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SUMMARY

This thesis presents a technique termed Blended Shared Control, whereby a human op-

erator’s commands are merged with the commands of an electronic agent in real time to

control a manipulator. A four degree-of-freedom hydraulic excavator is used as an applica-

tion example, and two types of models are presented: a fully dynamic model incorporating

the actuator and linkage systems suitable for high-fidelity user studies, and a reduced-order

velocity-constrained kinematic model amenable for real-time optimization. Intended oper-

ator tasks are estimated with a recursive algorithm; the task is optimized in real time; and

a command perturbation is computed which, when summed with the operator command,

results in a lower task completion time. Experimental results compare Blended Shared

Control to other types of controllers including manual control and haptic feedback. Trials

indicate that Blended Shared Control decreases task completion time when compared to

manual operation.

xv



CHAPTER I

THESIS PREVIEW

Earthmoving machines have many interesting challenges germane to robotics, and their

solutions have potential to positively impact a very large industry. Chapter 2 gives back-

ground into the application domain of this research, followed in Chapter 3 by a review of

the general methods applicable to the control of excavators. The outcome of this research

is a shared control architecture termed Blended Shared Control, which is introduced in the

end of Chapter 3. The architecture allows two agents, in this case a human and a computer,

to simultaneously influence the machine response.

The primary hypothesis is that certain tasks can be completed with lower cost when

computer assistance is applied through shared control. The literature review in Chapter 4

places this architecture in the context of other shared control research. To demonstrate the

broader applicability of the framework and to whet the reader’s appetite, a straight-forward

application example is given in Chapter 5.

The Blended Shared Control paradigm perturbs the operator input based on the esti-

mated operator task, discussed in Chapter 7, and the optimal way of completing this tasks.

This optimization is presented in Chapter 9. The computation of Blended Shared Control

perturbations is the subject of Chapter 10.

The paradigm was tested in different situations for different operators, and performance

was evaluated from analytical and subjective points of view. Experimental results indicated

a measurable effect on the task time, and are detailed in Chapter 11. Finally, Chapter 12

will summarize the conclusions, contributions, and directions of future work which have

grown from this research.
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CHAPTER II

INTRODUCTION

The research objective of this work is to understand, calculate, and measure the increase in

operator productivity enabled by a novel shared control algorithm applied to point to point

motions of flow constrained hydraulic manipulators.

Despite the increased capabilities of autonomous control and with the exception of a

few research prototypes, most machines that interact with the environment—from hydraulic

excavators to mobile wheelchairs—are manually controlled by the human operator. With

manual control, the operator assumes responsibility for providing control inputs that cause

the machine to complete a given task at maximum utility, for example in minimum time

or with the least energy consumption. However, the optimal control solutions of even

very simple nonlinear systems may be non-intuitive or otherwise beyond the capabilities

of a human operator responsible for providing the control input. Consequently, manually

controlled machines often are operated suboptimally. In an effort to draw the operator

nearer to some degree of optimality, an Electronic Agent may be given authority to share

control with the operator.

Decreases to a task’s time or energy cost are historically achieved through operator

training or by modifying existing hardware components or subsystems. In contrast, the

approach discussed here relies on few, if any, changes to a system’s hardware. Machine per-

formance will be improved by modifying only the operator commands. The work therefore

complements conventional research in the areas of component design and control.

Within a shared control (SC) paradigm, both the human and machine have authority

to influence end-effector motions. In contrast with autonomous systems, SC keeps the

operator continually in the loop, meaning an operator input immediately elicits changes in

actuator motion. The operator is continually in a position to supervise the system and has

the authority to effect change in the manipulator response at any time. The operator is not
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in full control of the actuator motion, as the Blended SC architecture is exemplified by a

controller having authority to modify the original command, thus control is shared with the

operator. The command perturbation is a function of estimates of the intended task and a

calculated time-optimal input for completing the task. The operator at all times maintains

a degree of authority in the control loop.

Blended SC requires three key components: First, the operator’s intended task should be

deduced based on the operator’s original command; ideally this inference will be automatic,

computed from already present signals, and will require a minimal amount of operator

effort. Second, a closer-to-optimal trajectory for completing the intended task must be

determined. This relies on suitable system models and derived necessary conditions for

optimally completing the task. Third is to develop an understanding of the role of human-

machine interaction in the context of the particular application, specifically to understand

the desirable (and undesirable) performance attributes of the shared controller.

Through the literature in this thesis, it will become clear that current techniques and

scientific understanding are inadequate for these three problems.

2.1 Context, Impact, and Relevance to the Earthmoving Industry

A hydraulic excavator is used as an application example of Blended Shared Control. Several

forces motivate advancements in the control of earthmoving machines including safety; a

shortage of skilled workers; and market demands for increased performance, lower operating

cost, and higher quality work [1, 2]. Further, a fleet of excavators consumes a substantial

amount of fuel annually; thus, large industry-wide savings can be realized even if a solution

yields only modest increases in per-cycle efficiency. Unfortunately, the heavy equipment in-

dustry is risk adverse. There exists a strong and often unseen barrier against the adoption of

otherwise promising technologies. Any technological advancement that requires a substan-

tial departure from conventional excavator system architectures—particularly within the

actuator subsystems—will rightfully face substantial scrutiny and resistance in adoption.
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Figure 2.1: The major components of a tracked excavator

2.2 Target Application Domain

An excavator is a type of earthmoving machine commonly used in construction for digging,

drilling, pushing, or hauling. Several books provide a general introduction to excavation

topics, including overviews of the machines, methods, and history of earthmoving [3, 4].

The excavator is essentially a serial link manipulator with four degrees of freedom (DOFs):1

swing, boom, arm, and bucket (the bucket may also be called the end-effector) as in Fig-

ure 2.1. In reality, the linkage and actuator systems are attached to a mobile, tracked base,

but here the base is assumed locally fixed. Figure 2.2 shows machines that are kinemati-

cally similar to the generic 4-DOF excavator considered here including log feller-bunchers,

tractor-mounted backhoes, and mini-excavators. Hydraulic industrial manipulators are also

relevant to this work.

The linkage system is actuated by a hydraulic actuator system often comprised of cylin-

ders, conduits, controlled orifices, pumps, accumulators, and a prime mover. Typically, a

human operator interacts with a control system that drives the actuator system which in

turn propels the linkage system. The operator sits within the excavator cab (Figure 2.3) and

clenches two joysticks, each able to pivot in two directions; the joystick angular displace-

ment (e.g., fore/aft or left/right) maps to the commanded velocity of the corresponding

hydraulic actuator.

The task domain considered in this work includes trenching, bulk digging, or other

1The DOFs are often referred to as functions. Usage examples include “. . . the boom function is . . . ”, or
“. . . each of the excavator functions are . . . ”
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Figure 2.2: A group of machines kinematically similar to excavators. Clockwise from top
left: compact excavator, construction excavator, production excavator, tractor-loader back-
hoe, log feller buncher. Shown in approximately equal scale. (Images courtesy Deere &
Co.)
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Figure 2.3: Operator controls in a typical excavator cockpit consist of levers that are dis-
placed to command the rate of extension or retraction of the corresponding actuator
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operations requiring simultaneous actuation of all functions. These common excavation

tasks are generally repetitive; the cyclical nature will be exploited to aide in predicting the

intended operator task. While the emphasis is on systems with hydraulic actuators de-

signed for earthmoving, effort will be made to maintain relevancy of this thesis to industrial

manipulators in general.
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CHAPTER III

LITERATURE REVIEW RELATED TO CONTROL OF EXCAVATORS

This chapter presents a discussion on methods employed by industrial and academic re-

searchers for increasing the performance of hydraulic multi-DOF manipulators. A primary

focus will be on the applications to excavator control originating from literature within the

domains of system dynamics and controls.

Researchers from a broad range of engineering disciplines have invested in projects to

improve overall excavator performance. Their scope may focus on individual components,

such as pumps [5, 6] and valves [7, 8], or may include entire systems or development of

completely new hydraulic circuit topologies. For example, independent metering control

promises improved efficiency by enabling a number of energy-efficient and high-speed oper-

ating modes [9–12]. Topologies including displacement controlled actuators reduce energy

consumption by removing throttling valves altogether [13, 14]. Other hydraulic circuit

layouts increase efficiency or actuator speed by regeneration of pressurized oil, such as re-

directing high pressure hydraulic flow to other working functions or storing the flow in a

hydraulic accumulator [15–19].

Real time optimal trajectory planning of hydraulic manipulators is difficult because of

the high dimensionality of the machine configuration space, the nonlinearity of the rigid

body dynamics, and the coupling between the degrees of freedom. The actuator system is

typically a hybrid dynamic system having discrete operating modes1 and coupled nonlinear

dynamics. There is a tremendous void in works that contribute to trajectory planning or

optimization, without abstracting away the most salient attributes of the response stemming

from pressure, flow, and power limits.

1The flow path from the system pump to the actuator depends on the valve operating mode; transitions
between modes may induce high-order effects including linkage oscillations which further complicate the
analysis [12].
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3.1 Developing Models of Excavators

Many computational tools exist for modeling multi-domain systems such as excavators [20–

22]. The models are used for many tasks: to formulate and simulate actuator control laws,

to model machine performance for design purposes, to determine trajectories that optimize

a cost function, and to predict machine response during online operation. Basic models may

only involve kinematics that relate joint angles (or cylinder extensions) to the position and

orientation of the excavator bucket [23, 24]. Higher order models include the dynamics of the

excavator system, and may include a combination of linkage dynamics, actuator dynamics,

and dynamics of the bucket-soil interaction. For example, Koivo described an oft-cited

and thorough excavator model [25], where models of both the linkage dynamics and digging

reaction forces are developed. Zweire also discussed development and simulation of a similar

dynamic model of a mobile front-end loader linkage and hydraulic control system [26, 27].

Owing to their complexity, simulation of the excavator dynamic models is computa-

tionally intensive and not practical for solving optimal control problems such as planning

optimal bucket trajectories. A common simplification is to ignore the dynamics of the ac-

tuator system (engine, pumps, valves, conduits, etc.) by assuming the hydraulic cylinders

to be simple force sources. This assumption allows classical manipulator control techniques

to be employed. Unfortunately, the simplified models are somtimes applied to systems and

scenarios for which they were not intended. For example, it is questionable to use these

models to minimize the energy or time cost of a certain task, as the majority of large-scale

excavators normally run in a power- and flow-limited operating condition not well described

by these simplified models.

Krishna proposed the use of memory-based learning (MBL) to simplify the model of an

excavator’s hydraulic actuator system without completely eliminating it from the excavator

model [28, 29]. MBL can efficiently determine the effects of the complex flow interactions

which couple the functions of hydraulic actuator systems. The success of this technique

depends on the accuracy of the model and the quality of the learned mapping (which may

have no guarantee of convergence to the true mapping). The efficiency of MBL comes at the

expense of abstracting any physical interpretation, and thus may not yield as much insight
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into the problem as other methods do.

3.1.1 Operator Model

The human operator is present in all but fully autonomous systems. An ideal analysis

of a human-in-the-loop control algorithm would include precise models of the operator’s

effects, so that the ultimate closed-loop dynamics of the human/machine/manipulator sys-

tem could be simulated and predicted . Obviously, there does not exist human behavior

and performance models of sufficiency fidelity to perform well in an arbitrary excavation

scenario.2 To model and understand excavator systems, a few authors include (to a greater

or lesser extent) the operator, environment, and working task in addition to the machine

itself. For instance, Filla developed a rule-based operator model for bucket filling of a

wheel loader, where the task and the operator model are independent of the machine it-

self [30, 31]. Bernold proposed methods to quantify the skill of an operator which may

be useful for comparing the effectiveness of competing control designs given variability in

operator skill [32].

Real-time, human-in-the-loop simulations avoid the difficult requirement of accurately

modeling human behavior, at the expense of less repeatability. More powerful computers

have enabled much work in this area [33, 34], and are becoming very useful in the validation

and justification of control designs. The experimental evaluations presented in Chapter 11

make use of a virtual reality human-in-the-loop excavator simulation testbed [35, 36].

3.2 Manual Control of Excavators

The vast majority of earthmoving machines are manually controlled by a human operator,

with a direct one-to-one mapping between the user and the actuator commands. Manual

control has been the norm since the earliest commercial excavator disclosed in 1881 [37].

Recently there are indications of increased commercial interest in severing the conventional

human/excavator control link. However, the pace of adoption is considerably slower than

2If such high-fidelity models did exist, then many original problems in autonomous control of manipulators
would be solved.
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other industries, in contrast to the rapid adoption of modern fly-by-wire aircraft and drive-

by-wire automobiles.

3.2.1 Efficient Manual Control

When limited to manual control, an excavator’s efficiency and productivity are increased

through operator training and hardware improvements. There are certain technologies being

developed to improve the energy efficiency of the actuator systems of earthmoving machines.

For example, independent metering control (IMC) promises improved efficiency by enabling

more operating modes [9–12, 15, 38–43]. Other systems increase overall efficiency by re-

generation of pressurized oil, or re-directing high pressure hydraulic flow to other working

functions or storing the flow in an accumulator [15–19, 44–46]. Non-conventional hydraulic

system topologies have been proposed, including the complete removal of energy-wasting

control valves in favor of pump-displacement controlled actuators [13, 14].

3.2.2 Teleoperated Systems

Teleoperated systems have been heavily researched [47–52], even in the context of hydraulic

excavation. Often the goal is to accurately track the operator command, so teleoperation

includes manual control from a distance. Teleoperation may be augmented with extra layers

of control, including coordinated control of the bucket [53–55]. Cooperative control schemes

have been implemented in specialized cases, such as when a computer assists the operator

in maintaining a specified grade when digging [56].

3.3 Automatic Control of Excavators

There are cases from as early as the 1960s where the direct human/excavator command link

was broken. For example, Audemar suggested a cam-based system for controlling hydraulic

machines in which the operator controlled the phasing of a series of cams, but it was the

logic encoded in the cams which actually effected the final machine response [57]. Chytil

gave an early mention of the possibility of autonomous computer-based excavation and

recognizes that removing the operator from the control loop could have potential benefits

including cost savings and more precise operation [58]. The following two sections discuss
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two primary subsystems of an automatic earthmoving system: the motion planner, and the

trajectory follower.

3.3.1 Motion Planning for Multi-DOF Manipulators

Motion planning implies there is some objective that the motion must fulfill, for example

minimizing time or energy cost, avoiding obstacles, or maximizing the force exerted by the

end effector. Common approaches include human-guided motion planning, automatic path

planning, trajectory tracking, and fully autonomous excavators.

3.3.1.1 Human-Guided Motion Planning

In some applications, the manipulator motion is programmed directly by a human operator

and replayed autonomously by the manipulator. In the case of excavation, researchers have

studied systems that record the actuator motions during a portion of a dig cycle and then

play them back during later cycles [59, 60]. These include systems capable of unloading a

bucket of soil and/or returning to the trench automatically. Aside from the teaching phase,

the human operator is removed from the control loop during certain phases of operation.

Research into human psychology suggests that removing the operator from the control

loop, even for small portions of a cycle, may be ill-advised because the operator’a overall

attentiveness may drop as a result of the interruptions [61, 62].

3.3.1.2 Automatic Trajectory Generation

Trajectory generation and path-following are well-studied problems in robotics, but the con-

trol of hydraulic robots like excavators presents some interesting challenges. For one, the

large, variable payload is usually a large fraction of the manipulator mass. Also, there are

several simplifying assumptions often used for optimizing electrical industrial robotics, such

as minimizing expelled energy by minimizing the time integral of net actuator torques, which

is the basis behind most minimum energy trajectory planning techniques including methods

utilizing dynamic programming [63, 64] and brute-force sequential optimization [65]. Un-

fortunately, the technique of minimization of actuator torques may not apply to hydraulic

actuator systems, due to flow limiting, severe power limiting, multiple operating modes,
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and having a substantial amount of energy consumed by the control system.3

Some have suggested that expert knowledge can be captured and used to plan excavation

motions. Rowe introduced an approach that uses scripts, or templates, for planning and

executing motions of an excavator in real time [67–70]. This method enables online local

optimization of machine operation yet no discussion of this approach is given, though some

vague experimental results are provided that demonstrate the script functionality on an

full size excavator. The internal and external script parameters rely on a preprogrammed,

expert system [68]. Shi and Lever also leveraged human knowledge to construct a finite

state machine and define fuzzy logic rules for autonomous excavator control [71, 72]. The

use of human expert knowledge in excavator control has interesting implications: if optimal

solutions are to be discovered, then one must assert that the human behavior on which

the method is based is itself close to optimal. The author of this thesis espouses that the

definition of a trajectory must be based on sound scientific criteria, and should not solely

rely on imitating what an operator does.

3.3.1.3 Optimizing the Digging Phase

Automation of digging involves more than just tracking a reference path, because of the

strong bucket-soil interaction [73]. Researchers have presented techniques to decrease the

energy consumed in excavating a certain volume of material, based on research into soil

mechanics, excavator dynamics, soil/bucket interaction forces [74]. Hemami presented a

systematic way of deriving, though not in real-time, the optimal cutting edge trajectory for

a front-end loader [75]. Like most digging optimization techniques, a model of the digging

forces must be developed first, and evaluation of these forces requires parameters that are

soil dependent. In one technique for energy-optimal soil removal, the path and bucket rake

angle follow the slip lines generated by the bucket during the previous shoveling stage [76].

While detecting and tracking these paths is often intuitive for very experienced operators,

3It is therefore surprising that so many researchers searching for energy-optimal trajectories still make
this assumption and neglect the actuator system. For example, Ma [66] reported a real-time means of
calculating the near energy-optimal trajectory of a robot by considering only the motion of the center of
gravity. While computationally attractive, the method does not immediately ensure that the trajectory will
even be reachable by the actuation system.
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teaching novices or an electronic machine controller to perform the same is difficult because

the stochastic nature of soil means the same sets of forces will generate different tool paths

at different times. Bernold used robust force/torque sensors with impedance control to

automate the digging process while optimizing the energy consumption per excavated vol-

ume, using a simple mass-spring model for soil-tool interaction modeling [77, 78]. Bernold

introduced a pattern-matching technique for deducing soil properties from a resulting tool

path under impedance control. Tan discussed an online numerical-based method for esti-

mating soil parameters, with application to enabling accurate bucket path tracking under

impedance control [79].

To effectively track a prescribed path while the bucket is engaged with the soil, the

complexities arising during digging—such as the non-unique relationship between actuator

forces and forces acting on the bucket—must be reconciled [80]. Vaha and Bodur used

cognitive force control for following a preplanned trajectory, with the ability to change path

online if the tool unexpectedly encounters too much resistance [81, 82].

3.3.2 Trajectory Following

Once the path is specified, a path tracking controller computes appropriate actuator com-

mands to execute the motion. Generation of commands to move the bucket along the

optimal path requires knowledge of the dynamic characteristics for each axis of movement,

particularly the velocity and acceleration limits. Complications arising from the actuator

system include high lag times and couplings associated with multiple actuators sharing

a single pump. Some algorithms are able to track a reference path while simultaneously

optimizing some cost, such as time or energy, while other methods are more concerned

with very accurate tracking. Generally if the reference trajectory is not too aggressive,

for example if it has been jerk-limited, then good tracking can be realized [83]. The path

is often specified in the workspace and must be transformed to joint space or to cylinder

space before tracking. Many practical methods suitable for practical implementation ex-

ist, with most efforts focusing on computationally efficient means of computing the inverse

kinematics—for instance, Makkonen presented a computationally efficient way to compute
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the joint angles of a six degree-of-freedom excavator using matrices of target points and

simple terrain data [84].

Kahn reported an early solution to the time-optimal control problem for serial link ma-

nipulators [85]. Specifying the path essentially collapses the problem to a single-dimension

optimization problem. This approach linearizes the dynamics about an optimal nominal

trajectory, and uses a closed loop control about this nominal to achieve accurate tracking.

Budny used non-linear programming to calculate the joint torques required to position an

excavator bucket along a specified path in minimum time [86]. This method satisfies joint

torque constraints but does not address the actuator couplings and flow-limited problem

common to large hydraulic equipment: it is often not the torques that are constrained but

the combined velocities of the actuators. Other researchers in fluid power [87–92] have

considered various constraints on actuator torque, velocity, and acceleration, but often give

no indication of applicability to hydro-mechanical systems with tightly coupled DOFs and

multiple operating modes.

3.3.2.1 Sensing

Most algorithms assume feedback of the robot configuration to achieve very accurate track-

ing performance. However, few sensors are robust enough for typical excavation environ-

ments thereby limiting the wide-scale acceptance of controllers that rely on these measures.

Some authors have presented decent path-tracking techniques based on accurate open-loop

knowledge of the control valve system and do not rely on position feedback [93]. One com-

mon problem with estimating the manipulator state is that error may compound to an

appreciable extent for long motions. The formulation developed for the research in this the-

sis uses relatively short-duration motion primitives to describe the motion and may prevent

large errors in position estimates from compounding.

3.3.2.2 Transitions Between Rigid Contact with Soil

A challenging aspect of trajectory tracking is maintaining stability when the bucket transi-

tions from free space to soil contact. Some schemes use hybrid position and force control,

switching between modes when contact occurs. Richardson-Little used a position controller
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to track in free space, with a compliance controller that modifies the reference trajectory—

based on feedback from a model of soil-bucket interaction—to maintain an accurate path

when resistance is encountered [94]. Others have used impedance control as a unified ap-

proach for both constrained and unconstrained motion [52, 55, 95]. Impedance control may

address the issue of stable, accurate tracking yet it does not address any time- or energy-

optimality issues. A seminal series of papers on impedance control is given by Hogan [96–98].

In large hydraulic excavators there is some latency between the instant a command is

established and the instant that the actuator begins to move. This latency is due in part to

the dynamics associated with opening a control valve, building pressure at a system pump,

and accelerating a large inertia. Often this latency is on the order of 0.5 seconds and may

account for an appreciable loss of productivity. To make up for this latency, at least one

approach has been disclosed that anticipates future movement of some joints based on the

actuation of another joint and access to a pre-programmed task time line [99].

3.4 Fully Autonomous Excavation Systems

Many researchers adopt an all-or-nothing approach to automation of excavation, as cata-

loged in several comprehensive surveys of autonomous excavation [100–103]. The previous

sections have mostly presented piecemeal components required for automatically executing

or optimizing some portion of the dig cycle. This section gives a brief discussion of fully

integrated, autonomous excavation systems.

Likely the first autonomous excavator was built by the manufacturer Orenstein & Koppel

and showcased at the 1983 BAUMA trade show in Germany. However, little data is available

about this system.

The University of Wales developed an autonomous excavator called lucie [104, 105].

This system used a real-time artificial intelligence developed from extrapolations of observed

behaviors of many expert operators. The system produced very high quality rectangular

trenches, but the method is not easily adapted to perform general digging tasks, or for that

matter, non-digging tasks such as craning or tamping.

Carnegie Mellon University developed an autonomous excavation system capable of
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planning and executing digging tasks. The machine automated a complete truck loading

task. The excavators control software decides where to dig in the soil, where to dump in

the truck, and how to quickly move between these points while detecting and stopping for

obstacles. Reportedly, multi-hour tests indicate the excavator loads trucks as fast as human

operators [106, 106–111].

3.5 Summary

The excavation industry has a long, storied past. By necessity, the industry is generally

risk-adverse and cost-conscious; innovations—especially to systems as fundamental as the

controls and the human-machine interface—are adopted only after being thoroughly scru-

tinized. The cost and reliability of the components are major driving factors.

Most algorithms assume feedback of the manipulator configuration to achieve very ac-

curate tracking performance, yet few sensors are robust enough for harsh excavation envi-

ronments. One common problem with estimating the state is that error may compound to

an appreciable extent for long motions. The formulation developed for this research uses

relatively short-duration motion primitives to describe the motion and may prevent large

errors in position estimates from compounding.

Autonomous machines require methods of localizing the digging face, the truck, and

obstacles. As yet, fully autonomous systems are neither practical nor feasible for wide scale

industry adoption. The Blended SC approach discussed in this thesis is well suited for

uncertain, dynamic environments because the human operator is retained as the primary

source of control authority.

This chapter discussed a broad overview of topics related to control of excavators. The

next chapter takes a deeper look into using shared control to improve machine performance.

16



CHAPTER IV

SHARED CONTROL BACKGROUND

In this chapter, the general concept of shared control (SC) is discussed to motivate its

benefits, problems, and typical contextual scenarios of use. Several varieties of SC are

discussed and placed within a general framework of common SC architectures.

While SC may potentially be applied to any controlled system, the context here is the

control of a multi degree-of-freedom manipulator. The manipulator is assumed to consist

of two subsystems: the linkages and the actuators. In the SC paradigm, the actuator

commands result from inputs derived by either a Human Agent (referred to as human or

HA), an Electronic Agent (EA), or a combination of both. At the risk of violating standard

terminology, the term machine will be synonymous with Electronic Agent. Hence, shared

control will be principally characterized by a human and a machine sharing control of a

manipulator.

4.1 General Motivation

Robotic manipulators are commonly used to perform tasks, particularly when the task

is too dangerous, too mundane, or requires a scale of force otherwise unachievable by a

human [112]. For manipulator control particularly, a human agent excels at reasoning, safety

awareness, adaptability, and robustness while an electronic agent has superior numerical

capacity, quicker reaction times, and greater precision. For any specific scenario, the goal

of SC is to realize the unique benefits of both agents.

Shared control has been used in numerous applications. Generally, the impetus for

adopting SC stems from at least one three factors [113].

• A physical or mental disability or cognitive limitation of the human operator make

manual control unreliable. The operator may lack sufficient understanding of the

controlled system, have finite processing capabilities, or be occupied with tasks of
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higher importance

• The environment is unpredictable and rapidly changing.

• The task is too difficult, intricate, or occurs with a geometric or temporal scale un-

suitable for manual control or direct teleoperation.

A key feature of SC, teleoperation, supervisory control, manual control, and human-

machine interaction is that humans maintain some level of authority within the overall

system control loop. Each topic has been well studied and many excellent books thoroughly

address these topics, including Poulton [113] and Sheridan [112].

Generally, an autonomous agent is distinguished by its ability to make independent

choices. A robot is considered to be autonomous when it can perform a given task in

an unstructured environment without continual human guidance. Many industrial and

household devices have some degree of autonomy but require, at least, human supervision

to perform a task. Fully autonomous robots control the manipulator on their own, while

SC approaches allow the human to make some decisions and effect change in the response.

