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SUMMARY

The fluid-structure interaction of reacting materials requires computational

models capable of resolving the wide range of scales present in both the condensed

phase energetic materials and the turbulent reacting gas phase. This effort is focused

on the development of a micro-scale structural model designed to simulate hetero-

geneous energetic materials used for solid propellants and explosives. These two

applications require a model that can track moving surfaces as the material burns,

handle spontaneous formation of discontinuities such as cracks, model viscoelastic and

viscoplastic materials, include finite-rate kinetics, and resolve both micro-scale fea-

tures and macro-scale trends. Although a large set of computational models is applied

to energetic materials, none meet all of these criteria. The Micro-Scale Dynamical

Model serves as the basis for this work. The model is extended to add the capabilities

required for energetic materials. Heterogeneous solid propellant burning simulations

match experimental burn rate data and descriptions of material surface. Simulations

of realistic heterogeneous plastic-bound explosives undergoing impact predict the for-

mation of regions of localized heating called hotspots which may lead to detonation

in the material. The location and intensity of these hotspots is found to vary with

the material properties of the energetic crystal and binder and with the impact ve-

locity. A statistical model of the hotspot peak temperatures for two frequently used

energetic crystals indicates a linear relationship between the hotspot intensity and

the impact velocity. This statistical model may be used to generate hotspot fields in

macro-scale simulations incapable of resolving the micro-scale heating that occurs in

heterogeneous explosives.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Energetic materials are solids or liquids containing large quantities of chemical energy.

Solid energetic materials are typically composed of explosive crystals mixed into a soft

binding material. This heterogeneous mixture is called a plastic- or polymer-bound

explosive (PBX). The binder material allows the energetic material to be shaped

arbitrarily while also absorbing and dissipating the mechanical energy imparted to

the material during impacts. Energetic materials release their stored chemical energy

through both deflagration and detonation processes.

Deflagration is the primary energy release mechanism for the solid propellants

used in rocket motors. The micro-scale fluctuations in the propellant burning may

couple with the large-scale flow characteristics to affect the global stability of the

combustion process [4]. On the other hand, detonation is the primary mechanism

of energy release in the explosives used for mining and weaponry. Detonation may

occur intentionally or unintentionally during the manufacturing or transport of the

energetic materials. Understanding the mechanisms by which energetic materials

detonate is critical for the safe use, transport, and storage of the materials.

Numerical simulations provide a safe means to study both the deflagration and

detonation of energetic materials. A computational model applied to the surface

burning of solid propellants must be able to resolve the micro-scale fluctuations in

the instantaneous burn rates that occur due to the interactions with the global flow.

Meanwhile, models used to study the detonation initiation process need to resolve
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the localized heating in the material due to the stresses induced by impacts. To ad-

dress both of these applications, a computational model should have several features

to render it robust and capable of predicting the performance and stability of en-

ergetic materials. The physical capabilities critical to simulating energetic material

deflagration and detonation are:

1. Explicit tracking of surface regression due to pyrolysis and surface deformation

due to impact loading.

2. Formation of discontinuities such as cracks and plasticizer debonding at arbi-

trary locations and times not known a priori ;

3. Ability to model viscoelastic and viscoplastic materials;

4. Inclusion of finite-rate chemical kinetics;

5. Resolution of physical processes at scales approaching the micrometer length

scales typical of hotspot formation and energetic crystal sizes;

6. Resolution of macro-scale physical processes such as global burn rates and

macro-scale surface deformation.

In this work, an existing computational model which addresses most of the afore-

mentioned points is extended to add the missing capabilities. This creates a structural

solver that is capable of simulating the surface features important in deflagration and

also is capable of simulating the processes leading up to detonation in energetic ma-

terials. The ability to couple the structural solver with a fluid solver is critical to the

future success of this model. The actual coupling with a fluid solver is outside of the

scope of this work; however, it is a motivating factor in the design of the solver.
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1.2 Computational Models for Energetic Materials

There are several computational approaches in use to simulate energetic materials

with the most common approaches presented below and discussed in light of the

desired capabilities listed above. The methods are in increasing order of their spatial

and temporal resolution, starting with the atomistic approaches. No single method

from those surveyed addresses all of the capabilities desired. The deficiencies in the

existing models is the primary motivator for the proposed computational model.

At the smallest scales, Molecular Dynamics (MD) approaches simulate the inter-

actions between the atoms in a material. These interactions are defined by empirically

derived interaction potentials (classical MD) or interaction potentials determined from

quantum mechanics (Quantum Molecular Dynamics, or QMD). Simulations may be

comprised of billions of atoms, but computational limitations prevent these meth-

ods from simulating systems larger than tens of nanometers for longer than a few

picoseconds [2,39]. The Dissipative Particle Dynamics (DPD) method is designed to

overcome these length and time constraints. Instead of simulating the interactions

of individual atoms, each node represents a molecule or a small discrete volume of

material. While successful at relaxing the length and time scale restrictions of MD

simulations, DPD simulations have an upper bound of microns and microsecond space

and time scales [25,44].

Continuum methods become usable at the micron length scale and larger. Finite

volume, finite difference, and finite element methods are frequently used for simulat-

ing energetic materials. The representation of heterogeneous materials requires the

solution of an additional levelset equation, typically resulting in a diffusion of the ma-

terial interface over several computational cells [34, 60]. Additionally, because such

methods are based on the differential form of the governing equations, discontinuities

due to fractures and debonding are difficult to treat [55].

Continuum Lagrangian approaches such as Smoothed Particle Hydrodynamics
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(a) Example of crack formation be-
tween elements (from [61])

(b) PBX simulation of 1) debonding,
2) fracture and 3) localized heating
(from [7])

Figure 1: Examples from CFEM simulations.

(SPH) allow the deforming surface of the energetic material to be tracked explicitly

without additional equations. The interfaces between materials are also straight-

forward to model with each Lagrangian particle representing a single material. Each

particle is updated by integrating the continuum partial differential equation weighted

by a kernel function on a support domain. The definition of the support domain re-

quires finding the nearest neighboring particles, adding to the expense of the method.

Like the Eulerian approaches, special treatment is required in the presence of discon-

tinuities [42].

The Cohesive Finite Element Method (CFEM) is close to meeting all of the re-

quirements in a model. CFEM uses a traditional finite element discretization com-

bined with a cohesive traction element on the surfaces between the traditional ele-

ments. The traction forces between the elements are designed to model the friction

as elements slide past one another as well as the normal forces required to separate

elements [61]. This allows both spontaneous crack formation and material debonding

as shown in Figure 1. Unfortunately, discontinuities may only form along cohesive

surfaces which requires either a priori knowledge of the discontinuity locations or

placing cohesive surfaces between all elements.
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This cross-section of computational techniques reveals that there are a wide variety

of methods but no one method has all of the desired features. In particular, the ability

to predict spontaneous discontinuity formation without special treatment requires

an approach that does not rely on the differential form of the governing equations.

This, along with the ability to resolve micron-sized imperfections in materials, is

the primary motivation behind the Micro-Scale Dynamical Model (MSDM) proposed

by Li et al for the erosion of materials used in industrial applications [39]. The

ability to handle spontaneous discontinuities is also the primary motivation behind

the peridynamic theory introduced by Silling in 2000 [55] and described in the next

section.

MSDM uses a lattice of Lagrangian masses connected to their nearest neighbors

by springs [39]. The original model meets most of the requirements given previously:

1. Explicit surface tracking.

As a Lagrangian method, the surface deformation or regression is explicitly

tracked as the convex hull of the Lagrangian nodes.

2. Formation of discontinuities.

By allowing the springs to break when the strain between sites exceeds the

fracture strain of the materials, discontinuities may form at any point in the

lattice without a priori knowledge of the fracture locations.

3. Viscoelastic and viscoplastic materials.

Omitted in the original model, dampers may be added, in addition to the

springs, between sites to allow for strain-rate dependent effects when needed.

These can be combined in a variety of ways to represent Maxwell materials,

Kelvin-Voigt materials, or Standard Linear materials. Plastic effects may also

be included by tracking the accumulated strain of each connection and modi-

fying the Young’s Modulus to approximate the stress-strain relation as a series

5



Figure 2: Linear approximations used in MSDM for plastic effects. Accuracy improves
by increasing the number of linear segments in the plastic regime (from [39])

of constant-slope sections as shown in Figure 2.

4. Finite-rate kinetics.

The original MSDM formulation does not include an energy equation prohibit-

ing the use of finite-rate kinetics. This effort extends the model to include an

energy equation.

5. Resolution on the micron scale.

The original motivation outlined in Li et al is to bridge the scales between

molecular dynamics and the large-scale behavior of materials by resolving the

material at the micro-scale [39].

6. Resolution of macro-scale.

The purpose of the model is to determine the erosive wear, a macro-scale effect,

of materials due to micro-scale effects. The model has been used to study

composite materials [14], corrosion of reactive materials resulting in weakening

of the inter-node bonds [15], porous materials [38], and the corrosion of non-

reactive materials [40].

