0.57735d0
geta (3 ) =0.57735d0
geta (4 ) =0.57735d0

371 C
c s t a r t i n t e g r a t i o n po int loop

do intpoi=1, inte l
c wr i t e (0 , ’ ( ’ ’∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ i n t po i n t = ’ ’ , I2 ) ’ ) i n t p o i
C
c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ code f o r shape func t i on
C

xi=gxi ( intpoi )
eta=geta ( intpoi )

C
381 do i = 1 ,nnode

shp ( i ) = 0 .25d0∗(1d0+xi∗ xi i ( i ) ) ∗(1d0+eta∗ etai ( i ) )
dshp (1 , i ) = 0 .25d0∗ xi i ( i ) ∗(1d0+eta∗ etai ( i ) )
dshp (2 , i ) = 0 .25d0∗ etai ( i ) ∗(1d0+xi∗ xi i ( i ) )

enddo
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c wr i t e (0 ,∗ ) ’ Shape func t i on =’
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ )
c ∗( shp ( inode ) , inode=1,nnode )
c wr i t e (0 ,∗ ) ’ Der iva t i ve i s o shape func t i on =’
c do i =1,2

391 c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ ) dshp ( i , 1 ) , dshp ( i , 2 ) ,
c 1dshp ( i , 3 ) , dshp ( i , nnode )
c enddo
c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ code f o r j acob ian
c ∗∗∗∗∗∗∗ disp lacement uc

i f (ncycle . eq . 0 ) then
do i=1,ndeg

do j=1,nnode
uc ( i , j )=dispt ( i , j )

enddo
401 enddo

e l s e i f (ncycle .ne . 0 .AND. i f l ag .ne . 5 ) then
do i=1,ndeg

do j=1,nnode
uc ( i , j )=dispt ( i , j )+disp ( i , j )

enddo
enddo

e l s e i f (ncycle .ne . 0 .AND. i f l ag . eq . 5 ) then
do i=1,ndeg

do j=1,nnode
411 uc ( i , j )=dispt ( i , j )

enddo
enddo

end i f
c wr i t e ( 0 ,∗ ) ’ Current d i sp lacement uc ’
c do inode=1,nnode
c wr i t e ( 0 , ’ ( ’ ’ node = ’ ’ , i5 , 2 x , ’ ’ uc = ’ ’ , 14 e13 . 5 ) ’ ) inode ,
c ∗( uc ( indeg , inode ) , indeg=1,ndeg )
c enddo
c ∗∗∗∗∗∗∗ Sca led and non s ca l ed jacob ian

421 do i = 1 ,2
do j = 1 ,2

xj ( i , j ) = 0d0
xjs ( i , j ) = 0d0
do k = 1 ,nnode

xj ( i , j ) = xj ( i , j )+(coord ( i ,k) ) ∗dshp( j ,k)
xjs ( i , j ) = xjs ( i , j )+(scaling ( j ) ∗coord ( i ,k) ) ∗dshp( j ,k)

enddo
enddo

enddo
431 dj = xj ( 1 , 1 ) ∗xj ( 2 , 2 ) − xj ( 1 , 2 ) ∗xj ( 2 , 1 )

djs = xjs ( 1 , 1 ) ∗xjs ( 2 , 2 ) − xjs ( 1 , 2 ) ∗xjs ( 2 , 1 )
c wr i t e (0 ,∗ ) ’ Jacobian array =’
c do i =1,2
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 ) ’ ) x j ( i , 1 ) , x j ( i , 2 )
c enddo
c wr i t e ( 0 , ’ ( ’ ’ The jacobiam = ’ ’ , e13 . 5 ) ’ ) dj
c wr i t e (0 ,∗ ) ’ Sca led Jacobian array =’
c do i =1,2
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 ) ’ ) x j s ( i , 1 ) , x j s ( i , 2 )

441 c enddo
c wr i t e ( 0 , ’ ( ’ ’ The s ca l ed jacobiam = ’ ’ , e13 . 5 ) ’ ) d j s
c ∗∗∗∗∗∗∗ Sca led B matrix

do 110 i = 1 ,nnode
substitution = ( xj ( 2 , 2 ) ∗dshp (1 , i ) − xj ( 2 , 1 ) ∗dshp (2 , i ) ) /dj
dshpg (2 , i ) = (−xj ( 1 , 2 ) ∗dshp (1 , i ) + xj ( 1 , 1 ) ∗dshp (2 , i ) ) /dj
b(2 , 2 , i )= dshpg (2 , i )
b(3 , 1 , i )= dshpg (2 , i )
dshpg (1 , i ) = substitution
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b(1 , 1 , i )= dshpg (1 , i )
451 b(3 , 2 , i )= dshpg (1 , i )

substitutions = ( xjs ( 2 , 2 ) ∗dshp (1 , i ) − xjs ( 2 , 1 ) ∗dshp (2 , i ) ) /djs
dshpgs (2 , i ) = (−xjs ( 1 , 2 ) ∗dshp (1 , i ) + xjs ( 1 , 1 ) ∗dshp (2 , i ) ) /djs
bs (2 , 2 , i )= dshpgs (2 , i )
bs (3 , 1 , i )= dshpgs (2 , i )
dshpgs (1 , i ) = substitutions
bs (1 , 1 , i )= dshpgs (1 , i )
bs (3 , 2 , i )= dshpgs (1 , i )

110 cont inue
c wr i t e (0 ,∗ ) ’ Sca led B matrix =’

461 c do j =1,nnode
c do i =1,3
c wr i t e ( 0 , ’ ( ’ ’ node = ’ ’ , i2 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ )
c 1 j , bs ( i , 1 , j ) , bs ( i , 2 , j )
c enddo
c enddo
c ∗∗∗∗∗∗∗ code f o r determining mate r i a l moduli
c D(1) , D(2) and D(3) in plane s t r a i n cond i t i on from E=et (1 ) , Nu=xu (1) ∗∗

d(1 )=et (1 ) ∗(1d0−xu(1 ) ) /( (1d0+xu(1 ) ) ∗(1d0−2d0∗xu(1 ) ) )
d(2 )=xu(1 ) ∗d(1 ) /(1d0−xu(1 ) )

