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SUMMARY 

 

Biomarker research is of great interest in the field of traumatic brain injury (TBI), 

since there are numerous potential markers that may indicate central nervous system 

damage, yet the brain is normally well isolated and discovery is at its infancy. Traditional 

methods for biomarker discovery include time consuming multi step chromatographic 

mass spectrometery (MS) techniques or pre-defined serial probing using traditional 

assays, making the identification of biomarker panels limiting and expensive. In addition 

to the difficulty in identifying new biomarkers, clinical and animal studies contribute to 

added complexity. These shortfalls have motivated the development of a MS based probe 

that can be embedded into 3D neural cultures and obtain temporal and spatial information 

about the release of biomarkers.  

This thesis presents the development and testing of a novel method to monitor 

chemical markers within a porous matrix. Using the high sensitivity MS ionization 

method of nano-electrospray ionization (nano-ESI) with an in-line microdialysis (MD) 

unit allows us to use MS to analyze low concentrations of TBI biomarkers from within 

cell cultures with no need for off-line sample manipulation.  

The MD unit was examined both theoretically and experimentally, and a set of 

design variables were chosen to allow for continuous sampling and MS analysis directly 

from cell cultures. A model cell culture injury chamber was developed and also examined 

theoretically and experimentally. The chambers were constructed and filled with a porous 

matrix, and biologically relevant markers were locally injected into the chamber. The 

probe collected samples from within the matrix, which were analyzed in-line with the 

MD-nano-ESI MS probe. A model predicting the transport of the chemical markers 

within a porous matrix provided a basic understanding of what to expect experimentally. 

Experiments demonstrated the probe’s capability to detect chemical markers within a 



 xix

simple agarose matrix and a biologically complex matrix of Matrigel. In addition, cells 

experienced no adverse effects when cultured in chambers with the sampling probe. 

Samples were successfully collected through the probe in live neural cultures. Results 

demonstrated that this novel method of detecting biological samples using MS could 

potentially allow researchers to better understand the pathophysiological events of TBI. 
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CHAPTER 1 

INTRODUCTION 

 
The aim of this project is to develop and characterize a novel method for 

biomarker discovery. Although the specific motivation for this project is traumatic brain 

injury (TBI) biomarker discovery, the method lends itself to other areas of research. This 

novel method consists of a micro sampling probe, which is imbedded in neuronal cell 

cultures and is coupled to an in-line microdialysis (MD) nano-electrospray ionization 

(nano-ESI) source for mass spectrometry (MS) analysis. This system has the capability of 

detecting and identifying molecules released from cells within cell cultures with high 

temporal and spatial resolution.  General theoretical principles, simulative models and 

experimental characterization all contributed to the development and characterization of 

the probe. 

 

1.1. Purpose and Motivation 

 The study of biomarkers is of great interest to the TBI research community since 

the central nervous system (CNS) does not have a wide variety of well characterized 

markers available for analysis [1]. The generally accepted definition of a biomarker is 

that the marker can be objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacological responses for therapeutic 

intervention [2]. Existing methods for TBI biomarker discovery include chromatographic 

MS techniques and the use of targeted assay kits. These methods offer limited temporal 

and spatial information with respect to complex chemical cascades that occur during or 

post injury. The desire to increase the capability of discovering TBI biomarkers and 

accessing detailed spatial and temporal information was a major motivation to develop a 

novel MS based sampling probe. The probe is based on in-line MD coupled with nano-
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ESI MS, which has the capability of analyzing low concentrations of biomarkers in a 

quick and efficient manner without losing important temporal and spatial information.  

 

1.2. Background 

 

1.2.1. Traumatic Brain Injury and Biomarkers 

TBI is a serious public health problem in the United States and is referred to as 

the “silent epidemic” due to its resulting complications. On average, approximately 1.7 

million people sustain TBI annually and it is estimated that TBI contributes to 52,000 

deaths and 270,000 hospitalized patients. It is estimated that TBI’s direct medical costs 

and indirect costs, such as lost productivity, totaled $60 billion in the US in 2000 [3].  

TBI is caused by an impact, blow or jolt to the head or a penetrating head injury 

that causes a disruption in the normal function of the brain. There are different ranges of 

TBI which include “mild” to “severe” injury which range from a brief change in mental 

status or consciousness to extended period of unconsciousness or amnesia after injury, 

respectively [3].  

Methods for predicting the outcome in severe TBI patients have hardly changed 

over the last twenty years, and current diagnostic tools provide insufficient information 

for measuring the extent and severity of TBI [4]. TBI diagnosis can be attempted with a 

variety of approaches. These include use of the Glasgow Coma Scale (GCS), computed 

tomography (CT), magnetic resonance imaging (MRI), and neurointensive monitoring.  

The GCS is a neurological scale that provides an objective way of recording the 

conscious state of a person for initial and subsequent assessments post TBI. It has been 

shown that determining initial GCS in a repeatable and reproducible manner is difficult 

especially with the application of aggressive prehospital treatments of early sedation and 

intubation for some patients [5]. Cranial CT scan images can provide information 

regarding the extent and the prospective outcome of some injuries. The relatively low 
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sensitivity and poor specificity of CT scans limit its diagnostic capability for diffuse TBI 

[6]. MRI of the brain can provide information on the extent of diffuse injury with high 

sensitivity even when patients are fully sedated or intubated [7]. MRI is not ideal for 

routine emergency of TBI since it is not available in all hospitals and it is time consuming 

[8]. Neurointensive monitoring is used to obtain intracranial pressure (ICP), mean arterial 

blood pressure, and cerebral perfusion pressure (CPP). Out of these measurements ICP 

can best indicate the severity of primary injury. These parameters primarily reflect 

secondary injuries, and are only useful for the prognosis of extremely abnormal results, 

since not all TBI patients will have a probe inserted into the brain [9]. Due to the 

complexity of the brain and the multifaceted nature of TBI, there can be a 

disproportionate relation between traditional measures of TBI and the biochemical 

changes in the brain.  

There are no biomarkers that have proven clinical utility for the diagnosis of brain 

injury [1]. This lack of markers is especially disadvantageous for specialists who treat 

head injuries. In many cases neurological deficits are not prominent, and biomarkers 

would advance the establishment of a proper diagnosis by providing valuable information 

regardless of whether or not there was detectable tissue damage. This would allow a 

physician to determine a specific treatment for the patient’s unique trauma. There have 

been several markers which have shown clinical potential. Below is a summary of the 

generally accepted potential biomarkers.  

S-100β is a calcium-binding protein with a molecular weight of 21 kDa with three 

known subtypes. It is secreted by glial cells and structural damage of these cells causes 

leakage of S-100β into the extracellular compartment and into the CSF [10].  Various 

studies have shown relationships between S-100β levels to both injury magnitude and 

patient outcome, S-100β has also been found in melanocytes, adipocytes, and 

chondrocytes [11, 12]. This limits S-100β’s specificity to the brain and could provide 

incorrect clinical diagnosis.  
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Neuron Specific Enolase (NSE) is a glycolytic enzyme with a molecular weight of 

78 kDa. Its γ-γ isoform is specific for neurons and the α-γ isoform is specific for 

neuroendocrine cells [13]. It is released into the extracellular space only during cell 

destruction and high levels can be found in the CSF [6]. NSE was thought to be strictly 

neuronal, but further research found NSE to also be present in red blood cells and 

platelets, which limits NSE value as a marker for TBI [14]. Clinical studies have 

demonstrated that NSE concentration in serum and/or CSF may be useful as a screening 

test for TBI outcome [15, 16].  

Glial fibrillary acidic protein (GFAP) is a 52kDa intermediate filament protein 

found in astroglial cytoskeleton, and is not found outside of the CNS [17, 18]. In recent 

studies the determination of GFAP levels allowed researchers distinguish between severe 

disability and vegetative state versus good and moderate outcomes as evaluated by 

Glasgow Outcome Scale (GOS), and it has been show to predict mortality, although it has 

not been studied in mild and moderate injuries. GFAP has the potential to be a better 

marker candidate than S-100β, but this is dependent on the time point after trauma and 

the pattern of TBI [19]. 

The role of neuro-inflammatory cytokines in various CNS injuries has been 

shown in previous studies [20]. Cytokines are small cell signaling proteins that are 

secreted by glial cells that are found in the nervous system [21]. Various cytokines (IL-

1β, TNF-α, IL-6, IL-8, and IL-10) levels were measured and compared to concentrations 

of S-100β within the CSF. Results were correlated to ICP and prognosis, and it was 

concluded that IL-1β could be useful as outcome predictors in cases of severe TBI [22].  

Although there are many potential TBI biomarker candidates, a panel of useful 

markers has not been identified. Some marker candidates have been able to provide a 

general relationship between concentration levels and patient outcome, but none of the 

markers have been able to provide specific information regarding some of the complex 

processes which occur post TBI. The pathophysiological processes in TBI are very 
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complex and brain damage and death occur from both primary and secondary 

mechanisms. Figure 1.1 and Figure 1.2 outline the dynamic events post TBI. 

 

 
Figure 1.1. Cell death mediated by complex cascades post TBI [23]. 
 

 
Figure 1.2. Dynamic events post TBI [23].  
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Treatment of patients would greatly improve if the pathophysiological events of 

TBI were better understood. Despite this limitation, there exists a need to improve 

methods for the detection of suspect TBI biomarkers in parallel with novel biomarker 

discovery and elucidation of the biochemical events post injury. A tool that could 

determine the time points of various secondary injury cascades and study the spatial 

effects of both acute and diffuse injuries would greatly benefit the TBI research 

community.   

 

1.2.2. Mass Spectrometry 

Significant advances in biomarker discoveries have been achieved with the help 

of the powerful analytical technique of MS. MS is an analytical technique that can be 

used to detect, identify and quantify analytes. MS works on the principle of manipulating 

ions, which are charged molecules, by using electric and magnetic fields, so that 

individual ions can be grouped according to their unique properties and moved from one 

point to another. Ions must be free from any other forms of matter to be analyzed, and 

therefore they are analyzed in a vacuum. This requires ions to be in the gas phase, so the 

MS can separate and detect them according to their mass-to-charge ratio (m/z). The mass 

component is the atomic weight of the analyte, and it is divided by the number of charges 

the ion possesses. Only ions are detected in MS and the m/z values are presented as a bar-

graph spectrum (Figure 1.3) [24]. 

 

 
Figure 1.3. Conceptual illustration of generic MS analysis 
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1.2.3. Electrospray Ionization and nano-Electrospray Ionization 

As previously discussed, for MS to function the analytes must be ionized. A 

popular and powerful method of ionizing nonvolatile molecules is electrospray ionization 

(ESI). This ionization method is especially useful for analyzing intact proteins. ESI is the 

process where an intense electric field disperses a sample liquid into a fine spray of 

highly charged droplets. These droplets evaporate and produce gas phase ions which are 

then analyzed by the MS.  ESI is typically accomplished by flowing liquid through a 

small tube (needle), which is maintained at a significant electrostatic potential relative to 

an opposing counter-electrode. This potential difference between the needle and the 

counter-electrode creates a large external electric field which disperses the liquid as a fine 

spray of charged droplets as Figure 1.4 demonstrates [25].  