Based on the list of desired features for a structural solver, the original MSDM

formulation meets all but a few of the requirements. In this work, the method is
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extended to include the missing features. Additionally, MSDM is shown to be a

peridynamic approach to continuum mechanics. This link to peridynamics is impor-

tant; the original MSDM formulation is presented without a theoretical proof that

the method converges to classical continuum mechanics governed by the differential

form of the governing equations. Silling and Lehoucq demonstrate the convergence

to classical elastic theory [57] while Seleson et al [52] and Lehoucq and Silling [37]

both verify the convergence at the micro-scale to molecular dynamics. The theoreti-

cal justification for MSDM as a continuum model bridging the scales from micro- to

macro-scales is provided by demonstrating MSDM fits within the peridynamic the-

ory. The details of the MSDM formulation and the link to peridynamics are given in

Chapter 2.

1.3 Peridynamic Theory

The following is a description of the peridynamic theory for solid mechanics. Only the

important descriptions and conclusions of the theory are summarized here. Readers

interested in the associated proofs are directed to the work by Silling [55].

In the peridynamic theory, the acceleration of a point is determined by the force

density which is a function of the displacement field d in the neighborhood R around

its position x:

ρd̈ =

∫
R
f(d(x′, t)− d(x, t),x′ − x)dVx′ + b (1)

and b is a body force density, f is a pairwise force function and ρ is the density.

The neighborhood R is composed of all the coordinates within the force horizon δ

centered around x. Taking ξ = x′ − x as the relative position of two points in the

reference configuration and η = d(x′, t) − d(x, t) as the difference in displacements

for the two points, the relative position of the particles in the deformed configuration

is η + ξ. This is illustrated in Figure 3. With these definitions, the force function

becomes f(d(x′, t)− d(x, t),x′ − x) = f(η, ξ).

7



Figure 3: Representation of the position vectors defined in the peridynamic formula-
tion (from [18])

The choice of the force function is not arbitrary. The force functions must satisfy

Newton’s third law:

f(−η,−ξ) = −f(η, ξ); ∀η, ξ (2)

which is called the linear admissibility of the force function. Additionally, conserva-

tion of angular momentum requires:

(ξ + η)× f(η, ξ) = 0; ∀η, ξ (3)

which is the angular admissibility of the force function. The angular admissibility

requirement states that the force pairs are directed along the vector ξ. A general

form of the force function that satisfies both Equations 2 and 3 is:

f(η, ξ) = F (η, ξ)(η + ξ); ∀η, ξ (4)

where F is a scalar function. Chapter 2 demonstrates the link between MSDM and

peridynamics.
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1.4 Heterogeneous Solid Propellant Burning

For over 70 years numerous scientists studied the combustion of the heterogeneous

solid propellants used in solid rocket motors. The most commonly used propel-

lant is composed of the salt Ammonium Perchlorate (AP) mixed with the Hydroxl-

Terminated Polybutadiene binder (HTPB). Early studies focused on either the chem-

ical decomposition over a range of pressures or on the detailed surface structure of the

propellant. The 1969 review article by Jacobs and Whitehead [30] combined 15 years

of research into the chemical decomposition and combustion of AP. The detailed

reaction mechanisms are split into low and high temperature combustion regimes,

combustion in the presence of additives or catalysts and the detonation of AP.

Similarly, in a series of experiments Boggs identified four combustion regimes

based on the ambient pressure of a nitrogen atmosphere [12]. Figure 4 breaks the

AP combustion regime into these regions. The first regime is characterized by steady,

planar regression in the single crystal with the liquid layer and gaseous products

producing a frothy or foam layer. As pressure increases, the thickness of this foam

layer decreases. The second regime is macroscopically planar but closer inspection

reveals ridges and valleys. The foam layer is no longer present and the reaction

progresses directly from the solid to gaseous phases. This direct transfer results in

a close coupling between gas and solid phases. In the present effort, the simulation

of surface burning will be confined to the upper end of the first regime through the

entirety of the second regime. The model used is confined only to the solid phase and

this regime is chosen to avoid the need for a liquid phase at the interface layer.

With the wealth of experimental data and early, rudimentary analytical models,

Beckstead, Derr and Price proposed a predictive model for AP-HTPB combustion

[11]. The BDP model postulates a triple flame structure over each AP crystal in

the propellant. A laminar AP monopropellant flame sits just above the crystal.

A diffusion flame resides between the gaseous AP and the gaseous binder and is

9



Figure 4: Four combustion regimes of AP depending on the ambient pressure (from
[12])

designated as the primary flame. Lastly, there is a diffusion flame sitting above the

primary flame between the oxygen-rich AP monopropellant products and the fuel-rich

binder decomposition products. Figure 5 is a sketch of the BDP flame structure. The

BDP model predicts the surface temperature over the heterogeneous propellant can

be treated as uniform and depends on the standoff distance of the primary flame.

As the ambient pressure increases, the primary flame is pushed closer to the surface

resulting in a higher surface temperature [11]. Despite improvements to the BDP

model such as the Cohen-Strand model [16], the BDP model serves as the baseline

for modern work [21].

Frazier, Demko and Petersen recently extended the BDP model to include cat-

alytic nanoparticle additives [21]. Numerical results are compared to experimental

results for several of AP-HTPB propellants with varying amounts and sizes of the AP

particles. The authors report little sensitivity in the binder reaction rates when the

nanoparticles are present. Therefore, an empirical constant that only modifies the

reaction rate of the AP reaction when nanoparticles are present is given. The model

10



Figure 5: Beckstead-Derr-Price flame model for AP-HTPB heterogeneous combustion
(from [11])

used by Frazier, Demko and Petersen is 1D and unable to provide any information

about the surface structure. The results of the extended model and experiments serve

as the baseline for evaluating the capability of MSDM to simulate heterogeneous solid

propellant combustion.

1.5 Hotspot Formation in Heterogeneous Explosives

Researchers discovered in the 1940s that localized regions of high temperature in

energetic materials initiates detonation of the material. These early experiments were

performed on liquid explosives as a means to systematically determine the impact

sensitivity of the materials [50]. Some explosives are sensitive to even the mildest

agitation while others require considerable thermal or mechanical energy to detonate.

Understanding the hotspot formation process is a key to safe handling of energetic

materials.

In the initial experiments on liquid explosives, the researchers noted that the

impact sensitivity was greatly increased by the addition of tiny gas bubbles in the

liquid. It was postulated that the adiabatic heating from the compression of the

gas bubbles created the hotspots that triggered the detonation [50]. Bubble like
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Figure 6: Temperature distribution showing hotspots in a digitized image of a real
PBX (from [7])

.

structures called pores or voids may also appear in solids where the heating due

to adiabatic compression is augmented by the viscoplastic work done as the void

collapses. Numerical simulations performed by Tran and Udaykumar [58, 59] reveal

the different mechanisms of void collapse and the conversion of the mechanical energy

into heat.

In addition to void collapse, material inhomogeneities also generate localized heat-

ing which may be strong enough to trigger detonations. Barua and Zhou [7] used the

Cohesive Finite Element Method to study the hotspot formation in PBXs underging

impact. The strain rate due to impact, the lateral confinement and the energetic

crystal packing densities were varied. Figure 6 shows the temperature in the PBX

undergoing strain as computed by Barua and Zhou [7]. The hotspots form in the

binder material and transfer heat to the energetic crystals. Therefore, the binder

properties are strongly correlated to hotspot formation.

An energy budget based on the contributions of the terms in the energy equation

reveal that viscoelastic work is the primary cause of hotspot formation at early times.
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At later times, the formation of cracks and friction along the crack surfaces contributes

more to the heating. At low strain rates or for soft binders, the hotspots occur

primarily along shear bands and are distributed throughout the energetic material.

At larger strain rates or for harder binders, the hotspots are more localized to the

impact face [7]. The work of Barua and Zhou serves as the basis for evaluating

MSDM’s capability to study the hotspot formation processes in energetic materials.

1.6 Objectives

The following key objectives and associated tasks will establish and demonstrate

MSDM is a structural solver capable of studying energetic materials:

1. Extend and validate MSDM for energetic materials.

The simulation of both the deflagration of heterogeneous solid propellants and

the hotspot formation in plastic bound explosives requires a computational

model that meets six primary criteria:

(a) Explicit tracking of surface regression due to pyrolysis and surface defor-

mation due to impact loading;

(b) Formation of discontinuities such as cracks and plasticizer debonding at

arbitrary locations and times not known a priori ;

(c) Ability to model viscoelastic and viscoplastic materials;

(d) Inclusion of finite-rate chemical kinetics;

(e) Resolution of physical processes at scales approaching the micrometer

length scales typical of hotspot formation and energetic crystal sizes;

(f) Resolution of macro-scale physical processes such as global burn rates and

macro-scale surface deformation.

Several existing computational models are surveyed and although each addresses

a subset of the criteria, none of the commonly used models addresses them all.
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The original MSDM formulation meets all of the criteria except the inclusion of

finite-rate chemical kinetics and the ability to model viscoelastic or viscoplastic

materials. The original model includes plastic deformation but does not include

viscous effects. Extensions to MSDM will be performed to enable the simulation

of heterogeneous solid propellant combustion and hotspot formation in energetic

materials.