471 d(3 )=(d(1 )−d(2 ) ) /2d0
c wr i t e (0 ,∗ ) ’d (1 ) = ’ , d (1 )
c wr i t e (0 ,∗ ) ’d (2 ) = ’ , d (2 )
c wr i t e (0 ,∗ ) ’d (3 ) = ’ , d (3 )
c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ i f l a g −dependent c a l c u l a t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c wr i t e (0 ,∗ ) ’ i f l a g dependent c a l c u l a t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗ ’
C

i f ( i f l ag . eq . 1 . and . intpoi . eq . 1 ) then
C

jtype=−jtype
481 C

∗ use standard marc implementation f o r r e t r i e v i n g load f a c t o r f from
∗ opre s s
C

e l s e i f ( i f l ag . eq . 2 ) then
C
c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ code f o r s c a l ed s t i f f n e s s matrix i f l a g 2

j1=1
do 120 j=1,nnode
i1=1

491 do 130 i=1, j
∗ s i z e−s e n s i t i t i t i e d matrix

xk( i1 , j1 ) = xk( i1 , j1 )+dshpgs (1 , i ) ∗d(1 ) ∗dshpgs (1 , j ) ∗djs
1∗wg( intpoi ) ∗geom(1 )+dshpgs (2 , i ) ∗d(3 ) ∗dshpgs (2 , j ) ∗djs∗wg( intpoi )
2∗geom(1 )

xk( i1 , j1+1) = xk( i1 , j1+1)+dshpgs (1 , i ) ∗d(2 ) ∗dshpgs (2 , j ) ∗djs
1∗wg( intpoi ) ∗geom(1 )+dshpgs (2 , i ) ∗d(3 ) ∗dshpgs (1 , j ) ∗djs∗wg( intpoi )
2∗geom(1 )

xk( i1+1, j1 ) = xk( i1+1, j1 )+dshpgs (1 , i ) ∗d(3 ) ∗dshpgs (2 , j ) ∗djs
1∗wg( intpoi ) ∗geom(1 )+dshpgs (2 , i ) ∗d(2 ) ∗dshpgs (1 , j ) ∗djs∗wg( intpoi )

501 2∗geom(1 )
xk( i1+1, j1+1) = xk( i1+1, j1+1)+dshpgs (2 , i ) ∗d(1 ) ∗dshpgs (2 , j )

1∗djs∗wg( intpoi ) ∗geom(1 )+dshpgs (1 , i ) ∗d(3 ) ∗dshpgs (1 , j ) ∗djs
2∗wg( intpoi ) ∗geom(1 )

∗ 1 s t order x d e r i v a t i v e
xk( i1+2, j1 ) = xk( i1+2, j1 )+(−scaling (2 ) /( scaling (1 ) ∗∗2d0) )

1∗dshpg (1 , i ) ∗d(1 ) ∗dshpg (1 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (2 ) )
2∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )

xk( i1+2, j1+1) = xk( i1+2, j1+1)
xk( i1+3, j1 ) = xk( i1+3, j1 )

511 xk( i1+3, j1+1) = xk( i1+3, j1+1)+(1d0/ scaling (2 ) ) ∗dshpg (2 , i )
1∗d(1 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
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2+(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj
3∗wg( intpoi ) ∗geom(1 )

xk( i1+2, j1+2) = xk( i1 , j1 )
xk( i1+2, j1+3) = xk( i1 , j1+1)
xk( i1+3, j1+2) = xk( i1+1, j1 )
xk( i1+3, j1+3) = xk( i1+1, j1+1)

∗ 1 s t order y d e r i v a t i v e
xk( i1+4, j1 ) = xk( i1+4, j1 )+(1d0/ scaling (1 ) ) ∗dshpg (1 , i ) ∗d(1 )

521 1∗dshpg (1 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )+(−scaling (1 ) /( scaling (2 ) ∗∗2d0) )
2∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )

xk( i1+4, j1+1) = xk( i1+4, j1+1)
xk( i1+5, j1 ) = xk( i1+5, j1 )
xk( i1+5, j1+1) = xk( i1+5, j1+1)

1+(−scaling (1 ) /( scaling (2 ) ∗∗2d0) ) ∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j ) ∗dj
2∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (1 ) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j )
3∗dj∗wg( intpoi ) ∗geom(1 )

xk( i1+4, j1+4) = xk( i1 , j1 )
xk( i1+4, j1+5) = xk( i1 , j1+1)

531 xk( i1+5, j1+4) = xk( i1+1, j1 )
xk( i1+5, j1+5) = xk( i1+1, j1+1)

∗ 2nd order x d e r i v a t i v e
xk( i1+6, j1 ) = xk( i1+6, j1 )+(2d0∗ scaling (2 ) /( scaling (1 ) ∗∗3d0) )

1∗dshpg (1 , i ) ∗d(1 ) ∗dshpg (1 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
xk( i1+6, j1+1) = xk( i1+6, j1+1)
xk( i1+7, j1 ) = xk( i1+7, j1 )
xk( i1+7, j1+1) = xk( i1+7, j1+1)

1+(2d0∗ scaling (2 ) /( scaling (1 ) ∗∗3d0) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj
2∗wg( intpoi ) ∗geom(1 )

541 xk( i1+6, j1+2) = xk( i1+6, j1+2)+2
1∗((− scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(1 ) ∗dshpg (1 , j ) ∗dj
2∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (2 ) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj
3∗wg( intpoi ) ∗geom(1 ) )

xk( i1+6, j1+3) = xk( i1+6, j1+3)
xk( i1+7, j1+2) = xk( i1+7, j1+2)
xk( i1+7, j1+3) = xk( i1+7, j1+3)

1+2d0∗ ( (1d0/ scaling (2 ) ) ∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi )
2∗geom(1 )+(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(3 )
3∗dshpg (1 , j ) ∗dj∗wg( intpoi ) ∗geom(1 ) )

551 xk( i1+6, j1+6) = xk( i1 , j1 )
xk( i1+6, j1+7) = xk( i1 , j1+1)
xk( i1+7, j1+6) = xk( i1+1, j1 )
xk( i1+7, j1+7) = xk( i1+1, j1+1)

∗ 2nd order y d e r i v a t i v e
xk( i1+8, j1 ) = xk( i1+8, j1 )+(2d0∗ scaling (1 ) /( scaling (2 ) ∗∗3d0) )

1∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
xk( i1+8, j1+1) = xk( i1+8, j1+1)
xk( i1+9, j1 ) = xk( i1+9, j1 )
xk( i1+9, j1+1) = xk( i1+9, j1+1)

561 1+(2d0∗ scaling (1 ) /( scaling (2 ) ∗∗3d0) ) ∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j )
2∗dj∗wg( intpoi ) ∗geom(1 )

xk( i1+8, j1+4) = xk( i1+8, j1+4)+2∗((1d0/ scaling (1 ) )
1∗dshpg (1 , i ) ∗d(1 ) ∗dshpg (1 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
2+(−scaling (1 ) /( scaling (2 ) ∗∗2d0) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj
3∗wg( intpoi ) ∗geom(1 ) )

xk( i1+8, j1+5) = xk( i1+8, j1+5)
xk( i1+9, j1+4) = xk( i1+9, j1+4)
xk( i1+9, j1+5) = xk( i1+9, j1+5)+2d0

1∗((− scaling (1 ) /( scaling (2 ) ∗∗2d0) ) ∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j ) ∗dj
571 2∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (1 ) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj

3∗wg( intpoi ) ∗geom(1 ) )
xk( i1+8, j1+8) = xk( i1 , j1 )
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xk( i1+8, j1+9) = xk( i1 , j1+1)
xk( i1+9, j1+8) = xk( i1+1, j1 )
xk( i1+9, j1+9) = xk( i1+1, j1+1)

∗ 2nd order x y d e r i v a t i v e
xk( i1+10, j1 ) = xk( i1+10, j1 )+(−1d0/( scaling (1 ) ∗∗2d0) )

1∗dshpg (1 , i ) ∗dshpg (1 , j ) ∗d(1 ) ∗dj∗wg( intpoi ) ∗geom(1 )
2+(−1d0/( scaling (2 ) ∗∗2d0) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi )

581 3∗geom(1 )
xk( i1+10, j1+1) = xk( i1+10, j1+1)
xk( i1+11, j1 ) = xk( i1+11, j1 )
xk( i1+11, j1+1) = xk( i1+11, j1+1)+(−1d0/( scaling (2 ) ∗∗2d0) )

1∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
2+(−1d0/( scaling (1 ) ∗∗2) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj∗wg( intpoi )
3∗geom(1 )

xk( i1+10, j1+2) = xk( i1+10, j1+2)+(1d0/ scaling (1 ) ) ∗dshpg (1 , i )
1∗d(1 ) ∗dshpg (1 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
2+(−scaling (1 ) /( scaling (2 ) ∗∗2d0) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj

591 3∗wg( intpoi ) ∗geom(1 )
xk( i1+10, j1+3) = xk( i1+10, j1+3)
xk( i1+11, j1+2) = xk( i1+11, j1+2)
xk( i1+11, j1+3) = xk( i1+11, j1+3)

1+(−scaling (1 ) /( scaling (2 ) ∗∗2) ) ∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j ) ∗dj
2∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (1 ) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj
3∗wg( intpoi ) ∗geom(1 )

xk( i1+10, j1+4) = xk( i1+10, j1+4)
1+(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(1 ) ∗dshpg (1 , j ) ∗dj
2∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (2 ) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj

601 3∗wg( intpoi ) ∗geom(1 )
xk( i1+10, j1+5) = xk( i1+10, j1+5)
xk( i1+11, j1+4) = xk( i1+11, j1+4)
xk( i1+11, j1+5) = xk( i1+11, j1+5)+(1d0/ scaling (2 ) ) ∗dshpg (2 , i )

1∗d(1 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
2+(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj
3∗wg( intpoi ) ∗geom(1 )

xk( i1+10, j1+10) = xk( i1 , j1 )
xk( i1+10, j1+11) = xk( i1 , j1+1)
xk( i1+11, j1+10) = xk( i1+1, j1 )

611 xk( i1+11, j1+11) = xk( i1+1, j1+1)
∗ 2nd order y x d e r i v a t i v e

xk( i1+12, j1 ) = xk( i1+12, j1 )+(−1d0/( scaling (1 ) ∗∗2d0) )
1∗dshpg (1 , i ) ∗dshpg (1 , j ) ∗d(1 ) ∗dj∗wg( intpoi ) ∗geom(1 )
2+(−1d0/( scaling (2 ) ∗∗2d0) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi )
3∗geom(1 )

xk( i1+12, j1+1) = xk( i1+12, j1+1)
xk( i1+13, j1 ) = xk( i1+13, j1 )
xk( i1+13, j1+1) = xk( i1+13, j1+1)+(−1d0/( scaling (2 ) ∗∗2d0) )

1∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
621 2+(−1d0/( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj∗wg( intpoi )

3∗geom(1 )
xk( i1+12, j1+2) = xk( i1+12, j1+2)+(1d0/ scaling (1 ) ) ∗dshpg (1 , i )

1∗d(1 ) ∗dshpg (1 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
2+(−scaling (1 ) /( scaling (2 ) ∗∗2d0) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj
3∗wg( intpoi ) ∗geom(1 )

xk( i1+12, j1+3) = xk( i1+12, j1+3)
xk( i1+13, j1+2) = xk( i1+13, j1+2)
xk( i1+13, j1+3) = xk( i1+13, j1+3)

1+(−scaling (1 ) /( scaling (2 ) ∗∗2) ) ∗dshpg (2 , i ) ∗d(1 ) ∗dshpg (2 , j ) ∗dj
631 2∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (1 ) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj

3∗wg( intpoi ) ∗geom(1 )
xk( i1+12, j1+4) = xk( i1+12, j1+4)

1+(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(1 ) ∗dshpg (1 , j ) ∗dj
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2∗wg( intpoi ) ∗geom(1 )+(1d0/ scaling (2 ) ) ∗dshpg (2 , i ) ∗d(3 ) ∗dshpg (2 , j ) ∗dj
3∗wg( intpoi ) ∗geom(1 )

xk( i1+12, j1+5) = xk( i1+12, j1+5)
xk( i1+13, j1+4) = xk( i1+13, j1+4)
xk( i1+13, j1+5) = xk( i1+13, j1+5)+(1d0/ scaling (2 ) ) ∗dshpg (2 , i )

1∗d(1 ) ∗dshpg (2 , j ) ∗dj∗wg( intpoi ) ∗geom(1 )
641 2+(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗dshpg (1 , i ) ∗d(3 ) ∗dshpg (1 , j ) ∗dj

3∗wg( intpoi ) ∗geom(1 )
xk( i1+12, j1+12) = xk( i1 , j1 )
xk( i1+12, j1+13) = xk( i1 , j1+1)
xk( i1+13, j1+12) = xk( i1+1, j1 )
xk( i1+13, j1+13) = xk( i1+1, j1+1)
i1=i1+ndeg

130 cont inue
j1=j1+ndeg

120 cont inue
651 C

do i=15 ,16
do j=1,2

xk( i , j ) = xk( j , i )
xk( i+2, j ) = xk( j+2, i )
xk( i+2, j+2) = xk( j+2, i+2)
xk( i+4, j ) = xk( j+4, i )
xk( i+4, j+4) = xk( j+4, i+4)
xk( i+6, j ) = xk( j+6, i )
xk( i+6, j+2) = xk( j+6, i+2)

661 xk( i+6, j+6) = xk( j+6, i+6)
xk( i+8, j ) = xk( j+8, i )
xk( i+8, j+4) = xk( j+8, i+4)
xk( i+8, j+8) = xk( j+8, i+8)
xk( i+10, j ) = xk( j+10, i )
xk( i+10, j+2) = xk( j+10, i+2)
xk( i+10, j+4) = xk( j+10, i+4)
xk( i+10, j+10) = xk( j+10, i+10)
xk( i+12, j ) = xk( j+12, i )
xk( i+12, j+2) = xk( j+12, i+2)

671 xk( i+12, j+4) = xk( j+12, i+4)
xk( i+12, j+12) = xk( j+12, i+12)

enddo
enddo
do i=29 ,30

do j=1,2
xk( i , j ) = xk( j , i )
xk( i+2, j ) = xk( j+2, i )
xk( i+2, j+2) = xk( j+2, i+2)
xk( i+4, j ) = xk( j+4, i )

681 xk( i+4, j+4) = xk( j+4, i+4)
xk( i+6, j ) = xk( j+6, i )
xk( i+6, j+2) = xk( j+6, i+2)
xk( i+6, j+6) = xk( j+6, i+6)
xk( i+8, j ) = xk( j+8, i )
xk( i+8, j+4) = xk( j+8, i+4)
xk( i+8, j+8) = xk( j+8, i+8)
xk( i+10, j ) = xk( j+10, i )
xk( i+10, j+2) = xk( j+10, i+2)
xk( i+10, j+4) = xk( j+10, i+4)

691 xk( i+10, j+10) = xk( j+10, i+10)
xk( i+12, j ) = xk( j+12, i )
xk( i+12, j+2) = xk( j+12, i+2)
xk( i+12, j+4) = xk( j+12, i+4)
xk( i+12, j+12) = xk( j+12, i+12)

enddo
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enddo
do i=29 ,30

do j=15 ,16
xk( i , j ) = xk( j , i )

