
RELIABILITY-BASED STRUCTURAL DESIGN: A CASE OF

AIRCRAFT FLOOR GRID LAYOUT OPTIMIZATION

A Thesis
Presented to

The Academic Faculty

by

Qing Chen

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering in the
George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
May 2010

RELIABILITY-BASED STRUCTURAL DESIGN: A CASE OF
AIRCRAFT FLOOR GRID LAYOUT OPTIMIZATION

Approved by:

Dr. Roger Jiao, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Seung-Kyum Choi
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Dirk Schaefer
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: November 22, 2010

iii

ACKNOWLEDGMENTS

First I would like to thank my advisor, Dr. Roger Jiao, from whom I learned the methodology of scientific

research; without whom I could not have written this thesis. I would like to thank the other members of

my thesis reading committee, Dr. Seung-Kyum Choi and Dr. Dirk Schaefer, for taking time reading my

thesis. I would also like to thank Boeing in Charleston, S.C. for providing the opportunity of case study.

I would like to thank students in the System Realization Laboratory. I would like to thank my roommate

Andrew McMorrow for sharing the happy hours when we were living in GLC. I would like to thank Lam

Duong for studying, doing projects and discussing together with me. I would like to thank Stephanie

Thompson and Ben Lee for helping me when I first came to SRL. I would like especially to thank Ms. Lei

Zhu for teaching me driving during 2009 winter break when I was in need of help. I would also like to

thank Chenjie Wang, Jiten Patel, Andrew Hyder, Xiufeng Yang, Chuanfeng Wang, Mukul Singhee,

Thomas Stone and some other students for their friendship. My thanks also go to Kiki Lewis, who has

always been by my side every night when I come home.

I would like to thank Georgia Tech for providing financial support. I would like also to thank those

undergraduate students in Savannah campus who were involved in and contributed to this research.

Last but not least I would like to thank my parents, my sister and her husband, without their

understanding and support I could not have made it this far.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii
LIST OF TABLES .. vii
LIST OF FIGURES ... viii
NOMENCLATURE ... x
SUMMARY ... xi
CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation and Significance ... 1
1.2 Problem Description ... 2
1.3 Research Objective and Scope .. 4
1.4 Outline of This Thesis ... 6

CHAPTER 2: BACKGROUND REVIEW ... 9
2.1 Uncertainty in Structural Design ... 9
2.2 Reliability-based Design Optimization ... 10
2.3 Simulation Methods .. 13
2.4 Computation Expenses .. 16
2.5 Random Variable Correlations and Dependence .. 17
2.6 Optimization Method .. 18
2.7 Bilevel Optimization ... 21

CHAPTER 3: AIRCRAFT FLOOR GRID LAYOUT OPTIMIZATION .. 22
CHAPTER 4: RELIABILITY-BASED STRUCTURAL DESIGN AND OPTIMIZATION 28

4.1 Introduction ... 28
4.2 Literature Review .. 30
4.3 Ten-Bar-Truss Model as a Typical Example .. 32

4.3.1 Two Random Variable Example .. 35
4.3.2 Three Random Variable Example .. 36

4.4 Illustrated Examples .. 37
4.4.1 Mean Value First Order Second Moment method (MVFOSM) .. 38
4.4.2 Hasofer-Lind method ... 41
4.4.3 Second Order Reliability Method (SORM) ... 44

4.5 Summary ... 46
CHAPTER 5: COPULAS MODELING OF RANDOM VARIABLE CORRELATION 47

5.1 Methods for Modeling Random Variable Correlations .. 47
5.1.1 Pearson’s correlation coefficient .. 47
5.1.2 Multivariate distribution functions ... 48
5.1.3 Karhunen-Loeve expansion ... 49

v

5.2 Copula Review .. 52
5.2.1 Literature Review ... 53
5.2.2 Normalized Form of Correlated Random Variables .. 54

5.2.2.1 Concept of dependence and example of dependent bivariate random variables generation54
5.2.2.2 Correlated random variables generation by bivariate Gaussian distribution 55
5.2.2.3 Correlated random variables generation by bivariate t-distribution 58

5.2.3 Copula Properties and Applications ... 58
5.2.3.1 Properties of copula .. 60
5.2.3.2 Archimedean Copula ... 61
5.2.3.3 Rank correlation coefficient .. 63
5.2.3.4 Estimating Kendall’s tau by experiment ... 64
5.2.3.5 Generating correlated bivariate dataset based on copula .. 65

5.3 Illustrated Examples .. 65
5.3.1 Uncorrelated Monte Carlo Simulation to Evaluate Pf ... 66
5.3.2 Correlated MCS to Evaluate Pf by Bivariate Gaussian Distribution ... 66
5.3.3 Correlated MCS to Evaluate Pf by KL expansion ... 66
5.3.4 Correlated MCS to Evaluate Pf by Copula .. 67

5.3.4.1 Different copula families .. 68
5.3.4.2 Generate correlated random variables by copula .. 72

5.4 Summary ... 75
5.4.1 Advantages of Copula .. 75
5.4.2 Disadvantages of Copula ... 76

CHAPTER 6: OPTIMIZATION BASED ON STRUCTURE SURROGATE MODEL 77
6.1 Simulation Problem .. 77
6.2 Solutions for the Problem ... 77

6.2.1 Importance Sampling ... 77
6.2.2 Surrogate Model ... 77

6.3 Kriging .. 78
6.4 Illustrated Examples .. 83

6.4.1 Surrogate Model for Ten Bar Truss Case .. 83
6.4.2 Optimization Based on Surrogate Model ... 86

6.5 Comparison between Kriging and other interpolation methods .. 90
6.6 Summary ... 92

CHAPTER 7: HEURISTIC GRADIENT BASED SEARCHING ALGORITHM 93
7.1 Problem Description ... 93
7.2 Response Surface for Constraints without Analytical Form ... 95

vi

7.3 Heuristic Gradient Based Searching Algorithm .. 96
7.4 Summary ... 98

CHAPTER 8: ALTERNATIVE ALGORITHMS TO EVALUATE BETA AND CORRELATED HL
METHOD ... 100

8.1 Evaluating Pf by Optimization Method .. 100
8.1.1 Gradient Projection Method ... 100
8.1.2 Reduced Gradient Method ... 106

8.2 Correlated HL method .. 109
8.3 Summary ... 113

CHAPTER 9: ILLUSTRATED EXAMPLE OF FLOOR GRID STRUCTURAL OPTIMIZATION 115
9.1 Case I .. 115

9.1.1 Hypothesis and Simplifications ... 115
9.1.2 Optimization Model ... 117
9.1.3 Searching Algorithm .. 121
9.1.4 Probability of Failure Evaluation ... 124

9.2 Case II ... 124
9.2.1 Hypothesis and Simplification ... 125
9.2.2 Optimization Model ... 126
9.2.3 Searching Algorithm .. 129

9.2.3.1 Evaluating β at sampling points .. 129
9.2.3.2 Regression by multiquadric interpolation or Kriging ... 131

9.3 Summary ... 136
CHAPTER 10: ILLUSTRATED EXAMPLE OF FLOOR GRID AND FLOOR BOARD BILEVEL
OPTIMIZATION .. 137
CHAPTER 11: CONCLUSION, LIMITATIONS AND FUTURE WORK... 142

11.1 Conclusion .. 142
11.2 Limitations .. 143
11.3 Future Work .. 144

APPENDIX ... 146
REFERENCES ... 193

vii

LIST OF TABLES

Table 4-1 Load coefficients .. 35
Table 4-2: Comparison between MVFOSM and MCS results ... 40
Table 4-3: Iterations of HL method for rod3 .. 43
Table 4-4: Iterations of HL method for rod7 .. 43
Table 4-5: comparison between MVFOSM, MCS and HL results ... 44
Table 4-6: Comparison between MCS, MVFOSM, HL and SORM results ... 46
Table 5-1: Random variables and their respective CDF functions ... 61
Table 5-2: Selected Archimedean copulas and their respective generator functions (content partly from
Nelsen, 1999 and Frees, E.W., 1998) .. 62
Table 5-3: Data samples generated by KL transform for simulation .. 67
Table 5-4: Inverse Gaussian CDF table .. 70
Table 5-5: Comparison of simulation results of different families of copula ... 71
Table 5-6: Data samples generated by Gumbel-Hougaard and Clayton copula ... 74
Table 6-1: Comparison between Kriging-based method and other methods .. 85
Table 6-2: The results of the precise limit-state values and the results from kriging approximation, with
error percentage .. 86
Table 6-3: Random variables used for the computation ... 87
Table 6-4: Sampling points and their values ... 88
Table 8-1: Searching iterations by gradient projection method .. 105
Table 8-2: Converging from different starting points by gradient projection method 106
Table 8-3: Comparison between the results from gradient projection method and other methods 106
Table 8-4: Rod 3 searching iterations by reduced gradient algorithm .. 109
Table 8-5: Rod 7 searching iterations by reduced gradient algorithm .. 110
Table 8-6: Comparison between the results of correlated HL method and MCS 113
Table 9-1: Tentative searching iterations .. 121
Table 9-2: Heuristic gradient based searching iterations .. 122
Table 9-3: Convergence from different starting points ... 122
Table 9-4: Optimal solutions .. 123
Table 9-5: Probability of failure evaluation for optimal solutions .. 124
Table 9-6: Sampling points on each dimension .. 129
Table 9-7: Reliability indices of stress limit-state function at sampling points .. 130
Table 9-8: Reliability indices of deflection limit-state function at sampling points 131
Table 9-9: Searching iterations table .. 134
Table 10-1: Searching iterations table .. 139

viii

LIST OF FIGURES

Figure 1-1 Space shuttle Challenger and Columbia tragedy ... 2
Figure 1-2 Complete structural failure of a 737 in Hawaii in 1988 .. 2
Figure 1-3: Outline of this thesis .. 7
Figure 2-1: Taxonomy of reliability evaluation methods ... 10
Figure 2-2: Monte Carlo sampling method ... 14
Figure 2-3: Illustration of failure rate in a simulation ... 15
Figure 2-4: Latin Hypercube Sampling method (figure from Choi, S.K., 2006) .. 15
Figure 3-1: Aircraft structures (Pictures from internet) .. 22
Figure 3-2: Aircraft general arrangement (Picture from internet)... 23
Figure 3-3: Topology optimization for a cantilever beam (figure from Kim S.R. et al, 2007) 24
Figure 3-4: Aircraft floor board and floor grid ... 25
Figure 3-5: Aircraft floor grid, board, beams and tracks .. 25
Figure 3-6: Floor grid in different areas has different load conditions ... 26
Figure 4-1: Reliability-based structural design optimization flow chat .. 29
Figure 4-2: Ten-bar-truss model ... 32
Figure 4-3: Physical meaning of reliability index in MVFOSM .. 39
Figure 4-4: Flow chat of HL method .. 42
Figure 5-1: PDF plot of bivariate Gaussian for =0 and =0.8 respectively .. 49
Figure 5-2: Example of using KL expansion to reduce data dimensions.. 52
Figure 5-3: Scatter plots of Independent and Dependent Bivariate Gaussian Distributions 54
Figure 5-4: Taking exponential for independent and dependent Gaussian distribution 55
Figure 5-5: Upper: Illustration of bivariate Gaussian before and after CDF transform; Lower:
histogram in two dimensions after CDF transform ... 56
Figure 5-6: Normalized random variables before and after inverse CDF transform (X: Gamma; Y: t) 57
Figure 5-7: Normalized random variables before and after inverse CDF transform (X: Gamma; Y:
Gamma) .. 57
Figure 5-8: Using bivariate Gaussian and t distribution to generate normalized random variables and by
which to produce any desired marginal distributions ... 59
Figure 5-9: Upper and lower boundaries of copula .. 60
Figure 5-10: Scatter plots of Clayton, Frank and Gumbel copulas (n=1000, τ=0.7) 62
Figure 5-11: PDF and CDF of Gumbel-Hougaard copula (θ=2) .. 63
Figure 5-12: Illustration of the concept of concordance and discordance .. 64
Figure 5-13: Scatter plot of Clayton copula random variables ... 69
Figure 5-14: Scatter plot of Gumble copula random variables ... 69
Figure 5-15: Scatter plot of Frank copula random variables ... 70
Figure 5-16: Scatter plot for data samples generated by Gumbel-Hougaard (left) and Clayton (right)
copula .. 73
Figure 5-17: Illustration of how positive and negative correlation influence failure rate 75
Figure 6-1: Kriging in 2D plane (figure from Wikipedia.com) .. 79
Figure 6-2: Kriging using sampling points values to estimate value at a given point 79
Figure 6-3: Covariance function ... 84
Figure 6-4: Example of bilinear interpolation ... 88
Figure 7-1 Example of segment function .. 94
Figure 7-2: Heuristic searching algorithm (arrows denote gradient descent directions) 97
figure-7-3 Flow chart of heuristic search algorithm under response surface constraints 99
Figure 8-1: Geometrical meaning of reliability index ... 101
Figure 8-2: Illustration of gradient projection method (1) .. 102
Figure 8-3: Illustration of gradient projection method (2) .. 103

ix

Figure 9-1: Track section view ... 125
Figure 9-2: Ill conditioned interpolation example by multiquadric interpolation 132
Figure 9-3: Kriging interpolation example on 1 and 2 dimensions .. 133
Figure 10-1: Flow chat of bilevel optimization searching algorithm .. 140

x

NOMENCLATURE

ρ = Pearson’s correlation coefficient

)(dK = Covariance function

KC; = Covariance matrix

k = Covariance vector between sampling points and estimating point

αλ = Kriging weight

)(Xf = Objective function

)(Xh = Equality constraints

)(Xg = Inequality constraints

f∇ = Gradient of function f()

H = Hessian matrix of objective function

)(λx,L = Lagrangian function

fP = Probability of failure

β = reliability index

X = Mean value point

*X = MPP point

)();(UX gg = Limit state function

)(ˆ Ug = First order approximation of limit state function at MPP point

),(vuC XY = Copula CDF function between two random variables X and Y

),(vucXY = Copula PDF function between two random variables X and Y

θ = Coefficient of Archimedean copula

xi

SUMMARY

In this thesis, several Reliability-based Design Optimization (RBDO) methods and algorithms for airplane

floor grid layout optimization are proposed. A general RBDO process is proposed and validated by an

example. Copula as a mathematical method to model random variable correlations is introduced to

discover the correlations between random variables and to be applied in producing correlated data

samples for Monte Carlo simulations. Based on Hasofer-Lind (HL) method, a correlated HL method is

proposed to evaluate a reliability index under correlation. As an alternative method for computing a

reliability index, the reliability index is interpreted as an optimization problem and two nonlinear

programming algorithms are introduced to evaluate reliability index. To evaluate the reliability index by

Monte Carlo simulation in a time efficient way, a kriging-based surrogate model is proposed and

compared to the original model in terms of computing time. Since in RBDO optimization models the

reliability constraint obtained by MCS does not have an analytical form, a kriging-based response surface

is built. Kriging-based response surface models are usually segment functions that do not have a uniform

expression over the design space; however, most optimization algorithms require a uniform expression for

constraints. To solve this problem, a heuristic gradient-based direct searching algorithm is proposed.

These methods and algorithms, together with the RBDO general process, are applied to the layout

optimization of aircraft floor grid structural design.

1

CHAPTER 1: INTRODUCTION

1.1 Motivation and Significance

In modern structural design, it is always required to assess the uncertainties in material, load, and

environment factors of complex structures. For structure models in which randomness is relatively small,

it is usually satisfactory to model it by a deterministic method in which the uncertainties are represented

by a safety-factor. In the real world, most of the design variables as well as external loads, material

properties and environment data usually follow some probabilistic distributions and can be regarded as

random variables. The combinations of these random variables determine the safety of the structure.

Safety-factor based design is a coarse approximation of the reality. In some cases it leads to design

failure, in most cases it results in an over expensive design, i.e., high cost and high weight.

To overcome the drawbacks of safety-factor-based structural design, a set of reliability-based structural

design methods has been developed in recent years. Reliability is defined as the ability of a system or

component to perform its required functions under stated conditions for a specified period of time. In

structural engineering, reliability is usually quantified by the failure rate, given a large set of random

samples. Reliability is essentially important for complex systems like warships, space shuttles and

aircrafts. The disasters of space shuttle Challenger and Columbia reminds people of the importance of

system reliability.

Modern aircraft must undergo severe conditions such as atmospheric pressure differences and temperature

differences between the inside and outside of the plane, or heavy structural loads applied upon vehicle

components. During aircraft design, the designer needs to consider several factors to satisfy both the static

strength requirement, the fatigue requirement and damage tolerance requirement as well. The result

2

Figure 1-1 Space shuttle Challenger and Columbia tragedy (picture from internet)

of the process is an optimized design with respect to weight, costs and aircraft performance. The purpose

of reliability-based structural design for aircraft is to guarantee the reliability of the aircraft structure

when the aircraft is operating under uncertainties coming from the material, external load, and

environment.

Figure 1-2 Complete structural failure of a 737 in Hawaii in 1988 (picture from internet)

1.2 Problem Description

This thesis mainly solves these problems:

3

1. Although there are many existing methods for reliability evaluation and optimization, such as First

Order Reliability Method (FORM), Second Order Reliability Method (SORM), Monte Carlo Simulation

(MCS), Non-Linear Programming (NLP), Copula, Kriging, Artificial Neural Network (ANN), etc. These

methods and algorithms are usually focused on details of a specific problem. However in engineering, a

general process that incorporates various detailed methods and algorithms is required. Detailed methods

and algorithms are usually more “academic”, however the general process is more “engineering”

concerned. The purpose of the general process is to provide guidance for structure designers from random

variable correlation discovery to the finding of the optimal design point.

2. Numerical simulations are usually required for reliability-based design and optimization. To achieve

reliable results, it is usually required for the sample set to be big (e.g., 10e6 samples). This is a problem

for mathematical models that are computationally intensive since the simulation may take a long time. For

structural problems based on Finite Element Analysis (FEA) models, this is especially a problem. The

problem is, how to reduce the computational expenses of numerical simulation?

3. Correlation between random variables is not uncommon in reliability-based design optimization

problems. Karhunen-Loeve (KL) expansion can be used to represent random variable correlations.

Copula as another method to study random variable correlations is now gaining popularity in academia.

The problem is, how to use copula in reliability-based structural optimization? What are the advantage

and disadvantages of using copula in RBDO?

4. RBDO requires finding an optimal design point in the design space that satisfies the equality and

inequality constraints. The challenge is, when the reliability constraint is represented by a response

surface model that does not have a uniform form over the design space (or, if the response surface is

fragment function), how the optimal design point can be found?

4

1.3 Research Objective and Scope

Reliability-based structural optimization fulfills the objective function (usually minimizing the structural

weight) with the constraint of reliability indices. This reduces the overall cost and weight of the structural

while guaranteeing the structural reliability. There are several established structure reliability evaluation

methods such as Mean Value First Order Second Moment (MVFOSM) method, Hasofer-Lind (HL)

method, Second Order Reliability Method (SORM), etc. However in engineering practice, some practical

factors that may impact the reliability evaluation precision and some factors that may improve

computation efficiency need to be considered. In the optimization process, some algorithms are proposed

and verified.

1. Copula for Modeling Random Variable Correlations

Copula [Nelsen,R.B., 1999] has been introduced to model random variable correlations. In engineering

problems, it’s not unusual that some random variables have a certain relationship. For example, when one

load is big, another one also tends to be big. Copula can be applied to model such relationships. The

concept of copula has been introduced by some examples in this thesis. The application of copula in

correlated random variable generation has been discussed. With several different types of Archimedean

families of copula as examples, this thesis explains why copulas with the same correlation coefficient

produce different simulation results. Comparison has been made between Karhunen-Loeve (KL)

expansion and copula via a ten-bar-truss example.

2. Kriging for Surrogate Model

Reliability index β is a measure of structural reliability; it is a function of random variable distribution

and correlation. Details about reliability index β can be found in [Choi,S.K., 2006]. Most methods for

computing reliability index β are iterative numerical methods which are usually computationally intensive.

For Monte Carlo Simulation (MCS) of a large number of samples, the computation time usually becomes

unaffordable. To deal with this problem, a kriging-based surrogate model is studied to replace the original

5

computationally expensive model. The kriging-based surrogate model can achieve high computational

speed while still keeping high precision when sample points are chosen appropriately. A comparison has

been made for computation speed between different methods, including those based on original models

and those based on surrogate model.

3. Heuristic Gradient Based Searching Algorithm

Reliability-based structural design eventually gives an optimization problem with a constraint being

structural reliability index requirement or threshold. The reliability constraints obtained by MCS are

usually discrete numerical points without an analytical form. For an optimization problem having all

inequality constraints with analytical form, Karush-Kuhn-Tucker (KKT) condition can be applied to

compute the optimal point. However if the constraints have no analytical form, KKT condition cannot be

applied. To solve this problem, a response surface model is proposed. However for response surface

models obtained by many interpolative methods, the response surfaces are usually segment functions

without a uniform expression, which poses a problem for most optimization algorithms. To solve this

problem, a heuristic gradient based numerical searching method is proposed. On each searching step, the

constraints will be checked for activation. If a constraint is activated during a step, gradient projection

method will be applied to find the constraint optimum of that step. This process continues until it

converges on the optimal point. This thesis proposed this method and validated it by a Reliability-based

Design Optimization (RBDO) problem.

4. Correlated HL Method

In structural reliability studies, the original HL method does not consider the correlations between random

variables. However, many engineering problems observe the existence of correlations between random

variables. This thesis studied the correlations between random variables and proposed a correlated HL

method. The correlated HL method is a modified HL method that considers the correlation between two

random variables. A simulation has been made to validate this method.

6

5. Evaluating Reliability Index by Non-Linear-Programming (NLP)

Reliability index β can be computed by MVFOSM, HL and SORM methods. Some methods are

imprecise, and some methods are non-intuitive and it is difficult to interpret the physical meaning. When

the process of computing β is viewed as an optimization problem, nonlinear optimization method can be

applied to solve β with precision and with intuitive geometric meanings. A ten-bar-truss example has

been studied to compute β by FORM, HL, SORM and nonlinear optimization method. This example

shows that the nonlinear optimization method can achieve high precision.

6. Modeling a RBDO Problem as Bilevel Optimization Problem

In many practical optimization problems it’s not unusual to find multi-objective problems with different

priorities for different objectives. One of such examples is the famous Stackelberg problem. For

optimization problems with two optimization objectives, one of the objectives can be selected as leader

objective and another can be selected as follower objective. The leader objective has higher priority over

the follower objective in the optimization process. In this thesis, the airplane floor grid reliability-based

optimization problem will be studied. The problem will be modeled as a bilevel optimization problem.

The reliability requirements can be modeled as inequality constraints that do not have analytical form. To

solve the bilevel optimization problem, the response surface method based on regression can be used to

replace the reliability constraints.

1.4 Outline of This Thesis

Organization of this thesis is illustrated in Figure 1-3:

7

Figure 1-3: Outline of this thesis

In Chapter 2, the background knowledge for this thesis including probability and reliability-based design

method, commonly used solutions for computationally intensive models, concept of random variable

dependence and correlation are briefly reviewed. In Chapter 3, the aircraft floor grid layout optimization

problem is formulated and an optimization model is given. Chapter 4 is a review of RBDO related

algorithms and methods including analytical method and simulation based method as well as nonlinear

8

optimization methods. A ten bar truss model and another example are given in this chapter to exemplify

commonly used RBDO methods. This ten-bar-truss case also provides an example for further studies in

the coming chapters. In Chapter 5, popular methods for modeling random variable correlations are

reviewed and Copula as an alternative method for studying correlation is introduced. A method for

applying copula in MCS is also introduced. In Chapter 6, a kriging-based surrogate model is proposed to

reduce the MCS simulation intensity as well as to provide a response surface for optimization. Chapter 7

proposes a heuristic searching algorithm for optimization problems which have inequality constraints that

do not have analytical form. In Chapter 8, some other algorithms including an alternative NLP based

method to evaluate reliability index and a correlated HL method is proposed. In Chapter 9, an aircraft

floor grid layout optimization problem is studied as an example of the general process of the reliability-

based structural design and optimization, in which copula, Monte Carlo Simulation, heuristic gradient-

based search algorithm and response surface model are applied. In Chapter10, the aircraft floor grid

optimization problem is modeled as a bilevel optimization problem.

9

CHAPTER 2: BACKGROUND REVIEW

2.1 Uncertainty in Structural Design

Uncertainty is an inevitable phenomenon in structural design. Uncertainty in structural design could come

from various sources including the unevenness of material properties, tolerance of structural member

dimensions, stochastic external loads, etc. The structural designer should look for a safe structural design

that could survive various uncertainties. Traditional safety factors were used to cover the influence of

uncertainties. However, structural design based on safety factors is a coarse process which may cause

heavy expenses and waste of material. Recently, probabilistic methods have been used which can give a

safer design at the cost of certain computation expenses. However these methods would require the

statistical parameters that could be computationally expensive to obtain.

Probabilistic methods for structural analysis include the study of performance functions, or limit state

functions. A limit state function is the difference between the structural resistance capacity (e.g., yield

strength, allowable displacement, permissible vibration level, etc.) and the response of the system (e.g.,

stress, actual displacement, actual vibration level, etc.). Reliability analysis methods can be classified into

two categories: analytical method and simulation method. Analytical methods are easy to use and

computationally inexpensive. Simulation methods include Monte Carlo Simulation (MCS) and Latin

Hypercube Sampling (LHS). Simulation methods are computationally intensive and time consuming but

they can be used for any structural model or limit state function. Simulation methods can also be used for

multiple limit state functions.

Shown in Figure 2-1 is the taxonomy of reliability evaluation methods.

10

2.2 Reliability­based Design Optimization

Structural engineers under competitive pressure always desire fast development of structural designs. This

usually comes at the cost of reliability and robustness. In the early design phase it is always necessary to

make decisions based on incomplete information and without physical or virtual tests. In order to

facilitate this design methodology, it is necessary to find a way to assess system reliability and improve

designs based on it. This is the main reason for the emergence of Reliability-based Design Optimization

(RBDO).

In deterministic design the optimal solution usually has a high chance of failure due to the reason of

uncertainties in the manufacturing process and uncertainties in the external environment. Uncertainties

need be taken into consideration in design process. Optimized deterministic design solutions that do not

consider uncertainties may be unreliable and may lead to structural failure. RBDO can be applied to

address this problem. The objective of Reliability-based Design Optimization (RBDO) is to minimize the

Reliability

Evaluation

Method

Analytical

Method

Simulation

Method

FORM

SORM

MCS/LHS

Importance

Sampling

Surrogate

Model

Regression

Model

Artificial Neural

Network, etc

MVFOSM

HL Method

Figure 2.1: Taxonomy of reliability evaluation methods Figure 2-1: Taxonomy of reliability evaluation methods

11

probability of failure of a structural design. While using RBDO, the design needs to make tradeoffs

between reliability, weight, and cost.

The reliability of a structure design can be represented by a reliability index. The reliability index can be

computed by performing a probabilistic reliability analysis. Some of the techniques used in reliability

index evaluation include First Order Reliability Method (FORM) [Parkinson DB, 1978], Second Order

Reliability Method (SORM)[Tvedt 1984, 1990][Hohenbichler 1987, 1988], and Monte Carlo Simulations

(MCS) techniques. FORM and SORM are based on the Taylor series expansion and MCS/Latin

Hypercube Sampling (LHS) are simulation methods that are computationally intensive. This section will

give a brief review of a reliability-based method; more details of FORM and SORM can be found in

[Choi,S.K. “Reliability-based Structural design”] and [Lemaire,M., “Structural Reliability”].

1. Limit state function and reliability index

The limit state function)(Xg is defined as the margin of safety between the resistance and the load:

)()(:)(XSXRXg −= (2.1)

In which X are the random variables including design variables and material property variables and any

other variables that can influence the structural strength.

Reliability-index or safety-index β is defined as:

)(

)(:
Xg

Xg

σ
μ

β = (2.2)

The reliability-index β can be interpreted as the distance from the mean performance point to the failure

point, so it is desirable for β to be as big as possible.

If the limit-state function follows Gaussian distribution, there is a relationship between β and the

probability of failure:

12

)(β−Φ=fP (2.3)

In Gaussian limit-state function case, once β is known, the probability of failure can also be evaluated.

The method to find β includes FORM and SORM, except for FORM and SORM. Other methods can also

be used such as quadratic optimization methods.

2. MVFOSM

The limit-state function)(Xg can be approximated by first order Taylor series expansion at the mean

value point X :

 ()XXXgXgXgXg −⋅∇+=≈)()()(~)((2.4)

Based on the mean value Taylor series expansion, if Xi’s are independent to each other, the safety-index

can be expressed as:

()
2

1

)(~

)(~

)(∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

==
n

i
X

i

Xg

Xg

iX
Xg

Xg

σ
σ
μ

β
(2.5)

The drawback of MVFOSM is that for the same physical model, the different mathematical expression

may result in different value of β. This drawback can be overcome by normalizing all the random

variables to standard Gaussian distribution.

3. HL method

If all the random variables in the expression of a limit-state function have a Gaussian distribution, they

can be normalized as standard Gaussian:

i

i

x

xi
i

x
u

σ
μ−

= ; ixxi ux
ii
⋅+= σμ

13

The Most Probable Point (MPP) U* is a point on 0)(=Ug surface that has the minimum distance to the

origin. The corresponding point in X coordinates is X*. Taking first order Taylor series expansion at MPP

point U*,

 ()**)(ˆ*)(ˆ)(ˆ UUUgUgUg −⋅∇+≈ (2.6)

The safety-index can be express as:

∑

∑

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−
=

n

i
x

i

i

n

i
x

i
HL

i

i

x
Xg

u
x
XgXg

1

2

*

1

*)(

)()(

σ

σ
β (2.7)

4. SORM

SORM can be used to solve highly nonlinear problems. SORM is based on 2nd order Taylor series

expansion of the limit-state function.