2. Demonstrate MSDM is capable of simulating heterogeneous solid pro-

pellant combustion.

The global stability of solid rocket motors may be coupled to the combustion

characteristics of the solid propellant grain [3]. The combustion characteristics

of solid propellants depends on:

(a) The unsteady mass flux and energy release from the propellant;

(b) Resolution of the detailed surface structure at a microscopic level.

MSDM will be evaluated on its ability to resolve these two features of propellant

combustion.

3. Apply MSDM to the prediction of hotspot formation in plastic bound

explosives.

The detonation of plastic bound explosives may be intentionally triggered through

impact or shock or it may be unintentionally triggered by impacts during the

manufacturing, transport, or storage of the material. The detonation process is

initiated by localized regions of high temperature called hotspots. Understand-

ing the mechanisms of hotspot formation from impacts is critically important

for the safe handling of energetic materials. The important factors in hotspot

formation are:

(a) Binder material properties;
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(b) Energetic crystal material properties;

(c) Energetic crystal packing density;

(d) Impact velocity.

MSDM will be used to capture the hotspot formation in energetic materials due

to impact under a variety of conditions.
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CHAPTER II

MODEL FORMULATION

2.1 Discrete Lattice Formulation

A material is modeled as a discrete lattice of Lagrangian masses connected via springs

and/or dampers. The structured connections eliminate the need for costly nearest

neighbor searches because the connections are determined during the problem setup

and are based on lattice indexing. Internal and surface nodes and their connections are

demonstrated in Figure 7. The boundary nodes of the material have an additional

layer of ghost nodes attached for the application of boundary conditions. These

exterior nodes can be considered another solid, a fluid, or a communication node. A

node along the surface of a solid material exposed to a fluid is demonstrated in Figure

7b. Each node represents the homogenized material contained within the volume of

the dual-mesh which is computed only within the solid portion of the grid. Figure

8 demonstrates the dual-mesh for different configurations around the central node

where the dashed lines indicate the homogenized volume.

The lattice nodes are connected to those around them by springs with the potential

for multiple springs and dampers in series and/or parallel if needed to model mate-

rials that exhibit visco/hyperplastic or visco/hyperelastic behavior [17, 20]. Springs

connecting nodes diagonal from each other may be added to accurately capture shear

behavior [10]. In the original formulation, the effective spring constant is defined as

k = E|l0(x,x′, t)| where E is the Young’s Modulus and l0(x,x
′, t) is the direction

vector in the undeformed state from the node at x to the node at x′. This vector is,

in general, a function of time when plastic effects are included. The resulting force

on the node, including hysteretic and viscous damping (with damping coefficients µ
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..........
(a) The center node is entirely sur-
rounded by solid nodes

..........
(b) The center row of nodes is ex-
posed to fluid on the top side; no
springs connect the fluid nodes to the
solid nodes

Figure 7: Demonstration of lattice nodes; blue nodes indicate solid (interior) nodes
while red nodes indicate fluid (exterior) nodes.

and c respectively and i =
√
−1), is thus [40]:

f(x,x′, t) = (k + iµ) [d(x′, t)− d(x, t)− l0(x,x
′, t)]

+ c
D

Dt
[d(x′, t)− d(x, t)− l0(x,x

′, t)]

= (E |l0(x,x′, t)|+ iµ) [d(x′, t)− d(x, t)− l0(x,x
′, t)]

+ c
D

Dt
[d(x′, t)− d(x, t)− l0(x,x

′, t)]

(5)

Recalling the definition of η and recognizing that l0(x,x
′) = −ξ, Equation 5 is recast:

f(η, ξ, t) = (E |ξ|+ iµ) [η + ξ] + c
D

Dt
[η + ξ]

=

(
E |ξ|+ iµ+ c

D

Dt

)
[η + ξ]

= F (η, ξ) [η + ξ]

(6)

where now Equation 6 is in a form identical to Equation 4 where F is a scalar

operator and not a scalar function. It is trivial to show that the linear admissibility

requirement, Equation 2 holds.

It remains to show that the scalar operator F derived for pairwise forces including

both hysteretic and viscous damping in Equation 6 satisfies the angular admissibility
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...................................................

Figure 8: Dual-mesh used to compute the volume of the central solid node in the
lattice. The solid nodes are indicated by blue nodes while boundary nodes not con-
tributing to the volume are indicated by red nodes; the black nodes are the locations
of the dual-mesh.
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requirement in Equation 3.

Substituting Equation 6 into Equation 3 and using the distributive property and

scalar multiplication property of the cross product yields:

E |ξ| (ξ + η)× [η + ξ] + iλ (ξ + η)× [η + ξ] + c (ξ + η)×
[
η̇ + ξ̇

]
= 0

The first two terms related to the spring stiffness and hysteretic damping are zero. If

there is no viscous damping such that c = 0 then the angular admissibility is satisfied.

If c ̸= 0:

(ξ + η)×
[
η̇ + ξ̇

]
= 0

⇒ξ × η̇ + ξ × ξ̇ + η × η̇ + η × ξ̇ = 0

Using the chain rule for derivatives involving cross products:

d

dt
(a× b) =

da

dt
× b+ a× db

dt

gives:
d

dt
(ξ × η)− ξ̇ × η − ξ̇ × ξ − η̇ × η +

d

dt
(η × ξ)− η̇ × ξ = 0

⇒− ξ̇ × η − ξ̇ × ξ − η̇ × η − η̇ × ξ = 0

Grouping the terms together, this becomes:(
ξ̇ + η̇

)
× (ξ + η) = 0 (7)

This result is simply the negative of the starting expression when c ̸= 0 which

means it is always true for any ξ, η, ξ̇, η̇. This is consistent with the cases without

damping which require the displacement and force vectors to be aligned [55].

Finally, Equation 1 can be written:

ρd̈ =

∫
R
f(η, ξ, t)µ(x,x′)dVx′ (8)

where µ is an indicator function taking the value 1 if the two points are connected

and 0 otherwise or if the bond has broken. With the discrete lattice, this integral

becomes:

md̈ = m
Du

Dt
=

neighbors∑
i=1

f(ηi, ξi, t) (9)
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where u is the particle velocity. The sum is computed only over the neighbors cur-

rently connected. This is identical to the approach used in meshfree peridynamic

formulations except the indicator function is set at initialization and only changes

due to fracture.

Therefore, this formulation is consistent with the bond-based peridynamic form.

This means all of the constitutive information for the material is contained only in

the pairwise bonds. The limitations of this model are [56]:

• The assumption that all forces are determined only by pairwise local condi-

tions results in an effective Poisson’s Ratio of 0.25 for homogeneous, isotropic

materials;

• Plasticity may be included by deforming the pairwise bonds, but this erro-

neously results in permanent deformation under volumetric strain, inconsistent

with experimental evidence that deformation occurs due to shear.

For the materials considered here, these limitations do not pose significant issues. The

assumed Young’s modulus is acceptable for the materials chosen and plastic effects

are not considered.

2.2 Numerical Formulation

Each lattice node carries the solution vector U = {mk,u, V, P, T, e}T where mk is the

mass of the material component k in the volume (
∑

k mk = m = total mass), u = ḋ

is the velocity vector, V is the node volume, P is the pressure, T is the temperature,

and e = cvT is the internal energy. The solution vector is evolved according to:
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Dmk

Dt
= ṁk (10a)

m
Du

Dt
=

parallel∑
i=1

(
f∥i + f⊥i

)
+

diagonal∑
i=1

fd + b (10b)

De

Dt
= cv

dT

dP

dP

dt
+
∑
k

hkṁk +∇ · (k∇T ) (10c)

where ṁk is the consumption of mass of material k due to chemical reactions, cv

is the constant volume heat capacity, k is the thermal conductivity and hk is the

enthalpy of material k.

The momentum of the node is evolved using Newton’s Second Law where the

forces on the right-hand side of the equation are due to the springs and/or dampers

connected between the nodes and any volumetric, or body, forces that operate on

the node, b. The nodes are connected along parallel sides of the element as shown

previously in Figure 7. The forces that arise from these connections are f∥. More

sophisticated connections are possible, a brief description is given in Chapter 5. These

advanced models may introduce connections between diagonal nodes giving rise to

forces fd. Some models introduce correction forces perpendicular to the forces which

arise from the parallel connections [10]. These corrective forces are f⊥. Consistent

with the previous MSDM works, diagonal springs, corrective forces, body forces and

dampers are omitted in these simulations [14,15,29,39,40].

The physical regression (in units of length per time) due to chemical reactions

is computed using Arrhenius rate equations derived from first principle simulations

or experiments of pyrolysis rates. The details of this evolution and the connection

to the mass consumption rate ṁk is given in Sec. 2.4. The first two terms of the

internal equation, Equation 10c, represent the heating (cooling) due to compression

(expansion) and the heat released due to chemical reactions. The temperature flux is

computed in a differential, rather than integral, fashion using second order centered

finite differences along the connecting springs. Discontinuities due to fracture are
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readily handled by ghost nodes taking the properties of the surrounding medium

such that a heat flux from the material to the surrounding medium is computed.