701 xk( i+2, j ) = xk( j+2, i )
xk( i+2, j+2) = xk( j+2, i+2)
xk( i+4, j ) = xk( j+4, i )
xk( i+4, j+4) = xk( j+4, i+4)
xk( i+6, j ) = xk( j+6, i )
xk( i+6, j+2) = xk( j+6, i+2)
xk( i+6, j+6) = xk( j+6, i+6)
xk( i+8, j ) = xk( j+8, i )
xk( i+8, j+4) = xk( j+8, i+4)
xk( i+8, j+8) = xk( j+8, i+8)

711 xk( i+10, j ) = xk( j+10, i )
xk( i+10, j+2) = xk( j+10, i+2)
xk( i+10, j+4) = xk( j+10, i+4)
xk( i+10, j+10) = xk( j+10, i+10)
xk( i+12, j ) = xk( j+12, i )
xk( i+12, j+2) = xk( j+12, i+2)
xk( i+12, j+4) = xk( j+12, i+4)
xk( i+12, j+12) = xk( j+12, i+12)

enddo
enddo

721 do i=43 ,44
do j=1,2

xk( i , j ) = xk( j , i )
xk( i+2, j ) = xk( j+2, i )
xk( i+2, j+2) = xk( j+2, i+2)
xk( i+4, j ) = xk( j+4, i )
xk( i+4, j+4) = xk( j+4, i+4)
xk( i+6, j ) = xk( j+6, i )
xk( i+6, j+2) = xk( j+6, i+2)
xk( i+6, j+6) = xk( j+6, i+6)

731 xk( i+8, j ) = xk( j+8, i )
xk( i+8, j+4) = xk( j+8, i+4)
xk( i+8, j+8) = xk( j+8, i+8)
xk( i+10, j ) = xk( j+10, i )
xk( i+10, j+2) = xk( j+10, i+2)
xk( i+10, j+4) = xk( j+10, i+4)
xk( i+10, j+10) = xk( j+10, i+10)
xk( i+12, j ) = xk( j+12, i )
xk( i+12, j+2) = xk( j+12, i+2)
xk( i+12, j+4) = xk( j+12, i+4)

741 xk( i+12, j+12) = xk( j+12, i+12)
enddo

enddo
do i=43 ,44

do j=15 ,16
xk( i , j ) = xk( j , i )
xk( i+2, j ) = xk( j+2, i )
xk( i+2, j+2) = xk( j+2, i+2)
xk( i+4, j ) = xk( j+4, i )
xk( i+4, j+4) = xk( j+4, i+4)

751 xk( i+6, j ) = xk( j+6, i )
xk( i+6, j+2) = xk( j+6, i+2)
xk( i+6, j+6) = xk( j+6, i+6)
xk( i+8, j ) = xk( j+8, i )
xk( i+8, j+4) = xk( j+8, i+4)
xk( i+8, j+8) = xk( j+8, i+8)
xk( i+10, j ) = xk( j+10, i )
xk( i+10, j+2) = xk( j+10, i+2)
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xk( i+10, j+4) = xk( j+10, i+4)
xk( i+10, j+10) = xk( j+10, i+10)

761 xk( i+12, j ) = xk( j+12, i )
xk( i+12, j+2) = xk( j+12, i+2)
xk( i+12, j+4) = xk( j+12, i+4)
xk( i+12, j+12) = xk( j+12, i+12)

enddo
enddo
do i=43 ,44

do j=29 ,30
xk( i , j ) = xk( j , i )
xk( i+2, j ) = xk( j+2, i )

771 xk( i+2, j+2) = xk( j+2, i+2)
xk( i+4, j ) = xk( j+4, i )
xk( i+4, j+4) = xk( j+4, i+4)
xk( i+6, j ) = xk( j+6, i )
xk( i+6, j+2) = xk( j+6, i+2)
xk( i+6, j+6) = xk( j+6, i+6)
xk( i+8, j ) = xk( j+8, i )
xk( i+8, j+4) = xk( j+8, i+4)
xk( i+8, j+8) = xk( j+8, i+8)
xk( i+10, j ) = xk( j+10, i )

781 xk( i+10, j+2) = xk( j+10, i+2)
xk( i+10, j+4) = xk( j+10, i+4)
xk( i+10, j+10) = xk( j+10, i+10)
xk( i+12, j ) = xk( j+12, i )
xk( i+12, j+2) = xk( j+12, i+2)
xk( i+12, j+4) = xk( j+12, i+4)
xk( i+12, j+12) = xk( j+12, i+12)

enddo
enddo

C
791 c wr i t e (0 ,∗ ) ’ Sca led s t i f f n e s s K matrix i f l a g 2 =’

c do i =1, i d s s
c wr i t e ( 0 , ’ ( 56 e25 . 1 7 ) ’ ) ( xk ( i , i i d s s ) , i i d s s =1, i d s s )
c enddo
C
c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ code r i f l a g 2

do 150 i=1,nnode
de (1 , intpoi )= uc (1 , i ) ∗dshpgs (1 , i )
de (2 , intpoi )= uc (2 , i ) ∗dshpgs (2 , i )
de (4 , intpoi )= uc (1 , i ) ∗dshpgs (2 , i )+uc (2 , i ) ∗dshpgs (1 , i )

801 etota (1 , intpoi )= etota (1 , intpoi )+de (1 , intpoi )
etota (2 , intpoi )= etota (2 , intpoi )+de (2 , intpoi )
etota (4 , intpoi )= etota (4 , intpoi )+de (4 , intpoi )

150 cont inue
gsigs (1 , intpoi )=d(1 ) ∗etota (1 , intpoi )+d(2 ) ∗etota (2 , intpoi )
gsigs (2 , intpoi )=d(2 ) ∗etota (1 , intpoi )+d(1 ) ∗etota (2 , intpoi )
gsigs (3 , intpoi )=xu(1 ) ∗( gsigs (1 , intpoi )+gsigs (2 , intpoi ) )
gsigs (4 , intpoi )=d(3 ) ∗etota (4 , intpoi )
sigxx (1 , intpoi )=gsigs (1 , intpoi )
sigxx (2 , intpoi )=gsigs (2 , intpoi )

811 sigxx (3 , intpoi )=gsigs (3 , intpoi )
sigxx (4 , intpoi )=gsigs (4 , intpoi )

do 160 i=1,nnode
∗ s i z e−s e n t i v i t i t i e d matrix

r (1 , i )=r (1 , i )+(dshpgs (1 , i ) ∗gsigs (1 , intpoi )+dshpgs (2 , i )
1∗gsigs (4 , intpoi ) ) ∗djs∗wg( intpoi ) ∗geom(1 )

r (2 , i )=r (2 , i )+(dshpgs (2 , i ) ∗gsigs (2 , intpoi )+dshpgs (1 , i )
1∗gsigs (4 , intpoi ) ) ∗djs∗wg( intpoi ) ∗geom(1 )