 

 
Figure 1.4. Pictorial description of ESI 
 

Due to the electric field at the tip of the needle, the emerging liquid forms a 

‘Taylor Cone’ [26]. For a metallic needle (the anode) which is in positive ion mode, 

anions near the surface of the cone liquid are driven toward the needle rim by the 

electrical field where they undergo an electro-chemical interaction with the needle 

surface. These anions deposit their excess charge on the surface of the needle.  In the case 

of a non-metallic needle, which cannot absorb charge in the positive mode, i.e. a silica 

needle, this same reaction occurs where the liquid is in contact with an electrode, which 
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is the source of positive potential. The discharge of anions occurs at any electron-

accepting surface with which the liquid is in contact. In ESI, the high field at the needle 

tip removes positive ions from the tip and directs them towards the surface of the liquid, 

and produces the Taylor Cone [26]. After a short flight path, the jet spreads into a plume 

of fine droplets. These droplets contain an excess of positive charges, when in the 

positive mode, and they diminish in size due to evaporation of the solvent. As the 

droplets shrink the repulsive forces between the cations increase and the droplet reaches 

its Rayleigh limit where a “Coulombic explosion” occurs as seen in Figure 1.5 [25].  

 

 
Figure 1.5. A microscopic droplet containing analyte and an excess of positive charges. 
The droplets undergo solvent evaporation and reach their Rayleigh limit and undergo a 
Coulombic explosion.  
 

As the droplets continue to shrink and the solvent has evaporated, the analyte 

molecules gain residual charges and are ionized. There are two competing models 

describing how analytes become ionized, and they both rely on the increase in surface 

charge due to the evaporation of solvent.  

The Charge Residue Model (Figure 1.6) states that due to solvent evaporation the 

surface charge increases because of the higher concentration of charges. As the droplets 

undergo Coulombic explosions, smaller charged droplets are produced. As the solvent 

further evaporates the analytes that remain eventually have an ion attach to it [27, 28].  
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Figure 1.6. Pictorial description of the Charge Residue Model 
 
 

The Ion Evaporation Model (Figure 1.7) similarly states that as droplet size 

diminishes, the surface charge density increases [29, 30]. Some of the ions migrate to the 

surface of the droplet and this is known as a partition process. The analyte molecules in 

the smaller droplets compete for the few charges that are still available after a Coulombic 

explosion.  Once analyte molecules become charged, they are pushed away from the 

droplet and can “evaporate”, i.e. jump off of the droplet, at different rates due to the 

electrical field.  

 
Figure 1.7. Pictorial description of the Ion evaporation Model 
 

Both of these models are valid depending on the type of analyte. It is widely 

agreed upon that the Charge Residue Model applies to very large molecules or multiply 

charged molecules [31-34]. There is still active debate of whether small ions are purely 

ionized by the Ion Evaporation Model [31].  

The efficiency of ESI is dependent on various variables. Miniaturization of the 

ESI device is one method of increasing ionization efficiency [26]. The miniaturization of 

ESI is called nano-ESI, and the advantages arise due to its ability to produce much 

smaller droplets at the needle tip. This means that fewer Coulombic explosions are 
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needed to expose the analyte to detection by the mass spec, which means lower 

concentrations can be detected with a MS [24]. In addition to lower detection limits, 

nano-ESI has been shown to increase the ability to detect analytes in 0.1M NaCl 

solutions [26]. The ability of nano-ESI to operate in the nL min-1 flow rate, allows for 

small sample consumption.   

 

1.2.4. Time of Flight Mass Spectrometry  

Time of flight mass spectrometry TOF MS is a method in which ions m/z is 

determined by a time measurement. In TOF MS, ions are first accelerated through ion 

optics in the acceleration region. The acceleration of ions in an electric field are governed 

by Lorentz force law (1.1) and Newton’s second law (1.2) 

 � � �� � � � ��   (1.1) 

  � � �� 

 

(1.2) 

where F is the force applied to the ion, m is the mass of the ion, a is the acceleration, Q is 

the ion charge, E is the electric field, and v x B is the vector cross product of the ion 

velocity and magnetic field. Once charged particles start moving in the applied electric 

field there is a non-zero induced magnetic field, but it can be considered negligible. Data 

are presented in MS by the dimensionless term m/z, where z is the number of elementary 

charge on the ion (Q=ze). Equating the two equations together gives: 

  � �� � !" · � (1.3) 

 

Therefore, 



 11

 

� �  !� �" (1.4) 

 

Assuming the ions of similar m/z have no initial velocity before entering the 

acceleration region, they will have been accelerated to the same velocity when entering 

the drift region (Figure 1.8).  

 

 

Figure 1.8. Linear TOF schematic 
 

During the instantaneous acceleration, all ions of the same m/z receive the same 

specific kinetic energy (i.e. speed). Due to their different m/z values, ions 

correspondingly have different velocities. As ions traverse the field free region, they 

separate into packets according to their velocity, which is a function of their m/z value. 

The amount of time it takes an ion to traverse this distance is measured and its m/z value 

is calculated. Using the ion’s equations for electrical potential (1.5) and its kinetic energy 

(1.6), the m/z value can be calculated,  

 $%&%'()*' � " · ! · +,''%& (1.5) 

 

 

where Uaccel is the accelerating potential between the accelerator plates. 
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-$ � 12 � · 01 
(1.6) 

 

Therefore  

 

0 � 22"!+�  

(1.7) 

 

Time of flight is then, 

 

34&*56( � 70 (1.8) 

 

Rearranging the terms gives, 

 

� !⁄ � 34&*56(1 · 2"+71  
(1.9) 

  

The resolving power of a TOF m/z analyzer is dependent on flight-tube length, 

acceleration voltage, and the spatial and velocity distributions of the initial velocity 

packet.  A reflectron, which is an ion mirror, can be used to increase the flight-tube 

length and remove excess kinetic energy, which ions may have before being introduced 

into the acceleration area.  The principles of the reflectron can be seen in Figure 1.9 

where three ions of the same m/z are in the TOF, but each one has a different kinetic 

energy. When they enter the opposing electric field of the reflectron the ion with the 

highest kinetic enters first and goes the furthest because of its higher velocity. The ions 

decelerate until their velocity reaches zero, and they are accelerated in the opposite 

direction. They leave the reflectron with the same kinetic energy that they previously had, 
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but ions with the higher kinetic energy had to travel a longer distance, therefore all of the 

ions of the same m/z reach the detector at the same instance.  

 

 
Figure 1.9. Ions reach the detector at the same time even though they have different 
velocities because of the distance they penetrate the reflectron.  
 

In addition to the reflectron, the use of orthogonal acceleration also improves the 

resolution of a TOF m/z analyzer. The orthogonal introduction of ions, involves the 

sampling of an ion beam traveling in a direction perpendicular to the axis of the drift tube 

of the TOF. This reduces the initial velocity spread in the flight tube direction, since the 

ion source introduces ions with a velocity in the orthogonal direction (Figure 1.10).   
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Figure 1.10. Illustration of an orthogonal acceleration TOF 
 

 

1.2.5. Cell Cultures and In-Vitro Modeling of TBI 

 

 Cell culture technology is a useful tool in understanding normal and 

pathophysiological processes in organisms. Cell culturing is the process by which cells 

are isolated from tissue and are grown under controlled conditions. These cell cultures 

provide in vitro models that offer a powerful framework for investigating mechanisms in 

a simplified and controlled manner.  For neuronal studies, 3-D cell cultures represent 

behavior in a more physiologically-relevant state as compared to monolayer (2-D) cell 

cultures [35]. 3-D cell cultures incorporate cell-cell and cell-extracellular matrix (ECM) 

interactions that may be constrained in planar cultures. The inclusion of multiple cell 
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types into cultures also captures the heterogeneity of in vivo tissue more accurately than 

monotypic cultures or cell lines. In nervous system culture models, it is important to 

represent such interactions as physical and metabolic coupling between neurons and 

astrocytes [36, 37]. The use of a more physiologically relevant cell cultures combined 

with an appropriate in-vitro TBI model allow for a greater chance of relevant biomarker 

discovery. 

 

1.2.6. Sampling – Typical Methods and State-of-the Art 

Mass spectrometric methods have opened new research opportunities in the 

identification of various cellular processes. The identification of biomolecules using MS 

techniques has become prevalent, and ESI, which can ionize large biomolecules without 

fragmentation, allows for fast in-line analysis of biological samples [38]. Unfortunately, 

sample complexity and the high salt content of the extracellular environment complicates 

analysis with ESI-MS. Biological samples induce clogs at the emitter tip, the high salt 

concentrations suppress analyte ionization, and the complexity of the sample creates a 

spectrum with indiscernible peaks [38]. 

Current methods of analyzing biological samples for marker proteins, involve a 

multi step process. Proteins must first be extracted from cerebral tissue by homogenizing 

the tissue in order to dissociate the cells, and treated with a buffer to lyse cell membranes. 

Samples must then be depleted of common contaminants by using filters to remove 

particles that interfere with liquid chromatography (LC). It is also important to remove 

salts, ionic detergents, lipids, and nucleic acids before conducting protein analysis [23]. 

Dialysis or filtering are used to lower salt concentrations to levels that will not interfere 

with the analysis [39, 40]. Salt concentrations interfere with sodium dodecyl sulfate 

(SDS) treatments, two dimensional polyarcylamide gel electrophoresis (2D-PAGE) and 

MS. Gel electrophoresis is a powerful tool in separating proteins in tissue samples. 

Proteins that are coated in SDS migrate based on their nominal mass through pores in the 
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polyacrylamide gel when subjected to an electrical field. 1D and 2D-PAGE separations 

are an effective method of resolving proteins before further LC separation methods [23]. 

After LC, samples can then be analyzed by MS and many times tandem MS (MSMS) is 

done and protein fragments are identified with protein databases (Figure1.11).  

 

 
Figure 1.11. Diagram of protein identification methods [23]. 
 

The current method of protein analysis for biological samples involves multiple 

time consuming steps. It is of value to explore simpler alternatives that can provide 

improved temporal or spatial resolution when analyzing protein release in biological 

systems. Below is a brief introduction to alternatives to the above method.  

 Solid phase extraction (SPE) shares the same fundamentals as liquid LC 

techniques.  SPE uses the principles of adsorption/distribution of analytes between 

mobile and stationary phases. SPE can be conducted in both off-line and in-line forms, 

but the most popular and simple form is off-line SPE. Off-line SPE can be used for the 

purification of analytes from biological liquids for quantitative analysis, desalting 

proteins and the enrichment of trace samples. Micro SPE cartridges allow the use of 

micro sized samples with the same extraction potential as regular SPE [41].  

 The development of new microextraction methods has been driven by the demand 
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of conducting analysis on smaller sample sizes, the high costs of samples, and the 

miniaturization of analytical techniques.  There are several devices that are capable of 

processing small sample volumes that range from 1-100 µL. Micropipette tips packed 

with chromatographic sorbent allow for off-line sample microextraction. Some of these 

devices allow for on-line interfaces such as MD and electrodialysis. 

Micropipette tips packed with chromatographic sorbent allow for facile off-line 

microextraction. They allow for single step desalting, concentration of analyte, and the 

purification of samples. They use small volumes (~10 µL) and are significantly quicker 

than using traditional chromatography techniques. A major disadvantage of the 

micropipettes is their off-line clean up nature. The ability to get temporal or spatial 

sample information from samples is limited. 

 MD utilizes the principles of dialysis, which is a separation technique that 

exploits a differential mass flux through a semi-permeable membrane.  A hollow porous 

fiber can be used to exchange buffer and to desalt biological samples.  This method 

works well in preserving small amounts of analyte that otherwise would not be detected 

when analyzed with MS due to the interferences.  Various designs exist for MD [38].  

 MD has the limitation of being dependent on its mass flux. To overcome this, 

methods such as electrodialysis employ an electric potential in addition to the mass flux 

to drive dialysis through a membrane.  The electric potential causes charged analytes to 

electromigrate through the membrane. Electrodialysis allows near quantitative transfer of 

analytes through the membrane, and it allows for more dialysis to occur over a shorter 

time period which allows for greater miniaturization. Another major benefit is the 

increased analyte recovery with the use of a charge selective flux.   