The change in pressure dP/dt is computed using the change in volume, V , and

the bulk modulus K:

dP

dt
= −KdV/dt

V
(11)

The change in temperature with pressure is computed using an equation of state.

The Mie-Gruneisen equation of state is used [64]:

P =
G
λ
(e− e0) + f(λ) (12)

where:

f(λ) = PH

[
1− G

2λ
(λ0 − λ)

]
− G

2λ
P0(λ0 − λ) (13a)

PH = P0 +
ρ0c

2
0ϕ

(1− sϕ)2
(13b)

ϕ = 1− λ

λ0

(13c)

e = cvT (13d)

λ =
1

ρ
(13e)

where G is the Gruneisen gamma, e0 is the internal energy at the reference conditions

(taken here to be cvT0 where T0 = 300K), P0 is the reference pressure (taken here to

be 100 000Pa), c0 is the speed of sound at the reference conditions and s is the slope

of the linear fit between shock velocity and particle velocity, Us = c0 + sup. This

results in:

dT

dP
=

λ

Gcv
=

V

mGcv
(14)

Substitution of Equations 11 and 14 into Equation 10c gives:

De

Dt
= − K

mGcv
dV

dt
+
∑
k

hkṁk +∇ · (k∇T ) (15)
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The complete set of governing equations is thus defined by Equations 10a, 10b and

15.

2.3 Temporal Integration

The system of equations given by Equations 10a, 10b, and 15 may be solved by any

numerical method suitable for ordinary differential equations. The class of methods

used in this effort are in two categories: explicit schemes and implicit schemes. The

explicit schemes are easy to implement but require very small time steps as the

spring stiffness increases. The implicit schemes are more complicated to implement

and involve the solution of a system of linear equations at each time step but allow

significantly larger time steps. The cost of the linear system solver may be offset by

the increased time step for large spring constants.

2.3.1 Explicit Schemes

Explicit schemes are simple to implement because they only depend on information

already known from the current or previous values of the time integration. If the

current time level is indicated with a superscript n, the next and previous levels by

n+ 1 and n− 1 respectively, the simplest explicit scheme may be written as:

un+1 = un + an∆t (16)

where ∆t is the increment in time and a is the acceleration. The position of the node

is also updated explicitly:

xn+1 = xn + un∆t (17)

This scheme is the Explicit Euler scheme and is first order accurate in time and the

updated value of u depends only on known values of the velocity and the acceleration.

For mass-spring systems, this scheme is numerically unstable without the addition of

damping. However, it’s simplicity and speed makes it a very popular choice in other

applications of mass-spring systems such as computer graphics [5].
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The Velocity-Verlet scheme is a popular choice for molecular dynamics and yields

a second order accurate scheme [9]. It is based on the mid-point integration rule and

can be shown to conserve energy, unlike the explicit Euler scheme:

xn+1 = xn + vn∆t+
1

2
an∆t2 (18a)

un+1 = un +
1

2

(
an + an+1

)
∆t (18b)

2.3.2 Implicit Schemes

Implicit schemes allow relatively large time steps even for stiff systems. The simplest

first order implicit scheme is the Implicit (or Backwards) Euler scheme:

un+1 = un + an+1∆t (19)

In general, the acceleration at the next time step is unknown and depends on both the

position and the velocity of the node at the next time step. The acceleration on the

right hand side may be written more explicitly as an+1 = M−1f (xn +∆x,un +∆u)

where M ∈ RdNn×dNn is the mass matrix (diagonal), d is the number of dimensions

in the lattice, Nn is the total number of nodes in the lattice, and ∆x and ∆u are the

incremental change in the position and velocity over the time step. The force at the

next time step is then linearized:

f (xn +∆x,un +∆u) = fn +
∂f

∂x
∆x+

∂f

∂u
∆u (20)

The derivatives ∂f
∂x

and ∂f
∂u

are evaluated at the current time step n. Because these are

derivatives of vectors with respect to vectors, the result is a matrix. These Jacobian

matrices are sparse with values only at locations where nodes are connected.

Combining this together yields:(
I −∆tM−1∂f

∂u
−∆t2M−1∂f

∂x

)
∆u = ∆tM−1

(
fn +∆t

∂f

∂x
vn

)
(21)

where I is the identity matrix [5]. This scheme is theoretically unconditionally stable;

however, the linearization process reduces the stability limits on the time step. Given
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the increment in velocity, ∆u from this scheme, the position is updated by ∆x =

∆t (un +∆u).

The Runge-Kutta family of methods yields higher order of accuracy schemes. The

implicit second order scheme is given by:

∆u =
∆t

2
M−1

(
fn + fn+1

)
(22)

where the same linearization is performed as before. Once the first order Euler method

is implemented, upgrading it to the Implicit Runge-Kutta second order scheme is very

simple and requires only a few extra multiplications per node.

2.4 Lattice Evolution

The lattice nodes evolve in time due to mass loss caused by chemical reactions and

due to the acceleration caused by body and spring/damper forces. The evolution of

nodes due to the acceleration is achieved using any time integration appropriate for

ordinary differential equations. Explicit Euler integration is used in this work. The

change in position of the nodes results in a change in density by holding the mass of

the node constant while the new dual-mesh is used to compute the updated volume.

At a given lattice node, a check is performed to determine which, if any, neighbors

are exterior nodes marked as a fluid. If a node has a fluid neighbor, the regression

distance is computed using an Arrhenius rate law r = A exp (−Ea/RT )∆t/ρ0 where

A is the pre-exponential factor given in kg/m2s, Ea/R is the activation energy over

the gas constant in consistent units, ∆t is the discrete time step and ρ0 is the initial

density of the material. The result r is the amount the material regresses in meters.

The node is moved by the distance r along the unit vector away from the fluid

node as shown in Figure 9. The resulting dual-mesh is used to update the volume.

The node density is held constant throughout the process and the new volume is used

to compute the change in mass. When the mass is sufficiently close to zero, the node

is converted into an exterior fluid node.
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...........................

Figure 9: Demonstration of the change in lattice nodes due to chemical reactions
when exposed to a fluid

...

x0

.

v0

Figure 10: Harmonic oscillator setup for temporal scheme validation

2.5 Formulation Validation

2.5.1 Temporal Accuracy

Validation of the temporal schemes uses a simple harmonic oscillator as shown in

Figure 10. The initial displacement is zero and the initial velocity is 0.1m s−1. The

spring stiffness is 0.35Nm−1 and the mass is 1/18 kg.

The displacement from the initial conditions with time computed with the Implicit

Runge-Kutta (RK2) routine is shown in Figure 12. The other numerical schemes gen-

erate similar results although the Velocity-Verlet scheme has not yet been validated.

The L2 error in the displacement for the Explicit and Implicit Euler and the Implicit

RK2 scheme shown in Figure 11b demonstrates the improved accuracy of the second

order scheme.
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(a) Harmonic oscillator displacement
with time

(b) L2 error in displacement for the
harmonic oscillator

Figure 11: Temporal scheme validation using harmonic oscillator

2.5.2 Spatial Convergence

Another canonical test case from structural mechanics is used to verify the spatial

convergence of the scheme. A uniform rod undergoing distributed axial tension is

discretized with a uniform lattice. The number of points used in the uniform lattice

varies to measure the spatial convergence. The left end is fixed and the right end

is free. The rod is slender with a Young’s modulus of E, cross-sectional area A and

total length of L. The load, f , is likewise uniform and distributed axially over the

rod.

The governing differential equation is:

EAu′′(x) = −f

L
(23)

where (·)′ indicates differentiation with respect to x. This may be integrated twice

to give:

EAu(x) = − f

2L
x2 + Ax+B (24)

where A and B are constants determined by the boundary conditions. The left end is

fixed implying u(0) = 0 and therefore B = 0. The right end is free implying u′(L) = 0
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Figure 12: Convergence of MSDM to the exact solution for the axial rod under
uniform loading.

resulting in A = f . The final solution is therefore:

u(x) =
fL

EA

(
x

L
− x2

2L2

)
(25)

MSDM is used to compute the solution to this problem for lattices consisting of 2n

nodes where n ∈ [1, 5]. Figure 12 is the resulting displacement of the nodes alongside

the exact solution. MSDM converges to the exact solution as the lattice is refined.

Notably, the displacement at x = L is always accurate, independent of the number

of nodes in the lattice. This case also illustrates that convergence of the integral,

peridynamic-based formulation to the differential, classical approach to continuum

mechanics cited previously [57].

2.5.3 Wave Propagation

The formation of hotspots in energetic materials due to impact requires the correct

prediction of wave propagation through the material. The characteristic speed of a
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longitudinal wave through a material (limited to ν = 0.25) is:

U =

√
E

ρ
(26)

with E the Young’s Modulus and ρ the density of the material. Likewise, the char-

acteristic speed of a longitudinal wave through a mass-spring system is:

U =
√

k/m (27)

where k is the spring constant and m is the mass of the node. Equating these two

expressions and noting that k = El0 and m = ρl0h0d0 where l0 is the length of the

representative volume, h0 is the height and d0 is the depth yields:

E

ρ
=

El0
ρl0h0d0

→ 1 = h0d0 (28)

Performing the same substitution for longitudinal waves in the direction of the height

and the depth of the representative volume gives l0d0 = 1 and l0h0 = 1. These three

equations may only hold if l0 = h0 = d0.