∗ 1 s t order x d e r i v a t i v e
r (3 , i )=r (3 , i )+(dshpg (1 , i )∗(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗d(1 )
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821 1∗dshpg (1 , i ) ∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(1d0/ scaling (2 ) ) ∗dshpg (2 , i )
2∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (4 , i )=r (4 , i )+(dshpg (2 , i ) ∗(1d0/ scaling (2 ) ) ∗d(1 ) ∗dshpg (2 , i )
1∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(−scaling (2 ) /( scaling (1 ) ∗∗2d0) )
2∗dshpg (1 , i ) ∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

∗ 1 s t order y d e r i v a t i v e
r (5 , i )=r (5 , i )+(dshpg (1 , i ) ∗(1d0/ scaling (1 ) ) ∗d(1 ) ∗dshpg (1 , i )

1∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(−scaling (1 ) /( scaling (2 ) ∗∗2d0) )
2∗dshpg (2 , i ) ∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (6 , i )=r (6 , i )+(dshpg (2 , i )∗(−scaling (1 ) /( scaling (2 ) ∗∗2d0) ) ∗d(1 )
831 1∗dshpg (2 , i ) ∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(1d0/ scaling (1 ) ) ∗dshpg (1 , i )

2∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )
∗ 2nd order x d e r i v a t i v e

r (7 , i )=r (7 , i )+(2d0∗ scaling (2 ) /( scaling (1 ) ∗∗3d0) ) ∗dshpg (1 , i )
1∗d(1 ) ∗dshpg (1 , i ) ∗uc (1 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (8 , i )=r (8 , i )+(2d0∗ scaling (2 ) /( scaling (1 ) ∗∗3d0) ) ∗dshpg (1 , i )
1∗d(3 ) ∗dshpg (1 , i ) ∗uc (2 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )

∗ 2nd order y d e r i v a t i v e
r (9 , i )=r (9 , i )+(2d0∗ scaling (1 ) /( scaling (2 ) ∗∗3d0) ) ∗dshpg (2 , i )

1∗d(3 ) ∗dshpg (2 , i ) ∗uc (1 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )
841 r (10 , i )=r (10 , i )+(2d0∗ scaling (1 ) /( scaling (2 ) ∗∗3d0) ) ∗dshpg (2 , i )

1∗d(1 ) ∗dshpg (2 , i ) ∗uc (2 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )
∗ 2nd order x y d e r i v a t i v e

r (11 , i )=r (11 , i )+(dshpg (1 , i )∗(−1d0/( scaling (1 ) ∗∗2d0) ) ∗d(1 )
1∗dshpg (1 , i ) ∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(−1d0/( scaling (2 ) ∗∗2d0) )
2∗dshpg (2 , i ) ∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (12 , i )=r (12 , i )+(dshpg (2 , i )∗(−1d0/( scaling (2 ) ∗∗2d0) ) ∗d(1 )
1∗dshpg (2 , i ) ∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(−1d0/( scaling (1 ) ∗∗2d0) )
2∗dshpg (1 , i ) ∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

∗ 2nd order y x d e r i v a t i v e
851 r (13 , i )=r (13 , i )+(dshpg (1 , i )∗(−1d0/( scaling (1 ) ∗∗2d0) ) ∗d(1 )

1∗dshpg (1 , i ) ∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(−1d0/( scaling (2 ) ∗∗2d0) )
2∗dshpg (2 , i ) ∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (14 , i )=r (14 , i )+(dshpg (2 , i )∗(−1d0/( scaling (2 ) ∗∗2d0) ) ∗d(1 )
1∗dshpg (2 , i ) ∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(−1d0/( scaling (1 ) ∗∗2d0) )
2∗dshpg (1 , i ) ∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

160 cont inue
C
c wr i t e (0 ,∗ ) ’ Sca led i n t e r n a l f o r c e s i f l a g 2 =’
c do i =1,ndeg

861 c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ ) r ( i , 1 ) , r ( i , 2 ) ,
c ∗ r ( i , 3 ) , r ( i , nnode )
c enddo
C

e l s e i f ( i f l ag . eq . 3 . and . intpoi . eq . 1 ) then
C

jtype=−jtype
C

e l s e i f ( i f l ag . eq . 4 ) then
C

871 c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ code r i f l a g 4
do 170 i=1,nnode

de (1 , intpoi )= uc (1 , i ) ∗dshpgs (1 , i )
de (2 , intpoi )= uc (2 , i ) ∗dshpgs (2 , i )
de (4 , intpoi )= uc (1 , i ) ∗dshpgs (2 , i )+uc (2 , i ) ∗dshpgs (1 , i )
etota (1 , intpoi )= etota (1 , intpoi )+de (1 , intpoi )
etota (2 , intpoi )= etota (2 , intpoi )+de (2 , intpoi )
etota (4 , intpoi )= etota (4 , intpoi )+de (4 , intpoi )

170 cont inue
gsigs (1 , intpoi )=d(1 ) ∗etota (1 , intpoi )+d(2 ) ∗etota (2 , intpoi )

881 gsigs (2 , intpoi )=d(2 ) ∗etota (1 , intpoi )+d(1 ) ∗etota (2 , intpoi )
gsigs (3 , intpoi )=xu(1 ) ∗( gsigs (1 , intpoi )+gsigs (2 , intpoi ) )
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gsigs (4 , intpoi )=d(3 ) ∗etota (4 , intpoi )
sigxx (1 , intpoi )=gsigs (1 , intpoi )
sigxx (2 , intpoi )=gsigs (2 , intpoi )
sigxx (3 , intpoi )=gsigs (3 , intpoi )
sigxx (4 , intpoi )=gsigs (4 , intpoi )

do 180 i=1,nnode
∗ s i z e−s e n t i v i t i t i e d matrix

r (1 , i )=r (1 , i )+(dshpgs (1 , i ) ∗gsigs (1 , intpoi )+dshpgs (2 , i )
891 1∗gsigs (4 , intpoi ) ) ∗djs∗wg( intpoi ) ∗geom(1 )

r (2 , i )=r (2 , i )+(dshpgs (2 , i ) ∗gsigs (2 , intpoi )+dshpgs (1 , i )
1∗gsigs (4 , intpoi ) ) ∗djs∗wg( intpoi ) ∗geom(1 )

∗ 1 s t order x d e r i v a t i v e
r (3 , i )=r (3 , i )+(dshpg (1 , i )∗(−scaling (2 ) /( scaling (1 ) ∗∗2d0) ) ∗d(1 )

1∗dshpg (1 , i ) ∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(1d0/ scaling (2 ) ) ∗dshpg (2 , i )
2∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (4 , i )=r (4 , i )+(dshpg (2 , i ) ∗(1d0/ scaling (2 ) ) ∗d(1 ) ∗dshpg (2 , i )
1∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(−scaling (2 ) /( scaling (1 ) ∗∗2d0) )
2∗dshpg (1 , i ) ∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

901 ∗ 1 s t order y d e r i v a t i v e
r (5 , i )=r (5 , i )+(dshpg (1 , i ) ∗(1d0/ scaling (1 ) ) ∗d(1 ) ∗dshpg (1 , i )

1∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(−scaling (1 ) /( scaling (2 ) ∗∗2d0) )
2∗dshpg (2 , i ) ∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (6 , i )=r (6 , i )+(dshpg (2 , i )∗(−scaling (1 ) /( scaling (2 ) ∗∗2d0) ) ∗d(1 )
1∗dshpg (2 , i ) ∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(1d0/ scaling (1 ) ) ∗dshpg (1 , i )
2∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