2.3 Simulation Methods

For reliability problems for which it is difficult to find an analytical solution, a simulation based method

is an alternative method. However simulation-based methods usually requires a large number of samples

to achieve high precision; thus, it demands high computational expenses.

1. Monte Carlo Simulation

Monte Carlo Simulation is based on Monte Carlo Sampling for generating random dataset that follow

certain probabilistic distributions.

For a CDF function)(xFy X= , the inverse CDF function is ()yFx X
1−= . If one takes sample data of Y

with uniform distribution on [0,1], the inverse CDF transform of Y will follow the distribution defined by

the CDF function)(xFX . This process is shown in Figure 2-2:

14

Figure 2-2: Monte Carlo sampling method

A dataset generated in this way will follow the desired distribution. It can be fed to the limit-state function

to evaluate the probability of failure. Suppose there are n generated random data samples. After n times of

simulation, the failure condition 0)(<Xg occurs m times. The probability of failure can be estimated as:

n
mPf =

~

An example of estimating probability of failure by Monte-Carlo Simulation is illustrated in Figure 2-3:

15

Figure 2-3: Illustration of failure rate in a simulation

2. Latin Hypercube Sampling

For multi random variables combination, LHS provides a method of high efficient sampling. The process

of LHS is shown in Figure 2-4. Details about LHS can be found in [Choi, S.K., 2006].

Figure 2-4: Latin Hypercube Sampling method (figure from Choi, S.K., 2006)

The procedure of LHS is listed below:

16

1) Divide the distribution of each variable into n equal probability non-overlapping intervals;

2) Sample one value on each of these n intervals in terms of its probability density;

3) For each random variable, select one sample from the n samples in a random manner;

4) Associate the random samples obtained from 3) of each random variables together, one group of

random data is obtained.

2.4 Computation Expenses

For MCS/LHS based simulation method, to achieve high precision simulation results, a large number of

samples are usually required. If the limit state function of the structure model is computationally intensive,

e.g., based on finite element analysis, the simulation based on large number of samples will be

computationally intensive and time consuming. It’s necessary to find a method to reduce the

computational expenses. There are two methods for this purpose: importance sampling and surrogate

model.

Importance sampling is a variance reduction technique that can be used in the Monte Carlo method. The

idea of importance sampling is that some values of the input random variables have more impact on the

simulation than others. If these "important" values are sampled more frequently, the estimator variance

can be effectively reduced. Thus, the basic method is to select a particular distribution that encourages the

important values. Using these biased distributions will result in a biased estimator if these samples are

applied directly in the simulation. To prevent this, the simulation outputs are corrected for the use of the

biased distribution, and this makes sure that the new estimator is unbiased. [Doucet, A., et al, 2001].

Choosing a biased distribution that encourages the failure rate is important for importance sampling. If

appropriate biased distribution are chosen, MCS would reduce the running time; if a bad distribution is

chosen, the simulation time could be longer than that of the ordinary MCS.

Surrogate model is a model that mimics the original model as closely as possible. Surrogate model is

computationally cheaper than original model. The inner work of surrogate model is not important. It can

17

be similar to the original model or not, however, there should exist a resemblance in the input-output

relation between the surrogate model and the original model. When there is only one variable as input,

this method is usually known as curve fitting. The surrogate model can be constructed by

interpolation/regression method, or by Artificial Neural Network [Papalambros, P.Y., 2000].

2.5 Random Variable Correlations and Dependence

One typical example of correlation and dependence is the resemblance in appearance between parents and

their offspring. Another example of correlation and dependence is the demand and price of a product.

Quote from Wikipedia: “Correlations are useful because they can indicate a predictive relationship that

can be exploited in practice. For example, an electrical utility may produce less power on a mild day

based on the correlation between electricity demand and weather. Correlations can also suggest possible

causal, or mechanistic relationships; however, statistical dependence is not sufficient to demonstrate the

presence of such a relationship.”

“Formally, dependence refers to any situation in which random variables do not satisfy a mathematical

condition of probabilistic independence. In general statistical usage, correlation can refer to any departure

of two or more random variables from independence, but most commonly refers to a more specialized

type of relationship between mean values. There are several correlation coefficients, often denoted ρ or r,

measuring the degree of correlation. The most common of these is the Pearson correlation coefficient,

which is sensitive only to a linear relationship between two variables (which may exist even if one is a

nonlinear function of the other). Other correlation coefficients have been developed to be more robust

than the Pearson correlation, or more sensitive to nonlinear relationships” [from Wikipedia].

In RBDO, probability distributions are used to describe the stochastic nature of design variables and

model parameters. Random variables are represented by standard deviations and mean values. It’s not

usual for designers to consider the joint distributions of random variables because of lack of data and that

most designers are unaccustomed to making judgments about the dependence of random variables. As a

18

result, most researchers and designers estimate the marginal distributions of the random variables and

make assumptions that the variables are independent. These assumptions can lead to significant errors in

the estimation of probability of failure of a system. This can be seen from an illustrated example in

Chapter 5. More details about independence and correlation can be found in [Papoulis, A. Pillai, S.U.,

2002].

2.6 Optimization Method

In mathematics, optimization is a process to find a maximum or minimum value of a function with or

without constraints. Optimization methods have significant importance because they help to find the best

possible solutions for a design that can either maximize utility or minimize cost and environmental impact.

There are many optimization problems in engineering design and there are many optimization methods in

practice. Generally, optimization methods can be divided into three categories: Experience based, Design

of Experiments and Algorithm based [Roy,R., 2008]. Experience based optimization is a manual method,

designers make design progress in an iterative manner. This is the typical traditional design optimization

method. Design of Experiments (DoE) is a structured and organized method to determine the

relationships between design factors and the performance. DoE is a scientific optimization method;

however, DoE often requires that design variables be independent to each other which is usually not

practical for most engineering design problems [Bailey, R.A. 2008]. Algorithm based optimization is now

becoming popular. There are a variety of methods included in this category that can be applied to handle

different kind of optimization problems. In this thesis, only the algorithm based optimization method will

be applied.

Optimization problems can be divided into two categories: continuous optimization and discrete

optimization. Continuous optimization is characterized by the continuity of design variables and the

continuity of objective function. One typical example of continuous optimization is minimizing the

weight of a cantilever beam with a square section under the constraint of maximum permissible stress. In

19

this example, the objective function, beam weight, changes continuously as the design variable, length of

the square side, changes. Discrete optimization includes: selecting the best route (i.e. least length) from

the starting city to the destination city while passing every existing city on the map once only (Travelling

Salesman Problem) and optimizing the topology of a structure to reduce the weight under the constraint of

max permissible load.

For continuous optimization problems there are many solution methods such as linear programming,

Nonlinear Programming (gradient based method), Genetic Algorithm, Lagrange multiplier method, etc

[Roy,R., 2008]. For discrete optimization problems, it’s usually difficult to obtain analytical solutions. It

is also difficult to iterate exhaustively all the possibilities due to the NP-hard problem. For discrete

optimization problems, a heuristic method can be applied, such as Ant Colony Optimization, which does

not give exactly the best solution but it can find a relatively good solution in a short time [Bonabeau, E.,

1999]. In this thesis only the gradient based optimization method will be discussed. The gradient based

method (Gradient Projection Method and Reduced Gradient Method) will be applied in the reliability

evaluation problem as an alternative method for evaluating the reliability index.

1. Unbounded Optimization Method

For unbounded optimization problems, local exploration can be applied. Since most objective functions

do not have the simple polynomial form, local exploration can be used to approximate the objective

function by first and second Taylor series expansion. There are two local exploration methods: Gradient

Descent and Newton’s Method. Gradient Descent is the first order approximation method, Newton’s

Method is the second order approximation method. More details can be found in [Papalambros, P.Y.,

2000]. Gradient descent and Newton’s method can be expressed as:

 Method)s(Newton'

Descent)(Gradient
1

kk1k

kk1k

gxx

gxx
−

+

+

−=

−=

k

k

H

α
 (2.8)

20

In which H is the Hessian matrix. Both of these two methods give a searching direction. Gradient Descent

method searches along the opposite of the gradient direction while Newton’s method does not necessarily

search along the opposite gradient direction. Once the searching direction is determined, it’s needed to

find the minimum point along this direction. The objective is to find a step size αk such that the objective

function can obtain minimum value on this line:

)(minarg
0 kk sx ⋅+=

∞<≤ kxk f αα (2.9)

In which sk is determined by Gradient Descent or Newton’s method.

By taking the derivative and setting it equal to zero, the step size can be found as:

 ;
kk

kk

gg
gg

k
T

T

H
=α (2.10)

The iteration becomes:

 k
kk

kk
k1k g

gg
ggxx
k

T

T

H
−=+ (2.11)

2. Bounded Optimization Problem

Boundary optimization can be described by asking this question: if the objective function is subject to

equality constraints and/or inequality constraints, while it’s not easy to eliminate variables, how can

constraint optimum be found?

Boundary optimization problems can usually be solved by introducing the Lagrangian function to

incorporate the objective function with constraints. For inequality constraints, active inequality

constraints and inactive inequality constraints can be separated; active inequality constraints can be

regarded as equality constraints while inactive inequality constraints can be safely dropped.

21

The feasible iteration method is a method to generate feasible iterations (iterations that stays on the

constraint surface) while decreasing the objective function at the same time. More details can be found in

[Papalambros, “Principles of Optimal Design”, 2000]. Two methods of feasible iterations will be applied

in Chapter 8 to solve a constrained optimization problem. The two feasible iterations are, respectively,

Generalized Reduced Gradient Method and Gradient Projection Method.

2.7 Bilevel Optimization

When there are two different players in an optimization process, both of these players have their own

objectives which are usually not the same or even conflictive. For this kind of problem, bilevel

optimization method can be applied. The two players are identified respectively as leader and follower

according to their importance and priority. The leader will first decide an optimal solution. Then the

follower will make its decision to maximize its own utility based on the leader’s decision. Follower’s

decision would be feedback to the leader. The leader would adjust its decision accordingly to maximize

its own utility. This process continues until a balance between leader and follower is reached.

One of the most famous bilevel optimization models is the Stackelberg leadership model in which the

leader moves first and then the follower move sequentially. In game theory terms, the players of this

game are a leader and a follower and they compete on quantity [Simaan, M. and Cruz, J.B. Jr., 1973].

In this thesis, the structural optimization problem can also be modeled as a bilevel optimization problem

with minimizing total weight as leader player and minimizing board weight as a follower player.

22

CHAPTER 3: AIRCRAFT FLOOR GRID LAYOUT OPTIMIZATION

Structural design is not only important to aircraft safety, but also plays a key role in reducing aircraft cost

and increasing performance. The airplane cost is closely related to the structure weight. Typically aircraft

cost is $200-$500 per pound [Desktop Aeronautics Inc., 1997-2006]. For military aircraft such as the B-2,

the cost is even higher. Except for its direct impact on aircraft cost, the aircraft structural weight also

affects performance. Every kilogram of increase in structural weight means one kilogram of less fuel and

cargo when the take-off weight is fixed. In Figure 3-1, the left figure shows the concept of aircraft

structure frame; the right figure shows the floor board in the fuselage.

Figure 3-1: Aircraft structures (Pictures from internet)

The aircraft floor board is an important structural component in aircraft design. It divides the fuselage into

an upper and lower compartment. The upper compartment is usually the passenger compartment. The

lower compartments are usually cargo holds and the machinery room. Due to the arrangement of the

passenger compartment, the floor board carries the load of passenger weight, luggage weight and seat

23

weight. For some special areas like the kitchen and lavatory, floor boards and grids need special designs

to support the extra loads. See Figure 3-2. Aircraft floor board and grid design also need to take into

consideration the dynamic load caused by vertical accelerations during taking off and landing.

Figure 3-2: Aircraft general arrangement (Picture from internet)

Weight control is very important for airplane design. Weight reduction can be attained mainly by

introducing new material that has low density and high strength, such as composite material and titanium,

which have been widely applied in aviation industry. Another method to reduce weight is structural

optimization. The objective of structural optimization is to reduce the structural weight while still

satisfying the structural strength requirement.

One typical method of structural optimization applied in aircraft design is topology optimization.

Topology optimization is a method based on finite element model. The basic idea is to find out the stress

24

distribution on the structure via finite element analysis. Then decrease the material in areas that have less

stress and increase material in areas with high stress. This is an iterative process. After several iterations it

will find the most efficient structural design with less material and better structural strength. Figure 3-3 is

an example of topology optimization process. The left figure is the original cantilever structure with a

load P at the far end. The right figure is the optimized structure that has smaller weight while still keeping

enough structural strength. Topology optimization is a process of reaching a tradeoff between minimizing

material weight and maximizing structural strength. A brief introduction of topology optimization can be

found in [Sigmund, O., 2000]

Figure 3-3: Topology optimization for a cantilever beam (figure from Kim S.R. et al, 2007)

The topology optimization method has been applied in aircraft wing truss structure design. This method

also contributes to floor grid layout optimization.

Figure 3-4 is the top view of the passenger deck of an airplane at the front and the rear. The grids are the

transverse beams and longitudinal tracks.

25

The loads on the deck are transmited to the longitudinals by deck board; the longitudinal tracks are

supported by transverse beams; Transverse beams are fixed on both sides to the structural members on the

side wall. This is illustrated in Figure 3-5.

Figure 3-4: Aircraft floor board and floor grid

Figure 3-5: Aircraft floor grid, board, beams and tracks

26

Due to different loads on the floor at different regions of the aircraft, it’s necessary to divide the whole

floor board into different areas, each of which should be examined by applying the corresponding load

conditions as shown in Figure 3-6.

Figure 3-6: Floor grid in different areas has different load conditions

In this thesis, study will be focused on reliability-based floor grid layout optimization. The objective of

the problem is to minimize the total weight of the floor grid and floor board. The constraints include the

reliability requirement represented by reliability index. This model can be represented as:

0),(subject to

)()()(minimize
βRXβ

XXX
≥

+= boardgridtotal WWW
 (3.1)

In which β is a vector of reliability indices and β0 is the minimum permissible β value. X is a vector of

design variables and R represents random variable distributions and correlations.

27

To satisfy the weight requirement, less material should be used; to satisfy the reliability requirement,

more material should be used. This optimization needs to reach a balance or tradeoff between these two

objectives or constraints.

28

CHAPTER 4: RELIABILITY­BASED STRUCTURAL DESIGN AND

OPTIMIZATION

4.1 Introduction

Traditional deterministic design optimization leaves no margin for the variations of design variables. This

is associated with high probability of product failure due to the uncertainties during manufacturing

processes and uncertainties of the external load. Optimization without considering uncertainties from

material properties and the manufacturing phase may result in catastrophic failure. The uncertainties

coming from design and manufacturing can be represented by reliability. Reliability-based structural

design and optimization methods can be introduced in structural design to address this problem.

Reliability evaluation provides the input for designer about the reliability of the design. The ultimate goal

is to improve the design or optimize the design subject to the constraint of reliability constraints. The

optimized design solution needs to satisfy the reliability requirement as well as the performance

requirement. This process is illustrated in Figure 4-1.

The process of reliability-based structural design and the optimization process shown in Figure 4-1 can be

explained as follows. First determine the design variables and random variables. Then according to the

optimization objective, which is usually to minimize weight or cost, write the objective function as a

function of design variables and random variables. Determine the performance constraints, which are

usually requirements from manufacturability, material availability, design code, or product aesthetics.

Performance constraints include both equality constraints and inequality constraints. The next step is to

determine the reliability constraints which may include a stress reliability requirement and a deformation

reliability requirement.

29

The reliability constraints usually take the form of Pf≤P0, in which P0 is the maximum allowable

probability of failure. To utilize the existing reliability-based methods and algorithms, the constraint

Pf≤P0 is replaced by β≥β0, in which β is the reliability index. Then a nonlinear optimization problem is

obtained. For nonlinear optimization problems, usually the gradient of the objective function and

constraints are required. However, for RBDO problems, the reliability indices are usually computed by

Determine Design Variables

X={X1, … , Xn}

Determine Objective Function

max/min F(X)

Determine Performance Constraints

⎩
⎨
⎧

≥
=

0),(
0)(

D(R)Xg
Xh

Determine Reliability Constraints

0)(pPf ≤−Φ= β or

0)(ββ ≥D(R)X,

Determine Random Variable

R={R1, … ,Rn} and Their Distributions

Determine a set of sampling points of design

variables in the design domain {Xi}

Find Limit State

Function)(D(R)X,g

and Safety Index

{ })(D(R)X,gΨ=β

at sampling points

MCS/LHS+Copula /KL

to get fP or

)(D(R)X,ii ββ =

on sample points

OR

Heuristic Search Algorithm

for Optimal Design Point

OR

Find a Response Surface Model

for)(D(R)X,ββ =

Figure 4-1: Reliability-based structural design optimization flow chat

30

Monte Carlo simulations and it’s difficult to obtain the analytical form of reliability indices. To overcome

this dilemma, a response surface model based on interpolation is used. Given a point, the response surface

model can provide a reliability index value at this point as well as the gradient information at this point.

Since there is not a general form to represent every point on the response surface, each individual point as

well as the gradient at this point needs be computed specifically. A heuristic searching algorithm is used

to find the optimal point.

If the random variables are uncorrelated, many existing methods such as MVFOSM, HL and SORM can

be used to compute the reliability index. However, if correlation exists for random variables, simulation

based methods like MCS/LHS, copula, KL expansion can be used to obtain probability of failure as well

as the reliability index. Results obtained by both analytical and simulation methods are individual discrete

values.

In this chapter, literatures about reliability-based structural design will be briefly reviewed. The ten bar

truss model, a classic model, will be presented as an example for all the methods and algorithms. In the

end of this chapter, some prevalent reliability-based methods will be applied to this ten bar truss model.

4.2 Literature Review

For structural reliability problems, there are many different approaches. Most commonly applied methods

include first order reliability method (FORM) [Parkinson, D.B. 1978] and second order reliability method

(SORM) [Tvedt, L., 1984, 1990]. In [Rackwitz, R., 2001], methods and theories of reliability-based

structural design methods are reviewed and briefly summarized, some extreme examples are

demonstrated to explain where and why these methods do not work. Algorithm problems are also

addressed in this thesis; some new potential application fields are outlined. Detailed introduction to

structural reliability methods can be found in [Choi, S.K., “Reliability-based Structural Design”,2006].

Finite Element Method (FEM) has been widely used as a structural evaluation tool. Traditional Finite

Element Analysis (FEA) method is based on dividing the continuous structures into discrete meshes and

31

interpolating on each mesh. Based on the FEA method, Stochastic FEA has been systematically

introduced by Ghanem in [Ghanem, R.G., 2003]. In Stochastic FEA, the material properties of discrete

meshes are treated as random fields. Stochastic FEA is more realistic in simulation than traditional FEA,

since in the real world material properties can usually be modeled as random fields. In [Choi, S.K., 2006],

a stochastic analysis procedure for Gaussian random field in structural reliability estimation is proposed

based on K-L transform and Polynomial Chaos Expansion. K-L transform can be used to produce

multidimensional correlated random variables when the covariance matrix is given. More details of KL

expansion can be found in [Papoulis, A., 2002].

Many airplane structural optimization problems can be solved using the topology optimization method.

Topology optimization is also called layout optimization or shape optimization. The topology

optimization method can find its origin from some papers published in the early 1900’s by Michell, who

proposed some optimal conditions for load-carrying structures. The emergence of numerical methods

such as FEA and modern computer make it possible for topology optimization to be applied in the

engineering field. Some introductory examples of topology optimization can be found in [Sigmund, O.,

2000]. The systematic method of topology optimization has been developed by Bendsoe and Kikuchi

[Bendsoe, M. and Kikuchi, N., 1988]. Topology optimization has been widely used in airplane structural

design, especially in aircraft wing box ribs design [Li, G., Wang, H., et al, 2000],[Liu, B. et al, 2000]. The

strategy of topology optimization is to divide the continuous structural material into discrete meshes as

building blocks, and study the stress on each building block. Based on the different stresses on each

building block, reduction can be made to remove the blocks that are carrying smaller loads. This is an

iterative process; in the end the optimal shape can be obtained with minimized material usage and

acceptable structural reliability.

32

4.3 Ten­Bar­Truss Model as a Typical Example

The ten bar truss model is a widely used model for reliability-based structural design as shown in Figure

4-2. The ten-bar-truss model is an over-constrained structural model comprised of 4 horizontal rods, 2

vertical rods and 4 diagonal rods. For simplicity, suppose all horizontal rods have the same section area,

as well as vertical and diagonal rods. These areas are denoted by A1, A2 and A3. The math model of this

ten-bar-truss model can be found in [Kumar, S., et al, 2009].

Figure 4-2: Ten-bar-truss model

In this thesis the ten-bar-truss will be studied from two perspectives:

Perspective 1: the rod section areas are fixed as deterministic variables and the external loads P1 and P2

are given as random variables. Study will be focused on the relation between P1 and P2 and its impact on

structural reliability. Correlations between random variables are modeled by multivariate distribution

method, Karhunen-Loeve expansion method and Copula.

Perspective 2: the external loads P1 and P2 are fixed values and the rod section areas (A1, A2, A3) (A1 is

horizontal members, A2 vertical members, A3 diagonal members) are regarded as random variables

33

following Gaussian distributions. This thesis will examine the structural reliability via safety index β and

probability of failure Pf. The safety-index and probability of failure will be obtained by a variety of

methods (MCS, MCS based on Kriging model, MVFOSM, HL method, correlated HL method, SORM,

Gradient Projection Method, and Reduced Gradient Method). The results of these methods will be

compared to each other in terms of precision and speed.

The relationship between the internal force Ni of each rod and the external loads P1 and P2 can be

expressed as:

ሾܰሿ ൌ ሾܤ|ܣሿ ቂܰܲቃ

֜ ሾܰሿ ൌ ሾܣሿሾܰሿ ൅ ሾܤሿሾܲሿ

֜ ሾܫ െ ሿሾܰሿܣ ൌ ሾܤሿሾܲሿ

֜ ሾܰሿ ൌ ሾܫ െ ሿሾܲሿܤሿିଵሾܣ

Positive values of N represent extension; negative represents compression. The A and B matrices are

respectively:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−

−
−

−

=

0000000000
1000000000
0000000000
0010000000

000000000
00000000
000000000

000000000
000000000

000000000

][
2

1
2

1
2

1
2

1
2

1
2

1
2

1

A ; []

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−−

=

43

21

20

22
00
10
10
21

00
10

aa

aa

B

In the [B] expression, ai’s are:

34

21122211

73
22

1

2212

aaaa
AA

a
a

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=

21122211

954
12

7531
22

2

422221212

aaaa
AAA

a
AAAA

a
a

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−

=

21122211

73
21

3

2212

aaaa
AA

a
a

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

21122211

7531
21

954
11

4

221212422

aaaa

AAAA
a

AAA
a

a
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++=

87531
11

2222111
AAAAA

a

5
2112

1
A

aa ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++=

1096542
22

22221111
AAAAAA

a

The numerical value of ሾܫ െ ሿ for the given section areas relates the internal forces to the externalܤሿିଵሾܣ

load, it is given in Table 4-1 for future reliability analysis. Internal forces can be computed by this table

when external load P1 and P2 are known.

35

Table 4-1 Load coefficients

rod # P1 coeff. P2 coeff.
1 0.403894 1.521702
2 ‐0.0744 0.403894
3 ‐0.59611 ‐1.4783
4 ‐0.0744 ‐0.59611
5 0.329491 ‐0.0744
6 ‐0.0744 0.403894
7 0.843021 0.676416
8 ‐0.57119 ‐0.7378
9 0.105223 0.843021

10 0.105223 ‐0.57119

4.3.1 Two Random Variable Example

For the convenience of the example, without losing generality, set the section area of horizontal rod

(A_hor), vertical rod (A_ver), diagonal rod (A_dia), maximum permissible stress and external forces P1

and P2 as follows:

A_hor=1e-4 m2;

A_ver=0.3e-4 m2;

A_dia=0.6e-4 m2;

σallow = 100 MPa;

P1~Normal(3000, 5002) N;

P2~Normal(3000, 5002) N;

As an initial evaluation, setting external load P1 and P2 as their deterministic mean value, the stresses in

each rod can be calculated. According to these, values the reliability of rod 3,7 will be examined in a

later study.

The code stress.m, in the appendix can be used to experiment a series of external force combinations to

evaluate the failure probabilities. To make comparisons, 4 different groups of experiments will be done to

36

determine the probability of failure, with each group containing 1,000,000 data samples. The first group

of experiments is based on uncorrelated bivariate Gaussian distribution of external loads P1 and P2. The

second group of experiment is based on correlated bivariate Gaussian distribution of P1 and P2. The third

group of experiment uses correlated P1 and P2 data generated by KL expansion. The fourth group of

experiment is based on copula; this group includes sub-groups of 3 families of Archimedean copula.

4.3.2 Three Random Variable Example

In the previous case, the external loads P1 and P2 were considered random variables while other design

variables were all deterministic. However, in this case, the limit state function of each rod is a linear

function of P1 and P2. This can be seen from table 4-1. To make this example more general with

nonlinear functions, P1 and P2 will be set as deterministic variables while the rod section areas will be set

to random variables. A1, A2, A3 are, respectively, horizontal, vertical, diagonal rod section areas. They

have normal distributions with a coefficient of variance 0.2.

In this three RV case, study will be focused on evaluating the value of safety-index β and the

corresponding probability of failure Pf. This problem will be approached using 2 different methods, the

first method is existing the first order and second order reliability method (FORM & SORM); the other is

by viewing the problem as a constrained optimization problem, thus, solving it from a gradient based

quadratic programming approach. The second method requires many iterations. However, as long as there

are enough iterations, high precision can be achieved. Both of these two methods can achieve highly

accurate results.

Usually reliability models are very computationally expensive, especially when the model is based on

Finite Element. It’s not uncommon that running a FEA model once would take several hours. However,

MCS requires large number of experiments to obtain precise results. For computationally expensive

models this will become mission impossible. That’s why it’s necessary to find a surrogate model to

replace the original model. The surrogate model is required to be computation inexpensive at the same

37

time having relatively high accuracy. There are many methods to construct a surrogate model, for

example, interpolation method, curve fitting method, Artificial Neural Network method, and many others.

In this thesis, a surrogate model based on Kriging will be discussed.

The 3 random variable model is shown below:

A1,A2,A3~Normal;

E(A1)=1e-4 m2;

E(A2)=0.3e-4 m2;

E(A3)=1e-4 m2;

cv = 0.2;

σallow = 100 MPa;

P1=P2=3000;

The limit state function of rod 3 and rod 7 are listed below [Kumar, S., et al, 2009]:

Rod3:

()

allow
TD

XXXXX
X
PXg σ−

⎭
⎬
⎫

⎩
⎨
⎧ +

+= 31321

1

222)((4.1)

Rod7:

()

allow
TD

XXXXX
X
PXg σ−

⎭
⎬
⎫

⎩
⎨
⎧ +

+= 31321

3

2222)((4.2)

In which X1, X2, X3 are rod section area A1, A2 and A3, and

() () ()21
2
3121321

2
3

2
1

2
2 6432484 XXXXXXXXXXXXDT +++++=

4.4 Illustrated Examples

38

In this section, the ten bar truss model with three random variables example will be studied by several

reliability-based method. Three analytical methods to find probability of failure are applied to evaluate

the probability of failure of ten-bar-truss model. The methods include Mean Value First Order Second

Moment method (MVFOSM); Hasofer-Lind (HL) method; Second Order Reliability Method (SORM).

MVFOSM is a simple method to evaluate Pf, however it’s based on first order Taylor series expansion at

mean value, the result usually has big error for nonlinear limit-state functions. HL method first transforms

all random variables to standard Gaussian distribution then take first order Taylor series expansion at

Most Probable Point (MPP). HL method has relatively high precision. SORM is based on transforming

random variable from standard Gaussian U space to Y space then take second order Taylor series

expansion, it provides high accuracy evaluation of Pf.

4.4.1 Mean Value First Order Second Moment method (MVFOSM)

In this section, the probability of failure will be determined by the analytical method of Mean Value First

Order Second Moment method (MVFOSM), comparison will be made between MVFOSM result and

MCS result.

1. Rod section areas Xi independent, compute the Pf and safety index beta for rod 3 and rod 7 by

MVFOSM method and MCS

One of the good properties of reliability index or safety index β is that it is directly related to probability

of failure if the limit state function g follows Gaussian distribution. Pf can be computed conveniently

when β is known.

39

()

)(

)'('
2
1exp

2
1

2
1exp

2
1

2
1exp

2
1)(

2

0 2

20 0

β
π

β
σ

β
σπ

σ
μ

πσ

β

−Φ=

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−==

∫

∫

∫ ∫

−

∞−

∞−

∞− ∞−

gdg

gdg

dg
g

dggfP

gg

g

g

g
Gf

 (4.3)

Figure 4-3: Physical meaning of reliability index in MVFOSM

However, since g(x) is usually a nonlinear function of random variables, even the random variables

follows Gaussian distributions, g(x) is not necessarily Gaussian. When g(x) is approximated by its first

order Taylor expansion, the approximation, ෤݃, is a linear function of random Gaussian variables,

)()()()(~
XXX XggXg μμμ −⋅∇+= ,thus ෤݃ follows Gaussian distribution also.