 

1.3. Conclusions 

It has been shown that TBI is a serious endemic that has grave health, social, and 

economical repercussions. Current diagnostic and clinical treatments have not been able 
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to make significant progress due to the lack of insight into the pathophysiological 

processes which occurs post injury.  In order to address this need, the use of MS and 

other modern analytical tools have been able to identify potential TBI biomarkers. These 

techniques are time consuming and expensive, and a definitive marker has not been 

discovered. In addition to the lack of a single marker, these methods only provide limited 

information. There exists a need to develop a tool that would allow further analysis, such 

as temporal and spatial information, to better understand the complex process of TBI.  
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CHAPTER 2 

MICRODIALYSIS-NANO-ESI MS 

 

2.1. Microdialysis 

Microdialysis (MD) is a simple and efficient method of desalting samples and 

exchanging buffer. MD can easily interface with electrospray ionization mass 

spectrometry (ESI-MS) to allow for in-line sample manipulation where it reduces the 

amount of salts in the solution which have a deleterious effect to the sensitivity of MS. 

There are many MD devices that have previously been reported but most of them are 

large, which requires a large amount of sample volume [38]. A small volume MD device 

is ideal for taking real time samples from in vitro cell cultures without causing significant 

alteration in the cultures. For this thesis research, a MD device was used for the in-line 

desalting and buffer exchange of samples taken from within neural cell culture.  

 

2.1.1.  Microdialysis Assembly 

The MD device was connected to the nano-ESI emitter using a zero dead volume 

unit that was electrically grounded in order to create the electrolytic cell between the 

electrospray needle and the counter-current electrode.  Using previously reported MD 

devices as prototypes and after many experimental trials, dimensions were established for 

the analysis of cell culture media that was retrieved from within a cell culture matrix. 

Following the design by Jakubowski et al., a 3 cm long piece of fused-silica capillary (2 

µm ID, 150 µm OD) was inserted into a dry 3.5 cm long piece of regenerated cellulose 

hollow MD tubing (200 µm ID, 215 µm OD, Spectrum, Rancho Dominguez, CA) with a 

molecular weight cut off (MWCO) of 13 kDa. Into each end of the MD tubing a 10 cm 

long piece of fused silica capillary (50 µm ID, 150 µm OD) was inserted. Using super 
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glue (Locklite QuickTite Super Glue, Manco, Inc., Avon, OH, USA) the fused-silica 

capillary was sealed with the MD tubing and it was left to dry. The dry MD fiber was 

inserted into a 5 cm long Teflon tubing (762 µm ID, 1.59 mm (1/16”) OD) and PEEK 

Tees were connected to both ends of the Teflon tubing using 10-32 PEEK fingertight nut 

and ferrule. The MD unit was secured using 10-32 Peek fingertight nut with a 190 µm ID 

Kel-F ferrule which tightened into the Tee connection on both ends. 10-32 Peek 

fingertight nuts with 1/16” ferrules were used to connect Teflon tubing for buffer inlet 

and outlet lines. A schematic of the MD unit can be seen in Figure2.1. Both the buffer 

flow rates and sample flow rates were varied to examine the MD unit’s performance. 

 

 
Figure 2.1.  Schematic of MD unit. (1) Fused silica capillary, 50 µm ID, 150 µm OD, (2) 
Tee fitting connecting dialysis buffer inlet/outlet, teflon tubing, and fused silica capillary, 
(3) hollow fiber inside teflon tubing, (4) Teflon Tubing. The close up inset illustrates the 
exchange of salt cations across the dialysis membrane.  
 

 

2.1.2. Microdialysis Theoretical Analysis  

This MD design is a counterflow, concentric tube dialysis chamber which can be 

analyzed with a simple model based on the principles of mass transfer. Understanding the 

theoretical limits of the MD unit allowed for the determination of the appropriate size and 

flow rates that were used in the experimental portion.  

 The MD unit can be analyzed by using concepts developed for modeling mass 
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transfer under conditions of internal, laminar flow.  For internal flow in a tube of circular 

cross section the Reynolds number (2.1)  dictates whether the flow is laminar or  

turbulent. 

 

9" � :�;6<  (2.1) 

 

where um is the mean fluid velocity over the tube cross section, < is the kinematic 

viscosity, and φh is the tube’s hydraulic diameter.  The hydrodynamic entry length (xfd,h) 

for fully developed flow can be obtained from 

 

=>?@,BCB D&,� E 0.059"  (2.2) 

 

Using Equations (2.1) and (2.2) we find that for the MD unit under the experimental flow 

conditions xfd,h<<L, (where L is the length of the MD unit) and hence the flow in the MD 

device can be considered fully developed.  

When analyzing the mass transfer of a species, e.g., species s, from one media to 

another across a membrane, i.e. media A and media B, (Figure 2.2) the concentration in 

each fluid stream can be described using a cross sectional average, and the mass flux of a 

species across the membrane at a given position, ns’’, can be calculated using an effective 

mass transfer coefficient, hm. It was assumed that there was no pressure driven flux in the 

system due to small pressure differences in the MD system. At steady state, with no 

chemical reactions, and no adsorption of species within membrane, the mass flux of 

species s is 

 IJKK � ���LJ,M N LJ,O� (2.3) 
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where Cs,A is the concentration of species s in media A, and Cs,B is the concentration of 

species s in media B.   

 

 
Figure 2.2. Illustration of the mass transfer of species s from Media A to Media B 
through a membrane.  
 

The total rate of species transfer (ns) over the membrane of surface area As is then 

obtained by integrating the local flux (ns’’) over the entire suface to obtain  

 

IJ � ���PJ∆LJ,RS (2.4) 

 

where PJ � TUV and d is the membrane diameter. The log mean concentration 

difference, ∆Cs,lm, is 

 

∆LJ,RS � ∆LJ,1 N ∆LJ,Wln �∆LJ,1∆LJ,W�  
(2.5) 
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where ∆C[ � C[,\ N C[,], and the subscript 2 is at the outlet of the system and subscript 

1, is at the inlet of the system. At steady state and in the absence of chemical reactions, 

global mass conservation requires that  

 

IJ � � �LJ,W N LJ,1� (2.6) 

 

where �  is the volume flow rate of the fluid stream. The overall mass transfer coefficient, ���, can be calculated from  

 

��� � 11�* � 9� � 1�^
 

(2.7) 

 

where hi  and ho are the average mass transfer coefficients for interior and exterior 

portions of the dialysis fiber, respectively, and Rm is the resistance to mass transfer from 

the membrane wall. The average mass transfer coefficients can be obtained from 

Incopera and DeWitt (table 8.2) [42] which has the correlation for Sherwood numbers of 

 

��^ � 4.438 b;^,4*c%);*,(%4&^defg.hi
 

(2.8) 

 

��* � 4.7048 b;*dJ%)(;*,4*c%)eg.gklk
 

(2.9) 

 

where φ o,fiber is the outer diameter of the fiber, φ i,Teflon is the inner diameter of the Teflon 

tube, φinsert is the outer diameter of the capillary insert, and φ i,fiber is the inner diameter of 

the fiber.  Equations (2.8) and (2.9) are valid under fully developed laminar flow in a 
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circular tube annulus with one surface that is impenetrable and the other surface with a 

constant concentration.  

 

 
Figure 2.3. Cross section of the MD unit. ho is defined to be on the OD of the dialysis 
fiber and hi is defined as the ID of the dialysis fiber.  
 
 

Then using the definition of the Sherwood number,  

������ � ���;6mJ  
(2.10) 

 

where Ds is the diffusion coefficient of species s, ho and hi can be calculated by  

 

�^ � ��^ mJ;6,^ 
(2.11) 

 

where φh,o = φi,teflon- φo, fiber 

 

�* � ��* mJ;6,* 
(2.12) 
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where φh,i = φi,fiber- φo, insert. The transport resistance of the membrane can be estimated as 

[43]  

  

9� � nI o;^,4*c%);*,4*c%) p PJ,4*c%)2UVmJq�  

(2.13) 

 

where αm is the available volume fraction to analytes in the membrane and can be 

estimated as 0.012 from experimental results.  

The mass transfer analysis of each fluid stream separately and the mass transfer 

rate across the membrane, yield three equations that describe system’s total mass transfer: 

 IJ,�%C*, � ��%C*,�LJ,�%C*,,W N LJ,�%C*,,1� (2.14) 

 IJ,cr44 � �cr44�LJ,cr44,W N LJ,cr44,1� (2.15) 

 IJ � ���PJ∆LJ,RS (2.16) 

 

Combining Equations (2.14) - (2.16) yields an equation for the ratio of concentration of 

media post MD to the concentration of the media before MD as a function of the system 

parameters As,���,  ��%C*,, and ζ.  

 LJ,�%C*,,1LJ,�%C*,,W � �1 � ��� � exp oPJ����1 � ����%C*, p 
(2.17) 

 

where � � v� wx@yzv� {|?? . 
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2.1.3.  Microdialysis Theoretical Model Results  

Using Equation (2.17) the expected behavior of a MD unit was investigated under 

conditions of varying flow rates and of different fiber lengths in order to design an initial 

configuration that would perform effectively. Figure 2.4 shows how the ratio of Cs,media,2 

to Cs,media,1, i.e. MD unit performance, varies with respect to the two non dimensional 

parameters that govern the behavior of the MD unit (
v� wx@yzM}6�w  and ζ).  

 

  

Figure 2.4. Theoretical MD performance with respect to� at various values of 
�� �����	
��� . This 

figure takes into account the effects of increasing fiber length and varying the sample and 
dialysis buffer flow rate.  
 
 

 Only  ��%C*,, �cr44 , and L were varied in the theoretical study since ���, hi, and 

ho are dictated by the diameters of the system. These could not vary due to the 

manufacture’s specific dimensioning of fiber, silica capillary and teflon tubing OD and 
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ID. The diffusion coefficient, Ds, was set to 1.6x10-9 m2/s which is the diffusion 

coefficient for NaCl [44].  

 The above analysis provides meaningful insight into the flow rates and length 

ranges of a MD unit for efficient removal of salts from a media sample. In addition to 

referring to the theoretical trends, other factors that need to be considered include the 

flow rate necessary for stable nano-ESI, shortest possible transit time, and practical 

limitations in assembly.  

 

2.2. Microdialysis Testing 

In order to validate the theoretical results, a device was built based on the MD 

assembly section with various lengths and flow rates.  

 

2.2.1.  Microdialysis Experimental Assembly  

Samples of 500mM and 300 mM NaCl in DI water were used to examine the 

effectiveness of the MD unit. Sample and buffer flow rates were controlled using syringe 

pumps (KD Scientific, Holliston, MA), and the dialyzed sample were collected at the 

outlet of the MD unit in a sample vial and was analyzed with an osmometer (Vapro 5520, 

Vescor Biomedical Systems, Logan, UT).  An osmometer measures the osmotic pressure 

of an aqueous solution by measuring the vapor pressure of the liquid, and from osmotic 

pressure, the concentration of dissolved species can be determined.  

 

2.2.2. Microdialysis Experimental Results 

The MD unit’s performance was examined by varying both sample flow rates and 

dialysis buffer flow rates, and MD unit length. Below, Figure 2.5 - Figure 2.8, are the 

results of these experiments. A two sample T-test was conducted to determine whether 

statistical differences existed between the different experimental conditions.  



