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SUMMARY 

  

This thesis seeks to examine the effective convective heat exchange of sand as a 

heat exchange medium.  The goal of this exploratory research is to quantify the heat 

transfer coefficient of sand in a proposed Thermal Energy Storage (TES) system which 

intends to complement solar thermal power generation.  Standard concentrator solar 

thermal power plants typically employ a heat transfer fluid (HTF) that is heated in the 

collector field then routed to the power generators or TES unit.  A fairly clear option for a 

TES system would be to utilize the existing HTF as the working storage medium. 

 However, the use of conventional HTF systems may be too expensive.  These fluids are 

quite costly as the quantity needed for storage is high and for some fluids their associated 

high vapor pressures require expensive highly reinforced containment vessels.  The 

proposed storage system seeks to use sand as the storage medium; greatly reducing the 

expenses involved for both medium and storage costs.  Most prior TES designs using 

sand or other solids employed them in a fixed bed for thermal exchange.  The proposed 

TES system will instead move the sand to drive a counter flow thermal exchange.  This 

counter flow design allows for a much closer temperature of approach when compared to 

a fixed bed.  As cost and performance are the primary goals to tackle of the proposed 

system, the evaluation of the sand’s thermal exchange effectiveness in a flowing state is 

necessary.  Experiments will be conducted to measure the effective heat transfer 

coefficient between the sand and representative solid surfaces used as the heat transfer 

conduits.  Additional experiments that will be looked at are wear caused by the sand as a 

consideration for long term design viability as well as angle of repose of the sand and its 
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effect on scoop design for improved materials handling.  Key investigational aspects of 

these experiments involve the sand grain size as well as shape of the heat exchanger 

surfaces.  The thesis will evaluate the resulting convective heat transfer coefficient of the 

sand as related to these features.  The data will then be compared and verified with 

available literature of previously studied characteristic thermal properties of sand.  The 

measured and confirmed data will then be used to further aid in a design model for the 

proposed TES system.   



 

1 

CHAPTER 1 

INTRODUCTION 

 

The following thesis covers the results of exploratory research on a proposed 

Thermal Energy Storage (TES) system which intends to complement solar thermal power 

generation.  Specifically the focus of this paper is the evaluation of the heat transfer 

performance of sand as suitable thermal storage medium.  Standard concentrator solar 

thermal power plants typically employ a heat transfer fluid (HTF) that is heated in the 

collector field then routed to the power generators or TES unit.  A fairly clear option for a 

TES system would be to utilize the existing HTF as the working storage medium.  Using 

conventional HTF’s comes with some unfortunately stiff economic drawbacks.  These 

fluids are quite costly as quantities needed for storage are high and their associated high 

vapor pressures require expensive highly reinforced storage facilities.  The proposed 

storage system seeks to use sand as the storage medium; greatly reducing the expenses 

involved for both medium and storage costs.  TES designs using sand or other solids in a 

fixed or non-kinetic medium state for thermal exchange suffer significant losses due to 

charge/discharge temperature drops.  The proposed TES system will instead move the 

sand to drive a general counter flow thermal exchange.  This counter flow design allows 

for a much closer temperature of approach as compared to a fixed bed.  As cost and 

performance are the primary goals to tackle of the proposed system, the evaluation of the 

sand’s thermal exchange effectiveness in a flowing state is necessary.  Ongoing 

experiments are being conducted to measure the effective heat transfer coefficient 

between the sand and representative solid surfaces used as the heat transfer conduits.  
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Key investigational aspects of these experiments involve the sand grain size as well as 

shape of the thermal exchanger conduits.   

Thermal Energy Storage Concept 

Heat transfer to flowing particulates such as sand is not commonly encountered in 

thermal engineering applications.  Nevertheless, one emerging interest is that sand could 

be used as the storage medium in a proposed thermal energy storage system.  The 

proposed TES will be incorporated into an overall concentrator solar power (CSP) 

system.  In operation, a conventional heat transfer fluid is heated in the collectors. This 

heat must then be transferred to and from sand acting as the storage medium.  The overall 

TES design concept, illustrated in Figure 1.1 for the heat storage process, is to utilize a 

very inexpensive and benign storage medium, specifically ordinary silica sand or similar 

fine grained material.  In operation, the sand is transported between separate insulated 

storage containers as the sand is heated and then the transport is reversed as stored heat is 

recovered from the sand.  For a typical CSP trough system, the hot HTF from the solar 

field is around 370 C (700 F), and the fluid is typically returned at temperature around 

270 C (520 F).  In such an energy storage system, one container would contain only 

moderately warm sand close to 270 C that is available to be heated and store energy, and 

the other would contain the hot sand at around 370 C after it has been heated with HTF 

from the solar field to store energy. 
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Figure 1.1 Conceptual Design of the Proposed TES System 

Shows during heat storage with high and low temperature containers connected by Sand 

Shifter heat exchanger/conveyor. 

The Sand Shifter 

The HTF will both heat sand for storage during solar energy collection and 

recover heat from storage.  Obviously, heat exchange is needed in any such indirect TES 

concept, in which different heat collection and storage media are used.  The innovative 

enabling technology in this system is the combined sand conveyor and heat exchanger 

identified by our development team as the Sand Shifter. 

The shifter moves the sand and HTF, in this case oil, in overall counterflow as 

heat is exchanged. The Sand Shifter itself is an innovative design that combines the 

functions of conveying sand and exchanging heat in one device.  This system is currently 
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the subject of intellectual property applications, so its details will not be disclosed at 

present.  Nevertheless, to understand the overall system and the engineering issues, it is 

only necessary to understand the general operation of the device.  In the Sand Shifter, 

sand will be moved longitudinally between high and low temperature storage containers 

while the sand is simultaneously lifted and poured over finned tubes (or other metal 

conduits) that contain the counter-flowing HTF.  The primary issue in this design is the 

performance of the heat exchange process between the flowing sand and metal surfaces.  

The achievable heat flux density largely dictates the overall sizing of the sand shifter and, 

as a result, its economic feasibility.  The remainder of this thesis addresses some 

preliminary measurements of the coefficient of heat transfer between flowing sand and a 

heat exchange surface. 
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CHAPTER 2 

LITERATURE REVIEW 

   

When looking at current literature on particle interaction there are several subsets 

of interest: fluidized bed heat transfer, heat transfer in an immobile bed of particles, 

particle flow, and heat transfer in a moving bed of particles.  Because convection from 

the gas to the particle plays a much higher role in a fluidized bed it would be expected 

that these would have little relevance to the current project, however, there are a number 

of papers modeling the heat transfer between particle-particle and particle-surface 

interactions [1-3].  These mostly use a kinetic/collision theory approach to determine the 

heat transfer.  The papers on immobile beds focus on the effective conductivity of the 

particles using thermal particle dynamics (TPD) [4-6].  The particle flow papers can be 

broken up into two different types, kinetic theory based flow for low particle density 

(falling particles/fluidized beds) [7] and shear based flow for denser particle flow [8-9].  

The heat transfer in a moving bed of particles can be further broken up into heat transfer 

in a rotary vessel using discrete element method (DEM) modeling [6,10-11] which are 

numerical methods for computing the motion of a large number of individual particles on 

the  micrometre-scale and above.  The remaining set are direct experiment based heat 

transfer models for a moving bed of particles [12-18]. 

Particle Interaction 

 Süle et. al. [1] used a population balance model which takes into account the 

particle-particle and particle-wall collisions to describe heat transfer processes in fluid-

solid systems and employs a compartment model to describe the spatial distribution of 

http://en.wikipedia.org/wiki/Numerical_analysis
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the temperature in a back-flow model.  Both the particle-particle and particle-wall heat 

transfer are modeled by collisions with random parameters.  The results of this showed 

that the intensity of inter-particle collisions play a significant role in reducing the 

temperature dispersion of particles, while increasing fluid-particle heat acts inversely.  In 

Sun et. al.’s [2] investigation, the particle impact heat conduction through time varying 

contact area during impact was examined for the purpose of quantizing the direct 

conductive contribution of heat transfer between particles and surfaces in suspension 

flow and fluidized beds.  Sun et. al. found that this heat transfer mechanism does not 

appear to be dominant in fluidized bed under typical conditions.  Natale et. al. [3] report 

experimental results on the heat transfer between a fluidized bed of fine particles and a 

submerged surface.  Their results show that the heat transfer coefficient increases with 

particle Archimedes number and is almost independent from particle thermal 

conductivity for Kp/Kg>30.  

Thermal Particle Dynamics 

Vargas, et. al. [4] investigated the heat conduction in a packed bed of cylinders 

both experimentally and computationally using the discrete element method.  By 

explicitly modeling individual particles within the bulk material, bed heterogeneities are 

directly included and dynamic temperature distributions are obtained at the particle level.  

They found that stress chains in a particle bed tended to augment heat flow along a 

particular axis while hampering heat transfer perpendicular to that axis.  Vargas, et. al. [5] 

also extended the numerical technique and the thermal particle dynamics method to study 

heat conduction in granular media in the presence of stagnant interstitial fluids.  Vargas, 

et. al.  determined when Kp/Kf>>1, TPD provides good qualitative and quantitative 

agreement between measured and calculated values of the effective conductivity for a 

wide variety of materials and for packed beds at different loads in the presence of both 
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liquid and/or gases.  Furthermore, Vargas-Escobar’s [6] thesis addresses heat conduction 

in granular systems both under static and slow flow conditions with and without the 

presence of a stagnant interstitial fluid using the TPD method.  For a rotating drum flow, 

Vargas distinguished the mechanisms by which the heat transport process takes place: at 

low shear rates (small mixing factor), conduction through particle contacts dominates due 

to lasting contacts; as the shear rate increases (larger mixing factor), convective mixing 

caused by an increased granular temperature enhances the transport of heat and therefore 

the effective conductivity increases proportionally.  The latter analysis also included 

DEM modeling.  

Particle Flow 

Lun, et. al. [7] studied the flow of granular material using statistical methods 

analogous to those used in the kinetic theory of gases.  Two theories were developed: one 

for the Couette flow of particles having arbitrary coefficients of restitution (inelastic 

particles) and a second for the general flow of particles with coefficients of restitution 

near 1 (slightly inelastic particles).  Approaching from a different angle using a dense 

particle arrangement, Thompson, et. al. [8] described molecular-dynamics simulations of 

non-cohesive granular assemblies under shear.  Low shear rates exhibit stick-slip 

dynamics, while steady-state motion occurs at larger shear rates with a static and a 

flowing layer.  Also for dense particle flow, Baxter, et. al. [9] described dynamic 

measurements of the stress obtained during a sand flow.  The data showed a large noise 

component. 
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Discrete Element Method Modeling 

Shi, et. al. [10] employed a computational technique that couples the DEM, 

computational fluid dynamics (CFD), and heat transfer calculations to simulate realistic 

heat transfer in a rotary kiln.  They found that at low particle conductivities, the heat 

transfer is dominated by gas–solid conduction; however, at higher particle conductivities 

solid–solid conduction plays a more important role.  This is similar to the results found in 

Vargas’s work.  Chaudhuri, et. al. [11] used the discrete element model to simulate the 

dynamic behavior of cohesive and non-cohesive powder in a rotating drum (calciner) and 

double cone (impregnator).  The granular material was considered as a collection of 

frictional inelastic spherical particles.  Each particle was able to interact with its 

neighbors or with the boundary only at contact points through normal and tangential 

forces.  The model simulated flow, mixing, and heat transport in granular flow systems 

for the rotary calciners and impregnators.  Their simulations showed that as rotation 

speed decreases, both heat transfer and temperature uniformity of the granular bed for 

both calciner and impregnator increase. 

Heat Transfer in Moving Bed of Particles 

Molerus [12] reported that the contact resistance for the heat transfer between 

adjacent particles was the limiting factor for heat transfer in moving beds of particles 

consisting of rather hard solid materials and filled with a stagnant interstitial gas.  Brinn, 

et. al. [13] measured slug flow of sand flowing through a pipe.  They found better heat 

transfer coefficients in smaller inner diameter pipes with increased flow rate, further 

improving the heat transfer.  The heat transfer coefficient for slug flow in the pipe cases 

were found to range between 40~120 W/m
2
-K.  The overall purpose of the experiments 
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was to create a theoretical model of the heat transfer mechanics of the pipe flow.  