40

Based on the linearization approximation of limit-state function, β can be computed:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

≈=

n

i
x

i

X

X

Xg

Xg

Xg

Xg

ix
g

g

1

2

)(~

)(~

)(

)(

)(

)(

σμ

μ

σ
μ

σ
μ

β

 (4.4)

Based on β, the probability of failure can also be computed by

)(β−Φ=fP (4.5)

To find the accuracy of MVFOSM, the results from MCS and from MVFOSM are listed in Table 4-2:

Table 4-2: Comparison between MVFOSM and MCS results

 MVFOSM reliability index MCS (1000 samples)

Rod (Ai independent) β Pf Pf

3 2.9953 0.0014 0.029

7 2.8889 0.0019 0.028

Obviously there is great difference between the results of MVFOSM reliability method and MCS method.

Since MCS is more close to the real situation, the MVFOSM method resulted in big error in this example.

The reason of this error can be attributed to the high nonlinearity of the model and the expansion point at

mean value, while the MVFOSM is a linear approximation of the model, when expanding the limit state

function at mean value rather than MPP point, error could be big. To overcome this drawback next step

the Hasofer-Lind method will be examined.

41

4.4.2 Hasofer­Lind method

Rod section areas Xi independent, compute the Pf and safety index beta for rod 3 and rod 7 by Hasofer-

lind method

In HL method, the random variables are normalized to independent standard Gaussian distributions with

mean value 0 and standard variance 1. The Taylor first order expansion point is at Most Probable Point

(MPP) instead of the mean value point in MVFOSM.

Steps for computing βHL: (More details see Choi, S.K., “Reliability-based Structural Design”, 2006)

1) Compute safety index β by MVFOSM. For the first step, the computing point X* is chosen to be the

mean value point μX

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

n

i
x

i

X

X

ix
g

g

1

2
)(

)(

σμ

μβ
(4.6)

2) Given a point X* and corresponding U*, compute
iuθcos

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−=
∇
∂

∂

−=
n

i
x

i

x
ii

u

i

i

i

x
Xg

x
Xg

Ug
u
Ug

1

2
*)(

*)(

*)(ˆ

*)(ˆ

cos

σ

σ
θ (4.7)

3) Compute the new design point U* and the corresponding X*

 **

* cos

ixxi

ui

ux

u

ii

i

σμ

θβ

+=

=
 (4.8)

4) Compute the new β at the new X* point and new U* point

∑

∑

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−
=

n

i
x

i

i

n

i
x

i

i

i

x
Xg

u
x
XgXg

1

2

*

1

*)(

)()(

σ

σ
β (4.9)

42

5) Repeat step 2)—4) until β converges, or if not converging then stop the loop at a given iteration

number.

Compute β by MVFOSM

Compute cosθui at the given point X* and U*

Compute the new design point U* and

X* by β and cosθui from the previous step

Compute new β at the new design point U*

and X*

β converges ?

END

YES

Reaches

iteration limit?

YES

NO

NO

Figure 4-4: Flow chat of HL method

43

Table 4-3: Iterations of HL method for rod3

iteration 1 2 3 4 5 6
beta 2.9953E+00 2.2749E+00 1.9264E+00 1.8764E+00 1.8756E+00 1.8756E+00
g(X) 3.7383E+07 ‐5.5392E+07 ‐1.4562E+07 ‐1.6430E+06 ‐2.6155E+04

*
111

)(
xxx

Xg
=∂

∂
6.2395E+11 3.8451E+12 2.0891E+12 1.6443E+12 1.5924E+12

*
222

)(
xxx

Xg
=∂

∂
2.8328E+10 8.5192E+10 5.9151E+10 5.1169E+10 5.0181E+10

*
333

)(
xxx

Xg
=∂

∂
‐6.2785E+09 ‐1.3354E+10 ‐1.0707E+10 ‐9.6877E+09 ‐9.5513E+09

cos ଵߠ ‐9.9986E‐01 ‐9.9997E‐01 ‐9.9995E‐01 ‐9.9994E‐01 ‐9.9994E‐01
cos ଶߠ ‐1.3618E‐02 ‐6.6465E‐03 ‐8.4938E‐03 ‐9.3351E‐03 ‐9.4533E‐03
cos ଷߠ 1.0061E‐02 3.4727E‐03 5.1250E‐03 5.8913E‐03 5.9977E‐03

x1 1.0000E‐04 4.0103E‐05 5.4504E‐05 6.1475E‐05 6.2474E‐05 6.2491E‐05
x2 3.0000E‐05 2.9755E‐05 2.9909E‐05 2.9902E‐05 2.9895E‐05 2.9894E‐05
x3 1.0000E‐04 1.0060E‐04 1.0016E‐04 1.0020E‐04 1.0022E‐04 1.0022E‐04
u1 0.0000E+00 ‐2.9949E+00 ‐2.2748E+00 ‐1.9263E+00 ‐1.8763E+00 ‐1.8755E+00
u2 0.0000E+00 ‐4.0791E‐02 ‐1.5120E‐02 ‐1.6362E‐02 ‐1.7516E‐02 ‐1.7730E‐02
u3 0.0000E+00 3.0136E‐02 7.9000E‐03 9.8726E‐03 1.1054E‐02 1.1249E‐02

Table 4-4: Iterations of HL method for rod7

iteration 1 2 3 4 5 6
beta 2.8889E+00 2.1841E+00 1.8761E+00 1.8392E+00 1.8388E+00 1.8388E+00
g(X) 3.6299E+07 ‐4.8523E+07 ‐1.2012E+07 ‐1.1696E+06 ‐1.3444E+04

*
111

)(
xxx

Xg
=∂

∂
‐3.1393E+09 ‐4.6553E+09 ‐4.3870E+09 ‐4.2155E+09 ‐4.1930E+09

*
222

)(
xxx

Xg
=∂

∂
4.0061E+10 1.2143E+11 8.8566E+10 7.8180E+10 7.7063E+10

*
333

)(
xxx

Xg
=∂

∂
6.2813E+11 3.4425E+12 1.9497E+12 1.5886E+12 1.5523E+12

cos ଵߠ 4.9968E‐03 1.3522E‐03 2.2499E‐03 2.6534E‐03 2.7009E‐03
cos ଶߠ ‐1.9130E‐02 ‐1.0582E‐02 ‐1.3627E‐02 ‐1.4762E‐02 ‐1.4892E‐02
cos ଷߠ ‐9.9980E‐01 ‐9.9994E‐01 ‐9.9990E‐01 ‐9.9989E‐01 ‐9.9989E‐01

x1 1.0000E‐04 1.0029E‐04 1.0006E‐04 1.0008E‐04 1.0010E‐04 1.0010E‐04
x2 3.0000E‐05 2.9668E‐05 2.9861E‐05 2.9847E‐05 2.9837E‐05 2.9836E‐05
x3 1.0000E‐04 4.2233E‐05 5.6321E‐05 6.2482E‐05 6.3219E‐05 6.3228E‐05
u1 0.0000E+00 1.4436E‐02 2.9534E‐03 4.2209E‐03 4.8802E‐03 4.9664E‐03
u2 0.0000E+00 ‐5.5265E‐02 ‐2.3111E‐02 ‐2.5564E‐02 ‐2.7152E‐02 ‐2.7383E‐02
u3 0.0000E+00 ‐2.8884E+00 ‐2.1840E+00 ‐1.8759E+00 ‐1.8390E+00 ‐1.8386E+00

Comparison can be made between MCS, MVFOSM and HL method in Table 4-5:

44

Table 4-5: comparison between MVFOSM, MCS and HL results

 MCS (1e3 smaples

50 seconds)

MVFOSM reliability

index

HL reliability index

Rod (Ai independent) Pf β Pf βHL Pf

3 0.029 2.9953 0.0014 1.8756 0.0304

7 0.028 2.8889 0.0019 1.8388 0.0330

It can be seen from Table 4-5 that the result of HL method is very close to that of MCS method. For first

order reliability methods, HL method provides more accurate results than MVFOSM.

4.4.3 Second Order Reliability Method (SORM)

For rod 3, the safety index β was obtained using HL: β=1.8765. The probability of failure can be

computed as:

0304.0)(=−Φ= βfP

Compute the first order and second order derivatives of the limit state function at U* and form the B

matrix:

007+3.1833e*)(ˆ
*)(ˆ

)(ˆ)(ˆ

)(ˆ)(ˆ

)(ˆ)(ˆ

2

1

22

2
2

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=∇

∂∂
∂

=
∂∂

∂

∂
∂

=
∂

∂

∂
∂

=
∂

∂

∑
=

n

i i

ji
jiji

i
ii

i
ii

u
UgUg

xx
Ug

uu
Ug

x
Ug

u
Ug

x
Ug

u
Ug

σσ

σ

σ

45

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−−

−−
=

∇
∇

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

=∇

0021.00007.00016.0
0007.00008.00037.0

0016.00037.06368.0

*)(ˆ
(U*)ĝ

)(ˆ)(ˆ*)(ˆ

)(ˆ)(ˆ*)(ˆ

)(ˆ)(ˆ*)(ˆ

(U*)ĝ

2

2
3

2

23

2

13

2
32

2

2
2

2

12

2
31

2

21

2

2
1

2

2

Ug
B

u
Ug

uu
Ug

uu
Ug

uu
Ug

u
Ug

uu
Ug

uu
Ug

uu
Ug

u
Ug

Orthogonal matrix H can be computed based on H0:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−−
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
∇

∂∂
−

∇
∂∂

−
∇

∂∂
−

=
100
010
0060.00095.09999.0

100
010

*)(ˆ
/*)(ˆ

*)(ˆ
/*)(ˆ

*)(ˆ
/*)(ˆ 321

0

Ug
uUg

Ug
uUg

Ug
uUg

H

By Gram-Schmidt orthogonalization method, the orthogonal matrix can be computed. The Gram-Schmidt

orthogonalization process is carried out by the matlab m file: Gram_Schmidt_Process.m, which takes

column vectors as input, for this example the H0 matrix should first be transposed then be processed by

the m function. The returned orthogonal matrix should also be transposed. Then moving the first row to

the last for the orthogonal matrix, the H matrix can be obtained:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−
=

0060.00095.09999.0
100060.0

0001.010095.0
H

Compute the main curve kj by solving the eigenvalues of HBHT:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−−−
=

6368.00022.00024.0
0022.00021.00007.0
0024.00007.00008.0

THBH

Eigenvalue of the first 2x2 sub-matrix can be computed as:

k1= 0;

k2=0.0022;

46

Probability of failure thus can be obtained:

0303.0
)1()1)(8765.1(

)1()(

2/1
2

2/1
1

1

1

2/1

=
++−Φ=

+−Φ=

−−

−

=

−∏
ββ

ββ

kk

kP
n

j
jf

By the same procedure the Pf of rod 7 can also be computed:

0329.0=fP

A comparison between precise MCS, MVFOSM, HL method and SORM is made in Table 4-6: This table

shows that both HL and SORM have high precision. MVFOSM is not suitable for limit-state functions

with high nonlinearity.

Table 4-6: Comparison between MCS, MVFOSM, HL and SORM results

 Precise
MCS

MVFOSM reliability
index

HL reliability
index

SORM
Breitung

Sample size 1e4 / / / / /
Running time (s) 500 / / / / /
Rod (Ai
independent)

Pf β Pf βHL Pf Pf

3 0.0330 2.9953 0.0014 1.8756 0.0304 0.0303
7 0.0322 2.8889 0.0019 1.8388 0.0330 0.0329

4.5 Summary

In this chapter, the basic reliability-based structural design and optimization method is outlined. A ten-

bar-truss model is given for example and further studies.

From the example, it can be concluded that for limit state functions of large nonlinearity, MVFOSM

method has greater error than HL and SORM method. HL method and SORM method can obtain more

accurate results than that of MVFOSM. However due to the limitation of computation expenses, MCS

takes only 10,000 samples, which is not large enough to give a precise result.

47

CHAPTER 5: COPULAS MODELING OF RANDOM VARIABLE CORRELATION

In this chapter, three methods for modeling random variable correlations will be introduced. First, the

well known Pearson’s correlation coefficient, multivariate distribution functions and KL expansion will

be introduced. Then the concept of copula and its properties will be introduced. The method of producing

correlated random variables will also be explained. The ten bar truss model will again be used as example

for copula and other related methods. It will be explained in the example why for a same correlation

coefficient different family of copula gives different simulation result. It will also be explained how

different correlation effects probability of failure. In the end of this chapter, based on the example, come

conclusions about the advantages and disadvantages of copula method are made.

5.1 Methods for Modeling Random Variable Correlations

5.1.1 Pearson’s correlation coefficient

Pearson’s correlation coefficient is defined as.

DYDX
YXCOV

⋅
=

),(ρ (5.1)

Pearson’s correlation coefficient is a measure of linear relationship only. It’s invariant to nonlinear

transformation. Even if there is very strong nonlinear relationship between 2 random variables, pearson’s

coefficient may remain zero. Consider an example: X~Uniform on [0,1], the Pearson’s coefficient

between sets X and X3 is around 90% despite the fact that the 3 variables are deterministically related. For

higher nonlinearity it could be even smaller.

This is a drawback of Pearson’s correlation coefficient. It will be shown later that for rank based

correlation coefficient, i.e., Kendall’s tau, this drawback does not exist.

48

5.1.2 Multivariate distribution functions

Multivariate Gaussian Distribution is one of the most well-known multivariate distributions. All the

marginal distributions of Multivariate Gaussian follow single variate Gaussian distribution. For two-

dimensional case, the joint PDF of Gaussian distribution is defined as:

()
() () ()()

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
−

−
+

−
−

−
−

=
yx

yx

y

y

x

x

yx

yxyxyxf
σσ

μμρ
σ
μ

σ
μ

ρρσπσ

2
12

1exp
12

1),(2

2

2

2

22

 (5.2)

 (formula from Papoulis,A., “Probability, Random Variables and Stochastic Processes”, 2002)

In this case:

Expected value: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

μ
μ

μ

Covariance Matrix: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2

yyx

yxxC
σσρσ
σρσσ

ρ is the correlation coefficient, it indicate the linear dependency of the 2 marginal distributions. When

ρ equals zero, both marginal distributions are independent to each other. Illustrated in Figure 5-1 are 2

PDF plot of bivariate Gaussian for ρ =0 and ρ =0.8 respectively.

49

Figure 5-1: PDF plot of bivariate Gaussian for =0 and =0.8 respectively

5.1.3 Karhunen­Loeve expansion

The covariance between random variables can be determined by the distance between them. Covariance

function is a method to determine covariance between 2 points by the distance between them. The

covariance function need satisfy the requirement that with the distance increasing, the covariance would

decrease. There are 3 well-known covariance functions [Choi, S.K., 2006] explained below.

1) Exponential model

The exponential covariance function decays exponentially with increasing distance:

 ⎥
⎦

⎤
⎢
⎣

⎡
−=

l
x

CC ij
ij exp0 (5.3)

Where C0 is the variance, xij is the distance between two points, l is the correlation length. The

covariance between 2 points drops rapidly with the increase of distance.

2) Gaussian model

The Gaussian model is a another widely used covariance function:

50

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

0 exp
l

x
CC ij

ij (5.4)

Gaussian model is similar to exponential model, however it has the shape of a Gaussian PDF function.

The difference with exponential model is that at the origin the shape is flat. The covariance decays very

rapidly as distance is greater than l .

3) Nugget-effect model

Nugget-effect model is an uncorrelated case:

⎩
⎨
⎧

≠
=

=
ji :0
ji :0C

Cij

Karhunen-Loeve expansion can be viewed as a general orthogonal series expansion of the covariance

function [Papoulis, A., Pillai, S.U., 2002] [Choi, S.K., 2006]. KL expansion can be expressed as:

 ∑
∞

=

=
1

)()(
i

iii xxw φξλ (5.5)

Where iξ is a set of random variables, iλ is the eigenvalue and)(xiφ is the eigenfunction of the

covariance function.)(xw generated in this way will satisfy the covariance function)(xK

In the discrete case, KL expansion can be expressed as:

 [][] [][]PKP =Λ (5.6)

Where [K] is a covariance matrix, [P] is the orthogonal eigenvector matrix; []Λ is the eigenvelue matrix.

Covariance matrix can be decomposed as:

 [] [][][] [] []AAPPK T ⋅=Λ= (5.7)

51

Where []A is the transform matrix defined as [] [][] 2/1Λ= PA . The [A] matrix can be used to produce

correlated random variables:

[] [][]XAY =

Where []X is a matrix of random vectors Xi, []Y is a matrix of column vectors that possess the

covariance matrix []K

KL expansion can be used to find the principal components of a transformation, it thus is also called

Principal Component Analysis. To reduce the data dimension, only several principal components can be

kept while minor components can be discarded, thus the data dimension can be reduces significantly.

Figure 5-2 is an illustration of how to reduce dimension of random variables by KL transform. For the

convenience of description, from the upper left to lower right, the figures are numbered consecutively

from (1) to (5).

Figure (1) is the uncorrelated Gaussian random variable case, based on which KL transform is taken.

Generated correlated random variables are shown in figure (2), rho=0.9. Figure (3) shows the coordinates

of points in figure (2) projected on eigenvectors. To reduce the dimension, the minor coordinate values

are discarded as in figure (4); Figure (5) shows the result when projected back to the original coordinate

system. The result of these steps is the reduction of dimension of random vectors. For multidimensional

problems, KL transform can reduce random vector dimensions significantly.

52

Figure 5-2: Example of using KL expansion to reduce data dimensions

5.2 Copula Review

The word “copula” is a Latin word that means “bond, connection” [“World English Dictionary”]. It was

first employed as a statistic term by Abe Skla (1959) to describe the correlation between random variables

and to link their marginal distributions with their joint distribution. Copula was most early studied by

Wassily Hoeffding in the 1940’s. It has been discovered independently by various authors, such as

Frechet, Sklar, Kimeldorf and Sampson by various terms [Nelsen, R.B. 1999].

Some of the famous authors about copulas today include: Nelsen, R.B.; Genest, C.; Frees, E.; Joe H.

These authors are mainly mathematicians. There are many other authors who apply copulas in their

respective research areas, especially in actuarial studies and stock market studies.

53

5.2.1 Literature Review

[Nelsen,R.B., 1999]: This book introduces the basic concept of copulas, the method for constructing

copulas, the concept and construction method of Archimedean families of copulas, and measure of

concordance, ie, Kendall’s tau and Spearman’s Rho. This book is a good introduction book for copulas

from mathematical perspective.

[Genest, C., 1987]: Properties of Frank’s copula are investigated in this paper. Nonparametric estimation

methods for rank dependence parameters are suggested.

 [Genest, C., 1993]: This paper examines the problem of selecting an Archimedean copula providing a

suitable representation of the dependence structure between two variables X and Y by studying a set of

random samples. The estimation method of copula coefficient is based on the empirical form of Kendall’s

tau. For different copulas to fit the same data sample, the method for examine the goodness of fit is

provided to help finding the best fit copula. Using a uranium exploration dataset, the paper illustrates how

to use the procedure to choose a copula.

[Genest,C., 2007]: This paper introduces copula based on rank methods. By working out a small

numerical example, the writer exhibits the steps involved in investigating the dependence between 2

random variables and in modeling it using copulas. Methods are provided for selecting an appropriate

copula model and parameter estimation, as well as checking its goodness-of-fit.

[Frees,E.W., et al, 1998]: This article introduces actuaries to the concept of copulas. Basic concept and

properties are introduced in this article, some potential application in insurance business such as

estimation of joint life mortality are explored. An annotated bibliography is provided for readers to

continue their study of copulas.

[Genest, C., MarcKay, J., 1986]: In this paper, the concept of copula is introduced. Many of the basic

properties is derived by element calculus. This paper shows how copulas can be used to illustrate the

existence of distributions with singular components and to give a geometric interpretation to Kendall’s tau.

54

 [Abbas, A.E., 2009]: In this paper, the author defines the concept of “Utility Copula”, a comparison was

made between utility copula and Sklar’s copula. Archimedean copula is defined as a simple mechanism

for generating a large family of utility copulas.

5.2.2 Normalized Form of Correlated Random Variables

5.2.2.1 Concept of dependence and example of dependent bivariate random variables

generation

Multivariate Gaussian distribution provides a good example of bivariate independence and dependence

relations. Suppose two models, in model 1 the two random variables are independent, in model 2 the 2

random variables are dependent to each other with linear correlation coefficient rho equals to 0.8.

Example scatter plots of the two models are shown in Figure 5-3:

Figure 5-3: Scatter plots of Independent and Dependent Bivariate Gaussian Distributions

Figure 5-3 shows that in the correlated model there is a trend that large values of x tend to appear together

with large values of y, while in the independence model such trend does not exist.

If exponential is taken for the above variables, the rank relation is preserved in the transformed variables

since the exponential function is monotone increasing. The scatter plot of the transformed variables of the

above 2 models are shown in Figure 5-4:

55

Figure 5-4: Taking exponential for independent and dependent Gaussian distribution

It’s obvious that in the right figure the transformed variables still keep the rank relations, though the

correlation coefficient rho might not be the same. (App. Code 32)

It should be noted that not only exponential function could keep the rank relations, any monotone

increasing function could keep this correlation structure. The monotone function for the two random

variables could be the same or not the same as long as they are strictly increasing. The correlation

structure can be expressed by rank correlation coefficient, ie, Kendall’s tau.

5.2.2.2 Correlated random variables generation by bivariate Gaussian distribution

The method in the previous section shows that a pair of correlated bivariate Gaussian distribution

variables can be served as a tool for generating further correlated random variables that are not

necessarily confined to bivariate Gaussian. This method provides only a special case for correlated

random variable generation. The drawback of this method is that the marginal distributions are not

controllable. To find a more general method to produce correlated random variables with any desired

marginal distribution, CDF transformation could be used. From the correlated random variable example

in the previous section, taking CDF transform of monovariate Gaussian distribution for each of the two

random variables, the scatter plot of the original random variables X and the scatter plot of CDF

56

transformed random variables U are shown in Figure 5-5 on the upper row; the histogram of U are shown

in the lower row, it is shown that U follows uniform distribution: (App. Code 33)

Although the transformed plot looks different, the rank correlation of the original scatter plot is precisely

preserved due to the fact that CDF function and inverse CDF function are strictly increasing. Since the

transformed form by CDF transformation is in the range of [0,1] and has uniform marginal distribution, it

can be regarded as the normalized form of the rank correlation of the original correlated random variables.

Figure 5-5: Upper: Illustration of bivariate Gaussian before and after CDF transform;
 Lower: histogram in two dimensions after CDF transform

If the above normalized random variables U is used as input to an inverse CDF transform of any

distribution, the generated points would still keep the rank correlation information since the inverse CDF

57

transform in the is strictly increasing. As an example, take inverse CDF transform on U generated in the

previous step, one dimension as Gamma distribution and another as t distribution. The transformed scatter

plot is shown in Figure 5-6. The left figure is for the normalized random variables U, the right figure is

the result after inverse CDF transform.

Figure 5-6: Normalized random variables before and after inverse CDF transform (X: Gamma; Y: t)

If both inverse CDF transforms are based on Gamma distribution, the scatter plot is shown in Figure 5-7

Figure 5-7: Normalized random variables before and after inverse CDF transform (X: Gamma; Y: Gamma)

58

If it’s needed to generate correlated random variables with particular marginal distributions, just change

the inverse CDF transformation to that of the desired distributions. The rank correlation information will

be preserved by this procedure no matter what particular marginal distribution it is.

Method introduced in this section is based on multivariate Gaussian distribution and the related CDF

transform.

5.2.2.3 Correlated random variables generation by bivariate t­distribution

Just like the multivariate Gaussian method discussed in the previous sub section to generate correlated

random variables of any marginal distribution, multivariate t-distribution can also be served for the same

purpose. The first step is to generate correlated multivariate t-distribution points; the second step is to

make CDF transform to get normalized rank correlation form that has the uniform marginal distributions

on [0,1] while keeping the rank correlation information of the original multivariate t-distribution; The 3rd

step is to generate any desired distribution data samples by taking inverse CDF transform on the uniform

distributed marginals of the normalized form, the generated data will still keep the rank correlation

information as in the normalized form.

Illustrated in Figure 5-8 is an example of the comparison between random variable generation using

Gaussian distribution method and t-distribution method. The 1st row is Gaussian, 2nd row is t, the column

from left to right are: correlated Gaussian/t distribution; normalized form; generated correlated data with

marginals be Gamma and t respectively. It should be noted that although the two methods used the same

linear dependence coefficient rho=0.8, they show some difference this is because of the different

correlation structure between Gaussian copula and t copula.

5.2.3 Copula Properties and Applications

As explained in previous sections, in step 2 a set of normalized random variables that has the uniform

marginal distribution on [0,1] is obtained. These normalized variables represent rank relations and

dependence structure, however it does not impose any requirement on the marginal distributions. As a

59

fact any marginal distribution can be implemented based on the given normalized random variables by

inverse CDF transform. It can be concluded that this method decouples the marginal distributions with

their correlation. The relationship between the normalized uniform distributed random variables is copula.

Figure 5-8: Using bivariate Gaussian and t distribution to generate normalized random variables and by which to
produce any desired marginal distributions

Copula is formally defined as a joint distribution function whose marginal distributions are uniformly

distributed on [0,1] [Nelsen, 1999]. Uniformly distributed marginals provide a potential for any inverse

CDF transform that can be used to produce desired marginal distributions similar to the method used by

Monte Carlo Simulation. The coming part of this section will give a brief conclusion of some most

important copula properties, detailed proof can be found in [Genest 1993, 2007].

60

5.2.3.1 Properties of copula

1) Frechet-Hoeffding’s bounds

For every C and (u,v) in [0,1]2, W(u,v)≤C(u,v)≤M(u,v)

in which M(u,v)=min(u,v); W(u,v)=max(u+v-1,0)

This relation can be illustrated in Figure 5-9. Left figure is the upper bound; right one is the

lower bound.

Figure 5-9: Upper and lower boundaries of copula

2) Copulas for monotone functions

if f and g are strictly increasing then

),(),(,)(),(vuCvuC YXxgxf = (5.8)

This property shows that random variables after strictly increasing transform and the copula

remains the same. This property can be easily proved in this way:

Suppose the random variables and their distribution functions are:

61

Table 5-1: Random variables and their respective CDF functions

Random Variables CDF

X)(1 xF
Y)(1 yG

)(Xα)(2 xF
)(Yβ)(2 yG

() { }
{ }

() ()())(,)(
)(),(Pr

)(,)(Pr)(),(

1
1

1
1,

11

22)(),(

yGxFC
YYXX

yYxXyGxFC

YX

YX

−−

−−

=

≤≤=

≤≤=

βα

βα

βαβα

 (5.9)

Since

 () [] [])()(Pr)(Pr)(2
11

1 xFxXxXxF =≤=≤= −− ααα (5.10)

Then:

),(),(,)(),(vuCvuC YXxgxf =

5.2.3.2 Archimedean Copula

In previous examples Gaussian copula and t-copula have been discussed, while Archimedean is also a

widely used copula due to its ease of construction [Nelsen, 1999].

Archimedean copula is defined as C(u,v)=�[-1](�(u)+ �(v)), in which ߮ሾିଵሿ(x) is the psudo-inverse of

the function ߮(x) and �(x) is the generator function that is continuous and strictly decreasing function

from [0,1] to [0,+∞) with �(1)=0. Different generator functions correspond to different Archimedean

families of copulas. Listed in Table 5-2 are several commonly used Archimedean families of copulas.

Figure 5-10 are scatter plots of Clayton, Frank and Gumbel copulas with 1000 sample points and

Kendell’s tau equals to 0.7.

62

Table 5-2: Selected Archimedean copulas and their respective generator functions
(content partly from Nelsen, 1999 and Frees, E.W., 1998)

 Generator �(t) θ range copula

Clayton ଵ
ఏ
൫௧షഇିଵ൯ [-1,+∞)\{0} ൣ݉ܽݔ൫ିݑఏ ൅ ఏିݒ െ 1, 0൯൧ିଵ/ఏ

Frank
െ ln

݁ିఏ௧ െ 1
݁ିఏ െ 1

(-∞,+∞)\{0} െଵ

ఏ
୪୬ ቆଵା

൫௘షഇೠିଵ൯൫௘షഇೡିଵ൯
௘షഇିଵ

ቇ

Gumbel-

Hougaard
ሺെ ln ሻఏ [1, +∞) expݐ ቀെൣሺെ ln ሻఏݑ ൅ ሺെ ln ሻఏ൧ଵ/ఏቁݒ

Figure 5-10: Scatter plots of Clayton, Frank and Gumbel copulas (n=1000, τ=0.7)

The relationship between copula CDF and copula PDF can be expressed as:

vu

vuC
vuc XX

XX ∂∂

∂
=

),(
),(21

21

,
2

, (5.11)

The PDF and CDF of Gumbel-Hougaard copula are shown in Figure 5-11, the copula coefficient θ=2:

The joint PDF of random variables is expressed by copula PDF and marginal PDF:

63

)()(),(

),(

),(
),(

21,

21

,
2

21

21,
2

21,

2121

21

21

21

xfxfvuc
x
v

x
u

vu
vuC

xx
xxF

xxf

XXXX

XX

XX
XX

⋅⋅=
∂
∂

⋅
∂
∂

⋅
∂∂

∂
=

∂∂

∂
=

(5.12)

Figure 5-11: PDF and CDF of Gumbel-Hougaard copula (θ=2)

5.2.3.3 Rank correlation coefficient

Rank correlation measures the degree of concordance between 2 random variables. Concordance is a

trend that big values of X and big values of Y tend to appear in pairs, small values of X and small values

of Y also tend to appear in pairs. Figure 5-12 illustrates the concept of concordance and discordance.

Rank correlation coefficient is defined on [-1, 1], 1 denotes deterministic positive concordance while -1

denotes deterministic negative concordance. If X and Y are uncorrelated then their rank correlation

coefficient is zero, but the converse does not hold.