4.1.1 Forms of Shared Control

There are many studies on the level of autonomy a robot assumes while interacting with

a human. A primary question is to define the appropriate degree of autonomy. Within

SC there exists a spectrum between manual control and autonomous control, which will be

discussed next.

Consider the control of a generic 4-DOF manipulator, where the control vector u =

[u1, u2, u3, u4]
T represents the reference velocity tracked by each DOF. The numerous em-

bodiments of SC found in literature can be categorized into the framework described in

Figure 4.1 which consists of six distinct shared control forms: Traded, Indirect, Coordi-

nated, Collaborative, Virtual constraints, and Continuous. Each will be discussed in turn,

with citations to relevant examples from academic and industrial research.

Traded Control: The HA or EA may initiate, either on demand or automatically based on

programed criteria or trigger event, a transfer of full authority to either agent. Control
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Figure 4.1: (a) Interactions between a Human Agent (HA) and Electronic Agent (EA) for
sharing control of a general manipulator (b). Each of the manipulator’s four degrees of
freedom track a reference velocity input u.

is not actually shared by the human and machine at any particular time; rather, one

or the other has control at some instant. The trigger event may be initiated by a

button press or when the manipulator enters a critical region around an obstacle,

for example. Applications include aircraft autopilot systems for which the operator

cedes low-level control authority during cruising yet maintains full authority during

takeoff and landing. In other approaches, the opeartor has full manual control of

the robot while automatically granting the machine authority to prevent imminent

collision [114]. Examples in the earthmoving industry include AutoDig [107], return

to ready [60, 115, 116], and systems that allow recording a playing back of robot

trajectories [59, 117].

In traded control, the human operator is removed from the control loop during cer-

tain phases of operation. Research into human psychology suggests that removing the
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operator from the control loop, even for small portions of a cycle, may be ill-advised

because the operator’a overall attentiveness may drop as a result of the interrup-

tions [61, 62]. Among the consequences may be an increase in task time.

A class of automatic responses to the trigger event includes reactive algorithms, where

simple robot behaviors are the result of coupling sensor readings and actions [118].

Kim et al. demonstrated another approach in a proof of concept paper [119]. Sensor

readings drove manipulator reflexes modeled off of human behavior, such as a with-

drawal reflex for obstacle avoidance and a grasp reflex for securely holding objects.

The reflexes were triggered by sensor inputs and augment brain-controlled trajecto-

ries. While the command signal from the user retained continuous control of the end

position, the robot reacted to local sensors detecting proximity, collisions, or other

relevant information. Traded control approaches based on purely reactive behaviors

tend to have several shortcomings, including abrupt jumps in response, falling into

local “traps”, and oscillating response.

Indirect Shared Control Through Cues: The EA may not directly influence the in-

put. Rather, the EA derives sensory cues based on programmed criteria and displays

these cues to the HA. These cues are designed to influence the input of the HA in

a manner amenable to the applied stimulus. Examples include visual indications of

suggested process inputs in the control of power plant systems [112] and haptic cues.

Indirect SC has also been proposed as an effective way to teach users to perform cer-

tain complex tasks, such as minimally invasive telesurgery [120]. Results in vehicle

lane tracking from Gillespie’s lab suggested the benefits of Indirect Shared Control

(including visual, auditory, and haptic cues) between a human and an autonomous

system include improved performance on primary tasks, reduced perceptual demands,

and freed attention available for secondary tasks [121]. Previous research by Kontz

indicated haptic cues can improve digging performance in hydraulic excavation sys-

tems [122].

Typically, the purpose of Indirect SC is to increase the operator’s perception of the
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environment—e.g. revealing the presence and location of virtual or real obstacles—

rather than the dynamics, behavior, or performance of the actual manipulator. While

increased environmental perception may incidentally lead to decreases in the task

cost, conventional approaches do not directly address the goal of decreasing task cost

from the perspective of understanding the dynamics of the manipulator. Further,

Indirect SC requires hardware capable of providing the sensory cues. Also, the cues

require finite cognitive attention from the HA, who may already be overloaded with

information. Benefits derived from the Indirect SC must outweigh the installation

costs as well as the additional cognitive workload required to interpret and react to

the stimulus.

Coordinated Control: The HA has full control of all actuators through a possibly lower

dimensioned input v, with the EA transforming fewer high level commands to a greater

number of lower level commands. For instance, the EA may enable simpler control

of end effector motion by handling the calculations of inverse kinematics. This is

often implemented by establishing a virtual or practical constraint such as a manifold

of lower dimension than the total DOFs. The operator input then maps to a point

on this lower-dimensioned manifold, which exists in the higher dimensioned space of

the actuator inputs. The constraint may be a mathematical formulation or a specific

mapping from the input space of the operator interface device to the output space of

the manipulator. In the excavator domain, coordinated control of the bucket position

and orientation has been explored by numerous researchers [50, 53, 56, 122, 123], who

generally conclude that coordinated control decreases the amount of skill and time

required to accurately execute a prescribed motion.

Collaborative Control: In this case, the HA issues a certain subset of inputs while the EA

provides the remaining. Examples include automobile cruise control, where the HA

controls steering while the EA modulates the throttle, and automatic parking [124],

where the HA controls the throttle while the EA controls steering.

Virtual Constraint: The EA modifies or disallows a subspace of HA commands—as a
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function of certain criteria x including speed, proximity to obstacles, or type of

payload—to satisfy an arbitrary constraint on the state. For instance, an EA may

prevent inputs that cause a wheelchair to collide with a wall while allowing all other

inputs [125].

Hayati presented a controller that improves stability of teleoperated systems with

transmission delay by imposing virtual constraints along with a coordinated shared

control architecture [126]. When in free air, full teleoperation is allowed. When close

to or contacting a surface, only teleoperator motions along the free direction (i.e.,

parallel to the surface) are allowed in order to prevent instability resulting from the

time delay (rigid contact in time-delay systems is notoriously unstable). The EA

handles motion in the direction normal to the surface to apply a controlled force to

the surface [126].

In excavator control, virtual constraints have been tested as measns to allow for digging

of level-bottomed trenches [23, 56], as well as introducing programmed regions where

the bucket cannot enter [49].

Continuous Shared Control: The commands from the HA and the EA are combined

through some functional relationship in a manner that changes in either the HA or

EA input are immediately realized as input changes to the manipulator. This category

holds the SC paradigm discussed in this thesis, and thus warrants a larger section for

background.

Hybrid approach: In practice, a system may utilize multiple types of shared control. The

different types may be used at different times, or on different subsets of degrees-of-

freedom.

4.2 Continuous Shared Control Background

Continuous shared control is distinguished from the other modes of human-machine inter-

action because both the EA and HA directly effect, at every instant, the motion of all

DOFs. The control is continuous because the interaction is immediate and does not have
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the switching characteristics of a traded control strategy [119]. Further, unlike the cate-

gorization for coordinated or cooperative control, all active DOFs are simultaneously and

directly affected. Though there are relatively few works that treat continuous shared con-

trol, there are two distinct architectures found in literature: methods based on potential

fields, and methods based on command perturbations.

4.2.1 Potential Fields Approach to Continuous SC

Generating robot commands based on artificial potential fields (popularized by Khatib

and commonly known as the Potential Fields Approach (PFA) [127]) is commonly used

in robot/manipulator control. In this paradigm, the manipulator or robot moves along

the least resisted path within a virtual field of forces. For continuous SC applications,

the potential fields approach provides a natural and intuitive understanding to weighing

and merging the commands of multiple agents. Both the human- and machine-derived

commands produce attractive poles, i.e., local minima, in the potential field. Poncela et

al. [128] propose a PFA method to merge commands of the machine and human at each

instant for robot navigation. In essence, the operator’s joystick direction is included as

another vector in the potential field at each position. The weighting of human/machine

inputs are calculated in terms of the efficiency of each agent, where this efficiency is evaluated

in terms of local factors that depend on the desired behavior, such as distance to obstacle,

path smoothness, and expected path length. Hence, if the robot perceives the operator

command as more efficient, then greater authority is shifted to the human. The work of

Poncela et al. does not guarantee that the resultant motion is of lower cost than the original

human input. Furthermore, the study was restricted to planar motion with a two inputs,

speed and direction.

4.2.2 Perturbed Input Approach to Continuous SC

Another paradigm for continuous shared control includes formulations utilizing command

perturbations as the primary way of modifying the operator control signal. Either nominal

manual (including teleoperated) trajectories are modified autonomously, or nominal au-

tonomous trajectories are modified by the operator. For example, the operator may modify
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pre-planned motion trajectories to track unmodeled target motions [129]. The Blended SC

architecture described next is compatible with both approaches.

4.3 Blended Shared Control

This research introduces a new continuous SC architecture which is termed Blended Shared

Control. The purpose of this section is to describe the general architecture; the details of

each component of the architecture is discussed in subsequent chapters.

This architecture considered in Figure 4.2 consists of a Human Agent (HA) or oper-

ator, an Electronic Agent (EA), and a controlled system. The Blended Shared Control

algorithms are implemented within the EA. The EA has three distinct functions: Task

Identification, Task Optimization, and Blended Shared Control. The operator provides the

input command ū via a human interface device such as a joystick. The operator command

is generally uncertain, but is a function of the intended task and the operator’s perception

of the machine response y through sensory feedback. A high-level EA modifies the original

operator command through some general functional relationship to δu. Here the functional

relationship is a simple perturbation by δu. The command perturbation is calculated by

the Blended Shared Control module and may be a function of several terms including the

optimal input u∗ as calculated by the optimization module, the original input command

ū, and machine response y. The optimized input u∗ is determined by dynamic models of

the system, and the estimated or measured machine state y, and a set of data consisting

of constraints and objective functions which are specific to the particular task being com-

pleted by the operator. The constraints and objective function are determined by the task

identification module of the robotic controller.

Several aspects of this architecture enable a positive synergy between the EA and HA:

there are capabilities of a HA (e.g., reasoning, safety awareness, robustness, “ideal” cost

function) that complement attributes of an EA (e.g., incorporation of complex system mod-

els, numerical capacity to solve those models, storage of much expert knowledge). These

synergies of the Blended SC will nominally be leveraged to increase utility of the overall pro-

cess. Realistically, there are several aspects in this process which may result in dis-utility
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Figure 4.2: The architecture for Blended Shared Control. The Electronic Agent perturbs
the operator command by an amount δu, based on three modules: Task Identification,
Optimization, and Blended Shared Control.

and hence must be considered. Such unresolved issues include the effects of conflicting

objectives between the EA and the HA (e.g., one agent values minimum time while the

other wishes minimum energy), and under which conditions can the task cost be shown to

decrease as a result of the SC perturbation.

4.3.1 Discussion

The purpose of this chapter was to introduce the general purpose Blended Shared Control

paradigm, and to show its relation to a larger context of shared control and human/machine

interaction. Several types of shared control have yielded benefits to a variety of traditionally

manually controlled situations. The typical modus operandi is to relax the level of authority

assumed by the human operator, while providing the machine with the ability to effect the

response.

The nature of the application domain must be considered. The SC approach must not

unduly inhibit the concentration of the operator, especially given the dynamic, uncertain,

and high-risk environment of the sites at which excavators work. Human concentration is

a limited resource that must be carefully managed.

The cost of new innovations to high-level controllers—measured in terms of dollars,

risk, and complexity—must be offset by the advantages brought by the innovations. To its

advantage, the Blended SC architecture may not require any major hardware changes or

additional sensors. Further, the level of automatic assistance given to the operator can be

25



easily tuned and managed. Even substantial productivity and efficiency gains are rendered

useless if the safety and effectiveness of the operator is unduly violated.

Looking forward, a formulation of a single-input example is given in the next chap-

ter, Chapter 5, to illustrate the application of the Blended Shared Control architecture.

Chapters 7 to 10 discuss the application of this architecture to the control of a four-DOF

hydraulic manipulator.
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CHAPTER V

BLENDED SHARED CONTROL OF ZERMELO’S NAVIGATION

PROBLEM

Chapter 4 provided an overview of SC and introduced a concept for a perturbation-based

Blended Shared Control (SC) architecture. The purpose of this chapter is to provide an

extra application example illustrating the application of the Blended SC paradigm. The goal

is to provide evidence that the approach has more broad applicability than the manipulator

control which is the focus of the bulk of this thesis.

The example case considered here is Zermelo’s navigation problem, which is far simpler

than an excavator. The formulation and solution to the problem will be discussed, as

will experimental results that illustrate the decrease in task completion time realized by

the current approach. The architecture is experimentally shown to be superior to manual

control, but does not perform as well as indirect shared control including haptic feedback

and heads-up display.

5.1 Nomenclature

HA The Human Agent in the shared control loop

EA The Electronic Agent in the shared control loop

θ, θ̄, θ∗ Ship heading angle, heading commanded by the HA, and optimal heading com-
manded by the EA

θf Final heading angle when ship approaches the origin

δθ Command perturbation introduced by EA

x x = [x, y]T is the ship location

V The speed relative to the water

u(y) The linearly varying currents

d0 Distance from the origin, beyond which the HA has full control
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Δ Error between HA command and EA command (Δ = θ̄ − θ∗)

Δ0 The maximum error in command, beyond which the HA has full control

φ̄ The joystick angle

T (x) Minimum time to go; the time to reach origin along optimal path starting at x

a Blended shared control parameter; tunes the level of control authority between
HA and EA

MC Manual control

HUD Heads up display (type of indirect shared control)

Haptic Haptic feedback (type of indirect shared control)

SC2 Blended shared control, where control of θ is shared

SCJS Blended shared control, where control of φ is shared

5.2 Blended Shared Control

The architecture for Blended SC of a single input is sketched in Figure 5.1. This architec-

ture consists of a Human Agent (HA) or operator, an Electronic Agent (EA) with three

distinct functions, and a controlled system. The operator issues input command θ̄ via a

human interface device such as a joystick and perceives the boat response x through vi-

sual observation of the response. A high-level EA modifies the original operator command

through some general functional relationship to δθ. Here the functional relationship is a

simple summation θ = θ̄ + δθ. The command perturbation is calculated by the Blended

shared control module and may be a function of several terms including the optimal input

θ∗ as calculated by the optimization module, the original input command θ̄, and machine

response x. The optimized command θ∗ is determined by dynamic models of the system,

the feedback x, and a set of data C consisting of constraints and objective functions which

are specific to the particular task being completed by the operator. The constraints and

objective function are determined by the task identification module of the robotic controller.

There are several areas in this process that enable a positive synergy between the EA and

HA. The HA has capabilities including reasoning, safety awareness, and robustness while
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Figure 5.1: The architecture for perturbation-based Blended Shared Control of a single
control input θ.

the EA has complimentary attributes such as incorporation of complex system models,

high numerical capacity to solve those models, and storage of vast expert knowledge. These

synergies of the Blended SC will nominally be leveraged to increase utility of the overall

process. In reality, there are also several stages in this process which may result in dis-utility

and hence must be considered. Such unresolved issues include the effects of conflicting

objectives between the EA and the HA, e.g., one agent values minimum time while the

other seeks minimum energy.

5.2.1 Shared Control Scheme

The Blended SC law for a system with a single control input θ is described next. The

difference of the operator’s command θ̄ and the optimal command θ∗ calculated by the EA

is

Δ ≡ θ̄ − θ∗ (5.1)

The optimization as calculated by the SC module depends on the plant models and a cost

function internal to the EA. A command perturbation δθ calculated by the SC module is

added to the operator command giving

θ = θ̄ + δθ
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where θ is the control input to the plant. Designing the command perturbation is a major

subject of the current investigation into Blended SC. In the case of a pursuit or interception

problem, for example, the perturbation may be a function of any number of terms including

an operator setpoint, distance to target, time on target, or Δ from (5.1). For example,

choosing δθ = −aΔ gives

θ = θ̄ − aΔ (5.2)

with the Blended shared control parameter a ∈ [0, 1]. Varying a on the interval [0, 1] allows a

continuum between full automation and full manual control, thus enabling a control engineer

to scale the influence of the shared controller. When a = 0 the system is under manual

control (i.e., θ = θ̄) and when a = 1 the system is fully autonomous (i.e., θ = θ∗).

5.3 Zermelo’s Problem: Time-Optimal Ship Navigation

A classic optimal control problem known as Zermelo’s Problem is useful for studying the

Blended SC law because of its known closed-form solution [130]. In addition, the task—

minimize transit time to the origin—is easily defined and explained to a human operator.

Hence, the task is known and does not need to be identified. The choice of Zermelo’s problem

as a prototype was arbitrary, aside from its convenience. The purpose is not to promote

improved ship navigation, but to study the interaction between human and electronic agents

during Blended SC.

In Zermelo’s problem, a ship (modeled as a particle) travels with constant speed V

relative to the water while navigating a region of strong currents. The captain modulates

the ship’s heading θ to minimize travel time T to the origin. The equations describing the

optimal path for the case of linearly varying current velocity are [130]

ẋ = V cos θ + u(y)

ẏ = V sin θ
(5.3)

and

θ̇ = − cos2 θ
du

dy
(5.4)
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Figure 5.2: Minimum time path through a region of linearly increasing currents [130].

where θ is the ship’s heading measured from the x-axis, (x, y) are its coordinates, and

u(y) = V y/h is the velocity of the current, which varies linearly with the y displacement

from the origin as in Figure 5.2 with h being a constant scaling factor. The initial value

of θ is chosen so that the path passes through the origin. For the linearly varying current

strength considered here, the optimal steering angle can be related to the ship position

through a system of implicit feedback equations [130]

y

h
= sec θf − sec θ (5.5)

x

h
=

1
2

[sec θf (tan θf − tan θ) − tan θ (sec θf − sec θ)] (5.6)

+
1
2

log
tan θf + sec θf

tan θ + sec θ
(5.7)

Figure 5.2 shows a particular optimal path along with the optimal heading angle at

several points along the optimal path. A vector field of solutions to (5.7) are plotted in

Figure 5.3.

The single-input perturbed Blended SC law (5.2) is used on this problem. In (5.2), the

control designer has freedom to select the particular form of the SC parameter a. Suppose

a is selected to be

a = max
(

0, 1 − d

d0

)
· max

(
0, 1 −

(
Δ
Δ0

)2
)

. (5.8)
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(a) Optimal heading (red arrows) and direction of resulting ship
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Figure 5.3: Solutions to Zermelo’s navigation problem. In (b), the optimal time to the
origin at each location is expressed in units of h/V ; plot shown for h/V = 4.
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Figure 5.4: The SC parameter a in parabolic form (5.8) with Δ0 = π
2 and d0 = 10.

Figure 5.4 shows plots of a for the parabolic form (5.8). This particular form in (5.8) allows

manual operation (a = 0) if the ship is further than a critical distance d0 from the origin,

or if the input command deviates from the optimal by greater than Δ0. Thus, the Blended

SC relinquishes control authority to the operator in the presence of large error between the

operator input and the optimal input calculated by the EA.

Choosing a as such is a first attempt at increasing overall system robustness by resolving

the conflict that may arise between the independent agents; such conflict may stem from

inaccurate plant or environment models, dissimilar cost functions used, or different goals al-

together between the HA and EA. In the Blended SC paradigm the operator—rather than a

complicated automatic controller requiring many feedback measurements—ultimately pro-

vides for the robustness and corrective action of the system.

5.4 Evaluation of Shared Control

This portion describes the experimental setup for evaluating the Blended SC. Each operator

viewed a monitor (Figure 5.5 and Figure 5.6) depicting a ship moving in a simple virtual

reality (VR) environment with dynamics governed by (5.3) (the VR environment was cre-

ated using the VR Toolbox in Matlab; the simulation runs at 1 KHz on an xPC Target

computer). A green ring (see Figure 5.6) represented the origin to which the operator was

instructed to navigate as quickly as possible. A green sphere drawn in front of the ship to

represented the heading θ. Two static arrows illustrated the direction of the current’s flow
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0

Figure 5.5: The operator video display and joystick

on either side of the origin. In the HUD mode (described in the next section), an additional

red sphere was displayed to indicate the optimal heading angle.

The operator commanded the heading angle θ̄ by displacing the joystick an angle φ̄; the

joystick angle controlled the rate of change of the heading through

θ̄ = α

∫
φ̄dt

where α is a constant for tuning the snappiness of the ship response to changes in joy-

stick angle. A deadzone on the joystick input angle φ̄ was applied in software to prevent

unintentional drift of the ship’s heading.

5.4.1 Description of Control Types Evaluated

Five varieties of control were studied in this experiment and are summarized next.

Manual control (MC): Implemented by setting a = 0 in (5.2), thus the HA was in full

control of the ship heading giving θ = θ̄. No sensory cues were displayed to the

operator, besides the standard VR interface. This control was used as a baseline for

determining operator performance in absence of supplementary information or aiding

controls.

Heads up display (HUD): The HA had manual control of the ship (a = 0 so θ = θ̄).
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Figure 5.6: Close-up of operator display; labels are not shown during trials.

A red dot (as in Figure 5.6) was displayed to represent the optimal ship heading

calculated by the EA. The operator was instructed before the experiment to align

the green heading indicator dot with the red HUD marker. This control provided a

baseline for determining the maximum operator capabilities, i.e., the capability the

operator would have if the optimal solution was known to the operator. The HUD

was a form of indirect SC.

Haptic feedback (Haptic): This was a second type of indirect SC. The HA had manual

control of the ship. A Saitek Cyborg EVO Force joystick displayed a restoring force

to the operator based on the input error Δ, with

F = −Fmax · min
(∣∣∣∣ Δ

Δmax

∣∣∣∣ , 1
)
· sgn (Δ)

This resulting joystick force the operator’s hand in a direction that caused θ to ap-

proach θ∗. For example, if Δ ≤ 0 then the joystick applied a force to the right,

thus signaling the operator to decrease angle φ̄. The particular values used were

Δmax = π/2, Fmax = 2.1 N (measured at the joystick palm grip).
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Shared control, heading (SC2): The HA and EA shared control of the ship heading

through the relation

θ = θ̄ − aΔ,

with

a = max
(

0, 1 − d

d0

)
· max

(
0, 1 −

(
Δ
Δ0

)2
)

as in Figure 5.4. No additional cues were displayed to the operator. The particular

values during the experiment were d0 = 25, Δ0 = 3π/4.

Shared control, rate (SCJS): Here, the original joystick input angle φ̄ was modified by

the EA giving an effective joystick input angle of φ = φ̄ + δφ · u(δφ, φ̄), where

δφ =

⎧⎪⎪⎨
⎪⎪⎩
− φ̄

2 for |Δ| ≤ θth ,

−k · sgn (Δ) otherwise .

and the indicator function u is defined as

u(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if sgn (x) = sgn (y) ,

0 otherwise .

Hence, the HA and EA shared control of the rate, φ, at which the ship’s commanded

heading changes. No additional cues were displayed to the operator. The specific

values used were θth = π/12, and k = 0.5.

The difference between SC2 and SCJS is subtle: in SC2 the operator’s intended ship

heading θ̄ is perturbed by the EA, whereas in SCJS the intended joystick angle φ̄ is per-

turbed.

5.4.2 Effect of Shared Control on Minimum Time-to-go

Let T (x) be the minimum time-to-go at the location x = [x, y]T , that is, the time to reach

the origin assuming the ship starts at x and follows the time-optimal path to the origin. It
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can be shown that

T (x) =
h

V
(tan θ(x) − tan θf (x))

where θ and θf are implicit functions of x from (5.7). Consider the manually controlled

case θ = θ̄ = θ∗ + Δ, with Δ = θ̄ − θ∗ as defined in (5.1). The ship starts at location x and

travels under manual control for a length of time dt. After time dt the minimum time-to-go

will be

TMC = T (x + f(x, θ∗ + Δ)dt)

where f(x, θ) is the vector form of equations of motion (5.3). If, on the other hand, the

heading is under the SC law in (5.2) then θ = θ∗ + (1 − a)Δ and the minimum time-to-go

after time dt can be written as

TSC = T (x + f(x, θ∗ + (1 − a) Δ)dt)

The function T (x + f(x, θ)dt) is convex1 in the variable θ (holding all other variables

constant) for all dt > 0, with the minimum necessarily occurring at the optimal (i.e., where

θ = θ∗). Thus, for a ∈ [0, 1] and any x,

TSC ≤ TMC

This is illustrated in Figure 5.7, where T (x + f(x, θ)dt) is plotted for x = [10, 12]T and

dt = 0.01. Hence, the minimum time-to-go using SC never exceeds the time with manual

control. For a certain operator input θ at x, the minimum time-to-go with Blended

SC will never be strictly worse then that with manual control. Obviously, for other

systems where the cost function is not convex, the Blended SC (5.2) may result in greater

cost than manual control alone, as the EA may push the HA commands to a higher cost.

Also, it is assumed the operator input at (x, y) is independent of the type of control active,

so the operator command is assumed to not depend on the control law. Finding ways to

1Because of the dependence of both θ and θf on changes in x, showing convexity by proving d2/dθ2T (x+
f(x, θ)dt) > 0, ∀θ ∈ [−π, π] is straightforward yet tedious

37



29 16

29.18

m
e-

to
-g

o 
af

te
r d

t, 
T

(1 )e
0

1 2 3 4 5 6 7 8
29.14

29.16

m
in

im
um

 ti
m

heading, 

MCT

SCT

Figure 5.7: The minimum time-to-go, T (x + f(x, θ)dt).

Table 5.1: The optimal times to the origin and to the critical distance which terminated
each trial.

Location Optimal time to origin Optimal time to d = 1.5

(12,12) 14.97 14.37
(0,17) 18.47 18.04
(12,-12) 7.43 6.63

settle these issues is the subject of the ongoing research described in this thesis.

5.4.3 Experimental Procedure

Before the experiment, the operator was allowed five practice runs starting from various

locations in the field. During these runs the HUD control was active to provide instruction

on navigating the currents. Each of the trials began with the ship at one of three locations:

(12, 12), (12,−12), and (0, 17). The constants were set to h = 4 and V = 2. The operator

triggered a start button on the joystick and the simulation proceeded in real time with one

of the five control laws active. A trial concluded when the ship was within distance d = 1.5

of the origin (to avoid severely penalizing a user that only slightly misses the origin, as it

takes substantial time to loop back around). The optimal solutions from each location to

the origin and to the d = 1.5 boundary are shown in Table 5.1.

At no time during the experiment was the operator explicitly informed which of the

control laws was active. In cases when sensory cues were displayed, the operator was

not told the intended meaning of the cue. The starting locations and controller orders

38



MC HUD Haptic SC2 SCJS

N
or

m
al

iz
ed

 ti
m

e

(12, 12) (12, -12) (0, 17)
Location (x,y)

0.95
1.00
1.05
1.10
1.15

Figure 5.8: Summary of completion times

were randomized for each operator. To partially balance learning effects, each operator

experienced each controller type once (but in a random order) before the controller types

were repeated. Each operator visited each location exactly three times for each controller

during the experiment, totaling 45 trials per participant.