This result leads to two important conclusions. First, the grid must be uniform

and this is true in both 2 and 3 dimensions. When computing the mass from the

density in 2D, the depth of the volume used may not be arbitrary but must be equal

to the other lengths. Second, accurate wave speeds are possible regardless of the grid

resolution. Coarse or fine grids should generate the correct wave speeds provided the

grids are uniform.

A simple test case with a material discontinuity located halfway along the wave

propagation direction is used to validate these conclusions. The material properties

are chosen such that the characteristic wave speed is identical in both while the

characteristic impedance, Z = ρU is different. The characteristic impedance in the

second half of the domain is half that in the first: Z1/Z2 = 2. An initial velocity

disturbance is set at the left edge of the domain and propagates to the right. Both

the left and right boundaries are unconstrained. A small amount of damping is added
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Figure 13: Wave speed error versus grid resolution through a material discontinuity

to eliminate the oscillating on the trailing side of the wave; without this damping, the

wave reflected from the material interface is lost in the oscillations. Figure 13 is the

ratio of the computed wave speed U to the theoretical wave speed Uexact as it varies

with grid resolution. The wave speed is slightly under-predicted in both materials

with a larger error in the first material at coarser resolutions. This error may be

attributed to the damping added to the simulation.

In addition, the material discontinuity and the resulting impedance discontinuity

causes the incident wave to generate a transmitted wave into the second material and

a left-traveling reflected wave in the first material. This process is shown in Figure

14.

2.6 Surface Regression

Validation of the surface regression uses a uniform material under two different con-

figurations to determine the influence of the structured lattice on the regression. The

first test is a square sample of material rotated 30◦ about the origin with only the

surface in the Y-direction exposed as shown in Figure 15a. The other boundary con-

ditions are treated as solid. This creates a surface regression that is not aligned with
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(a) Wave prior to material interface (b) Wave at material interface

(c) Transmitted and reflected waves

Figure 14: Wave transmission through a material discontinuity

31



the computational coordinates. The surface regresses in the Y-direction and remains

planar throughout as indicated in Figure 15b. The second configuration is a circular

material sample exposed on all sides to test a more complex regression. The mate-

rial is expected to remain circular while decreasing in size throughout the regression.

The initial and final states are shown in Figure 16. Both tests indicate that the

surface regression may occur along arbitrary directions relative to the computational

coordinates.
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(a) Initial configuration for the rotated material sample.

(b) Surface at later time indicating planar regression is main-
tained

Figure 15: Planar regression in a rotated material sample
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(a) Initial configuration for the circular material sample.

(b) Final state of the circular material sample

Figure 16: Surface regression in a circular material sample
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CHAPTER III

HETEROGENEOUS SOLID PROPELLANT PYROLYSIS

The random packing of Ammonium Perchlorate (AP) in Hydroxl-Terminated Polybu-

tadiene (HTPB) binder is a canonical solid propellant used to establish computational

models. One dimensional models based on the BDP flame structure [11] are capa-

ble of accurately predicting the burn rates of AP-HTPB propellants [11, 16, 21] but

lack the ability to predict detailed surface features of the propellant. These detailed

structures have an important influence on the global stability of the propellant in

rocket applications [4]. The ability of MSDM to capture both the global trends and

the micro-scale surface structures is therefore essential.

3.1 Computational Setup

A 2D slice of randomly packed AP particles embedded in HTPB binder measuring

0.24 cm by 0.24 cm is discretized by 10000 nodes. The AP particles measure 200

microns in diameter and make up 80% of the weight of the propellant [21]. The

packing is generated using the RocPack code [35] and shown in Figure 17a. The

surface temperature of the propellant is assumed to be constant and related to the

flame stand-off distance [11]. The Arrhenius rate parameters for AP are AAP = 5.0e6

kg/m2/s and Ea,AP = 92109.6 J/mol [11]; for HTPB, AHTPB = 3.0e4 kg/m2/s and

Ea,HTPB = 62800 J/mol [21]. The momentum equation is not solved during this

process as there are no mechanical effects.

3.2 Results and Discussion

The burn rate is computed by taking the difference of the average height of the

remaining propellant at two instants in time. The computed burn rates are in Table
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(b) Surface of propellant at 0.1 s

Figure 17: Burning AP-HTPB composite propellant; AP particles are gray while
HTPB is black

Table 1: Burn rates (cm/s) of AP-HTPB with and without TiO2 nanoparticle im-
pregnation

Temperature (K) Pressure (MPa) Burn rate, no TiO2 Burn rate, TiO2

823 1.12 0.3978 0.5411
860 5.44 0.6953 0.9510
908 15.38 1.3388 1.8364

1. The surface of the propellant when T = 823 K at 0.1 s is in Figure 17b and has

a non-uniform structure contour due to the different burning rates of the AP and

HTPB.

The surface regression rate increases with pressure and is experimentally and

numerically shown to increase linearly with the logarithm of pressure [21]. Catalytic

additives are mixed into the AP-HTPB propellants to accelerate the regression rate

which is modeled by increasing the Arrhenius pre-exponential factor, A, by a new

factor Ω. For these simulations, Ω = 1.41 corresponding to a 1% TiO2 spray-dried

impregnation [21]. MSDM predicts the variation in burn rate with pressure well

within the experimental errors in the work of Frazier et al both with and without
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Figure 18: Surface burn rate of AP-HTPB randomly packed propellant with and
without the nanoparticle catalytic additive TiO2. Experiment and model data from
Frazier et al [21]

TiO2 impregnation [21]. Figure 18 compares the current results to the experiments

and existing model. The surface of the propellant at 0.05 s for the various cases in

Table 1 is shown in Figure 19. There is considerable variation in the surface contours

for a fixed temperature with and without the nanoparticle catalytic additive; MSDM

captures the micro-scale variation in the surface.

The surface temperatures simulated range from the upper end of regime I to the

end of regime II shown in Figure 4. Boggs described the characteristics of the surface

regression for a single crystal of AP across these regimes [12]. In regime I, corre-

sponding to the 823K case, the regression is steady and planar. Inspection of the AP

crystals in Figure 19a reveals the surface of the AP crystals is approximately planar
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Figure 19: Propellant surface at 0.05 s
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(a) Simulation at 908K

(b) Photo of AP-HTPB surface after
burning (from [33])

Figure 20: Comparison of simulation to experimental image of AP-HTPB surface
after burning

as expected. In regime II, Boggs describes the regression of AP crystals as steady

and macroscopically planar, but close inspection of the crystals reveals a number of

ridges and valleys. These ridges and valleys become sharper and more needle-like

during the transition to regime III. At 860K, the surface of the AP crystals reveals

micro-scale ridges and valleys as described experimentally. At 908K, which occurs

close to the transition to regime III, the ridges and valleys are more pronounced and

sharper. These qualitative descriptions match those from experiments into the com-

bustion of AP crystals [12]. Figure 20 provides an additional qualitative comparison

to an experiment of AP-HTPB propellant combustion [33].

For these simulations, the surface temperature is held constant and is not part of

the solution procedure. The surface temperature is determined by the flame stand-off

distance, which decreases as the ambient pressure increases [11]. Prediction of the

surface temperature is therefore a problem requiring both fluid and solid phases. This

coupling is outside of the scope of this work and therefore absent from these simu-

lations. When provided surface temperatures, whether imposed and held constant

as done here or when determined through a fluid-solid coupled simulation, MSDM is
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capable of predicting the fine-scale structures and global trends in solid propellant

combustion.
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CHAPTER IV

HOTSPOT FORMATION IN HETEROGENEOUS

EXPLOSIVES

Polymer bound explosives (PBXs) fulfill a wide range of military and industrial appli-

cations. They are composed of an energetic crystal powder suspended in a polymer

matrix. The resulting mixture may be cast or molded into a variety of shapes or

casings depending on the intended application. The polymer binder serves two pri-

mary functions: first, it enables shaping or casting of the energetic material; second,

it absorbs the mechanical energy imparted by handling or impacting the material,

reducing the likelihood of an accidental detonation of the PBX.

Mechanical impacts generate a pressure wave within the PBX which may or may

not trigger a detonation. Localized heating within the material, known as hot spots,

as the pressure wave moves through discontinuities located within are the commonly

accepted mechanism for transitions to detonation [50]. These discontinuities may be

defects such as voids or cracks, or they may be due to material inhomogeneities such

as material interfaces.

The exact mechanisms of hot spot formation remain elusive [1]. Simulations of

void collapse yield insight into the heating due to adiabatic compression and viscoplas-

tic work as a mechanism for hot-spot formation [58, 59]. Finite-element simulations

of realistic PBXs undergoing low-speed impacts reveal localized heating along the

material interfaces [6–8]. Molecular dynamics simulations of an idealized, non-planar

material interface under high-speed impacts also indicate that heating at the material

interface due to impedance differences in the materials [1, 2].
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An et al. [2] studied a highly shocked, sawtooth interface between 1,3,5-trinitroperhydro-

1,3,5-triazine (RDX) and hydroxyl-terminated polybutadiene (HTPB) binder. Later

work [1] also studied 2,2-Bis(nitroxymethly)-1,3-propanedio dinitrate (PETN) and

silapentaerythritol tetranitrate (Si-PETN) in the same configuration with HTPB.