 28

 

 
Figure 2.5. Experimental MD performance with respect to a varying buffer flow rate. 
The dialysis buffer of DI water was set to flow rates that varied from 0.06 ml/min, 0.1 
mL/min, and 0.6 mL/min. The MD unit’s length was 1 cm and the sampled of 300 and 
500 mM NaCl were set to a flow rate was 60 µl/hr. There was no statistical significant 
difference in varying the dialysis buffer flow rate. Sample size of n = 3 for each buffer 
flow rate.   
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Figure 2.6. Experimental MD performance with respect to a varying sample flow rate for 
a length of 1cm. The sample of 300mM of NaCl was set to flow rates that varied from 24 
µL/hr, 50 µL/hr, and 100 µL/hr. The dialysis buffer of DI water was set to a flow rate of 
0.3 ml/min. The experimental values followed the theoretical trend for varying sample 
flow rate. Sample size of n = 3 for each experimental media flow rate. The theoretical 
data are based on an empirical fit for membrane resistance.    
 
 

 
Figure 2.7. Experimental MD performance with respect to a varying sample flow rate for 
a length of 2cm. The sample of 300mM of NaCl was set to flow rates that varied from 24 
µL/hr, 50 µL/hr, and 100 µL/hr. The dialysis buffer of DI water was set to a flow rate of 
0.3 ml/min. There was no statistical significant difference in varying the sample flow 
rate. Sample size of n = 3 for each media flow rate.   
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Figure 2.8. Experimental MD performance with respect to a varying MD unit length. 
Samples of 300 and 500mM of NaCl were set to a flow rate of 60 µL/hr. The MD unit’s 
length varied from 1, 3, and 3.5 cm and the dialysis buffer of DI water was set to a flow 
rate of 0.06 mL/min. There was a significant difference between each MD unit’s length 
and performance. Sample size of n = 3 for each experimental MD unit length. The 
theoretical data are based on an empirical fit for membrane resistance.  
 
 

The experimental values varied from the theoretical values; however, both the 

dialysis buffer flow rate and length variations followed similar trends as in the theoretical 

results. The theoretical results for varying dialysis buffer flow rate showed little change 

in the MD unit’s performance. The experimental results showed a similar trend in little 
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variation in the MD unit’s performance based on changing the dialysis buffer flow rate. 

There were inconsistencies when the sample flow rate was varied at different 

experiments. Figure 2.6 demonstrates that the experimental MD unit behaves similarly to 

the theoretical model, but Figure 2.7 shows that varying the sample flow rate had no 

effect on the MD unit’s performance. These inconsistencies are most likely due to 

irregularities in the MD unit’s assembly, and there may also be fiber to fiber performance 

differences that lead to different mass transfer resistances. As the mass transfer 

membrane resistance decreases, the sample flow rate’s influence on performance 

minimizes. 

Although some experiments demonstrated that sample flow rate may benefit the 

amount of salt that is removed from samples, ultimately nano-ESI will dictate the sample 

flow rate [45]. Under typical nano-ESI conditions the sample flow cannot be varied 

enough to affect the MD unit’s performance. 

The results from the theoretical model demonstrated that increasing length 

improved the MD unit’s performance. Similarly increasing length showed to be the 

design parameter which provided significant changes in the MD unit’s performance in the 

experimental section. Originally the membrane resistance to mass transfer was calculated 

using the estimation from Tong et al. It was found that experimental results were 

significantly different from the theoretical results. From the experimental results it was 

concluded that our estimation of αm was more than an order of magnitude less. With αm 

set to 0.012, the theoretical model can accurately predict the performance of the MD unit.  

 

2.3. MD nano-ESI Experiments 

 With the establishment of an optimum set of design parameters for the MD unit, 

the device was tested by running samples through the MD unit in an off-line setting and 

the collected samples were then run through a micrOTOF MS (Bruker Daltonics, 
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Billerica, MA), which is an orthogonal acceleration TOF MS. The MD unit’s ability to 

remove salt and retain proteins was demonstrated through these experiments. Testing to 

determine the optimum buffer and nano-ESI emitter for the most consistent and steady 

signal was conducted by using the in-line MD nano-ESI setup. Characterization of the 

system was done by using various concentrations of cytochrome-c (Cyt-C), equine heart, 

Sigma Aldrich, St. Louis, MO) in various concentrations of salt solution and media 

solutions. Cyt-C is a small (12 kDa) heme protein that is associated with the inner 

membrane of the mitochondrion. It is a highly soluble protein and has been found to be 

released extracellularly in neuronal cultures post apoptosis [46, 47]. 

  

2.3.1. MD Bruker ESI Analyte Retention Experiments 

Initially samples were passed through the MD unit at flow rates of ��%C*, = 50 

µl/hr and a �cr44 = 150 µL/hr. The media sample consisted of 20 µM Cyt-C in a 10% 

methanol, 1% acetic acid buffer, and the buffer was 10% methanol, 1% acetic acid 

solution. Samples were collected off-line and run through the Bruker ESI ion source 

instead of the nano-ESI emitter. This was done to asses protein losses when the sample 

went through the MD fiber.  Initially the 20 µM Cyt-C in a 10% methanol, 1% acetic acid 

buffer was analyzed with the Bruker ion source without MD (Figure 2.9).  
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Figure 2.9. Spectrum of 20 µM Cyt-C in a 10% methanol, 1% acetic acid buffer using 
the Bruker ion source with no MD.  
 

Using the same MS settings as the experiment in Figure 2.9, the MD unit was 

incorporated into the MS experiment in an off-line manner. Samples were flowed through 

the MD unit and collected in a vile at the end of the MD unit. A 10% methanol, 1% acetic 

acid dialysis buffer was used in the MD unit. Figure 2.10 shows the resulting MS 

spectrum of the experiment.   

 

 
Figure 2.10. Spectrum of 20 µM Cyt-C in a 10% methanol, 1% acetic acid buffer using 
the Bruker ion source with off-line MD. MD length was 1 cm. 

 

A simple comparison of the peak intensities of Figure 2.9 and Figure 2.10 

qualitatively indicate that there was no apparent loss in Cyt-C due to dialysis, and when 

comparing the two spectra it can be seen that the post MD spectrum shows a greater Cyt-
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C intensity. Furthermore, when examining the protein’s charge states, there was also a 

reduction in the amount of sodium adducts in post MD sample as seen in Figure 2.11.  

 

 
Figure 2.11. Comparison between the pre-MD and post-MD MS analysis. There was a 
reduction in the number of adducts to each charge state in the post-MD experiment. 
Further examination of the charge states shows that there are Na+ adducts instead of H+.  
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2.3.2. In-line MD nano-ESI Performance Experiments 

 The MD membrane’s performance in reducing the amount of salt adducts and its 

ability to retain proteins was demonstrated in the off-line experiments with the Bruker 

ESI ion source.  The MD unit’s performance as an in-line device was evaluated in the 

following experiments. The MD unit was assembled in-line with a nano-ESI emitter and 

stationed in front of the MS. Figure 2.12 shows the MD unit connected to the nano-ESI 

emitter (New Objective, Woburn, MA) by a grounded metallic union. 

 

 
Figure 2.12.  Schematic of in-line MD-nano-ESI. (1) nano-ESI Emitter and (2) grounded 
metallic union. 
   

For the in-line MD-nano-ESI experiments the buffer flow rate was held constant 

at �cr44 = 150 µL/hr. The sample flow rates were held at 30 -50 µL/hr in order to 

maintain a stable MS signal.  In these experiments media flow rate, and various dialysis 

buffer mixtures of Methanol, acetic acid, and ammonium acetate were examined. In 

addition, two different types of nano-ESI emitters were used, a 50 µm ID, 360 µm OD, 8 

µm Tip ID emitter and a 75 µm ID, 360 µm OD, 15 µm Tip ID emitter. Cyt-C was 

dissolved in various NaCl solutions or NEUROBASAL (Invitrogen, Carlsbad, CA) cell 

culture media. Each experiment was examined for signal consistency, run length, and 

signal intensity.   
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2.3.3. MD-nano-ESI Performance Experimental Results 

 The effectiveness of the MD unit’s ability to clean samples during in-line MD 

nano-ESI is illustrated below. 

 A 20 µM Cyt-C in a 10% methanol 1% acetic acid solution with no added salt 

underwent dialysis through a membrane of a 1cm length, and a dialysis buffer of 10% 

methanol and 1% acetic acid (Figure 2.13). The results indicate a higher intensity 

compared to the results presented in Figure 2.10, likely due to the use of a nano-ESI 

emitter and a large reduction in the amount of sodium adducts to the individual charge 

states.  

 

 
Figure 2.13. MD nano-ESI 20 µM Cyt-C in a 10% methanol 1% acetic acid solution with 
no added salt. MD unit’s length was 1 cm.  
 

Samples of 20 µM Cyt-C were in solutions of NaCl, 300-500mM, that mimic salt 

levels in cell culture media. In addition to the NaCl in the Cyt-C solutions, the sample 

buffer solution of 10% methanol and 1% acetic acid was eliminated and replaced with 

pure DI water. Typically ESI is done with an organic solvent and acid buffer mixture. 

Instead of including the buffer in the initial sample, the dialysis buffer would provide the 

necessary solvent through the MD step. Figure 2.14 illustrates the suppressive nature of 

high salt concentration samples on the detection of analyte in the MS spectrum. There 
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was no sign of Cyt-C, but adducts of NaCl could be found throughout the spectrum due 

to the high salt content of the sample.  

 

 
Figure 2.14. A sample of 20 µM Cyt-C in a 500 mM NaCl solution was flowed through 
the in-line MD nano-ESI device without any dialysis buffer flowing. 
 

Figure 2.15 shows the improvements of incorporating the dialysis buffer into the 

in-line MD step. 

 

 
Figure 2.15. 20 µM Cyt-C in a 250 mM NaCl solution with in-line MD. Dialysis buffer 
of 10% methanol and 1% acetic acid. MD unit’s length was 1 cm.  
 

 Another factor that led to improved MS results was the incorporation of a low 

pressure cross flow nebulizer gas Figure 2.16. When incorporated with MD-nano-ESI, 

there were improvements in peak intensities and the duration of experiments. The use of 
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a sheath flow or nebulizer gas has been reported to improve liquid break up in higher 

flow rate ESI [31]. Although nano-ESI is traditionally operated without nebulizer gas 

[26], it consistently increased the intensity of Cyt-C peaks for high salt concentration and 

cell culture media samples. Although not thoroughly examined, high salt concentration 

samples consistently benefitted from a low pressure nebulizer gas perpendicular to the 

spray, as seen in Figure 2.17 and Figure 2.18, perhaps due to facilitating desolvation as 

reported with traditional ESI.   

  

 
Figure 2.16. Schematic of nano-ESI with a perpendicular low pressure nebulizer gas 
cross flow of nitrogen. 
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Figure 2.17. Experiment with intermittent low pressure nebulizer gas cross flow 
application. (a)Total Ion Chromatogram (TIC) of a blank DI water sample from a model 
cell culture chamber with intermittent nebulizer gas. The areas with higher chromatogram 
intensity had low pressure nebulizer gas applied to the tip of the emitter. (b) Averaged 
spectrum of time point with no nebulizer gas application. (c) Averaged spectrum of time 
point with nebulizer gas. Spectrum (c) has a much higher intensity than spectrum (b).  
 
 

 
Figure 2.18. 20 µM Cyt-C in a 250 mM NaCl solution with a MD unite length of 2.4cm 
and the use of a nebulizer cross flow. Dialysis buffer of 10% methanol and 1% acetic 
acid.  
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In addition to characterizing the effectiveness of the MD unit’s ability to remove 

NaCl from Cyt-C samples, the MD-nano-ESI device was tested with Cyt-C mixed in 

fresh neural cell culture media. Figure 2.19 illustrates how the high salt levels of culture 

media suppress the Cyt-C signal.  