64

Figure 5-12: Illustration of the concept of concordance and discordance

Kendall’s tau and Spearman’s rho are two commonly used rank correlation coefficients.Kendall’s tau is

defined as the probability of concordance minus the probability of discordance [Genest, C. 2007]:

 ()(){ } ()(){ }0Pr0Pr 21212121 <−−−>−−= YYXXYYXXXYτ (5.13)

Kendall’s tau is different from Pearson’s correlation coefficient for its scale-freeness. Kendall’s tau is a

measure of rank correlation, regardless of whether the random variables have a linear dependence or not.

As an example, consider a deterministic nonlinear relationship between 2 random variables: Y=X2. In this

case Kendall’s tau is 1, but Pearson’s correlation coefficient is 0.968 rather than 1 even the relationship is

deterministic. This example shows the advantage of Kendall’s tau over Pearson’s rho.

Although Kendall’s tau and linear dependence coefficient are different, they have a deterministic

relationship for each specific copula. More details can be found in [Genest, C., Favre, A.C., 2007].

5.2.3.4 Estimating Kendall’s tau by experiment

Rank correlation coefficient Kendall’s tau can be estimated by obtaining a set of sample data from

experiments. This process can be found in [Genest, C. and Rivest, L.P. 1993] and [Frees, E.W. 1998]

65

5.2.3.5 Generating correlated bivariate dataset based on copula

To estimate structural reliability by Monte Carlo Method, it’s necessary to consider the correlations of

random variables. For example, it’s natural to model wind load and wave load as correlated random

variables. Taking the correlation into account is very important in reliability evaluation. Fail to do so may

result in the failure of design. In this chapter the impact of load correlation on structural strength will be

shown.

Procedure for generating bivariate correlated random dataset by copula is listed below, more details can

be found in [Nelsen, R.B., 1999].

1) Select a copula, say, Frank’s family;

2) Generate a uniformly distributed random variable]1,0[0 ∈u , plug u0 in to this derivative expression to

get a function of v:

)(
0

vc
u
Cc

uu

=
∂
∂

=
=

 (5.14)

3) Generate a uniformly distributed random variable]1,0[∈w , let wvc =)(then v can be computed as

0vv =

4) Make inverse CDF transform for 00 and uv and a pair of correlated random variables are obtained:

)(

)(

0
1

2

0
1

1

2

1

vFx

uFx

X

X

−

−

=

=
 (5.15)

5.3 Illustrated Examples

The ten bar truss model with two random variables will be used as an example for this chapter.

66

5.3.1 Uncorrelated Monte Carlo Simulation to Evaluate Pf

Matlab code refer to App. Code03. Random data are generated as independent variables that follow

Gaussian distributions. For 1e5 samples, it takes 12 seconds.

Sample number: 1e5;

Running time: 12 seconds;

Pf: 0.003869;

5.3.2 Correlated MCS to Evaluate Pf by Bivariate Gaussian Distribution

Matlab code refer to App. Code 04.

The covariance matrix for the bivariate Gaussian distribution is defined as :

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

16.0
6.01

500
1

1 22

ρ
ρ

σC

Sample number: 1e5;

Running time: 12 seconds;

Pf: 0.017161;

5.3.3 Correlated MCS to Evaluate Pf by KL expansion

Matlab code refer to App. Code 06.

The covariance matrix for the bivariate Gaussian distribution is also defined as :

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

16.0
6.01

500
1

1 22

ρ
ρ

σC

Sample number: 1e5;

Running time: 12 seconds;

Pf: 0.01746;

67

Some data samples generated by KL expansion are listed in Table 5-3, to get an intuitive idea of

correlation, a modified dataset P-μ(P) is also given. The trend of correlation can be obviously observed

from these samples.

5.3.4 Correlated MCS to Evaluate Pf by Copula

In this section Pf will be evaluated by MCS, the data samples are generated by the method of copula. This

experiment will be based on 3 different groups of data samples that are generated by 3 different families

of copulas that all belong to a same family of Archimedean copula. The method of generating correlated

data samples by copula will be demonstrated; the different simulation results from the 3 different copulas

will also be shown and the reason will be discussed.

Table 5-3: Data samples generated by KL transform for simulation

P1 P2 P1‐μ(P1) P2‐μ(P2)
2955.984125 2878.71653 ‐44.01587518 ‐121.2834704
3253.471998 3630.153653 253.4719983 630.1536527
2668.317816 2632.830431 ‐331.6821843 ‐367.1695692
2460.629117 2694.549808 ‐539.370883 ‐305.4501919
2358.502215 2887.405016 ‐641.4977852 ‐112.5949839
2367.28159 2680.568469 ‐632.7184102 ‐319.4315312
3430.533565 3615.73031 430.5335652 615.7303099
2615.471435 2948.195317 ‐384.5285646 ‐51.80468349
2697.920465 3132.002761 ‐302.0795354 132.0027606
3502.29927 2755.373606 502.29927 ‐244.6263938
2531.618788 2632.872126 ‐468.3812121 ‐367.1278744
2776.705405 3116.449212 ‐223.2945947 116.4492115
3079.565125 3185.210901 79.56512475 185.2109013
3924.162462 3055.823941 924.1624619 55.82394079
3421.053904 2946.906724 421.0539042 ‐53.09327572
2697.682987 2883.045385 ‐302.3170125 ‐116.954615

Copula is a bivariate cumulative distribution function (CDF) whose marginal distributions are all uniform

distributions on [0,1]. The marginal distributions of copula can be mapped to the CDF of any univariate

distributions. In this way, copula could realize the uncoupling of 2 or more correlated random variables.

68

The mathematical form of a bivariate copula can be expressed as:

),())(),((),(,,, yxFyFxFCvuC YXYXYXYX == (5.16)

The joint PDF of this 2 random variable can be expressed as:

)().(.),(..),(),(),(
222

, yfxf
vu

vuC
y
v

x
u

vu
vuC

yx
yxFyxf YXYX ∂∂

∂
=

∂
∂

∂
∂

∂∂
∂

=
∂∂

∂
= (5.17)

In this expression of joint PDF,)(),(yfxf YX are marginal PDF’s, while
vu

vuC
∂∂

∂),(2

 can be regarded as a

correlation term.

To make comparisons, it is still required that the linear dependence coefficient to be the same as that of

the previous experiment. The models in the previous experiments are bivariate normal, for bivariate

normal distributions with linear dependent coefficient r, Kruskal has proved that

)arcsin(2 r
π

τ =

In this case linear dependent coefficient r=0.6, corresponding Kendall’s τ=0.4097.

5.3.4.1 Different copula families

Correlated random data samples will be produced by three copulas (Clayton, Gumbel and Frank) that all

belong to a same Archimedean family. All the three copulas will have a same Kendall’s tau that equals to

0.4097.

Matlab code refer to App. Code 08

Experiment 1 Clayton copula to generate correlated RV’s and MCS to get Pf:

Sample number: 1e5;

Running time: 12 seconds;

Pf: 0.00756;

69

Figure 5-13: Scatter plot of Clayton copula random variables

Experiment 2 Gumbel copula to generate correlated RV’s and MCS to get Pf:

Sample number: 1e5;

Running time: 12 seconds;

Pf: 0.02166;

Figure 5-14: Scatter plot of Gumble copula random variables

Experiment 3 Frank copula to generate correlated RV’s and MCS to get Pf:

Sample number: 1e5;

Running time: 12 seconds;

Pf: 0.01154;

70

Figure 5-15: Scatter plot of Frank copula random variables

The simulation results show that although the three families of copulas (Clayton, Gumbel, Frank) have

the same rank coefficient Kendall’s tau which equals to 0.6 in this case, however the simulations results

in 3 different value of Pf. This is because that Kendall’s tau is a measure of rank only, or in another word,

it measures the relative greatness between RV’s only, no matter the actual value of RV’s. This can be

explained by this example:

Suppose there are only 2 points P1 and P2 on a copula scatter plot:

Case1: P1: (0.2 0.2); P2: (0.3 0.3)

Case2: P1: (0.2 0.2); P2: (0.6 0.6)

Their marginal distributions are both standard normal. The corresponding marginal points can be obtained

by inverse Gaussian CDF transform, as shown in Table 5-4:

Table 5-4: Inverse Gaussian CDF table

Probability Inverse Normal CDF
0.2 -0.8416
0.3 -0.5244
0.6 0.2533

For case 1 and case 2, the mean values on the marginal are respectively:

Q1=(-0.683, -0.683)

71

Q2=(-0.29415, -0.29415)

Although the mean values of the 2 cases are different, their measures of rank, or Kendall’s tau, are the

same according to the definition of Kendall’s tau:

)0))(Pr(()0))(Pr((21212121 <−−−>−−= yyxxyyxxτ

For this example in both cases since only concordant pairs exist, thus in both cases tau=1. This example

shows that although with the same value of Kendall’s tau, the probabilistic properties may be different.

That explains why for three different families of copulas (Clayton, Gumbel, Frank) with the same

Kendall’s tau, the probabilities of failure are different.

The results of the above simulations are listed in Table 5-5:

σallow =100MPa;

Pi ~ N(3000, 5002), i=1,2

Table 5-5: Comparison of simulation results of different families of copula

Simulation Method Linear dependent

coefficient ρ

Kendall’s tau Simulation

samples

Results (Pf)

Uncorrelated MCS 0 / 1e6 0.003869

Bivariate Gaussian 0.6 / 1e6 0.017161

KL expansion 0.6 / 1e6 0.01746

Positive

correlated

copula

Clayton copula / 0.409666 1e5 0.00756

Gumbel copula / 0.409666 1e5 0.02166

Frank copula / 0.409666 1e5 0.01154

Negative

correlated

copula

Clayton copula / / / /

Gumbel copula / / / /

Frank copula / -0.409666 1e5 0.00042

It should be noted that the value of Kendall’s tau is derived from the relationship of values between

correlation coefficient ρ and Kendall’s tau for bivariate Gaussian distribution, however in copula based

72

simulations there’s no implementation of bivariate Gaussian, thus the comparison between copula and

non-copula cases are not necessarily meaningful.

5.3.4.2 Generate correlated random variables by copula

Gumbel-Hougaard copula will be taken as an example, for other copulas just substituting the Gumbel-

Hougaard copula with other copulas and the steps remain the sames.

The Gumbel-Hougaard copula has this form [Nelsen 1999]:

 []
⎭
⎬
⎫

⎩
⎨
⎧

−+−−= θθθ
θ

1

)ln()ln(exp),(vuvuC (5.18)

When the correlation coefficient θ is given, the steps for generating 2 randomly correlated random

variables are listed below:

1. Generate a uniformly distributed random variable u0 on [0,1];

2. For a given u0, the below expression is a function of v;

[] () ⎥
⎦

⎤
⎢
⎣

⎡ −
⎥⎦

⎤
⎢⎣

⎡ −+−
⎭
⎬
⎫

⎩
⎨
⎧

−+−−=

∂
∂

=

−−

=

0

1
0

1

0

1

0
)ln()ln()ln()ln()ln(exp

),()(
0

u
uvuvu

u
vuCvc

uu

θ
θ
θ

θθθθθ

θ

 (5.19)

3. Generate a uniformly distributed random variable w on [0,1];

4. Let the c(v) expression equal to w, the value of v can be calculated as v0;

5. Generate X and Y by inverse CDF transformation based on any desired marginal distribution.

)(

)(

0
1

0
1

vFY

uFX

Y

X
−

−

=

=
 (5.20)

For example, if X and Y are both Gaussian distribution then

73

∞<<−∞
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

∞<<−∞
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

∫

∫

∞−

∞−

ydt
t

yF

xdttxF

y

y

y

y
Y

x

x

x

x
X

,
2
1exp

2
1)(

,
2
1exp

2
1)(

2

2

σ
μ

πσ

σ
μ

πσ
 (5.21)

X and Y generated in this way will satisfy the correlation specified by this Gumbel-Hougaard copula.

One small problem of this procedure is that the root finding function fzero.m embedded in matlab has an

accuracy problem, it usually fails when the copula marginal values u0 and v0 are close to the margins, 0 or

1.

Matlab code for generating random variables based on copula method is listed in App. Code 10, the 2 root

finding function copulafunc01 and copulafunc02 are also in App. CODE COPULAFUNC01 and App.

CODE COPULAFUNC02. The scatter plot Figure 5-16 shows the random variables generated by this

method. Data table is also listed below in which a fraction of the generated data samples are given.

Figure 5-16: Scatter plot for data samples generated by Gumbel-Hougaard (left) and Clayton (right) copula

Table 5-6 shows that when the correlation between 2 random variables are both positive concordant,

different copula may generate close results, as can be seen from the table that v0 from Gumbel-Hougaard

copula and v0 from Clayton copula tend to be close to each other.

74

Table 5-6: Data samples generated by Gumbel-Hougaard and Clayton copula

u0 w v0(Gumbel‐Hougaard) v0(Clayton)
0.49500634 0.657534063 0.534995266 0.581262507
0.448410818 0.356282473 0.402889409 0.420354036
0.488448956 0.434591449 0.46520529 0.485529779
0.802255248 0.703079518 0.824432405 0.86824191
0.700554743 0.212614295 0.615086769 0.570082037
0.126555527 0.931439432 0.30783879 0.221414899
0.09257591 0.697358495 0.14990779 0.114180137
0.812984413 0.428723755 0.793888784 0.762200991
0.470034524 0.38205225 0.431739518 0.449334519
0.153963177 0.321816061 0.129734509 0.140638192
0.796514658 0.514381006 0.790200979 0.787168704
0.666719646 0.806944557 0.731159155 0.83351066
0.534661541 0.968731381 0.726089535 0.908696513
0.781711601 0.028200965 0.574501833 0.43446959
0.645114315 0.253335718 0.567992264 0.548448775
0.062540808 0.34055407 0.057550025 0.058031066
0.1279603 0.536264105 0.150948172 0.138186664

0.686504975 0.874953389 0.769340903 0.891857229
0.210680584 0.385192038 0.193207037 0.202636557

It should be noted from the simulation result table that even though with the same marginal distribution,

simulation with positive and negative correlation result in very different failure rate. For the Frank’s

copula case, the positive correlation results in a failure rate 24 times higher than that of the negative case.

This can be explained by Figure 5-17. The left figure is the positive correlation case; the right figure is the

negative correlation case. For both positive and negative correlations, the marginal distributions are the

same X~N(3000, 5002). However the positive correlation case has much higher chance of falling in the

failure region. This example shows that it’s important to take into consideration of the correlation

between random variables during design or reliability evaluation.

75

Figure 5-17: Illustration of how positive and negative correlation influence failure rate

5.4 Summary

From the discussions above, one may find some advantages and drawbacks of copula for modeling

random variable correlations.

5.4.1 Advantages of Copula

Compared with existing methods of modeling correlations, copula has many advantages:

1) Copulas have very simple mathematical forms.

2) Copula method is a scale free measure of correlation, it represent the rank correlations only regardless

of the scale. Thus both linear and different degree of nonlinearity can be modeled by a same copula.

Property of scale freeness also determines that monotone increasing transform does not change copula.

This is an advantage over other method, ie, Pearson’s correlation coefficient
DYDX
YXCOV

⋅
=

),(ρ .

3) Copula method decouples the marginal distribution with joint distribution. Different marginal

distributions may share a same copula.

76

4) Copula can be used to model dependences for any marginal distributions.

5.4.2 Disadvantages of Copula

With a same correlation coefficient, say, the same Kendall’s tau, data samples from different families of

copula will produce different simulation results.

77

CHAPTER 6: OPTIMIZATION BASED ON STRUCTURE SURROGATE MODEL

6.1 Simulation Problem

The MCS simulation based on the precise model are usually very time consuming. Taking author’s

computer for an example, the author’s computer has an 8 core CPU with each of which running at 1.6

GHz, memory is 8GB. With this computer configuration for 1e6 samples of simulation for ten bar truss

model, it takes 14 hours. For complex models and FEA models it could take longer. For satisfactory

precision of MCS, large data sample is required, which even increase the simulation time. It’s necessary

to find methods to reduce the computation expenses.

6.2 Solutions for the Problem

6.2.1 Importance Sampling

In Importance Sampling, sample values of the random variables are generated using a sampling PDF that

yields samples of high probability of failures, instead of the original true PDF. Since the occurrence of

failure is higher than the true model, the sample size can be considerably decreased. Details about

Importance sampling can be found in [Doucet, A., et al, 2001].

6.2.2 Surrogate Model

Surrogate model is based on replacing the original computationally expensive model by a

computationally affordable substitute model that is a close approximate of the true model. Introduction of

surrogate model can help reduce the computational expenses greatly. Commonly used methods to obtain a

surrogate model include Artificial Neural Network, interpolation or regression methods. In this thesis

Kriging will be used to find a surrogate model for the limit-state function.

78

6.3 Kriging

Kriging is a group of geostatistical techniques to interpolate the value of a random field (e.g., the

elevation, z, of the landscape as a function of the geographic location) at an unobserved location from

observations of its value at nearby locations. Kriging is basically an interpolation method that is used to

estimate the value at a given spatial point when the values at a set of neighborhood sampling points are

given. The results of Kriging are the estimated function value at any given point and the estimating

variance. Details about kriging can be found in [Isaaks, E.H., et al, 1989].

In this thesis, Kriging is applied as a method of regression/interpolation. The regression model obtained

by Kriging is served as a surrogate model for a computationally expensive function. Compared with the

original model, the surrogate model based on Kriging is computationally less expensive, thus it makes

Monte Carlo Simulation of millions of samples possible.

Illustrated in Figure 6-1 is an example of Kriging interpolation. The line in the center is the estimated

value at each point; the encompassing lines form the upper and lower bound of 95% confidence intervals;

sampling point with values are rectangles.

Suppose the measured value at sampling points P1…Pn are φ1, … φn respectively, the value at point Pu

need be estimated. The general interpolating method can be expressed as:

 ∑
=

=
n

i
iiu

1

φλφ (6.1)

iλ is the Kriging weight, it is a decreasing function of distance from Pu to Pi. For Kriging, the selection

of iλ need also satisfy the requirement of minimizing estimating error variance.

This section will give a brief review of Kriging method, more details can be found in [Issaks, E.H., 1989].

General form of Kriging can be expressed as:

79

Figure 6-1: Kriging in 2D plane (figure from Wikipedia.com)

Figure 6-2: Kriging using sampling points values to estimate value at a given point

80

 []∑
=

−=−
n

mZmZ
1

)()()()(*
α

αααλ uuuu (6.2)

In which:

)(* uZ : Estimation of Z(u);

)(um : Mean value at point u;

αλ : Kriging weight that need to be determined;

)(αuZ : Measured value at point uα;

)(αum : Mean value at point uα;

The objective is to determine the kriging weights αλ such that the variance of the estimator is minimized:

 { })()(*)(2 uuu ZZVarE −=σ (6.3)

Under the constraint:

 { } 0)()(* =− uu ZZE (6.4)

In which)(uZ is the value of random process at the estimating point.

)(uZ can be decomposed to mean (or trend))(um and residual)()()(uuu mZR −= . Residual

satisfies the mean and covariance conditions:

 { } 0)(=uRE (6.5)

 { } () (){ } { })()()(0)(0)()(),(hhuuhuuhuu RCRRERRERRCOV =+⋅=−+⋅−=+ (6.6)

In which)(hRC is the covariance function of residuals. It is a function of distance h. Covariance

functions have already been discussed in KL transform section.

81

Based on the treatment of mean value)(um , there are 3 main kriging method: Simple Kriging; Ordinary

Kriging; Kriging with a trend. The first two methods will be used in this thesis.

1) Simple Kriging

In simple kriging, the mean)(um is taken as a constant:

 0)(=um (6.7)

Thus (*) becomes:

 []∑
=

−⋅+=
n

SK
SK mZmZ

1

*)()()(
α

ααλ uuu (6.8)

Based on this the estimation error can be found thus the estimation error variance can be found. Take

derivatives for the estimation error variance with regard to each kriging weight)(uSK
αλ and set to zero one

get a system of equations:

 () () nCC RR

n
SK ,...,1)(

1

=−=−⋅∑
=

αλ αβα
β

β uuuuu (6.9)

Express this equation system in the form of matrix as below:

 kuK =⋅)(SK
SK βλ (6.10)

In which:

SKK is the covariance matrix between sampling points;

k is the covariance vector between sampling points and estimating point.

Kriging weights can be computed:

 kKu ⋅= −1)(SK
SK
βλ (6.11)

82

2) Ordinary Kriging

Assume that the mean is constant at the neighborhood of each sampling point:

)()(uu mm =α (6.12)

Let the sum of Kriging weight equal to 1: 1)(
1

=∑
=

n

α
αλ u ,

This constraint optimization problem can be solved by introducing Lagrangian:

 ⎥
⎦

⎤
⎢
⎣

⎡ −⋅+= ∑
=

n
OK

OKEL
1

2)(1)(2)(
α

αλμσ uuu (6.13)

In which)(uOKμ is the Lagrangian parameter

Take derivative for each Kriging weight)(uOK
αλ , take derivative for Lagrange parameter)(uOKμ , this

system of equations is obtained:

() ()

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=−=+−⋅

∑

∑

=

=

1)(

,...,1)()(

1

1

n
OK

ROKR

n
OK nCC

α
α

αβα
β

β

λ

αμλ

u

uuuuuu
 (6.14)

It has a matrix form:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⎥
⎦

⎤
⎢
⎣

⎡

1

...
2

1

2

1

nn k

k
k

μ
λ

λ
λ

01
1K

 (6.15)

Solve it and the Kriging weight and Lagrange parameter can be obtained:

83

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

1

...
2

1

12

1

nn k

k
k

01
1K

μ
λ

λ
λ

 (6.16)

6.4 Illustrated Examples

6.4.1 Surrogate Model for Ten Bar Truss Case

It is necessary to find a surrogate model to replace the original model. This surrogate model must be

computationally less expensive with acceptable precision. Usually computational efficiency is in contrast

with precision, one can get high speed computation at the expenses of precision or get high precision at

the expense of long running time.

A surrogate model is an approximation of the original model, it can be regarded as a curve fitting or

interpolating method. Usually these methods are applied in application: Least Square Fit; Artificial Neural

Network; Kriging. In this example, Kriging method will be applied to obtain a surrogate model for the ten

bar truss model.

The covariance function is selected as:

3

maxmax

5.05.11)(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

d
d

d
ddC (6.17)

The characteristics of this covariance function can be observed. The covariance between 2 points

decreases as the distance between these 2 points increase. If the 2 points overlap, the covariance is 1; if

the distance reaches the maximum allowable distance, the covariance is 0, as shown in Figure 6-3.

84

Figure 6-3: Covariance function

⎩
⎨
⎧

=
=

=
1:0
0:1

)(
d
d

dC

Kriging method is an exact interpolation method, it preserves the values at the observation points. For this

ten-bar-truss problem, the observation points are chosen by these rules:

1) Sampling points are sampled from three dimensions: X1, X2, X3;

2) On each axis 5 points are sampled;

3) For each axis, the left most point is μ-2σ; right most point is μ-2σ; interval is σ;

4) 5 points on each of the 3 axes are combined to each other, totally there are 125 sampling points.

Since here the mean value of the random field is not constant, Ordinary Kriging (OK) will be used.

Objective is to find a set of Kriging coefficients that minimize the estimation variance at each estimation

point with the constraint that sum of the coefficients equate to 1:

Minimize:)(2 Uσ

Subject to: 1)(
)(

1

=∑
=

Un

i

OK
i Uλ

85

For a given estimation point, a set of Kriging coefficients)(UOK
iλ (i=1…n(U)) can be obtained by

solving this constrained optimization problem. The estimation value at any point can be computed by

)()()(
)(

1

*
i

Un

i

OK
iOK UZUUZ ⋅= ∑

=

λ (6.18)

Where iU ’s are the sampling points and)(iUZ are the observation values at these sampling points.

To achieve high computational speed, the inverse of the covariance matrix of observation points and the

observation value of sampling points are store in a stand-alone data file.

The comparison between the results of original precise MCS and that of the Kriging method and several

other methods are listed below in the table. The Kriging surrogate model reduces the computation time

more than 30 times and the precision is acceptable.

Comparison of time consumption is made in Table 6-1 between precise MCS and Kriging-based

surrogate model:

Table 6-1: Comparison between Kriging-based method and other methods

 Precise

MCS

Kriging model MVFOSM

reliability index

HL reliability

index

Sample size 1e4 1e4 1e6 / / / /

Running time (s) 500 16 1600 / / / /

Rod (Ai

independent)

Pf Pf Pf β Pf βHL Pf

3 0.0330 0.0346 0.0343 2.9953 0.0014 1.8756 0.0304

7 0.0322 0.0404 0.0382 2.8889 0.0019 1.8388 0.0330

Table 6-2 shows the limit-state function value computed from precise model and surrogate model. The

outlier values comes from those point that are very far away from the sampling point set. Although the

outlier values brings greater errors, the trend that for each negative value from precise model, the

86

surrogate model nearly always also gives a negative value is valuable for evaluating failure rate as each

negative value represent a failure case regardless of the magnitude.

Table 6-2: The results of the precise limit-state values and the results from kriging approximation, with error percentage

 Rod 3 Rod 7

Precise Value
Kriging
Approximation

Error
Percentage

Precise
Value

Kriging
Approximation

Error
Percentage

1 3.530E+07 3.557E+07 0.77% 4.875E+07 4.913E+07 0.78%
2 3.787E+07 3.790E+07 0.08% 4.445E+07 4.434E+07 ‐0.24%
3 4.829E+07 4.844E+07 0.32% 2.795E+07 2.860E+07 2.35%
4 4.686E+07 4.683E+07 ‐0.07% 4.422E+07 4.411E+07 ‐0.24%
5 3.091E+07 3.144E+07 1.72% 3.783E+07 3.784E+07 0.03%
6 4.438E+07 4.453E+07 0.33% 1.466E+07 1.305E+07 ‐10.97%
7 4.798E+07 4.805E+07 0.15% 4.667E+07 4.672E+07 0.10%
8 2.893E+07 2.925E+07 1.12% 3.119E+07 3.147E+07 0.89%
9 1.840E+07 1.735E+07 ‐5.73% 4.518E+07 4.526E+07 0.16%

10 2.178E+07 2.160E+07 ‐0.84% 4.836E+07 4.871E+07 0.71%
11 3.327E+07 3.354E+07 0.80% 4.388E+07 4.379E+07 ‐0.20%
12 1.018E+07 7.899E+06 ‐22.39% 2.751E+07 2.775E+07 0.86%
13 5.171E+07 5.236E+07 1.27% 3.573E+07 3.613E+07 1.13%
14 4.141E+07 4.127E+07 ‐0.35% 3.052E+07 3.070E+07 0.60%
15 3.520E+07 3.541E+07 0.60% 3.434E+07 3.455E+07 0.59%

For examination, the random variables used for the computation are listed in Table 6-3:

6.4.2 Optimization Based on Surrogate Model

Methods for evaluating the probability of failure by analytical and simulation methods have been

discussed in the previous sections. For most of these methods iterative numerical algorithms have been

employed which makes it difficult to find the analytical relationships between design variables and Pf.

The optimization requirement requires that the designer finds a design point of X1 X2 and X3 such that

the probability of failure of rod 3 and rod 7 is less than permissible value. Since analytical relations

between design variables and objective function are difficult to obtain, numerical interpolation method

can be used to find the optimal design point.

87

Table 6-3: Random variables used for the computation

 Random Variables
X1 X2 X3

1 9.7258E‐05 2.1434E‐05 1.2517E‐04
2 1.0103E‐04 2.7155E‐05 1.1507E‐04
3 1.2102E‐04 2.9693E‐05 8.8338E‐05
4 1.1761E‐04 3.9391E‐05 1.1390E‐04
5 9.0766E‐05 2.6485E‐05 1.0267E‐04
6 1.1211E‐04 3.2160E‐05 7.4217E‐05
7 1.2058E‐04 3.1655E‐05 1.1972E‐04
8 8.8393E‐05 2.0886E‐05 9.2993E‐05
9 7.6452E‐05 3.9376E‐05 1.1561E‐04

10 8.0029E‐05 3.3204E‐05 1.2331E‐04
11 9.4264E‐05 2.1228E‐05 1.1423E‐04
12 6.9929E‐05 1.9081E‐05 8.8261E‐05
13 1.2983E‐04 2.8651E‐05 9.9298E‐05
14 1.0626E‐04 4.1380E‐05 9.0942E‐05
15 9.6257E‐05 3.7530E‐05 9.6502E‐05

The problem can be described as:

 Objective function: Min 31 bXaX + (6.19)

 Subject to:
{ }
{ }

⎪
⎩

⎪
⎨

⎧

−=
≤
≤

43.0
01.0),(
01.0),(

2

317

313

eX
XXgP
XXgP

 (6.20)

In which a and b are 2 constants related with rod numbers and rod lengths, objective function 31 bXaX +

represents the total truss weight; g3 and g7 are the limit-state function of rod 3 and rod 7 respectively.

Since the value of X2 does not have much influence on the safety of rod 3 and rod 7, in this study X2 will

be set as a constant value 0.3e-4. In this study only the mean value X1 and X3 are decision variables, the

variance σ1 and σ3 are state variables set as a σ=0.2X.