In all cases, significant heating occurred at the tip of the sawtooth interface. This

heating occurred in three phases [1]:

1. Initial heating due to adiabatic compression of the material as the shock arrives;

2. Slight cooling as the shock passes into the softer binder material generating

expansion waves in the energetic material due to impedance differences;

3. Post-shock heating due to chemical reactions (negligible in the RDX and PETN

but significant in the Si-PETN).

Low-speed impact simulations indicate similar processes. The initial heating is due

primarily to the elastic compression of the material while at late times the heating

mechanisms change to plastic work and viscous dissipation within the material [8].

The aforementioned studies focus on the mechanisms by which hotspots form at

material interfaces while the influence of material properties on the hotspot structure

and locations is not studied in detail. An et al did a cursory study by varying

the binder density in an attempt to eliminate the hotspot in the highly shocked,

sawtooth RDX-HTPB simulation [2]. Their study indicates that a reduction in the

binder density eliminates the hotspot.

In this work, the influence of the material properties on the hotspot structure is

determined. Similar studies to An et al using variations in the binder density are

performed. The influence of the energetic crystal properties on hotspot structure is

also determined by using the common explosives RDX, octahydro-1,3,5,7-tetranitro-

1,3,5,7-tetrazocine (HMX), PETN and the novel explosive dihydroxylammonium 5,5’-

bistetrazole-1,1’-diolate (TKX-50). Finally, the hotspot structure’s dependence on the
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Figure 21: Digitized photo of PBX used to simulate hotspot formation due to impacts.
Black represents the energetic crystals while white is binder.

impact velocity is studied. Statistical models of the hotspot structure for HMX and

RDX as a function of impact velocity are generated.

4.1 Computational Setup

A randomly packed material is created from a digitized image [8] and is shot at a wall

with velocities between 50m s−1 and 250m s−1 as shown in Figure 21. The grid uses a

single node per pixel in the image resulting in a lattice discretized by 432x432 nodes.

The left boundary condition is a rigid wall allowing slip in the transverse directions.

The remaining boundaries are free. The initial temperature is uniform at 300K.

To test the results of An et al [2], the binder properties are varied to create

artificial binders with densities matching that of the energetic crystal and half that of

the original binder (Estane) in addition to a density altered to create a binder with
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Table 2: Material properties for all energetic crystals.

HMX RDX PETN TKX-50
Γ (-) 0.7 [63] 0.93 [27] 1.15 [36] 0.6894
ρ (kg/m3) 1580.0 [8] 1799.0 [27] 1770.0 [36] 1877.0 [24]
cv (J/kgK) 1757.28 [63] 1456.0 [27] 1009.0 [36] 1236.44 [24]
E (MPa) 25325.0 [54] 20200.0 [53] 11800.0 [62] 52194.0 [24]
KT (GPa) 11.3 [54] 12.0 [53] 11.0 [46] 32.719 [24]

Table 3: Material properties for all binder variants.

Estane Half-Density Density-Matched Impedance-Matched
Γ (-) 1.0 [28] 1.0 1.0 1.0
ρ (kg/m3) 1280.0 [28] 640.0 1580.0 6402.16
cv (J/kgK) 1481.14 [28] 1481.14 1481.14 1481.14
E (MPa) 6250.0 [28] 6250.0 6250.0 6250.0
KT (GPa) 4.3 [28] 2.15 5.31 21.51

matching impedance. These studies are performed at 50m s−1 with HMX energetic

crystals.

Additional studies for a single binder, Estane, vary the energetic crystal to deter-

mine the influence on hotspot formation and location. Table 2 provides the material

properties used for each of the crystals and and Table 3 provides the binder variants.

4.2 Binder Variants

An et al proposed reducing the binder density by a factor of two to eliminate hotspots

in a highly-shocked sawtooth PBX [2]. MSDM simulations using HMX and Estane

with altered densities also reach the same conclusion. Figure 22 compares the tem-

perature of a representative hotspot for all four binder variants. Only the low density

binder eliminates the hotspot, bringing the peak temperature down by 17K or 5%.

The other variants generate hotspots with temperatures comparable to the original

Estane binder. The temperature fields for all variants are shown in Figure 23. The

half-density binder in Figure 23b shows no hotspots while the impedance-matched

binder in Figure 23c shows much larger regions of elevated temperature.
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Figure 22: Comparison of a representative hotspot’s temperature with time for all
binder variants tested.
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Figure 23 shows additional differences in the hotspot structure for the binder

variants. The temperature contour for the impedance-matched binder (Figure 23c)

shows much larger regions of elevated temperature than the normal Estane or the

density-matched Estane.

4.3 Hotspot Detection

The identification of hotspots is inherently subjective [23]. The subjectivity enters

through the selection of the threshold temperature, above which a region is considered

a hotspot. Hotspots are, by definition, an anomalous region of elevated temperature.

The method used to determine the hotspot threshold temperature is the same as

that used by Gilbert et al [23]. The temperature along a line through what appears

to be a hotspot and along a line through a region with no hotspot is plotted as

demonstrated in Figure 24. The threshold temperature is chosen to isolate only the

anomalous regions and is different for each impact velocity. Increasing the threshold

temperature will do little to change the resulting hotspot field as the anomalous

regions are at a significantly elevated temperature relative to the regions without

hotspots. However, reducing the threshold temperature will result in false-positives by

identifying normal regions as hotspots. The threshold temperature is taken to be the

minimum temperature that eliminates these false positives by taking the temperature

tangent to the normal regions as shown in Figure 24. Due to the similarity in results

to be discussed later in the chapter, the threshold temperatures for HMX and RDX

are the same.

Once the threshold is selected, hotspots may be identified. For each case, the 2D

set of results in time are stacked together to make a 3D dataset in (x, y, t) space. Iso-

surfaces using the threshold temperature are then extracted, providing information

such as peak temperature within the volume and the area of the hotspot. Statistical

models for HMX and RDX use this structural information as described later in the
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(a) Temperature distribution with
normal Estane binder.

(b) Temperature distribution with
half-density binder.

(c) Temperature distribution with
impedance-matched binder.

(d) Temperature distribution with
density-matched binder.

Figure 23: Influence of binder density on hotspot temperature.
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Figure 24: Illustration of temperature threshold selection for hotspot detection pro-
cedure.

chapter.

4.4 Energetic Crystals

The method described in the previous section is performed for the simulations of

each impact velocity and energetic crystal. Previous studies indicate that the peak

temperature of the hotspot is a more significant factor in the transition to detona-

tion than the mean temperature [23]. Figure 25 is the peak temperature of all the

confirmed hotspots for each material and impact velocity.

Due to the random nature of the energetic crystal packings in binder, measure-

ments of hotspot characteristics must be statistical in nature. There are three primary

trends in the hotspot intensity. First, within the traditional energetic materials HMX,

RDX and PETN, the hotspot intensity is relatively independent of material and the

peak temperature is linear with respect to the impact velocity. Second, for all ma-

terials the variation for a given impact velocity in peak temperature increases as the

48



Figure 25: Confirmed hotspot peak temperature for each impact velocity and ener-
getic crystal
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HMX RDX PETN TKX-50

50m s−1

100m s−1

150m s−1

200m s−1

Figure 26: Isosurfaces (gold color) of confirmed hotspots viewed along the time axis
for each impact velocity and energetic crystal (crystals are white, binder is black).
Note: the isosurface threshold temperature varies as specified previously.

impact velocity increases. The linearity and variation are consistent with other sim-

ulations [23]. Finally, the peak temperature for TKX-50 is also linear with impact

velocity; however, the peak temperature for several confirmed hotspots is consistently

higher than the other materials for each impact velocity.

The location of each hotspot is crucial to understanding the differences between

the materials and why the temperature of some hotspots in TKX-50 is higher than the

other materials. Figure 26 shows the locations of confirmed hotspots in the explosive

for each impact velocity and material. The HMX and RDX results are very similar
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and the hotspots are located primarily in the binder between crystals where the

distance between two crystals is small. Several hotspots are in the same location for

all impact velocities. For these hotspots, the peak temperature and the hotspot size

increase as the impact velocity increases. Additional hotspots are formed at higher

impact velocities where the gap between crystals is larger. The similarity in hotspot

location, shape, and peak temperatures allows the combination of both datasets to

generate statistical models.

The PETN hotspots are fundamentally different than those in the RDX and HMX

packings. The hotspots in PETN are located primarily within the energetic crystal

and not in the binder material for all impact velocities. The Young’s modulus for

PETN is approximate half that of RDX and HMX leading to more compression within

the PETN crystals. This higher compression causes more heating within the crys-

tal itself and less energy transmitted into the binder (resulting in lower heating).