 

 
Figure 2.19. 20 µM Cyt-c in a neuronal cell culture media solution with no MD  
 

When the MD unit and the perpendicular cross flow nebulizer gas were 

incorporated, the Cyt-C could clearly be distinguished from the cell culture media with an 

excellent peak intensity corresponding to Cyt-C (Figure 2.20). 

  

 
Figure 2.20. 20 µM Cyt-C in neuronal cell culture media solution with a MD unit length 
of 2.4cm and the use of a nebulizer cross flow. 
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 Some of the key issues that were encountered when running high salt 

concentration Cyt-C samples with MD nano-ESI included analyte suppression due to salt 

contamination, inconsistent signal, and limited run time due to clogging at the emitter tip. 

By varying the MD unit length, changing the dialysis buffer’s solvents, and modifying 

the spray tip conditions these issues were overcome. The most consistent, adduct free 

spectra and clog free MS runs were obtained by lengthening the MD unit to 3.5 cm, using 

a dialysis buffer consisting of only 1% acetic acid, using a 75 µm ID, 360 µm OD, 15 µm 

Tip ID emitter, and using a low pressure nebulizer gas cross flow across the emitter tip 

(Figure 2.21).  

 

 
Figure 2.21. Typical performance of a MD-nano-ESI device. 10 µM Cyt-C in neuronal 
cell culture media solution with a MD unit length of 2.4cm and the use of a nebulizer 
cross flow and a 1% acetic acid dialysis buffer.( a) Averaged spectrum of the sample.(b) 
Chromatogram demonstrating steady signal obtained with MD-nano-ESI MS.  
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2.4. Discussion 

The MD unit experimental testing demonstrated that salt content can effectively 

be removed. Theoretical analysis of the unit based on principles of mass transfer 

predicted that both increasing the length of the MD unit and decreasing the sample flow 

rate would improve the salt removal. Experimental results demonstrated that increasing 

the MD unit’s length provided significant improvements in the reduction of salt content 

in solutions. A length of 3.5 cm provided the greatest reduction while not greatly 

increasing the volume of the system.  

 The MD unit’s capability of desalting samples while in-line with nano-ESI MS 

was clearly demonstrated. Samples that previously provided poor MS spectra and created 

emitter clogging, could now be effectively sampled and analyzed with the MS when first 

passed through the MD unit. The MD unit removed the deleterious effects of high salt 

concentration samples, reduced clogging issues, and increased the sensitivity of nano-

ESI. The addition of a low flow rate nebulizer gas cross flow of nitrogen, also improved 

the peak intensities and reduced the occurrence of clogs. The nebulizer gas seems to 

improve desolvation of high salt concentration samples, and it has also eliminated the 

issue of salt precipitation at the tip of the emitter by blowing away droplets that contain 

few or no ions away from the tip. Ultimately the MD unit provides an effective method of 

analyzing high salt and complex samples that could otherwise not be analyzed by MS.  
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CHAPTER 3 

SAMPLING PROBE AND 3-D CELL CULTURE MODEL OF 

LOCALIZED INJURY 

 
The effectiveness of MD-nano-ESI MS was shown in Chapter 2, but samples 

were introduced directly to the system using a syringe loaded with the sample. In order to 

characterize and demonstrate the system’s potential as a novel method of TBI biomarker 

discovery, the system’s performance was examined in the context of cell cultures. The 

goal of this chapter is to demonstrate a sampling probe’s ability to determine temporal 

and spatial information about a localized model injury. A model cell culture chamber and 

model of injury were developed and examined in order to demonstrate the probe’s 

detection capabilities. The model was studied through theoretical concepts and 

experiments. In addition, the probe was inserted into 3-D neural cultures and samples 

were drawn with no adverse effects on the culture.   

 

3.1. Local Marker Release Injury Model 

A model to characterize the sampling probe’s effectiveness in monitoring a 

localized release of a marker chemical was developed. This model represents a number of 

experimental possibilities, such as a local cellular release of biomolecules to the porous 

cell culture extracellular space (ECS) that may be used as markers for normal or 

pathological cell states. The model consisted of small polycarbonate cylinder with a 

3.175mm ID and a 9.524mm OD (1/8” ID, 3/8” OD) with a length of 1cm. Two 10-32 

Flat-Bottom NanoPorts (Upchurch Scientific, Oak Harbour, WA) were affixed to both 

top and bottom of the polycarbonate cylinder with Quick Set (JB Weld, Sulphur Springs, 

TX). Two 300µm holes were drilled on the side of the chamber and silica capillaries (150 

µm OD, 50 µm ID) were inserted and affixed with Quick Set. Figure 3.1 shows a 
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schematic of the model injury chamber, and Appendix A gives a detailed protocol for the 

construction of the chambers.  

 

 
Figure 3.1. Model cell culture chamber constructed out of an extruded polycarbonate 
cylinder with NanoPorts and silica capillaries affixed to it.   

 

The chamber was filled with agarose in order to represent the porous matrix used 

in cell culturing. Agarose is a gelatinous substance that is used in biological cell culture 

procedures, and its porosity can be adjusted based on its concentration. A 0.6% agarose 

concentration was used to obtain properties such as porosity and tortuosity similar to 

those found in the brain [48, 49]. The full experimental arrangement involves the 

connection of one silica capillary to the MD-nano-ESI device, and the other capillary 

connected to a plugged metallic union. At the bottom end of the chamber a silica 

capillary (150 µm OD, 50 µm ID) was connected to the NanoPort using a 190 µm ID Kel-

F ferrule. The top NanoPort was connected to a syringe using a PEEK tubing (125 µm 

ID, 1/16” OD) and was secured using 10-32 Peek fingertight nut with a 1/16” ferrule that 

flows a bulk flow fluid. Figure 3.2 illustrates a schematic of the model injury experiment 

which was placed in front of the MS.  
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Figure 3.2. Schematic of the model cell culture connected in-line with the MD-nano-ESI 
device. Samples were continually collected and analyzed with MS. Flow is driven by the 
bulk flow into the chamber.  
 

A syringe pump (KD Scientific, Holliston, MA) was used to flow a bulk liquid 

through the agarose matrix and out to the sampling probe and the bulk flow outlet at 

uniform flow rates. This was done to recreate conditions of 3-D cell cultures under 

conditions of bulk perfusion flow. Once a steady signal was achieved with the MD-nano-

ESI MS analysis, the plug on the injection line was exchanged with a 10µL Hamilton 

syringe and 8 µL of a marker was injected into the system. The syringe was then removed 

and the line was immediately plugged. The injection creates a small sphere of marker 

within the agarose matrix. The sphere undergoes diffusion and advection overtime, which 

alters the concentration in the solution sampled by the probe. This injury model was 

studied both theoretically and experimentally. 

 

3.2. Local Marker Release Model Theory 

The model of a localized injury can be analyzed based on the principles of mass 

transport in porous matrix. The resulting theoretical description provides a prediction of 

marker transport in agarose with bulk flow.   
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3.2.1.  Theoretical Model 

Diffusion can be described by Fick’s law of diffusion, Equation ((3.1) 

 � � Nm�� (3.1) 

 

where j is the mass flux,  D is the diffusion coefficient , and c is the mass concentration. 

A partial differential equation describing transient diffusion can be derived from the 

continuity equation, for a concentration c(r, t) at position r and time t, and  is coupled to a 

flux j(r ,t) and a source density s(r, t).  

 ���3 � � · � � 7 
(3.2) 

 

 A relationship between the flux (j), and the concentration (c) can be achieved from 

Fick’s law, Equation (3.1), and incorporation of an advection term, v, 

 � � Nm�� � �� (3.3) 

 

Combining equations (3.2) and (3.3) give the transient advection diffusion equation  

 �L�3 � m�1L N � · �L � 7 
(3.4) 
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Mass transport in porous matrix is affected by the presence of two phases, the 

permeable and the impermeable. A porous matrix creates a discontinuous concentration 

profile, which means Equation (3.4) cannot be applied. In order to overcome the 

discontinuities, volume averaging is used. The entire volume that is being considered is 

defined by V, and the representative ECS, which is the phase where diffusion will occur, 

will be defined by Vo. With these two terms, the parameter of volume fraction (porosity), 

α, is defined by 

 

q � �̂�  
(3.5) 

 

For porous matrix, the mass flux, Equation (3.3) becomes 

 � � Nm��� � ��� (3.6) 

 

where D* = D/λ
2, λ is the tortuosity of the porous matrix, and �� � � q⁄ . Inserting the 

expression for the mass flux in a porous matrix into the advection diffusion equation and 

dropping the source term yields [50].  

 �L�3 � m��1L N �� · �L 
(3.7) 
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In the case of the local release injury model, a finite quantity of marker is injected into 

the system and it fills an initial volume in the porous matrix [51]. For the case of porous 

matrix, we assume that the marker uniformly fills a sphere with a radius of 

  

� � o 3+4UqpW i�
 

(3.8) 

 

where U is the volume of the fluid injected into the porous matrix. We analyze an 

idealized conceptualization in which this uniform sphere is instantaneously placed in a 

uniform steady flow, �� � :. We neglect the effect of the presence of the walls and treat 

the domain as unbounded, with vanishing concentration far from the injection site. The 

resulting model is solved through application of a coordinate transformation [52]. The 

advection term is removed by transforming to a translating coordinate system: � � ! N:3. The transformed boundary and initial conditions posses a spherical symmetry, and 

hence the resulting transient diffusion equation is cast in a spherical coordinate system, 

with radial coordinate r (requiring the addition of the constraint that the solution remain 

bounded at the origin). The solution in the transformed coordinate system is 

 

L � oL42 p �erf���� N erf��f� � 2�� 2m3U �exp�N��1� N exp�N�f1��� 

(3.9) 

 

where Cf is the concentration of the injected volume and �� � �� � ���/2√m3. When 

returned to the original coordinate system, the solution retains cylindrical symmetry, and 

can be still written as in Equation (3.9) with � � ���! N :3�1 � �1� and �� �



 49

�� � ���/2√m3, where ρ is the radial coordinate in a cylindrical coordinate system. 

Figure 3.3 demonstrates the coordinate system in the model injury chamber.   

 

Figure 3.3. Schematic demonstrating the coordinate system for the model cell culture.  
 
 

3.2.2. Model Results 

Using Equation (3.9) the theoretical results of the injury model were examined 

with a small bulk flow and an instantaneous injection of Cyt-C. The incorporation of both 

the effects of diffusion and advection must be considered. This is indicated by the 

system’s Péclet number, which is given by Equation (3.10).  

 

�" � :VJm � 9" · �� 
(3.10) 

 

where u is the velocity of the fluid, Ls is the characteristic length, and D is the mass 

diffusion coefficient. The Péclet number is the ratio of the rate of advection of a physical 

quantity by the diffusion of the same quantity.  For the injury model, Table 3.1 shows the 

flow conditions and the chamber dimensions.  
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Table 3.1. Model injury conditions and dimensions.   

Bulk Flow rate (�cr&�) 60 µL/hr 

Marker Injection  
Capillary ID (φi,cap) 

50 µm 

Chamber ID (φi,chaber) 3.175 mm 

Cyt-C Diffusion  
Coefficient [53] 

1.50x10-10 m2/s 

 

The equivalent velocity of the system was calculated by Equation (3.11) 

 

:% � �cr&�qP � : 
(3.11) 

 

where A=π (φi,chaber)
2
/4, and α is the porosity of the agarose which is 0.98 [54]. For the 

conditions given in Table 3.1 ue = 2.14x10-6 m/s. Laminar flow can be assumed due to the 

low Reynolds number of 6.81x10-3, which was calculated from equation (2.1), with a ν of 

1x10-6 m2/s. In addition the flow can be assumed to be fully developed by equation (2.2). 