5.5 Results

Eight computer literate participants volunteered for the experiment. Results summarizing

the performance of all operators are summarized in Figure 5.8. The times are normalized

with respect to the optimal time to origin from each location, then averaged among all op-

erators for each controller. Error bars denote 95% confidence intervals. For each controller,

at each location, N = 24. The optimal times to origin are 14.97 s, 7.43 s, and 18.47 s re-

spectively for starting locations (12, 12), (12,−12), and (0, 17). The mean HUD controller

times were very consistent and only marginally exceeded the optimal time, as expected,

presumably because the tracking skill of the operators was sufficient to track the displayed

optimal command. While the HUD and Haptic control types produces superior results in

this case, it may be impractical in reality considering the special hardware required and the

cognitive attention/distraction that may be introduced to the HA. In contrast, the Blended

SC methods require only a way of modifying the operator input based on the intended task

and the machine state, both of which may be estimated in practice via the sensed inputs

alone. The completion times of the other controllers show more variation than HUD; how-

ever, both of the Blended SC approaches generally surpassed the performance under manual

control.
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A fair criticism of Blended SC in general is that the HA (who, depending on experience

and conditioning, may be very aware of a particular machine feel) cedes too much authority

to the EA. This may at best lead to a benign sense that the machine is not responding in

a manner consistent with operator expectations, and, at worst, lead to the machine failing

to respond to an operator’s safety-based evasive maneuvers.

To test for loss of control in this single-input example, four additional trials (two with

MC, two with SC2) with each operator were performed starting from position (15, 0). A

barrier was intentionally placed to occlude the optimal path as in Figure 5.9; hence the

EA essentially tried to cause the HA to collide with the barrier at the same time that

the operator was working to avoid it. The operator performance with barriers present was

19.1 s and 19.8 s, respectively for MC and SC2; however, the data lacked sufficient statistical

significant to clearly deem one approach superior to the other. Traversing the optimal path

from position (15, 0) to the origin in absence of the barrier takes 16.0 s; but the optimal path

which avoids the barrier was not calculated. More significant was the fact that, under both

manual and SC, only two trials among all experimental subjects resulted in collision with

the barrier. No operator affirmed a feeling of loss of control when queried about navigating

around the barrier.

5.6 Conclusions

An architecture for Blended Shared Control (SC) of a system with a single input was

presented. This was an initial illustration of applying Blended SC to a class of problems,
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including Zermelo’s navigation problem, which have a well-defined task and a closed-form

optimal solution which was globally convex in the input variable influenced by the SC.

Further, when the HA and EA had equivalent cost functions, the task time was lower

with SC than with manual control. In the case of conflicting objectives, the results were

not conclusive but did suggest that the HA was able to override the EA to prevent collision

with an obstacle in the nominal path tracked by the EA.

For this class of problems, initial evidence indicated that the Blended SC approach

is superior to purely manual control. Indirect SC included visual and haptic feedback

and resulted in lower task completion times than Blended SC, but required both active

attention from the operator and additional hardware to implement. Changes to the operator

interface may be unacceptable in some applications where consistency between machines is

tantamount.

The next Chapters discuss the application of SC to a four DOF manipulator, beginning

with identification of the intended operator task in Chapter 7, continuing with dynamics

and optimization of the excavator system in Chapter 8 and 9, and finishing with the Shared

Control formulation in Chapter 10.
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CHAPTER VI

BACKGROUND FOR TASK IDENTIFICATION AND ITS

APPLICATION TO EXCAVATION

A key component of the Blended Shared Control architecture is estimation of the operator’s

intended task. This chapter discusses background into why it is necessary to know the

operator’s task; how the task estimation problem is solved in other domains related to

robotics; and how this research introduced a simple, unique, and effective solution approach.

The chapter concludes by presenting an example of task identification.

6.1 Background

Before modifying an operator command, it is important to first know not just the input at

that time (which is measurable), but also the task that the operator intends to accomplish.

Generally, this task is directly measurable. The goal is to derive the intended task from

sensory information including commanded actuator velocities. Understanding the mapping

from operator velocity commands to intended task has several applications, such as pro-

viding a compact description of fundamental tasks, enabling real-time task interpolation

to predict future inputs, recognition of important or unexpected events, or automatically

lowering the sensitivity of the input device when a high-precision task is expected.

6.2 Analysis of an Excavation Dig Cycle

This section introduces a typical dig cycle. Data from recorded field tests will be used to

argue the merits of the task identification algorithm created through this research, and to

highlight the shortcomings in the methods of conventional task identification methods.

Excavators are most often used for trenching, truck loading, and bulk digging. All of

these are quasi-repetitive processes. Ancillary, non-cyclical uses of the machine, such as

craning, hammering, or tamping, are not considered. The common trenching cycle may

be delineated by four segments sketched in Figure 6.1: dig (fill the bucket with soil), raise
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1 2 3 4

DIG RAISE UNLOAD
RETURN

Figure 6.1: Illustration of common trenching dig cycle

(raise bucket out of trench and begin towards spoil pile), unload (empty bucket above spoil

pile; often involves “flick” of the bucket), and return (return to trench). Each cycle is

roughly the same as the preceding cycle, except for relatively minor differences necessary to

account for process dynamics including varying trench depth, varying ground penetration

locations, and changing dump locations.

Humans are imperfect operators. For example, in the case of manipulator control, it is

difficult to repeatedly hit a small target with very great accuracy; there will be randomness

in the final end effector position. To better understand the nature of these variations, an

analysis was conducted of data from a fully instrumented 20-ton excavator operated by an

expert with over 25 years of professional experience. The operator was instructed to dig a

standard flat-bottomed trench to 2.5 m depth. The boom cylinder stroke and swing angle

during the first 25 cycles is plotted in Figure 6.2. The extreme values of each function

for each cycle are denoted with the gray dots. Both types of cycle variance are evident.

The minimum boom cylinder stroke lengths generally trend downwards as more cycles are

performed, due to the gradual increase in trench depth. Similarly, the maximum cylinder

stroke increases as the spoil pile height slowly increases.

Observe that the variance in swing angle is larger during final positioning over the spoil

pile. Over the spoil pile, the variance in swing angle equates to a 1.04 m standard deviation

in final bucket position. Upon entering the trench, the final bucket position has a standard

deviation of 0.16 m. There is a higher penalty associated with missing the trench than

with missing the center of the spoil pile. Fitt’s law predicts that the manual positioning

of an end effector over a larger target will be subject to a greater amount of error than an

equivalent positioning task but with a smaller target [113]. This phenomenon is evident in
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Figure 6.2: The extreme values in boom cylinder stroke and swing angle for each cycle
during the first 25 cycles of trench digging.

the observed response.

6.3 Task Identification in the Mobile Hydraulics Application Domain

In the mobile fluid power domain, there exist techniques are technically considered online

task identification and hence deserve mention here for completeness. For example, certain

logic conditions acting on the operator input may prompt a system to automatically divert

flow from a function to cause another function to speed up. In other cases, the task is directly

communicated by the operator. The operator may manually select from a predefined set of

operating modes, for example [131]. None of the existing methods are suitable for predicting

the gross motion of the machine, however.

6.4 Task ID in the Robotic Manipulator Domain

The problem of deducing intended task based on sensed operator inputs may be considered

a sub-problem of general pattern recognition. Classical approaches to solve these problems

include neural networks, hidden Markov models, and linear and nonlinear variations within

the vein of principal component analysis. These are briefly discussed next.

This section gives a brief overview of three popular techniques (Dimensionality reduc-

tion, Hidden Markov models, and Neural networks) for identifying the task of an human-

controlled, multi-DOF robotic manipulator.
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6.4.1 Dimensionality Reduction

Principal component analysis (PCA) is a classical technique for dimensionality reduction

and is simple to implement and guaranteed to represent the true structure of data near a

linear subspace of the high-dimensional input space [132]. PCA is used in many domains to

transform a set of correlated variables from some large-dimension space into a smaller set

of uncorrelated principal components. A well-known example is the use of PCA in facial

recognition [133]. The most relevant application domain to the excavator task identification

problem is movement classification, where a set of measured (human) joint angles are used

to classify observed movements [134, 135].

In Jenkins’ work [134, 135], a measured time series of joint angles of a human’s four

DOF arm are segmented and the principal components calculated using a spatial-temporal

extension of Tenenbaum’s innovative Isomap algorithm [136]. The measured projections are

classified by comparing the measured principal components with a set of pre-programmed

primitives (e.g., one primitive may be reach out while another may be reach up). The

classical Isomap algorithm was applied to digging data for this research, but the results

were very sensitive to the topology of the data—as warned by Jenkins—and thus did not

yield acceptable results to be presented here. The spatial-temporal algorithm was not

applied to the excavator task identification problem.

6.4.2 Pattern Recognition Using a Neural Network

A four-dimensional plot of operator input commands during trenching is shown in Figure 6.3

(note that arm, boom, and swing commands are normalized to [−1, 1] and graphed; and

that markers of varying size denote the bucket velocity command). The line color and

marker shape indicate the manually-categorized task (here the tasks correspond to a dig

cycle segment) at each instant. The tight clustering of trajectories in Figure 6.3a hints at the

feasibility of task identification based on operator input. On the other hand, Figure 6.3b

illustrates the complexity induced by variations encountered during an extended digging

duration. Observe that the same point in input space may map to multiple subtask outputs.
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Figure 6.3: Operator input commands during consecutive trenching cycles. Marker symbols
(and line color) denote segment of dig cycle. Size of marker denotes Bucket command
(smallest symbol corresponds to bucket command of −1, largest symbol to command of +1.
Equivalent points in the input space map to different subtasks.

Neural networks (NNs) have been used for many applications including pattern recog-

nition and next-in-sequence prediction [137]. Hertz provides an excellent resource for

NNs [138]. For this example, a 2-layer NN having 4 inputs, 1 output, and 20 neurons

in the hidden layer is used in an initial attempt to classify the input commands according

to subtask. Training data inputs consists of the measured and filtered velocity commands

from the first 183 s (13 dig cycles) of a trenching task, and the network training targets

were the actual subtask performed (either dig, unload, or return), as classified from manual

inspection of the data. The data were resampled to 10 Hz. A standard back propagation

algorithm trains the NN. To check the performance and robustness the (trained) NN is

applied to the original data as well as the second half (i.e., unseen portion) of the trench-

ing data. The simulation results are shown in Figure 6.4. It should be noted that while

the task and subtasks remain the same, the nature of the task changes as the cycle pro-

gresses (e.g., as the trench gradually deepens the boom up command duration increases as

well). Comparing each time step, the network had 97.3% accuracy for the trained set, and

94.2% accuracy for the unseen set. For this operator, the identification performance seems

acceptable, considering that the input varies appreciably from one cycle to the next.

Input trajectories for completing a task will vary among operators. Data from a fully
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instrumented excavator was obtained during an experiment performed by two expert ex-

cavator operators. Both operators were instructed to dig his own level-bottom trench to a

depth of 3.5 m. The same fully instrumented excavator was used by both operators. One

of the study’s objectives was to determine the extent to which the operator style differed

for completing identical tasks. Though anecdotally each performed equally well, two very

different command sequences resulted. The operators’ differing technique is markedly ap-

parent in histograms of the fraction of time for which certain control patterns are input.

Figure 6.5 shows that both operators use the AR, BM, BK (arm, boom, bucket) pattern

as the major component of the dig cycle (this pattern generally, but not exclusively, maps

to the digging subtask). Besides this commonality, the rank-ordering of common input

patterns between these operators is dissimilar. The NN discussed above is not robust to

this inter-operator difference in digging style. Thus, a method of task identification that is

robust to the style of many operators is needed.

6.4.3 Summary of Task Identification Background

This chapter summarized conventional approaches of associating manipulator commands

with high-level tasks. These approaches, including dimensionality reduction and neural

networks, have thus far proven insufficient for identifying the task of human-controlled,

four DOF manipulators. Many methods rely on matching basic templates of the observed
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Operator 2Operator 1

Figure 6.5: Relative lengths of actuation time for various combinations of functions used
during a trenching cycle performed by two expert operators. [A], [B]: in any direction. [C],
[D]: the symbol case denotes direction (e.g., AR = extend arm cylinder and ar = retract
arm cylinder). The 16 most common Operator 1 patterns are shown in [C], while [D] shows
the same 16 patterns for Operator 2. The hashed boxes in [D] are the next 16 most common
patterns for Operator 2; note that neither of these appear in the top 16 for Operator 1.

motion to previously seen motions. However, this approach is not compatible with tasks

that can be completed in many different ways. In particular, Figure 6.5 showed that a

simple trenching task can be completed with vastly different operator input styles. In the

next chapter, a simple and effective technique to map operator inputs to manipulator tasks

is introduced. This method will require no prior knowledge of the task or the operator style,

and can adapt to variations in the task parameters over time.
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CHAPTER VII

IDENTIFICATION OF INTENDED OPERATOR TASK:

ESTIMATING THE DISPLACEMENT OF MOTION PRIMITIVES

This chapter discusses the identification of the intended operator task. The first section

presents a low-overhead method to describe point-to-point motions of general manipulators.

The motion of the actuators from one point to another will be described by motion primi-

tives. Any general manipulator trajectory will have a unique representation as a sequence

of motion primitives. The motion primitives will have a direction, Ω, and a length, x. Ω in-

dicates the direction each actuator moves and x indicates the relative actuator displacement

in that direction.

The remaining sections describe a means of estimating the length of a motion primitive—

and, hence, the future motion of the manipulator—given the primitive category and the

manipulator state. In this way, the intended operator motion at any moment is estimated.

7.1 Nomenclature

n Number of actuators

q Vector in Rn of generalized coordinates for actuator position

x Vector Rn of normalized position coordinates. x measures the remaining dis-
placement until the actuators reach the origin.

x̂ Estimated duration of a motion primitive

Ω The “direction” of a motion primitive

PΩ
x A motion primitive having displacement x and direction Ω

(·)k Indicates that variable (·) has been encountered k previous times since the ma-
nipulator began its motions. (·)k does not indicate the kth component of (·).

yk Measurement or observation vector at start of primitive, yk = [qk, ξk]

qk Value of the coordinate q at the start of occurrence number k
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ξk An additional set of observations made at the beginning of a primitive

xk The expected displacement of the kth occurrence of the primitive

hj(yk) Regressor function for estimating component j of x

H(yk) Block diagonal matrix of regressors

Θk Vector of unknown modeling coefficients

R Noise covariance matrix

JS Joystick; the operator interface device

RLS Recursive least squares

SVD Singular value decomposition

rampe Recursive Algorithm for Motion Primitive Estimation

7.2 Representing Point-to-point Motions with Motion Primitives

This section presents a method to represent actuator motion in a compact way. This

research considers the class of quasi-repetitive, point-to-point type motions in an obstacle

free environment; estimating motions of an arbitrary trajectory is outside the scope.

Consider the point-to-point motion illustrated in Figure 7.1. This motion is similar

to the motion of the boom and swing actuators during a common trenching cycle. The

manipulator coordinates q1(t) and q2(t) are shown in Figure 7.2a. Observe that the motion

is essentially repetitive, although there are minor variations from one cycle to another.

The formulation considered here divides the motion of the actuators into a sequence of

segments called motion primitives. A motion primitive denotes the direction and the relative

displacement of an actuator coordinate through the motion. The coordinate may be the

actuator length, the joint angle, or any similar generalized position variable. Since only

the relative displacement of a trajectory is saved, each motion primitive will be piecewise

monotonic in the actuator coordinate. The transition between segments is defined by some

trajectory-dependent criteria, for example changes in actuator velocity, changes in actuator

position, or changes in valve operating mode.

50



1 2 3

Figure 7.1: Illustration of a two-point motion sequence involving boom and swing

For example, alternating regions in Figure 7.2 indicate a segmentation based on changes

in actuator velocity. The velocity is plotted in Figure 7.2b. A transition occurs at the time

either event below happens:

1. Transition to Primitive Category Ω = 1: Occurs when Swing velocity u1 changes sign

from positive to negative.

2. Transition to Primitive Category Ω = 2: Occurs when Boom velocity u2 changes sign

from negative to positive.

The unshaded regions in Figure 7.2b denote Ω = 1, while the shaded regions denote Ω = 2.

The category of motion indicates the direction each actuator moves, in particular:

Ω = 1 �−→ q̇1, q̇2 < 0 (decrease swing angle and decrease boom cylinder length) (7.1)

Ω = 2 �−→ q̇1, q̇2 > 0 (increase swing angle and increase boom cylinder length) (7.2)

The motion primitive has a category which denotes the direction of displacement, and

a magnitude which denotes the displacement of each actuator. The category is denoted Ω

and the absolute displacement is denoted x. The value of x at any time t represents the

remaining actuator displacement, measured in absolute value, until the end of the present

motion primitive. For the example motion considered here, the relative displacement x(t)

is given in Figure 7.3.

PΩ
x denotes a motion primitive; the superscript Ω indicates the category of motion,

or the direction the actuators are moving. The subscripted value x indicates the relative

actuator displacement.

For example, the motion considered in Figure 7.2 is decomposed into the approximate
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Figure 7.2: Boom and swing coordinates for two-point motion sequence. The unshaded
regions denote Primitive Category 1; the shaded regions denote Primitive Category 2.
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repeating sequence of motion primitives

{
P 1

[60,0.32], P
2
[60,0.32]

}

indicating that first, the swing angle should decrease by 60 degrees and the boom cylinder

length should decrease by 0.32 m; and second, the swing angle should increase by 60 degrees

and the boom cylinder length should increase by 0.32 m.

Each generalized coordinate may be increasing, stationary, or decreasing so for an n-

DOF manipulator there will be 3n categories. The n-dimensional vector x represents the

relative displacement of each coordinate. Each component of x is shifted such that the

displacement x will always be positive and so end of the motion corresponds to x(T ) = 0.

The primitive specifies the direction and absolute value of the change in each coordinate

throughout the motion. Unfortunately, the mapping from trajectory to motion primitives is

non-injective, as every manipulator trajectory defines a unique sequence of motion primitives
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Figure 7.4: Four trajectories with the same motion primitive decomposition

but a particular sequence of motion primitives does not describe a unique trajectory, since

there exist an infinite number of monotonic functions between any two endpoints. For

example, eigure 7.4 shows four trajectories that have the same motion primitive. There, the

motion primitive category is Ω = increase component k and the displacement is x = 15 units.

The motion primitive formulation naturally has a two-part identification process: first

is determining the motion primitive category, Ω; second is estimation of the expected dis-

placement. The remaining sections of this chapter proceed in that order.

Note that the particular segmentation rules applied will depend on the specific applica-

tion.

7.3 Identifying the Motion Primitive Category

The motion primitive category Ω is determined by the sensed operator velocity commands,

ū. The sensed commands are subject to an appreciable amount of noise, due to a combi-

nation of measurement noise incident present on the input signal and input noise from the

operator due to “glitches” or other unintentional joystick (JS) inputs. A “glitch” occurs as

the result of an unintentional operator input. For example, an operator may inadvertently

retract the arm cylinder; when the operator observes the function moving in the direc-

tion opposite of the intended motion, the operator quickly corrects the input. This glitch

phenomenon is much more common in novice operators, and is a prime motivation cited

by proponents of coordinated control [113]. Glitches do not represent the true intended

operator task and are detrimental to the task identification process.
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Figure 7.5: Illustration of Backward Merge Algorithm applied to actual trenching data.
(a): Boom cylinder length. (b): Swing angle. (c): Initial classification of motion primitives.
(d): Classifications after Backward Merge operation. The two-point, two-function cycle was
performed by an expert operator on a 20-ton excavator. Note that the primitive category
classification samples the operator input once per 100 ms. The solid vertical lines represent
the boundaries of each motion primitive.

7.3.1 Backward Merge Algorithm

Figure 7.5 shows the boom and swing trajectory and the classification of the primitives

for the two-function task performed by an expert operator. An initial classification round

(Figure 7.5c) based solely on instantaneous velocity inputs exhibits considerable noise. Noise

may be introduced if the operator inadvertently overshoots and compensates by reversing

course, or by noise present in the measurement. One successful approach to filter unintended

motions is the Backward Merge algorithm.

The Backward Merge algorithm combines two primitives from different categories when
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primitive Pj−1 produced small changes xj−1 relative to its prior primitive. (c): The category
of Pj−1 is changed to Pj−2, and the origin of this primitive is shifted by xj−1.

only small (and, presumably, unintentional) relative displacements in cylinder position occur

between them.

(0) Suppose the primitive category has just changed from Ωj−1 to Ωj .

(1) Determine the size of the displacement of the previous primitive, if it is “small”

according an appropriate metric, e.g., ‖xj−1‖2 ≤ k (where k is a tuned constant), then the

previous primitive was an unintentional “glitch”. To correct for this,

(2) Shift the origin of the previous primitive: xj−2 = xj−2 + xj−1 and

(3) Re-code the category of the previous motion primitive: Ωj−1 = Ωj−2.

Figure 7.6 illustrates this Backward Merge algorithm, showing the merging of two prior

primitives if the norm of the displacement is small. Figure 7.5d is the classification result-

ing from application of the Backward Merge operation. Observe that the short-duration

classifications around 172 s to 174 s are effectively filtered by the algorithm.

The Backward Merge algorithm can be described in the notation of primitive sequences

by the operation

BackMerge(j) :
{

P
Ωj−2
xj−2 , P

Ωj−1
xj−1 , P

Ωj
xj

}
�→
{

P
Ωj−2

xj−2+xj−1
, P

Ωj
xj

}
if ‖xj−1‖2 < k

7.3.2 Boundary Entry Algorithm

Due to the motion primitive formulation, the actuator motion is piecewise monotonic. There

is a bit of arbitrariness associated with how a null input is handled. The following convention
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is used to specify when two primitives are merged: if a function goes to a null velocity (with

the exception of a null input of all DOFs), then the category of motion will be the same

as the previous category, unless a change in direction of some function has occurred. To

illustrate, consider the two primitives P1 = P
(−,BM)
x1 and P2 = P

(SW,BM)
x2 in the sequence

{P1, P2}. Suppose a single joystick actuates both the swing and the boom functions. The

motion category (−, BM) is achieved by moving the joystick forward, and the category

(SW, BM) is achieved by moving the joystick forward and right. See Figure 7.7a. By

moving the joystick from position 0 to 1 to 2 and back to 0, the manipulator follows a path

outlined in Figure 7.7b. Since the transition from motion category (−−, BM) into category

(SW, BM) resulted in the activation of a function (swing), hence the Boundary Entry rule

does not apply in this case.

In contrast, consider the sequence {P2, P1} with P1 = P
(−,bm)
x1 and P2 = P

(sw,bm)
x2 . This

sequence is realized by displacing the joystick back and left, as in Figure 7.7c. By moving

the joystick from position 0 to 1 to 2 and back to 0, the manipulator follows a path outlined

in Figure 7.7d. Since the transition from motion category (sw, bm) into category (−, bm)

resulted in the deactivation of a function (swing), thus in this case, the Boundary Entry

rule applies, and the motion primitives are merged accordingly:

{
P sw,bm

x2
, P (−,bm)

x1

}
=
{

P
(sw,bm)
x2+x1

}

The boundary entry filter has a subtle but important consequence. Namely, it allows

description of actual endpoints of a point-to-point motion, even though the operator may

have completed the motion imperfectly. For example, consider the displacement q1 and q2

of two actuators as shown in Figure 7.8. The goal is to arrive at point A in minimum time.

For whatever reason, perhaps an unfamiliarity with manipulator control, the operator may

command the trajectory sketched in the solid line, where actuator 2 reaches its goal state

before actuator 1. Thus, there is a “dogleg” in the resulting trajectory. In absence of the

boundary entry filter (i.e., defining the motion primitives strictly based on the region of the

u-plane), the path consists of two motion primitives. In essence, the motion is incorrectly
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Figure 7.7: Two similar manipulator motions that illustrate the different cases of the Bound-
ary Entry algorithm. (a),(c): Sketch of the sequence of joystick displacements for each
motion. (b),(d): The manipulator positions at intermediate points along motion
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q 2

q1

A

Figure 7.8: A manipulator path plotted in the q1, q2-plane

identified as two distinct paths. However, application of the boundary entry filter correctly

identifies the parameters of the fundamental task. Of course, if the operator did intend the

original motion—for example, perhaps the dogleg was to avoid a workspace obstacle—then

the task would be misidentified.

7.4 Limitations on Trajectory Types

The motion primitive formulation implicitly assumes that the manipulator path is uniquely

parameterized by the generalized position q and the motion category Ω. The coordinate

q may be expressed in any domain, e.g., actuator lengths or joint angles, as long as there

is a one-to-one correspondence between the chosen coordinate and the degrees of freedom.

Paths which are not parametrized by q and Ω are not suitable for the motion primitive for-

mulation. Any non-intersecting path, such as Figure 7.9a, is suitable for decomposition into

a sequence of motion primitives. Also, any path which intersects at an oblique angle, such

as Figure 7.9b, is suitable because knowledge of the motion direction at the intersection

allows unique specification of the future path manipulator position. However, paths which

intersect and are tangent (i.e., the velocity of the path at the intersection is point is degen-

erate) are not parametrized by q and Ω alone, such as in Figure 7.9c where it is impossible

to tell which “loop” the manipulator will trace given only the position and velocity at the

intersection point.

7.5 Algorithm for Motion Primitive Estimation

While the motion primitive category can be directly determined from measured and filtered

operator inputs, the length or magnitude of a given primitive is unknown. The rampe
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(a) Non-intersecting path (b) Oblique intersection (c) Tangent intersection

Figure 7.9: Example manipulator paths suitable for the Motion Primitive formulation. (a)
and (b) are uniquely parametrized by generalized position q and motion category Ω, whereas
(c) is not.

algorithm described next estimates the length using the machine state at the start of the

primitive and the previous durations of that primitive.

This section describes the Recursive Algorithm for Motion Primitive Estimation—named

rampe—for estimating the displacement of a motion primitive. The problem can be sum-

marized by

Problem Statement: At the beginning of the kth occurrence of a primitive

within category Ω, e.g., PΩk
xk

, find the expected duration, xk ∈ Rn, given the

observation yk, yk−1, · · · , y1 with yk ∈ Rn+m.

For convenience, the symbols (x, Θ, P , etc.) are used for all categories of motion, and

it is understood that for each category of motion there will be stored in memory the full

set of variables necessary for the rampe algorithm.