Although the crystals are composed of a single, uniform material, their shape is irreg-

ular, resulting in non-uniform compression within the crystal. This non-uniformity

generates hotspots with unique shapes in each of the crystals.

TKX-50 exhibits additional differences. The hotspots in these simulations are

located both within the crystal and the binder material. The higher temperature

hotspots are located within the crystal while the hotspots with similar temperature

to the HMX and RDX hotspots occur within the binder. Again, the material prop-

erties justify these observations. The Young’s modulus for TKX-50 is significantly

larger than the other materials, more than twice as large as that of HMX. This effi-

ciently transmits the compression wave through the crystal into the binder causing the

hotspots to form between crystals. However, the isothermal bulk modulus is approx-

imately 2.5 times larger than that of HMX (while Γ and cv are comparable to HMX

and RDX respectively). Although there is less compression in the TKX-50 crystals
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(a) Representative hotspot tempera-
ture with larger value of Young’s mod-
ulus for TKX-50

(b) Representative hotspot tempera-
ture with correct value of Young’s
modulus for TKX-50

Figure 27: Influence of energetic crystal elastic properties on hotspot temperature.

relative to the HMX and RDX crystals, the increase in temperature with compres-

sion is larger. Therefore, like HMX and RDX, the Young’s modulus results in lower

compression and more efficient wave transmission into the binder creating hotspots

between crystals. Like PETN, hotspots form within the crystal as well although as a

result of different material properties.

Additional insight into the hotspot structure as a function of energetic crystal

elastic properties is provided by early simulations of TKX-50 using preliminary and

unconverged results from QMD simulations. Figure 27 shows the temperature of a

hotspot in the binder located between two crystals. This hotspot is in the same

location for both the HMX and the TKX-50 simulations and is representative of the

other hotspots located in the binder portion of the material. Figure 27a are the

results for TKX-50 using a Young’s modulus of 54 239MPa, a value 4% larger than

the correct value of 52 194MPa used in the updated simulation in Figure 27b. The

hotspot formed using the larger value for the Young’s modulus is 16% hotter at it’s

peak than the hotspot formed using the converged value.
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4.5 Statistical Models of Hotspot Intensity

Gilbert et al simulated the compaction of granular HMX by pistons between 300m s−1

and 500m s−1 [23]. The authors use a hotspot detection method similar to the one

previously described to extract structural information about the hotspots. This in-

formation is then used to construct probability density functions (PDFs) for each

impact velocity.

The same procedure is performed using the data from the HMX and RDX sim-

ulations. The hotspots in those datasets are indistinguishable so a single model is

generated for both materials. For each impact velocity, the peak temperatures of all of

the hotspots are extracted. Trial PDFs are then fit to each dataset using maximum

likelihood estimation (MLE) and the goodness-of-fit is measured for each dataset.

The PDF that maximizes the goodness-of-fit for all of the datasets is chosen as the

best fit for the data and the parameters generated by the MLE are retained. In or-

der to determine and assess the relationships between impact velocity and the PDF

parameters, only 3 of the 5 impact velocities are fit and the remaining 2 datasets are

then used to evaluate the relationships. The 150m s−1 and 250m s−1 datasets are the

two used for evaluation. Confidence intervals for the PDF parameters are computed

to determine the uncertainty in the values.

To prevent any user-bias in the trial PDFs, the MLE procedure is performed

for every continuous statistical distribution in the SciPy statistics package (version

0.14.0) [32]. The PDF that maximizes the goodness-of-fit for the three datasets is the

Gumbel distribution given by Equation 29. This is a two-parameter specialization

of the Generalized Extreme Value Distribution and is used to model extremes in

datasets [26]. The two parameters are the mean, µ, and the shape, β.

f(x) =
1

β
e

(
−x−µ

β
+e

−x−µ
β

)
(29)

Figure 28 shows the histograms of the hotspot peak temperatures for the 50m s−1,
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Figure 28: Hotspot peak temperature histograms with the resulting best-fit PDFs for
the 50m s−1, 100m s−1 and 200m s−1 simulations (from top to bottom)

100m s−1 and 200m s−1 simulations (from top to bottom). The resulting values for µ

and β are given in Table 4. Both parameters are linear with impact velocity as shown

in Figure 29.

The parameters for the 150m s−1 and 250m s−1 are computed from the linear

regressions and the resulting distribution is shown in Figure 30. The goodness-of-

fit is measured by the Kolmogorov-Smirnov test [41]. There are 18 samples in the

150m s−1 dataset and 15 samples in the 250m s−1 dataset. The null hypothesis is that

the samples in each dataset are described by the Gumbel distribution with mean and

shape parameters defined by the linear regression from the MLE parameters based

on the other datasets. The alternative hypothesis is that the datasets are drawn from

a different distribution. The test is two-sided and the significance level required to

54



Table 4: Mean and shape parameters for the Gumbel distribution generated by max-
imum likelihood estimation.

µ β
50m s−1 349.90 6.29
100m s−1 401.30 17.67
200m s−1 506.61 37.97

(a) Linear regression of the MLE-determined mean parameter

(b) Linear regression of the MLE-determined shape parame-
ter

Figure 29: Mean and shape parameters as a function of impact velocity.
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Table 5: Confidence intervals for the MLE-determined mean and shape parameters.

95% CI µ 95% CI β
50m s−1 350.02− 350.05 5.93− 5.96
100m s−1 401.44− 401.55 17.46− 17.51
200m s−1 507.41− 507.75 37.46− 38.04

reject the null hypothesis, α, is taken to be 0.05.

The resulting P values from the test are 0.0914 and 0.4375 respectively. The null

hypothesis may be rejected if P < α. In other words, hotspot temperatures for the

150m s−1 and 250m s−1 cases may be described by the distributions generated by the

linear regressions for the mean and shape parameter.

Quantifying the uncertainty in the MLE parameters is the final task. One may

ask the following question: given a statistically similar random packing, what range

will contain the mean value of µ and β for the Gumbel distribution in 95% of the

simulations? This range provides an estimate of the uncertainty in the expected

value of these parameters that may be expected by running additional simulations of

statistically similar packings. The confidence intervals are computed by generating

10000 new datasets from the original datasets for each impact velocity to ensure con-

vergence of the values. These new datasets are generated using boostrap resampling

with replacement [19].

Table 5 gives the confidence intervals for the mean and shape parameter. For the

mean parameter, the largest confidence interval is 0.3K, indicating very little variation

from these results is expected for other, statistically similar random packings. For

the shape parameter, the largest confidence interval spreads approximately 0.6K,

representing a variation of approximately 1.5% in this parameter.
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Figure 30: PDFs generated by the linear regression for the mean and shape parameters
for the 150m s−1 (top) and 250m s−1 (bottom) cases.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The large quantity of energy stored in energetic materials necessitates an understand-

ing of the sensitivity and performance of the material. Computational models for

energetic materials offer a safe and cost effective method to explore the fundamental

processes of deflagration and detonation in heterogeneous energetic materials. These

processes are very difficult to study and require analysis from micro-scales through

to macro-scales. Six key capabilities are identified for computational models:

1. Explicit tracking of surface regression due to pyrolysis and surface deformation

due to impact loading.

2. Formation of discontinuities such as cracks and plasticizer debonding at arbi-

trary locations and times not known a priori ;

3. Ability to model viscoelastic and viscoplastic materials;

4. Inclusion of finite-rate chemical kinetics;

5. Resolution of physical processes at scales approaching the micrometer length

scales typical of hotspot formation and energetic crystal sizes;

6. Resolution of macro-scale physical processes such as global burn rates and

macro-scale surface deformation.

Numerous computational models are used to simulate energetic materials and

these were summarized in Chapter 1. Atomistic approaches are limited by the ex-

pense in scaling up their simulation domains to domains of practical interest. The
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continuum models using traditional finite volume, finite difference, or finite element

approaches all rely on the differential form of the governing equations and require spe-

cial treatment in the neighborhood of discontinuities in the material such as cracks or

material interfaces. Computational models based on an integral form of the governing

equations, or the peridynamic theory, avoid the complications around discontinuities

because integrals are well-defined over discontinuous fields.

In this work, and existing computational model intended to study the erosion of

industrial materials has been extended to study energetic materials. The original

Micro-Scale Dynamical Model (MSDM) met all but two of the desired capabilities.

The addition of an energy equation enables the MSDM to meet these requirements.

The resulting thermo-mechanical formulation was presented in Chapter 2. The

formulation has been shown to fit within the bond-based peridynamic framework [55].

This framework has been shown by others to converge to both classical theories of

structural mechanics [57] and to molecular dynamics [37, 52]. The MSDM approach

has been validated using a variety of temporal schemes and classical problems from

structural mechanics.