Measurements done by Denloye, et. al. [14] noted that the flowing packed bed to surface 

heat transfer coefficient increases with decreasing residence time, decreasing particle 

size, and increasing gas thermal conductivity.  Regarding the residence time, they 

indicated the increase in heat transfer coefficient was more pronounced for smaller 

particles.  In the experiments using air/sand, Denloye, et. al. (1977) measured maximum 

heat transfer coefficients of ~125 W/m
2
-K for 2370 µm sand, ~310 W/m

2
-K for 590 µm 

sand, and ~475 W/m
2
-K for 160 µm sand.  Hyde, et. al. [15] measured a range of 

materials heat transfer coefficients using a fluidized bed.  Bubbling air through sand they 

measured ~300 W/m
2
-K for 560 µm sand, ~360 W/m

2
-K for 450 µm sand, ~405 W/m

2
-K 

for 295 µm sand, and ~450 W/m
2
-K for 225 µm sand.  Determination of heat transfer 

between the fluidized bed and the heating or cooling elements submerged in the bed was 

carried out by calculating the maximum heat transfer between a sphere and a wall under 

brief contact, as well as taking into account the addition of the void fraction of the 

stationary packing and bed expansion.  Patton, et. al. [16] proposed a model relating the 

Nusselt number to a Péclet number and a Froude number.  The predicted results of the 

model were compared with the experimental data from heat transfer over a flat plate.  The 

experimental model was able to estimate a heat transfer coefficient for the flowing sand 

over a surface using a well-defined set of parameters.  Another report by Babcock and 

Wilcox in 1981 [17] looked into a range of TES options including sand.  They predicted 

based on Denloye, et. al.’s (1977) work that with a moving bed of fine grained sand they 

would achieve a heat transfer coefficient on their charging heat transfer elements for 

steam to the sand of ~930-1160 W/m
2
-K and a coefficient of ~803-1308 W/m

2
-K on the 
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discharge side.  Green, et. al. [18] did further exploration into thermal energy exchange 

systems and using a shell and tube design reported an expected heat transfer coefficient 

of ~1470 W/m
2
-K for the sand side in that configuration.  This result, though, was based 

in part from the flowing sand predictions in the Babcock and Wilcox (1981) report.  The 

range of heat transfer coefficients from the various pieces of literature have been 

tabulated below in Table 2.1.   

 

Table 2.1 Heat Transfer Coefficients for Moving Sand Reported in Literature 

Authors Description Heat Transfer Coefficients 

Brinn, et. al. (1948) Slug flow of sand in pipes. 40~120 W/m
2
-K 

Denloye, et. al. (1977) Packed bed flow over heated 

surface. 

125 W/m
2
-K~475 W/m

2
-K 

Sand: 2370 µm-160 µm 

Hyde, et. al. (1980) Heat transfer for air/sand 

fluidized bed. 

300 W/m
2
-K~450 W/m

2
-K 

Sand: 560 µm-225 µm 

Patton, et. al. (1986) Heat transfer model for 

flowing granular material. 

Olivine: 550~890 W/m
2
-K 

Silica:  290~650 W/m
2
-K 

Babcock and Wilcox 

(1981) 

Steam to flowing bed of sand 

heat exchanger. 

Charge: 930~1160 W/m
2
-K 

Discharge: 800~1310 W/m
2
-K 

Green, et. al. (1986) Shell and tube heat exchanger 

using air and sand 

~1470 W/m
2
-K 
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Heat Transfer Model 

Examination of the literature reveals a few important details, the computational 

particle interaction or DEM models while useful in understanding the heat transfer 

mechanics were limited and unwieldy for comparative purposes.  Furthermore there is a 

large range of empirical results for moving beds of particles, each with their own set of 

contingent conditions.  It is therefore prudent to experimentally verify the heat transfer 

coefficient for the intended conditions.  Of the literature on particulate flow, Patton et. 

al.’s [16] results based on flow over a plate were the best match for a comparative model 

analysis with the Sand Shifter’s flow concept.  Patton’s model is noted in Appendix A.  

The convective heat transfer coefficient of flowing sand was modeled in Engineering 

Equation Solver (EES) [19] based on the relations found in Patton, J. S., et. al.(1986) [16] 

to compare it to the convective heat transfer coefficient determined experimentally.  The 

heat transfer coefficient was determined for two types of sand.  Olivine sand was 

experimentally measured (Appendix B) to have a mean diameter of 78 µm with a 

standard deviation 30 µm.  Silica sand was measured to have a mean diameter of 0.55 

mm with a standard deviation of 0.32 mm.  The conductivity, heat capacity, and density 

were obtained from the EES materials property package and the properties were assumed 

to be similar for both olivine and silica with olivine slightly denser.  The velocity of the 

sand layer was estimated to be between 0.15~0.3 m/s, the thickness of the layer to be 0.4 

mm to 2 mm, and the packing ratio between 0.2 and 0.42.  Using these parameters, the 

convective heat transfer coefficient was estimated to be between 550~890 W/m
2
-K for 

the olivine and 290~650 W/m
2
-K for the silica.  The flat surface experimental results, 

found in this paper, of ~550-900 W/m
2
-K for olivine and ~200-400 W/m

2
-K for Silica 
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fall within or near the models predicted range.  These values also were near those found 

in Denloye, et. al.’s [14] packed bed of flowing sand measurements and Hyde, et. al.’s 

[15] fluidized bed measurements.  Of the factors that affect the heat transfer, particle size 

had the dominant effect on the heat transfer coefficient, followed by velocity, and finally 

the layer thickness and packing ratio.  On the higher range of reported results, Babcock 

and Wilcox in 1981 [17] indicated an expected heat transfer coefficient, on their charging 

heat transfer elements, of ~930-1160 W/m
2
-K using a moving bed of sand.  The sand 

utilized in Babcock and Wilcox report had a grain size of 44-77 µm, a packing ratio of 

0.40, and a sand velocity ~0.15-0.3 m/s, which is right around the range of the olivine 

sand of the current experiment.  Their results and those of Green, et. at. [18] suggest 

possibility for higher effective thermal transfer through the shape of the transfer surface.  

Furthermore Muchowski [20] and Wunschmann, et. al. [21] reported that vibrating the 

vessel could yield a small improvement in the heat transfer coefficient for a particulate 

such as sand.  These studies indicated that small vibrations had a positive effect on the 

heat transfer coefficients (an enhancing effect was observed) but the trend did not 

continue at large vibrational accelerations.  Another important side effect of vibration is 

that it allowed sand to flow on much shallower slopes, allowing the angle of repose limit 

for natural gravity driven flow, covered in Chapter 5, to be circumvented. 
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CHAPTER 3 

FLAT PLATE HEAT TRANSFER EXPERIMENT 

  

Since heat transfer to flowing sand is not a familiar process, a preliminary, almost 

expedient, scoping experiment was conducted.  This preliminary investigation of the heat 

transfer coefficient, defined in Equation (1), was conducted for two candidate materials, 

olivine and silica sands.  Olivine was chosen for its established good performance in 

some foundry sands.  As quantified by Equation (1), the overall experimental concept 

was to determine the heat transfer coefficient from measurements of the temperature of 

the free stream flowing sand and the temperature of the heat transfer surface, which is 

heated with a known power input.  

Flat Plate Setup 

The preliminary setup used an inclined flat surface.  The heat source was a flat 

plate electric heater 152 mm x 152 mm square mounted beneath an aluminum heat 

transfer plate.  Both flat plates and plates with square fins machined into the surface were 

studied. The fins were 3.18 mm (1/8 inch) high by 3.18 mm wide with 3.18 mm spacing.  

As shown in Figure 3.1, the aluminum heat exchange plates were placed on the heater 

plate.  This assembly was inset into insulating board to prevent heat leaks, leaving only 

the upper surface of the aluminum plate exposed.  A 3 x 3 evenly spaced grid of T-type 

thermocouples were then placed in small diameter shallow holes which were drilled into 

the aluminum plate and secured in place with a small amount of thermal cement.  The 

surface temperature measurements were averaged to characterize the plate temperature 

(Tp).  A large storage bin for sand with a dispenser nozzle at the bottom was placed above 
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the plate.  Gravity, assisted by vibration, allowed the sand to easily flow from the bin 

over the heated surface.  A thermocouple placed in the flowing sand just upstream of the 

dispenser measured the free stream temperature of the sand.  With the hot plate operating 

at a known electrical power input, measurements of the temperature of the plate surface 

and the incoming sand were taken, while a visual estimate of the contacted area (i.e. the 

portion of exposed surface covered by sand) of the flow over the plate was made.  The 

“contacted” area of the flat plate was taken to be between 95-99% with only the top 

corners left uncovered.  For the finned plate, the contacted area was seen to exclude the 

bottom third of the tops of the finned surface due to insufficient sand submersion.  

Intentionally this was a conservative estimate that should not exaggerate the heat transfer 

coefficient.  The heat transfer coefficient was then calculated as follows: 

 
)( spc

in

s
TTA

W
h





  (1)   

Here the heat transfer coefficient of sand is represented by hs, in

.

W is the electrical power 

(W) input, Ac is the area (m²) contacted by the sand, Tp is the plate temperature (K) 

measured by the embedded thermocouples, and Ts is the free stream sand temperature (K) 

measured by the upstream thermocouple. 

Flat Plate Measurements 

This apparatus and method was applied to both silica and olivine sands and 

repeated for both flat and simple square finned plate designs.  
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Figure 3.1 Preliminary Heat Exchange Experiment for Flow over Heated Flat Plate  

Sand is flowing from nozzle over the plate. 

 

Figure 3.1 shows sand flowing over a heated instrumented plate in one of our 

earliest experiments. As seen in the photo, the sand from the hopper is dispensed over the 

heated plate.  Measurements of the plate surface and sand free stream temperatures were 

taken when the system reached a steady state, i.e. approximately constant temperature 

difference. 

More than 30 experiments of various combinations and configurations were run. 

The convection coefficient varied with plate temperature and contacted area, so it was 

difficult to assign a specific value to each type of sand.  However, olivine sand appears to 

have a higher convection coefficient than silica sand.  The ranges of measured heat 

transfer coefficients are given in Table 3.1. 
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Table 3.1 Heat Transfer Coefficients for Sand Types and Configurations 

Configuration Sand Type Heat Transfer Coefficient (W/m²-K) 

Flat Silica 310-400 

Finned Silica 212-405 

Flat Olivine 550-925 

Finned Olivine 375-635 

 

It was somewhat surprising to see that sand flowing over a flat plate shows a 

higher convection coefficient than that flowing over a finned plate, even after a correction 

for the contact area. It appears this shortcoming was a failure of the sand to continuously 

submerge all the fin surfaces as shown in Figure 3.2.   

 

 

Figure 3.2 Sand Flow on Square Finned Surface 

Note the sand rarely has contact with the tips of the fins. 
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While this apparatus was helpful for screening experiments, it had several severe 

shortcomings:  (1) The test articles were effectively limited to simple flat plates which 

were not representative of the finned tubes that might be used in practice.  (2) The test 

could only be run continuously with great effort because the reservoir had to  be refilled 

manually.  (3) The test could not be run for long periods over a range of temperatures. 

These shortcomings were resolved by the development of the continuous drum device 

described in chapter 6.   
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CHAPTER 4 

SAND EROSION TRIALS 

    

 The purpose of the sand erosion trials was to examine the wear effect of different 

types of sand on the primary interface portion of the heat exchange tubing.  The 

experiment evaluated the wear of the sand on the heat exchange tubing through mass 

loss.   This was done through employing a rotating tumbler with internal scoops angled to 

pour the sand over the tubing thus subjecting it to continuous exposure.  Through 

periodic measurements of the tube and fin assembly mass, a loss rate associated to the 

sand wear on the heat exchange tubing could be estimated.   