Since the analytical form of { } 01.0),(31 ≤XXgP i is difficult to obtain, numerical multivariate

interpolation method will be used. Sample points are taken at 1e-3 and 1.2e-3, totally there are four

88

sampling points, the Pf at these points are computed in Table 6-4 by any of the previous methods (HL,

SORM, Gradient, etc):

Table 6-4: Sampling points and their values

 X1 X3 Pf3 Pf7
1 1.00E‐03 1.00E‐03 0.0303 0.003
2 1.00E‐03 1.20E‐03 0.0307 0.00899
3 1.20E‐03 1.00E‐03 0.0083 0.0331
4 1.20E‐03 1.20E‐03 0.0084 0.00904

There are several multivariate interpolation methods, i.e. bilinear, bicubic, spine, Kriging, inverse-

distance weighted, minimum surface curvature, etc. For this problem bilinear interpolation will be used.

Bilinear interpolation is not linear since it has a quadratic term in it. Basic idea of bilinear interpolation is,

given 4 sampling points, first carry out the linear interpolation between 2 pairs of points on 2 opposite

edges; after this step the point values on the opposite 2 edges are known; any value inside the area can be

interpolated linearly by the two points on the two opposite edges whose values have been interpolated in

the previous step. One example of bilinear interpolation is illustrated in Figure 6-4: in this example, 4

sampling points are (0 0), (0 1), (1 0), (1 1); the respective function values on the four points are

respectively: 0, 1, 1, 0. (App. Code 44)

Figure 6-4: Example of bilinear interpolation

89

The bilinear interpolation has this equation form:

 []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅=+++=

4

3

2

1

4321 1),(

c
c
c
c

xyyxxycycxccyxf (6.21)

If four sample points and their respective function values are obtained,][ic can be solved:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

444

333

222

111

4

3

2

1

)()()(1
)()()(1
)()()(1
)()()(1

c
c
c
c

xyyx
xyyx
xyyx
xyyx

f
f
f
f

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⇒

−

4

3

2

1
1

444

333

222

111

4

3

2

1

)()()(1
)()()(1
)()()(1
)()()(1

f
f
f
f

xyyx
xyyx
xyyx
xyyx

c
c
c
c

 (6.22)

The coefficient vector is calculated as,

For rod3,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

55.7
95

3025.1
1308.0

4

3

2

1

e

e

c
c
c
c

; for rod7,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

525.1
3188.1

5.17
1513.0

4

3

2

1

e
e

d
d
d
d

The constraints:

{ }
{ }⎩

⎨
⎧

≤
≤

01.0),(
01.0),(

317

313

XXgP
XXgP

are both active, they could be replaced by the corresponding equality constraints:

90

{ }
{ }⎩

⎨
⎧

=
=

01.0),(
01.0),(

317

313

XXgP
XXgP

Since these two constraints can uniquely determine a pair of point on XY plane, the objective function

becomes redundant. The pair of point that satisfies the 2 constraints is solved as
⎩
⎨
⎧

−=
−=

41920.12
41856.11

eX
eX

.

Plug this point into the reliability computation algorithm and find the corresponding Pf of rod 3 and 7:

Pf3=0.0091;

Pf7=0.0095;

These two values satisfy the constraints and are very close to the optima. The error is caused by the

approximation error caused by bilinear interpolation.

To achieve higher precision, such steps can be carried out in iterations in smaller intervals around the

point obtained in the previous step. After two or three iterations, satisfactory optimum point can be found.

6.5 Comparison between Kriging and other interpolation methods

There are many other interpolation methods that can be used to build surrogate model, such as Artificial

Neural Network, nearest neighbor interpolation, inverse distance squared weighting, splines, etc. Each

interpolation method has its advantage and disadvantage depending on the sample data configuration and

the specific problem setting. Whether one interpolation method is superior to another depends on many

factors, it’s difficult to draw a general conclusion which one is better than other ones. This section will

give some comparisons of various interpolation methods by quoting published papers.

In [Chowdhury, M., Alouani, A., Hossain, F. 2010], the paper applies both Kriging and Artificial Neural

Network (ANN) method to predict the spatial mapping of arsenic contamination of groundwater. The

paper observes that ANN as a highly nonlinear interpolation method, is more accurate when compared to

ordinary kriging under the same sampling data set. The paper shows that for the case studied, the

91

successful detection rate of ANN is 15% higher than that by Kriging and that the false hope rate of ANN

is 10% lower than that of Kriging.

In [WaternBerg, D., et al, 1991], the author estimates ground water contaminations from a limited number

of observations by three different interpolation methods: Kriging, nearest neighbor interpolation and

inverse distance squared weighting. The results show that although kriging is an optimal estimation

method, it's not necessarily better than other simpler interpolation methods, though it usually is more

complex to use. However, Kriging by its complex configurations allows further improvement.

In [Laslett, G.M., 1994], the author makes an empirical comparison of the predictive performances

between Kriging and Splines by dividing dataset into modeling sets and prediction sets. The author finds

that in the particular case, kriging sometimes outperforms splines by a considerable margin, except for

that, kriging never performs worse than splines. The paper also concludes that when the sampling set are

big enough, both methods perform equally well; when the sampling set are sparse, kriging outperforms

spline.

In [Zimmerman, D., et al, 1999], a comparison of interpolation accuracy was made between ordinary and

universal kriging and two types of inverse squared-distance weighting. The experiment considers also the

effect of other factors such as sampling patterns. The paper observes that “...the two kriging methods were

substantially superior to the inverse distance weighting methods over all levels of surface type, sampling

pattern, noise and correlation”. Except for that, the author also finds that the interpolation accuracies of all

these methods are very sensitive to sampling pattern, the interpolation accuracy deteriorate as the

sampling method changes from hexagonal to inhibited to random, and the worst sampling method is

clustered. The author's findings about kriging and inverse squared-distance weighting agree with the

conclusions from some authors, however it is contradictory with several other authors. By investigating

the non-performance-related aspects, the author also concludes that kriging has more advantages than

92

inverse squared-distance weighting in some other aspects, for example, kriging gives the estimation

variance information while inverse squared-distance weighting does not.

6.6 Summary

This example shows that Kriging can be used to effectively reduce the simulation time. It can be used to

build a computationally inexpensive surrogate model for many simulation problems. However, if the

computation point is far from the sample points, the interpolation algorithm will show great error. This

requires that the computation point be within the coverage of sampling point set. For highly nonlinear

problems, to achieve satisfactory results, it’s necessary to increase the number of sampling points at areas

where nonlinearity is high, which in turn increases the computation expenses. To overcome this problem,

the max covariance radius dmax can be set smaller so that less sampling points are included in computation.

Since the number of sample points decreases geometrically as the max covariance radius decreases, this

method can effectively reduce the computational expenses. However, if the max covariance radius is too

small, the interpolative surface will be less smooth, which is also undesirable. The selection of max

covariance radius need reach a trade-off or balance between the requirement of high performance and

high accuracy. Except for Kriging, other interpolation methods such as Artificial Neural Network can also

be applied to build surrogate models.

93

CHAPTER 7: HEURISTIC GRADIENT BASED SEARCHING ALGORITHM

7.1 Problem Description

The reliability-based optimization problems can usually be expressed in this form:

0Xg
0Xh

X

≤
=

)(
)(..
)(min

ts
f

 (7.1)

In which)(Xf is the objective function,)(Xh are the equality constraints,)(Xg are inequality

constraints.

For this nonlinear programming problem, if both equality constraints)(Xh and inequality constraints

)(Xg have analytical form and gradient information is obtainable, then an optimal point X* can be found

by solving

 ()
()

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=≥

==

∇+∇=∇ ∑ ∑
= =

lj

ljg

ghf

j

jj

m

i

l

j
jjii

,,1 0

,,1 0*)(

)()(*)(

*

*

1 1

**

L

L

γ

γ

γλ

X

XXX

 (7.2)

X* solved from this system of equation is KKT point. If certain convex conditions are met, the KKT

point is the global optimum. More details about KKT condition can be found in [Papalambros, P.Y., et al,

2000]. For reliability-based optimization problems, reliability constraints often appear as inequality

constraints. Since most applicable algorithms for computing reliability index such as MCS gives a set of

discrete numerical values, it’s difficult to obtain the analytical form and the usual nonlinear programming

algorithms cannot be used.

To solve this problem, a response surface of the reliability constraints is built.

94

The response surface is based on an interpolation model, for instance, kriging. The general form of

kriging interpolation can be expressed as:

 ∑
=

=
)(

1

)(
uk

i
iiiu d φλφ (7.3)

Let Pu be an arbitrary point in design space, },...{)(1 ukPP is a set of adjacent sample points that satisfy the

requirement that })(1,{ maxdPPukiP uii ≤−= L . In which maxd is the maximum distance, beyond

which the covariance is zero. The interpolation value at a certain point depends on the adjacent sample

points within the maximum distance, at different estimation point, the adjacent sample point set are not

necessarily the same. Or, for different point Pu, the set },...{)(1 ukPP is not necessarily the same. Both

point set and number of points in the set can be different for different Pu. As such, uφ is a segment

function and it does not have a uniform form on the design space. A uniform form is a expression that

have an identical form over the design space, such as this polynomial: cbxaxx ++= 2)(β defined on

),(+∞−∞ . However, for most optimization algorithms, it is required that the constraints have uniform

forms. To solve optimization problem in which some constraints are segment functions or do not have

uniform form, a heuristic gradient-based searching algorithm is introduced. An example of segment

function is shown in Figure 7-1.

Figure 7-1 Example of segment function

95

7.2 Response Surface for Constraints without Analytical Form

As has been explained in the previous section, since reliability index β is calculated by numerical iterative

process or MCS method, it’s difficult to find the analytical form of β in terms of design variables.

Without an analytical form of constraint function it’s impossible to solve the optimization problem by

gradient based searching method.

To obtain an analytical form of reliability index β as a function of design variables, an interpolative

response surface can be used. There are many ways to obtain an interpolative response surface, for

example, Inverse-Distance Weighting, Polynomial Interpolation, Cubic-Spline Interpolation, Volume-

Spline Interpolation, Kriging, etc. In this study multiquadric or kriging interpolation method will be used

to obtain response surface.

The general form of multiquadric interpolation is expressed as:

 ∑
=

+=
N

i
ii dbzyxf

1

22),,(α (7.4)

In which,

),,(zyxf : interpolated value at any given point (x,y,z);

di: Euclidian distance from interpolation point (x,y,z) to a sample point Pi;

α: an arbitrary constant, α=1 is common practice, in this case, α=1e-4 achieves better results;

bi: coefficients, can be determined by:

96

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+++

+++

+++

nn

nnn

n

n

n

v

v
v

b

b
b

ddd

ddd
ddd
ddd

MM

L

MOMMM

L

L

L

2

1

2

1

22
3

22
2

22
1

22
3

22
32

22
31

22
2

22
23

22
21

22
1

22
13

22
12

0

0
0

0

ααα

ααα
ααα
ααα

 (7.5)

The term dij is the Euclidian distance between sample point Pi and Pj; vi is the function value at the sample

point Pi.

Given a set of sampling points { }niPi L1= and their function values { }nivi L1= , interpolation

coefficients {bi} can be calculated. With interpolation coefficients {bi} known, the function value at any

interpolation point (x,y,z) can be calculated by equation (7.4).

Selection of sample point is usually based on heuristic or experience, as a common practice, sample point

can be selected inside and around feasible region, sampling points on each axis can be made in equal

intervals. Once the sampling points are determined, various methods can be applied to compute reliability

index. These methods include but not limited to: MVFOSM, HL method, correlated HL method, MCS

method, SORM method, Gradient Projection. The selection of these methods need consider the

correlations between random variables, if correlation exists, only correlated HL and MCS can be used.

7.3 Heuristic Gradient Based Searching Algorithm

Heuristic gradient-based searching algorithm is a numerical method to find optimal point for optimization

problem with constraints that are segment-defined functions, or constraints that do not have uniform

expression on design space. It is partially inspired by Gradient Projection method. Consider a starting

point P0, if inequality constraints are not considered, the searching direction should be the negative

gradient direction of the objective function. Make a step movement toward this direction, the new point

becomes:)(001 PfPP ∇⋅−= α . However due to the existence of the inequality constraint, this P1 may

97

not still be inside the feasible area (points in which satisfies all the constraints). A verification is made to

determine whether P1 is still inside the feasible area. If YES, then repeat the previous step and find the

next point; if NO, determine all the violated constraints. In this step, the violated inequality constraints

become active. A temporary equality constraint optimization problem is obtained. This temporary

equality constraint optimization problem can be solved by Gradient Projection method or Reduced

Gradient method. This temporary problem exists only for one step. When the temporary optimal point is

found, it can be served as the new starting point. These steps repeat until the objective function converges.

This process can be interpreted in 2D plane by Figure 7-2 :

Arrows in the figure are the negative gradient field. From starting point P0 searching along the negative

gradient direction, P1 is obtained. Verify inequality constraints violation, answer is NO. Repeat the

previous step, find point P2’. Now the inequality constraint is violated. h(X) now becomes active. Project

P1P2’ to the h(X) plane, P2 is obtained. Repeat this process until convergent point is found.

Figure 7-2: Heuristic searching algorithm (arrows denote gradient descent directions)

98

General steps can be described as:

1) Given a starting point that satisfies all the inequality constraints;

2) Searching along the negative gradient direction of the objective function at the current point;

3) After each moving verify if there’s any constraint violated, if any, the violated constraints are now

active;

4) Move back to the previous unviolated point, project the negative gradient of the objective function on

the tangent plane of the active constraints, move along this direction and find next feasible point;

5) Repeat step2 to step4 until convergent point is found.

Flow chart of the algorithm is shown in Figure-7-3:

7.4 Summary

For optimization problems that have constraints that have no analytical form, but the value and gradient

can be computed by iterative numerical algorithms or by response surface method, heuristic searching

algorithm can be used to find the optimal point. Heuristic searching algorithm is based on gradient

projection method, it checks the constraints violation in each step. Heuristic searching algorithm can be

used to find the optimal point for RBDO problems. However, as an iterative numerical searching

algorithm that include nested iterative gradient projection algorithm, heuristic searching algorithm is

usually time-consuming, especially when there are nested searching steps. Another problem of heuristic

searching algorithm is that it is easy to converge to local minimum. To avoid converging to local

minimum, large number of starting points need be choosed.

99

Set feasible starting point; set step size;

Compute)(Xf∇ at the current point

Make a step toward the)(Xf∇− direction

Compute reliability indices β at the new point

Any constraint violated?

Set violated constraints active; step back

Any β constraint violated?

Compute h∇ of response surface

at the current point

Compute h∇ of constraints at the

current point

Gradient Projection method to find next point

Converges ?
Iteration limit

reaches?

End

YES

NO

YES NO

YES

NO

YES

NO

Figure-7-3 Flow chart of heuristic search algorithm under response surface constraints

100

CHAPTER 8: ALTERNATIVE ALGORITHMS TO EVALUATE BETA AND

CORRELATED HL METHOD

8.1 Evaluating Pf by Optimization Method

8.1.1 Gradient Projection Method

HL method makes improvement than MVFOSM method by transforming the Gaussian distributed design

variables to standard Gaussian distribution. The transformation can be expressed as:

X

XXU
σ
μ−

= (8.1)

Safety index is defined as
)(

)(

Xg

Xg

σ
μ

β = in MVFOSM method, in HL method it can also be interpreted as

the shortest distance from the origin to the transformed limit-state zero plane (() 0ˆ =Ug). The safety

index β can be obtained by solving this optimization problem:

()

() 0ˆ :subject to

)(min
1

22
1

=

=== ∑
=

Ug

uUUUf
n

i
i

Tβ
 (8.2)

The Objective is to find the minimum distance from the origin to the limit-state surface; the constraint is

the point should be located on the limit-state surface. See Figure 8-1.

This optimization problem can be solved by gradient projection method. The basic idea of Gradient

Projection Method is searching on the constraint plane (in this case the constraint plane is the limit-state

function zero plane) along the projection on the constraint plane of the negative gradient direction of

objective function until the objective function reaches a minimum.

101

Figure 8-1: Geometrical meaning of reliability index

The procedure of Gradient Projection Method can be described as: (More details can be found in

[Papalambros, P.Y., 2000])

1) Select a starting point Xk on the constraint plane, the negative objective function gradient is kf∇− ;

project it on the tangent plane that passes the starting point Xk and one get kk f∇− P . kP is the projection

matrix;

2) Find a next iteration point X’k+1 along the direction kk f∇− P on the tangent plane passing point Xk, the

new point kkkk fxx ∇−=+ Pα'
1 where α is the step size.

3) Since α is on the tangent plane, usually it is not on the constraint plane, thus it requires to return to the

constraint plane. This can be done by drawing a straight line that passes point X’k+1 and is perpendicular

to the tangent plane. The intersection of this line with the constraint plane Xk+1 is the next iteration point.

Compute the objective function value at this new point.

4) Repeat step1-3 until the objective function value converges.

The procedure is illustrated in Figure 8-2

102

Figure 8-2: Illustration of gradient projection method (1)

The tangent subspace of the constraint plane at point Xk can be defined as:

}0|{ =⋅∇ℜ∈= tgt k
TnT Each vector in this subspace are orthogonal to the gradient kg∇ ;

The normal subspace of the constraint plane at point Xk can be described as:

 },|{ m
k

nN ℜ∈=⋅∇ℜ∈= pnpgn (8.3)

Each vector in this subspace is a linear combination of m constraint functions’ gradients at point Xk

T and N are complementary to each other with respect to space Rn , that is to say, any vector v in space Rn

can be described as ntv += , where T∈t and N∈n . Express the objective function gradient in terms

of t and n (Figure 8-3):

 nt +=∇ kf (8.4)

103

Figure 8-3: Illustration of gradient projection method (2)

Left side multiply the above equation by the gradient of constraint function at Xk:

 ngngngtgntgg ⋅∇=⋅∇+=⋅∇+⋅∇=+∇=∇∇ k
T

k
T

k
T

k
T

k
T

kk
T f 0)((8.5)

Plug (8.3) into (8.5):

 pggg ⋅∇⋅∇=∇∇ kk
T

kk
T f (8.6)

Thus () kk
T

kk
T f∇⋅∇⋅∇⋅∇=

− gggp 1
 plug it into (**) the relation between kf∇ and its projection on

the tangent plane is obtained:

 ()() kk
T

kk
T

kk ff ∇⋅∇⋅∇⋅∇⋅∇−=−∇=
− ggggInt 1

 (8.7)

Since kk f∇= Pt , projection matrix kP is obtained:

 ()()k
T

kk
T

kk ggggIP ∇⋅∇⋅∇⋅∇−=
−1

 (8.8)

Once Pk is obtained, the next point on the tangent plane X’k+1 can be obtained by kkkk fxx ∇−=+ Pα'
1 .

Step size α can be determined by experience or determined heuristically. If α is chosen too small, the

algorithm will converge very slowly; if α is chosen very large, there will be overshoot or will obtain

104

erroneous solutions. For the ten-bar-truss case, the step size is chosen as α=0.5. It’s been proved that this

step size is moderate for this case.

From definition of Xk+1 there exists this relationship between X’k+1 and Xk+1:

 () ()1
'

11
'

1 ++++ −=−⋅∇ kkkkk
T hhxxg (8.9)

Since 01 =+kh , the above equation becomes:

 () '
11

'
1 +++ =−⋅∇ kkkk

T hxxg (8.10)

1+kx can be obtained from the above equation by least square method:

() ()

() '
1

1'
11

1
'

11
'

1

+

−

++

++++

∇⋅∇∇−=

−=−⋅∇

kkk
T

kkk

kkkkk
T

hxx

hhxx

ggg

g
 (8.11)

Iteration is required for Xk+1 to return to the constraint plane:

 () ()()jkkk
T

kkjk hxx 1
1

111 +

−

+++ ∇⋅∇∇−= ggg (8.12)

Another iteration to compute Xk+1 is:

 () ()()jkkk
T

kkjk hxx 1
1

111111 +

−

++++++ ∇⋅∇∇−= ggg (8.13)

Ten bar Truss is used as example for this method. Appendix code 29 is the matlab code for solving

FORM safety-index problem by Gradient Projection Method. Table 8-1 is a computation example for rod

3 with a starting point (u1=-1.8791, 1, 1). It is shown that it takes 15 steps for the iteration to converge.

The final safety-index is 1.87571, corresponding to probability of failure 0.03035; the safety-index error

is 0.006%.

105

Table 8-1: Searching iterations by gradient projection method

Itera
tion beta Pf error u1 u2 u3 x1 x2 x3

1 2.35181 0.00934 / ‐1.8791 1 1 6.242E‐05 3.600E‐05 1.200E‐04
2 2.18312 0.01451 7.73E‐02 ‐1.8783 0.7841 0.7893 6.243E‐05 3.470E‐05 1.158E‐04
3 2.06393 0.01951 5.77E‐02 ‐1.8777 0.6009 0.6107 6.245E‐05 3.361E‐05 1.122E‐04
4 1.98592 0.02352 3.93E‐02 ‐1.8772 0.4514 0.4652 6.246E‐05 3.271E‐05 1.093E‐04
5 1.93813 0.02630 2.47E‐02 ‐1.8767 0.3336 0.3506 6.247E‐05 3.200E‐05 1.070E‐04
6 1.91028 0.02805 1.46E‐02 ‐1.8764 0.2432 0.2629 6.247E‐05 3.146E‐05 1.053E‐04
7 1.89457 0.02907 8.29E‐03 ‐1.8762 0.1751 0.1968 6.248E‐05 3.105E‐05 1.039E‐04
8 1.88589 0.02965 4.60E‐03 ‐1.8760 0.1243 0.1477 6.248E‐05 3.075E‐05 1.030E‐04
9 1.88116 0.02998 2.52E‐03 ‐1.8758 0.0868 0.1115 6.248E‐05 3.052E‐05 1.022E‐04

10 1.87859 0.03015 1.37E‐03 ‐1.8757 0.0591 0.0848 6.249E‐05 3.035E‐05 1.017E‐04
11 1.87720 0.03025 7.40E‐04 ‐1.8757 0.0387 0.0652 6.249E‐05 3.023E‐05 1.013E‐04
12 1.87645 0.03030 3.99E‐04 ‐1.8756 0.0237 0.0508 6.249E‐05 3.014E‐05 1.010E‐04
13 1.87605 0.03032 2.15E‐04 ‐1.8756 0.0127 0.0402 6.249E‐05 3.008E‐05 1.008E‐04
14 1.87583 0.03034 1.16E‐04 ‐1.8755 0.0046 0.0325 6.249E‐05 3.003E‐05 1.006E‐04
15 1.87571 0.03035 6.23E‐05 ‐1.8755 ‐0.0013 0.0268 6.249E‐05 2.999E‐05 1.005E‐04

Table 8-2 shows the results of Gradient Projection Method algorithm with different starting points for rod

3. Since the starting point are located on the constraint surface, a matlab function solve_u1.m is also

provided to compute a third coordinate value when 2 are given, thus a starting point can be obtained.

Table 18 provides cases of 11 different starting points, some of which are close to the minimum-distance-

point, some are far. After certain number of iterations, all of these starting points converge to a same final

point, and safety index β all converges to 1.8757, corresponding to probability of failure 0.0303. The

errors are relatively very low. This table shows that Gradient Projection Method achieves very precise

result for FORM problems.

Table 8-3 shows the results of different algorithms for computing Pf. It is shown that the FOSM Gradient

Projection method, HL reliability index method and SORM method all achieve similar results.

106

Table 8-2: Converging from different starting points by gradient projection method

item
Starting Point

steps initial beta final beta Pf error u1 u2 u3
1 ‐1.8757 0 0 2 1.8757 1.8756 0.0304 3.00E‐05
2 ‐1.8706 0 1 13 2.1211 1.8758 0.0303 8.00E‐05
3 ‐1.8847 1 0 13 2.1336 1.8758 0.0303 9.00E‐05
4 ‐1.8791 1 1 15 2.3518 1.8757 0.0303 6.00E‐05
5 ‐1.883 0 ‐1 13 2.1321 1.8758 0.0303 9.00E‐05
6 ‐1.8668 0 2 16 2.7359 1.8758 0.0303 9.00E‐05
7 ‐1.8937 0 ‐2 16 2.7543 1.8758 0.0303 9.00E‐05
8 ‐1.8687 ‐2 ‐2 18 3.39 1.8758 0.0303 9.00E‐05
9 ‐1.8823 2 2 18 3.3975 1.8758 0.0303 1.00E‐04

10 ‐1.852 ‐2 2 18 3.3808 1.8758 0.0303 9.00E‐05
11 ‐1.9118 2 ‐2 18 3.4139 1.8758 0.0303 1.00E‐04

Table 8-3: Comparison between the results from gradient projection method and other methods

 Precise
MCS

Kriging
model

MVFOSM
reliability index

Gradient
Projection

HL reliability
index

SORM
Breitung

Sample
size

1e4 1e6 / / / / / / /

Running
time (s)

500 1600 / / / / / / /

Rod (Ai
indept)

Pf Pf β Pf β Pf βHL Pf Pf

3 0.0330 0.0343 2.9953 0.0014 1.8758 0.0303 1.8756 0.0304 0.0303
7 0.0322 0.0382 2.8889 0.0019 1.8389 0.0330 1.8388 0.0330 0.0329

8.1.2 Reduced Gradient Method

If the there’s only an objective function without any equation constraint, then all the variables in the

objective function are free variables and are independent of each other. However once there are

constraints, equation constraints or active inequality constraints, the degree of freedom of the system

decreases. The number of active constraints equals to the DOF decrease number. Suppose there are totally

n variables and m constraints, then the DOF decrease will be m and there will be (n-m) free variables.

107

There will be m variables that are not free and can be represented by the (n-m) free variables. The (n-m)

free variables are called Decision Variables and the m non-free variables are called State Variables.

Reduced Gradient Method splits the overall variables into 2 categories: Decision Variables and State

Variables. The gradient based search steps are carried out based on the decision variables only. Since

there are deterministic relations between state variables and decision variables, with each step on the

decision variables, the steps on the state variables can be computed accordingly. More details can be

found in [Papalambros, P.Y., 2000].

Some notations:

:id decision variables, i=1…(n-m);

:is state variables, i=1…m;

k1k xxx −=∂ + : a perturbation on vector X;

)()(sd,d fz = : Objective function;

0sd,h =)(: Equation constraints, mx1 matrix (column vector);

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=
∂
∂

−− mnmn d
z

d
zz

d
f

d
ff ,......

11 dd
 (8.14)

ss ∂
∂

∂
∂ zf , : 1xm matrix (row vector);

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

−

−

mn

mm

mn

d
h

d
h

d
h

d
h

......

............

......

1

1

1

1

d
h

 (8.15)

108

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

m

mm

m

s
h

s
h

s
h

s
h

......

............

......

1

1

1

1

s
h

 (8.16)

A step on the decision variables toward the decreasing direction can be expressed as:

T

k
kkk

z
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅−=+ d
dd α1 or

T

k
k

z
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅−=∂
d

d α (8.17)

The corresponding step on the state variables is obtained:

T

kkk
kkkk

z
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=∂⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=⇒

⇒=∂⋅
∂
∂

⇒

=

−−

+ dd
h

s
hsd

d
h

s
hss

0x
x
h

0xh

11

1'

)(

α

LL
(8.18)

Since 1' +ks is usually not on the constraint plane, it’s necessary to return it to the constraint plane by this

iteration:

() () () ()

()1k1k

1k1k1k1k1k1k

s,dh
s
hss

s,dhs,dhs,dhhss
s
h

++

−

++

++++++++

⋅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=⇒

−=−=∂=−⋅
∂
∂

1

11

11

'

0'''

kk

kk

 (8.19)

Usually one or two such returning operation will achieve very high precision. In the ten-bar-truss example,

3 returning steps are used.

The total process for find the minimum value of the objective function can be listed in the following steps:

1) Choose an initial point on the constraint surface and select an appropriate step size α;

2) Compute
sds

h
d
h

∂
∂

∂
∂

∂
∂

∂
∂ ff ,,, values at the given point;

3) Compute the next point dk+1 for decision variables;

4) Compute the next point s’k+1 for state variables;

109

5) Returning the state variable point to the constraint plane, in another word, find sk+1;

6) ()1k1k s,d ++ gives a new point on the constraint plane, evaluate the objective function at this point and

compare with the result of the previous step, if not converging, go to step 2); if it converges, terminate the

process.

Ten bar truss case is used as an example for this method. Table 8-4 shows the iteration process for rod 3

given an initial point at (-1.8722, -1, -1). It takes 15 iterations to reach an error of 6e-5.

Table 8-4: Rod 3 searching iterations by reduced gradient algorithm

Itera
tion beta Pf error u1 u2 u3 x1 x2 x3

1 2.34633 0.00948 1.00E+00 ‐1.8722 ‐1.0000 ‐1.0000 6.26E‐05 2.40E‐05 8.00E‐05
2 2.17909 0.01466 7.67E‐02 ‐1.8729 ‐0.7914 ‐0.7838 6.25E‐05 2.53E‐05 8.43E‐05
3 2.06118 0.01964 5.72E‐02 ‐1.8735 ‐0.6144 ‐0.6008 6.25E‐05 2.63E‐05 8.80E‐05
4 1.98418 0.02362 3.88E‐02 ‐1.8740 ‐0.4701 ‐0.4519 6.25E‐05 2.72E‐05 9.10E‐05
5 1.93709 0.02637 2.43E‐02 ‐1.8743 ‐0.3565 ‐0.3349 6.25E‐05 2.79E‐05 9.33E‐05
6 1.90968 0.02809 1.44E‐02 ‐1.8746 ‐0.2693 ‐0.2453 6.25E‐05 2.84E‐05 9.51E‐05
7 1.89424 0.02910 8.15E‐03 ‐1.8748 ‐0.2036 ‐0.1779 6.25E‐05 2.88E‐05 9.64E‐05
8 1.88571 0.02967 4.52E‐03 ‐1.8750 ‐0.1547 ‐0.1279 6.25E‐05 2.91E‐05 9.74E‐05
9 1.88106 0.02998 2.47E‐03 ‐1.8751 ‐0.1185 ‐0.0909 6.25E‐05 2.93E‐05 9.82E‐05

10 1.87853 0.03015 1.34E‐03 ‐1.8752 ‐0.0918 ‐0.0637 6.25E‐05 2.94E‐05 9.87E‐05
11 1.87717 0.03025 7.26E‐04 ‐1.8753 ‐0.0721 ‐0.0437 6.25E‐05 2.96E‐05 9.91E‐05
12 1.87644 0.03030 3.92E‐04 ‐1.8753 ‐0.0577 ‐0.0290 6.25E‐05 2.97E‐05 9.94E‐05
13 1.87604 0.03032 2.11E‐04 ‐1.8754 ‐0.0471 ‐0.0182 6.25E‐05 2.97E‐05 9.96E‐05
14 1.87583 0.03034 1.14E‐04 ‐1.8754 ‐0.0393 ‐0.0104 6.25E‐05 2.98E‐05 9.98E‐05
15 1.87571 0.03035 6.11E‐05 ‐1.8754 ‐0.0335 ‐0.0046 6.25E‐05 2.98E‐05 9.99E‐05

Table 8-5 shows the iteration process for rod 7 given an initial point at (1, 2, -1.8624). It takes 15

iterations to reach an error of 6e-5.