Surface pyrolysis of heterogeneous solid propellants represents the first of two key

applications in this work. Combustion instability in macro-scale rocket motors is

influenced by the micro-scale surface details of the propellant. Chapter 3 presented

the surface pyrolysis of a randomly packed AP-HTPB propellant with and without

catalytic nanoparticle impregnation under a range of operating conditions typically

encountered in solid rocket motors. This range corresponds to the upper end of

the first and the entirety of the second regimes based on ambient pressure identified

by Boggs [12]. At the beginning of the range, the surface regression is primarily

planar with little variation in the surface. As the pressure increases, the surface

regression appears to be planar from a macro-scale view but ridges and valleys begin

to appear at a micro-scale level. As the pressure increases to the end of the simulated
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range, the ridges and valleys become sharper and more needle-like. These qualitative

observations match those described by Boggs [12]. Comparisons of the MSDM global

regression rate to experiments and to recent extensions of the BDP flame model show

excellent quantitative agreement with and without catalytic nanoparticles.

The second application investigates the localized heating of a polymer-bound ex-

plosive under impact. Regions of localized heating called hotspots form within the

material and the structure and location of these hotspots depends on the properties

of the binder material and the energetic crystal used. In this work, three common

energetics (RDX, HMX, and PETN) as well as a novel energetic (TKX-50) are ran-

domly packed in an Estane binder. This sample undergoes impact against a perfectly

rigid surface at a variety of impact speeds from 50m s−1 to 250m s−1.

The results of the simulations indicate that the location of the hotspot is primarily

dependent on the properties of the energetic crystal. PETN has a Young’s modulus

significantly lower than the other materials used resulting in hotspots forming within

the energetic crystal itself. The compression of the crystal reduces the energy con-

tained in the wave transmitted into the binder material and no hotspots are formed

in the binder itself. RDX and HMX have comparable Young’s moduli and transmit

the compression wave into the binder with little compression occurring in the ener-

getic crystal itself. This increased energy transmission results in hotspots localized to

the binder material between crystals. TKX-50 is unique in the materials simulated.

The Young’s modulus is significantly larger than RDX and HMX resulting in efficient

wave transmission into the binder material. This creates hotspots within the binder

between crystals. However, the bulk modulus is also significantly larger, resulting in

considerably more heating from small volume changes due to compression. Therefore

hotspots also form within the TKX-50 crystal similar to those that formed in PETN

crystals.
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The impact velocity also plays a strong role in the hotspot location and structure.

For the materials in which hotspots form within the binder, whether a hotspot will

form between two crystals depends on the spatial separation of the crystals. As

the impact velocity increases, the gap sufficient to generate a hotspot also increases.

This maximum gap appears to be independent of the energetic crystal properties and

dependent on the binder properties; however, an insufficient number of simulations

were performed to establish a relationship between the gap size, the impact velocity,

and the binder properties. Variations in the binder properties may enhance the

hotspot intensity and size or may eliminate the hotspots entirely. Reducing the binder

density by a factor of two eliminated the hotspots, consistent with the conclusions

reached for a highly shocked, non-planar interface [2].

Lastly, statistical models for the hotspot peak temperature were determined for

RDX and HMX. The hotspot structure in these two energetics were virtually indistin-

guishable due to the mechanical similarities. The hotspot information extracted from

both materials led to a dataset robust enough for statistical analysis. The hotspot

peak temperature for 3 of the 5 impact velocities were used to generate statistical dis-

tributions while the other 2 were retained as control datasets to evaluate the results.

The parameters were determined for each impact velocity using maximum-likelihood

estimation. The result was the two-parameter Gumbel distribution, a specialization

of the Generalized Extreme Value distribution used to model the tails of normally or

exponentially distributed variables. A regression between each of the two parameters,

the mean and the shape, with impact velocity provided a linear function in velocity

for each.

These linear functions were then used to determine the distribution for the control

datasets, the hotspot peak temperatures from the 150m s−1 and 250m s−1 cases.

These controls provide a means to evaluate the regression when used for interpolation

as well as extrapolation. The Kolmogorov-Smirnov test indicated that the validity of
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the linear regression to generate statistical models for hotspots may not be rejected.

The resulting regressions enable the generation of a physically-accurate hotspot field

in macro-scale simulations where the exact processes leading to the hotspot formation

may not be adequately resolved.

5.2 Criticisms

Computational modeling always requires the specifications of inputs. Material prop-

erties such as density, elastic moduli, thermal moduli and coefficients, and plastic

properties are required for continuum simulations regardless of the approach taken.

For classical materials (metals, rubbers, etc.), these properties are available from a

variety of sources. Experiments frequently measure tensile and compressive proper-

ties, thermal responses, and the myriad of other information useful for simulations of

these materials. Theoretical and computational tools based on first principles such

as molecular dynamics (although the inputs needed for MD are just as numerous and

require either theory or experiments as well) can also provide the needed inputs for

continuum simulations. Unfortunately, for energetic materials, the options are more

limited.

Experimental measurements for energetic materials is quite limited. It is imprac-

tical and very unsafe to perform tensile or fracture tests on pure energetic crystals to

determine the mechanical properties. Mechanical tests on PBXs and solid propellants

may be performed, but this is limited to the combined properties of the mixture and

does not provide the properties of the constituents (for example [13,48,49]). This lim-

its the determination of the required properties to theoretical or molecular dynamics

approaches.

Unfortunately, some constitutive models require empirical models to account for

strain rate and temperature changes. Examples include the viscoelastic Prony se-

ries [47] and the Johnson-Cook flow stress model [31]. Many simulations would be
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required to generate the requisite information across a range of strain rates and tem-

peratures. Unfortunately, the length and time scale limitations of molecular dynamics

simulations limit their usefulness at lower strain rates, compromising their ability to

determine accurate values for the model constants.

At its core, the MSDM approach adds an additional complication. One must

determine spring and damper coefficients that accurately model the (visco)elastic

and (visco)plastic properties of the materials. The majority of the work on mass-

spring models in computer graphics relies on the practitioner to specify the spring

constants. The increased use of these models for applications requiring quantitative

comparison with physical systems has led to attempts to correlate the spring constants

to mechanical properties. In the original MSDM formulation extended and evaluated

in this work, the structural spring constant was the Young’s Modulus, E, of the

material while shear and bending springs were omitted [40]. No method to account

for Poisson’s ratio is available either.

Van Gelder [22] introduced a method to determine the spring constants for a

triangular mesh based on the Young’s Modulus and the Poisson’s ratio, ν. The

results indicated convergence to the correct answer in the limit as ν → 0. For ν ̸= 0,

Van Gelder’s method generates large errors [10, 45]. Baudet et al applied a method

similar to that of Van Gelder to fully-connected quadrilateral elements [10]. To find

the relationship between the spring constants and the elastic material properties, the

authors construct the Lagrangian for the system of springs and apply the principle

of least action to obtain the governing equations.

Additional techniques exist to determine the spring constants. Spring constants

may be determined numerically by comparing a mass-spring system to the appearance

of experiments or finite element simulations [43]. Alternatively, the constants may

be determined analytically by comparing the mass-spring element with comparable
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elements used in finite element methods. Natsupakpong and Çavuşoğlu [45] gener-

ate analytical expressions for the spring constants and compare it to the analytical

expressions derived by Lloyd et al. [43] and Baudet et al. [10].

The simplicity of the MSDM concept is offset by the need to establish spring and

damper coefficients as well as yield and fracture stresses based on material properties.

For explosives, particularly novel explosives, this information may be difficult to gen-

erate and there must be collaboration with theoretical, experimental, and molecular

dynamics practitioners to generate usable information.

Lastly, all of the work done herein is two-dimensional. This is consistent with

the existing literature for the problems studied; however, it is well known that the

energetic crystals are anisotropic and their material properties are heterogeneous [51].

Although consistent with the literature, two-dimensional simulations have limited

capability to represent the true mechanisms of deformation in the actual materials

and additional studies need to be performed to assess the differences.

5.3 Future Work

MSDM has been established as a method suitable for studying the surface pyrolysis

in solid propellants and the heating due to impact in PBXs at impact velocities

generating elastic compression waves. The final steps in completing the structural

model are:

• Inclusion of finite-rate chemical kinetics. The extensions developed during this

work permit the inclusion but stopped short of adding them.

• Inclusion of advanced methods to determine spring constants and strain-rate

dependent material properties. As discussed in the previous section, the orig-

inal MSDM formulation used very simple definitions for the spring constants

and did not consider strain-rate effects on the yield and fracture stresses. Ad-

vanced models have been developed in other communities for spring coefficients
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based on material properties and the addition of these models within MSDM

will allow a wider range of problems to be considered [45]. The inclusion of

Baudet’s model [10] will turn MSDM into a state-based peridynamic model

and will account for arbitrary Poisson’s ratio and permit the use of advanced

viscoelastic models. Viscoplastic models will account for high-strain-rate and

high-temperature effects that are expected to occur during a transition to det-

onation or surface burning event.

Lastly, both problems (but the surface burning problem in particular) are multi-

phase in nature and include interactions with the gaseous phase. The result of the

chemical reactions during both detonation and deflagration is a large release of high-

temperature gaseous products. The tight coupling of the MSDM approach to a fluid

solver will enable a detailed study of the interactions between the two phases. This

coupling is required to determine the flame standoff height above the heterogeneous

propellant, which determines the surface temperature and the subsequent pyrolysis

rates and surface structure. This work showed that MSDM is capable of capturing

the surface structure when provided the information needed from a fluid solver.
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