Setup and Methodology 

The major equipment for the sand exposure experiment included a re-sealable 

plastic container, a 12V DC motor to rotate the container, and an aluminum base plate to 

mate the container to the motor’s drive shaft.  The container was a 4.4 liter re-sealable 

plastic bowl.  To direct sand flow in the container as it was rotated pouring sand over the 

test piece, fins made of aluminum edging were cut.  These fins were then attached to the 

inside of the container using rivets.  When rotated, this ensured continuous sand flow 

over the heat exchange tubing.  For the drive to the rotate the container, a 12V DC motor 

was employed and mounted to a secure support.  The motor ran at 12-15 rpm to maintain 

constant sand flow over the finned tube in the container.  The setup had the sand falling 

on the test article as being between ~0.5-0.7 m/s according to gravity calculations. 

Joining the container to the drive shaft was a rigid coupling secured by lead screws.  The 

end of the coupling was welded to a circular aluminum base plate.  The base plate had 
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three equidistance screw holes through which the plastic container was secured to the 

base.  The test piece was next weighed with  a precision of +/-0.001g to determine the 

base mass.  To mount the test piece, a hole was drilled in the center of the container lid to 

a diameter just less than the diameter of the heat exchange tubing.  The tube end was then 

forced through the hole ensuring a very snug seal as well as holding the test piece rigid.  

Sand was then added to the container and the lid reapplied and sealed.  The motor was 

then activated, with the rotation of the internal aluminum fins to ensure continual sand 

flow over the test piece.  Periodically the assembly would be stopped and the test piece 

removed for weighing to the nearest 1 mg.  The test piece would then be returned to the 

container and the device run again.  The following Figure 4.1 shows a view of the erosion 

assembly with the lid removed. 

 

 

Figure 4.1 Sand Erosion Assembly 
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Wear Measurements 

 The following tables contain the mass measurement data for the aluminum fin 

trial and the ongoing data for the steel fin trial.  From this table, a wear rate by sand type 

can be estimated.  The measured results of the aluminum fin trial can be found in Table 

4.1. 

 

Table 4.1 Aluminum Finned Copper Tube Trial Data, Silica Sand 

Silica Sand Erosion Trial  Continuous sand exposure   

         

 Short Aluminum Finned Copper Tube 0.0417 % mass loss a day 

    Scale 1 +/- 0.001g     Scale 2 +/- 0.1g   

Date (Days) mass(g)  Rate(g/day) mass(g)   

3/18/2009 0 102.365    102.9   

         

3/19/2009 1 102.249  0.11600  102.8   

         

3/27/2009 9 101.860  0.05611  102.4   

         

3/31/2009 13 101.810  0.04269  102.3   

 

Even with a conservative rate of 0.04% loss per day.  The subject tubing would lose 1% 

of its total mass after less than a month of continuous exposure.  Visual inspection also 

revealed a significant degree of apparent wear.  As a result a more durable steel finned 

copper tube would be tested.  
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Table 4.2 Steel Finned Copper Tube Trial Data, Silica Sand 

Silica Sand Erosion Trial  Continuous sand exposure   

         

 Short Steel Finned Copper Tube  0.0037 % mass loss a day 

  Scale 1 +/- 0.001g   Scale 2 +/- 0.1g  

Date (Days) mass(g)  Rate(g/day) mass(g)   

5/8/2009 0 70.027    70.4   

         

5/12/2009 4 69.993  0.00850  70.4   

         

5/22/2009 14 69.984  0.00307  70.4   

         

6/4/2009 27 69.951  0.00281  70.3   

         

6/16/2009 39 69.939  0.00226  70.3   

         

6/22/2009 45 69.926  0.00224  70.3   

         

6/29/2009 52 69.922  0.00202  70.3   

         

7/9/2009 62 69.894  0.00215  70.3   

         

7/29/2009 82 69.813  0.00261  70.3   

 

The copper tube steel finned had a far lower loss rate as seen in Table 4.2.  At 0.0037% 

mass loss a day it would take about 9 months of continuous exposure to lose 1% of its 

total mass.  In addition, the steel plating displayed significantly less visual wear than the 

aluminum. 

 Due to its promising convection values, further examination of the olivine sand 

characteristics was needed.  One of the key factors to investigate was what kind of wear 

rate would the olivine have compared to the silica on the steel fins.   To do this the same 

format and assembly of a tumbler was made for the olivine erosion trial.    
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Table 4.3 Steel Finned Copper Tube Trial Data, Olivine Sand 

Olivine Sand Erosion Trial  Continuous sand exposure   

         

 Short Steel Finned Copper Tube  -0.0012 % mass loss a day 

    Scale 1 +/- 0.001g     Scale 2 +/- 0.1g   

Date (Days) mass(g)  Rate(g/day) mass(g)   

6/16/2009 0 59.413    59.8   

         

6/22/2009 6 59.548  -0.02250  59.8   

  (could not get all the sand dust off)     

6/29/2009 13 59.414  -0.00008  59.8   

         

7/9/2009 23 59.430  -0.00074  59.8   

         

7/29/2009 43 59.449  -0.00084  59.8   

 

The results in Table 4.3 for the next olivine trial indicated a small increase in measured 

weight.  This was likely due to a difficulty of fully cleaning the fine olivine sand particles 

off the test piece.  Even with extensive cleaning, the part with a high pressure air hose the 

mass measurement indicated a small gain.  It should be noted though that this piece 

demonstrated no visual erosionwear even after 43 days of continuous running. 

 Further erosion tests using both olivine and silica sand were conducted on steel 

tube and fin assemblies.  These were done in the same fashion as earlier trials, with initial 

masses taken and the tubes subjected to the constant pouring of sand in the tumbler.  The 

masses were recorded periodically for determining a wear rate. 
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Table 4.4 Steel Finned Steel Tube Trial Data, Silica Sand 

Silica Sand Erosion Trial  Continuous sand exposure 

       

 Steel Finned Steel Tube 0.0004 % mass loss a day 

    Scale 1 +/- 0.001g      

Date (Days) mass(g)  Rate(g/day)  

9/23/2009 0 152.005     

       

10/5/2009 12 151.992  0.00108   

       

10/6/2009 13 151.985  0.00154   

       

10/16/2009 23 151.981  0.00104   

       

11/5/2009 43 151.978  0.00063   

 

With silica sand, the steel tube steel fin wear rate at 0.0004% mass a day was an order of 

magnitude less than the copper tube steel fin assembly.  It would take about 7 years of 

continuous exposure for it to lose 1% of its total mass.  Inspection of the piece showed no 

appreciable wear. 

 

Table 4.5 Steel Finned Steel Tube Trial Data, Olivine Sand 

Olivine Sand Erosion Trial  Continuous sand exposure 

       

 Steel Finned Steel Tube -0.0005 % mass loss a day 

    Scale 1 +/- 0.001g 0.0000 % mass loss a day  

Date (Days) mass(g)  Rate(g/day)  

9/23/2009 0 149.871   Start  

       

10/6/2009 13 149.888  -0.00131   

       

10/9/2009 16 149.883  -0.00075 End  

  (Piece slipped loose of mount and tumbled)  

10/12/2009 0 149.806   Start  

       

10/16/2009 4 149.803  0.00075   

       

11/5/2009 20 149.806  0.00000 End  
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Like with copper tube steel fin assembly there was little change in the test object 

mass.  Despite air cleaning the mass of the assembly changed little, even increasing.  No 

apparent visual wear was present but the loss rate was decidedly small.   

As experimentation on the project regarding the heat transfer coefficient 

progressed, it became more apparent that the small grain sand would be preferred, which 

also coincided with the erosion results.  Improvements were also made to the sand 

erosion apparatus.  A more secure mount for the test samples was added to prevent the 

test pieces from breaking off and tumbling and a rotating seal was inserted to further limit 

sand leakage.  Figure 4.2 shows the modifications. 

 

Figure 4.2 Improved Sand Erosion Apparatus 
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For final design purposes, steel was likely the material of choice both for its 

structural strength and viability at the target operating temperatures.  With the prior test 

samples, steel had proved to be the least susceptible to sand erosion.  Taking this in to 

account, an erosion trial was set up using CR-12, or Cromgard [22] steel.  This steel was 

judged to have potential as it was considered to be more resistant to abrasive effects than 

regular steel, and it still maintained good structural strength at higher operating 

temperatures.  The results of the trial are shown below in Table 4.6.  

  

Table 4.6 Cromgard Sample Data, Olivine Sand 

Olivine Sand Exposure Trial  Continuous sand exposure 

       

 Cromgard Sample Piece -0.0001 % mass loss a day 

    Scale 1 +/- 0.001g       

Date (Days) mass(g)  Rate(g/day)  

12/15/2010 0 152.290     

       

1/3/2011 19 152.305  -0.00079   

       

3/21/2011 96 152.309  -0.00020   

 

Similar to the steel fin assembly, there was little change in the Cromgard sample 

mass.  In fact there was measured a slight increase in mass, despite the thorough air 

cleaning.  After nearly 100 days of constant exposure, inspection showed some slight 

surface build up as indicated in Figure 4.3.  The lighter color zone was protected from the 

falling sand, while there was a slight dark discoloration in the remaining exposed 

surfaces.  The edges experienced a slight buildup of dark discoloration as well. 
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Figure 4.3 Cromgard Inspection 

 

Sand Erosion from Grinding 

Figures 4.4 and 4.5 below are of the half-inch diameter steel shaft from the sand 

erosion experiment.  Figure 4.4 shows the eroded shaft next to a new shaft.  Figure 4.5 is 

a close-up of the eroded section.  The erosion is due to sand trapped between the shaft 

and a pair of rubber u-cup seals.  The relative rotational speed between the shaft and the 

seals was ~12 RPM and was continuous for approximately 15 weeks.  The shaft has been 

replaced by another one having a much closer fit between the shaft OD and seal ID and 

has been running continuously since March 18th.  This case does demonstrate that 

trapped sand can be quite erosive when in a position to be ground into a surface.   
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Figure 4.4 Comparison between Shaft Grind Wear, new and old 

 

 

Figure 4.5 Close up for Sand in Shaft Grind Wear 
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Erosion Conclusion 

The aluminum exposure trial indicated a fairly high erosive rate when exposed to 

silica sand.  Steel proved to be far more resistant to the silica wear on an order of 

magnitude of more than 10 times compared to both the aluminum finning and copper 

tubing cases.  This was confirmed visually by surface inspection.  It should be noted that 

when testing alumina beads, the beads proved to be destructive immediately, incurring 

visually apparent damage not only to the finned tubes but also to the scoops used in the 

apparatus. This damaging aspect was also noted in the heat transfer measurements were 

the flow speed was slower than the erosion trials, Appendix D, further use of the alumina 

was halted after heat transfer measurements showed it preformed significantly less than 

modeled predictions.  Investigation of olivine sand on the steel finned tubing and 

particularly with the Cromgard sample yielded interesting results.  The olivine sand, 

although accumulating in hard to clean portions of the finned tube assembly, did not 

appear to be incurring any noticeable visual wear.  Similarly even after extensive 

exposure to the sand there was noted to be no visible wear for the Cromgard sample and 

even some dark color build up was detected.  The empirical mass measurements indicate 

minimal wear at best, with no a discernable wear rate that yet can be ascertained.  Overall 

it seems the smaller particles at these low speeds ~0.5-0.7 m/s, due to gravity and higher 

than in application, Appendix D, do not appear to have enough kinetic energy to impart 

meaningful deformation and wear when striking the surfaces.  In addition, the smaller 

particles tended to behave much more like liquids and tended to flow more smoothly over 

a surface rather than somewhat raking surfaces as found with the larger solid particles.   
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CHAPTER 5 

SAND SCOOP DESIGN 

    

Sand Angle of Repose 

When sand or other granular material is poured into a pile from above, it can form 

a marginally stable conical pile.  The angle between the sloped side and the horizontal is 

the angle of repose.  The angle of repose is a function of the grain size and the interaction 

of friction between grains.  It is helpful to know the angle of repose when designing the 

scoops which lift the sand from the bottom of the drum and rain it upon the heat 

exchanger tube bundle.  This angle is important as the sand will not naturally flow by 

gravity alone when on slopes less then this angle, and from knowing this angle one can 

determine the pouring point for a scoop.  It is also needed in other analytical models and 

in modeling how fully the sand will occupy the pits or silos. 