8.2 Correlated HL method

HL method transforms the Gaussian distributed random variables to standard Gaussian distributions, and

take the first order Taylor expansion at the MPP point. HL makes great improvement compared with

110

MVFOSM. However, HL method does not consider the correlations between random variables. This can

be seen from the form of HL safety index:

∑

∑

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−
=

n

i
x

i

i

n

i
x

i

i

i

x
Xg

u
x
XgXg

1

2

*

1

*)(

)()(

σ

σ
β (8.20)

Table 8-5: Rod 7 searching iterations by reduced gradient algorithm

Itera
tion beta Pf error u1 u2 u3 x1 x2 x3

1 2.91008 0.00181 1.00E+00 1.0000 2.0000 ‐1.8624 1.20E‐04 4.20E‐05 6.28E‐05
2 2.62183 0.00437 1.10E‐01 0.8288 1.6528 ‐1.8588 1.17E‐04 3.99E‐05 6.28E‐05
3 2.38148 0.00862 1.01E‐01 0.6715 1.3335 ‐1.8554 1.13E‐04 3.80E‐05 6.29E‐05
4 2.19377 0.01413 8.56E‐02 0.5314 1.0488 ‐1.8521 1.11E‐04 3.63E‐05 6.30E‐05
5 2.05810 0.01979 6.59E‐02 0.4113 0.8043 ‐1.8492 1.08E‐04 3.48E‐05 6.30E‐05
6 1.96770 0.02455 4.59E‐02 0.3124 0.6030 ‐1.8468 1.06E‐04 3.36E‐05 6.31E‐05
7 1.91172 0.02796 2.93E‐02 0.2342 0.4434 ‐1.8448 1.05E‐04 3.27E‐05 6.31E‐05
8 1.87900 0.03012 1.74E‐02 0.1742 0.3207 ‐1.8432 1.03E‐04 3.19E‐05 6.31E‐05
9 1.86061 0.03140 9.88E‐03 0.1291 0.2284 ‐1.8420 1.03E‐04 3.14E‐05 6.32E‐05

10 1.85052 0.03212 5.45E‐03 0.0957 0.1599 ‐1.8411 1.02E‐04 3.10E‐05 6.32E‐05
11 1.84507 0.03251 2.95E‐03 0.0712 0.1095 ‐1.8404 1.01E‐04 3.07E‐05 6.32E‐05
12 1.84215 0.03273 1.59E‐03 0.0532 0.0725 ‐1.8399 1.01E‐04 3.04E‐05 6.32E‐05
13 1.84059 0.03284 8.48E‐04 0.0401 0.0455 ‐1.8396 1.01E‐04 3.03E‐05 6.32E‐05
14 1.83976 0.03290 4.52E‐04 0.0305 0.0258 ‐1.8393 1.01E‐04 3.02E‐05 6.32E‐05
15 1.83931 0.03293 2.40E‐04 0.0236 0.0114 ‐1.8391 1.00E‐04 3.01E‐05 6.32E‐05
16 1.83908 0.03295 1.28E‐04 0.0185 0.0009 ‐1.8390 1.00E‐04 3.00E‐05 6.32E‐05
17 1.83895 0.03296 6.79E‐05 0.0148 ‐0.0068 ‐1.8389 1.00E‐04 3.00E‐05 6.32E‐05

In which X* is the MPP point, U* is the mapping of X* to U space (Standar Gaussian).

The denominator is the standard variance of the limit-state function, the form of which implies

uncorrelated random variables. The expression of the variance of the transformed limit state is:

111

[] ()[]
[]

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
=

⋅∇=

−⋅∇+=

∑

∑

=

=

n

i
ix

i

i

n

i i

T

T

u
x
XgVar

u
u
UgVar

UUgVar
UUUgUgVarUgVar

i
1

1

*)(

*)(

*)(ˆ
**)(ˆ*)(ˆ)(ˆ

σ

 (8.21)

In case of uncorrelated random variables, as is the case for HL method, the variance of the limit-state

function is:

 [] ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

n

i
x

i
ix

XgUgVar
1

2
*)()(ˆ σ (8.22)

When the random variables are correlated, the variance becomes:

 [] ∑∑
<=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

ji
jx

j
ix

i

n

i
x

i

u
x
Xgu

x
XgCOV

x
XgUgVar

jii
σσσ *)(,*)(2*)()(ˆ

1

2

 (8.23)

In this case since n=3, the variance becomes

[]

)},(*)(*)(),(*)(*)(

),(*)(*)({2*)()(ˆ

32
32

31
31

21
211

2

3231

21

uuCOV
x
Xg

x
XguuCOV

x
Xg

x
Xg

uuCOV
x
Xg

x
Xg

x
XgUgVar

xxxx

xx

n

i
x

i
i

⋅
∂

∂
⋅

∂
∂

+⋅
∂

∂
⋅

∂
∂

+

⋅
∂

∂
⋅

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
= ∑

=

σσσσ

σσσ
 (8.24)

Since ixii uX
i

σμ += , the correlation coefficient between xi and xj can be expressed as:

),(

),(

),(

),(
),(

ji

XX

jixx

XX

jxjixi

XX

ji
jiij

uuCOV

uuCOV

uuCOV

XXCOV
XX

ji

ji

ji

ji

ji

=

⋅

⋅⋅
=

⋅

++
=

⋅
=

σσ

σσ

σσ

σμσμ

σσ
ρ

 (8.25)

Thus plug),(),(jiijji XXuuCOV ρ= into equation (8.24):

112

[]

}*)(*)(*)(*)(

)()({2*)()(ˆ

23
32

13
31

12
21

3

1

2

3231

21

ρσσρσσ

ρσσσ

⋅
∂

∂
⋅

∂
∂

+⋅
∂

∂
⋅

∂
∂

+

⋅
∂

∂
⋅

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
= ∑

=

xxxx

xx
i

x
i

x
Xg

x
Xg

x
Xg

x
Xg

x
Xg

x
Xg

x
XgUgVar

i

 (8.26)

For any number of random variables, general form of [])(ˆ UgVar becomes:

 [] ∑ ∑
= <

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

∂
∂
⋅

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

n

i ji
ijx

j
x

i
x

i
jii x

Xg
x
Xg

x
XgUgVar

1

2
)()(2*)()(ˆ ρσσσ (8.27)

Steps for computing correlated HL safety index:

1) Compute correlation coefficient of each pair of RV’s:

ji XX

ji
jiij

XXCOV
XX

σσ
ρ

⋅
=

),(
),((8.28)

2) Compute correlated safety index β by MVFOSM. For the first step, the computing point X* is chosen

to be the mean value point μX

 ∑ ∑
= <

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

∂
∂
⋅

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

n

i ji
ijx

j

X
x

i

X
x

i

X

X

jii x
g

x
g

x
g

g

1

2
)()(2)(

)(

ρσμσμσμ

μβ
(8.29)

3) Given a point X* and corresponding U*, compute
iuθcos

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−=
∇
∂

∂

−=
n

i
x

i

x
ii

u

i

i

i

x
Xg

x
Xg

Ug
u
Ug

1

2
*)(

*)(

*)(ˆ

*)(ˆ

cos

σ

σ
θ (8.30)

4) Compute the new design point U* and the corresponding X*

 **

* cos

ixxi

ui

ux

u

ii

i

σμ

θβ

+=

=
 (8.31)

5) Compute the new β at the new X* point and new U* point

113

∑ ∑

∑

= <

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

∂
∂
⋅

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−
=

n

i ji
ijx

j
x

i
x

i

i

n

i
x

i

jii

i

x
Xg

x
Xg

x
Xg

u
x
XgXg

1

2

*

1

)()(2*)(

)()(

ρσσσ

σ
β (8.32)

6) Repeat step 3)—5) until β converges, or if not converging then stop the loop at a given iteration

number.

To verify the efficacy of correlated HL method, both MCS and correlated HL algorithm are implemented

with coefficient of dependence (Pearson’s rho) 0.8 for each pair of RV’s. The result is shown in Table 8-6:

Table 8-6: Comparison between the results of correlated HL method and MCS

 MCS (1e5 samples 55 minutes) HL reliability index

Rod (Ai correlated) Pf βHL-corr Pf

3 0.0316 1.8705 0.0307

7 0.0343 1.8215 0.0343

For MCS simulation, the covariance matrix is selected as

8.0231312

2
332233113

3223
2
22112

31132112
2
1

====

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ρρρρ

σσσρσσρ
σσρσσσρ
σσρσσρσ

C
 (8.33)

8.3 Summary

In this chapter, two algorithms are introduced: 1) solving reliability index by nonlinear programming

(NLP) algorithms and 2) correlated HL method.

Reliability index can be interpreted as a nonlinear optimization problem with the objective to minimize

the distance under an equality constraint. Two NLP algorithms (gradient projection method and reduced

114

gradient method) are applied to compute reliability index. Results are compared with that of other RBDO

algorithms. Compared with other RBDO algorithms, NLP based algorithm is more intuitive and easy to

understand.

Correlated HL method is an algorithm based on HL method that considers the correlation between

random variables. For this algorithm, more cases should be studied to validate it.

115

CHAPTER 9: ILLUSTRATED EXAMPLE OF FLOOR GRID STRUCTURAL

OPTIMIZATION

In this chapter, the previously explained methods and algorithms will be applied to find the optimal

solution of the aircraft floor grid optimization case. The optimization model is:

0),(subject to

)()()(minimize
βRXβ

XXX
≥

+= boardgridtotal WWW
 (9.1)

In which β is a vector of reliability indices; β0 is the minimum permissible β value. X is a vector of design

variables, R represents random variable distributions and correlations.

The objective function is to minimize the total weight of floor board and floor grid; the constraint is to

guarantee the minimum permissible reliability.

This problem will be studied in Case I and Case II. Case I considers only one random variable; Case II

considers 3 random variables. In Case I the reliability constraints all have analytical form and the

optimization problem is easy to solve, this provide a good example to show the process of doing

reliability-based floor grid layout optimization; In Case II the reliability constraints do not have analytical

form thus response surface will be applied.

9.1 Case I

9.1.1 Hypothesis and Simplifications

In engineering practice the real world situations are usually very complicated. The deck in the figure

looks very intact and the strength members are very continuous. However in practice there may be many

openings and holes on the floor board for cables or pipes going through, or ladder opening, etc.

Longitudinal stiffeners may not be so uniformly distributed due to the uneven arrangement of cabins,

local strengthening may be required on special places. If all these factors are taken into consideration in

116

the initial design stage, the design would be impossible to move forward. Reasonable hypothesis and

simplifications must be made for optimization work.

Some key hypothesis and simplifications are listed below:

1) All longitudinal tracks are regarded as simply supported beams (one side hinged the other side roller

supported).

2) Loads on longitudinal tracks are evenly distributed.

3) Plate inside any grid area is regarded as an intact plate.

4) The shape design of the cross section of longitudinal tracks are related to stability criteria and buckling

verification that are far beyond the scope of this thesis. For simplicity, the cross section of longitudinal

members is regarded as rectangular with the ratio of width and height 1/3.

5) Load on the floor is evenly distributed inside each grid and follows normal distribution:

)400,2200(~ Nq Pa.

6) Plates are considered fixed on 4 sides. Plate vertical deflection equation:

3

4

Et
qdkw =

k: deflection coefficient, set as 0.05;

q: evenly distributed load (N/m2);

d: smaller width of rectangular plate (m);

E: Young’s elastic modulus (Pa);

t: Plate thickness (m);

117

7) Material is selected as Aluminum alloy 6061-T6, the material properties are listed below:

 ρ=2.7e3kg/m3;

 σyield=241 MPa;

 E=69 GPa;

8) Since the number of track columns can only be selected as discrete positive integers, the track space d

can only be selected as discrete values. However most optimization methods are based on continuous

variables, as such track spacing will be taken as continuous design variable in the initial optimization.

Discrete effect will be considered in the further steps.

9) Optimization of shape and spacing of transverse beams is not included in this study. Only plate and

tracks will be considered.

9.1.2 Optimization Model

Minimize: (total mass (or material volume) of floor plate and longitudinal tracks)

Subject to:

There are 3 design variables selected for this problem:

d: track spacing;

t: plate thickness;

1) { } 510)(1 −<< eXgP track stress reliability requirement

2) { } 510)(2 −<< eXgP plate deflection reliability requirement

3) mmt 3≥ plate corrosion margin requirement

4) mdm 75.03.0 ≤≤ track spacing limit

118

b: track section size;

For this study the shape and size of the transverse beams are not included. The total weight only includes

the weight of all longitudinal tracks and sum of all floor board plate.

tDW
d

W
Dbh

WWW

fuselage
fuselage

platetrack

⋅⋅+⋅⋅=

+=

In which:

h: track cross section height, set as 3b;

D: Transverse beam space, 0.75m;

Wfuselage: fuselage width, 6m;

The limit-state function for track stress:

2

2

2

1

4
3

6
)(

bh
qdD

bh
M

Xg

yield

yield

yield

−=

−=

−=

σ

σ

σσ

(9.2)

The limit-state function for plate deflection:

3

4
2)(

Et
qdk

Xg

allow

allow

−=

−=

δ

δδ

(9.3)

In which

δallow= 5mm.

Since there is only one random variable in this example, the relationship between Pf and design variables

becomes easy.

119

{ }

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
−⋅

>
−

=

⎭
⎬
⎫

⎩
⎨
⎧

⋅>=

⎭
⎬
⎫

⎩
⎨
⎧

<−=<

q

qyield

q

q

yield

yield

dD
bh

q
P

dD
bhqP

bh
qdDPXgP

σ

μσ

σ
μ

σ

σ

2

2

2

2

2

2

1

3
4

3
4

0
4

30)(

{ } 510)(1 −<< eXgP thus can be substituted by

)51(3
4

1
2

2

−Φ−>
−⋅

− edD
bh

q

qyield

σ

μσ

Or more concisely

qqyield dD
bh μσσ +>⋅ 2649.4

3
4

2

2

For constraint 2,

{ }

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
−⋅

>
−

=

⎭
⎬
⎫

⎩
⎨
⎧

⋅>=

⎭
⎬
⎫

⎩
⎨
⎧

<−=<

q

qallow

q

q

allow

allow

kd
Et

q
P

kd
EtqP

Et
qdkPXgP

σ

μδ

σ
μ

δ

δ

4

3

4

3

3

4

2 00)(

 { } 510)(2 −<< eXgP can be substituted by:

120

)51(1
4

3

−Φ−>
−⋅

− ekd
Et

q

qallow

σ

μδ

Or

qqallow kd
Et μσδ +>⋅ 2649.44

3

The final optimization model becomes:

Minimize:

 ()tDW
d
bWDW fuselagefuselage ⋅⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅=

2

3

(9.4)

by determining design variables b, d, t

Subject to :

mdm
mt

kd
Et
dD
bh

qqallow

qqyield

75.03.0)4
003.0)3

2649.4)2

2649.4
3
4)1

4

3

2

2

≤≤
≥

+>⋅

+>⋅

μσδ

μσσ

(9.5)

The constraints of this optimization problem are all inequality constraints. As a tentative step, first

suppose that the first two constraints are active while the rest constraints are redundant. The problem can

be solved by Gradient Projection method. Select the starting point as 0035.0 ;5.0 ;007.0 === tdb ,

step size α as 1.5, the algorithm converges after 15 steps to point

466.1 ;0533.0 ;0034.0 −=== etdb :

The searching process is shown in Table 9-1:

121

Table 9-1: Tentative searching iterations

step b(m) d(m) t(m) W(m3)
1 0.007 0.5 3.50E‐03 0.017073
2 0.006931 0.43833 2.75E‐03 0.01387466
3 0.006629 0.383468 2.30E‐03 0.01191789
4 0.006314 0.331401 1.90E‐03 0.01016134
5 0.005986 0.282335 1.53E‐03 0.00860821
6 0.005643 0.236532 1.21E‐03 0.00726285
7 0.005285 0.194336 9.31E‐04 0.0061308
8 0.004914 0.156209 6.96E‐04 0.00521876
9 0.004535 0.122799 5.05E‐04 0.00453348

10 0.004164 0.095006 3.59E‐04 0.00407707
11 0.003831 0.074004 2.57E‐04 0.0038338
12 0.003589 0.060839 1.98E‐04 0.0037486
13 0.003471 0.055047 1.73E‐04 0.00373427
14 0.00344 0.053565 1.67E‐04 0.00373342
15 0.003435 0.053334 1.66E‐04 0.0037334

This point violates constraint 3 and 4. Thus constraint 3 or 4 or both should be also active. However, it’s

difficult to determine which constraints are active before the optimal point is finally found. This is a

paradox. To solve this problem, heuristic searching algorithm is applied in the next section.

9.1.3 Searching Algorithm

For aircraft floor grid problem, first write all constraint in the standard form of 0)(>Xhi , five standard

inequality constraints are obtained:

()

()

075.0)5
00.3)4

0003.0)3

02649.4)2

02649.4
3
4)1

4

3

2

2

>−
>−
>−

>+−⋅

>+−⋅

d
d
t

kd
Et
dD
bh

qqallow

qqyield

μσδ

μσσ

122

Heuristic gradient descent searching algorithms is used in this problem, the searching iterations are shown

in Table 9-2. Starting point is selected as: 0035.0;4.0;01.0 === tdb , step size set as fixed value

0.001, it takes 9 steps to converge to the optimal point: 0030.0;46733.0;00708.0 === tdb . Flag1 to

flag5 denote the activation of constraint 1 to constraint 5 at each step. It’s shown that in the beginning,

constraint 1 is not active, however in the end steps constraint 1 becomes active.

Table 9-2: Heuristic gradient based searching iterations

St
ep b(m) d(m) t(m)

Objective
Function(m3) error

flag
1

flag
2

flag
3

fla
g4

fla
g5

1 0.0100000 0.4000000 0.0035 / / / / / / /
2 0.0093250 0.4668622 0.003 0.019125 / 0 1 1 0 0
3 0.0087857 0.4673274 0.003 0.016014449 0.1942341 0 1 1 0 0
4 0.0082781 0.4673274 0.003 0.015729801 0.0180961 0 1 1 0 0
5 0.0077998 0.4673274 0.003 0.015479589 0.016164 0 1 1 0 0
6 0.0073492 0.4673274 0.003 0.015257454 0.0145591 0 1 1 0 0
7 0.0070809 0.4673274 0.003 0.015060245 0.0130946 1 1 1 0 0
8 0.0070809 0.4673274 0.003 0.014948421 0.0074807 1 1 1 0 0
9 0.0070809 0.4673274 0.003 0.014948421 6.72E‐13 1 1 1 0 0

To prevent the convergence to local optimal, 8 different starting points are chosen that covers most of the

design space. All of these starting point converge to the same optimal point:

0030.0;46733.0;00708.0 === tdb . Difference lies in the iteration number. The result is shown in

Table 9-3:

Table 9-3: Convergence from different starting points

Starting Point Convergence Point step
numbersb(m) d(m) t(m) b(m) d(m) t(m) f (m3)

0.01 0.4 0.0035 0.0071 0.4673 0.003 0.0149 9
0.02 0.4 0.0035 0.0071 0.4673 0.003 0.0149 21
0.01 0.6 0.0035 0.0071 0.4673 0.003 0.0149 10
0.02 0.6 0.0035 0.0071 0.4673 0.003 0.0149 21
0.01 0.4 0.004 0.0071 0.4673 0.003 0.0149 9
0.02 0.4 0.004 0.0071 0.4673 0.003 0.0149 21
0.01 0.6 0.004 0.0071 0.4673 0.003 0.0149 10
0.02 0.6 0.004 0.0071 0.4673 0.003 0.0149 21

123

Drawback of this algorithm: Since the nature of the terminating criteria, searching would stop at any local

minimum it first encounters. To avoid converging to local minimum, lots of starting points are required.

The optimal track spacing d=0.46733 correspond to the track number: 84.12/ == dWn fuselage , round it

to n=12 and n=13. The corresponding track space becomes 462.0;5.0 21 == dd . Under both cases the

track spacing d will be taken as known and the optimization problem need be reevaluated to determine the

other two design variables b and t.

For d=0.5m, the new optimization problem becomes:

Minimize:

 () ()tDWb
d

W
DW fuselage

fuselage ⋅⋅+⋅⋅= 23

(9.6)

by determining design variables b, t

Subject to :

()

()
0003.0)3

02649.4)2

02649.4
3
4)1

4

3

2

2

>−

>+−⋅

>+−⋅

t
kd
Et
dD
bh

qqallow

qqyield

μσδ

μσσ

(9.7)

The solution of this problem is shown in Table 9-4:

Table 9-4: Optimal solutions

d 0.5 (Case A) 0.462 (Case B)
b 0.00724 0.00705
t 0.00328 0.003
W 0.0162 0.0150

124

9.1.4 Probability of Failure Evaluation

Once the optimal point is found, the probability of failure at this point for tracks and plates can be

evaluated. Pf1 and Pf2 are the probability of failure for longitudinal tracks and floor board respectively.

System failure happens when any of the 2 components failure happens. System is safe only when both

subsystems are safe:

() () ()
2121

21

21

111

fffff

fff

safetysafetysafety

PPPPP

PPP

PPP

⋅−+=⇒

−⋅−=−⇒

⋅=

Pf1 , Pf2 and total Pf are evaluated as (Table 9-5):

Table 9-5: Probability of failure evaluation for optimal solutions

d 0.5 (Case A) 0.462 (Case B)
Pf1 1.04E‐05 1.08E‐05
Pf2 1.12E‐05 1.16E‐06
Pf 2.14E‐05 1.20E‐05

From Table 9-5 it can be seen that Case B is safer than Case A. Besides that, table1 shows that Case B is

smaller in weight than case A.

9.2 Case II

In Case II, the rectangular section tracks of Case I would be replaced by more realistic I beam; there will

be more than one random variable in the meantime the correlation of the random variables will be

considered; floor board will be replaced by that of lighter material and structure. Due to the introduction

of multi-random-variables, the analytical expression of reliability constraints will not be available any

more, to impose the reliability constraints in an analytical form, a surrogate model based on multivariate

interpolation that could provide approximate gradient information over the whole design space would be

utilized.

125

9.2.1 Hypothesis and Simplification

Some key hypothesis and simplifications are listed below:

1) All longitudinal tracks are regarded as simply supported beams (one side hinged the other side roller

supported).

2) Loads on longitudinal tracks are evenly distributed.

3) Plate inside any grid area is regarded as an intact plate.

4) The track is designed as I beam as shown in Figure 9-1. t1 and t2 are the thickness of the web and the

flange plate respectively, mmNtt)0003.0,003.0(~, 21 .

Figure 9-1: Track section view

5) Load on the floor is evenly distributed inside each grid and follows normal distribution:

)400,2200(~ Nq Pa.

6) Floor board is made of honeycomb plate with density ρ=20kg/m3. Plates are considered fixed on 4

sides. Plate vertical deflection equation:

126

 3

4

t
qdkw = (9.8)

k: deflection coefficient, k=1e-10;

q: evenly distributed load (N/m2),)400,2200(~ Nq Pa;

d: smaller width of rectangular plate (m);

t: Plate thickness (m);

7) Track material is selected as Aluminum alloy 6061-T6, the material properties are listed below:

 ρ=2.7e3kg/m3;

 σyield=241 MPa;

 E=69 GPa;

8) Since the number of track columns can only be selected as discrete positive integers, the track space d

can only be selected as discrete values. However most optimization methods are based on continuous

variables, as such track spacing will be taken as continuous design variable in the initial optimization.

Discrete effect will be considered in the further steps.

9) Optimization of shape and spacing of transverse beams is not included in this study. Only plate and

tracks will be considered.

9.2.2 Optimization Model

Minimize: (total mass of floor board and longitudinal tracks)

Subject to:

127

There are 3 design variables selected for this problem:

d: track spacing;

t: floor board thickness;

b: I beam flange width;

There are three random variables in this problem:

)400,2200(~ Nq Pa: load on the floor board;

mmNt)0003.0,003.0(~1 : thickness of the web of I beam;

mmNt)0003.0,003.0(~2 : thickness of the flanges of I beam;

For this study the shape and size of the transverse beams are not included. The total mass only includes

the mass of all longitudinal tracks and sum of all floor board.

honeycombaluminum ρρ ⋅⋅⋅+⋅⋅⋅=

+=

tDW
d

W
DA

MMM

fuselage
fuselage

boardtrack

(9.9)

In which:

D: Transverse beam space, 0.75m;

Wfuselage: fuselage width, 6m;

ρ: material density;

A: section area of longitudinal track: 221 2)20254.0(btttA +−=

The limit-state function for track stress:

1) { } 510)(1 −<< eXgP track stress reliability requirement

2) { } 510)(2 −<< eXgP floor board deflection reliability requirement

3) mdm 75.03.0 ≤≤ tracks spacing limit

128

[]{ }2
222

13
26

13
2112

1

2

2

1

)0254.0()20254.0(16

16
2/

)(

tbtbttt
hDqd

I
hDqd

I
hM

Xg

yield

yieldyield

yield

−++−
⋅⋅

−=

⋅⋅
−=

⋅
−=

−=

σ

σσ

σσ

(9.10)

The limit-state function for plate deflection:

3

4
2)(

t
qdk

Xg

allow

allow

−=

−=

δ

δδ

(9.11)

In which

δallow= 5mm.

Reliability constraint { } 510)(−≤≤ eXgPf is equivalent to the constraint on reliability index:

() 2649.4511 =−Φ−≥ − eβ . Although β is a function of design variables (b,d,t), however the process of
calculating β is iterative, thus it’s difficult to find the analytical expression of β with respect to (b,d,t).

The optimization problem can be expressed as:

Minimize:

 [] honeycombaluminum221 2)20254.0(ρρ ⋅⋅⋅+⋅⋅⋅+−=

+=

tDW
d

W
Dbttt

MMM

fuselage
fuselage

boardtrack

 (9.12)

By selecting the values of (b,d,t),

Subject to:

()
()

;075.0)4
;03.0)3

)constraintindex y reliabilit deflection board(floor ;051)2

)constraintindex y reliabilit stress(track ;051)1
1

2

1
1

≥−
≥−

≥−Φ+

≥−Φ+
−

−

d
d

e
e

β

β

 (9.13)

129

9.2.3 Searching Algorithm

The constraints of the optimization model are all inequality constraints and the reliability index

constraints obtained by MCS do not have analytical form thus no gradient information as well. This

problem can be solved by Heuristic Gradient Based Searching Algorithm as described in Chapter 7. The

reliability constraints that do not have analytical form can replaced by response surface obtained from

regression method. Multiquadric or kriging will be used for interpolation.

9.2.3.1 Evaluating β at sampling points

For each dimension of the three design variables, equal interval distributed four points will be used as

sampling points. These sampling points on each axis are listed in Table 9-6:

Table 9-6: Sampling points on each dimension

b(m) 0.004 0.006 0.008 0.01
d(m) 0.3 0.45 0.6 0.75
t(m) 0.012 0.015 0.018 0.021

These sampling points on each axis will obtain totally 64 sampling points. The reliability indices are

evaluated by correlated HL method for the limit-state functions as listed in Table 9-7 and Table 9-8:

130

Table 9-7: Reliability indices of stress limit-state function at sampling points

 t=0.012
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 4.6688 1.6748 ‐0.0403 ‐1.1103
b=0.006 6.5319 3.5638 1.5505 0.2192
b=0.008 7.6323 5.0589 2.9779 1.474
b=0.01 8.2907 6.1502 4.1895 2.6198
 t=0.015
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 4.6688 1.6748 ‐0.0403 ‐1.1103
b=0.006 6.532 3.5638 1.5505 0.2192
b=0.008 7.6355 5.0587 2.9779 1.474
b=0.01 8.2906 6.1502 4.1895 2.6198
 t=0.018
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 4.6688 1.6748 ‐0.0403 ‐1.1103
b=0.006 6.532 3.5638 1.5505 0.2192
b=0.008 7.6355 5.0587 2.9779 1.474
b=0.01 8.2906 6.1502 4.1895 2.6198
 t=0.021
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 4.6688 1.6748 ‐0.0403 ‐1.1103
b=0.006 6.532 3.5638 1.5505 0.2192
b=0.008 7.6355 5.0587 2.9779 1.474
b=0.01 8.2906 6.1502 4.1895 2.6198

131

Table 9-8: Reliability indices of deflection limit-state function at sampling points

 t=0.012
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 21.1667 ‐0.2325 ‐3.8333 ‐4.8173
b=0.006 21.1667 ‐0.2325 ‐3.8333 ‐4.8173
b=0.008 21.1667 ‐0.2325 ‐3.8333 ‐4.8173
b=0.01 21.1667 ‐0.2325 ‐3.8333 ‐4.8173
 t=0.015
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 46.5833 4.7881 ‐2.2448 ‐4.1667
b=0.006 46.5833 4.7881 ‐2.2448 ‐4.1667
b=0.008 46.5833 4.7881 ‐2.2448 ‐4.1667
b=0.01 46.5833 4.7881 ‐2.2448 ‐4.1667
 t=0.018
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 84.5 12.2778 0.125 ‐3.196
b=0.006 84.5 12.2778 0.125 ‐3.196
b=0.008 84.5 12.2778 0.125 ‐3.196
b=0.01 84.5 12.2778 0.125 ‐3.196
 t=0.021
 d=0.3 d=0.45 d=0.6 d=0.75
b=0.004 137.4167 22.7305 3.4323 ‐1.8413
b=0.006 137.4167 22.7305 3.4323 ‐1.8413
b=0.008 137.4167 22.7305 3.4323 ‐1.8413
b=0.01 137.4167 22.7305 3.4323 ‐1.8413

9.2.3.2 Regression by multiquadric interpolation or Kriging

Multiquadric interpolation can be used to get response surface for the reliability constraints. However it

was found that multiquadric interpolation may cause big error under some circumstances. One of the

interpolation error examples is illustrated in Figure 9-2:

132

Figure 9-2: Ill conditioned interpolation example by multiquadric interpolation

To avoid big interpolation errors, in this case Kriging interpolation will be used to build the response

surface.