A tortuousity of 1.6 was used for all of the calculations [55]. 

The Peclet number was calculated to be 0.714 using equation (3.10), when Ls is 

equal to the ID of the injection capillary. Since the Péclet number is ~ 1, it can be 

concluded that the transport of the Cyt-C in the injury model is driven by both diffusion 

and advection. In addition the capillaries for the sampling probe and the marker injection 

were both assumed to have no effect on the diffusion of marker, and it was also assumed 

that the walls of the chamber were far enough away from the marker injection site for 

their effects to be neglected. These assumptions were made for ease and generality of 



 51

analysis. Figure 3.4 shows the solution to equation (3.9) at various time points along the 

axial (z) direction of the chamber.   

 

 Figure 3.4. C/Cf with respect to axial position in a chamber filled with 0.6% agarose 
porous matrix at various time points. The injection of 8 µL origin is at z=0 and each 
series shows the concentration profile of the Cyt-C in the z-direction at different time 
points.  
 

Figure 3.5 shows the change in concentration at a given point with respect to time using 

Equation (3.9).   
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Figure 3.5. C/Cf with respect to time for a 8 µL injection of Cyt-t  into 0.6% agarose 
porous matrix at a fixed distance of 1.4mm downstream of the injection point.  
  

The theoretical analysis provides a simplified model of the transport of Cyt-C within 

porous matrix under the influences of both diffusion and advection. Estimates of the time 

it will take Cyt-C to reach the sampling probe at various positions in the chamber, and the 

concentration profile of the marker injection in chamber can be made with the above 

analysis.  

 

3.3. Injury Model and Probe Experiments 

Experiments were conducted under similar conditions to those analyzed using the 

theoretical model. Visualization experiments were conducted with dye before moving 

onto analysis with MS.  

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120

C
/C

f
(μ

M
)

Time (min.)

z=1.4mm



 53

3.3.1. Dye Injection Study 

Experiments were first conducted to observe the injection of a dye marker into a 

porous matrix. 0.25% Bromophenol blue was used as the marker in order to provide easy 

visualization of the injection and has been previously used to study molecule transport 

through the brain [48]. These experiments were conducted in modified planar chambers, 

which improved the visibility of the injected marker under a digital microscope (VHX-

500F, Keyence, Osaka, Japan). The exact dimensions for the planar chambers can be 

found in Appendix B. The dimensions were chosen so that the planar chambers 

maintained equivalent flow conditions as the cylindrical chambers. Figure 3.6 shows a 

schematic of a planar chamber.  

 

 
Figure 3.6. Schematic of the planar chamber. The cylindrical cell culture chamber was 
modified to this planar version for dye injection studies.  

 

The porous matrix of 0.06% agarose was used to fill the chamber, and a sampling 

probe and injection capillary were inserted into its sides (50 µm ID, 150 µm OD, silica 
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capillaries), a silica capillary (50 µm ID, 150 µm OD) was inserted into the bottom of the 

chamber, and a NanoPort was affixed to the top of the chamber for the bulk flow. A flow 

rate of 60 µL/hr was used as the bulk flow and a volume of 5µL of Bromophenol blue 

was injected into the system. Figure 3.7 shows the injection study experiment. 

 

Figure 3.7. Dye injection experiments. The arrow denotes the direction of the 60 µL/hr 
bulk flow. The capillary on the left side of the chamber is the injection capillary. (A) 
Image of planar chamber filled with 0.6% agarose before injection. (B) Image of planar 
chamber immediately after 5 µL of dye was injected.  
 

 From Figure 3.7(B), the radius of the injection was approximated to be 1.01mm. 

According to Equation (3.8), the theoretical results the radius should be 1.07mm for an 

injection of 5 µL in a porous matrix of 0.98 porosity. Other observations that were seen 

during the dye experiments included the occasional release of air bubbles prior to the 

introduction of dye as seen in Figure 3.8. 

 



 55

 
Figure 3.8. Image of an air bubble released before dye exited the injection capillary.  

 

It was also observed that the transport of the marker downstream of the injection point is 

not entirely uniform as the model predicts. Figure 3.9 shows the continuous injection of a 

marker at a set flow rate of 30 µL/hr over 8.5 minutes. It was observed that downstream 

of the droplet, a stream of dye has moved away from the droplet. This may be due to the 

heterogeneity of the porous matrix where some areas may permit a larger velocity which 

allows for a quicker transport of dye through the matrix.  
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Figure 3.9. Image of dye at 8.5 minutes after initial introduction. A stream of dye can be 
seen coming off of the droplet. The dye was continuously introduced into the chamber at 
a flow rate of 30 µL/hr.  

  

The dye experiments provided a visual understanding of the type of transport an 

injection of a marker will undergo during experimental MD-nano-ESI MS analysis. 

Ideally the marker transport would behave similarly to the theoretical model previously 

discussed. It was determined from the dye experiments that the theoretical model may be 

too simple to accurately predict the transport of marker molecules through a porous 

matrix. Factors such as air bubbles in the injection capillary, and irregularities in the 

porous matrix may alter the transport of molecules through the porous matrix. In addition 

the assumption that the effects from the chamber walls and capillaries could be neglected 

was most likely inaccurate and should be incorporated into the model for future studies. 

These discrepancies between the theoretical model and the behavior of the model injury 

become more evident in the MS experimental results.  
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3.3.2. Experimental Assembly  

The injury model and the MD-nano-ESI probe were assembled as described in 

section 3.1. Cyt-C was injected into the chamber and the MD-nano-ESI-MS probe 

continually sampled and analyzed liquid taken from within the porous matrix. The bulk 

flow through the chamber was set to 60 µL/hr and initially the injection capillary was 

plugged. Before injecting the sample, the injection capillary is unplugged and the marker 

is introduced via 10 µl syringe. Immediately after the injection the capillary is plugged.  

 

3.3.3. Agarose Experimental Results 

Different concentrations and probe placements were examined to demonstrate the 

probe’s capability of deciphering between different concentrations and probe placement 

locations in agarose. Model chambers were made with the injection capillary within 

100µm to the sampling probe capillary. Figure 3.1 shows a schematic of the chamber 

model with adjacent capillaries. This is well within the spherical space of the injected 

marker and one can expect similar results to the dye experiments of Figure 3.7. 

Another set of chambers were constructed where the two capillaries were offset 

by 1.4mm in the z-direction of the cylindrical chamber. The sampling probe was place 

downstream of the injection probe. Figure 3.10 shows a schematic of the chamber model 

with offset capillaries.  
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Figure 3.10. Schematic of model injury chamber with the sampling probe offset by 
1.4mm downstream of the injection capillary.  

 

Two different concentrations were used for both adjacent and offset probe 

placements: 30µM and 5µM of Cyt-C. For each concentration, 8 µL of marker was 

injected into the porous matrix. The probe continuously sampled and the MS provided 

chromatograms and spectra for the samples.  Below in Figure 3.11 and Figure 3.12 are 

the results for both the adjacent set of experiments compared to the offset experiments.  
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Figure 3.11. MS chromatograms and spectra from continuous in-line analysis with MD-
nano-ESI of 8 µL injections of 30 µM Cyt-C. (1) A model chamber with adjacent 
sampling probe showed a nearly immediate detection of Cyt-C. The wait time (*) was 
less than 30 seconds. (A) is an averaged spectrum of the chromatogram before the 
injection. (B) is an averaged spectrum of the chromatogram post marker injection, with 
spectrum A subtracted out as background noise. (2) A model chamber with 1.4mm offset 
capillaries showed a delay (**) of approximately 72 seconds and a more gradual increase 
in intensity on the chromatograms. (C) is an averaged spectrum of the chromatogram 
before the injection. (D) is an averaged spectrum of the chromatogram post marker 
injection, with spectrum C subtracted out as background noise. 
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Figure 3.12. MS chromatograms and spectra from continuous in-line analysis with MD-
nano-ESI of 8 µL injections of 5 µM Cyt-C. (1) A model chamber with adjacent sampling 
probe showed a nearly immediate detection of Cyt-C. The wait time (*) was less than 30 
seconds. (A) is an averaged spectrum of the chromatogram before the injection. (B) is an 
averaged spectrum of the chromatogram post marker injection, with spectrum A 
subtracted out as background noise. (2) A model chamber with 1.4mm offset capillaries, 
and an injection (#) at 3 minutes. There was no detection of Cyt-C with the probe 
throughout the entire experiment. (C) is an averaged spectrum of the chromatogram 
before the injection. (D) is an averaged spectrum of the chromatogram post marker 
injection, with spectrum C subtracted out as background noise. 
 

 

Although the adjacent probes show a slight delay, this can be accounted for by the 

volume of the MD-nano-ESI device. The injection also introduces a slight increase of 

pressure into the system which affects the performance of the nano-ESI emitter. The 

sampling probe’s experimental results were comparable to the theoretical results. The 

adjacent probes showed a nearly immediate increase in the signal for Cyt-C. The 30µM 

Cyt-C injections showed a delay of 72 seconds which was quicker than the theoretical 

delay of 90 seconds for the same concentration and volume of Cyt-C to become 

detectable on the MS.  This quicker response may have been due to the irregularities 

observed in the dye experiments. An air bubble may have displaced Cyt-C further 

downstream for the quicker detection time, or a stream of Cyt-C may have flowed off of 

the initial droplet similar to Figure 3.9. In addition, it is very difficult to determine the 
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relative concentrations measured by the MS. One can observe that the adjacent probe 

spectrum shows a lower peak intensity than the offset probe placement. According to the 

theoretical predictions the concentration at the offset probe should be about 5 times less 

than the adjacent probe concentration. This may be due to inconsistencies in the nano-ESI 

conditions. Small variations in the experiments may have lead to different Cyt-C 

ionization efficiencies and hence the different peak intensities. It is difficult to verify 

experimentally with MS the concentration which is being sampled.   

The lower concentration experiments with 5 µM Cyt-C also showed a slight delay 

in the adjacent capillary chamber which agreed with the 30 µM concentration injury 

model and the theoretical analysis. The offset probe chamber showed no increase or 

detection of Cyt-C. The theoretical analysis showed  5 µM of Cyt-C at a volume of 8µL 

would reach the emitter, but its concentration would never reach above 1.46 µM of Cyt-C 

which was not detectable under these experimental conditions.  The lower concentration 

did show lower peak intensity when compared to the 30 µM sample but, once again, it is 

difficult to decipher information regarding concentration from only the Cyt-C peak 

intensities.  

 

3.4. Matrigel Experimental Results 

Similar to the experiments in the previous section, chambers were filled with 

Matrigel (BD Biosciences, Sparks, MD) instead of agarose and the sampling probe was 

placed within 100 µm of the injection capillary. These experiments were conducted in 

order to determine whether MD-nano-ESI MS could detect Cyt-C from within a more 

biologically complex porous matrix. All experimental variables were the same as the 

agarose experiments other than the Matrigel. Figure 3.13 shows the results of MD-nano-

ESI MS analysis from within Matrigel.  
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Figure 3.13. MS chromatogram and spectra from continuous in-line analysis with MD-
nano-ESI of 8 µL injection of 30 µM Cyt-C in a Matrigel filled chamber. The injection 
(*) occurred at 2 minutes and signal was lost from 3-5 minutes. Spectra (A) is an 
averaged spectrum of chromatogram before the injection. At 5 minutes, when signal was 
regained, Cyt-C peaks were apparent. Spectrum (B) is an averaged spectrum of the 
chromatogram from 5-5.5 minutes with the spectrum (A) subtracted out as background. 