∗ 2nd order x d e r i v a t i v e
r (7 , i )=r (7 , i )+(2d0∗ scaling (2 ) /( scaling (1 ) ∗∗3d0) ) ∗dshpg (1 , i )

1∗d(1 ) ∗dshpg (1 , i ) ∗uc (1 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )
911 r (8 , i )=r (8 , i )+(2d0∗ scaling (2 ) /( scaling (1 ) ∗∗3d0) ) ∗dshpg (1 , i )

1∗d(3 ) ∗dshpg (1 , i ) ∗uc (2 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )
∗ 2nd order y d e r i v a t i v e

r (9 , i )=r (9 , i )+(2d0∗ scaling (1 ) /( scaling (2 ) ∗∗3d0) ) ∗dshpg (2 , i )
1∗d(3 ) ∗dshpg (2 , i ) ∗uc (1 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (10 , i )=r (10 , i )+(2d0∗ scaling (1 ) /( scaling (2 ) ∗∗3d0) ) ∗dshpg (2 , i )
1∗d(1 ) ∗dshpg (2 , i ) ∗uc (2 , i ) ∗dj∗wg( intpoi ) ∗geom(1 )

∗ 2nd order x y d e r i v a t i v e
r (11 , i )=r (11 , i )+(dshpg (1 , i )∗(−1d0/( scaling (1 ) ∗∗2d0) ) ∗d(1 )

1∗dshpg (1 , i ) ∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(−1d0/( scaling (2 ) ∗∗2d0) )
921 2∗dshpg (2 , i ) ∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (12 , i )=r (12 , i )+(dshpg (2 , i )∗(−1d0/( scaling (2 ) ∗∗2d0) ) ∗d(1 )
1∗dshpg (2 , i ) ∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(−1d0/( scaling (1 ) ∗∗2d0) )
2∗dshpg (1 , i ) ∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

∗ 2nd order y x d e r i v a t i v e
r (13 , i )=r (13 , i )+(dshpg (1 , i )∗(−1d0/( scaling (1 ) ∗∗2d0) ) ∗d(1 )

1∗dshpg (1 , i ) ∗uc (1 , i )+dshpg (2 , i ) ∗d(3 ) ∗(−1d0/( scaling (2 ) ∗∗2d0) )
2∗dshpg (2 , i ) ∗uc (1 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )

r (14 , i )=r (14 , i )+(dshpg (2 , i )∗(−1d0/( scaling (2 ) ∗∗2d0) ) ∗d(1 )
1∗dshpg (2 , i ) ∗uc (2 , i )+dshpg (1 , i ) ∗d(3 ) ∗(−1d0/( scaling (1 ) ∗∗2d0) )

931 2∗dshpg (1 , i ) ∗uc (2 , i ) ) ∗dj∗wg( intpoi ) ∗geom(1 )
180 cont inue

C
c wr i t e (0 ,∗ ) ’ Sca led i n t e r n a l f o r c e s i f l a g 4 =’
c do i =1,ndeg
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ ) r ( i , 1 ) , r ( i , 2 ) ,
c ∗ r ( i , 3 ) , r ( i , nnode )
c enddo
C
c wr i t e (0 ,∗ ) ’ e to ta i f l a g 4 =’

941 c do i =1, ngene l
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ ) e to ta ( i , 1 ) ,
c 1 e to ta ( i , 2 ) , e to ta ( i , 3 ) , e to ta ( i , i n t e l )
c enddo
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C
c wr i t e (0 ,∗ ) ’ g s i g s i f l a g 4 =’
c do i =1, ngene l
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ ) g s i g s ( i , 1 ) ,
c 1 g s i g s ( i , 2 ) , g s i g s ( i , 3 ) , g s i g s ( i , i n t e l )
c enddo

951 C
c wr i t e (0 ,∗ ) ’ de i f l a g 4 =’
c do i =1, ngene l
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ ) de ( i , 1 ) , de ( i , 2 ) ,
c 1de ( i , 3 ) , de ( i , i n t e l )
c enddo
C
c wr i t e (0 ,∗ ) ’ s i gxx i f l a g 4 =’
c do i =1,nstrmu
c wr i t e ( 0 , ’ ( e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 , 2 x , e13 . 5 ) ’ ) s i gxx ( i , 1 ) ,

961 c 1 s igxx ( i , 2 ) , s i gxx ( i , 3 ) , s i gxx ( i , i n t e l )
c enddo
C

e l s e i f ( i f l ag . eq . 5 . and . intpoi . eq . 4 ) then
C

do i = 1 ,nnode
meanu(1 , i ) = uc (1 , i )+0.5d0∗( scaling (3 ) ∗∗2d0) ∗uc (7 , i )

1+0.5∗( scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (11 , i )
2+0.5∗( scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (13 , i )
3+0.5∗( scaling (4 ) ∗∗2d0) ∗uc (9 , i )

971 meanu(2 , i ) = uc (2 , i )+0.5d0∗( scaling (3 ) ∗∗2d0) ∗uc (8 , i )
1+0.5∗( scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (12 , i )
2+0.5∗( scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (14 , i )
3+0.5∗( scaling (4 ) ∗∗2d0) ∗uc (10 , i )

dev (1 , i ) = sqrt ( ( scaling (3 ) ∗∗2d0) ∗(uc (3 , i ) ∗∗2d0)
1+2∗( scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (3 , i ) ∗uc (5 , i )
2+( scaling (4 ) ∗∗2d0) ∗uc (5 , i ) ∗∗2d0)

dev (2 , i ) = sqrt ( ( scaling (3 ) ∗∗2d0) ∗(uc (4 , i ) ∗∗2d0)
1+2∗( scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (4 , i ) ∗uc (6 , i )
2+( scaling (4 ) ∗∗2d0) ∗uc (6 , i ) ∗∗2d0)

981 cov ( i ) = ( scaling (3 ) ∗∗2d0) ∗uc (3 , i ) ∗uc (4 , i )
1+( scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (3 , i ) ∗uc (6 , i )
2+(scaling (3 ) ∗ scaling (4 ) ∗ scaling (5 ) ) ∗uc (4 , i ) ∗uc (5 , i )
3+(scaling (4 ) ∗∗2d0) ∗uc (5 , i ) ∗uc (6 , i )
enddo

C
c wr i t e (0 ,∗ ) ’ Perturbat ion method ’
c do inode=1,nnode
c wr i t e ( 0 , ’ ( ’ ’ node = ’ ’ , i5 , 2 x , ’ ’ mean d i sp t x = ’ ’ , e13 . 5 , 2 x ,
c 1 ’ ’mean d i sp t y = ’ ’ , e13 . 5 , 2 x , ’ ’ dev x = ’ ’ , e13 . 5 , 2 x , ’ ’ dev y = ’ ’ ,