The displacement xk depends on the manipulator path. Subscript k denotes that the

motion primitive category has been encountered k previous times during the dig cycle.

Note the subscript k denotes the number of times the particular primitive was previously

encountered during the motion; in this context, k does not refer to the kth component of the

vector. The manipulator has n degrees-of-freedom, so xk is a real vector with n components.
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Figure 7.10: Definition of actuator variables for describing the absolute and relative actuator
position. Subscript k denotes a measurement at the start of the kth occurrence of the motion
primitive; a hat denotes estimated values.

In reality, the displacement is some unknown parametric function of the intended operator

path. For estimation purposes, the displacement xk is assumed to be well approximated by

the unknown function

xk = f(Ω, yk) (7.3)

where Ω is the primitive category and yk = [qk, ξk] ∈ Rm+n is an observation vector taken

at the start of the motion primitive. The observation always consists of the generalized

coordinates qk ∈ Rn which describe the initial manipulator configuration, and the optional

additional measurements ξk ∈ Rm which may include additional measures such as the total

commanded flow rate. Figure 7.10 gives the convention for defining the cylinder stroke.

The model f ignores any direct time dependence, although the additional measure ξ can

include such time-dependent terms including k or t.

The unknown model f in (7.3) is expanded as a linear function of the observation yk

and unknown parameters θij

xk = H(yk)Θ (7.4)

where H is a block diagonal regressor matrix defined as

H(yk) =

⎡
⎢⎢⎢⎢⎣

h1(yk) · · · 0
...

. . .
...

0 · · · hn(yk)

⎤
⎥⎥⎥⎥⎦ (7.5)

The n elements hj(yk) are row vectors used as regressors to estimate the jth component of
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xk. In general, each regressor hj can have a different structure and order for each component

of xk. For example, the first component of x may be found to have no dependence on q3, so

that component may be left out of the regressors h to save computation and storage cost.

The vector Θ is a vector of unknown parameters θj :

Θ =

⎡
⎢⎢⎢⎢⎣

θ1

...

θn

⎤
⎥⎥⎥⎥⎦

where each θj is itself a vector of unknown parameters θij for estimating the jth component

of xk. The number of elements in θj is equal to the dimension of hj .

An estimate for the length of occurrence k of the motion primitive is formed by com-

puting the model (7.4):

x̂k = H(yk)Θk−1 (7.6)

where x̂k is the estimated duration. The model parameters in Θk−1 are chosen so that

the model (7.4) fits the observed duration of the previous k − 1 occurrences, in the least

squares sense. The model parameters Θk−1 are updated recursively before a new estimate

is computed, using the update law [139]

Θk−1 = Θk−2 + Kk−1 (xk−1 − H(yk−1)Θk−2) (7.7)

with

Kk−1 = P−1
k−1H(yk−1)T G (7.8)

The matrix Pk−1 is updated recursively as

Pk−1 = Pk−2 + H(yk−1)T GH(yk−1) (7.9)
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Matrix G is the inverse of the noise covariance matrix R

G−1 = R =

⎡
⎢⎢⎢⎢⎣

σ1 · · · σ1n

...
. . .

...

σn1 · · · σn

⎤
⎥⎥⎥⎥⎦ (7.10)

where R is assumed constant, but is in reality a function of the state q. For instance,

Figure 6.2 indicates the final bucket position over the trench (q1 ≈ 0) has lower variance

than the final positioning over the spoil pile. One key role of R is to scale the elements

of the vector x, as each element may have very units of different magnitudes (i.e., degrees

versus meter)

The matrix Pk−1 may be singular or close to singular due to the regressors in H(yk−1)

being nearly linearly dependent. In this case, the inverse (Pk−1)
−1 required in computing

(7.8) may be numerically ill-conditioned (if Pk−1 close to singular), or not unique all-together

if H is rank-deficient.

As a remedy, (Pk−1)
−1 is computed using the singular value decomposition (SVD) of

Pk−1. First, Pk−1 is expanded as

Pk−1 = UΣV T

where U and V are sets of orthonormal basis vectors and Σ is the diagonal matrix of singular

values. Next, the diagonal pseudoinverse Σ−1 of the matrix of singular values Σ is calculated

by transposing the matrix obtained after inverting each element along the diagonal of Σ.

When the matrix Pk−1 is nearly singular, some of the elements in Σ will be close to zero.

Only those diagonal elements larger than a given tolerance tol will be inverted; the other

elements are set to zero. Finally, the pseudoinverse of Pk−1 is computed as

P−1
k−1 = V Σ−1UT (7.11)

7.5.1 Initialization

The parameters in Θ must be initialized before computing an estimate. This is done by

waiting until the primitive Ω is encountered Ninit times before making the first prediction.
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For k = 1, · · · , Ninit, no predictions for xk are made. Rather, the data is stored to form an

estimate xk beginning with k = Ninit + 1.

At the initialization step, a total of Ninit measurements of x, each with a corresponding

observation y, are accumulated. A large regressor matrix H0 is formed by placing the

submatrices hj,init along its main diagonal, where

hj,init =
[
hj(y1)T , hj(y2)T , · · · , hj(yNinit))T

]T

Similarly, the vector xinit is formed by “unwrapping” the previous measurements to produce

xinit = [x1,1, · · · , x1,Ninit , x2,1, · · · , x2,Ninit , · · · , xn,1, xn,Ninit ]
T

where xj,k is component j of the kth sample of xk. The initial estimate of the parameter

ΘNinit−1 is obtained by solving the system of equations in (7.6).

SVD is used to solve the system (7.4) by direct computation using

ΘNinit−1 = V r (7.12)

where r is the solution to the diagonal system

Σr = UT G0H0xinit

and U , Σ, V are from the singular value decomposition of matrix [G0H0]. As before,

inversion of r is carried out by setting to zero the components of r corresponding to the

diagonal elements of Σ which are below a specified threshold. G0 is the inverse of the initial

covariance matrix R0, where R0 is a padded version of (7.10) and H0 is the initial set of

regressor matrices, defined earlier. The initial matrix PNinit−1 for use in (7.9) is

Pk−2 = HT
0 G0H0

To compute the initial estimate, first compute ΘNinit−1 using (7.12), then compute x̂k
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using (7.6).

A flow chart for calculating the estimate x̂k is shown in Figure 7.11. A description of

each of the modules is provided in Table 7.1.

7.5.2 Engineering Tests with the rampe Algorithm

A simple experiment with a 2 DOF kinematic excavator was performed to benchmark

the accuracy at which the RLS algorithm estimates the primitive displacement xk. The

regression model used assumes all components of x are linearly dependent on q, as in

hj(qk) =
[
qT
k , 1
]

(7.13)

Each vector of unknown parameters, θj , has 3 components in this case.

The operator moved the bucket through a cycle defined by the sequence of targets shown

in Figure 7.12. The path follows the sequence

A → B → C ′ → C → C ′ → B → A → · · ·

and then repeats. The coordinates, q, which define the locations of each target in actuator

space, and the minimum displacement, x, between targets is summarized by Table 7.2.

The generalized coordinates q for the swing and boom during a portion of the cycles

are shown in Figure 7.13. A total of 23 cycles was completed and used for studying the

identification problem, the results of which are described next.

Only the swing and boom functions are active. As discussed earlier, the motion can be

described by a displacement x in the direction of primitive category Ω, which, for n = 2,

can assume nine possible values as defined in Figure 7.14.

The operator inputs are processed with the Boundary Entry and Backward Merge al-

gorithms as discussed earlier. The trajectory in Figure 7.15 plotted in the q-plane has been

coded at each time instance to reflect the instantaneous motion primitive category Ω. The

purpose of Figure 7.15 is to show: the human operator is not precise in commanding the

motion, as evidenced by the general “width” of the plot; some motion primitives only occur

65



1j j

1 ( )PRE
k kx q t q

1j

1
PRE
kx b 2j j

2j

1 1 1
PRE

k k kx x x

2j

1 2j j

j

1 ( )k kx q t q

1

( )
k k

k

q q

q q t

INITk N

1INITk N

1k :, ( )INITq k q t1:, 1INIT kx k x

1

0

0

0

0

0 0

0

(:, 1)

( ) 1 (1,:) ( ,:)

0

0

(1,:) ( ,:)

INIT k

INIT INIT INIT

T

T
T T T

INIT INIT

x k x

h h q q q N

h

H

h

U V G H

r U G x x N

2

2 0 0 0

k

T
k

Vw

P H G H

1 1

1

1 1

1

1 2 1 1

1

( )

0

0

k k

k

k k

k

T
k k k k

T
k

h h q

h

H h

h

P P H GH

U V P

1 1
1

1
1 1 1

1 2 1 1 1 2

T
k

T
k k k

k k k k k k

P V U

K P H G

K x H

Output most 
recent data

j

j

1j

for 1 : ( 1)

  if tol

    ( ) ( )/

  else

    ( ) 0

end

INIT

ii

ii

i N N

w i r i

w i

1

1

for 1 : ( 1)

  if tol

    1/

  else

    0

end

ii

ii ii

ii

i N N

1

( )

0

0

k k

k

k k

k

k k k

h h q

h

H h

h

x H

j

1k k

2 1

2 1

k k

k kP P

1k k

Y

N

N

N

N

1

2

3 4 5

6
7 8

9

10 11 12 13

14

15

16

17

18
19

20 21

22

2324

Y

Data storage for 
primitive category 1j

Figure 7.11: Flowchart for the rampe algorithm used in estimating the expected duration
x̂k of the present primitive Ωj , using recursion. A description of each block is provided in
Table 7.1. The double lines denote the transfers into or out of memory for all data (xk, qk, Θ,
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Table 7.1: Description of the flow chart blocks in Figure 7.11

Description of flow chart elements in Figure 7.11

1. Check if the primitive category has changed.

2. Save the length of the primitive that just ended
as xPRE

k−1 .

3. Test if the previous primitive needs to be merged
with its prior.

4. If the current primitive Ωj is of the same category
as the one twice before (Ωj−2), then the last
primitive (Ωj−1) was merely a “glitch”.

5. Since the primitive that occurred prior to the
“glitch” was only interrupted by the glitch,
the occurrence count for that category was
wrongly incremented. Thus, the count is
decremented.

6. The length of primitive Ωj−1 is calculated as
xk−1 = q(t)−qk, where q(t) is the value of the
current generalized coordinate, and qk is the
(recorded) starting value of primitive Ωj−1.
This updated information for Ωj−1 is saved.

7. The data for primitive Ωj−2 is loaded. The end
point is adjusted by the length of the (short)
duration of Ωj−1. The data for primitive Ωj−2

is resaved.

8. Since the previous primitive was combined with
its prior through the Backward Merged pro-
cess, the category of the previous primitive
must be updated.

9. Load data for primitive Ωj and update the start-
ing point of the previous iteration (qk−1 = qk)
and the current iteration (qk = q(t)).

10. Check if this primitive category is still in the
learning phase.

11. Check if this is the first time primitive Ωj is en-
countered.

12. Append the initialization data for the primitive
length x.

13. Append the starting point q with the previous
cycles.

14. Check if this will be the first estimate of x̂

15. Prepare variables to use Least Squares via SVD
to compute the initial estimate.

16. Compute the projection vector w for the Least
Squares estimate by computing the (reduced)
pseudo-inverse the singular values matrix.

17. Compute the least squares estimate of the pa-
rameter vector Θ and the matrix P to be used
in computing the initial estimate of x̂k.

18. Compute the necessary terms to update the re-
cursion relationship for RLS estimation. This
includes calculating the SVD of Pk−1.

19. To invert Pk−1, the reduced pseudo-inverse of
the matrix of singular values Σ is used.

20. Update the variables for the RLS estimation of
xk.

21. Compute the estimate of the primitive length,
x̂k using the present generalized coordinates
qk as a basis, and the most up-to-date param-
eters Θk−1.

22. Store the variables for use during the next iter-
ation.

23. Update the number of times primitive category
Ωj has been encountered. Push all data for Ωj

back to memory.

24. Output most recent estimates, including x̂k.

Table 7.2: Description of 2 DOF Cycle

Generalized coordinate, q Displacement x to next target

Target SW [deg] BM [m] SW [deg] BM [m]

A 64.4 2.79 -41.7 0.16
B 22.7 2.95 -22.7 -0.16
C’ 0 2.79 0 -0.19
C 0 2.60 0 0.19
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Figure 7.15: Trajectory of an example motion, plotted in the q-plane. The markers denoting
the instantaneous motion primitive category, Ω. Each symbol denotes a particular primitive
category, as determined by the legend at the top of the frame.

in one region of the q-plane, while others occur at multiple regions.

The RLS algorithms described above were used to estimate the duration x̂k of a motion

primitive when a new category of motion is encountered. Figure 7.16 illustrates the perfor-

mance of these methods. Only results for the five most encountered primitives are shown.

Green circles represent the state qk at the beginning of the motion primitive; cyan triangles

mark the estimated end point, x̂k +qk; red squares mark the actual end point of the motion

primitive. Three iterations were completed during the initialization phase (since Ninit = 3);

the estimates during the learning phase were simply set to x̂k = 0 for k = 1, · · · , Ninit.

Notice that for Ω = 1, Ω = 4, and Ω = 7 there are two distinct clusters from which the

motion primitive begins. The displacement x for each of these starting points is different.

By defining a structure such that regressors depend on the initial state q as in (7.13), the

functional dependence of xk on qk can be captured.

The estimation error E = xk− x̂k is large during the initialization phase. The error gen-

erally improves by increasing the number occurrences a particular primitive is encountered,
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as shown in Figure 7.17. Since the process is controlled manually by a human operator, it

is reasonable to expect the error to never settle to zero (as a perfect estimate would require

exact knowledge of the future operator input). Generally, the error in estimating the boom

cylinder displacement is within 15 percent of the full stroke of the cylinder (E1 is typically

less than 0.2 m, and the maximum boom cylinder displacement is 1.4 m).

7.6 Summary

The motion primitive formulation can describe large-scale manipulator motions in the

workspace as a sequence of shorter actuator displacements. The motion primitives are

delineated based on a piecewise monotonic decomposition of the original actuator trajec-

tory. Only the displacement of the actuator across each primitive is saved, thus simplifying

the description of larger actuator trajectory. Further, the motion is described by relatively

short-duration motion primitives. This may prevent large errors in position estimates from

compounding, as the error in relative actuator displacement is reset whenever a new motion

primitive is encountered.

Any particular motion primitive can describe an infinite number of possible trajecto-

ries. Thus, this formulation is not appropriate for describing the temporal dependence of

the actuator motion or for imposing constraints on the actuator motion, e.g., to describe

particular regions in the actuator space to avoid in case of the presence of obstacles.

The motion primitive formulation is well suited for describing motions within an obstacle

free environment. Further, the motion is conveniently decoupled into two elements: the

motion primitive category, Ω, and the relative actuator displacement, x. The category Ω

is determined by sensing and filtering the operator input commands, while the expected

displacement, x̂, is estimated using previous observations in a recursive algorithm.
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CHAPTER VIII

DYNAMIC MODELS OF THE HYDRAULIC MANIPULATOR

SYSTEM

In this chapter, two machine models are discussed. A dynamic model of the excavator

system was used to simulate the response of the machine during human factors testing.

The model used for simulation is relatively high-fidelity but remains capable of running

in real time. However, this model is unsuitable for use in the task optimization problem.

For this, a quasi-dynamic model was developed to approximate the dynamics and salient

motion constraints over moderate time periods of individual motion primitives.

The testbed was a Bobcat 435 compact excavator, pictured in Figure 8.1. The excavator

model described in this chapter was based on the stock machine characteristics, with the

exception of the hydraulic system which was been modeled after a hypothetical independent

metering control system.

8.1 Nomenclature

n Number of actuators

q, q̇ Generalized position and velocity of actuators in cylinder space

θ, θ̇ Joint space angle and velocity

y, ẏ Task space coordinates of end effector position and velocity

F External force acting on actuator

Lp Differential pressure load applied by actuator (F = AbLp)

Ps, Pr Supply and return pressures, respectively

Pa, Pb Pressure on head and rod side of actuator, respectively

Aa, Ab Effective cylinder areas of the actuator

Q Flow rate of hydraulic fluid

K, Kcmd Actual and commanded valve flow conductance
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Figure 8.1: The Bobcat 435 compact excavator research testbed (photo courtesy of Mark
Elton)

Keq, Peq Equivalent flow and pressure for the particular valve operating mode

Dk Maximum speed of actuators, for the particular operating mode

ψ Flow-velocity ratio the actuator velocity to the flow into the valve

u Nominal actuator velocity

ū Commanded actuator velocity

rk Normalized joystick displacement, in [−1, 1], for function k

R̂k(rk) Function mapping joystick command to fraction of maximum actuator speed

U Domain of achievable actuator velocities

8.2 Overview of Excavator Dynamic Model

The hydraulic excavator consists of two primary subsystems: the linkages and the actua-

tors. The swing, boom, arm, and bucket functions comprise the linkage system in a typical

excavator, as in Figure 8.2b. Dynamic models of fluid power systems are common in liter-

ature, but vary in degrees of complexity and fidelity. The model used for this research is

described in this chapter.

A block diagram in Figure 8.3 shows the interactions of the major components in the

excavator dynamic model. Each block is briefly described in Table 8.1. The next section

gives further details about the core elements of the model.
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Table 8.1: Description of the system flow chart blocks in Figure 8.3

Description of flow chart elements in Figure 8.3

1. The angular displacement R of the four joysticks
is converted into a nominal velocity command
ū

2. A shared control algorithm (discussed in Chap-
ter 10) perturbs the operator input by an
amount δu

3. The velocity command may exceed the machine
capabilities, due to pump and valve flow lim-
its. Infeasible velocity commands must be pro-
jected into the feasible region.

4. A control system calculates the required system
pump pressure Ps,cmd and the orifice flow con-
ductance Kcmd for each orifice in each valve for
all functions. The valve openings are a func-
tion of velocity command ucmd and the sensed
system pressures. This logic may, for ex-
ample, be implemented by hydro-mechanical
logic (e.g., in pressure-compensated load-sense
architectures), or, in the case of this system,
a proprietary control algorithm.

5. The electro-hydraulic poppet valves have a finite
response time that must be accounted for.

6. The pump dynamics include the pump itself (con-
sisting of leakage and first order swash plate
dynamics), as well as the electronic pump
pressure controller.

7. Given the incident system pressures and the valve
openings, the flow through the valve is com-
puted using standard orifice models.

8. The pressure within the cylinders (and swing
motor) is computed by integrating the pres-
sure dynamic equations. The model includes
lumped parameters for conduit volume, as well
as seal friction.

9. Computing joint torque from cylinder pressure
(and motor torque) requires knowledge of the
inverse kinematic mapping between cylinder
space and joint space.

10. The linkage response is a function of the torques
acting on the links. Lagrangian methods
are used to compute the angular acceleration,
which is integrated to obtain the position and
velocity of the joints. If any cylinder is near
the end of stroke, the model sets the corre-
sponding velocity and acceleration to zero.

11. The response θ and θ̇ is converted from joint
space to cylinder space (x and u) using a for-
ward kinematic mapping.

12. The bucket position relative to the ground is
computed using a forward kinematic model.

13. Soil reaction forces are computed based on the
current soil state, and the speed and velocity
of the bucket.

14. The operator observes the machine configura-
tion and adjusts the velocity commands to
achieve the desired response.
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8.3 Dynamics of the Linkage System

Many resources are available for modeling multi-domain systems such as excavators [21, 22].

In the Intelligent Machine Dynamics Laboratory at Georgia Tech, several researchers have

contributed to a C++ based package containing general-purpose models of common linkage

systems actuated by hydraulic cylinders [7, 35, 49]. The models are usable for a broad

class of kinematically similar machines including hydraulic manipulators, backhoes, and

excavators. The package includes models for the equations of motion of the linkages, as well

as the forward and inverse kinematics relating variables within three frames: the cylinder

space (lengths of the hydraulic actuators, given symbol q), the joint space (generalized angle

of each rigid body link, with symbol θ), and the task space (the end effector position and

orientation, given symbol y). To use this software library, the model parameters need only

to be set up to match the manufacturer’s CAD specifications. Since the models have been

presented elsewhere, and because the proprietary nature of the manufacturer data, only a

brief overview of the linkage dynamics is given in this chapter.

The linkage response to an applied torque is expressed in closed form as

θ̈ = [M (θ)]−1
(
T − C

(
θ, θ̇
))

(8.1)

where θ = [θ1, θ2, θ3, θ4]
T are the linkage joint angles as in Figure 8.2 [M (θ)] is the inertia

matrix (including gravitational terms); T is the vector of applied torque in joint space;

and C is the vector including torques due to friction, applied external loads such as ground

forces, and Coriolis effects. Figure 8.2b defines the convention for describing the joint angles

θ and the actuator forces F . Equation (8.1) has an identical form when applied to a wide

class of machines ranging from 10-ton compact excavators to 40-ton full-size excavators.

The joint torque T is a function of the generalized actuator forces F = [F1, F2, F3, F4], the

θ-dependent moment arm of the linkage (or, for the swing function, the effective gear ratio

between motor and joint), and the joint friction.

When the joint angles are within allowed limits (i.e., neither of the cylinders is at its

stops), the equations of motion (8.1) are integrated as usual. If either of the actuators are
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at its end of stroke, then an unknown reaction force acts on the system and the equations

of motion (8.1) are invalid. In this case, the angular velocity θ̇ and acceleration θ̈ are set

to zero to represent the effects of the hard stops while avoiding the stiffening effects often

associated with integrating events having short timescales.

8.4 Dynamics of the Actuator System

An engine powers a drive train and one or more pumps. The actuator system uses pressur-

ized oil to transfer power to the linkages using an arrangement of pumps, valves, conduits,

and actuators such as hydraulic cylinders and motors. While the linkage systems of many

hydraulic manipulators are kinematically and dynamically similar, the actuator systems are

markedly dissimilar. Consider the hydraulic architecture described in Figure 8.4 having a

single system pump and a simple parallel arrangement of valves. Actual hydraulic circuits

are more complex than the one illustrated, and typically may include additional valves, en-

ergy storage devices, additional interconnections between functions, and circuitry for pilot

and charge flow. Many larger excavators also have more than one system pump.

A stock Bobcat 435 excavator uses conventional spool valves to distribute the flow. In

contrast, the excavator studied here utilizes a hypothetical independent metering control

(IMC) architecture. Both the valve arrangement and high-level valve control logic are based

on a technology called INCOVA which was developed by HUSCO Int’l. The specific archi-

tecture of the hydraulics is mostly inconsequential and the analysis and results presented

elsewhere in this thesis can be applied to other hydraulic architectures as well.

In short, the INCOVA Valve Controller reads a velocity reference u and computes the

necessary valve control signals to cause the hydraulic motor and cylinders to exert forces on

the linkage system in order for the functions to respond as dictated by the reference u. The

following subsections will describe models for the valve controller, the valves, the pump,

and the cylinder.

8.4.1 The Hydraulic Cylinder and Motor

Hydraulic actuators include motors (rotational actuators) and cylinders (linear actuators).

The static and dynamic behavior of these elements are similar (both convert a pressure
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Figure 8.4: The hydraulic system architecture considered in this research

within a given fluid volume into a mechanical force or torque).

The actuators in Figure 8.5 produce the forces F in (8.1). The force balance on the

piston is

PaAa − PbAb − F − f = mẍ

where Pa and Aa are the pressure and area of the “head” side, while Pb and Ab are the

pressure and area of the “rod” side of the cylinder and f is the lumped parameter friction

force. Typically the acceleration and piston mass, m, are negligible allowing the cylinder

force to be approximated with

F = PaAa − PbAb − f (8.2)

8.4.1.1 Cylinder behavior at limits of stroke

Any real cylinder has finite range. When the cylinder piston reaches the end of stroke, a

hydro-mechanical cushion mechanism activates to quickly arrest the motion. Accurately

modeling these effects requires complicated equations involving fluid dynamics and solid

mechanics. The resulting dynamics are often numerically stiff and difficult to solve in

realtime. A good approximation is to assume that there are no dynamics associated with

the stops, and that the piston immediately stops at the limits of the cylinder stroke. During

simulation, this constraint is realized by checking if the stroke is within limits. If, for
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example, the cylinder is at maximum stroke, then the velocities and accelerations that

cause the cylinder to extend further are set to zero.

8.4.1.2 Pressure dynamics

The pressure change within a chamber of fluid having volume, V , is

Ṗ =
β

V

∑
Q

where β is the effective bulk modulus of the fluid and
∑

Q is the net flow entering this

volume [21]. For a cylinder extending at rate q̇, with a flow Qa entering the head side

chamber through workport A, the pressure Pa will vary as

Ṗa =
β

Va(q)
(Qa − Aaq̇ − Qleak) (8.3)

where Qleak is the (typically very small) leakage between chambers, and Va(q) is the net

volume of fluid in the chamber, which depends on the cylinder position and the constant

dead volume of the conduits. Pressure dynamics for Pb have a form equivalent to (8.3).

8.4.1.3 Pressure dynamics at maximum/minimum pressure

Pressure relief valves are installed in hydraulic circuits to prevent the working pressure from

exceeding the safety limits of the hardware. In the Bobcat 435 excavator, there are relief

valves installed between each workport and the tank.

Check valves are installed between some workports and the tank (or charge pressure

circuit). A check valve allows unidirectional flow of hydraulic oil from the tank in case the

line pressure drops below the tank pressure.

The dynamics of relief and check valves are nonlinear, but usually occur across short time

intervals. Both types of valves act as pressure limiters: the maximum workport pressure is

governed by the relief valve setting, while the minimum pressure is determined by the tank

(or charge circuit) pressure. Since the valves are assumed to respond infinitely fast, the

limits on allowed pressure are accounted for by integrating (8.3) with a saturating integral.
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(b) A typical hydraulic linear actuator. Rotary actuators
are nearly identical in concept.

Figure 8.5: A parallel arrangement of hydraulic flow control valves

8.4.1.4 Fluid conduits

The fluid conduits between the system pump and the actuators generally are of moderate

length and diameter. The small fluid volume means the fluid mass, and hence also the

inductance, is negligible. The conduits also have a moderate diameter, so only a negligible

pressure drop across the lines occurs due to flow resistance. Both assumptions are valid given

the characteristics of the actual system. The conduit does, however, have an appreciable

effect on the capacitance of the system because of the fluid volume and line compliance.

To account for this, the volume of the lines between valve and actuator is included in the

volume of the cylinder chamber. The volume of the main system supply line is included in

the pump model.