In the improved experiments, the equipment consisted of a transparent acrylic 

plastic disc, a support brick, and a PVC pipe.  The acrylic disc was placed on the top face 

of the brick in a position where there was no overhang on one side.  The PVC pipe was 

then placed flush against the free surface of the Plexiglas plate, as shown in Figure 5.1.   
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Figure 5.1 Angle of Repose Test Setup 

 

Sand was poured into the PVC pipe until it was approximately full.  The PVC 

pipe was lifted vertically while trying to have minimal horizontal displacement relative to 

the acrylic disc.  Lifting speed of the PVC pipe did not matter so long as it was lifted in a 

reasonably fast manner.  Upon completion of the sand flow, a cone shaped mound of 

sand would remain on the surface of the acrylic plate shown in Figure 5.2.   
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Figure 5.2 Angle of Repose 

 

Using the side without any overhang from the acrylic disc for vertical registration, 

a square was used to measure the height of the mound of sand.  Based on the premise that 

the mound of sand could be modeled by a cone, the arctangent of the height and half the 

diameter of the acrylic disc was used to calculate the angle of repose of the sand.  For the 

silica sand the measured angle of repose was about 30 degrees, which was expected, and 

for the finer and denser Olivine it was about 42 degrees.  This angle played a small but 
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important role in the scoop design, in determining each scoop load size, and duration of 

pouring. 

Sand Scoop Optimization 

The task of moving material through the sand shifter was two-fold.  First, hot sand 

had to be conveyed along the axis of the heat exchanger with the use of an Archimedes 

screw.  Second, sand had to be lifted in the circumferential direction so that a steady flow 

of hot material can be poured over the heat exchanger articles.  This was accomplished 

with the use of longitudinal scoops which were positioned in segments between the 

Archimedes screw threads.  The volume of sand carried by each scoop primarily 

depended on the scoop profile, the type of sand being used, and the angle of repose that 

was established by the sand as it piled at the top of a filled scoop.  Another important 

factor to consider was how evenly the sand was poured across the heat exchanger tubes.  

A design that maintained a more even distribution of sand flow across the tube bundle 

would be superior to a scoop that deposited 50% of its contents on just 20% of the 

articles. 

To measure this, a test device was constructed for the purpose of optimizing the 

sand distribution over the heat exchanger articles.  Shown in Figure 5.3, the device 

consisted of a frame, a drum that was rotated via a drive belt, and an array of trays that 

was supported in the axial center of the drum with cantilever beams.   
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Figure 5.3 Test Rig for Sand Scoop Optimization 

 

The array of trays was aligned with the axis of rotation and allowed measurement 

of the pouring distribution of various scoop configurations.  The bottom of the drum was 

then filled with sand and rotated for testing.  In this setup, a single scoop that could be 

quickly replaced with a new design iteration was bolted to the inside of the drum.  To test 

a scoop’s performance, the drum was rotated a set number of times to deposit sand onto 

the tray array.  The mass of sand received by each individual tray was then measured to 

determine the pouring distribution.  These experiments enabled rapid convergence on a 

sand scoop design to be used in the larger-scale prototypes. The resulting scoop design 

detailed in the following Figure 5.4 was employed throughout the rest of this experiment. 
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Figure 5.4 Scoop Detail View 
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CHAPTER 6 

ROTATING DRUM HEAT TRANSFER EXPERIMENT 

    

This apparatus, seen in Figure 6.1, as well as adjusted methodology was an 

improved means to allow continuous heat transfer operation over a larger range of 

temperatures with more realistic test articles.  Here, a rotating drum with an array of 

internal scoops continuously lifted the sand from the bottom of the drum and poured it 

over an axially fitted test article.   

 

 

Figure 6.1 Drum Heat Exchange Measurement Apparatus 
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Figure 6.2 Drum Apparatus with Angled Slats 

Real and Schematic View 
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Drum Setup 

Intermittent flow was an issue for the design as the scoops only pour the sand at 

periodic intervals rather than continuously over the subject article as noted in Appendix 

C.  This problem, which must also be overcome in a full size system, was alleviated by 

testing with an array of angled flat slats.  This arrangement created a zigzag flow pattern 

as shown in Figure 6.2. With this flow pattern, sand was held up by internal drag, and the 

intermittent deposition of sand as the scoops passed over the array was quickly smoothed 

into a continuous flow over the lower slats.  Currently, the slats are electric strip heater 

plates 38.1 mm wide and 336 mm in length.  T-type thermocouples were mounted on the 

upper and lower surfaces of the lowest slat using thermal cement.  Obviously, measuring 

any surface temperature is somewhat challenging. In this case, excellent contact between 

the thermocouples and the metal surface was necessary to give a reliable temperature.  

Welded bead thermocouples were employed for the first set of measurements.  For a 

second confirmation measurement, the experiment was repeated with special purpose thin 

film thermocouples to improve the surface temperature readings.  In two locations 

flanking the axial midpoint of the drum, rakes were suspended from the plate bundle to 

support the two thermocouples submerged in the sand to measure its temperature.  The 

bottommost and most representative slat for continuous flow was then heated with a 

known electrical power input.  The thermocouples mounted on the front and back sides 

measured the temperature of the sand covered surface and air cooled surface respectively.  

The flow speed over the slats was estimated by free body gravity analysis to be ~0.15-0.6 

m/s.  High speed video and image analysis software [23] looking at the sand flowing over 

the slat yielded a measured sand speed between, ~0.11 m/s for upper slat to around 0.17 
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m/s for the lower slats.   Appendix D shows more detail on high speed video 

measurements. 

Heat Leak due to Air and Heat Transfer Coefficient 

Experimental runs with no sand, using only air for cooling, yielded a heat transfer 

coefficient for air cooling of around 10 W/m²-K.  This result fell within documented 

range [24] of buoyant gas convection and was confirmed using the well-known formulas 

from McAdams [25] for heated plates.  The experiment was then repeated with sand, the 

upper side thermocouple reading surface temperature contacted by the sand and the lower 

side thermocouple measuring the temperature of the slat exposed to air.  The readings of 

the two thermocouples suspended on the rakes were averaged to return the medium 

temperature of the sand.  Only the heated portion of the slat was exposed without 

insulation, with the top side covered in sand and bottom air cooled.  In an experiment, the 

electrical input power was controlled with an autotransformer and measured with a digital 

power meter.  The surface and sand thermocouple temperatures were measured with a 

scanning electronic thermometer, and the heat transfer coefficient was  calculated for the 

sand using equation (2): 
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The heat transfer coefficient of sand is represented by hs, inW is the electrical power (W) 

input, aQ is the estimated heat leak rate from the air side, Asur the heated area (m²) 

covered by sand, Tsur is temperature (K) of the surface exposed to the sand flow, and Ts 

the measured sand temperature (K).   
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CHAPTER 7 

CONVECTIVE PARTICLE PERFOMANCE ON A FLAT SURFACE 

   

First Measurement Set: Bead Thermocouples 

The newer experimental setup allowed for an improved and more realistic 

estimation of the heat transfer coefficient of the sand flowing over a controlled heat 

exchanger surface.  This setup utilized bead type thermocouples to record the various 

surface temperatures.  Exercising this arrangement with the olivine and silica sands 

generated measured heat transfer coefficients.  The results, computed by linear regression 

in Excel over a range of temperature differences, are shown below in Figure 7.1.   
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Figure 7.1 Flowing Particle Heat Transfer Data: Bead Thermocouples 
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The regression line slopes in Figure 7.1 indicate the average convection 

coefficient from the data and show a reasonable and consistent trend in temperature 

difference as the power input was varied.  The calculated convection results with the bead 

thermocouples have been tabulated in Table 7.1.   

 

Table 7.1 Heat Transfer Coefficients by Sand Type: Bead Thermocouples 
 

Sand Type 
Average Grain 

Size (µm) 
Heat Transfer Coefficient 

(W/m²-K) 

Olivine Foundry Sand   80 670 

Fine Sifted Silica (7005) 140 500 

Sifted Silica (4010) 290 410 

Construction Silica 550 320 

Alumina Beads 760 125 
 

Examination of the data shows that the particle size played a dominant role in 

convective performance with smaller grain sizes achieving better flowing surface contact 

and less internal resistance.  This feature was also indicated in the literature.  Observation 

of the experiment indicated that effective surface contact and flow continuity were the 

critical factors in the heat exchanger assembly evaluation.  A suitable design for heat 

exchanger elements that effectively direct the flow of the sand will be critical to obtaining 

optimal thermal performance. 

Second Measurement Set: Film Thermocouples 

Once the experiment had been fully conducted preparations were made to fully 

repeat the heat transfer measurements after changing out the bead thermocouples for thin 

film thermocouples.  The thin film thermocouples when properly adhered to a flat surface 

returned more accurate reading of that surfaces temperature.  In short this experiment was 

repeated to see if the experimental results remained fairly consistent between different 
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means of measurement.  Using this arrangement with the olivine and silica sands 

generated measured heat transfer coefficients.  The results were calculated by regression 

over a range of temperature differences and are shown below in Figure 7.2 with the first 

set of results.  Since the alumina beads proved to be so destructive, they were not re-

measured with the relatively fragile thin film thermocouples.  

 

 

Figure 7.2 Flowing Particle Heat Transfer Data: Film Thermocouples 

 

The regression line slopes in Figure 7.2 indicate a somewhat lower average 

convection coefficient from the particles.  This was expected as the bead type 

thermocouples were more protruded into the flow from the surface and therefore 

experience somewhat greater cooling than the surface.  The thin film thermocouples, due 
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to close surface profile, return a more true surface temperature when submerged in the 

sand flow.  There was the same consistent trend in temperature difference as the power 

input was varied.  The calculated convection results with the film thermocouples have 

been tabulated in Table 7.2.  Examination of the data reaffirms the initial set of 

measurements that showed that the particle size plays the leading role in convective 

performance.   

 

Table 7.2 Heat Transfer Coefficients by Sand Type: Film Thermocouples 

Sand Type 

Average 
Grain 
Size 
(µm) 

Film Heat 
Transfer 

Coefficient 
(W/m²-K) 

Bead Heat 
Transfer 

Coefficient 
(W/m²-K) 

Olivine Foundry Sand   80 590 670 

Fine Sifted Silica (7005) 140 490 500 

Sifted Silica (4010) 290 410 410 

Construction Silica 550 300 320 

Alumina Beads 760  125 
 

As previously indicated, grain size seems to play a major role in the convective 

transfer performance with smaller grain sizes achieving better flowing surface contact 

and better overall performance. 

Error Analysis 

In conducting analysis of the data it was important to examine its measured 

reliability.  For this analysis, the focus will be on the most refined portion of the 

experiment, the film thermocouple results.  Each component measurement came with a 

set uncertainty and/or assumptions.  In equation (2),  

 )( ssursur

ain
s

TTA

QW
h








  (2) 
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inW is the electrical power input (W) and was measured using an Weston analog 

wattmeter with a scale of 0 to 125 W.  The uncertainty obtained from the instrument spec 

sheet was 1.25 W.  This device was hooked up in series between a Variac and a heated 

slat to accurately measure the power input into the heater.  The general setup of the 

experiment system and wattmeter is shown in Appendix C.  It was assumed that losses 

were minimal between the slat and the wattmeter, and that the power delivered to the slat 

heater was all released as thermal energy.  For the estimated loss due to air, a convection 

coefficient, hair, of 10 W/m²-K was measured in the rotating drum when run without sand.  

This aQ , or heat leak due to air was calculated using equation (3) assuming that the 

underside of the plate was exposed air with a thermocouple located on that surface 

Tback,sur: 

 )( ssurback,sura TTAhQ air     (3) 

For the loss, roughly ~5% of the total power input was spent on air cooling.  The air 

temperature as assumed to be the same as the one measured by the sand rake 

thermocouples Ts.  A hand held temperature probe indicated this assumption to be quite 

consistent.  The area Asur was taken as the exposed underside of the slat to the dimensions 

of the heated portion.  The upper surface was exposed to the sand and the ends were 

wrapped in insulation and assumed adiabatic.  A finely graduated ruler, ± 0.05 in, was 

used for determination of the area yielding a measurement uncertainty of 1.85E-07 m².   