Kriging interpolation relies on the distance between sampling points and the distance between

interpolation points and sampling points, however the nature of the design space with respect to each axis

is very uneven, different dimensions have different scales. Some design variables has very small scales

compared to others, if these small scale dimensions has very big impact on the objective function, i.e.

with big gradient on these dimensions, original kriging interpolation will underplay their importance of

these small scale dimensions by equally evaluate their contribution only by distance. Because of this, it’s

necessary to normalize each dimensions of the design space first. Suppose the range of x is between

[]hl xx , , the linear normalization of x can be expressed as:

lh

l

xx
xxx

−
−

= (9.14)

Kriging interpolation will be based on normalized design space on 3]1 0[. Each interpolation point will

first be normalized before evaluation by kriging interpolation.

133

Plot the same curve at (b=0.01; t=0.021) and surface at (t=0.021), the interpolation is accurate and smooth.

Figure 9-3: Kriging interpolation example on 1 and 2 dimensions

Gradient Projection method requires the value of active constraint gradient at current point, the constraint

gradient will be calculated based on Kriging model. The interpolation function of Kriging is:

 i

n

i
i ZuuZ ⋅= ∑

=1

)()(λ (9.15)

Take derivative of Z(u) with respect to x:

n

T

T
i

n

i

i

x
u

x
uZ

x
u

x
uZ

:1

1

1

)(

)()()(

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂
⋅⋅=

∂
∂
⋅=⋅

∂
∂

=
∂

∂

−

=
∑

kKZ

λZλ

 (9.16)

Since covariance vector k(u) is a function of distance between current point and sample points, the

covariance function is chosen as:

3

maxmax

5.05.11)(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

d
d

d
ddk (9.17)

134

the derivative of covariance vector can be written as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂
∂

∂

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

=
∂

∂

0

)(

)(

)(

1
)(

)(
)(

)(
2

1

2

1

x
uk

x
uk

x
uk

uk

uk
uk

xx
u

nn

M
M

k
 (9.18)

In which

i

iii

i

ii

d
xx

d
d

dx
d

d
uk

x
uk −

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∂
∂
⋅

∂
∂

=
∂

∂ 15.1)()(
2

maxmax

 (9.19)

Gradient calculated in this method is based on normalized space, transform is needed to return to the

original space:

lh xxx

uZ
x
uZ

−
⋅

∂
∂

=
∂

∂ 1)()(
 (9.20)

Table 9-9 is the searching process of the algorithm

Table 9-9: Searching iterations table

b d t
4.00E‐02 6.000E‐01 1.000E‐02
3.95E‐02 6.38E‐01 2.44E‐02
3.04E‐02 6.57E‐01 2.59E‐02
2.81E‐02 7.09E‐01 3.34E‐02
2.57E‐02 6.73E‐01 2.78E‐02
2.23E‐02 5.94E‐01 1.76E‐02
2.10E‐02 5.79E‐01 1.56E‐02
1.81E‐02 5.58E‐01 1.37E‐02
1.50E‐02 5.34E‐01 1.39E‐02
1.38E‐02 5.23E‐01 1.39E‐02
1.38E‐02 5.25E‐01 1.38E‐02

For this problem, the optimal design point is b=1.38cm, d=0.525m, t=13.8mm.

135

The sensitivity factor can be evaluated at the optimal point by

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−=
n

i
x

i

x
i

u

i

i

i

x
Xg

x
Xg

1

2
*)(

*)(

cos

σ

σ
θ (9.21)

In which

 []{ }2
222

13
26

13
2112

1

2

)0254.0()20254.0(16
)(

tbtbttt
hDqdXg yield −++−
⋅⋅

−= σ (9.22)

)(2 Xg will not be considered since it has only one random variable. MPP point can be computed by HL

method as X*=(2956pa, 0.002835m, 0.002612m). At the optimal design point, the sensitivity factor can

be computed as: 5100.0cos 1 =θ 2164.0cos 2 =θ and 8325.0cos 3 =θ .These sensitivity factors

correspond to q, t1 and t2 respectively. This result shows that value of t2 has greatest importance for the

reliability of the structure.

To evaluate the accuracy of the response surface model based on Kriging model, a quantity σ similar to

mean square error is defined as:

∑

∑

=

== n

i
in

n

i
in e

1

1

1

21

β
σ (9.23)

In which:

'
iiie ββ −= is estimation error;

', ii ββ are respectively the accurate reliability index value and the approximation value at a sample point;

n is test points number. Test points are selected randomly.

136

σ reflects the estimation error of the response surface, it can be used to evaluate the goodness of fit of the

response surface model. In this example, 100 random points are selected. The σ value is 3%. This shows

that the accuracy of the response surface model is acceptable.

9.3 Summary

In this chapter, the RBDO based method and algorithms introduced in the previous chapters are applied in

the aircraft floor grid layout optimization problem. First the optimization model including the objective

function and the reliability constraints is set up. The optimal point is found by heuristic searching

algorithm. In each step of heuristic searching algorithm, the values and the gradients of the reliability

constraints are evaluated based on the response surface model which is obtained by kriging. The values of

the sample points for kriging are computed by various methods including HL, SORM, NLP, or MCS. The

goodness of fit of the response surface is measured by σ, and the three random variables are analyzed for

their sensitivities to the reliability index.

137

CHAPTER 10: ILLUSTRATED EXAMPLE OF FLOOR GRID AND FLOOR

BOARD BILEVEL OPTIMIZATION

When there are two different player in an optimization process, both of these players have their own

objectives which are usually not the same or even conflictive. For this kind of problems bilevel

optimization method can be applied. The two players are identified respectively as leader and follower

according to their importance and priority. The leader will first decide an optimal solution then the

follower will make its decision to maximize its own utility based on the leader’s decision. Follower’s

decision would be feedback to the leader, the leader would adjust its decision accordingly to maximize its

own utility. This process continues until a balance between leader and follower is reached. Details about

bilevel optimization can be found in [Bard, J.F., 2010], [Dempe, S. 2010]. Some good examples can be

found in [Rao, J.R.J, et al, 1997].

Generally bilevel optimization problem can be expressed as:

,0),(s.t.

),(min
,0)(s.t.

),(min

≤

≤

yxH

yxf
xG

yxf

Fy

Lx

 (10.1)

In which Lf is the upper level objective function, Ff is the lower level objective function.

() n
n Rxxxx ∈= ,,, 21 L is the decision variables of the upper level, here iii bxa ≤≤ , Rba ii ∈, .

() m
n Ryyyy ∈= ,,, 21 L is the decision variables of the lower level. ())(,),(),()(21 xgxgxgxG sL=

is the upper level constraints vector, in which the decision variable boundaries iii bxa ≤≤ are included.

()),(),,(),,(),(21 yxhyxhyxhyxH tL= is the lower level constraints vector.

138

Let { }0),(,0)(|),(≤≤= yxHxGyxS . For any x that satisfies 0)(≤xG , the solution)(xY of the

lower level optimization problem

,0),(s.t.

),(min

≤yxH

yxfFy (10.2)

Is the optimal solution set. { })(,),(|),()(xYySyxyxsF ∈∈= is the feasible region of the bilevel

optimization problem; if)(),(SFyx ∈ ,),(yx is a feasible solution of the bilevel optimization problem.

If for any feasible solution),(yx ,),(*)*,(yxfyxf LL ≤ always exist, then *)*,(yx is an optimal

solution of the bilevel optimization problem.

The objective of the optimization problem is to minimize the weight of the sum of tracks and board. This

can also be modeled as a bilevel optimization problem. Set the leader level of optimization as the total

weight, the follower level as the weight of the board. The corresponding objective functions are

minimizing the respective weights totalW and boardW . Set totalW as the Leader:

[]

;003.0
));(),((),(:

 :subject to

2)2(),,(

 minimize

**
1

honeycombaluminum221

>
=

⋅⋅⋅+⋅⋅⋅+−=

b
btbdtdh

tDW
d

W
DbttHttdbf

l

fuselage
fuselagel ρρ

 (10.3)

Where))(),((** btbd is the solution to the follower’s problem given by:

 ()
()

75.03.0
;051),(
;051),(

 :subject to
)(minimize

1
2

1
1

honeycomb

<<
≥−Φ+

≥−Φ+

⋅⋅⋅=

−

−

d
etd
edb

tDWtf fuselage
f

β

β

ρ

 (10.4)

139

For the follower problem, since the objective function)(tf f is monotone with respect to t, the constraint

() 051),(1
2 ≥−Φ+ − etdβ must be active to avoid t from decreasing to zero. From this constraint)(dt

can be obtained. From constraint () 051),(1
1 ≥−Φ+ − edbβ ,)(bd can be calculated, thus)(bd and

)(bt are all known. Bring them back to the leader problem it becomes a one-degree-of-freedom problem,

b can be solved.

Since 1β and 2β are computed by iterative numerical method, constraints specified by 1β and 2β does

not have an analytical form. The response surface models derived from by Kriging regression method can

be used as substitutes for these constraints. t1 and t2 are random variables, the mean and variance of t1

and t2 will determine the value of β1 and β2. However, in the leader’s objective function they are set as

their respective mean values. The rest of the steps are the same with single level optimization problem.

The flow chat of this process is shown in Figure 10-1:

Set the starting point at (0.05, 0.9, 0.05)m, the searching steps in each iteration are listed in Table 10-1.

Table 10-1: Searching iterations table

b(m) d(m) t(m)
5.00E‐02 9.00E‐01 5.00E‐02
4.09E‐02 7.15E‐01 4.62E‐02
3.34E‐02 6.27E‐01 4.05E‐02
3.08E‐02 6.03E‐01 2.93E‐02
2.58E‐02 5.89E‐01 2.32E‐02
2.21E‐02 5.67E‐01 1.93E‐02
1.94E‐02 5.31E‐01 1.72E‐02
1.74E‐02 5.33E‐01 1.51E‐02
1.61E‐02 5.10E‐01 1.37E‐02
1.52E‐02 4.99E‐01 1.37E‐02
1.52E‐02 5.01E‐01 1.37E‐02

For this problem, the optimal design point is b=1.52cm, d=0.501m, t=13.7mm.

140

The sensitivity factor can be evaluated at the optimal point by

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−=
n

i
x

i

x
i

u

i

i

i

x
Xg

x
Xg

1

2
*)(

*)(

cos

σ

σ
θ

Selecting sampling points in 3 dimensions

Compute reliability indices at each sampling point

Obtain response surface model by kriging-based on the selected sampling

points and the corresponding reliability index values

Compute)(bd from 1β constraint based on the response surface

Compute)(dt from 2β constraint based on the response surface

Compute)(bt from the previous two steps

Bring)(bd and)(bt back into the leader objective function, original

problem becomes a one-level optimization problem

Solve the one-level problem for b. d and t can also be computed.

Figure 10-1: Flow chat of bilevel optimization searching algorithm

141

In which

[]{ }2
222

13
26

13
2112

1

2

)0254.0()20254.0(16
)(

tbtbttt
hDqdXg yield −++−
⋅⋅

−= σ

)(2 Xg will not be considered since it has only one random variable. MPP point can be computed by HL

method as X*=(2873pa, 0.002873m, 0.002679m). At the optimal design point, the sensitivity factor can

be computed as: 4743.0cos 1 =θ 2146.0cos 2 =θ and 8538.0cos 3 =θ .These sensitivity factors

correspond to q, t1 and t2 respectively. This result shows that value of t2 has greater importance for the

reliability of the structure.

142

CHAPTER 11: CONCLUSION, LIMITATIONS AND FUTURE WORK

11.1 Conclusion

In this thesis, several RBDO method and algorithms for airplane floor grid layout optimization have been

proposed. Copula has been introduced to model random variable correlations as well as the method to

apply copula in Monte Carlo simulations. The influence of random variable correlations to the probability

of failure has been analyzed. Based on HL method, a correlated HL method is proposed to evaluate

reliability index under correlation. As an intuitive and alternative method for computing reliability index,

reliability index is interpreted as an optimization problem and a nonlinear programming algorithm is

introduced to evaluate reliability index. To evaluate the reliability index by Monte Carlo simulation in a

time efficient manner, a kriging-based surrogate model is proposed, comparison has been made between

the original model and surrogate model in terms of simulation time. Kriging has been compared with

other interpolative methods by quoting literatures. Since in RBDO optimization models, the reliability

constraints obtained by MCS usually do not have analytical model, which is necessary for most

optimization algorithms, a heuristic gradient based direct searching algorithm and a regression based

response surface method is proposed. A framework of the process of building an optimization model

based on RBDO is proposed. These methods, algorithms and framework have been applied to ten bar

truss example and the layout optimization of aircraft floor grid structural design.

By studying several examples, this thesis shows that for highly nonlinear limit-state functions, MVFOSM

based on first order Tylor series expansion at mean value point has greater error than HL and SORM

methods. This thesis also shows that Kriging-based surrogate model can effectively increase the

simulation efficiency by reducing computation expenses. By examine several families of copula, this

thesis shows that copula can be applied in simulation based method to discover random variable

correlations and to produce sample points for MCS. It also shows that different families of copula with

143

different dependence patterns may result in different simulation results. By applying heuristic searching

algorithm to two examples, this thesis shows that heuristic gradient based searching algorithm can be

applied to solve optimization problems with inequality constraints that are segment functions.

The contributions of this thesis mainly include:

1) Proposing a general process of reliability-based structural design optimization;

2) Using copula in RBDO to discover correlations between random variables and for generating data

samples for MCS;

3) Proposing a surrogate model building method and response surface building method based on Kriging

4) Proposing a heuristic gradient-based search algorithm for optimization problems with segment-

function inequality constraints;

5) Proposing two alternative methods to evaluate reliability index by NLP;

6) Proposing a correlated HL method.

7) General process of reliability-based structural design and optimization is applied to aircraft floor grid

layout optimization problem.

11.2 Limitations

Copula can be used to discover correlation and for simulation, however, as have been shown in the ten-

bar-truss example, with a same measure of concordance, say, Kendall’s tau, data samples from different

families of copula produce different simulation results. This property is undesirable in engineering.

Kriging can be used to effectively reduce the simulation time. It can be used to build a computationally

inexpensive surrogate model for many simulation problems. However, if the computation point is far

144

from the sample points, the interpolation algorithm will show big error. This requires that the computation

point be within the coverage of sample point set. For highly nonlinear problems, to achieve satisfactory

results, it’s necessary to increase the number of sampling points, which increases the computation

expenses. To overcome this problem, the acting radius can be set smaller so that less number of sampling

points are included in computation. However this could compromise the estimation accuracy.

Heuristic searching algorithm introduced in this thesis is based on gradient projection method, it checks

the constraints violation in each step. Heuristic searching algorithm can be used to find the optimal point

for RBDO problems. However, as an iterative numerical searching algorithm that include nested iterative

gradient projection algorithm, heuristic searching algorithm is usually time-consuming, especially when

there are nested searching steps. Another problem of heuristic searching algorithm is that it is easy to

converge to local minimum. To avoid converging to local minimum, large number of starting points need

be applied, which again increases computation expenses.

11.3 Future Work

Based on the limitations and drawbacks of the methods and algorithms proposed in this thesis, future

works should be focused on:

1) Since different families of copula with an identical measure of concordance would usually obtain

different simulation results, it’s necessary to study how to choose a family of copula that resembles the

true data sample relations best.

2) Due to the drawbacks of Kriging-based surrogate model, other methods such as Artificial Neural

Network (ANN) should also be applied to build surrogate model for computationally expensive models.

3) Finite Element Model should be used to replace the current inaccurate analytical model in the limit

state functions.

145

4) Due to the low probability of failure in simulation, Importance Sampling should also be used to

eliminate unnecessary computations.

5) Correlated HL method proposed in this thesis need be proved or disproved.

146

APPENDIX

%% CODE COPULAFUNC01: for copula to generate a random variable.
% input u0 and w are RV's within [0,1], t is Gumbel-Hougaard coefficient
function y = copulafunc01(u0, w, t)

options = optimset('Display', 'off'); % Turn off Display
y = fzero(@nestfunc01, 0.5, options);

 function y = nestfunc01(x) % Compute the polynomial.
 %y = x^3 + b*x + c;
 y = exp(-((-log(u0))^(t)+(-log(x))^(t))^(1/t))*(((-log(u0))^t+(-
log(x))^t)^((1-t)/t))*((-log(u0))^(t-1)/u0) - w ;
 end
end

%% CODE COPULAFUNC02:for copula to generate a random variable.
% input u0 and w are RV's within [0,1], t is Clayton coefficient
function y = copulafunc02(u0, w, t)

options = optimset('Display', 'off'); % Turn off Display
y = fzero(@nestfunc01, 0.5, options);

 function y = nestfunc01(x) % Compute the polynomial.
 %y = x^3 + b*x + c;
 y = ((u0)^(-t)+(x)^(-t)-1)^((-1-t)/t)*(u0)^(-t-1) - w;
 end
end

%% CODE KRIGING01: Kriging model for rod 3
function Y = kriging01(X)
% X is a matrix of (3*n), the input points
% L is the coefficients lambda (126*n)
load kriging_rod3;
[m,n]=size(X);
[m1,n1]=size(points);
L=zeros(n1+1,n);
% covariance between the given point x and the set points
k=zeros(n1+1,n);
for i=1:n
 for j=1:n1
 d=((X(1,i)-points(1,j))^2+(X(2,i)-points(2,j))^2+(X(3,i)-
points(3,j))^2)^0.5;
 if d>=dmax
 d=dmax;
 end
 k(j,i)=1-1.5*(d/dmax)+0.5*(d/dmax)^3;
 end

147

 k(n1+1,i)=1;
end
L=C1inv*k;
Y=G'*L;

%% CODE KRIGING02: Kriging model for rod 3 and 7
function Y = kriging02(X)
% X is a matrix of (3*n), the input points
% L is the coefficients lambda (126*n)
load kriging_rod7;
[m,n]=size(X);
[m1,n1]=size(points);
L=zeros(n1+1,n);
% covariance between the given point x and the set points
k=zeros(n1+1,n);
for i=1:n
 for j=1:n1
 d=((X(1,i)-points(1,j))^2+(X(2,i)-points(2,j))^2+(X(3,i)-
points(3,j))^2)^0.5;
 if d>=dmax
 d=dmax;
 end
 k(j,i)=1-1.5*(d/dmax)+0.5*(d/dmax)^3;
 end
 k(n1+1,i)=1;
end
L=C1inv*k;
Y=G'*L;

%% CODE SOLVE_U1: FOR ROD3, GIVEN U2 AND U3, COMPUTE U1
function y=solve_u1(u2,u3)
% this function is for rod 3
options = optimset('Display', 'off'); % Turn off Display
y = fzero(@nestfunc01, 0.0, options);

 function y = nestfunc01(u1) % Compute the polynomial.
 %y = x^3 + b*x + c;
 y = 100000000 - (3000*((((1770887431076117*u2)/295147905179352825856 +
3/100000)*(u1/50000 + 1/10000)*(u3/50000 + 1/10000)*(u3/50000 +
2*2^(1/2)*(u1/50000 + 1/10000) +
1/10000))/(4*((1770887431076117*u2)/295147905179352825856 +
3/100000)^2*(8*(u1/50000 + 1/10000)^2 + (u3/50000 + 1/10000)^2) + (u1/50000 +
1/10000)*(u3/50000 + 1/10000)^2*(u1/50000 +

148

(5312662293228351*u2)/147573952589676412928 + 7/25000) +
4*2^(1/2)*((1770887431076117*u2)/295147905179352825856 + 3/100000)*(u1/50000
+ 1/10000)*(u3/50000 + 1/10000)*((3*u1)/50000 +
(1770887431076117*u2)/73786976294838206464 + 21/50000)) + 2))/(u1/50000 +
1/10000);
 end
end

%% CODE SOLVE_U3: FOR ROD7, GIVEN U1 AND U2, COMPUTE U3
function y=solve_u3(u1,u2)
% this function is for rod 7
options = optimset('Display', 'off'); % Turn off Display
y = fzero(@nestfunc01, 0.0, options);

 function y = nestfunc01(u3) % Compute the polynomial.
 %y = x^3 + b*x + c;
 y = 100000000 - (3000*((2^(1/2)*((1770887431076117*u2)/295147905179352825856
+ 3/100000)*(u1/50000 + 1/10000)*(u3/50000 + 1/10000)*(u3/50000 +
2*2^(1/2)*(u1/50000 + 1/10000) +
1/10000))/(4*((1770887431076117*u2)/295147905179352825856 +
3/100000)^2*(8*(u1/50000 + 1/10000)^2 + (u3/50000 + 1/10000)^2) + (u1/50000 +
1/10000)*(u3/50000 + 1/10000)^2*(u1/50000 +
(5312662293228351*u2)/147573952589676412928 + 7/25000) +
4*2^(1/2)*((1770887431076117*u2)/295147905179352825856 + 3/100000)*(u1/50000
+ 1/10000)*(u3/50000 + 1/10000)*((3*u1)/50000 +
(1770887431076117*u2)/73786976294838206464 + 21/50000)) + 2))/(u3/50000 +
1/10000);
 end
end

%% CODE STRESS: COMPUTE ROD STRESSES GIVEN SECTION AREA AND EXT LOADS
function y = stress(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,P)

A=zeros(10,10);
A(1,8)=-2^(-0.5);
A(2,10)=-2^(-0.5);
A(3,8)=-2^(-0.5);
A(4,10)=-2^(-0.5);
A(5,8)=-2^(-0.5);
A(5,10)=-2^(-0.5);
A(6,10)=-2^(-0.5);
A(7,8)=1;
A(9,10)=1;

149

a11 = 1/A1+1/A3+1/A5+2^1.5/A7+2^1.5/A8;
a12 = 1/A5;
a21 = a12;
a22 = 1/A2+1/A4+1/A5+1/A6+2^1.5/A9+2^1.5/A10;

temp_den = a11*a22 - a12*a21;
temp_1 = (-a22*2^0.5*(1/A3+2^1.5/A7))/temp_den;
temp_2 = (a22*2^0.5*(1/A1-2/A3-1/A5-
2^1.5/A7)+a12*(2^0.5/A4+2^0.5/A5+4/A9))/temp_den;
temp_3 = (a21*2^0.5*(1/A3+2^1.5/A7))/temp_den;
temp_4 = -(a11*(2^0.5/A4+2^0.5/A5+4/A9)+a21*2^0.5*(1/A1-2/A3-1/A5-
2^1.5/A7))/temp_den;

% coefficient matrix for external force P
B=[0 1
 0 0
 -1 -2
 0 -1
 0 -1
 0 0
 2^0.5 2^0.5
 temp_1 temp_2
 0 2^0.5
 temp_3 temp_4];

% internal force N calculated:
N = (eye(10)-A)^(-1)*B*P;

% stresses
sigma=[N(1)/A1;N(2)/A2;N(3)/A3;N(4)/A4;N(5)/A5;
 N(6)/A6;N(7)/A7;N(8)/A8;N(9)/A9;N(10)/A10];
y=sigma;

% Compute next point by Gradient Projection Method, with 3 variables only
% This function computes one step only
function y = gradproj(f,h,SP,step)
% y: next point, column vector;
% f: objective function of x1,x2,x3;
% h: equality constraints, column vector;
% SP: starting point, column vector;
% step: step size;
syms ph % partial derivatives of h
syms x1 x2 x3 % design variables
[n,m]=size(h); % constraint number n
ph=[diff(h,x1) diff(h,x2) diff(h,x3)];
pf=[diff(f,x1) diff(f,x2) diff(f,x3)];
x1=SP(1);x2=SP(2);x3=SP(3);
ph1=eval(ph);
pf1=eval(pf);

150

% projection matrix P:
P=eye(3)-ph1'*(ph1*ph1')^(-1)*ph1;
% EP: end point
EP=SP-step*P*pf1';
for i=1:3
 SP=EP;
 x1=SP(1);x2=SP(2);x3=SP(3);
 ph1=eval(ph);
 h1=eval(h);
 EP=SP-ph1'*(ph1*ph1')^(-1)*h1;
end
y=EP;

%% code 01 File for ten-bar truss model
% ------------------------------------
%First assign value for
%A1...A10: bar section area;
%P: external force;
A_hor=1e-4;
A_ver=0.3e-4;
A_dia=0.6e-4;
A1=A_hor; A2=A_hor; A3=A_hor; A4=A_hor;
A5=A_ver; A6=A_ver;
A7=A_dia; A8=A_dia; A9=A_dia; A10=A_dia;
P = [3000; 3000];

%A matrix: coefficient matrix for N
A=zeros(10,10);
A(1,8)=-2^(-0.5);
A(2,10)=-2^(-0.5);
A(3,8)=-2^(-0.5);
A(4,10)=-2^(-0.5);
A(5,8)=-2^(-0.5);
A(5,10)=-2^(-0.5);
A(6,10)=-2^(-0.5);
A(7,8)=1;
A(9,10)=1;

a11 = 1/A1+1/A3+1/A5+2^1.5/A7+2^1.5/A8;
a12 = 1/A5;
a21 = a12;
a22 = 1/A2+1/A4+1/A5+1/A6+2^1.5/A9+2^1.5/A10;

temp_den = a11*a22 - a12*a21;
temp_1 = (-a22*2^0.5*(1/A3+2^1.5/A7))/temp_den;
temp_2 = (a22*2^0.5*(1/A1-2/A3-1/A5-
2^1.5/A7)+a12*(2^0.5/A4+2^0.5/A5+4/A9))/temp_den;
temp_3 = (a21*2^0.5*(1/A3+2^1.5/A7))/temp_den;

151

temp_4 = -(a11*(2^0.5/A4+2^0.5/A5+4/A9)+a21*2^0.5*(1/A1-2/A3-1/A5-
2^1.5/A7))/temp_den;

% coefficient matrix for external force P
B=[0 1
 0 0
 -1 -2
 0 -1
 0 -1
 0 0
 2^0.5 2^0.5
 temp_1 temp_2
 0 2^0.5
 temp_3 temp_4];

% internal force N calculated:
N = (eye(10)-A)^(-1)*B*P;

% stresses
sigma=[N(1)/A1;N(2)/A2;N(3)/A3;N(4)/A4;N(5)/A5;
 N(6)/A6;N(7)/A7;N(8)/A8;N(9)/A9;N(10)/A10]

%% code 02 prepare input data

A_hor=1e-4;
A_ver=0.3e-4;
A_dia=0.6e-4;
A1=A_hor; A2=A_hor; A3=A_hor; A4=A_hor;
A5=A_ver; A6=A_ver;
A7=A_dia; A8=A_dia; A9=A_dia; A10=A_dia;
P = [3000; 3000];
stress(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,P)

%% code 03 Experiment1: MCS with P uncorrelated, both P1 and P2 ~N(3000, 500)

n = 1e6;
rho = 0;
Z = mvnrnd([3000 3000], 500^2*[1 rho; rho 1], n);
%plot(Z(:,1),Z(:,2),'.'); xlim([0 5000]); ylim([0 5000]);

% rods section area
A_hor=1e-4;
A_ver=0.3e-4;
A_dia=0.6e-4;
A1=A_hor; A2=A_hor; A3=A_hor; A4=A_hor;
A5=A_ver; A6=A_ver;
A7=A_dia; A8=A_dia; A9=A_dia; A10=A_dia;

% count of failure
i_failurecount=0;
% the maximum permissible stress is 100MPa

152

s_safe=100e6;

% Evaluating failure rate by Monte Carlo Simulation
for i=1:n
 P=Z(i,:).';
 s_max=max(stress(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,P));
 if (s_max>=s_safe)
 i_failurecount=i_failurecount+1;
 end
end
failurerate=i_failurecount/n
% result: 0.003869

%% code 04 Experiment2: MCS with P correlated using bivariate Gaussian
distribution.

n = 1e6;
rho = 0.6;
Z = mvnrnd([3000 3000], 500^2*[1 rho; rho 1], n);
%plot(Z(:,1),Z(:,2),'.'); xlim([0 5000]); ylim([0 5000]);

% rods section area
A_hor=1e-4;
A_ver=0.3e-4;
A_dia=0.6e-4;
A1=A_hor; A2=A_hor; A3=A_hor; A4=A_hor;
A5=A_ver; A6=A_ver;
A7=A_dia; A8=A_dia; A9=A_dia; A10=A_dia;

% count of failure
i_failurecount=0;
% the maximum permissible stress is 100MPa
s_safe=100e6;

% Evaluating failure rate by Monte Carlo Simulation
for i=1:n
 P=Z(i,:).';
 s_max=max(stress(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,P));
 if (s_max>=s_safe)
 i_failurecount=i_failurecount+1;
 end
end
failurerate=i_failurecount/n
% result: 0.017161

%% code 05 KL expansion example .

rho=0.6;
K=500^2*[1 rho;rho 1];
[V,D] = eig(K);
A=V*(D.^0.5);
X=mvnrnd([0 0], [1 0; 0 1], 1000);

153

X=X';
Y=A*X;
Y=3000+Y;
% Y are correlated RV's generated by KL expansion

figure;
subplot(1,2,1);
plot(X(1,:),X(2,:),'.'); axis equal;
subplot(1,2,2);
plot(Y(1,:),Y(2,:),'.'); axis equal;xlim([0 5000]);ylim([0 5000]);

%% code 06 Experiment3: MCS with P correlated using KL expansion.

n = 1e5;
rho=0.6;
K=500^2*[1 rho;rho 1];
[V,D] = eig(K);
A=V*(D.^0.5);
X=mvnrnd([0 0], [1 0; 0 1], n);
X=X';
Y=A*X;
Y=3000+Y;
Z=Y';

% rods section area
A_hor=1e-4;
A_ver=0.3e-4;
A_dia=0.6e-4;
A1=A_hor; A2=A_hor; A3=A_hor; A4=A_hor;
A5=A_ver; A6=A_ver;
A7=A_dia; A8=A_dia; A9=A_dia; A10=A_dia;

% count of failure
i_failurecount=0;
% the maximum permissible stress is 100MPa
s_safe=100e6;

% Evaluating failure rate by Monte Carlo Simulation
for i=1:n
 P=Z(i,:).';
 s_max=max(stress(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,P));
 if (s_max>=s_safe)
 i_failurecount=i_failurecount+1;
 end
end
failurerate=i_failurecount/n
% result: 0.01746

%% code 07 Copula example .