81



8.4.2 The Hydraulic Control Valves

The flow into (and out of) the hydraulic actuators is often controlled by a valve having

controllable orifices, such as the one shown schematically in Figure 8.5a. Nodes A and B

of the valve attach to the respective workports of the actuator. The (variable) orifices Kij

throttle or “meter” the flow between nodes i and j according to the equation for turbulent

flow through a sharp-edged orifice [21],

Qij = Kij

√
|Pi − Pj | · sign (Pi − Pj) (8.4)

where Qij is the flow from node i to node j and Pi − Pj is the pressure difference between

nodes i and j.

Equation (8.4) is valid for a general valve configuration (as long as the basic assumption

of turbulent flow across a sharp edge is met). In some valve designs, the flow conductances

K of various orifices are coupled, e.g., by the physical geometry of the lands cut into the

spool, and thus controlled by a single control input. In other valve designs the conductance

of each orifice is independently controlled, such as IMC discussed in literature [10, 12, 41].

In certain applications of IMC, the flow conductance coefficients of the valve, Kij , are

independently controlled by electrohydraulic poppet valves (EHPVs) [8]. These EHPVs

have several benefits over conventional spool valves, including more accurate control, po-

tentially lower manufacturing costs, and enabling of more energy efficient operating modes.

However, one downside is the increased complexity required to control the valves. Research

at the industrial and academic levels has been done to characterize these valves in order to

enable accurate control of the flow conductance [140]. A cross-sectional view of one such

valve manufactured by HUSCO Int’l is shown in Figure 8.6.

The dynamic relationship between the actual EHPV flow conductance, K, and a com-

manded flow conductance, Kcmd, has been determined by experimental data to be well

approximated by a second-order response under standard operating conditions [7]

K̈ + 2ζωnK̇ + ω2
nK = ω2

nKcmd (8.5)
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Figure 8.6: Cross-sectional diagram of electrohydraulic poppet valve (EHPV). Figure cour-
tesy of Patrick Opdenbosch and reproduced from [7]; originally based on [8, 141].

where typical values are ωn ≈ 70 rad/s and ζ ≈ 1.25. The control input to the EHPV is

a PWM current signal with a duty cycle determined by the Valve Controller, as discussed

in the next subsection. The valve has a finite flow conductance, so (8.5) is valid only when

Kcmd < Kmax, where Kmax is the flow conductance at the maximum valve opening.

8.4.3 The Valve Controller

IMC is a hydraulic control architecture that offers increased flexibility, controllability, and

efficiency and has attracted the attention of most manufacturers of hydraulic earthmoving

machines including Caterpillar [9], Deere [40], and HUSCO [41].

The particular implementation of IMC used in this research is the INCOVA control logic

developed by HUSCO, Int’l [41–43, 142, 143]. Contributions to the control of EHPVs has

been the subject of two related theses by Opdenbosch [7] and Shenouda [12] at Georgia

Tech.

The INCOVA master controller receives velocity commands from the operator, typically

communicated via two sets of electric joysticks in the cab, and converts these to nominal

velocity commands for each of the four functions. The velocity command may be unattain-

able due to flow limits, power limits, or other factors, so the master controller may change

the velocity command based on a flow sharing algorithm or function priority. The master

controller also computes the pressure setpoint for the primary system pump. Locally dis-

tributed function controllers then calculate the commanded orifice flow conductances Kij

based on the numerical mappings relating control current to flow conductance command,

sensed workport pressure of the local function, and the velocity command received from the
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master. The specific computation of the valve flow conductance, given velocity command

and sensed pressures, was implemented in Simulink; however, the proprietary nature pre-

cludes presentation of this work here. The algorithm is discussed at a high level in patents

issued by HUSCO [41, 42].

8.4.4 Joystick Input

An operator seated in the cockpit of the excavator provides nominal actuator velocity com-

mands by displacing a pair of joysticks (JS). The JS displacement maps to the nominal

velocity command of the corresponding actuator, according to

ū = R(r)

where r is the normalized velocity command vector with components rk ∈ [−1, 1]. The

mapping is viewed by industry as an important aspect of excavator design and “feel”.

Typically R is a constant, monotonic function. Further, each component ūk only depends

on the corresponding component of rk, so the commanded velocities are independent. Note,

however, that the actual cylinder velocities are not independent. Excavator manufacturers

often consider the mapping between JS throw and nominal velocity command to be a

proprietary competitive advantage. It is known that usually there is a deadband about the

null position, then a linear region with high slope (often termed hop-on in industry circles),

followed by a nonlinear portion. The function R is continuous and smooth (continuous first

derivatives) except for the transition out of the deadband. The deadband and hop-on effects

are the same for all functions, so the mapping R = [R1(r1), · · · , RN (rN )]T has the form

ūk = Rk(rk) =

⎧⎪⎪⎨
⎪⎪⎩

D+
k R̂(rk) if rk > 0,

−D−
k R̂(rk) if rk ≤ 0
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where D+
k and D−

k are the maximum speeds of function k for extending and retracting,

respectively, and R̂ is the normalized JS mapping function defined as

R̂(rk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |rk| < z1, (Deadzone)

a(rk − z1) if z1 < |rk| < z2, (Hop-on)

b(r − c)2 + d otherwise (Quadratic rise)

where z1, z2, and a are parameters defined by the particular JS mapping and the constants

b, c, and d are readily solved for by imposing continuity of the function and its first derivate

at z2 to give

b =
a(z1 − 1) + 1

(z2 − 1)2
(8.6)

c =
a
(
z2
2 − 2z1z2 + 1

)− 2z2

2a (z1 − 1) + 2
(8.7)

d = −
a
(
4z1 (z1 − z2 − 1) + (z2 + 1)2

)
+ 4 (z1 − z2)

4 (a (z1 − 1) + 1)
a (8.8)

A sketch of the function R̂(rk) is shown in Figure 8.7.

8.4.5 Pump Dynamics

In the stock Bobcat 435 excavator, there are four pumps— one for each of the tracks, one

charge pump, and a primary pump. The primary pump is a single variable displacement
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axial piston pump that provides this pressurized hydraulic oil to actuate the the swing,

boom, arm, and bucket functions. A prime mover, such as a diesel engine, turns the shaft

of the pump.

A schematic of the system pump model is shown in Figure 8.8 and a block diagram of

the pump dynamics and pressure controller is given in Figure 8.9. The goal is to control

the pump supply pressure, Ps. The pump is given a displacement command d, in units of

volumetric flow per revolution. The actual pump displacement is finite and limited by the

pump geometry. Furthermore, the friction and inertia of the pump’s swash plate is modeled

as a first-order lag [5]. The prime mover which drives the pump turns at a fixed rotation

rate, N , and the pump has a net volumetric efficiency ηp, so the pump flow is

Qp = Nηpd

For lubrication and heat transfer, a finite amount of leakage exists between the pump

workports and the pump case; this leakage is non turbulent and depends linearly on the

pump pressure differential as

Qleak = Gleak(Ps − Pr)

The downstream system components require a total flow Qs. Thus the net flow into the

supply conduit is ∑
Q = Qp − Qs − Qleak

This net flow into the conduit of volume V0 causes the supply pressure to change according

to the standard dynamics that determine the pressure rise within a closed volume of fluid

ṗ =
β

V0

∑
Q

A standard proportional-integral feedback controller modulates the supply pressure, Ps,

in the presence of the disturbance flow Qs, as illustrated in Figure 8.9.
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Figure 8.9: Block diagram of pump and pressure controller dynamics

8.5 Simplified Excavator Model

The dynamic model presented in the preceding sections represents a relatively high-fidelity

model that captures effects due to inertia, friction, acceleration, and finite response times.

This model serves as a surrogate to an actual excavator during the human-in-the-loop

evaluations. However, the complexity of this model is unsuitable for optimizing the gross

manipulator motion. For this purpose, a low-order steady state model which ignores the

complex transients in the manipulator response is used. There are several dynamic effects

that can be neglected because they occur over a short time span: the pump response time,

the acceleration time, the valve response time, and the dynamics associated with pressure

rise with a closed fluid volume.

The critical effects that must be retained by the steady state model include the pressure,

flow, and power limits of the pump, as well as the specific fluid path between the pump and

the actuator.

Other researchers have characterized the steady-state response of hydraulic excava-

tors. Krishna used a memory-based learning technique to construct a mapping between
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inputs of actuator loads and valve commands and the resulting steady state machine re-

sponse [29, 144]. This model described the interaction between functions well. For example,

the tendency for the function having the lower load to scavenge all the flow from a higher-

loaded function when in a flow-limited situation. The approach required accurate training

data and relied on convergence of the memory map, which cannot be guaranteed. Since

the physical meaning of the model is not readily apparent for this black box model, little

insight into the underlying phenomena that drive the response. The model presented in the

next section does not depend on pre-initialized models. Further, the model is well suited

for application of the optimization theorems in Chapter 9.

8.5.1 Valve Operating Mode

There are two constraints which limit the achievable velocity of all the actuators. The multi-

function constraint limits the combined flow consumed by all functions, and the single-

function constraint limits the velocity that any particular function can attain. Both of

these constraints are a function of the valve operating mode, which will be discussed in this

section.

A hydraulic control valve directs flow to an actuator. The valve consists of controlled

orifices which, depending on the type of valve, may be independently controlled or coupled.

The following analysis assumes the valve consists of four controlled orifices in a Wheatstone

bridge arrangement; many types of valves can be modeled with this structure [21]. This

arrangement enables five basic operating modes: Standard Extend (SE), High-side Regener-

ation Extend (HSRE), Low-side Regeneration Extend (LSRE), Standard Retract (SR), and

Low-side Regeneration Retract (LSRR). Operating modes using different combinations of

valves are also possible, but not discussed here. The operating modes are distinguished by

the flow path of the fluid, as sketched in the circuit diagrams within Table 8.2 and Table 8.3

on pages 91 and 92. Each mode has its own advantages, disadvantages, and performance

capabilities such as higher operating force, greater energy efficiency, or higher achievable

speed. A high-level system controller selects the particular operating mode based on criteria

including velocity command, load, and available flow [42].
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Let the flow Qb be the flow out of the rod side of the cylinder. Qb is a function of

the valve operating mode, the source and return pressures (Pr and Ps), and the external

cylinder load, F . At steady state, the external load F balances the hydraulic force, so that

F = PaAa − PbAb (8.9)

= Aa

(
Pa − AbPb

Aa

)
(8.10)

= AaLp (8.11)

where the symbol Lp denotes the pressure load. If Lp > 0, then there is an external force

pushing the cylinder in, and if Lp < 0, this force is pulling the cylinder out. If Lp is opposing

the cylinder velocity, then the load is said to be resistive; if Lp is aligned with the velocity,

the load is overrunning. Certain operating modes are only possible for overrunning loads,

for example. Qb can be expressed as the flow through a single orifice, as in Figure 8.10 with

the standard relation

|Qb| = Keq

√
Peq

where the equivalent pressure, Peq, and equivalent flow conductance, Keq, are determined

from the valve operating mode [12]. In general, the equivalent pressure for an operating

mode is

Peq = sign (u)·(R (Head-side source pressure) − (Rod-side source pressure) − RLp)

where R ≡ Aa/Ab. Head-side source pressure refers to the pressure of the source of

the fluid that is ultimately entering the head of the cylinder. Likewise, Rod-side source

pressure refers to the pressure of the fluid source that enters the rod side. For example,

in HSRE (see Table 8.2), fluid enters the head side through valve Ksa which connects to

source Ps, while fluid leaves the rod side through valve Ksb which connects to Ps. Thus for

HSRE, Peq = RPs − Ps − RLp = (R − 1)Ps − RLp.

The equivalent valve flow conductance is a function of the valve openings and is given
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Keq
Qb

Peq

Figure 8.10: The flow Qb due to a valve operating mode is mathematically equivalent to
the flow through a single orifice having flow conductance Keq and pressure differential Peq.

by

Keq =
KaKb

K2
a + R3K2

b

where Ka is the flow conductance of the valve connected to the head-side, and Kb is the

conductance of the valve connected to the rod-side. Table 8.2 (for extending modes) and

Table 8.3 (for retracting modes) list Peq and Keq for each of the common operating modes.

The dark lines in each figure represent the active flow path and the direction of flow is

inferred from the motion direction.

The actuator speed is computed using the equivalent pressure and conductance using

|u| =
|Qb|
Ab

=
1
Ab

Keq

√
Peq (8.12)

The sign of u is inferred from the operating mode (i.e., u > 0 if the valve is in an extend

mode).

8.5.2 Limits on Cylinder Velocity

Equation (8.12) gives the cylinder speed as a function of load, valve conductances, and

supply and return pressures. The maximum velocity of the kth function is achieved when

the system pressure and valve flow conductances are maximal (Ps = Pmax
s and Kk = Kmax

k )

for each valve. The maximum actuator speed is a positive number denoted Dk, and is given

by evaluating (8.12) at Pmax
s and Kmax

k , thus constraining the maximum speed as

|uk| < Dk (8.13)
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Table 8.2: Equivalent pressure and equivalent flow conductance for common extend oper-
ating modes. Dark lines in hydraulic circuit drawing represent fluid path.

Operating modes for u > 0 (Extend)
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Table 8.3: Equivalent pressure and equivalent flow conductance for common retract oper-
ating modes. Dark lines in hydraulic circuit drawing represent fluid path.

Operating modes for u < 0 (Retract)

Powered Retract (PR)
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= +

=
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with

Dk = (Keq,k)max

√
(Peq,k)max

8.5.3 Multi-function Flow Constraint

The portion of system flow consumed by a single actuator will be related to the function’s

speed with the definition

ψi ≡ Qi

|u| (8.14)

The variable ψ will have special significance later in this thesis, so it is given the special

name Flow-Speed Ratio (FSR). For the modes discussed here, ψ is constant throughout the

motion. The FSR for each of the metering modes is given in Table 8.2 and Table 8.3. Notice

that for LSRE and LSRR, ψ = 0, implying from (8.14) that no flow from the pump is used

to move the actuator in these modes.

The net flow from each function is limited by the maximum flow available from the

system pump. If the net flow delivered by the pump is Qs, and the portion of system flow

consumed by each function is Qi, then

Qs =
∑

Qi = ψ1u1 + ψ2u2 + · · · = ψT u < C0

where u = [u1, · · · , un]T , ψ = [ψ1, · · · , ψn]T , and C0 is the physical flow limit of the pump,

determined by the pump shaft speed, the volumetric displacement, and the pump volumetric

efficiency at the operating pressure.

8.5.4 Power Limits

The power delivered by the system pump is limited, thus

Power = PsQs = Ps

∑
Qi = Psψ

T u < W

where W is the maximum power capabilities of the prime mover. If the demanded power

exceeds to available power, the prime mover will decrease speed until the power limit is

satisfied.

93



8.5.5 Summary of Constraints on Actuator Velocity

The actuator velocity must satisfy the constraints

ψT u < C (8.15)

|uk| < Dk (8.16)

where

C = min
(

C0,
W

Ps

)

is the maximum pump flow the pump can provide, adjusting for power constraints, if nec-

essary. The velocity constraints (8.16) define a feasible region, U , for which the simplified

model is valid.

This kinematic model implicitly or explicitly assumed satisfaction of several assump-

tions. Of note were assumptions that the actuators can exactly track the commanded

velocity. This assumes the valve dynamics are negligible, the mapping between commanded

and actual valve flow conductance is exact, the fluid is incompressible, and the actuator

paramters (i.e., Aa, Ab, eletric current to flow conductance mappings, etc.) are known

exactly. Further, the system pump is treated as a flow-limited pressure source with no

dynamics which neglects dynamics of the pump swash plate angle, the pump controller,

and effects related to the internal geometry including flow ripple. The inertial effects of the

linkages are also neglected.

In the following chapter, this simplified model is used for optimizing the motion primi-

tives.
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CHAPTER IX

OPTIMIZATION OF VELOCITY-CONSTRAINED ACTUATORS

Most hydraulically actuated manipulators, including excavators common in the earthmoving

industry, have constraints on the net sum of the actuator speeds. Thus, the combined

velocity achieved by all functions is limited, in addition to the conventional rate limits of

individual actuators. A velocity-constrained kinematic model, ẋ = −u, sufficiently describes

the manipulator motion over short time intervals. This chapter gives a necessary condition

for the velocity control input u(t) to be time-optimal for point-to-point motion in an obstacle

free environment. The optimal solution is almost never unique.

A special point, u∗, is introduced. In the case where the input u(t) = u∗ for all time,

the motion is necessarily optimal. In the case where u(t) �= u∗ for some time, the input

may or may not be optimal; the location of u∗ in the input plane provides a convenient

test for optimality, and can discriminate an input u(t) as sub-optimal even before the input

violates a necessary condition for optimality.

9.1 Nomenclature

n Number of actuators moved during the particular motion

C Maximum pump flow rate, scalar

D Vector of single-function flow constraints

ψ Vector of the volumetric efficiency of each function

u Velocity of actuators

ū Operator velocity command

u∗ The particular optimal input that is also stationary

x Actuator position coordinate, normalized so x(T ) = 0

q Generalized position coordinate

T Final task time
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Figure 9.1: Major components of an excavator linkage system typically include four actuated
functions including swing, boom, arm, bucket.

(·)T Transpose of (·)

(·)k The kth element of vector (·)

[ (·) ] A diagonal matrix with (·) along the diagonal

All vector quantities exist in Rn

9.2 Introduction and Background

Hydraulic actuators are often used in applications requiring high power density at low to

moderate speeds. Many large-scale industrial manipulators are controlled with fluid power,

including manipulators for factory automation and for earthmoving. The manipulator con-

sidered here is the common earthmoving excavator (Figure 9.1). Excavators generally have

at least four degrees-of-freedom (DOFs) arranged in an open kinematic chain and are typi-

cally manually controlled via joysticks by a human operator seated in the cab.

A human operator interacts with the control system—possibly consisting of electronic-

or hydromechanical-based logic—that drives the actuator system. The operator sits within

the cab and clenches two joysticks as in Figure 9.2, each able to pivot in two directions;

the angular displacement (e.g., fore/aft or left/right) maps to the (nominal) commanded

velocity ū of the corresponding hydraulic actuator.

The linkages are accelerated by a hydraulic actuator system comprised of cylinders,

conduits, controlled orifices, pumps, accumulators, and a prime mover. Figure 9.3 shows a

simplified schematic of the typical connection of actuators for the type of systems considered

here. The valves represent a generic arrangement of electronically controlled orifices. The
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Figure 9.2: The operator interface of a typical excavator

u reference velocity

pump

relief valve

function 1
(swing)

function 2

generic valve

Valve Controller:
to produce u, if possible

valve control signals

function 3
(arm)

function 2
(boom)

f nction 4function 4
(bucket)

Figure 9.3: Simplified hydraulic circuit for a multi-DOF hydraulic manipulator

orifices comprising each valve may be independently controlled (e.g., the valve may consist of

four or more electro-hydraulic poppet valves) or they may be coupled (e.g., the valve may

consist of a spool valve with a single degree of freedom). An open-loop electronic Valve

Controller produces control signals to cause the actuators to track the reference velocity

input ū.

All robotic manipulators are subject to motion constraints, including power limits and

joint torque limits. In addition, multi-DOF hydraulic manipulators driven by a single

source of pressurized oil are often subject to limits on the combined velocity achievable by

all functions. This constraint does not generally affect electrically actuated robots, and

consequently the literature is deficient in methods of control to deal with this problem.

As discussed in Chapters 5 and 10, Blended Shared Control (SC) is a way to include

artificial machine intelligence in conventionally manually controlled systems. This approach

may be a low overhead way to decrease cycle times of repetitive tasks. Critical to blended

97



on
, q

k

si
tio

n,
x kqk(T)

0 TC
yl

in
de

r p
os

iti
o

TN
or

m
al

iz
ed

  p
os

0

qk(0)

previous motion
(saved)

predicted
end state

Figure 9.4: Piecewise monotonic motion segments are normalized so the value at the final
time is zero.

SC is a method of calculating the time-optimal control to move the manipulator from one

configuration to another. The optimization must be completed in real-time and for a variety

of configurations. Methods presented in literature are too specialized [145] or appear to be

unsuitable for real-time implementation [78, 93, 146].

The purpose of this chapter is to derive the optimal control input for a sub-class of

velocity constrained manipulators performing basic point to point motions.

9.3 The Manipulator Task

Let q(t) = [q1(t), · · · , qn(t)]T be the generalized position of the actuators. The cab rota-

tion (or swing) angle is q1, and the length of the boom, arm, and bucket cylinders are

q2, q3, q4, respectively. In absence of kinematic singularities, any end effector path through

the workspace is equivalently described by the displacement q of the actuators. Further, the

actuator trajectory may be uniquely defined by a sequence of piecewise monotonic (in the

actuator position coordinate q) segments termed motion primitives. A sequence of motion

primitives can be described equivalently by a sequence of endpoints q(T ). The goal is to find

the velocity command u(t) that minimizes the time to reach a given final configuration q(T )

from an initial configuration q(0). The final configuration q(T ) is assumed to be precisely

known or well approximated, for example by means of the rampe process in Chapter 7.

A change of variables helps to simplify notation. Defining

x(t) = (q(T ) − q(t)) sign (q(T ) − q(0))

as illustrated in Figure 9.4 means the motion from q(t) to q(T ) is equivalent to the motion

98



from x(t) to x(T ) = 0. The sign (·) term guarantees that x(t) ≥ 0, since q(t) is monotonic

over the period. Given the change of variables, the problem is to drive the x(t) system from

an initial position x(0) to the origin, x(T ) = 0, with minimum final time T . Note that x(t)

denotes the expected remaining actuator displacement before reaching the origin.

9.3.1 System Model

Excavators have dynamics that occur over very different time scales, ranging from the very

fast pressure rise within a closed volume of fluid to the slower pump and rigid-body linkage

dynamics [21].

The quasi-static dynamics derived in Chapter 8 are used:

ẋ = −u (9.1)

with the requirement that

u ∈ U

where the velocity control input to the cylinders is u, and U is the set of allowable inputs.

From Chapter 8,

U =
{
u : ψT u ≤ C, 0 ≤ uk ≤ Dk

}

where C is the max flow rate of the pump, ψ is the vector of flow-velocity ratios for the valve

operating mode, and Dk is the maximum velocity of the actuator as given in Tables 8.3

and 8.2 on pages 92 and 91. The set U is simply connected and always nonempty.

9.4 Projection of Non-allowable Inputs to Allowable Region

From the equations of motion (9.1), the actuators track the input u perfectly for u ∈ U .

Since the velocity ū commanded by the operator might be outside the allowable region U , a

suitable projection must be defined to make an infeasible ū feasible.1 A common technique

1In industry, this problem is often termed flow sharing.
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Figure 9.5: An infeasible input ū is projected into the feasible region U by proportionally
scaling each component of ū.

in industry [41] is to scale each component of ū by a common factor α so that

ūp = proj∂U ū (9.2)

= αū (9.3)

where ūp is the projection of ū onto the boundary ∂U of U . With reference to Figure 9.5,2

∂U may consist of points along the multi-function constraint line ψT u = C, or the single-

function constraint lines uk = Dk, or both. The scalar α is

α = min
j

(1, αm, αk) (9.4)

where minj (·) indicates the minimum of the arguments considering all values j = 1, 2, · · · , n

and

αm =
C

ψT ū
(9.5)

αj =
Dj

ūj
(9.6)

are the scaling factors necessary to intersect the multi- and single-function constraint lines.

Note that in all cases α ≤ 1; this prevents the input from being scaled if ū ∈ int(U).

2Note: all figures will be drawn in the u1-u2 plane for clarity; however, in general, u ∈ Rn
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projected to the boundary of U by scaling each component equally.

9.5 Optimal Input - Special Case of Undersized Pump

Before introducing a theorem for the time-optimal input of the general case, a special case

will be considered. The useful point u∗ is introduced.

If Dk ≥ C ∀k, then the pump is undersized, and the feasible region in the u-plane is

triangular, as sketched in Figure 9.6. The pump is called undersized because any particular

valve is able to consume the entirety of the pump flow. In this case the optimal solution

u∗(t) must satisfy

ψT u∗(t) = C (9.7)

for all time. The optimal control for the case of an undersized pump can be arbitrarily

chosen such as long as (9.7) is satisfied.

There is a particular u∗ such that all functions reach the origin simultaneously. This

input is constant for all time throughout the trajectory from x(0) to the origin.

Theorem 1. The input

u∗ =
C

ψT x
x (9.8)

will drive the system (9.1) from x = [x1, · · · , xn]T to the origin in minimum time

T ∗ =
ψT x

C
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and will be constant for all x along the trajectory.

Proof. The total fluid volume required from the system pump is related to the flow-velocity

ratio ψ of each function and the remaining distance x each function must travel as

V = ψ1x1 + ψ2x2 + · · · + ψnxn = ψT x

With input u∗ the pump always delivers maximal flow rate C because ψT u∗ = C ψT x
ψT x

= C.

Hence, the minimum time to deliver the net volume V is

T ∗ =
ψT x

C

Given a constant input uk, the time required for the kth function to go from xk to the origin

is

Tk =
xk

uk

Equating Tk = T ∗ = ψT x
C and solving and solving for uk, gives

u∗
k =

C

ψT x
xk

for all k = 1, · · · , n, which becomes Equation (9.8) when expressed in vector notation .

9.5.1 Motion of u∗ for Suboptimal ū

If the operator input ū differs from u∗, then u∗ will in general not be stationary. Under-

standing the dynamics of u∗ is helpful for analysis and for designing a shared controller.

The motion of u∗ will depend on the state x and the input u, as in Theorem 2.

Theorem 2. The point u∗ defined by (9.8) is a dynamic function of the state x and input

u, having velocity du∗/dt = u̇∗, where

u̇∗ =
C

(ψT x)2
((

ψT u
)
x − (ψT x

)
u
)

(9.9)
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Proof. This result follows directly from

du

dt

∗
= ∇u∗dx

dt

by using the dynamics in (9.1) and

∇u∗ =
C

ψT x
[I] − C

(ψT x)2
xψT

where [I] is the identity matrix. The velocity is always directed parallel to the manifold

ψT u = C because

ψT u̇∗ =
C

(ψT x)2
(
ψT
(
ψT u

)
x − ψT

(
ψT x

)
u
) ≡ 0

Remark 1. The point u∗ is stationary for any u along the line from the origin to u∗. This

is true because u̇∗ = 0 whenever uk/xk =
(
ψT u

)
/
(
ψT x

)
.