The thermocouples were all calibrated for a range of temperatures using a standardized 4 

wire RTD probe [26].  The task employed a thermocouple calibrator [27], which is a 

highly thermally insulated box with internal heating and temperature control.  This 
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allowed for a finely controlled thermal range for the temperature calibration 

measurements.    

 

 

Figure 7.3 Polynomial Regression of Thermocouple and 4 Wire RTD Calibration 

 

As indicated by Figure 7.3, the thermocouple and 4 wire RTD calibrated well, and the 

regression analysis yielded a distinct uncertainty for each thermocouple as well as 

demonstrating a close agreement for calibration.  Thermocouples 2 and 3 composed the 

Tsur had a combined uncertainty of 0.0244 K.  For the combined uncertainty calculation: 

Ua came from the regression with the RTD, in this case 0.2 and 0.24 K respectively, and 

the Ub from the known calibration of the SRTD was 0.02 K, Appendix F.  

 222

bac UUU   (3) 
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 Because Ub was so the Uc’s were basically equivalent to Ub.  Likewise Ts, which 

consisted of measurements from thermocouples 5 and 6, Uc’s of 0.2 and 0.24 K, was 

found to have a combined uncertainty of 0.0167 K.  With the component uncertainties 

complete, the error bias propagation for the calculation of the heat transfer coefficient 

was then preformed.  The results for some representative cases are shown in Table 7.3 

below. 

 

Table 7.3 Heat Transfer Coefficient Error Propagation 

Olivine

Measurement U xi Basis
a

Source
b

Power 1.25 W 5.22 (1/K-m²) 42.54 (W/K-m²)²
general 

specifications

Weston 

Instruments

Area 1.85E-07  m² 46985 W/K-(m²)² 7.56E-05 (W/K-m²)² resolution Indiced Ruler

Tsurface 0.024 K 40.3 (W/m²) 0.967 (W/K-m²)² calibration see note (1)

Tsand 0.017 K 40.3 (W/m²) 0.450 (W/K-m²)² calibration see note (1)

Total (Ub)
2 42.55 (W/K-m²)²





h

xi

2

2













i

xii
x

h
UU





 

Fine Sifted Silica (7005)

Measurement U xi Basis
a

Source
b

Power 1.25 W 4.35 (1/K-m²) 29.61 (W/K-m²)²
general 

specifications

Weston 

Instruments

Area 1.85E-07  m² 39128 W/K-(m²)² 5.24E-05 (W/K-m²)² resolution Indiced Ruler

Tsurface 0.024 K 28.0 (W/m²) 0.467 (W/K-m²)² calibration see note (1)

Tsand 0.017 K 28.0 (W/m²) 0.217 (W/K-m²)² calibration see note (1)

Total (Ub)
2 29.62 (W/K-m²)²





h

xi

2

2













i

xii
x

h
UU





 

Note(1): Standardized 4 Wire RTD Probe, see Appendix F 
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Table 2.3 Heat Transfer Coefficient Error Propagation 

Sifted Silica (4010)

Measurement U xi Basis
a

Source
b

Power 1.25 W 5.37 (1/K-m²) 44.99 (W/K-m²)²
general 

specifications

Weston 

Instruments

Area 1.85E-07  m² 31970 W/K-(m²)² 3.50E-05 (W/K-m²)² resolution Indiced Ruler

Tsurface 0.024 K 28.2 (W/m²) 0.474 (W/K-m²)² calibration see note (1)

Tsand 0.017 K 28.2 (W/m²) 0.221 (W/K-m²)² calibration see note (1)

Total (Ub)
2 45.00 (W/K-m²)²





h

xi

2

2













i

xii
x

h
UU





 

Construction Silica

Measurement U xi Basis
a

Source
b

Power 1.25 W 3.15 (1/K-m²) 15.53 (W/K-m²)²
general 

specifications

Weston 

Instruments

Area 1.85E-07  m² 22057 W/K-(m²)² 1.67E-05 (W/K-m²)² resolution Indiced Ruler

Tsurface 0.024 K 11.4 (W/m²) 0.078 (W/K-m²)² calibration see note (1)

Tsand 0.017 K 11.4 (W/m²) 0.036 (W/K-m²)² calibration see note (1)

Total (Ub)
2 15.54 (W/K-m²)²





h

xi

2

2













i

xii
x

h
UU





 

Note(1): Standardized 4 Wire RTD Probe, see Appendix F 

 

As can be seen in Table 7.3, the total bias uncertainty, Ub, was  ~6.5 W/K-m² for olivine, 

~5.4 W/K-m² for fine sifted silica, ~6.7 W/K-m² for fine silica, and ~3.9 W/K-m² for 

construction silica.  Regression analysis was performed on the flux, ΔT plot for the heat 

transfer coefficient to get the random uncertainty, Ua, which was the average of the 

difference for the upper and lower 95% band.  The regression plots for each sand type are 

found in Appendix G and the uncertainties have been tabulated below in Table 7.4. 
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Table 7.4 Regression Analysis of Heat Transfer Coefficients and Combined Uncertainty 

 

 

For the uncertainties, the random uncertainty dominates in the calculation for total 

uncertainty, Uc, equation 3.  It should be noted that the course construction silica was by 

far the least homogeneous of the sand types tested and may explain the higher random 

variance.  Overall the heat transfer coefficients measured by this experiment, providing 

the assumptions of adiabatic insulation, cooling by air, and total coverage of only the 

upper surface by sand, have a measurement reliability to within ~10% or less of the stated 

value.  This level of uncertainty is well within the range typically expected in heat 

transfer engineering applications. 
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CHAPTER 8 

MEASUREMENT COMPARISON AND ANALYSIS 

   

Literature Model Comparison 

Of the literature on particulate flow that we have reviewed, the work reported by 

Patton et al. [16] appears to be the most suitable resource for comparing with our 

empirical results.  The convective heat transfer coefficient of flowing sand was modeled 

with the relations found in that paper [16] to compare the published results with the heat 

transfer coefficient determined experimentally.  The parameters in the equation based 

model included particle size, conductivity, specific heat, flow velocity, layer thickness, 

and packing ratio (ratio of air space vs. solid space).  From this data a heat transfer 

coefficient range was determined for several types of particles. For the particle types, the 

following parameters were used:  (1) Fine grained olivine sand [28], experimentally 

measured to have a mean diameter of 80 µm with a standard deviation 30 µm.  (2) A 

slightly larger finely sifted silica [29] measured to have a mean diameter of 140 µm with 

a standard deviation of 50 µm.  (3) Another sifted silica [29] sand measured to have a 

mean diameter of 290 µm with a standard deviation of 100 µm.  (4) A coarser locally 

purchased construction silica sand was measured to have a mean diameter of 550 µm 

with a standard deviation of 320 µm.  (5) Finally spherical alumina particles [30] 

measured to have a mean diameter of 760 µm with a standard deviation of 120 µm.  

Additionally, the velocity of the particle layer was estimated to be between 0.1~0.3 m/s, 

Appendix D, the thickness of the layer to be 0.4 mm to 2 mm, and the packing ratio 

(volume of solid material vs. total volume of sample) between 0.2 and 0.42.  Using these 
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parameters in the EES [19] model the produced convective heat transfer coefficient 

ranges as listed in Table 8.1 as well as model figures showing the measurement bounded 

by the model predicted ranges. 
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Figure 8.1 Model and Measurement Comparison for Olivine Sand 
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Figure 8.2 Model and Measurement Comparison for Silica Sands 
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Figure 8.3 Model and Measurement Comparison for Alumina Beads 
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Table 8.1 Modeled Heat Transfer Coefficient by Particle Type 

Sand Type
Model Heat Transfer 

Coefficients (W/m²-K)

Heat Transfer 

Coefficient (W/m²-K)

Average Grain 

Size (µm)

Olivine 552-887 590 80

Fine Sifted Silica 413-649 490 140

Sifted Silica 357-520 410 290

Regular Silica 289-387 300 550

Alumina Beads 465-481 125 760  
 

Of the materials measured, all except the alumina fell within the modeled range. 

The model is influenced by the enhanced conductivity and specific heat of alumina 

leading to the higher predicted heat transfer coefficient despite the larger particle size.   

Experimentally, however, the alumina spheres tended to bounce instead of flowing when 

dropped on the slat surface.  This reduced the period of surface contact and may explain 

the lower measured convective coefficient by altering the contacted area assumption.  In 

addition, it should be noted that even at these low speeds the alumina beads produced 

noticeable wear on the heat exchanger surfaces, a problem that must be avoided in 

service. 

The experimental results found in this paper of around 590 W/m
2
-K for olivine 

sand and around 300-500 W/m
2
-K for silica sand generally fall within the ranges 

predicted by the model.  In comparison to empirical literature results Denloye, et. al. [14] 

measured maximum heat transfer coefficients of ~310 W/m
2
-K for 590 µm sand and 

~475 W/m
2
-K for 160 µm sand which fit with the experimental results in this thesis.  

Similarly Hyde, et. al.’s [15] fluidized bed measurements for heat transfer coefficients 

showed ~300 W/m
2
-K for 560 µm sand, ~360 W/m

2
-K for 450 µm sand, ~405 W/m

2
-K 

for 295 µm sand, and ~450 W/m
2
-K for 225 µm sand.  The relative agreement of these 
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results suggest that treating a thinly flowing layer of sand as a fluidized bed it not an 

unreasonable assumption for heat transfer coefficient estimation purposes.  Of the factors 

that affect the heat transfer, particle size has the dominant effect on the heat transfer 

coefficient followed by velocity, layer thickness, and packing ratio.  The Babcock and 

Wilcox report [17] that looked into a range of TES options indicated a convection 

coefficient on their heat transfer elements of around 930-1160 W/m
2
-K using a moving 

bed of sand. The sand utilized in Babcock and Wilcox report [17] had a grain size of 44-

77 µm, a packing ratio of 0.42, and a sand velocity around 0.15-0.3 m/s, which was near 

the conditions of the olivine sand of the current experiment.  While this earlier report 

suggests that high heat transfer performance can be achieved with very fine sand, limited 

experimental details were given; and our experimental results do project heat transfer 

coefficients lower than those reported and used in the 1981 report [17]. 

Conclusion 

This experiment, after some refinement, was able to measure the heat transfer 

coefficient between flowing particulate sand and a generic heat exchanger surface.  The 

resulting coefficients indicate that smaller particle size plays a major role in improving 

heat exchange.  Of particular interest is that  ordinary silica sand in finer grain size 

performs about as well as the slightly more exotic olivine sand.  It is also notable that the 

alumina beads, despite the potential advantage of slightly higher specific heat and 

significantly greater thermal conductivity as well as density, have poor performance and 

high errosiveness.  The poor performance is evidently because of the highly elastic 

rebound after impact consequently caused poor maintenance of contact with the heated 

surface, in short the alumina tended not to “flow” along the angled surface resulting in 
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the depressed heat transfer coefficient.  These factors and overall higher cost hamper its 

potential as a viable particulate heat storage medium.  For the silica sands, a smaller grain 

size is highly desirable, and continuous flow with good surface contact will be critical for 

high performance with any sands or particulate mediums.  While it may be reasonable for 

estimation treating a thin layer of flowing sand as comparable to a fluidized bed, the heat 

transfer of sand or other particulates is definitely contingent on a wide range of 

conditions.  As a result it is recommended that experimental measurement of particulates 

be taken on a case by case basis. 
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APPENDIX A 

HEAT TRANSFER MODEL 

 

In Patton’s model [16] the convective heat transfer coefficient is calculated by: 

   (4)  

Where Kg is the conductivity of the gas, d is the particle diameter and  is the Nusselt 

number calculated by: 

  (5) 

Where χ and β are taken to be empirical constants for this model, and  and  are the 

Péclet and Froude numbers respectively defined as: 

  (6) 

  (7) 

Where U is the flow velocity, L is the length of the heated plate, α is the thermal 

diffusivity of the sand, k is the conductivity of the sand, g is gravitational acceleration, h 

is the thickness of the sand layer, ν is the solid fraction, and νc is the critical solid fraction 

(an empirical constant). 
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Figure A.1: Convection Coefficient vs. Particle Diameter 
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Figure A.2: Convection Coefficient vs. Layer Thickness 
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Figure A.3: Convection Coefficient vs. Flow Velocity 

 

 

 

 

 

 

 



 58 

APPENDIX B 

GRAIN SIZE MEASUREMENTS 

Realistic and reliable particle diameters are needed and are critical in the models, 

and standard sieve tests do not seem to generate precise results adaptable to simple 

statistical analyses especially for irregular particles. Consequently, it was decided to use a 

somewhat exhaustive direct visual examination of the grain size measurements. This 

observation  was performed using a microscope adapted to record video.  The video was 

allowed to roam over a large sample dish containing the particulate material.  The video 

was then analyzed to measure the grains approximate diameters and determine and 

average grain size as well as deviation.  The following pictures are example frames from 

the videos, the table contains the measurements.  