  

Cyt-C detection with MD-nano-ESI was successful, but detection was delayed 

from a loss of signal post injection. Maintaining a steady nano-ESI signal was more 

difficult in the Matrigel experiments, there was an increase in the amount and intensity of 

back ground noise peaks, and there was more Cyt-C suppression. This is all due to the 

increase in the complexity of the porous matrix. The MD unit’s effectiveness to clean 

samples prior to nano-ESI proved to be insufficient to provide consistent results for 

sampling within Matrigel.  
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3.5. In-Vitro Probe Placement and Sampling 

Mixed primary cortical neural cultures in Matrigel were plated in the model cell 

culture chambers at a density of 4000 cells/µL. A porous piece of polyethylene was 

inserted into the bottom of the chamber in order to provide the cultures a uniform surface. 

The cultures were examined to determine if the probe had any adverse effects on the 

culture. It was determined that the probe inserted into the culture had no effect on the 

cells in the culture in terms of acute cell death. In addition a bulk flow of 

NEUROBASAL media was perfused through the cultures to determine if sample 

collection through the probe would cause cell death or create discrepancies in the 

cultures. Figure 3.14, Figure3.15, and Figure 3.16 show mixed neural cultures in the 

chambers under different conditions. To determine how cells reacted to probe placement 

and perfusion a live/dead was conducted on the cultures using calcein AM and ethidium 

homodimer-1 (Sigma Aldrich, St. Louis, MO). Live/dead cell viability staining is an easy 

and sensitive method of determining whether cells were able to withstand probe insertion 

and perfusion. Calcien AM is cleaved by esterases in live cells to yield cytoplasmnic 

green fluorescence, and membrane-impermeant ethidium homodimer-1 labels nucleic 

acids of membrane-compromised cells with red fluorescence. The treated cultures are 

placed under EPI fluorescence light under an upright microscope (Nikon Eclipse 80i, 

Melville, NY), and images were captured with a MicroFIRE microscope camera 

(Optronics, Goleta, CA).  
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Figure 3.14. Four day old mixed neural cultures in Matrigel plated in a model cell culture 
with no probe or perfusion. Scale bar is 25 µm.  
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Figure 3.15. Four Day old mixed neural cultures in Matrigel plated in a model cell 
culture with probe and no perfusion. Scale bar is 25 µm. The sampling probe is the large 
red line across the image.  
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Figure 3.16. Four day old mixed neural cultures in Matrigel were perfused with fresh 
NeruoBasal media for 15 minutes and liquid was allowed to flow through the sampling 
probe. Cultures were placed back in incubator overnight and a live dead was conducted. 
Scale bar is 25 µm. The sampling probe is the large red line across the image.  

  

The live dead staining on the cell cultures showed that introduction of the probe 

and sampling had no adverse effects on the cell cultures. All three cultures had similar 

amounts of dead cells (red fluorescence) and cell growth appeared to be similar. This 

demonstrates that using the probe for sampling will have little effect on the cells and 

should not affect experimental results in the short term. In addition, it was shown that the 

probe was capable of obtaining samples without clogging for the fifteen minutes of the 

perfusion.  

 

 



 67

3.5.1. Cell Culture Local Injection Experimental Results 

As demonstrated in the previous section, sampling from within cell cultures with 

a small silica capillary was possible with no noticeable effects to the cells and no 

clogging. Mixed 3-D neural cultures in Matrigel were plated into chambers, and the 

sampling probe was placed within 100 µm of the injection capillary. These experiments 

were conducted in order to determine whether MD-nano-ESI MS could detect Cyt-C 

from within a neural cell culture. All experimental variables were the same as the agarose 

and matrigel experiments. Figure 3.17 shows the results of the MD-nano-ESI MS 

analysis within mixed 3-D neural cultures.  

 

Figure 3.17. MS chromatogram and spectra from continuous in-line analysis with MD-
nano-ESI of 8 µl injection of 30 µM Cyt-C in a chamber filled with a mixed 3D neural 
cell culture. The injection (*) occurred at 2 minutes. Spectra (A) is an averaged spectrum 
of the chromatogram before the injection. At 3.5 minutes, Cy-C peaks were apparent  
within the spectrum. Spectrum (B) is an averaged spectrum of the chromatogram from 7 
minutes and on with the spectrum (A) subtracted out as background.  

 

 Cyt-C detection with MD-nano-ESI was successful and was much more 

consistent than the previous acellular Matrigel experiments. This may have occurred due 



 68

to a remodeling of the matrix by the cells. The MD unit’s effectiveness to clean samples 

prior to nano-ESI proved to allow the detection of Cyt-C from within a live cell culture.   

3.6. Discussions 

A model injury was developed by injecting a finite amount of volume into a 

porous matrix. With these experiments the probe’s capabilities to decipher information 

about different concentrations and probe placements were observed by studying the MS 

chromatograms and spectra. A simple theoretical model based on the diffusion equation 

with a bulk flow was developed to understand the effects of diffusion and advection in 

the transport of Cyt-C through the cell culture model.  In order to understand whether the 

simplifications made in the model were valid experimentally, planar cell culture models 

were developed and a dye was injected into the porous matrix. The dye was observed 

under a microscope and irregularities such as air bubbles and non uniform transport of 

dye downstream were observed. These deviations demonstrated that the transport of dye 

in the model cell culture was not as simple as predicted by the model. A model that could 

take into account factors such as air bubbles, porous matrix heterogeneity, and other 

irregularities would be able to better predict the transport of Cyt-C through porous 

matrix.  

Even though the Cyt-C transport through the matrix does not perform exactly 

like the model predicted, the agarose sampling experiments demonstrated that differences 

between probe placements can be detected through MS analysis. With a higher Cyt-C 

concentration, both adjacent and offset samplings were able to detect Cyt-C in the MS. 

The lapse in time between the marker injection and its detection with the MS was quicker 

experimentally than what was predicted theoretically. This discrepancy could be 

accounted for by the observations made with the dye experiments. Lower concentrations 

of Cyt-C were detected with the adjacent probe placement, but the offset placement 

showed no detection by the MS. This result agreed with the theoretical results. 
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Concentration information could not be inferred from the peak intensities from spectra. 

This is due to the lack of sample to sample repeatability which causes differences in 

nano-ESI efficiency. To accurately measure concentration an internal MS standard for 

Cyt-C would have to be used in order to obtain accurate concentration information.  

The probes ability to sample and detect Cyt-C from more biologically complex 

samples was demonstrated by the Matrigel injury model experiments. Cyt-C was 

successfully detected, but maintaining constant signal, eliminating background signal, 

and eliminating analyte suppression effects was difficult to accomplish with the current 

MD-nano-ESI device. Increasing the performance of the MD unit by increasing the 

length, using different dialysis membranes, or even multiple in-line MD units with 

different molecular weight cut offs could improve the performance of the system. The 

highly complex composition of the Matrigel matrix which includes, laminin, collagen IV, 

and entactin, and the addition of growth factors all lead to the increase in ion suppression 

and background peaks. Cells were successfully cultured and sampled with the probe with 

no adverse effects to the cells. Sampling with in-line MD-nano-ESI MS demonstrated 

that the system was capable of detecting a marker from a cell culture. In addition the 

experiments demonstrated a cleaner spectrum was capable of being obtaining from the 

cell culture when compared to the acellular Matrigel experiments. This may have been 

due to the cells remodeling the matrix, and the Matrigel used in the cell cultures was half 

as dense as the one used in the acellular experiments. The results in the last experiment, 

gives promise to future experiments of monitoring actual biological processes within cell 

cultures.  
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS  

 

4.1. Conclusions 

The MS sampling probe that was developed and analyzed in this thesis 

demonstrated its ability to detect small concentrations of biological markers within cell 

culture matrix with little sample preparation. By incorporating the method of in-line MD, 

analyte that was previously undetectable with MS analysis, due to the nature of cell 

culture media and matrix, can now be detected with nano-ESI MS with no other 

manipulation. When incorporated in-line with a sampling probe, the system was capable 

of being incorporated into cell culture matrix and detected small volume injections of a 

marker analyte. In addition experiments demonstrated that through sampling from closer 

to the source of a marker improved temporal resolution and sensitivity are achieved.  

Various MD unit designs were studied for their effectiveness in reducing the salt 

content in samples. An effective fiber length was determined to be 3.5cm, which 

provided a good compromise between salt removal capability and impact on response 

time. At this length the MD unit provided over an order of magnitude reduction in sample 

salt content while increasing response time by mere seconds. The theory governing the 

mass transfer of salts out of samples and into the dialysis buffer accurately predicts the 

MD unit’s performance. In accordance with the experimental results, the theoretical 

model showed that MD fiber length was the variable which allowed for the most 

improvement in the MD unit’s performance. Experimentally, varying sample flow rate 

showed inconsistent results and the buffer flow rate, in agreement with the theoretical 

analysis, had no effect on MD unit performance. It was ultimately beneficial that flow 

rate had little effect on MD performance since nano-ESI ionization performance is 

heavily affected by sample flow rate.  
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Samples with Cyt-C in high salt solutions and cell culture media were analyzed via 

MS using in-line MD-nano-ESI. The MD step allowed for the detection of Cyt-C using 

nano-ESI. Previous experiments with no MD step demonstrated that Cyt-C was either 

masked by the high salt solutions or the solutions repeatedly created clogs at the emitter 

tip. The in-line MD step allowed for the continuous analysis of samples from within cell 

culture media, maintain a clog free emitter for an indefinite amount of time with a steady 

signal. It was also determined that a low pressure cross flow of nebulizer gas across the 

emitter tip increased peak intensity, removed background noise spectra, and stabilized 

MS signal. It is believed that the nebulizer gas improved droplet desolvation at the tip of 

the nano-ESI emitter, which provided increased ionization efficiency. 

A set of experimental variables were determined for in-line MD-nano-ESI analysis 

of biomolecules in cell culture media. The counter-flow dialysis buffer was determined to 

be 1% acetic acid at a flow rate of 150 µL/min, and a sample flow rate of 30 µL/hr 

provided stable nano-ESI spray MS analysis. A nano-ESI MS emitter with a 75 µm ID 

and 15 µm tip ID was determined to provide consistent results, and the larger tip ID 

minimized clogging while maintaining the benefits of working in the nano-ESI regime.  

Table 4.1 summarizes the design parameters for MD nano-ESI.  

 

Table 4.1. Final design parameters for MD-nano-ESI MS. 

Design Parameters 

 
MD Fiber Length 3.5 cm 

 
Dialysis Buffer 1% Acetic Acid 

 
Dialysis Buffer Flow Rate 150 µL/min 

 
Emitter 360 µm OD, 75 µm ID, 15 µm Tip ID 
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 The MD-nano-ESI device was stationed in front of the MS, so that the emitter tip 

was within 1mm of the MS capillary cathode.  The MS was set to positive ion mode and 

the appropriate MS settings are summarized in Table 4.1. 

 

 Table 4.2. Final experimental MS settings.  

MS Settings 

End Plate Offset 0V 

Capillary -1300 V 

Nebulizer 0.2 bar 

Dry Gas 1.5 l/min 

Dry Temp 160° C 

Capillary Exit 300 V 

Skimmer 1 50.0 V 

Hexapole 1 23.0 V 

Hexapole RF 600.0 Vpp 

Skimmer 2 23.0 V 

Lens 1 Transfer 113.0 μs 

Lens 1 Pre Puls Storage 2.0 μs 

 

  

The goal of the research was to develop a probe that could be imbedded into cell 

cultures and actively monitor changes in chemical biomarker levels over time, and 

examine spatial concentration gradients. The problem of analyzing biological samples 

with little manipulation was solved by incorporating the MD unit in-line with nano-ESI. 