Remark 2. The velocity u̇∗ is always on the constraint manifold ψT u = C and points in a

direction “away” from u. This result is seen by writing (9.9) as

u∗ =
ψT u

ψT x

C

ψT x
x − C

ψT x
u

=
ψT u

ψT x
u∗ − C

ψT x
u

=
ψT u

ψT x
(u∗ − u) − C − ψT u

ψT x
u

Thus, there is always a component of velocity in the direction (u∗ − u). The motion of

u∗ for the case of suboptimal operator input (u = ū) is illustrated in Figure 9.7; for the

planar case, u∗ moves along the line ψT u = C.

The usefulness of point u∗ will be apparent when analyzing the general case.
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Figure 9.7: The point u∗ is not stationary when the input u = ū differs from u∗

9.6 Optimal Input for General Case

Consider the problem where ψ,D ∈ Rn, and C ∈ R are given constants. Further, the input

u = ū ∈ U and the value x(t) are given, and the input is assumed to follow the switched

input control. The task time T is the time required for all components xk to reach the

origin, so

T ∗ = max
i

xi

ui

Choosing u = u∗
p, where u∗

p is the the projection of u∗ = C
ψT x

x onto the feasible region using

Equation (9.3), gives

u∗
p = min

j

(
1,

C

ψT u∗ ,
Dj

u∗
j

)
u∗

so that

T ∗ = max
i

⎛
⎝ xi

u∗
i

minj

(
1, C

ψT u∗ ,
Dj

u∗
j

)
⎞
⎠

where

C

ψT u∗ =
C

ψT x

ψT x

C
= 1

Dj

u∗
j

=
Dj

C
ψT x

xj

=
ψT x

C

Dj

xj

xi

u∗
i

=
xi

C
ψT x

xi

=
ψT x

C
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Figure 9.8: The regions L and Mk in the domain U for n = 3

Thus the completion time can be written as

T ∗ = max
i

⎛
⎝ ψT x/C

minj

(
1, ψT x

C
Dj

xj

)
⎞
⎠ (9.10)

=

⎛
⎝ ψT x/C

minj

(
1, ψT x

C
Dj

xj

)
⎞
⎠ (9.11)

= max
j

(
ψT x

C
,

xj

Dj

)
(9.12)

9.7 Optimality Conditions

There are two subsets of ∂U that are of interest. Let L and Mk be the regions defined as

L =
{
u : ψT u = C, uk ≤ Dk

}
(9.13)

Mk = {u : uk = Dk, u ∈ U} (9.14)

u ∈ L requires the maximum pump flow C, while u ∈ Mk implies that uk is at maximum

value, Dk, for actuator k. Figure 9.8 shows a sketch of regions L and Mk for the case of

three actuators (n = 3). Note, it is not necessary for Mi ∪ Mj = ∅.
Claim

If u∗ ∈ L, then the minimum task time is T ∗ = ψT x
C . The optimality conditions are
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Figure 9.9: Example of dynamics within u-plane for 2 degree-of-freedom manipulation

1. u(t) ∈ L ∀t ∈ [t0, t0 + T ]

2. u∗(t) ∈ L ∀t ∈ [t0, t0 + T ]

Note that (1) ⇒ (2).

Claim

If the projected point u∗
p ∈ Mk, then a necessary condition for optimality is that u∗

p(t) ∈
Mk ∀t ∈ [t0, t0 + T ]. This will be illustrated by three example cases.

9.7.1 Examples

Consider manipulation of two degrees-of-freedom, with ψ1 = ψ2 = 1, C = 2, D > 2.

Suppose the actuators are just beginning a motion with x(0) = x = [1, 1]T Using (9.8), the

stationary optimal input is u∗ = [1, 1]T . If the operator input is ū = [14 , 13
4 ]T , then the point

u∗ moves away from ū in the direction shown in Figure 9.9a.

The operator input ū satisfies the necessary condition for optimality (ψT ū = C) up

to the moment that u∗ enters the u2 = 0 plane. At this point, the dimensionality of the

problem is reduced to a line as in Figure 9.9b. The original input ū is no longer optimal since

ψ2ū2 < C. To remain optimal, the operator input must always lie within the locus of point

ψT u = C. If the operator does not immediately change inputs when the dimensionality is

reduced, then there will be a time for which the input is not optimal.

The methods of analysis are illustrated by three examples. Consider three hypothetical

trajectories for a 2DOF manipulator moving from the initial state x = [1, 1] to the origin.
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The illustrations will assume for C = 1, ψ = [1, 1]T , and D =
[

3C
4 , 3C

4

]T .

Case 1, in Figure 9.10 The input is chosen to be ū = u∗, so the necessary condition for

optimality (ψT u = C) is satisfied everywhere. In the u-plane, Figure 9.10b, the point

u∗ is stationary.

Case 2, in Figure 9.11 Here, ū �= u∗; however, the necessary condition for optimality is

satisfied (ψT ū = C always). Consider the behavior of u∗ in the u-plane. Initially,

ū = [14 , 3
4 ]T as shown in Figure 9.11b. The point u∗ has a velocity away from ū, so

it slides down the line ψT u = C. Just before t = 1, the point u∗ is on the verge of

leaving the feasible region as shown in Figure 9.11c. At that instant, ū is suddenly

changed to ū = [34 , 1
4 ]T , which pushes u∗ back into the feasible region. u∗ remains

feasible for the duration of the motion.

Case 3, in Figure 9.12 This is a suboptimal trajectory. The input is initially at ū =

[14 , 3
4 ]T , which again causes u∗ to move down the curve. Since ū �= u∗, u∗ moves

away from ū (see Figure 9.12b) according to Equation (9.9). The necessary condition

of optimality is satisfied through t = 1, after which u∗ leaves the feasible region

(Figure 9.12c). The trajectory is confirmed to be suboptimal immediately after u∗

leaves U—the suboptimality is proven even before ū violates the necessary condition.

Once the point u∗ leaves U , then eventually the input ū must become sub-optimal.

At t = 4
3 , actuator 2 reaches the origin and the dimension is reduced by one, as in

Figure 9.12d. Due to the constraint u1 < d1, it is impossible for ū to continue satisfying

the optimality condition. Indeed, x reaches the origin with T = 22
9 , which is 11 percent

longer than the optimal cases. This illustrates the potentially counter-intuitive result

that an operator commanding inputs that at all times yield the maximum speed of a

function will not necessarily yield a time-optimal trajectory.

9.8 Summary

This chapter gave the optimality conditions on the input u(t) for completing a motion

primitive with a displacement x(t) with single-function constraints on the allowable input.
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Figure 9.11: Case 2: An optimal trajectory with ū �= u∗
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(b) ū = [ 1
4
, 3

4
]
T ∀t ∈ [0, 4

3
)

u

u1

u2

*u

1

1

0 d1

d2

(c) at t = 1, u∗ /∈ U

u11 20

'u *u

d1
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Figure 9.12: Case 3: A suboptimal trajectory

The optimal solution is almost never unique, but optimality can be tested by considering

a special point, u∗. The location of u∗ in the input plane provides a convenient test for

optimality, and can discriminate an input u(t) as sub-optimal even before the input violates

a necessary condition for optimality, as demonstrated in the three examples presented.

In the next chapter, the operator input ū will be subject to perturbation based on the

input u∗.

There are some clear caveats to this optimization approach. First, the variable x(t)

was assumed to be precisely known. In reality, this x(t) must be estimated online, for

example with the rampe methods presented in Chapter 7, and is subject to error. This

error manifests as error in u∗. The effects of this error on task completion time should

be studied. Second, the optimization occurs relative to each motion primitive; whether

sequential optimization of a trajectory’s constituent primitives leads to a lower overall task

cost remains to be shown. Third, the controls engineer must weigh whether minimizing

task time is appropriate for a given application, especially since the energetic expense of a

manipulator trajectory tends to increase with the speed.
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CHAPTER X

BLENDED SHARED CONTROL TO DECREASE TASK TIME

This chapter discusses a method to incorporate computer assistance into a traditionally

human controlled system. The aim is to enhance the human input, without overwhelming

the operator or revoking all of the operator’s control authority. Specifically, assistance

is provided by modifying the original operator input commands in such a way that the

anticipated task is accomplished with lower cost, where task cost will be measured in terms

of the completion time of a motion primitive, as introduced in Chapter 7.

10.1 Nomenclature

n Number of actuators

x Actuator position, normalized so at the final time x(T ) = 0

T Final task time

U Domain of allowable control inputs

u Actuator velocity

ū Operator commanded velocity

δu Control perturbation

u∗ An optimal input for completing a specified task

(u∗)′ Projection of u∗ onto a constant-flow manifold

ψ Flow-velocity ratio relating flow into valve to actuator velocity

C Maximum pump flow rate

D Vector of single-function flow constraints

a Scalar shared control parameter

R Function mapping joystick input coordinates to velocity command

r Normalized joystick displacement
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Figure 10.1: The Blended Shared Control architecture. The Electronic Agent perturbs
the operator command by an amount δu, based on three modules: Task Identification,
Optimization, and Blended Shared Control.

F, F0 Applied joystick force, and maximum joystick force

‖(·)‖p The p-norm of (·)

(·)k Component k of vector (·)

10.2 Introduction and Background

This chapter uses the perturbation-based Blended Shared Control (SC) architecture, shown

in Figure 10.1, that was introduced in Chapter 4. For a general overview of SC, see Chap-

ter 4. The methods in Chapter 7 are used to provide an estimate of the actuator displace-

ment x for the task. Given x, the methods in Chapter 9 are used to compute u∗, which

satisfies the optimality conditions for minimum time. This chapter computes a command

perturbation, δu, based on u∗ and the operator command ū.

The input ū from the Human Agent (HA), or operator, may be suboptimal.1 The

Blended SC approach discussed in this chapter continually modifies this input to bring

the response closer to optimal. This can either be a direct modification or an indirect

modification. Direct shared control will refer to cases where the HA input ū is modified

by the Electronic Agent (EA) before the velocity command is given to the manipulator.

Indirect shared control refers to cases in which the EA provides sensory cues that represent

1Without knowing exactly the circumstances of any given input, one cannot claim with certainty that
the input is not optimal, so the statement is technically an assertion.
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Table 10.1: Control perturbations for Blended Shared Control

Type δu =

Proportional (PSC) a (u∗ − ū)
Constant Flow (CFSC) a

(
ψT ū
ψT x

− ū
)

Haptic Cues (HC) F = aF0
R−1(u∗)−r̄

‖R−1(u∗)−r̄‖

suggested input changes to the HA. The purpose of the cues is to indicate to the operator

suggested input changes. These cues may include haptic force cues, auditory tones, or visual

signals. A benefit is that there is no direct conflict between the HA and EA, i.e., the HA

can disregard those inputs which are deemed unacceptable. However, the HA must allocate

resources to interpret these cues, and there is no guarantee that the HA interpretation of

the cues will be as intended by the EA.

When using direct SC, the EA perturbs the HA input by δu so that the reference input

to the manipulator is u = ū + δu. Two types of direct control perturbations, δu, will be

discussed in this chapter, and are previewed in Table 10.1. These are the Proportional and

the Constant Flow Shared Control perturbations. The Blended SC parameter a appears in

both formulations. The parameter determines the amount of aid given by the Electronic

Agent, and thus is another “knob” for the controls engineer to tune. Several formulations

for limiting the value of a based on specific criteria are discussed later in this chapter.

Recognizing that any kind of analytical control analysis when a human is present in

the control loop is difficult, certain assumptions will be proposed based on operator control

behavior. With these assumptions, the Blended SC control laws will be shown to decrease

the task time. While the assumptions on the operator inputs will allow for convenient

analysis, it should be noted that strict performance optimality can not be guaranteed, as

there is no way to guarantee one human response versus another. Thus, the reader should

also refer to the experiments presented in Chapter 11 to understand the true effect of

Blended SC on the task cost.
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10.3 Direct Shared Control

Consider a single point-to-point motion task. As done previously, the displacements are

scaled such that the variable x(t) measures the remaining displacement until the actuators

reach the origin x = 0. The operator input ū controls the actuator speed as ẋ = −u, where

u = ū + δu. The commanded velocity of the actuators is ū = [ū1, · · · , ūn]T where ūk is the

commanded velocity of actuator k.

The operator input ū is assumed constant throughout the motion primitive. This as-

sumption implies that the input has reached steady state, that the operator goal does not

change during the course of the motion, and that the operator input does not change in

response to the modifications of SC. These are each strong assumptions, but are helpful in

understanding the effect of Blended SC on the task time.

The Electronic Agent will perturb the operator input by δu, so the commanded velocity

ultimately realized by the manipulator is u = ū + δu, assuming u ∈ U .

10.3.1 Operator Input Model

The operator command ū is assumed to be quasi-stationary, such that the input will go

to zero when the corresponding function reaches the origin. Define a diagonal switching

matrix to be

H(x) = diag(h(x1), · · · , h(xn))

where h(xi) is an indicator function that assumes the value of 1 if the actuator position has

not reached the goal, and 0 if it has reached the goal:

h(xi) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x ≤ 0 ,

1 for x > 0 .

Then, with the switching taking place, the operator input ū will transition according to

ū(t + Δt) = H(x(t))ū(t) (10.1)

113



1x 3x2xrm
al

iz
ed

  p
os

iti
on

, x

1x

3x
2x

In
pu

t, 
u

1 32

tN
or

t

Figure 10.2: Trajectory and inputs for the switched input

Figure 10.2 shows an example of this case where an input component is deactivated when

the corresponding component of the trajectory x equals zero. This assumption claims that

the operator will not overshoot the goal.

This model ignores several psycho-motor phenomena associated with manual control

of manipulators, including the tendency to overshoot the target and the hunting effects,

during which the operator will slow down as the end effector nears the goal. This model

is visualized by considering an operator holding the joysticks at a constant displacement,

and, when a function gets to the desired position, the operator returns the corresponding

joystick axis to the null position.

Basic Problem Assumptions:

The HA gives the velocity command ū to drive the actuators such that the normalized

displacement x goes from the current position x(t) to the origin x(T ) = 0 with the goal of

minimizing the final time T . The operator input ū is assumed to follow the operator input

transition law given by (10.1). Given the normalized displacement x with dynamics

ẋ = −u

with the requirement that u ∈ U , where U is the region of allowable control inputs derived

in Chapter 9 to be

U =
{
u : 0 ≤ uk ≤ Dk, ψT u ≤ C

}

and ψ, D, C are positive and constant over the motion. The operator input ū is assumed

to be feasible ū ∈ U . An infeasible ū is projected to U using Equation (9.3).
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10.3.2 The Proportional Blended Shared Control Law

This section gives a form of δu that is proportional to the error vector between the operator

input and the optimal command, so

δu = a(u∗ − ū)

This will be known as the Proportional Shared Control Perturbation (PSC). By Theorem 3,

the PSC law is shown to reduce the task completion time compared to the unperturbed

command. A geometric interpretation of this control law is shown in Figure 10.3 for the

planar case.

Theorem 3. Let a ∈ (0, 1) be given. For the system described in the Basic Problem

Assumptions, a control perturbation of the form

u = ū + δu

with

δu = a(u∗ − ū)

(where u∗ = C
ψT x

x), will be an allowable control perturbation (i.e, u ∈ U) and will have a

task completion time that never exceeds the unperturbed task completion time:

T (ū + δu, x) ≤ T (ū, x)
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Proof. Outline of proof: it will be shown that for some components, the component task

completion time will decrease for all a ∈ (0, 1), but will be bounded from below by the

minimum task time T ∗. For the remaining components, the control perturbation will cause

the task completion time to increase for all a ∈ (0, 1); however, this increase will be bounded

above by the minimum task time T ∗. Since the overall task completion time is the time it

takes for the last function to reach the origin, that is

T (u, x) = max
i

(Ti(ui, xi))

an overall reduction in task time can be shown.

The minimum task completion time for any x is T ∗ = ψT x/C from Theorem 1 on

page 102 in Chapter 9. Denote the single-function task completion time of function k as

Tk(u, x), where x is the initial state and u is the input. Without the perturbation δu, and

assuming the operator input follows (10.1), then the task time for the kth component is

Tk (ū, x) =
xk

ūk
(10.2)

With an applied command perturbation δu = a(u∗ − ū) the task time is

Tk (ū + δu, x) =
xk

ūk + a
(

C
ψT x

xk − ūk

)

Using (10.2) this task time is written

Tk (ū + δu, x) =
Tk (ū, x)

1 + a
(

u∗
k

ūk
− 1
)

which, after rearranging the fractions, becomes

Tk (ū, x)
Tk (ū + δu, x)

= 1 + a

(
u∗

k

ūk
− 1
)
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If ūk ≤ u∗
k then the term in parentheses is not negative, so for any choice of a > 0

Tk(ū, x)
Tk(ū + δu, x)

≥ 1

which implies

Claim 1:

Tk(ū + δu, x) ≤ Tk(ū, x) (∀k s.t. ūk ≤ u∗
k)

That is, the task completion time is reduced as a result of the SC perturbation for each

function having an operator input less than optimal.

Further, the function Tk(ū + δu, x) is a monotonic function in the parameter a for

a ∈ (0, 1). The function is either increasing or decreasing, depending on the relative mag-

nitude of ūk and u∗
k. At the limit a = 1, the task time is Tk(ū + δu) = T ∗(x) for each

component k. This implies

Claim 2:

Tk(ū + δu, x) < T ∗ (∀k s.t. ūk > u∗
k)

That is, the task completion time is bounded from above by T ∗ for those components having

operator input greater than optimal.

Similarly for the components having operator input less than optimal:

Tk(ū + δu, x) > T ∗ (∀k s.t. ūk < u∗
k)

which implies

Claim 3:

T ∗ ≤ max
i

(Ti(ū, x)) = T (ū, x)

That is, the actual time required for all functions to reach the origin is bounded from below

by the optimal time.

Thus, even though the control perturbation δu will increase the completion time for

those components having ūk > u∗
k, Claim 3 and Claim 2 guarantee that this perturbed time
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will be less than the original task time T (u, x). All the remaining components will have

ūk ≤ u∗
k, for which Claim 1 guarantees the task time is reduced.

Therefore

Tk(ū + δu, x) ≤ max
i

(Ti(ū, x)) ∀k

10.4 Constant Flow Rate Shared Control Law

With input ū, the operator commands a total pump flow Q̄ = ψT ū. There are circum-

stances where it is desired to not change the net flow delivered by the pump. For example,

in a system with multiple actuators there may be a fixed allocation of flow for a particular

subgroup of functions. The flow due to the perturbed command equals Q̄, so, with this re-

quirement that the flow is unchanged, the induced constraint equation ψT (ū+δu) = Q̄ must

always be satisfied. If the proportional Blended SC law were used, that is, δu = a(u∗ − ū),

then only the trivial solution δu = 0 is an admissible constant-flow command perturbation

when ψT ū �= C. This section will introduce another class of command perturbations which

satisfy the constant flow constraint but still reduce the task completion time.

Any control perturbation that lies on the orthogonal projection of ψ will not change the

flow rate, since by definition ψT δu = 0 for all δu in the orthogonal projection of ψ.

A special case of the constant-flow projection is considered here. Let (u∗)′ be the

intersection between the hyperplane ψT ū (also an orthogonal projection of ψ) and the line

from the origin to u∗, as in Figure 10.4, so that

(u∗)′ =
ψT ū

ψT x
x

where, as always, x is the coordinate of the actuators. The point (u∗)′ is admissible for all

x and ū, and, since (u∗)′ is on the line from the origin to u∗, it is stationary for u = (u∗)′

(see Remark 1 on page 103 of Chapter 9). The command perturbation δu is chosen to be
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proportional to the vector (u∗)′ − ū as in

δu = a
(
(u∗)′ − ū

)
= a

(
ψT ū

ψT x
x − ū

)

Theorem 4. Let a ∈ (0, 1) be given. For the system described in the Basic Problem

Assumptions, a control perturbation of the form

u = ū + δu

with

δu = a

(
ψT ū

ψT x
x − ū

)
(10.3)

will be an allowable control perturbation (i.e., ū+δu ∈ U) and will result in a task completion

time that never exceeds the unperturbed task completion time:

T (ū + δu, x) ≤ T (ū, x)

Further, the weighted sum of velocities ψT ū (i.e., the system pump flow) will be unchanged

by this perturbation.
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Proof. Before the control perturbation, the weighted sum of velocities is

Q̄ = ψT ū

With the control perturbation, the weighted sum of velocities is

Q̄′ = ψT (ū + δu) = Q̄ + ψT δu

but the term ψT δu becomes

ψT δu = aψT

(
ψT ū

ψT x
x − ū

)
≡ 0

and hence

Claim 1: The weighted sum of velocities is unchanged by the control perturbation

Using a result from Theorem 1 on page 102 of Chapter 9, the minimum task completion

time for any x and a constant flow rate Q̄ is

T ∗(Q̄) =
ψT x

Q̄

Define the point u′ to be the intersection between the constant-flow constraint manifold

ψT u = Q̄ and the unconstrained optimal input given as

u∗ =
C

ψT x
x

from Theorem 1. Since u′ is on the line between the origin and u∗, one can write u′ = λu∗.

Imposing the constraint

ψT (u′) = ψT ū = Q̄

gives λ = ψT ū/C, so that

u′ =
ψT ū

ψT x
x

Denote the single-function task completion time of function k as Tk(u, x), where x is
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the initial state and u is the switched input. Without the perturbation δu, the task time is

Tk(ū, x) =
xk

ūk

and with the perturbation δu the task time is

Tk(ū + δu, x) =
xk

ūk + a
(

ψT ū
ψT x

xk − ūk

)

After some manipulation, consider

Tk(ū, x)
Tk(ū + δu, x)

= 1 + a

(
ψT ū

ψT x

xk

ūk
− 1
)

= 1 + a

(
u′

k

ūk
− 1
)

If ūk < u′
k, then the RHS of the equation above is greater than 1, which implies

Claim 2:

Tj(ū + δu, x) ≤ Tj(ū, x), (∀j s.t. ūj ≤ u′
j)

Further, the function Tk(ū + δu, x) is a monotonic function in the parameter a for a ∈
(0, 1). The function is either increasing or decreasing, depending on the relative magnitude

of ūk and u∗
k. At the limit a = 1, the task time is Tk(ū + δu) = T ∗(x) for each component

k. This implies

Claim 3:

Tk(ū + δu, x) < T ∗ (∀k s.t. ūk > u∗
k)

That is, the task completion time is bounded from above by T ∗ for those components having

operator input greater than optimal.

Similarly for the components having operator input less than optimal:

Tk(ū + δu, x) > T ∗ (∀k s.t. ūk < u∗
k)

which implies
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Claim 4:

T ∗ ≤ max
i

(Ti(ū, x) = T (ū, x)

That is, the actual time required for all functions to reach the origin is bounded from below

by the optimal time.

Thus, even though the control perturbation δu will increase the completion time for

those components having ūk < u∗
k, Claim 4 and Claim 3 guarantee that this perturbed time

will be less than the original task time T (ū, x). For all the remaining components (ūk ≥ u∗
k),

Claim 2 guarantees the task time to be reduced. Claim 1 ensures that the weighted sum of

velocities is unchanged.

Therefore

Tk(ū + δu, x) ≤ max
i

(Ti(ū, x)) ∀k

and

ψT δu = 0

10.5 Discussion About the Direct Shared Control Perturbations

By varying the SC parameter a, the degree of control authority attributed to the HA and

EA is scaled. For example, when high resolution of motion is necessary, one may decrease

the influence of the EA by choosing a smaller value for a. Also, when unrestricted motions

in a large obstacle-free workspaces are involved, the EA may be given greater authority.

Generally, a higher degree of autonomy is warranted if the task is well defined, performed in

a known environment, is described by a small number of motion primitives, and/or has long

time delays [112]. With excavation in particular, the environment and task requirements

are unpredictable, so a lesser degree of autonomy may be warranted for some portions of

the dig cycle.

The perturbation-based shared control approaches introduced in this chapter are guar-

anteed to reduce the task completion time for all x and ū that satisfy the basic assumptions.
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While the Proportional and Constant Flow perturbations have a convenient geometric in-

terpretation in the u-plane, they certainly are not unique. There likely exist many other

formulations for δu which also reduce the task completion time. More complicated forum-

lations of δu were evaluated in the course of this research. These included a persuit-evasion

formulation, whereby the operator input ū was perturbed by δu in such a way to produce

a minimum-time interception of the optimal point u∗. Proving the cost benefit—and even

convergence—of these other approaches was much more involved than the Proporitonal and

Constant-flow perturbations presented earlier.

While the assumptions on the operator inputs will allow for convenient analysis, it

should be noted that strict performance optimality can not be guaranteed, since there is no

way of guaranteeing one human response versus another. Thus, one must also refer to the

experiments presented in Chapter 11 to understand the true effect of Blended SC on the

task cost.

10.6 Choosing the SC Parameter a

As yet, the only restriction placed on the SC parameter a is that a ∈ (0, 1). Theorems 3

and 4 guarantee that any a within the allowable domain will result in a lower task. However,

the control perturbations must always be “acceptable” to the operator. In some cases, it

may be necessary to maintain the control perturbations below some critical level. In another

case, it may be prudent to limit the resulting change in perceived end effector velocity so as

to remain below a tolerable, noticeable level or even to keep the velocity change below what

is even noticeable to the operator. This section discusses some alternatives for choosing a

in order to satisfy certain constraints.

Here, several alternatives for restricting a are given. Rather than constraining the vector

δu directly, it may be prudent to first transform it with either a linear mapping A. Such a

transformation may be useful, for example, if the units of measure of certain components

differ or if deviations of a particular actuator are of greater concern than others.

All of the SC formulations require that a ∈ (0, 1). The additional constraints presented

below are not to supersede this constraint. These will provide an additional upper-bound
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on a.

10.6.1 Constraint class 1: The velocity difference of the cylinders is con-
strained

The norm provides a convenient distance measure for a vector space, and there are several

types of norms that can be used. Here, the p-norm of δu is constrained such that

‖Aδu‖p < b

where A is a constant square matrix used to weight the elements of δu. When δu is defined

as

δu = a (u∗ − ū)

then the upper bound of a is found

a <
b

‖A (u∗ − ū)‖p

In other cases, constraints to changes in total pump flow are necessary. For a given

system pressure, this is equivalent to constraining the change in mechanical power delivered

by the prime mover. If, for example, the increase in system flow is limited by ΔQ, then the

allowed change in actuator velocity is limited by

ψT δu < ΔQ

which gives

a <
ΔQ

ψT (u∗ − ū)

10.6.2 Constraint class 2: The task-space velocity is constrained

Instead of constraints on the changes in actuator velocities δu, constraints can apply to the

change in workspace velocity Ẋ of some point on the linkages themselves, such as the end

effector. This makes sense since the operator is typically concerned not with the motion

of the actuators but with the motion of the linkages. Further, the operator may be more
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sensitive to deviations in one direction more than another. For example, deviations in

motions in the fore/aft direction may be less noticeable than equivalent motions in the

left/right direction (where the operator not only “sees” the change in velocity, but may

also feel it, since often the cab rotates with the end effector). This effect is illustrated in

Figure 10.5 by the elliptical constraint for deviations in end effector velocity.