 

 

Figure B.1: Olivine Sand 

110 μm 
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Figure B.2: Fine Sifted Silica, Granusil 7005 

 

Figure B.3: Fine Silica, Granusil 4010 

175 μm 

310 μm  
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Figure B.4: Silica Sand 

 

Figure B.5: Alumina Beads 

750 μm 

350 μm 
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Table B.1: Grain Size Measurements 

Olivine [0.01 mm] Alumina [mm]

diameter s Count diameter Count diameter diameter s Count diameter

8.5 3 0.200 5.25 0.350 1.4 0.1 0.900

5 2.5 0.167 8 0.533 0.4 0.05 0.800

7 1.75 0.117 3.75 0.250 0.6 0.1 0.700

13 1.75 0.117 5 0.333 0.4 0.03 0.600

11 1.75 0.117 7 0.467 0.8 0.1 5 0.750

5 1.75 0.117 3.5 0.233 0.6 0.1 4 0.600

11 2 0.133 3 0.200 0.6 0.1 4.5 0.675

6 1.5 0.100 4.5 0.300 0.4 0.5 4 0.600

5 2.25 0.150 3.25 0.217 0.3 0.25 6 0.900

12 1.75 0.117 3 0.200 0.65 0.5 4.5 0.675

5 1.75 0.117 2.5 0.167 0.25 0.05 5.5 0.825

5 2 0.133 4 0.267 0.2 0.025 6 0.900

10 1 2 0.133 4.5 0.300 4.5 0.675

10 1 3.75 0.250 8.25 0.550 5 0.750

7 0.5 3.75 0.250 3 0.200 7 1.050

9 0.25 1.5 0.100 4 0.267 5 0.750

2 0.25 1.75 0.117 5.75 0.383 5 0.750

10 0.5 2 0.133 3.25 0.217 6.5 0.975

5 1 1.5 0.100 5.5 0.367 5 0.750

9 7 1.75 0.117 3.5 0.233 5 0.750

2.5 0.167 3.5 0.233 4.5 0.675

1.5 0.100 2.5 0.167

1.25 0.083 4 0.267

1.5 0.100 3 0.200

3.75 0.250 3.75 0.250

5 0.333

Average: 0.078 0.139 0.288 0.550 0.764

St. dev.: 0.030 0.049 0.104 0.323 0.123

Silica [mm]Granusil 7005 [mm] Granusil 4010 [mm]
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 APPENDIX C 

MEASUREMENT OF HEATED FINNED TUBE ASSEMBLY 

 

Abstract 

The purpose of this experiment was to ascertain an approximate convective heat 

transfer between a heated tube with annular fins and sand being continuously poured over 

the tube.  This was accomplished by means of suspending the heated tube in center of a 

rotating drum.  The drum was fitted with scoops set at 45 degree intervals so when the 

drum was filled with sand and when rotated would ensure flow of sand over the heated 

tube.  The ends of the drum were closed with a central hole just large enough to allow for 

the tube and fins to limit sand leakage.  The tube was heated by means of an electrical 

heater wire suspended in the concentric center of the tube in mineral oil.  This setup with 

the wire and oil fluid helped ensure a more uniform heated tube fin assembly.  Being 

electrically heated an exact power input reading could be measured for the tube.  A pair 

of thermocouples located on the surface of the tube and a pair suspended on rakes in the 

drums sand measure the tube and sand temperature respectively.  A DC motor employing 

a belt drive was used to rotate the drum assembly.  

As detailed below, the heat transfer performance of this finned-tube design was 

found to be substantially lower than the corresponding flat plate performance obviously 

because of the poor contact between the sand and the tubes and the nearly vertical fins. 

The measured convection coefficients are an order of magnitude less than the 

corresponding flat plate results, this is likely due to the intermittent flow of sand over the 

test article which would contribute greatly to the poor period of sand contact. 
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Methodology 

For measurement, the input power was set and the system allowed to sit for 30 

minutes to reach a steady state.  Then the DC motor was engaged to start the heat transfer 

between the pouring sand and finned tube.  Steady state was reached after about 10-15 

minutes with temperature readings from the thermocouples taken leading up and 

including the steady state point.  With a known power input, measured tube temperature, 

measured sand temperature and known surface area of the finned tube a convection value 

was estimated.  A key note for this was that though the surface area of the tube and fins 

were known, the area actually in contact with the pouring sand was significantly less so 

the resulting estimation is quite conservative.   

Measurements 

Using the above stated method, the data for three separate runs at different input 

power was run and recorded.  The input dial for the DC motor was set to ~3.2 with a 

resulting rotation of 11-12 rpm.  The variance was due to the drum being driven with a 

belt which was susceptible to slip. 
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Table C.1: Sand/Finned Tube Convection Data (80W) 

  
Tube 

Sensors, C    
Sand 

Sensors, C   

 T1 Ave T2 Delta T T3 Ave T4 RPM 

80W 95.3 97.8 100.2 63.2 34.6 34.6 34.6 11(~3.2) 

         

2 min 54.6 55.0 55.3 12.3 42.7 42.7 42.7  

         

4 min 49.7 49.8 49.9 7.4 42.2 42.4 42.6  

         

6 min 48.4 48.4 48.4 6.3 42.0 42.1 42.2  

         

8 min 47.9 48.0 48.0 6.0 41.8 42.0 42.1  

         

10 min 47.7 47.8 47.8 5.9 41.7 41.9 42.0  

         

13 min 47.6 47.7 47.8 5.9 41.7 41.8 41.9   

 

 

Table C.2: Sand/Finned Tube Convection Data (120W) 

  
Tube 

Sensors, C    
Sand 

Sensors, C   

  T1 Ave T2 Delta T T3 Ave T4 RPM 

120W 120.5 124.0 127.4 84.3 39.2 39.7 40.2 12(~3.2) 

         

2 min 69.4 70.3 71.1 18.6 51.2 51.7 52.1  

         

4 min 62.6 63.1 63.5 11.8 50.9 51.3 51.6  

         

6 min 60.7 61.1 61.4 10.2 50.5 50.9 51.2  

         

8 min 60.1 60.6 61.0 10.0 50.3 50.6 50.9  

         

10 min 60.1 60.6 61.0 9.9 50.3 50.7 51.0  

         

13 min 60.4 60.9 61.3 10.1 50.4 50.8 51.2   
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Table C.3: Sand/Finned Tube Convection Data (162W) 

  
Tube Sensors, 

C    
Sand 

Sensors, C   

  T1 Ave T2 Delta T T3 Ave T4 RPM 

162W   
Sensor 
was in flux      12(~3.2) 

     T1-Ave34     

2 min 79.0  111.0 23.4 53.8 55.6 57.4  

          

5 min 66.7  100.5 10.4 55.2 56.3 57.4  

          

8 min 66.0  98.4 9.6 55.7 56.5 57.2  

          

10 min 67.1  97.6 10.4 56.1 56.7 57.3  

          

13 min 67.0   96.0 9.9 56.6 57.1 57.6   

 

In the third run, Table C.3, thermocouple 2 was unstable returning wildly shifting 

readings, and was likely damaged.  What was recorded was an estimated average 

between the high and low ends at the time of measurement.  Thermocouple 1 remained 

fairly stable and was used as it remained consistent with the prior two runs.  Using the 

conservatively estimated thermal interaction surface area, the temperature difference 

between the tube and the sand rakes, as well as the known power input a convection 

estimate was calculated.  The resulting range was ~45-60 W/m
2
-K which put it out of the 

range of convection by air and on the low end of standard liquid convection region [24].   

Summary 

Further refinements such as more accurately determining the “wetted” contact 

area are needed to get a more exact measure of the convective properties of the sand.  A 

design that lets the sand effectively cover the surfaces continuously will be crucial.  The 

next design refinements planned will entail using flat electrically heated strips offset at 

angles as to catch and direct sand raining down it onto a strip below it.  With this, a more 
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exact contact zone can be ascertained, but there is somewhat of a trade off with the use of 

multiple strips as each will be at a different temperature, the top being the coolest the 

bottom the warmest.  The strips may be treated piece wise, with an average temperature 

from surface thermocouples for each heated slat area employed.  
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APPENDIX D 

SAND VELOCITY MEASUREMENT 

 

The sand velocity measurements were taken utilizing a high speed camera [31].  

The video was then loaded into the Logger Pro [23] software.  Using this software tool 

allowed analysis to be easily done frame by frame with a time stamp.  With the software, 

length measurements could simply be done in the video using a pre-measured reference 

standard.  With a measurable reference length in the video and high speed frame time 

stamps, a velocity could be ascertained by following distinct features in the sand flow 

frame by frame over a distance in the video.  In addition there were two types of sand 

available for use of the same grain size, a light color type and a dark variant.  For some 

measurement cases, layering the different color sands in a dispensing funnel created a 

distinct visual feature that could be more easily tracked.  These measurements yielded a 

sand flow speed of ~0.11 m/s for upper slat and ~0.17 m/s for the lower slats.  The 

following figures show some representative velocity measurement frames.  There were 

two primary camera views used in measurements, an end on view and a normal view. 

Currently these measurements have relied on visual identification of the particles 

or features being tracked. This procedure, while thought to be reasonably accurate, is 

cumbersome and also certainly not as sophisticated as state of the art fully computerized 

Particle Image Velocimetry (PIV) or Particle Tracking Velocimetry (PTV). 
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Figure D.1: Sand Velocity Measurement End View 

 

Figure D.2: Sand Velocity Measurement End View, with Dark Sand 
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Figure D.3: Sand Velocity Measurement Normal View 

 

Figure D.4: Sand Velocity Measurement Normal View, with Dark Sand 
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APPENDIX E 

WATTMETER SYSTEM SETUP 

 

 

Figure E.1: Wattmeter System Diagram 
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APPENDIX F 

THERMOCOUPLE TO 4 WIRE RTD CALIBRATION 

 

 This appendix regards the calibration of thermocouples utilized in the rotating 

drum heat transfer experiment.  Calibrations were done with a standardized 4 Wire RTD 

in a thermocouple calibrator (thermally insulated, internally heated and regulated box). 