991 c 2e13 . 5 , 2 x , ’ ’ cov d i sp t x d i sp t y = ’ ’ , e13 . 5 ) ’ ) inode ,meanu (1 , inode ) ,
c 3meanu (2 , inode ) , dev (1 , inode ) , dev (2 , inode ) , cov ( inode )
c enddo
C
c wr i t e (0 ,∗ ) ’ s t a r t ’

do l=1,nnode
c wr i t e ( 0 , ’ ( ’ ’ node = ’ ’ , I3 ) ’ ) l
c wr i t e ( 0 , ’ ( ’ ’ e l e con ( ’ ’ , I2 , ’ ’ , ’ ’ , I3 , ’ ’ ) ’ ’ ) ’ ) l ,m

k=elecon ( l ,m)
do i=1,ndeg

1001 c wr i t e ( 0 , ’ ( ’ ’ i = ’ ’ , I2 , ’ ’ k = ’ ’ , I3 ) ’ ) i , k
result ( i ,k)=uc ( i , l )

enddo
do i=1,2

c wr i t e ( 0 , ’ ( ’ ’ i +14 = ’ ’ , I2 , ’ ’ k = ’ ’ , I3 ) ’ ) i +14,k
result ( i+14,k)=meanu( i , l )

c wr i t e ( 0 , ’ ( ’ ’ i +16 = ’ ’ , I2 , ’ ’ k = ’ ’ , I3 ) ’ ) i +16,k
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result ( i+16,k)=dev( i , l )
enddo

c wr i t e ( 0 , ’ ( ’ ’ i = ’ ’ , I2 , ’ ’ k = ’ ’ , I3 ) ’ ) 19 , k
1011 result (19 ,k)=cov ( l )

enddo
C
c wr i t e (0 ,∗ ) ’ A l l r e s u l t s ’
c do l =1,nnode
c k=e l e con ( l ,m)
c wr i t e ( 0 , ’ ( ’ ’ k = ’ ’ , i5 , 2 x , ’ ’ r e s u l t = ’ ’ ,19 e13 . 5 ) ’ ) k ,
c ∗( r e s u l t ( i , k ) , i =1 ,19)
c enddo
C

1021 jtype=−jtype
C

end i f
C

enddo
c end the i n t e g r a t i o n po int loop
C

return
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
1031 c UFCONN user subrout ine o f MSC−Marc to add/modify element c

c c onne c t i v i t y c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Running with the add i t i o na l input f i l e t ex t − model d e f i n i t i o n c
c s e c t i o n opt ion command : c
c UFCONN c
c a l l e l emen t s c
c NB: g iven that a l l e l emen t s are de f ined as a s e t conta in ing a l l the c
c e lements o f the model c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

1041 c Input and output v a r i a b l e s exp lanat ion :
c j element number
c i type element type
c lm conne c t i v i t y
c nnodmx maximun number o f nodes per element
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

subrout ine ufconn ( j , itype , lm ,nnodmxx)
C

use M data
C

1051 imp l i c i t r e a l ∗8 (a−h ,o−z )
C
c ∗∗ Star t o f generated type statements ∗∗

i n t e g e r itype , j , lm ,nnodmxx
c ∗∗ End o f generated type statements ∗∗

dimension lm(∗ )
C

include ’ . . / common/dimen ’
C

i n t e g e r a l l s ta
1061 C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

c wr i t e (0 ,∗ ) ’UFCONN−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
c wr i t e ( 0 , ’ ( ’ ’ number o f e lements = ’ ’ , i5 ,
c ∗ ’ ’ number o f nodes = ’ ’ , i 5 ) ’ ) numel , numnp
C

i f ( . not . allocated ( elecon ) .and .numel . gt . 0 ) then
allocate ( elecon (nnodmxx,numel) , stat=a l l s ta )

c wr i t e ( 0 , ’ ( ’ ’ s i z e e l e con = ’ ’ ,2 i 5 ) ’ ) nnodmxx , numel
end i f

C
1071 c s t o r e nodes o f element j

i f ( allocated ( elecon ) ) then
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elecon ( 1 :nnodmx, j )=lm ( 1 :nnodmx)
c wr i t e ( 0 , ’ ( ’ ’ e lement = ’ ’ , i3 , ’ ’ nodes = ’ ’ ,4 i 5 ) ’ ) j , e l e con ( 1 : 4 , j )

end i f
C

return
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
c UPSTNO user subrout ine to post−proce s s nodal d isp lacements , and c

1081 c i t s d e r i v a t i v e s , mean , var iance and covar iance with r e sp e c t to the c
c s c a l e f a c t o r s c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Running with s e l e c t i n g the f o l l ow i ng a v a i l a b l e nodal q u an t i t i e s in c
c the job r e s u l t s : c
c − disp lacement c
c (− r o t a t i on c
c − ex t e rna l f o r c e c
c − ex t e rna l moment) c
c − r e a c t i on f o r c e c

1091 c − r e a c t i on moment c
c − user nodal quant i ty 1 to 19 ( User Sub UPSTNO) given that c
c 1 i s the disp lacement in x d i r e c t i o n = above disp lacement c
c 2 i s the disp lacement in y d i r e c t i o n = above disp lacement c
c 3 i s the f i r s t order d e r i v a t i v e o f the x disp lacement wrt sx c
c 4 i s the f i r s t order d e r i v a t i v e o f the y disp lacement wrt sx c
c 5 i s the f i r s t order d e r i v a t i v e o f the x disp lacement wrt sy c
c 6 i s the f i r s t order d e r i v a t i v e o f the y disp lacement wrt sy c
c 7 i s the second d e r i v a t i v e o f the x disp lacement wrt sx ˆ2 c
c 8 i s the second d e r i v a t i v e o f the y disp lacement wrt sx ˆ2 c

1101 c 9 i s the second d e r i v a t i v e o f the x disp lacement wrt sy ˆ2 c
c 10 i s the second d e r i v a t i v e o f the y disp lacement wrt sy ˆ2 c
c 11 i s the second d e r i v a t i v e o f the x disp lacement wrt sx , sy c
c 12 i s the second d e r i v a t i v e o f the y disp lacement wrt sx , sy c
c 13 i s the second d e r i v a t i v e o f the x disp lacement wrt sy , sx = 11 c
c 14 i s the second d e r i v a t i v e o f the y disp lacement wrt sy , sx = 12 c
c 15 i s the mean o f the x disp lacement c
c 16 i s the mean o f the y disp lacement c
c 17 i s the dev i a t i on o f the x disp lacement c
c 18 i s the dev i a t i on o f the y disp lacement c

1111 c 19 i s the covar iance o f the x and y disp lacement c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

subrout ine upstno (nqcode , nodeid , valno ,nqncomp,nqtype ,
∗nqaver ,nqcomptype ,nqdatatype ,nqcompname)

C
use M data

C
imp l i c i t r e a l ∗8 (a−h ,o−z )

C
dimension valno (∗ )

1121 charac t e r ∗24 nqcompname(∗ )
C − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

nqncomp=1
C

valno (1 )=result(−nqcode , nodeid )
c wr i t e (0 ,∗ ) ’VALNO−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
c wr i t e ( 0 , ’ ( ’ ’ nqcode = ’ ’ , i5 , 2 x , ’ ’ nodeid = ’ ’ , i5 , 2 x , ’ ’ valno = ’ ’ , e13 . 5 )
c ∗ ’ ) nqcode , nodeid , valno (1 )
C

nqtype=0
1131 ∗ i n d i c a t e that valno r ep r e s en t s a s c a l a r

re turn
end

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c

Here is the cb size pm uselem 11 v2011 03.com code:

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
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c cb s i z e pm use l em 11 v2011 03 common block f o r S i z e s e n s i t i v i t y c
c based per turbat i on method user−de f ined element 11 s e t o f module , c
c common block ( pre sent ) and user subrout ine s gathered in c
c s i ze pm use l em 11 v2011 03 . f subrout ine f i l e c

6 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c Content : c
c − s c a l i n g (5 ) : vec to r o f 5 components s t o r i n g s c a l e f a c t o r s c
c and/ or the mean , the var iance , the c o r r e l a t i o n c o e f f i c i e n t o f the c
c element l ength on x and y d i r e c t i o n v ia usdata subrout ine and c
c add i t i ona l input f i l e t ex t − model d e f i n i t i o n s e c t i o n opt ion c
c command . c
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C
c ∗∗ Star t o f generated type statements ∗∗

16 r e a l ∗8 scaling (5 )
c ∗∗ End o f generated type statements ∗∗
C

common/cb size pm uselem 11 v2011 03/ scaling
c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
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Appendix F

TWS-TWS

Here is the data sheet of the studied copper foil used in the NanoInterface project.
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TWS-TWS 
Technical Characteristics 
TWS-TWS is an advanced double-side treated electro-deposited copper foil 
designated for use on high performance substrate. The additional bonding 
treatment applied to the shiny side of the Grade 3 base foil provides “ready-
to-use” laminate products for inner layer PCB fabrication. 
 
Laminates manufactured with these foils are used to produce inner layer 
PCB’s with high inner layer-to-layer bond strengths on high performance resin 
systems without the necessity of wet chemical oxide or alternative processing. 
 
Typical substrates would include FR-4 and high Tg epoxy resins, BT blends, 
cyanate esters, polyimides and advanced thermoplastics. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Typical average properties 
 

TWS-TWS 
MEASURED PARAMETERS UNITS PRODUCT GAUGE IPC 

Nominal Thickness µm 
oz. 

18 
1/2 

35 
1 

70 
2 

Specification 
IPC-4562A 

Test 
Method 

IPC-TM-650 
  oz/ft² 0.52 0.95 1.92 (a)1.2.5, table 1-1   

Area Weight (± 5 %) g/m² 159 290 585 (b)3.4.4 2.2.12 

  g/254 in² 26.1 47.5 95.9 (c)4.6.3     

Treated Shiny Side Roughness (Rz) µm 
µ.inch 

< 5.1 
< 201 3.4.5 2.2.17 

Treated Matte Side Roughness (Rz) µm 
µ.inch 

6 - 8 
236 - 315 

7 - 10 
276 - 394 

9 - 12 
354 - 472 3.4.5 2.2.17 

Tensile Strength Transverse at RT MPa 
k.Lb/in² 

> 276 
> 40 3.5.1 2.4.18 

Tensile Strength Transverse at 180 °C MPa 
k.Lb/in² 

> 138 
> 20 3.5.1 2.4.18 

Elongation Transverse at RT % > 6 > 10 > 15 3.5.3 2.4.18 

Elongation Transverse at 180 °C % > 3 3.5.3 2.4.18 
Peel Strength (RT) polyimide [1] 

Treated Shiny Side 
N/mm 
Lb/in 

> 0.53 
> 3.0 

> 0.6 
> 3.4 

> 0.7 
> 4.0 3.5.4 2.4.8 

Peel Strength (RT) polyimide[1] 
Treated Matte Side 

N/mm 
Lb/in 

> 0.8 
> 4.6 

> 1.14 
> 6.5 

> 1.4 
> 8.0 3.5.4 2.4.8 

High Temp. Tarnish Resistance - 120 min @ 180 °C in air: pass   

Solderability - Complies with IPC specification 3.6.3 2.4.12 

[1] Laminate construction with thickness >= 0.5 mm           

Treated shiny side 
 

Treated matte side 
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Advanced Product Features 
• Consistent high inner layer-to-layer adhesion as a consequence of the well defined electrochemically applied bonding treatment on the 

foil’s shiny side - eliminating delamination during solder shock at final assembly. 
• Elimination of “Pink Ring” lamination failures during PTH processing. 
• Improved yield on thin core laminates due to the elimination of the handling damage from multi-stage wet chemical processing. 
• Elimination of the capital costs for multi-stage wet chemical oxide or alternative processing. 
• Freedom from the variability of wet chemical processing and the associated process, disposal, pollution and environmental costs. 
• High temperature elongation - [HTE-Type E / Grade 3] {IPC-4562A / 1.2.4.1} prevents “barrel cracking” failures in multi-layer PCB’s. 
• Thermally stable microstructure - stable mechanical properties unaffected by thermal excursion from lamination or post laminate baking 

cycles - which could degrade laminate dimensional stability, warp & twist, and drilling characteristics (nail heading). 
• The product meets or exceeds all of the requirements of IPC-4562A when tested on typical epoxy and multifunctional prepregs, in 

accordance with IPC test methods, including high temperature peel strength, solder shock and accelerated ageing. 
 
 
 
 
 
 
 

Notes 
• Double Treated copper foil (TWS-TWS) is designed for use on high performance resin systems and “regular” FR-4 / glass epoxy 

systems. 
• Products can be supplied in both roll and sheeted formats. 
• Roll product is available in widths of 150 mm (~ 5.9”) to 1360 mm (~ 53.5”) {product up to 1430 mm (~ 56”) wide product is available on 

special request}. 
• Product is supplied on sturdy cardboard cores with an ID of ~ 80 mm (3 1/8”). Alternative core sizes and materials are available on 

request. 
• Please visit our website (www.circuitfoil.com) for regular updates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
All of this Technical Information has been determined with due care and thoroughness. However, because the conditions of use and process and application technologies employed 
can substantially vary, the provided data and figures can only serve as non binding guidelines. They do not constitute a guarantee that the purchased item will possess certain 
attributes. For this reason, no liability whatsoever can be assumed for them. The buyer is obliged to check the suitability of all supplied products. 
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Appendix G

WHITE LIGHT INTERFEROMETRY

Briefly, a White Light Interferometry Scanner is a device for measuring the physical ge-

ometrical characteristics of an object by capturing intensity data at a series of positions

along the vertical axis, which determines where the surface is located by using the shape

of the white-light interferogram, the localized phase of the interferogram, or a combination

of both shape and phase. It consists of the superposition of fringes generated by multi-

ple wavelengths, obtaining peak fringe contrast as a function of scan position, that is, the

red portion of the object beam interferes with the red portion of the reference beam, the

blue interferes with the blue, and so forth. An imaging interferometer is vertically scanned

to vary the optical path difference. During this process, a series of interference patterns

are formed at each pixel in the instrument’s field of view. This results in an interference

function, with interference varying as a function of optical path difference. The data are

stored digitally and processed in a variety of ways. The Fourier analysis method is used to

convert intensity data to the spatial frequency domain, allowing production of an extremely

accurate surface map. In addition, there are cross-correlation methods, and analysis in the

spatial domain [Wyant, 2011].
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