The task-space end-effector coordinate velocities Ẋ are related to the actuator velocities

q̇ by

Ẋ = J
∣∣∣
q

∂Γ
∂q

∣∣∣∣
q

q̇

where J is the (state-dependent) Jacobian relating the end-effector linear velocity Ẋ to the

joint velocities θ̇ and Γ is the function to resolve the actuator-space variables to the joint-

space variables. The notation (·)|q denotes evaluation of the enclosed term at the point q.

Both J and Γ are evaluated at the current actuator configuration q. Thus, some measure

of the change in end-effector velocity is limited, as in

∥∥∥A ˙δX
∥∥∥

p
< V (10.4)∥∥∥∥∥AJ |q ∂Γ

∂q

∣∣∣∣
q

δu

∥∥∥∥∥
p

< V (10.5)

In this case a is readily obtained

a <
V∥∥∥∥AJ |q ∂Γ

∂q

∣∣∣
q
(u∗ − ū)

∥∥∥∥
p

Recall that ‖(·)‖p denotes the p-norm of (·). As before, a weighting matrix may be added

to the above constraint to account for the fact that an operator’s just noticeable difference

(JND) may be a function of the configuration of the system, as well as the direction of

motion. For example, the in-out direction may be less sensitive to the left-right direction.
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Figure 10.5: Constraints on the allowed change in end-effector velocity can be visualized as
an ellipse in the task space.

10.6.3 Constraint class 3: The effective joystick angle deviation is constrained

For a given perturbation δu, there is an effective joystick angle deviation. Recall from

Chapter 8 the actuator reference velocity ū is related to the operator’s joystick displacement

r by

ū = R(r)

where r ∈ [−1, 1] is the vector of normalized joystick displacements. Typically the compo-

nents of ū are independent so that each component ūk only depends on rk. The function

R maps the percentage of joystick throw along a particular axis to some fraction of the

maximum (or minimum) speed for that function. Usually R is a constant monotonic func-

tion calibrated such that the maximum and minimum value of its range correspond to the

maximum and minimum achievable velocity of the corresponding function.

A change in actuator velocity δu can be related to an effective change in joystick input

r. The effective change in joystick input can be constrained. For instance, there is a finite

precision with which a human hand can position a joystick [113]; this produces a region

within which it may be permissible to deviate, as illustrated in Figure 10.6. Presumably,

the operator is accustomed to the deviation stemming from the operator’s own limitations.

Knowledge of this tolerance in the r-space can be mapped to a corresponding range for δu.
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Whether this is an appreciable effect needs to be determined.

For a given perturbation in the joystick input there will be a corresponding change in

the commanded velocity

ū + δu = R(r + δr)

By assuming the change in joystick input to be small, R is expanded by retaining the linear

terms of its Taylor series to give

ū + δu = R(r) +
∂R

∂r

∣∣∣∣
r

δr

Recognizing that ū = R(r), the joystick perturbation can be solved for in terms of the

equivalent speed perturbation δu to give

δr =
(

∂R

∂r

∣∣∣∣
r

)−1

δu

The matrix ∂R/∂r is invertible everywhere outside the deadband.

Assuming the effective joystick input deviation δr is constrained according to

‖Aδr‖p < V
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which equals ∥∥∥∥∥A
(

∂R

∂r

∣∣∣∣
r

)−1

δu

∥∥∥∥∥
p

< V

Using the assumption that the perturbation to the function velocity is δu = a(u∗ − u), the

parameter a is found to be

a <
V∥∥∥A ( ∂R

∂r

∣∣
r

)−1
δu
∥∥∥

p

10.6.4 Discussion

None of the restrictions supersede the requirement that the SC parameter remain within the

interval (0, 1). Some directions, whether interpreted in joystick r-space, cylinder q-space, or

manipulator task space X may have a greater tolerance for velocity deviations than other

directions. For example, an operator may be more perceptive to deviations in the slew rate

since the operator rotates with in the cab; in this case, the corresponding diagonal elements

of A could be chosen to weight the swing components by a greater amount than the other

functions.

Choosing the nominal value for a: The restrictions above provide an upper bound for

a. The control engineer is still faced with choosing a nominal value for a.

a as a constant: Perhaps chosen based on the expected task type. All else equal, repet-

itive tasks for which the task can be easily identified would have a higher a than

unpredictable tasks.

a as a function of task certainty An extension not discussed here is varying a based on

the estimation accuracy. If there is high confidence in the prediction of the opera-

tor’s task, then this can be a cue to increase the influence of the EA. Similarly, more

authority is automatically provided to the operator if the cycle is unpredictable. Esti-

mation accuracy may be measured in terms of the covariance matrices in the rampe

algorithm, or by simply comparing the mean square error of the past few cycles. An-

other way of measuring task certainty is to consider the difference between ū and u∗,

as was done in the SC of Zermelo’s problem (Chapter 5). A large difference could be
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attributed either to operator ignorance (i.e., the EA knows the operator’s task, while

the operator does not know how to implement it) or the EA mis-identifying the task.

a manually set by the operator The operator chooses a setpoint to specify the level of

autonomy to grant the EA.

10.7 Indirect Shared Control

With direct SC, the HA command ū is modified through software by the EA. In contrast,

indirect SC relies on the HA to actually change the input. This change in input is done

according to feedback displayed to the HA. The EA calculates the specific nature of the

stimulus to suggest the best manner by which the HA should respond.

10.7.1 Haptic Cues

A haptic cue is displayed to suggest to the operator the direction in which the inputs

should be changed. Similar to the approach used for the proportional SC perturbations,

the displayed force is in the direction of u∗. Since the force acts in the joystick r-space,

the optimal command u∗ must be transformed into this space. Let the optimal joystick

displacement be

r∗ = R−1 (u∗)

where R is the function mapping the joystick displacements to the nominal velocity com-

mands, as described in Chapter 8.

The selection of the particular direction that the operator’s hand is pushed in has

several options. For example, one may be able to model the dynamics of the operator input

in response to force provided by the haptic cue. If an adequate model is known, then the

force can be directed in such a way that intercepts the moving point u∗ in minimum time.

The general problem is one of target pursuit/interception, the simplest strategy of which is

a line-of-sight strategy, as discussed next.

Choose the force so that the operator’s hands are pushed in the direction of the optimal
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input. In the joystick r-space, this force will then be

F = aF0
r∗ − r̄

‖r∗ − r̄‖ (10.6)

where a ∈ (0, 1) is the SC parameter that scales the nominal (and constant) force magnitude

F0. (Note that conventional excavators are controlled by two independent joysticks; thus

the joystick F must be projected into the separate joystick input planes.)

10.7.2 Choosing the SC Parameter a

The force magnitude must be carefully chosen to avoid destabilizing the system or confus-

ing the operator. Transitions between motion primitives are not guaranteed to result in

continuous u∗. Consequently, F (t) may be discontinuous at the transition time. Here, the

force magnitude is ramped down as while approaching the end of the motion primitive. The

SC parameter a in (10.6) scales the force magnitude; its nominal value is

a0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for ρ < ρmin

f(ρ) for ρmin ≤ ρ ≤ ρmax

1 for ρ > ρmax.

where ρmin and ρmax are thresholds for activating and deactivating the force, and the func-

tion f(ρ) is a smooth, monotonic function such that f(ρmin) = 0 and f(ρmax) = 1. The

distance ρ is computed based on the expected remaining actuator displacement

ρ =
√

xT (AT A) x

where, as before, the matrix A weights the individual components of x.

At the start of a new motion primitive, x changes in magnitude discontinuously. To

prevent a sudden increase in force, changes to a are rate limited so that |ȧ| < γ where γ > 0
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is the maximum slew rate. At runtime, the SC parameter is computed as

a(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0(t) for |ȧ| ≤ γ,

a(t − Δt) − γΔt for ȧ < −γ,

a(t − Δt) + γΔt for ȧ > γ.

where Δt is the sampling interval.

10.8 Discussion and Chapter Summary

This chapter presented three perturbation-based Blended SC formulations, summarized in

Tables 10.2. Modest assumptions on the dynamics of the operator command ū allowed for

an exploration of the effect that these perturbations has upon the task completion time.

The perturbations follow simple, consistent laws as summarized in Table 10.2a.

In each formulation, the shared control parameter a must be chosen. The optimality

conditions required that a ∈ (0, 1). When a = 0, the Human Agent has full control of the

manipulator velocity and when a = 1, the Electronic Agent has full control. Table 10.2b

summarizes several formulations of constraints on a; these constraints on a are induced from

constraints defined within different domains, including the actuator-space, the task-space,

and the joystick-space.

Regardless of the value of a, the architecture only acts in response to an operator input.

Thus, even when a = 1 and the EA has full control of the manipulator, the commands which

the EA issues are based upon the commands of the HA. Thus, if the HA is commanding

a null motion (by not moving the joysticks), the EA will issue a null command. Similarly,

if the HA commands the boom and arm cylinders to retract, then the EA must also only

give commands that cause the boom and arm cylinders to retract. These convenient con-

straints are a result of defining the manipulator task using the motion primitive formulation

discussed in Chapter 7. Therefore, when the EA is given full authority, that authority is

inherently restricted to a u-plane which is defined by the operator’s present inputs. This

has interesting implications, in that now the HA can use the displacements of the joysticks

to “conduct” a large variety of autonomous manipulator motions, in a manner reminiscent
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of the way a maestro conducts the flow of a melody.

The Blended SC formulation discussed here assumes that nominal operator commands

are perturbed by an autonomous Electronic Agent. The contrasting case is when nominal

autonomous trajectories are perturbed by an operator. The architecture developed in this

chapter is compatible with both approaches, and an interesting extension is to consider the

alternate case.

The design space for the Blended Shared Control is large, and rich with interesting

possibilities.
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ū
)

In
th

e
u
-p

la
ne

,
th

e
pe

rt
ur

ba
ti

on
is

in
th

e
di

-
re

ct
io

n
of

th
e

op
ti

m
al

in
pu

t
u
∗

C
on

st
an

t
F
lo

w
(C

F
SC

)
a
( ψ

T
ū
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CHAPTER XI

EXPERIMENTS: EFFECTS OF SHARED CONTROL TYPE ON

MEAN TASK TIME

This chapter documents experiments undertaken to show the efficacy of the Blended Shared

Control paradigm. Several tasks involving point-to-point motion were undertaken, with the

primary measure being the task completion time. Four sets of experiments were performed

with a total of 33 subjects divided into three skill levels. Up to four different conditions

were studied in each experiment set. Each condition was unique in the type of control law

that was active during the task. The apparatus used for the experiments is discussed in

Section 11.3, followed by a description of the four types of experiments in Section 11.4.

Section 11.5 describes the experimental procedure. An analysis of the results of all the

experiments is given in Section 11.6. Finally, the results are discussed in Section 11.7.

11.1 Nomenclature

JS Joystick

4DOF Refers to the two-joystick, four degree-of-freedom set of experiments

2DOF Refers to the single-joystick, two degree-of-freedom set of experiments

P2P Point-to-point set of experiments

UGM Unconstrained Guided Motion set of experiments (Trenching, Reaching, Four-
point, Three-point

MC Manual control

SC1 Shared control, Type 1; Proportional SC with constrained velocity change,
|Aδu|∞ < b

SC2 Shared control, Type 2; Constant flow SC, ψT δu = 0

HC Haptic cue, (Indirect shared control)

Ω The direction or category of a motion primitive
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Ω = 2021 Denotes that the the swing is increasing, the boom is stationary, the arm is
increasing, and the bucket is decreasing

ψ Vector of flow-velocity ratio of each function. Describes the share of pump flow
that goes to each function

q Actuator position coordinates

11.2 Method

Blended SC was tested on a virtual compact excavator. The primary objective was to

determine the effect of SC on task time. The study included two types of Blended SC, along

with Manual Control (MC) and Haptic Cues (HC). Two major sets of experiments were

performed: constrained point-to-point motion (P2P) and unconstrained guided motions

(UGM). Tests were performed on two experimental platforms: a two degree-of-freedom

(2DOF) platform and a four degree-of-freedom (4DOF) platform.

11.3 Experiment Setting

A modular software/hardware platform for studying the interface between operators and

excavators has been developed at the Intelligent Machine Dynamics Laboratory by Elton

and Kontz [35, 36, 49]. The software system consists of a host and a target computer, as

shown in Figure 11.1. The hardware consists of an input device and a display device.

During the 4DOF experiments, the operator uses two standard excavator joysticks in

the ISO configuration (left JS: boom and swing; right JS: arm and bucket) to control all

four excavator functions. The operator sits within the cockpit of an actual Bobcat 435

compact excavator that has a large screen display mounted just in front of the windshield,

as shown in Figure 11.3.

For the 2DOF experiments, only the boom and swing are actuated, thus requiring a

single JS. The JS is a a force-feedback enabled Impulse Engine 2000 joystick from Immersion

Inc, capable of displaying up to 8.7 N in any direction within the plane of JS displacement.

The operator sits at a work station, pictured in Figure 11.2, and views a 24 inch monitor.

Both test stations were setup in the MaRC Highbay Laboratory at Georgia Tech.
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Figure 11.1: Communication architecture for the two testing stations

The underlying software routines for Task ID, Optimization, Blended Shared Control,

Dynamics simulation, and Graphics Display are essentially identical for both the two- and

four-DOF scenarios. The Blended SC architecture and dynamic simulation are coded in

C++ and Matlab, and run in real time (at a 1 kHz sample frequency) on an xPCTarget

machine. The graphics are written using OpenGL libraries and run on a standard Windows

machine. The host and target communicate using UDP.

11.4 Experiment Overview

The study included two classes of experiments: constrained point-to-point motion (P2P)

and unconstrained guided motion (UGM). Each class was studied on both of the interface
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Figure 11.2: Operator station for the 2DOF tasks

stations. On the 4DOF platform, three different control modes were studied: Manual

Control, and two types of shared control. The 2DOF tests had the same control modes,

plus an additional Haptic Cue mode. The control type was the treatment variable, task

completion time was the primary dependent variable. The test cases are described next.

11.4.1 Constrained Point-to-Point Motion (P2P)

The purpose of this class of tests is to measure the effect of shared control upon task

completion time, for the special case where the task is precisely known by the Human

Agent and the Electronic Agent. The actuator displacement between the initial and final

configurations is described by a single motion primitive, PΩ
( x). The Task Identification

module of the Blended SC framework is given the motion primitive parameters, so no

identification is necessary.

During the test, a sequence of targets are displayed on the screen to represent the desired

final position of the manipulator, as shown in Figure 11.4. The operators are instructed to
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(a) Cab of Bobcat 435 (b) View of operator inside test station

(c) Highlight showing screen display

Figure 11.3: Operator station for the 4DOF tasks
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Figure 11.4: A frame from the video display during a trial of the point-to-point (P2P) tasks.
The target denotes the desired final position of the excavator wrist. An arrow is always
drawn between the wrist and the target to provide a sense of guidance and depth.

use the excavator bucket to quickly “capture” each of the targets as they appear on screen.

An arrow drawn between the excavator wrist and the target was displayed to help overcome

the lack of true depth perception associated with using a 2D display.

11.4.2 Unconstrained Guided Motion (UGM)

The manipulator motion during the UGM tests are not tightly constrained like the P2P set.

Specifically, the Electronic Agent is provided no prior information about the tasks; therefore,

the Task Identification module of the control architecture must learn and estimate the

operator’s intended motions. Much like actual digging or manipulation tasks, the human-

controlled trajectory will vary between cycles, and the Task ID module must be robust to

these variations.

The operators can move the excavator in any arbitrary manner. However, the scope

of this research excludes non-repetitive trajectories, so giving the subjects no restrictions

is not practical. To guide the operator while not imposing hard constraints, three to four

static targets are displayed on screen. The idea is that the targets are not used as hard

constraints as they were for the point-to-point class, but rather as reference markers for the

operator to use during the motion. Each operator is instructed to control the excavator

bucket through the quickest path which—“roughly”—passes through each target. Upon
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reaching the last target, the operator retraces the path. The goal is to complete as many

cycles as possible. There is no required tolerance for approaching a target, and the operator

is not scored on accuracy.

The UGM tests have properties of actual, generic human-controlled manipulation tasks

including high-level task specification, no hard constraints on the trajectory, task parameters

that must be learned online by the Blended SC controller, and imprecise repetition from

one cycle to the next.

11.4.3 Control Frameworks

One of four embodiments of the Blended Shared Control architecture is used during each

trial. The goal of the experiments is to determine the effect of each control type on the task

completion time. The four operation modes are listed below.

Manual Control (MC): The operator has full manual control of all degrees-of-freedom.

This is accomplished by setting the Blended Shared Control parameter, a, to zero.

The Manual Control (MC) mode is used as a control group for statistical analysis.

Shared Control - Type 1 (SC1): The Blended SC parameter a is chosen such that the

proportional command perturbation δu = a (u∗ − u) satisfies the magnitude con-

straint

|Aδu|∞ < b

where A is chosen to scale δu relative to the actuator’s maximum velocity for the

particular operating mode

A = diag(DSW , DBM , DAR, DBK)

where DSW , DBM , DAR, DBK are the maximum velocity of the swing, boom, arm,

and bucket functions.

Shared Control - Type 2 (SC2): The constant-flow command perturbation described

in Chapter 10 is used with a = 0.5.
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Haptic Cue (HC): This mode displays haptic feedback to the operator to indirectly mod-

ify the excavator command. It is only implemented on the 2DOF test station. The

force is directed towards u∗ (after projection into the JS input space, r); the indirect

shared control parameter a is chosen to be proportional to the distance d = xT x with

a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if d < dmin,

1 if d > dmax,

d−dmin
dmax−dmin

otherwise.

11.5 Procedure

A diverse set of subjects was recruited through various channels including professional con-

tacts and posted advertisements. Advertisements were posted within the IMDL (targeting

subjects with a novice-level understanding of excavators), the general community (targeting

a group generally unfamiliar with excavators), and at a company which leases excavators

and other heavy equipment (targeting experienced subjects). The subjects were compen-

sated 20 dollars regardless of performance during the tests. A relatively large subject pool

was deemed necessary since the effect of SC was known to potentially be small relative

to the aggregate task time and the inherent variance associated with subjects of differing

capabilities. Previous human-factors studies in robotics and manipulator control use 3 to

20 subjects [32, 55, 121, 147]. This section describes the specific testing procedure for each

set of experiments.

11.5.1 Description of Testing Scenario

The experiment proceeded in phases, each of which is introduced here. Before beginning,

the subject reads a description of the experiments, signs a consent waiver, and completes a

brief preliminary assessment if the subject’s skill level is unknown. The actual evaluations

lasted approximately 70 minutes and proceeded the same order for each subject: two minute

warm up, 2DOF P2P, two minute warm up, 2DOF UGM, 4DOF P2P, two minute warm
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up, 4DOF UGM.1 Each subject completed a final survey after the tests.

11.5.2 Initial Assessment

An initial survey instrument was used to classify the subjects into three groups based on

the subject’s experience in operating excavator-type machines. This assessment was given

before the experiments begin, for the purpose of ensuring a uniform distribution of operators

during the 4DOF UGM tests. Each subject was given a Subject ID number and classified

based on their response to the following question.2

Relative to excavators and similar equipment, I describe myself as

• Unfamiliar - although I have seen an excavator, I have never operated a

real or simulated excavator;

• a Novice - I have a beginner-level knowledge on how excavators are con-

trolled, and I have previously driven a real or simulated excavator for at

least one hour;

• an Expert - I have an above average level of knowledge related to excava-

tors, and have operated an excavator, an excavator trainer/simulator, or

similar equipment for at least 40 hours.

11.5.3 Final Assessment

The subjects completed an electronic survey after the experiments (see questions and re-

sponses listed in Appendix A). In sum, 33 subjects participated. The users’ age ranged

from 21 to 55; the average age was 28. Nine subjects were female. Three subjects were left

handed. The sample space included 6 experts, 17 novices, and 10 unfamiliar subjects.

11.5.4 Experiment Procedure — Point-to-Point Motion (P2P)

A spinning, colored target was displayed on screen to show where the bucket should be at

the completion of the motion. From the operator’s perspective, the task is accomplished by

1See the Nomenclature section on page 134 for a summary of acronyms and symbols.
2Six subjects from the IMDL who had participated in at least two previous excavator studies were

automatically classified into the Novice group.
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moving the bucket to the target. A bell tone played when the operator was within a critical

distance to the target, and the next target immediately appears.

The location of the targets were defined by the specific motion primitive required to

reach the target. Table 11.1 lists the particular primitives used for the point-to-point tests.

The motion primitive category, Ω, is defined by a four digit code; each digit denotes the

direction a function moves in. From left to right, the digits represent Swing, Boom, Arm,

and Bucket, with a 2 symbolizing positive motion, a 1 symbolizing negative motion, and a

0 representing no motion. For example, Ω = 1200 denotes slewing left while extending the

boom cylinder.

A trial consists of moving the actuators from an initial actuator configuration q(0) to a

final configuration defined by the motion primitive. The trials are paired with the motion

primitive that returns the excavator to its original configuration. For example, the trial

set A involves two individual trials: the first begins at with the actuators in configuration

q(0) and proceeds with a total displacement x(0) in the direction Ω = 1200 (slew to the

left while extending the boom); the second also has a net displacement x(0) but is in the

reverse direction with Ω = 2100 (slew to the right while lowering the boom). A trial

sequence consisted of six repetitions of a trial set.

Every subject saw each trial sequence exactly once for each type of controller. The spe-

cific ordering within experiments on the 2DOF and 4DOF platforms are shown in Table 11.2

and Table 11.3, respectively. Subjects encountered the target trial sequences in the same

order, but the order of the control types were arranged to balance any systematic effects.

11.5.5 Measures— Point-to-Point Motion (P2P)

A scalar measure of the remaining distance to the target is d = ψT x. The main dependent

variable for each trial is the 90-percent cycle time illustrated in Figure 11.5, defined as the

length of time between d = 0.95d0 and d = 0.05d0 where d0 = ψT x(0) is the initial distance

to the target. Measuring cycle time in this way has several advantages; e.g., inadvertent

motions are not penalized, the operator may begin when ready (the subject is not penalized

for resting between targets), and the operator is not penalized by the time consuming
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Table 11.1: Motion primitives used in the point-to-point motion experiments; x and q are
given in inches.

Trial set Ω x(0) q(0) Platform

A 1200 [27, 6, 0, 0] [46, 161, 138, 126] 2DOF
B 1200 [50, 8, 0, 0] [46, 161, 138, 126] 2DOF
C 1100 [50, 10, 0, 0] [10, 164, 158, 119] 2DOF
D 1200 [17, 8, 0, 0] [46, 161, 138, 126] 2DOF
E 1110 [43, 13, 20, 0] [0, 164, 158, 119] 4DOF
F 0220 [0, 26, 26, 0] [0, 137, 106, 126] 4DOF
G 2022 [50, 0, 65, 50] [0, 153, 102, 78] 4DOF
H 2001 [44, 0, 0, 50] [0, 161, 134, 126] 4DOF

Table 11.2: Experiment design for 2DOF point-to-point motion tests

Run number*
Subj. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1, 17 0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2
2, 18 1 2 3 0 2 3 0 1 3 0 1 2 0 1 2 3
3, 19 2 3 0 1 3 0 1 2 0 1 2 3 1 2 3 0
4, 20 3 0 1 2 0 1 2 3 1 2 3 0 2 3 0 1
5, 21 3 2 1 0 2 1 0 3 1 0 3 2 0 3 2 1
6, 22 0 3 2 1 3 2 1 0 2 1 0 3 1 0 3 2
7, 23 1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3
8, 24 2 1 0 3 1 0 3 2 0 3 2 1 3 2 1 0
9, 25 0 2 1 3 2 1 3 0 1 3 0 2 3 0 2 1
10, 26 2 1 3 0 1 3 0 2 3 0 2 1 0 2 1 3
11, 27 1 3 0 2 3 0 2 1 0 2 1 3 2 1 3 0
12, 28 3 0 2 1 0 2 1 3 2 1 3 0 1 3 0 2
13, 29 3 1 2 0 1 2 0 3 2 0 3 1 0 3 1 2
14, 30 0 3 1 2 3 1 2 0 1 2 0 3 2 0 3 1
15, 31 2 0 3 1 0 3 1 2 3 1 2 0 1 2 0 3
16, 32 1 2 0 3 2 0 3 1 0 3 1 2 3 1 2 0

33 0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2
*For all subjects, the sequence of motion primitive pairs is: 

A-B-C-D-A-B-C-D-A-B-C-D-A-B-C-D
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Table 11.3: Experiment design for 4DOF point-to-point motion tests

Run number* Run number
Subj. 1 2 3 4 5 6 7 8 9 10 11 12 Subj. 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 0 1 2 0 1 2 0 1 2 17 2 1 0 2 1 0 2 1 0 2 1 0
2 1 2 0 1 2 0 1 2 0 1 2 0 18 1 0 2 1 0 2 1 0 2 1 0 2
3 2 0 1 2 0 1 2 0 1 2 0 1 19 0 1 2 0 1 2 0 1 2 0 1 2
4 0 2 1 0 2 1 0 2 1 0 2 1 20 1 2 0 1 2 0 1 2 0 1 2 0
5 2 1 0 2 1 0 2 1 0 2 1 0 21 2 0 1 2 0 1 2 0 1 2 0 1
6 1 0 2 1 0 2 1 0 2 1 0 2 22 0 2 1 0 2 1 0 2 1 0 2 1
7 0 1 2 0 1 2 0 1 2 0 1 2 23 2 1 0 2 1 0 2 1 0 2 1 0
8 1 2 0 1 2 0 1 2 0 1 2 0 24 1 0 2 1 0 2 1 0 2 1 0 2
9 2 0 1 2 0 1 2 0 1 2 0 1 25 0 1 2 0 1 2 0 1 2 0 1 2

10 0 2 1 0 2 1 0 2 1 0 2 1 26 1 2 0 1 2 0 1 2 0 1 2 0
11 2 1 0 2 1 0 2 1 0 2 1 0 27 2 0 1 2 0 1 2 0 1 2 0 1
12 1 0 2 1 0 2 1 0 2 1 0 2 28 0 2 1 0 2 1 0 2 1 0 2 1
13 0 1 2 0 1 2 0 1 2 0 1 2 29 2 1 0 2 1 0 2 1 0 2 1 0
14 1 2 0 1 2 0 1 2 0 1 2 0 30 1 0 2 1 0 2 1 0 2 1 0 2
15 2 0 1 2 0 1 2 0 1 2 0 1 31 0 1 2 0 1 2 0 1 2 0 1 2
16 0 2 1 0 2 1 0 2 1 0 2 1 32 1 2 0 1 2 0 1 2 0 1 2 0

33 2 0 1 2 0 1 2 0 1 2 0 1
*For all subjects, the sequence of motion primitive pairs is: 

E-F-G-H-E-F-G-H-E-F-G-H

“hunting” required to hit the target with the prescribed tolerance.3

The cycle time was automatically extracted offline by a suite of Matlab scripts. The

first trial of each primitive-controller pairing was discarded, with the remaining five trials

averaged and recorded as the subject’s mean task time for the particular primitive and

controller.