 

Table F.1: Thermocouple, 4 Wire RTD Measurements for Calibration 

TC calibration 2010 field calibration, 26 Oct 04, updated 23 May 2005

est bias

0.02 C

avg

y x

RTD 4W Resist RTD Temp TC 02 TC 03 TC 04 TC 05 TC 06 TC Average RTD-TCave

Ohms Celcius oC oC oC oC oC oC oC

112.41 31.2494 31.42 31.38 31.38 31.38 31.42 31.40 -0.15

116.17 40.7837 40.26 40.07 40.43 40.16 40.39 40.26 0.52

120.51 51.8234 51.36 51.23 51.37 51.29 51.49 51.35 0.48

124.43 61.8271 61.09 60.91 61.09 61.95 61.25 61.26 0.57

128.26 71.6309 70.49 70.26 70.52 70.35 70.78 70.48 1.15

132.22 81.7986 80.17 79.91 80.28 80.06 80.58 80.20 1.60

136.11 91.8178 89.91 89.62 90.04 89.82 90.36 89.95 1.87

140.10 102.1268 99.84 99.51 99.96 99.74 100.39 99.89 2.24

143.86 111.8718 109.19 108.82 109.34 109.08 109.81 109.25 2.62

147.81 122.1409 119.19 118.81 119.38 119.08 119.86 119.26 2.88

151.62 132.0771 128.78 128.34 128.96 128.66 129.52 128.85 3.23

155.69 142.7254 138.91 138.43 139.19 138.81 139.81 139.03 3.70

159.45 152.5940 148.60 148.08 148.84 148.44 149.50 148.69 3.90

163.27 162.6513 158.28 157.74 158.55 158.16 159.29 158.40 4.25

167.03 172.5814 167.85 167.26 168.13 167.74 168.94 167.98 4.60

163.08 162.1503 157.87 157.31 158.09 157.67 158.79 157.95 4.20

159.26 152.0946 148.52 148.08 148.58 148.34 149.32 148.57 3.53

155.42 142.0179 138.48 138.04 138.66 138.36 139.3 138.568 3.45

151.71 132.3122 129.42 129.04 129.48 129.22 130.04 129.44 2.87

147.68 121.8024 119.22 118.88 119.27 119.06 119.8 119.246 2.56

143.79 111.6901 109.78 109.55 109.69 109.61 110.23 109.772 1.92

140.11 102.1527 100.28 100.02 100.26 100.12 100.7 100.28 1.88

136.20 92.0500 90.82 90.66 90.67 90.68 91.14 90.79 1.26

132.16 81.6443 80.39 80.17 80.38 80.24 80.69 80.37 1.27

128.30 71.7334 72.13 72.19 71.61 71.87 72.01 71.96 -0.23

124.36 61.6482 61.03 60.86 61.00 60.88 61.17 60.99 0.66

120.37 51.4667 50.95 50.79 50.95 50.81 51.09 50.92 0.55

116.35 41.2408 41.29 41.15 41.22 41.13 41.29 41.22 0.02

112.33 31.0469 31.41 31.32 31.34 31.27 31.32 31.332 -0.29

AVG = 99.47 97.48 97.19 97.54 97.38 97.94 97.51 1.97
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Table F.2: Thermocouple 2 Calibration 

Results for TC02

a constant = -1.5338 -1.53

b coefficient = 1.0362 1.04

U_A = 0.20

U_C = 0.20

RAW CORR RAW-COR

RTD 4W Resist RTD Temp TC 02 TC RTD-TC abs(DT)

Ohms Celcius oC

112.41 31.2494 31.42 31.02 0.40 0.23 0.23

116.17 40.7837 40.26 40.18 0.08 0.60 0.60

120.51 51.8234 51.36 51.69 -0.32 0.14 0.14

124.43 61.8271 61.09 61.77 -0.68 0.06 0.06

128.26 71.6309 70.49 71.51 -1.02 0.12 0.12

132.22 81.7986 80.17 81.54 -1.37 0.26 0.26

136.11 91.8178 89.91 91.63 -1.72 0.19 0.19

140.10 102.1268 99.84 101.92 -2.08 0.21 0.21

143.86 111.8718 109.19 111.61 -2.42 0.26 0.26

147.81 122.1409 119.19 121.97 -2.78 0.17 0.17

151.62 132.0771 128.78 131.91 -3.13 0.17 0.17

155.69 142.7254 138.91 142.40 -3.49 0.32 0.32

159.45 152.5940 148.60 152.44 -3.84 0.15 0.15

163.27 162.6513 158.28 162.47 -4.19 0.18 0.18

167.03 172.5814 167.85 172.39 -4.54 0.19 0.19

163.08 162.1503 157.87 162.05 -4.18 0.10 0.10

159.26 152.0946 148.52 152.36 -3.84 -0.27 0.27

155.42 142.0179 138.48 141.96 -3.48 0.06 0.06

151.71 132.3122 129.42 132.57 -3.15 -0.26 0.26

147.68 121.8024 119.22 122.00 -2.78 -0.20 0.20

143.79 111.6901 109.78 112.22 -2.44 -0.53 0.53

140.11 102.1527 100.28 102.37 -2.09 -0.22 0.22

136.20 92.0500 90.82 92.57 -1.75 -0.52 0.52

132.16 81.6443 80.39 81.77 -1.38 -0.12 0.12

128.30 71.7334 72.13 73.21 -1.08 -1.47 1.47

124.36 61.6482 61.03 61.70 -0.67 -0.06 0.06

120.37 51.4667 50.95 51.26 -0.31 0.21 0.21

116.35 41.2408 41.29 41.25 0.04 -0.01 0.01

112.33 31.0469 31.41 31.01 0.40 0.03 0.03

AVG = 99.47 97.48 99.47 -1.99 0.00 0.25
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Table F.3: Thermocouple 3 Calibration 

Results for TC03

a constant = -1.5950

b coefficient = 1.0399

U_A = 0.24

U_C = 0.24

RAW CORR RAW-CORR

RTD 4W Resist RTD Temp TC 02 TC RTD-TC abs(DT)

Ohms Celcius oC

112.41 31.2494 31.38 31.04 0.34 0.21 0.21

116.17 40.7837 40.07 40.08 -0.01 0.71 0.71

120.51 51.8234 51.23 51.68 -0.45 0.14 0.14

124.43 61.8271 60.91 61.75 -0.84 0.08 0.08

128.26 71.6309 70.26 71.47 -1.21 0.16 0.16

132.22 81.7986 79.91 81.51 -1.60 0.29 0.29

136.11 91.8178 89.62 91.60 -1.98 0.21 0.21

140.10 102.1268 99.51 101.89 -2.38 0.24 0.24

143.86 111.8718 108.82 111.57 -2.75 0.30 0.30

147.81 122.1409 118.81 121.96 -3.15 0.18 0.18

151.62 132.0771 128.34 131.87 -3.53 0.21 0.21

155.69 142.7254 138.43 142.36 -3.93 0.36 0.36

159.45 152.5940 148.08 152.40 -4.32 0.19 0.19

163.27 162.6513 157.74 162.45 -4.71 0.21 0.21

167.03 172.5814 167.26 172.35 -5.09 0.24 0.24

163.08 162.1503 157.31 162.00 -4.69 0.15 0.15

159.26 152.0946 148.08 152.40 -4.32 -0.31 0.31

155.42 142.0179 138.04 141.96 -3.92 0.06 0.06

151.71 132.3122 129.04 132.60 -3.56 -0.29 0.29

147.68 121.8024 118.88 122.03 -3.15 -0.23 0.23

143.79 111.6901 109.55 112.33 -2.78 -0.64 0.64

140.11 102.1527 100.02 102.42 -2.40 -0.27 0.27

136.20 92.0500 90.66 92.69 -2.03 -0.64 0.64

132.16 81.6443 80.17 81.78 -1.61 -0.13 0.13

128.30 71.7334 72.19 73.48 -1.29 -1.75 1.75

124.36 61.6482 60.86 61.70 -0.84 -0.05 0.05

120.37 51.4667 50.79 51.22 -0.43 0.24 0.24

116.35 41.2408 41.15 41.20 -0.05 0.04 0.04

112.33 31.0469 31.32 30.98 0.34 0.07 0.07

AVG = 99.47 97.19 99.47 -2.29 0.00 0.30
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Table F.4: Thermocouple 4 Calibration 

Results for TC04

a constant = -1.3661

b coefficient = 1.0338

U_A = 0.13

U_C = 0.13

RAW CORR RAW-CORR

RTD 4W Resist RTD Temp TC 02 TC RTD-TC abs(DT)

Ohms Celcius oC

112.41 31.2494 31.38 31.08 0.30 0.17 0.17

116.17 40.7837 40.43 40.43 0.00 0.35 0.35

120.51 51.8234 51.37 51.74 -0.37 0.09 0.09

124.43 61.8271 61.09 61.79 -0.70 0.04 0.04

128.26 71.6309 70.52 71.54 -1.02 0.09 0.09

132.22 81.7986 80.28 81.63 -1.35 0.17 0.17

136.11 91.8178 90.04 91.72 -1.68 0.10 0.10

140.10 102.1268 99.96 101.98 -2.02 0.15 0.15

143.86 111.8718 109.34 111.67 -2.33 0.20 0.20

147.81 122.1409 119.38 122.05 -2.67 0.09 0.09

151.62 132.0771 128.96 131.96 -3.00 0.12 0.12

155.69 142.7254 139.19 142.53 -3.34 0.19 0.19

159.45 152.5940 148.84 152.51 -3.67 0.08 0.08

163.27 162.6513 158.55 162.55 -4.00 0.10 0.10

167.03 172.5814 168.13 172.45 -4.32 0.13 0.13

163.08 162.1503 158.09 162.07 -3.98 0.08 0.08

159.26 152.0946 148.58 152.24 -3.66 -0.15 0.15

155.42 142.0179 138.66 141.99 -3.33 0.03 0.03

151.71 132.3122 129.48 132.50 -3.02 -0.18 0.18

147.68 121.8024 119.27 121.94 -2.67 -0.14 0.14

143.79 111.6901 109.69 112.04 -2.35 -0.35 0.35

140.11 102.1527 100.26 102.29 -2.03 -0.13 0.13

136.20 92.0500 90.67 92.37 -1.70 -0.32 0.32

132.16 81.6443 80.38 81.73 -1.35 -0.09 0.09

128.30 71.7334 71.61 72.67 -1.06 -0.93 0.93

124.36 61.6482 61.00 61.70 -0.70 -0.05 0.05

120.37 51.4667 50.95 51.31 -0.36 0.16 0.16

116.35 41.2408 41.22 41.25 -0.03 -0.01 0.01

112.33 31.0469 31.34 31.03 0.31 0.01 0.01

AVG = 99.47 97.54 99.47 -1.93 0.00 0.16

 

 

 

 



 75 

Table F.5: Thermocouple 5 Calibration 

Results for TC05

a constant = -1.5238

b coefficient = 1.0372

U_A = 0.21

U_C = 0.21

RAW CORR RAW-CORR

RTD 4W Resist RTD Temp TC 02 TC RTD-TC abs(DT)

Ohms Celcius oC

112.41 31.2494 31.38 31.02 0.36 0.23 0.23

116.17 40.7837 40.16 40.13 0.03 0.65 0.65

120.51 51.8234 51.29 51.67 -0.38 0.15 0.15

124.43 61.8271 61.95 62.73 -0.78 -0.90 0.90

128.26 71.6309 70.35 71.44 -1.09 0.19 0.19

132.22 81.7986 80.06 81.51 -1.45 0.29 0.29

136.11 91.8178 89.82 91.63 -1.81 0.18 0.18

140.10 102.1268 99.74 101.92 -2.18 0.20 0.20

143.86 111.8718 109.08 111.61 -2.53 0.26 0.26

147.81 122.1409 119.08 121.98 -2.90 0.16 0.16

151.62 132.0771 128.66 131.92 -3.26 0.16 0.16

155.69 142.7254 138.81 142.45 -3.64 0.28 0.28

159.45 152.5940 148.44 152.43 -3.99 0.16 0.16

163.27 162.6513 158.16 162.51 -4.35 0.14 0.14

167.03 172.5814 167.74 172.45 -4.71 0.13 0.13

163.08 162.1503 157.67 162.01 -4.34 0.14 0.14

159.26 152.0946 148.34 152.33 -3.99 -0.24 0.24

155.42 142.0179 138.36 141.98 -3.62 0.04 0.04

151.71 132.3122 129.22 132.50 -3.28 -0.19 0.19

147.68 121.8024 119.06 121.96 -2.90 -0.16 0.16

143.79 111.6901 109.61 112.16 -2.55 -0.47 0.47

140.11 102.1527 100.12 102.32 -2.20 -0.16 0.16

136.20 92.0500 90.68 92.53 -1.85 -0.48 0.48

132.16 81.6443 80.24 81.70 -1.46 -0.05 0.05

128.30 71.7334 71.87 73.02 -1.15 -1.28 1.28

124.36 61.6482 60.88 61.62 -0.74 0.03 0.03

120.37 51.4667 50.81 51.17 -0.36 0.29 0.29

116.35 41.2408 41.13 41.13 0.00 0.11 0.11

112.33 31.0469 31.27 30.91 0.36 0.14 0.14

AVG = 99.47 97.38 99.47 -2.10 0.00 0.27  
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Table F.6: Thermocouple 6 Calibration 

Results for TC06

a constant = -1.2016

b coefficient = 1.0279

U_A = 0.15

U_C = 0.15

RAW CORR RAW-CORR

RTD 4W Resist RTD Temp TC 02 TC RTD-TC abs(DT)