The probe’s capability to sample and analyze biomolecules from within porous cell 

culture matrix was examined by the use of model cell cultures and creating a model 

injury.  

First, samples were examined in a 0.6% agarose matrix, which replicated physical 

properties of porosity and tortuosity of the brain. Small volume injections of Cyt-C were 

introduced into the system to recreate a localized release of a marker in a cell culture. 

Sampling probes were placed either adjacent or downstream to the injection capillary. 

The experimental results showed that sampling and analyzing using MD-nano-ESI from a 

probe imbedded within cell culture matrix was possible. In addition, noticeable 
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differences were observed when different concentrations and probe placements were 

examined.  

Similar results were obtained with the adjacent probe injury model at the two 

different Cyt-C concentrations. For both the 30 µM and 5µM injections, a delay of less 

than 30 seconds was encountered post injection. Most of this delay can be accounted for 

by the volume of the probe and MD-nano-ESI system. When the sampling probe was 

placed downstream by 1.4mm the experiment with the 30 µM Cyt-C injection showed a 

delay of 72 seconds before the first signs of Cyt-C was detected by the mass spec. With 

the 5 µM Cyt-C injection at the same offset probe position, the mass spec was not able to 

detect any Cyt-C.  

A theoretical model describing the effects of transient diffusion and advection of 

small molecules injected into a porous media was developed. The results of the model are 

in agreement with the experimental results of the adjacent probe placement. For the offset 

probe experiment of the 30 µM sample, experimental results showed detection quicker 

than the theoretical results predicted. Dye  injection experiments had demonstrated that 

the transport of molecules through the porous media does not exactly follow the 

theoretical results. Factors such as air bubbles and non-homogeneous transport through 

the porous media were not taken into account in the model. Though it can be concluded 

that the model is too simple to accurately predict the transport of Cyt-C through porous 

media, it can provide useful insight. The theoretical model did accurately predict that the 

5 µM Cyt-C injection would not be detectable by the mass spec at any time point. The 

maximum concentration with the probe at 1.4mm downstream was still too low for the 

mass spec to detect at the given sampling conditions. The theoretical analysis provided a 

basic understanding of the transport of Cyt-C through a porous matrix but a more 

involved model is necessary in order to predict the transport of molecules in the cell 

culture model with better detail and accuracy.  
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In addition to using agarose, a more biologically relevant and complex matrix of 

Matrigel was plated into the chamber and Cyt-C was injected and sampled. Matrigel has 

similar properties of porosity and tortuosity as agarose, but it also includes biological 

extracellular components such as laminin, collagen, and entactin. In addition, it also 

contains growth factors to promote cell growth in a 3-D culture. The sampling probe was 

placed adjacent to the injection capillary, and analyzed using MD-nano-ESI MS. Cyt-C 

was successfully detected by the MS. Although Cyt-C was detected, it was much more 

difficult to maintain a steady MS signal and there was more background noise and signal 

masking when sampling from Matrigel.  

Mixed 3-D neural cell cultures were plated in the chambers with the sampling 

probe. Cell cultures were examined to determine whether the probe or sampling from the 

probe caused any adverse effects to the cells. For both cultures that were sampled and not 

sampled from, there was no significant difference from control chambers which 

contained no probe and had undergone no perfusion. In addition it was shown that 

coupling in-line MD-nano-ESI MS allowed the detection of Cyt-C from within mixed 3-

D neural cultures.   

Ultimately the results reported in this thesis shows promise for further developing 

and optimizing the sampling probe for in-line MD-nano-ESI MS analysis of cell cultures. 

As samples progressively became more complex, the analysis became increasingly more 

difficult. Emitter clogging, inconsistent signal, analyte masking, and background noise 

typically plagued the analysis of biological samples, but with the incorporation of a single 

in-line MD step, analysis could effectively be conducted from within cell culture matrix. 

This system will allow researchers to actively monitor neural cell cultures during normal 

physiological activities and monitor changes during injury experiments. The probes 

ability to be placed in various positions in a chamber, allows for localized TBI studies to 

be conducted and monitor the spatial effects which occur in a culture over time. In-line 
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MD-nano-ESI MS has the potential to offer researchers unique insights into the complex 

biological processes which occur during TBI. 

  

4.2. Recommendations for Future Work 

This research has shown the method of MD-nano-ESI MS’s effectiveness to 

sample proteins within a cell culture matrix. The experiments highlighted above were 

simplified with respect to sampling from live cell cultures. The future of this method is 

dependent on being able to manipulate samples directly from in-vitro neuronal cultures 

with no off-line sample manipulation.  

First to accurately predict the transport of a marker through the porous space of a 

cell culture an improved model should be developed. A model that takes into account the 

heterogeneity of porous media and a non uniform flow rate would allow for a more 

accurate transport prediction. Also, factors such as air bubbles and actual cells should be 

accounted for in the model. Disregarding wall effects or capillary effects cannot be done 

in this new model. This would allow researchers to accurately predict what concentration 

can be expected to be sampled at the probe.  

Experiments also demonstrated that deciphering accurate information regarding 

Cyt-C concentration was not achievable in the current experimental protocol. It is 

necessary to incorporate an internal standard to the experiments. A standard at a given 

concentration with similar ionization characteristics to the marker should be introduced 

into the sample prior to ionization. This could be done with an in-line introduction of the 

standard right before the MD step. For equine heart Cyt-C, researchers have used bovine 

heart Cyt-C as an internal standard.  This would provide accurate information regarding 

marker concentration. 

One variable that could easily be manipulated is the MD unit. Various methods 

could be explored to increase the efficiency of salt removal, such as increasing the length 
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of the MD unit, and using different fiber materials to reduce the membrane resistance to 

mass transfer. Other forms of salt removal can be used such as an ultrarapid desalting 

method using a microchannel laminar flow device [56]. This device does not employ a 

dialysis membrane, but instead uses a two-layered laminar flow geometry that depends 

on the differential diffusion of macromolecular analytes and low molecular weight 

contaminants. In addition to a single MD unit, another MD unit incorporated in-line with 

a different molecular weight cut off fiber could be used to further separate 

macromolecules before analysis with the MS.  

Moving away from the multiple parts and components of the current MD unit, a 

single capillary could be used as the probe, microdialysis fiber and emitter. Hydrofluoric 

acid can be used to etch pores in the silica capillary [57] for the MD unit, and a silica 

capillary puller can be used to pull the emitter tip. This would allow for easier and 

quicker fabrication, and this would lower the total volume of the system and provide a 

quicker signal response with the MS. Another form of improving fabrication would be 

the miniaturization of the probe into a microfabricated unit. Using these manufacturing 

techniques would also increase repeatability between devices and would reduce 

experimental variability.  

The use of tandem MS (MSMS) would allow for further sample manipulation and 

analysis. The use of a quadrapole MS in-line with a TOF (Q-TOF) would allow 

researchers to filter out unwanted ions in the first MS step and analyze the rest of the ions 

in the second MS. Samples could undergo a fractionalization after the first MS, and the 

detected peaks in the second MS could be put through MS data base and software can 

search for potential proteins. This would be similar to proteomic work but with less 

sample prep work. 

Once an optimized in-line sample manipulation device is created further in vitro 

TBI experiments should be conducted. Studies should be conducted with the probe 

inserted into the culture so that continuous sampling can be conducted. A panel of 
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potential markers, similar to the ones discussed in Chapter 1, can be monitored with 

MSMS. Changes in these markers concentrations can be actively monitored from before 

injury and at specific times post injury. These recommendations should provide a 

direction for future research to improve the capabilities of the MD-nano-ESI device and 

create a better understanding of TBI.  
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APPENDIX A 

CYLINDRICAL MODEL INJURY CHAMBER ASSEMBLY 

PROTOCOL 

Machining 

1. Use a rod of extruded polycarbonate with and 1/8” ID and 3/8” OD.  

2. Cut extruded polycarbonate to a length of 1 cm. 

3. Remove any burr left on the edges of the cylinder.   

4. Drill two holes with 300µm diameters through the side of the cylinder. 

5. Remove burr from holes. 

6. Remove chips with compressed air and DI water. 

7. Dry the chambers by placing them in a 50°-70° oven for 10 minutes. 

Figure A.1(A&B) show the hole configuration for aligned and offset 

configurations.  

 

 
Figure A.1. (A) Aligned hole configuration. (B) Offset hole Configuration 
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Attaching NanoPorts 

1. Apply Quick Set (JB Weld, Sulphur Springs, TX) to the rim of a 10-32 Flat-Bottom 

NanoPort (Upchrch Scientific, Oak Harbour, WA) 

2. Attach the NanoPort to the top of the cylinder (Figure A.2) 

 

 
Figure A.2. NanoPort attached to the top of a cylinder using Quick Set 
 

3. Repeat step 1 and attach the other NanoPort to the bottom of the cylinder (Figure A.3) 

 
Figure A.3. Cylinder with two NanoPorts attached to the top and bottom of the cylinder 
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Adding Capillaries 

1. Cut 150 µm OD 50 µm ID silica capillary using diamond tip pen to a length of 10 cm. 

2. Add small dab of Quick Set to end of capillary just below the end of the silica 

capillary (Figure A.4). 

 

 
Figure A.4. Small dab of Quick set at the tip of a silica capillary 
 

3. Insert capillary into chamber until capillary end is at the midpoint of the chamber 

(Figure A.5). 
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Figure A.5. Inserted silica capillary affixed with Quick Set 

 

4. Repeat steps 1-3 and attach the silica capillary to the other drilled hole (Figure A.6) 

 

 
Figure A.6. Assembly with both capillaries affixed with Quick Set. 
 

5. Allow Quick Set to cure for 30 minutes. 
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6. Plug one of the NanoPorts and attach a syringe pump with DI water and check for 

leaks. 
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APPENDIX B 

PLANAR MODEL INJURY CHAMBER ASSEMBLY PROTOCOL 

 

Machining: 

8. Use clear polycarbonate  

9. Machine the bottom of the planar chamber according to Figure B.1. 

 

 
Figure B.1. Dimensions for the bottom of the chamber 

 

10. Machine the top of the planar chamber according to Figure B.2 

 

 
Figure B.2. Dimensions for the top of the chamber 

 

11. Remove any burr left on the edges after machining. 
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12. Remove chips with compressed air and DI water. 

13. Dry the chambers by placing them in a 50°-70° oven for 10 minutes. 

Chamber Assembly 

4. Apply a thin layer of SYLGARD 186 silicone elastomer (Dow Corning, Midland, MI) 

to the highlighted surface in Figure B.3. 

 

 

Figure B.3. Highlighted surface of the bottom part to apply thin layer of SYLGARD 186.  

 

5. Align top of chamber with the bottom part and press together Figure B.4. 

 

 
Figure B.4. Top and bottom assembly with all four sides aligned and pressed together.  
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6. Clamp top and bottom assembly together with a binder clip and place into a 70°C oven 

for 10 minutes.  

7. Add a 10-32 Flat-Bottom NanoPort to the top of the assembly with Quick Set (Figure 

B.5). 

 

  
Figure B.5.  Nanoport affixed to the top of the chamber with Quick Set.  
 

8. Cut 150 µm OD 50 µm ID silica capillary using diamond tip pen to a length of 10 cm 

(2x). 

9. Apply Quick Set to each capillary just below the end Figure A.4 and insert each 10cm 

capillary into a side hole (Figure B.6) 
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Figure B.6. Assembly with silica capillaries inserted into the sides.  
 

10. Cut 150 µm OD 50 µm ID silica capillary using diamond tip pen to a length of 5 cm 

and insert into the bottom hole (Figure B.7). 

 

 
Figure B.7. Inserted silica capillary affixed with Quick Set into the bottom hole. 
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