11.5.6 Experiment Procedure— Unconstrained Guided Motion (UGM)

The UGM tasks consisted of four different scenarios named Three-Point Motion, Four-Point

Motion, Trenching, and Reaching. The tasks were distinguished by the unique workspace

trajectory specified by the targets which change according to the scenario, as specified in

Table 11.4. The 3- and 4-Point Motions used the 2DOF simulator, while Trenching and

Reaching were completed on the 4DOF platform.

The Trenching scenario required motions that mimicked a common trenching cycle, and

requires actuation of all four DOFs. There were three guidance targets. One was located

3Clipping out the hunting time was necessary because a post hoc analysis revealed that an appreciable
number of trials had hunting periods several times longer than the actual motion period. Further, the
application domain considered here is less concerned with ultimate positioning accuracy, and more concerned
with the time required to execute the the gross motion.
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Figure 11.5: The 90-percent cycle time is defined as the time required for the weighted
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completion time.

Table 11.4: Location of targets in excavator workspace coordinates [x, y, z] (in inches) for
guided motion experiments. The target locations are sketched in Figure 11.6.

Trial Name Target location [x, y, z] Platform

Four-point motion Top of box [60, 45, 40] 2DOF
Over trench [120, 0, 50] 2DOF
Small box [30,−80,−10]] 2DOF
Fourth target [−15,−130, 0]] 2DOF

Three-point motion High above box [80, 85, 55] 2DOF
Over trench [120, 0, 20]] 2DOF
Small box [90,−110,−10]] 2DOF

Trenching Top of box [60, 45, 40] 4DOF
Back of trench [150, 0,−20] 4DOF
Front of trench [85, 0,−20] 4DOF

Reaching Top of box [60, 65, 40] 4DOF
Over trench [120, 0, 50] 4DOF
Bottom of small box [90,−110,−10] 4DOF
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atop a stack of crates; this target specified the location to unload the soil. Two additional

targets were located on the ground at the start and ending locations of the trench. See

Figure 11.6a. A single cycle consisted of starting above the boxes, entering the trench near

the far target, digging in one motion until reaching near the forward target, and unloading

the bucket above the initial target. The operator was instructed to perform as many cycles

as possible. The scooping, removal, and unloading of soil was animated, but the soil reaction

forces were disabled.

The Reaching scenario was not meant to be congruent with any particular real-world

excavation task, apart from requiring simultaneous actuation of three functions (swing,

boom, arm). Three targets were arranged as shown in Figure 11.6b: one located atop a

stack of crates, another located above the trench, and a third located further away near

the ground. A single cycle consisted of starting above the boxes, moving the bucket over

the center target, reaching out with the arm to tap the far target, and returning (over the

center target) to the start. The subjects were instructed to perform as many cycles as

possible. Similarly, the Three- and Four-Point scenarios have target locations specified in

Figure 11.6c and 11.6d.

Each operator was informed that the excavator was under their control, and that no

constraints were present. Two minutes, using Manual Control, were allowed for warming

up before the testing. Also, before each trial, instructions for the particular scenario were

displayed on the screen.

A one-way repeated measures design was used for the 2DOF tests (swing/boom only),

with comparisons made within subjects. Each value of the independent variable (the type of

shared control) was seen by each subject. The practice and carryover effects associated with

the trial sequences were lessened by blocking and balancing the experiment design. The

orders are shown in Table 11.5. All subjects started on the 2DOF platform and alternated

between the 3-Point scenario and the 4-Point scenario. The scenarios alternated to temper

fatigue and learning effects. Each subject saw all scenarios four times, for a total of 8 trials

per subject on the 2DOF platform. Each trial continued for 3 minutes.

A between groups experiment design was used for the 4DOF Guided Digging tests. Each
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Table 11.5: Experiment design for 2DOF guided motion tests

Run number Run number
Subj 1 2 3 4 5 6 7 8 Subj 1 2 3 4 5 6 7 8

1 A0 B0 A1 B1 A2 B2 A3 B3 17 B0 A1 B2 A3 B1 A0 B3 A2
2 A1 B1 A2 B2 A3 B3 A0 B0 18 B1 A2 B3 A0 B2 A1 B0 A3
3 A2 B2 A3 B3 A0 B0 A1 B1 19 B2 A3 B0 A1 B3 A2 B1 A0
4 A3 B3 A0 B0 A1 B1 A2 B2 20 B3 A0 B1 A2 B0 A3 B2 A1
5 A0 B3 A1 B0 A2 B1 A3 B2 21 B3 A1 B1 A3 B0 A0 B2 A2
6 A1 B2 A2 B3 A3 B0 A0 B1 22 B2 A2 B0 A0 B3 A1 B1 A3
7 A2 B1 A3 B2 A0 B3 A1 B0 23 B1 A3 B3 A1 B2 A2 B0 A0
8 A3 B0 A0 B1 A1 B2 A2 B3 24 B0 A0 B2 A2 B1 A3 B3 A1
9 A2 B2 A3 B3 A0 B0 A1 B1 25 B2 A3 B0 A1 B3 A2 B1 A0

10 A3 B3 A0 B0 A1 B1 A2 B2 26 B3 A0 B1 A2 B0 A3 B2 A1
11 A0 B0 A1 B1 A2 B2 A3 B3 27 B0 A1 B2 A3 B1 A0 B3 A2
12 A1 B1 A2 B2 A3 B3 A0 B0 28 B1 A2 B3 A0 B2 A1 B0 A3
13 A2 B1 A3 B2 A0 B3 A1 B0 29 B1 A3 B3 A1 B2 A2 B0 A0
14 A3 B0 A0 B1 A1 B2 A2 B3 30 A3 B3 A0 B0 A1 B1 A2 B2
15 A0 B3 A1 B0 A2 B1 A3 B2 31 A0 B3 A1 B0 A2 B1 A3 B2
16 A1 B2 A2 B3 A3 B0 A0 B1 32 A1 B2 A2 B3 A3 B0 A0 B1

33 A3 B0 A0 B1 A1 B2 A2 B3

Table 11.6: Experiment design for 4DOF guided motion tests

Manual control Shared control, type 1 Shared control, type 2
Unfamiliar Novice Expert Unfamiliar Novice Expert Unfamiliar Novice Expert

5 1 2 7 13 22 12 3 23
6 4 10 11 21 26 14 8 33

18 9 20 24 17 28
15 32 25 29
16 27 31
19 30

subject tested used only one level of the independent variable (type of shared control). The

group assignments are shown in Table 11.6. The trials alternated between Trenching and

Reaching. The subjects saw each scenario three times, for a total of 6 trials per subject on

the 4DOF platform. Each trial continued for 3 minutes.

11.5.7 Measures— Unconstrained Guided Motion (UGM)

The cycle transition times were defined at the local minima of the distance measurement

function d,

d(q) = ψT (|q(t) − q(0)|)
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Figure 11.7: The start and end time of each cycle is determined by the minima of the
weighted measurement function d.

where d may be interpreted as the relative change in volume of the fluid within the cylinders

and q(0) is the initial position of the cylinders. A typical plot of d(q) with superimposed

local minima is shown in Figure 11.7. The times of the local minima indicate the transition

time between cycles. The transition time of each cycle was hand marked by the author semi-

automatically after all experiment trials were complete. No knowledge of the experiment

parameters were known at the time of marking, and the only variable visible at the time of

marking was the weighted displacement, d.

Any trial having less than four cycles was not included in the analyzed data set. This

ensures that the shared control tests are not unfairly penalized, as the rampe algorithm

requires at least three iterations of a motion primitive before computing an estimate and

initiating shared control. In sum, 21 of the 462 trials were discarded—less than 5 percent—

spread roughly uniformly among the scenarios and control types. Most discards were from

subjects having an unfamiliar skill-level and over half were from 3 subjects.

150



10

20

30

40

Trenching Reaching
MC SC1 SC2 MC SC1 SC2

Ta
sk

 T
im

e 
[s

]

10

20

30

Four-point Three-point
MC SC1 SC2 HC MC SC1 SC2 HC

Ta
sk

 T
im

e 
[s

]

Figure 11.8: Boxplot of mean task times for Unconstrained Guided Motion (UGM) experi-
ments

11.6 Results

The objective data analysis is based primarily on the measured task time. Figure 11.8

shows a boxplot4 for the cycle times of each control type for each set of Unconstrained

Guided Motion (UGM) experiments, grouped by control type. Figure 11.9 and Figure 11.10

shows the same type of information for each of the Point-to-Point Motion tasks. A cursory

inspection reveals that the shared control groups tend to have lower cycle times, although

the effect is not uniform and has a relatively large spread.

A qualitative data analysis provides information on general trends; likewise, it is bene-

ficial to inspect the data with more rigorous statistical methods. Several assumptions must

4a boxplot is a useful way to display raw aggregate data. The centerline of a box is the median; the upper
and lower extent of the box is the 25th and 75th percentiles; the error bars denote 1.5× IQR (interquartile
range); and outliers are shown outside the error bars.
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Figure 11.9: Boxplot of mean task times for 2DOF Point-to-Point Motion experiments
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Figure 11.10: Boxplot of mean task times for 4DOF Point-to-Point Motion experiments

be satisfied before applying common statistical analyses such at ANOVA. The validity as-

sumptions [148] on the data requires that negligible systematic error, or bias, is present.

Primary sources of bias include selection bias and information bias. Selection bias is re-

duced by randomly assigning the shared control “treatments”, and by ensuring a uniform

representation of the operator skill-levels for each case. Information bias is reduced by

automating the collection and analysis of the data.

The distributional assumptions are that the data is independent, normally distributed,

and of uniform variance. Independence between subjects is assumed in all cases. Asserting

independence between trials of the same subject is more bold since learning or fatigue

effects may (intuitively) be present; the balanced experiment design helps alleviate these

symptoms. A run sequence plot, of which a typical one is shown in Figure 11.11, of the task

time of each trial did not indicate any gross violations of the independence assumption. A

linear regression on task time did not yield a significant effect, hence strengthening the case

for validity of the inter-sample independence assumption.

However, there is strong indication of non-normality for the distribution of measured
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Figure 11.11: Run sequence plot for a typical subject performing the Point-to-Point task
set. There appears to be no violations of the between-trials independence assumption.

task times. This is evidenced by examining histogram plots of the cycle time, for example

Figure 11.12 shows the cycle times for the Trenching task. The fixed lower bound on the

cycle time manifests as a distribution with positive skew. Common statistical techniques

assume normally distributed measures. Thus, the units of the data should be transformed

before applying these techniques; Bland provides a good layman’s overview of this pro-

cess [149–151]. Before analysis of the task-time data,5 the measurements are transformed

to a new variable, τ , with

T ′ = log (T )

The log-transformed measurements better approximate the normal distribution, as illus-

trated by the histograms in Figure 11.13. A secondary advantage of using the transformed

data is to lessen the influence of sampling error that is introduced by extreme observations

within the skewed data. A back transform via antilog allows statistics on the transformed

scale to be interpreted in the standard units (seconds). The mean task time, after back

transforming into the original units, is actually the geometric mean; the geometric mean

will be less than that of the raw data, and closely approximates the sample median.

5A cursory look at several publications within the robotics community which deal with manipulation
task times reveals that many researchers neglect—either by choice or by ignorance—the skew-ness present
in their measurement sets
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Figure 11.12: Histogram plots of task times for Trenching task, shown with an overlaid
best-fit normal distribution.

11.6.1 Analysis of Results

To determine if differences among the cases are statistically significant, an analysis of vari-

ance was performed. A linear statistical model [148] is used to describe the main observa-

tions by

yijkl = μ + τi + αj + βk + (αβ))jk + εijkl

where y is the measured or observed cycle time, μ is the ground truth mean effect for the

task, τi is the effect of the subject neglecting skill, αj is the effect of the Shared Control

type, βk is the effect of the Operator Skill alone, (αβ)jk is the interaction of Control Type

and Skill, and εijkl is a random component describing the experimental error. The subject

factor τ is treated as a nuisance factor. The effect μ is the average task time across all trials

of the particular task for subject i, Control Type j.

The null hypothesis is that the different control types (SC1, SC2, HC, MC) have no

effect on the task completion time. For each experiment scenario, a single factor ANOVA
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Figure 11.13: Histogram plots of log transformed task times for Trenching task, shown with
an overlaid best-fit normal distribution.

test having four fixed effects is performed on the mean cycle time of each subject and each

control type.

Analysis of variance results show that, with the Skill factor collapsed across all groups,

the effect of Control Type does not significantly impact Trenching (p = 0.09) and Reaching

(p = 0.09), but does influence 2DOF Point-to-Point (p < 0.001) and 4DOF Point-to-

Point (p = 0.04) tasks. When only the effect upon the novice group is considered, the

Control Type effects all the tasks: Trenching (p = 0.032), Reaching (p = 0.045), 2DOF

P2P (p = 0.014) and 4DOF P2P (p = 0.013).

The low p-value for this test is evidence to reject the null hypothesis in favor of the

alternative. From the ANOVA, it is clear that the task times are drawn from distributions

having at least a pair of unequal means. Dunnett’s method is used to determine specifically

which Control Types are significantly different from the control group [148]. Dunnett’s

multiple range test is a post-hoc, two-sided multiple comparison method used to compare

a set of categories to a control group. In this case, Manual Control (MC) is the baseline
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Figure 11.14: Unconstrained Guided Motion (UGM): Comparing the mean task time for
different control effects, across all skill levels. The error bars correspond to the critical
interval for Dunnett’s multiple range test.

control group.

For the Unconstrained Guided Motion (UGM) tasks, the control group is a separate

group of subjects. However, for the P2P tasks, the control group is a subgroup of trials

within all trials performed by each subject. The control group must only be compared within

subjects. Thus, before contrasting each Control Type for the P2P tasks, each measure (for a

particular subject performing a particular task) is normalized by the mean task time under

MC.

The critical interval in Dunnett’s test is a function of the mean square error for data from

all trials, the statistical degrees-of-freedom, and the number of samples in the two distribu-

tions being compared. For unequal sample sizes, the critical interval will vary depending

on the pair being compared. The results of the Guided Motion Tasks are summarized in

Figure 11.14. The P2P test results are shown in Figure 11.15. To aide interpretation of the

graph, only the largest critical interval is shown. For the P2P tests, the results are shown

in units of mean manual control time. The mean task times for manual control are shown

within the parenthesis of Figure 11.15.

The operator skill level groupings are considered individually in the results shown in

Figure 11.16
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Figure 11.15: Point-to-point (P2P) Motion Tests: Comparing the mean task time for differ-
ent control effects, across all operator skill levels. The error bars correspond to the critical
interval for Dunnett’s multiple range test. The task times are normalized with respect to
the operator task time for MC. The numbers in parentheses are the mean task time, in
seconds, for manual control.

11.6.2 Two-way Interactions

Two-way interactions were also analyzed using a two-way ANOVA formulation for experi-

ment designs with unequal sample sizes. A significant interaction between the Control Type

and Skill Level factors exists for Trenching (p = 0.045), Reaching (p = 0.025), Three-Point

(p = 0.007), Four-Point (p < 0.001), and for the normalized comparison between all P2P

trials (p < 0.001).

Interaction graphs for the Unconstrained Guided Motion tasks are shown in Figure 11.17.

The significant interaction between Control Type and Operator Skill is indicated by the lack
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Figure 11.16: Comparing the mean task time for different control effects, segmented based
on operator skill level. The error bars correspond to the critical interval for Dunnett’s
multiple range test.

of parallelism of the lines. In general, lower task times are achieved with increasing operator

skill. However, there appears to be a horizon of diminishing returns beyond which shared

control does not further influence task time.

11.7 Discussion

The goal of these experiments was to examine the utility of shared control for decreasing

the task completion time of representative excavator or manipulator tasks. The evidence

supports the conclusion that there are scenarios for which Blended SC offers a significant

time saving compared to manual control alone. Operator skill has the greatest effect on task

completion time, therefore operator training is justified. However, even for very experienced

operators, Blended SC has a positive effect of productivity.

The point-to-point tasks, for which the shared controller was given knowledge of the

task parameters, shared control had significant effect on the task completion time compared

with manual control. The proportional perturbations had a lower mean task time than the

constant flow perturbations.

The mean task time for the unconstrained guided motion tasks were lower with shared
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Figure 11.17: Interaction plots: Control type vs. Operator skill for Unconstrained Guided
Motion tasks
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control than with manual control; however, in most cases the outcome is not strictly statis-

tically significant.

Haptic cues were not effective in decreasing task time for the tasks considered in this

study. This contrasts with the single degree of freedom task discussed in Chapter 5 for which

the effect of haptic feedback was significant. The explanation for the poorer performance

of haptic feedback for the multi-DOF excavation tasks may include that the cues were not

interpreted correctly, or that the cues somehow prompted lower velocity inputs.

The significant interaction between Control Type and Operator Skill implies that there

may be a group of users for which the shared control is most suitable. Shared control

produced greater benefit for the Novice group, whose mean task time with shared control

were nearly equal to the unassisted task time of expert operators. The effect of shared

control on the Unfamiliar and Expert groups was not as strong for the Novice group. For

experts, there may be less opportunity for improvement, as may already be close to optimal.

The task complexity relative to available operator skill must be weighed when deciding to

implement the Blended SC.
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CHAPTER XII

SUMMARY, CONTRIBUTIONS, AND FUTURE DIRECTIONS

This chapter presents concluding remarks. First, a summary of the contributions and

accomplishments is given. Finally, suggestions and recommendations for further research

are stated.

12.1 Summary and Concluding Remarks

Earthmoving machines have many interesting challenges germane to robotics, and solutions

to these challenges positively impact a large industry. Presently, the human operator man-

ually controls the manipulator motion. This research has shown that if the conventional

human/machine link is severed—and the human input is augmented with assistance from

an Electronic Agent—then some tasks can be completed in less time.

Specifically, a new control architecture termed Blended Shared Control was presented.

The architecture allows two agents, here a Human Agent and an Electronic Agent, to

simultaneously influence the machine response. This framework has an admittedly simple

structure; however, simple does not imply ineffective.

The larger manipulator motion is decomposed into a sequence of simpler motion prim-

itives. A motion primitive was comprised of a direction Ω and a displacement x. Every

manipulator motion can be described by a sequence of these primitives. However, in general,

the operator’s task is not known a priori. Chapter 7 presented an algorithm for estimating

future motions, given knowledge of the current operator input and the current actuator

positions.

With the task parameters known, the motion is optimized. A simple model was devel-

oped in Chapter 8. This model retained the salient actuator constraints, while dismissing

higher-order complexities common in typical models. Using this model, a time-optimal

solution for completing the tasks was developed in Chapter 9.

The Blended Shared Control perturbations themselves were presented in Chapter 10.
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The control perturbations were a function of the current operator input and the optimal in-

put. A single scalar parameter enabled the level of control authority to be adjusted between

full manual control and full automatic control. A series of constraints were introduced to

limit the deviation from the operator command.

Chapter 10 showed analytically that the shared controller essentially “pushed” the oper-

ator commands to a lower instantaneous cost regardless of the operator dynamics. However,

it remained unclear (at least from any analytical sense) what occurs globally when the op-

erator is in the loop. Analytically proving stability and acceptability to the operator is

probably impossible even for a very simple cognitive model. Thus, this particular hypothe-

sis was tested primarily with experimental evidence. In particular, the paradigm has been

tested in different situations for different operators, and performance was evaluated from

an analytical and subjective point of view. Experimental results indicated a measurable

effect on the task time, and are detailed in Chapter 11.

12.2 Contributions

A more intuitive method for analyzing the actuator motions and understanding the multi-

function interaction of hydraulic manipulators subject to pressure, flow, and power con-

straints was given. This approach allows the feasible region to be visualized as a function of

valve operating modes, power limits, and flow limits of the actuators and pump. Conven-

tional approaches are very complex and require either nonlinear expressions, or difficult to

train and inflexible methods that learn the interaction. In contrast, this technique provides

an intuitive understanding of the way the machine response changes for different interaction

cases.

This research contributed a new understanding to the time-optimal control of net ve-

locity constrained manipulators. A particular point, u∗, is useful not only as a necessarily

optimal solution (one of many) but also as a means of checking the optimality of a control

input, e.g. from a human operator, which may not equal u∗.

Further, the motion primitive formulation for describing actuator motions, and the

rampe method of task description and task parameter estimation, are helpful tools for
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manipulator control. The formulation enables a compact representation of a manipulator

motions. Describing the actuator motion as a combination of a direction and a displacement

magnitude allows the several unique benefits for human-controlled manipulators particu-

larly: the motion direction can be inferred based on sensed operator commands, and the

future motion estimated based on previous cycles.

The perturbation-based Blended Shared Control framework is a new contribution to a

family of existing shared control paradigms. The method is particularly noteworthy because

only a single scalar parameter needs tuned. Moreover, the approach brings a uniquely trans-

parent analysis of the effect that the SC perturbation has on directly observable responses

such as changes in perceived end effector velocity or effective changes in joystick input.

12.3 Future Directions

It seems clear that the present study has only scratched the surface of what task-estimation

based actions and increased autonomy could add to the capabilities of human-controlled

manipulators performing repetitive tasks such as excavation.

Further experimental observations would be beneficial for understanding the nature of

the Shared Control. Interesting areas of analysis include the following:

1. Analyze the effect of SC on the learning rate

2. Analyze the change in human behavior as a result of the perturbations

3. Analyze the performance of SC when there are conflicting objectives. Conflicts may

include obstacles within the intended manipulator trajectory which only one agent is

aware of. Conflict will also arise if one agent is minimizing temporal cost while the

other is minimizing energetic cost.

4. Segment the subject population using other criteria, such as tendency to use multiple

functions, to help explain observed effects of SC

The Shared Control parameter a tunes the level of authority held by both agents. Chap-

ter 10 presented several alternatives for the selection of a, but there are many other possi-

bilities. These include
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1. Selecting a to be dependent on the task estimation accuracy. For example, a higher

confidence in the expected task would automatically lead to an increase to the level

of autonomy (i.e., a would increase with the estimation accuracy).

2. Select a based on the stage of the manipulator cycle. For example, portions of the

cycle which require a high level of operator technique—such as moving through the

soil—would not be modified. Portions of the cycle for which the path is less important

than the endpoints would be modified by the EA.

The point u∗ in Chapter 9 provides indication of optimality; namely, if the point leaves

the region of ∂U in which it began then the motion is necessarily suboptimal. It may be

feasible to design a feedback controller which modulates u to keep u∗ within its native

region. This controller would then be optimal, and may also increase the overall robustness

to modeling errors.

The Blended SC paradigm presented here places the Human Agent on the highest level of

control. The human’s task is estimated, and the human’s commands are perturbed. There

is a symmetric embodiment not discussed in this thesis, in which the EA would complete

some autonomous task, and the operator would only intervene according to certain criteria.

Regardless of the value of a, the architecture only acts in response to an operator input.

Thus, even when a = 1 and the EA has full control of the manipulator, the commands which

the EA issues are based upon the commands of the HA. Thus, if the HA is commanding

a null motion (by not moving the joysticks), the EA will issue a null command. Similarly,

if the HA commands the boom and arm cylinders to retract, then the EA must also only

give commands that cause the boom and arm cylinders to retract. These convenient con-

straints are a result of defining the manipulator task using the motion primitive formulation

discussed in Chapter 7. Therefore, when the EA is given full authority, that authority is

inherently restricted to a u-plane which is defined by the operator’s present inputs. This has

interesting implications, in that now the HA can use the displacements of the joysticks to

“conduct” a large variety of autonomous manipulator motions, in a manner reminiscent of

the way a maestro conducts the flow of a melody. Exploiting this feature, one may be able
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to pre-program a wide variety of fundamental motions. The motion ultimately executed

would be a function of the joystick displacements and the machine state at the start of the

motion. An extension of the research in this direction would have interesting application

to the field of collaborative control and behavior modeling.
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APPENDIX A

POST-EXPERIMENT QUESTIONNAIRE AND RESULTS
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Figure A.1: Survey questions. The survey was administered using a web-based form.

Over 1000 hours (daily for many years) 3 9%
100 hours (daily for many months) 2 6%
2 - 5 hours (seldom) 1 3%
Less than 2 hours 9 27%
Never 18 55%

Over 1000 hours (daily for many years) 0 0%
100 hours (daily for a month) 1 3%
2 - 5 hours 4 12%
Less than 2 hours 13 39%
Never 15 45%

Over 1000 hours (daily for many years) 4 12%
100 hours (daily for a month) 4 12%
2 - 5 hours 4 12%
Less than 2 hours 12 36%
Never 9 27%
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Figure A.2: Summary of survey responses: Use of equipment related to excavators.
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Use of related equipment. - Use a computer
Daily or Almost daily 33 100%
Weekly 0 0%
Monthly 0 0%
A few times per year 0 0%
Never 0 0%

Daily or Almost daily 0 0%
Weekly 5 15%
Monthly 9 27%
A few times per year 17 52%
Never 2 6%

Daily or Almost daily 1 3%
Weekly 6 18%
Monthly 1 3%
A few times per year 15 45%
Never 10 30%

Daily or Almost daily 3 9%
Weekly 1 0%
Monthly 3 9%
A few times per year 6 18%
Never 20 64%
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Figure A.3: Summary of survey responses: Use of related equipment.
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Figure A.4: Summary of survey responses: Familiarity with task domain.
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Figure A.6: Summary of survey responses: Operator workload self-assessment.
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