Ohms Celcius oC

112.41 31.2494 31.42 31.10 0.32 0.15 0.15

116.17 40.7837 40.39 40.32 0.07 0.47 0.47

120.51 51.8234 51.49 51.73 -0.24 0.09 0.09

124.43 61.8271 61.25 61.76 -0.51 0.06 0.06

128.26 71.6309 70.78 71.55 -0.77 0.08 0.08

132.22 81.7986 80.58 81.63 -1.05 0.17 0.17

136.11 91.8178 90.36 91.68 -1.32 0.14 0.14

140.10 102.1268 100.39 101.99 -1.60 0.14 0.14

143.86 111.8718 109.81 111.67 -1.86 0.20 0.20

147.81 122.1409 119.86 122.01 -2.15 0.14 0.14

151.62 132.0771 129.52 131.93 -2.41 0.14 0.14

155.69 142.7254 139.81 142.51 -2.70 0.21 0.21

159.45 152.5940 149.50 152.47 -2.97 0.12 0.12

163.27 162.6513 159.29 162.54 -3.25 0.12 0.12

167.03 172.5814 168.94 172.46 -3.52 0.13 0.13

163.08 162.1503 158.79 162.02 -3.23 0.13 0.13

159.26 152.0946 149.32 152.29 -2.97 -0.19 0.19

155.42 142.0179 139.30 141.99 -2.69 0.03 0.03

151.71 132.3122 130.04 132.47 -2.43 -0.16 0.16

147.68 121.8024 119.80 121.94 -2.14 -0.14 0.14

143.79 111.6901 110.23 112.11 -1.88 -0.42 0.42

140.11 102.1527 100.70 102.31 -1.61 -0.16 0.16

136.20 92.0500 91.14 92.48 -1.34 -0.43 0.43

132.16 81.6443 80.69 81.74 -1.05 -0.10 0.10

128.30 71.7334 72.01 72.82 -0.81 -1.09 1.09

124.36 61.6482 61.17 61.68 -0.51 -0.03 0.03

120.37 51.4667 51.09 51.31 -0.22 0.15 0.15

116.35 41.2408 41.29 41.24 0.05 0.00 0.00

112.33 31.0469 31.32 30.99 0.33 0.05 0.05

AVG = 99.47 97.94 99.47 -1.53 0.00 0.19
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Table F.7: Polynomial Regression Data, Calibration with 4 Wire RTD 

Output from Poly_regress user form, S. M. Jeter, 24 Dec 03-2 Apr 04.

Note this sheet is mostly values with few active formulas. See notes at Cell B12

Points = 29 R_sq = 0.999958 D of F = 27

Vars = 1 SEE = 0.285013 k_c_raw = 2.051829

Coef U of Coef Alpha R Cond Coef Cond U X min X max X avg

Var 1 1.027922 0.001286 1.36E-60 1.027922 0.001286 31.32 168.94 97.94097

scaling not selected

k_c mult = 1 U_A avg = 0.149238

k_c plot = 2.051829 U_C avg = 0.150636

Notes to Users:

The coverage factor inflator in Cell M2 can be updated

The U_B uncertainty data in Column AF can be updated

Important average uncertainty data are in Cells O2 and O3

Average uncertainties above valid only if the M2 inflator is 1

Y_raw Y_corr Y_model X_block

Point 1 31.24943 31.24943 31.09576 31.42

Point 2 40.78368 40.78368 40.31622 40.39

Point 3 51.82342 51.82342 51.73027 51.494

Point 4 61.82708 61.82708 61.76279 61.254

Point 5 71.63087 71.63087 71.55478 70.78

Point 6 81.79864 81.79864 81.62842 80.58

Point 7 91.81781 91.81781 91.6815 90.36

Point 8 102.1268 102.1268 101.9916 100.39

Point 9 111.8718 111.8718 111.6746 109.81

Point 10 122.1409 122.1409 122.0052 119.86

Point 11 132.0771 132.0771 131.9349 129.52

Point 12 142.7254 142.7254 142.5123 139.81

Point 13 152.594 152.594 152.4728 149.5

Point 14 162.6513 162.6513 162.5362 159.29

Point 15 172.5814 172.5814 172.4556 168.94

Point 16 162.1503 162.1503 162.0222 158.79

Point 17 152.0946 152.0946 152.2878 149.32

Point 18 142.0179 142.0179 141.988 139.3

Point 19 132.3122 132.3122 132.4695 130.04

Point 20 121.8024 121.8024 121.9435 119.8

Point 21 111.6901 111.6901 112.1063 110.23

Point 22 102.1527 102.1527 102.3102 100.7

Point 23 92.04998 92.04998 92.48328 91.14

Point 24 81.64434 81.64434 81.74149 80.69

Point 25 71.73341 71.73341 71.73341 72.01

Point 26 61.64817 61.64817 61.64817 61.17

Point 27 51.46672 51.46672 51.31499 51.09

Point 28 41.24081 41.24081 41.24135 41.29

Point 29 31.04688 31.04688 30.99296 31.32  
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Table F.8: Regression Statistics, Calibration with 4 Wire RTD 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.9999789

R Square 0.9999577

Adjusted R Square 0.9999562

Standard Error 0.2850132

Observations 29

ANOVA

df SS MS F Significance F

Regression 1 51889.038 51889.04 638771.6 1.35908E-60

Residual 27 2.193278674 0.081233

Total 28 51891.23128

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -1.2015644 0.13663254 -8.794131 2.07E-09 -1.481911017 -0.921218

X Variable 1 1.0279224 0.001286138 799.2319 1.36E-60 1.025283422 1.030561
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APPENDIX G 

HEAT TRANSFER COEFFICIENT REGRESSION ANALYSIS 

 

Figure G.1: Olivine Heat Transfer Coefficient Polynomial Regression 

 

Figure G.2: Fine Sifted Silica Heat Transfer Coefficient Polynomial Regression 
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Figure G.3: Fine Silica Heat Transfer Coefficient Polynomial Regression 

 

Figure G.4: Construction Silica Heat Transfer Coefficient Polynomial Regression 
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Table G.1: Olivine Heat Transfer Coefficient Regression Statistics 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.99940947

R Square 0.99881928

Adjusted R Square 0.90791019

Standard Error 209.703056

Observations 12

ANOVA

df SS MS F Significance F

Regression 1 409206116.4 4.09E+08 9305.347 3.50994E-16

Residual 11 483729.0905 43975.37

Total 12 409689845.5

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

X Variable 1 590.401413 6.120418087 96.46423 1.86E-17 576.9304631 603.8724

U_A 13.47094938  

 

Table G.2: Fine Sifted Silica Heat Transfer Coefficient Regression Statistics 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.99977327

R Square 0.9995466

Adjusted R Square 0.7995466

Standard Error 135.974758

Observations 6

ANOVA

df SS MS F Significance F

Regression 1 203800618.8 2.04E+08 11022.72 4.93527E-08

Residual 5 92445.67428 18489.13

Total 6 203893064.4

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

X Variable 1 494.934972 4.714153153 104.9892 1.49E-09 482.8168553 507.05309

U_A 12.11811646  
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Table G.3: Fine Silica Heat Transfer Coefficient Regression Statistics 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.99767253

R Square 0.99535048

Adjusted R Square 0.88423937

Standard Error 421.038478

Observations 10

ANOVA

df SS MS F Significance F

Regression 1 341549862.9 3.42E+08 1926.684 8.00751E-11

Residual 9 1595460.599 177273.4

Total 10 343145323.5

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

X Variable 1 396.559099 9.034469352 43.89401 8.26E-12 376.1217099 416.99649

U_A 20.43738952  

 

Table G.4: Construction Silica Heat Transfer Coefficient Regression Statistics 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.99244865

R Square 0.98495432

Adjusted R Square 0.84209718

Standard Error 684.154764

Observations 8

ANOVA

df SS MS F Significance F

Regression 1 214492001.3 2.14E+08 458.2499 6.77898E-07

Residual 7 3276474.187 468067.7

Total 8 217768475.5

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

X Variable 1 303.286456 14.16778055 21.40677 1.22E-07 269.7849788 336.7879

U_A 33.50147748  
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APPENDIX H 

HEAT TRANSFER COEFFICIENT DATA, THIN FILM TC 

 

Table H.1: Thin Film Thermocouple Heat Transfer Coefficient Data 

Olivine

ΔT_Air(°K) ΔT_Sand(°K) Power_Air(W) Power_Sand(W) Heat_Flux_Sand(W/K-m²) h_Sand(W/K-m²) 

6.789664 3.13725 0.870608401 19.1293916 1491.854907 475.5295

12.4805955 5.423446 1.600331222 38.39966878 2994.697139 552.1761

18.031493 7.6775575 2.312098107 57.68790189 4498.939712 585.9858

23.993944 10.169154 3.076636666 76.92336333 5999.066749 589.9278

29.3744545 12.5384325 3.766555584 96.23344442 7505.013191 598.5607

35.3549085 14.9469475 4.533402588 115.4665974 9004.960198 602.4615

6.9202435 3.148321 0.887352029 19.11264797 1490.549112 473.4425

12.4664735 5.553757 1.598520421 38.40147958 2994.838359 539.2455

18.2044235 7.769333 2.334272216 57.66572778 4497.210407 578.8412

23.9391765 10.3608395 3.069614073 76.93038593 5999.614424 579.0664

29.480247 12.5749895 3.780120886 96.21987911 7503.955266 596.7365

35.1190085 15.003721 4.50315418 115.4968458 9007.319198 600.339

Fine Sifted Silica

ΔT_Air(°K) ΔT_Sand(°K) Power_Air(W) Power_Sand(W) Heat_Flux_Sand(W/K-m²) h_Sand(W/K-m²) 

6.7378195 3.1865385 0.863960611 19.13603939 1492.373352 468.3368

13.02665 6.0459165 1.670349361 38.32965064 2989.236594 494.4224

20.118594 9.5555855 2.579717781 57.42028222 4478.068702 468.6336

25.555522 12.1829835 3.276870864 76.72312914 5983.450969 491.1318

31.0032245 14.985482 3.975405513 96.02459449 7488.725491 499.732

36.9930055 17.915548 4.743448476 115.2565515 8988.579228 501.7195

Fine Silica

ΔT_Air(°K) ΔT_Sand(°K) Power_Air(W) Power_Sand(W) Heat_Flux_Sand(W/K-m²) h_Sand(W/K-m²) 

9.7326315 4.4580375 1.247972027 18.75202797 1462.425232 328.0424

14.4097505 7.4767765 1.847698183 38.15230182 2975.405589 397.953

17.472094 8.4245905 2.240368863 37.75963114 2944.782154 349.546

21.339179 10.9918495 2.736227964 57.26377204 4465.862852 406.2886

23.5584365 11.6169235 3.020793477 56.97920652 4443.670277 382.517

28.132608 14.533007 3.607319134 76.39268087 5957.680109 409.9413

30.6000415 15.2577485 3.923707151 76.07629285 5933.005774 388.852

49.5848245 20.45594 6.358041393 93.64195861 7302.909491 357.0068

40.080141 20.7490565 5.139298124 114.8607019 8957.707873 431.7164

44.087552 21.826419 5.653150603 114.3468494 8917.633763 408.5706

Construction Silica

ΔT_Air(°K) ΔT_Sand(°K) Power_Air(W) Power_Sand(W) Heat_Flux_Sand(W/K-m²) h_Sand(W/K-m²) 

8.841853 4.517427 1.133751464 18.86624854 1471.333017 325.7016

10.1202935 5.572811 1.2976802 18.7023198 1458.548612 261.7258

17.404024 9.174893 2.23164055 37.76835945 2945.462854 321.0351

21.091492 12.1773675 2.704468162 37.29553184 2908.588174 238.852

48.95939 17.0490875 6.27784471 53.72215529 4189.660742 245.7411

80.339305 24.7335015 10.30155157 89.69844843 6995.364686 282.8295

48.6259455 21.058859 6.235088606 93.76491139 7312.498281 347.241

61.896475 26.4962375 7.93670955 112.0632905 8739.544533 329.841  
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