154

n = 1e3;
rho=0.6;
tau = copulastat('Gaussian',rho ,'type','kendall');
alpha = copulaparam('Frank',tau,'type','kendall');
U = copularnd('Frank',alpha,n);
Z = norminv(U,3000,500);
%plot(Z(:,1),Z(:,2),'.'); axis equal;xlim([0 5000]);ylim([0 5000]);
hist(Z,20);

subplot(3,1,1);
plot(U(:,1),U(:,2),'.');
title(['Clayton Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)]);
xlabel('U1');
ylabel('U2');

%% code 08 Experiment4: MCS with P correlated using
(Clayton,Gumbel,Frank)copula
n = 1e5;
rho=-0.6;
tau = copulastat('Gaussian',rho ,'type','kendall');
alpha = copulaparam('Frank',tau,'type','kendall');
U = copularnd('Frank',alpha,n);
Z = norminv(U,3000,500);
%Z = Z*500 + 3000;
%plot(Z(:,1),Z(:,2),'.'); axis equal;xlim([0 5000]);ylim([0 5000]);

% rods section area
A_hor=1e-4;
A_ver=0.3e-4;
A_dia=0.6e-4;
A1=A_hor; A2=A_hor; A3=A_hor; A4=A_hor;
A5=A_ver; A6=A_ver;
A7=A_dia; A8=A_dia; A9=A_dia; A10=A_dia;

% count of failure
i_failurecount=0;
% the maximum permissible stress is 100MPa
s_safe=100e6;

% Evaluating failure rate by Monte Carlo Simulation
for i=1:n
 P=Z(i,:).';
 s_max=max(stress(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,P));
 if (s_max>=s_safe)
 i_failurecount=i_failurecount+1;
 end
end
failurerate=i_failurecount/n
% result: for rho=0.6
% Clayton: 0.00756
% Gumbel: 0.02166
% Frank: 0.01154

155

%% code 09 inverse normal CDF code
P=[0.2 0.3 0.6]
norminv(P,0,1)

%% code 10 generating random variables by copula
% copulafunc01 is Gumbel-Hougaard copula
% copulafunc02 is Clayton copula
clear;
n=1e3;
U=rand([n 2]);
for i=1:n
 A(i)=copulafunc01(U(i,1),U(i,2),5);
 B(i)=copulafunc02(U(i,1),U(i,2),5);
end
subplot(1,2,1);
plot(U(:,1),A(:),'.'); axis equal;xlim([0 1]);ylim([0 1]);
subplot(1,2,2);
plot(U(:,1),B(:),'.'); axis equal;xlim([0 1]);ylim([0 1]);

%% code 11 Illustrating how positive and negative Kendall's tau influences
failure
% rate
n = 5e2;
rho=0.8;
tau1 = copulastat('Gaussian',rho ,'type','kendall');
tau2=-tau1;
alpha1 = copulaparam('Frank',tau1,'type','kendall');
alpha2 = copulaparam('Frank',tau2,'type','kendall');
U1 = copularnd('Frank',alpha1,n);
U2 = copularnd('Frank',alpha2,n);
Z1 = norminv(U1,1500,500);
Z2 = norminv(U2,1500,500);
subplot(1,2,1);
plot(Z1(:,1),Z1(:,2),'.'); axis equal;xlim([0 5000]);ylim([0 5000]);
subplot(1,2,2);
plot(Z2(:,1),Z2(:,2),'.'); axis equal;xlim([0 5000]);ylim([0 5000]);

%% **
% Here below starts FOSM and SORM
% ***

%% code 12 Compute initial beta at mean value of X; the Pf of each beta
% external load; mean rod area; coeff. of variance;
clear;

156

P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;
% standard variance of rod section area
var1=mu1*cv;var2=mu2*cv;var3=mu3*cv;
% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);
% rod 3
g1=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% partial diff. of g wrt three variables x1 x2 x3
p1=diff(g1,x1);
p2=diff(g1,x2);
p3=diff(g1,x3);
den=((p1*var1)^2+(p2*var2)^2+(p3*var3)^2)^0.5;
x1=mu1;
x2=mu2;
x3=mu3;
beta(1)=eval(g1/den);

syms x1 x2 x3;
p1=diff(g2,x1);
p2=diff(g2,x2);
p3=diff(g2,x3);
den=((p1*var1)^2+(p2*var2)^2+(p3*var3)^2)^0.5;
x1=mu1;
x2=mu2;
x3=mu3;
beta(2)=eval(g2/den);

Pf=normcdf(-beta)

%% code 13 MCS for uncorrelated Ai, rod 3 and rod 7
clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);

% rod 3
g1=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

n = 1e2;

157

rho = 0;
Z = mvnrnd([mu1 mu2 mu3], [(cv*mu1)^2 rho rho; rho (cv*mu2)^2 rho; rho rho
(cv*mu3)^2], n);
%plot(Z(:,1),Z(:,3),'.');
counter1=0;
counter2=0;

for i=1:n
 x1=Z(i,1);
 x2=Z(i,2);
 x3=Z(i,3);
 temp(i,1)=eval(g1);
 temp(i,2)=eval(g2);
 if temp(i,1)<=0
 counter1=counter1+1;
 end
 if temp(i,2)<=0
 counter2=counter2+1;
 end
end

Pf1=counter1/n
Pf2=counter2/n

%% code 14 Compute beta by HL method with RV's uncorrelated:
% external load; mean rod area; coeff. of variance;
clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;
% standard variance of rod section area
var1=mu1*cv;var2=mu2*cv;var3=mu3*cv;
% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);
% rod 3
g=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
%g=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% partial diff. of g wrt three variables x1 x2 x3
p1=diff(g,x1);
p2=diff(g,x2);
p3=diff(g,x3);
den=((p1*var1)^2+(p2*var2)^2+(p3*var3)^2)^0.5;
x1=mu1;
x2=mu2;
x3=mu3;

i_max=10;
cosine=zeros(i_max,3);

158

beta=zeros(i_max,1);
X=zeros(i_max,3);
U=zeros(i_max,3);
temp_g=zeros(i_max,1);
temp_p=zeros(i_max,3);

i=1;
beta_pre=0;
beta(i)=eval(g/den);
X(i,:)=[mu1 mu2 mu3];
U(i,:)=[0 0 0];

% stop criteria: beta converges or more than 10 iterations
while [abs((beta(i)-beta_pre)/beta(i))>0.0001 i<=i_max]
 i=i+1;
 x1 = X(i-1,1); x2 = X(i-1,2); x3 = X(i-1,3);
 u1 = U(i-1,1); u2 = U(i-1,2); u3 = U(i-1,3);
 % compute the gradient and limit state value at each point.
 temp_p(i-1,1)=eval(p1);
 temp_p(i-1,2)=eval(p2);
 temp_p(i-1,3)=eval(p3);
 temp_g(i-1)=eval(g);
 % compute cosine values based on previous Xi
 cosine(i-1,1)=eval(-(p1*var1)/den);
 cosine(i-1,2)=eval(-(p2*var2)/den);
 cosine(i-1,3)=eval(-(p3*var3)/den);
 % compute new Ui
 U(i,1) = beta(i-1)*cosine(i-1,1);
 U(i,2) = beta(i-1)*cosine(i-1,2);
 U(i,3) = beta(i-1)*cosine(i-1,3);
 % compute new Xi
 X(i,1) = mu1+var1*U(i,1);
 X(i,2) = mu2+var2*U(i,2);
 X(i,3) = mu3+var3*U(i,3);
 % compute new beta
 x1=X(i,1);x2=X(i,2);x3=X(i,3);
 beta(i)=eval((g-(p1*var1*U(i,1)+p2*var2*U(i,2)+p3*var3*U(i,3)))/den);
 beta_pre=beta(i-1);
end
normcdf(-beta)

%% code 15 test of example in Text P94. get the same results
%
clear;
P=3000;
s_allow=100e6;
mu1=10;mu2=10;

% standard variance of rod section area
var1=5;var2=5;var3=5;
% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;

159

% rod 3
g=x1^3+x2^3-18;
% rod 7
%g=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% partial diff. of g wrt three variables x1 x2 x3
p1=diff(g,x1);
p2=diff(g,x2);
den=((p1*var1)^2+(p2*var2)^2)^0.5;
x1=mu1;
x2=mu2;

i_max=10;
cosine=zeros(i_max,2);
beta=zeros(i_max,1);
X=zeros(i_max,2);
U=zeros(i_max,2);
temp_g=zeros(i_max,1);
temp_p=zeros(i_max,2);

i=1;
beta_pre=0;
beta(i)=eval(g/den);
X(i,:)=[mu1 mu2];
U(i,:)=[0 0];

% stop criteria: beta converges or more than 10 iterations
while [abs((beta(i)-beta_pre)/beta(i))>0.001 i<=i_max]
 i=i+1;
 x1 = X(i-1,1); x2 = X(i-1,2);
 u1 = U(i-1,1); u2 = U(i-1,2);
 % compute cosine values based on previous Xi
 temp_p(i-1,1)=eval(p1);
 temp_p(i-1,2)=eval(p2);
 temp_g(i-1)=eval(g);
 cosine(i-1,1)=eval(-(p1*var1)/den);
 cosine(i-1,2)=eval(-(p2*var2)/den);
 % compute new Ui
 U(i,1) = beta(i-1)*cosine(i-1,1);
 U(i,2) = beta(i-1)*cosine(i-1,2);
 % compute new Xi
 X(i,1) = mu1+var1*U(i,1);
 X(i,2) = mu2+var2*U(i,2);
 % compute new beta
 x1=X(i,1);x2=X(i,2);
 beta(i)=eval((g-(p1*var1*U(i,1)+p2*var2*U(i,2)))/den);
 beta_pre=beta(i-1);
end

%% code 16 MCS for rod 3,7 with three RV's correlated to each other by
rho=0.8

160

clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2; % coefficient of variance

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);

% rod 3
g1=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

n = 5e3;
rho = 0.8;
Z = mvnrnd([mu1 mu2 mu3], [(cv*mu1)^2 rho*(cv*mu1)*(cv*mu2)
rho*(cv*mu1)*(cv*mu3); rho*(cv*mu2)*(cv*mu1) (cv*mu2)^2 rho*(cv*mu2)*(cv*mu3);
rho*(cv*mu3)*(cv*mu1) rho*(cv*mu3)*(cv*mu2) (cv*mu3)^2], n);
%plot(Z(:,1),Z(:,3),'.');
counter1=0;
counter2=0;

for i=1:n
 x1=Z(i,1);
 x2=Z(i,2);
 x3=Z(i,3);
 temp(i,1)=eval(g1);
 temp(i,2)=eval(g2);
 if temp(i,1)<=0
 counter1=counter1+1;
 end
 if temp(i,2)<=0
 counter2=counter2+1;
 end
end

Pf1=counter1/n
Pf2=counter2/n

%% code 17 Compute beta by correlated HL method with RV's correlation coeff
rho=0.8:
% external load; mean rod area; coeff. of variance;
clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;%coefficient of variance for each RV
rho=0.8; %coeff. of correlation for each couple of 2 RV's
% standard variance of rod section area
var1=mu1*cv;var2=mu2*cv;var3=mu3*cv;

161

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);
% rod 3
g=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
%g=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% partial diff. of g wrt three variables x1 x2 x3
p1=diff(g,x1);
p2=diff(g,x2);
p3=diff(g,x3);
corr=2*(p1*p2*var1*var2*rho+p1*p3*var1*var3*rho+p2*p3*var2*var3*rho);
den=((p1*var1)^2+(p2*var2)^2+(p3*var3)^2+corr)^0.5;
x1=mu1;
x2=mu2;
x3=mu3;

i_max=10;
cosine=zeros(i_max,3);
beta=zeros(i_max,1);
X=zeros(i_max,3);
U=zeros(i_max,3);
temp_g=zeros(i_max,1);
temp_p=zeros(i_max,3);

i=1;
beta_pre=0;
beta(i)=eval(g/den);
X(i,:)=[mu1 mu2 mu3];
U(i,:)=[0 0 0];

% stop criteria: beta converges or more than 10 iterations
while [abs((beta(i)-beta_pre)/beta(i))>0.0001 i<=i_max]
 i=i+1;
 x1 = X(i-1,1); x2 = X(i-1,2); x3 = X(i-1,3);
 u1 = U(i-1,1); u2 = U(i-1,2); u3 = U(i-1,3);
 % compute the gradient and limit state value at each point.
 temp_p(i-1,1)=eval(p1);
 temp_p(i-1,2)=eval(p2);
 temp_p(i-1,3)=eval(p3);
 temp_g(i-1)=eval(g);
 % compute cosine values based on previous Xi
 cosine(i-1,1)=eval(-(p1*var1)/den);
 cosine(i-1,2)=eval(-(p2*var2)/den);
 cosine(i-1,3)=eval(-(p3*var3)/den);
 % compute new Ui
 U(i,1) = beta(i-1)*cosine(i-1,1);
 U(i,2) = beta(i-1)*cosine(i-1,2);
 U(i,3) = beta(i-1)*cosine(i-1,3);
 % compute new Xi
 X(i,1) = mu1+var1*U(i,1);
 X(i,2) = mu2+var2*U(i,2);
 X(i,3) = mu3+var3*U(i,3);
 % compute new beta
 x1=X(i,1);x2=X(i,2);x3=X(i,3);

162

 beta(i)=eval((g-(p1*var1*U(i,1)+p2*var2*U(i,2)+p3*var3*U(i,3)))/den);
 beta_pre=beta(i-1);
end
normcdf(-beta)

%% code 18 Compute beta by correlated HL method with RV's correlation coeff.
% rho=0.8:, Cosine modified
% external load; mean rod area; coeff. of variance;
clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;%coefficient of variance for each RV
rho=0.8; %coeff. of correlation for each couple of 2 RV's
% standard variance of rod section area
var1=mu1*cv;var2=mu2*cv;var3=mu3*cv;
% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);
% rod 3
g=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
%g=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% partial diff. of g wrt three variables x1 x2 x3
p1=diff(g,x1);
p2=diff(g,x2);
p3=diff(g,x3);
corr=2*(p1*p2*var1*var2*rho+p1*p3*var1*var3*rho+p2*p3*var2*var3*rho);
den=((p1*var1)^2+(p2*var2)^2+(p3*var3)^2+corr)^0.5;
x1=mu1;
x2=mu2;
x3=mu3;

i_max=10;
cosine=zeros(i_max,3);
beta=zeros(i_max,1);
X=zeros(i_max,3);
U=zeros(i_max,3);
temp_g=zeros(i_max,1);
temp_p=zeros(i_max,3);

i=1;
beta_pre=0;
beta(i)=eval(g/den);
X(i,:)=[mu1 mu2 mu3];
U(i,:)=[0 0 0];

% stop criteria: beta converges or more than 10 iterations
while [abs((beta(i)-beta_pre)/beta(i))>0.0001 i<=i_max]
 i=i+1;
 x1 = X(i-1,1); x2 = X(i-1,2); x3 = X(i-1,3);

163

 u1 = U(i-1,1); u2 = U(i-1,2); u3 = U(i-1,3);
 % compute the gradient and limit state value at each point.
 temp_p(i-1,1)=eval(p1);
 temp_p(i-1,2)=eval(p2);
 temp_p(i-1,3)=eval(p3);
 temp_g(i-1)=eval(g);
 % compute cosine values based on previous Xi
 cosine(i-1,1)=eval(-(p1*var1)/((p1*var1)^2+(p2*var2)^2+(p3*var3)^2)^0.5);
 cosine(i-1,2)=eval(-(p2*var2)/((p1*var1)^2+(p2*var2)^2+(p3*var3)^2)^0.5);
 cosine(i-1,3)=eval(-(p3*var3)/((p1*var1)^2+(p2*var2)^2+(p3*var3)^2)^0.5);
 % compute new Ui
 U(i,1) = beta(i-1)*cosine(i-1,1);
 U(i,2) = beta(i-1)*cosine(i-1,2);
 U(i,3) = beta(i-1)*cosine(i-1,3);
 % compute new Xi
 X(i,1) = mu1+var1*U(i,1);
 X(i,2) = mu2+var2*U(i,2);
 X(i,3) = mu3+var3*U(i,3);
 % compute new beta
 x1=X(i,1);x2=X(i,2);x3=X(i,3);
 beta(i)=eval((g-(p1*var1*U(i,1)+p2*var2*U(i,2)+p3*var3*U(i,3)))/den);
 beta_pre=beta(i-1);
end
normcdf(-beta)

%% code 19 Kriging model for rod 3: computing Kriging matrix and parameters
% need store these data in the file kriging.mat:
% C1inv: the inverse matrix of covariance matrix;
% points: sampling points coordinates;
% dmax: the maximum sampling points distance, for covariance function use;
% G: the function value at eath sampling point.
clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2; % coefficient of variance
% standard variance
sv1=cv*mu1;sv2=cv*mu2;sv3=cv*mu3;
% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);

% rod 3
g1=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

x=(-2*sv1: sv1 :2*sv1); x=x+mu1;
y=(-2*sv2: sv2 :2*sv2); y=y+mu2;
z=(-2*sv3: sv3 :2*sv3); z=z+mu3;

[X,Y,Z]=meshgrid(x,y,z);

164

x1=X; x2=Y; x3=Z;
A=eval(g2);
% holding all interpolation points, totally 125 points
points=zeros(3,5^3);
G=zeros(5^3+1,1);
counter=1;
for i=1:5
 for j=1:5
 for k=1:5
 points(1,counter)=x(i);
 points(2,counter)=y(j);
 points(3,counter)=z(k);
 % Attention for the sequence of 'A(j,i,k)', not 'A(i,j,k)'
 G(counter)=A(j,i,k);
 counter=counter+1;
 end
 end
end
% distance matrix of each pair of points
d=dist(points);
dmax=1.156546583584077e-04;
% Covariance matrix between each pair of points:
C=1-1.5*(d/dmax)+0.5*(d/dmax).^3;
% Covariance matrix for Ordinary Kriging
C1=[C ones(125,1);ones(1,125) 0];
C1inv=C1^-1;

%% code 20 Kriging model for rod 3 and 7: invoking the kriging.m function:

x=[1e-4 0.3e-4 1e-4;
1e-4 0.3e-4 0.6e-4;
1e-4 0.3e-4 0.8e-4;
1e-4 0.3e-4 1.2e-4;
1e-4 0.3e-4 1.4e-4;
0.6e-4 0.3e-4 1e-4;
0.8e-4 0.3e-4 1e-4;
1.2e-4 0.3e-4 1e-4;
1.4e-4 0.3e-4 1e-4;]'
kriging01(x)

%% code 21 Kriging model: MCS with Kriging uncorrelated
clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;

% xi:rod section area; pi:differential of limit-state func gi;

165

syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);

% rod 3
g1=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

n = 1e4;
rho = 0;
X = mvnrnd([mu1 mu2 mu3], [(cv*mu1)^2 rho rho; rho (cv*mu2)^2 rho; rho rho
(cv*mu3)^2], n);
%plot(X(:,1),X(:,3),'.');
X=X';
Y1=kriging01(X);
Y2=kriging02(X);
counter1=0;
counter2=0;
for i=1:n
 if Y1(i)<0
 counter1=counter1+1;
 end
 if Y2(i)<0
 counter2=counter2+1;
 end
end
Pf1=counter1/n
Pf2=counter2/n

%% code 22 Kriging model: MCS with Kriging uncorrelated, comparing with real
value
clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);

% rod 3
g1=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

n = 1e4;
rho = 0;
X = mvnrnd([mu1 mu2 mu3], [(cv*mu1)^2 rho rho; rho (cv*mu2)^2 rho; rho rho
(cv*mu3)^2], n);
temp1=zeros(n,1);
temp2=zeros(n,1);
%plot(X(:,1),X(:,3),'.');

166

% Evaluate the real value of limit state function by the RV's
% for i=1:n
% x1=X(i,1);x2=X(i,2);x3=X(i,3);
% temp1(i)=eval(g1);
% temp2(i)=eval(g2);
% end
%Evaluate by surrogate model: Kriging
X=X';
Y1=kriging01(X);
Y2=kriging02(X);
counter1=0;
counter2=0;
for i=1:n
 if Y1(i)<0
 counter1=counter1+1;
 end
 if Y2(i)<0
 counter2=counter2+1;
 end
end
Pf1=counter1/n
Pf2=counter2/n

%% code 23 Plotting the covariance function of Kriging
x=(0:1:100);
y=1-1.5*(x./100)+0.5*(x./100).^3;
plot(x,y,'-')

%% code 24 MCS for Example P132
clear;
mu1=10;mu2=10;
var1=5;var2=5;
% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 ;

g1=x1^4+2*x2^4-20;
n = 1e4;
rho = 0;
Z = mvnrnd([mu1 mu2], [(var1)^2 rho ; rho (var2)^2], n);
%plot(Z(:,1),Z(:,2),'.');
counter1=0;
temp=zeros(n,1);
for i=1:n
 x1=Z(i,1);
 x2=Z(i,2);
 temp(i)=eval(g1);
 if temp(i)<=0
 counter1=counter1+1;
 end
end

167

Pf1=counter1/n

%% code 25 Test Gram-Schmidt orthogonaizing:
A=[1/2^0.5 -1/2^0.5; 0 1]';
Gram_Schmidt_Process(A);

%% code 26 Ploting the limit state function

clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);

% rod 3
g1=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

x01=(mu1-2*cv*mu1: cv*mu1/20 : mu1+2*cv*mu1);
x02=mu2;
x03=(mu3-2*cv*mu3: cv*mu3/20 : mu3+2*cv*mu3);

x1=x01; x2=x02; x3=x03;
[X,Y]=meshgrid(x1,x3);
x1=X; x3=Y;
y=eval(g1);
surf(x1,x3,y);

%% code 27 SORM Breitung

clear;
P=3000;
s_allow=100e6;
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;
var1=cv*mu1;var2=cv*mu2;var3=cv*mu3;
% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 p1 p2 p3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);

% rod 3
g1=s_allow-P./x1.*(2+(x1.*x2.*x3.*(2*2^0.5*x1+x3))./DT);
% rod 7

168

g2=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% g=g1;
g=g2;

px01=diff(g,x1);
px02=diff(g,x2);
px03=diff(g,x3);

pu01=px01*var1;
pu02=px02*var2;
pu03=px03*var3;

px11=diff((diff(g,x1)),x1);
px12=diff((diff(g,x1)),x2);
px13=diff((diff(g,x1)),x3);
px22=diff((diff(g,x2)),x2);
px23=diff((diff(g,x2)),x3);
px33=diff((diff(g,x3)),x3);

pu11=px11*var1*var1;
pu12=px12*var1*var2;
pu13=px13*var1*var3;
pu22=px22*var2*var2;
pu23=px23*var2*var3;
pu33=px33*var3*var3;

%rod 3
% beta=1.8765;x1=6.2491e-5;x2=2.9894e-5;x3=1.0022e-4;
%rod7
beta=1.8388;x1=1.001e-4;x2=2.9836e-5;x3=6.3228e-5;

d=eval((pu01^2+pu02^2+pu03^2).^0.5);
B=eval([pu11 pu12 pu13; pu12 pu22 pu23; pu13 pu23 pu33]./d);
H0=eval([-pu01./d -pu02./d -pu03./d; 0 1 0; 0 0 1].');

H1=Gram_Schmidt_Process(H0);
H1=H1';
H=[H1(2,:);H1(3,:);H1(1,:)];

temp=H*B*H';
temp=[temp(1,1) temp(1,2);temp(2,1) temp(2,2)];
[vector,value]=eig(temp);

k1=value(1,1);
k2=value(2,2);

Pf=normcdf(-beta)*(1+k1*beta)^0.5*(1+k2*beta)^0.5;

%% code 28 Preparing P_ini[] for the next program:
solve_u1(0,0)

169

solve_u3(0,0)

%% code 29 Gradient Projection Method for safety-index
clear;
P=3000;
s_allow=100e6;%max permissible stress
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;% coeff of variance
var1=cv*mu1;var2=cv*mu2;var3=cv*mu3;%standard variance
alpha=0.5; %step size important
i_max=20;

U=zeros(i_max,3);%U at each step
Ul=zeros(10,3);% local loops to approach the constraint surface
X=zeros(i_max,3);% X at each step
Y=zeros(i_max,1);% Y at each step
error=zeros(i_max,1);% Y errors at each step
Grad_O=zeros(i_max,3);% gradient of objective func
Grad_C=zeros(i_max,3);% gradient of constraint func

% initial point, must be on the constraint plane
P_ini=[-1.8757 0 0];% for rod3
% P_ini=[-1.8706 0 1];
% P_ini=[-1.8847 1 0];
% P_ini=[-1.8791 1 1];
% P_ini=[-1.8830 0 -1];
% P_ini=[-1.8668 0 2];
% P_ini=[-1.8937 0 -2];
% P_ini=[-1.8687 -2 -2];
% P_ini=[-1.8823 2 2];
% P_ini=[-1.8520 -2 2];
% P_ini=[-1.9118 2 -2];

% P_ini=[0 0 -1.8390];% for rod7

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 u1 u2 u3 pc1 pc2 pc3 po1 po2 po3 y;

%Objective function, need be minimized
y=(u1^2+u2^2+u3^2)^0.5;

x1=mu1+u1*var1; x2=mu2+u2*var2; x3=mu3+u3*var3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);
% rod 3
g=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
% g=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% first order partial direvatives of objective function wrt ui
po1=diff(y,u1);
po2=diff(y,u2);
po3=diff(y,u3);
% first order partial direvatives of constraint function wrt ui
pc1=diff(g,u1);
pc2=diff(g,u2);

170

pc3=diff(g,u3);

i=1;
U(i,:)= P_ini;
u1=U(i,1); u2=U(i,2); u3=U(i,3);
X(i,:)=eval([x1 x2 x3]);
Y(i)=eval(y);
error(i)=1;

while [error(i)>0.0001 i<i_max]
 Grad_O(i,1)=eval(po1);
 Grad_O(i,2)=eval(po2);
 Grad_O(i,3)=eval(po3);

 Grad_C(i,1)=eval(pc1);
 Grad_C(i,2)=eval(pc2);
 Grad_C(i,3)=eval(pc3);

 A=Grad_C(i,:);
 P=eye(3)-A.'*(A*A.')^(-1)*A;
 Ul(1,:)=(U(i,:).'-alpha*P*Grad_O(i,:).').'; %point on tangent plane
 %---------
 % iteratively compute new point on the constraint plane
 %---------
 j=1;
 while (j<3) % return from the tangent plane to the constraint plane
 u1=Ul(j,1);u2=Ul(j,2);u3=Ul(j,3);
 temp0=eval(g);% value of constraint function at the new point
 temp1=[eval(pc1) eval(pc2) eval(pc3)]; %gradient of the constraint
function at the new point
 temp2=Ul(j,:).'-(temp1).'*(temp1*temp1.')^(-1)*(temp0); % next new
point
 Ul(j+1,:)=temp2.';
 j=j+1;
 end
 U(i+1,:)=Ul(j,:);
 i=i+1;
 u1=U(i,1); u2=U(i,2); u3=U(i,3);
 %---------
 % check if the objective function value at the new
 % point is converging, if yes then stop iteration
 %---------
 X(i,:)=eval([x1 x2 x3]);
 Y(i)=eval(y);
 error(i)=abs(Y(i)-Y(i-1))/(Y(i));
end
Pf=normcdf(-Y);

%% code 30 Reduced Gradient Method for safety-index rod3
clear;
P=3000;

171

s_allow=100e6;%max permissible stress
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;% coeff of variance
var1=cv*mu1;var2=cv*mu2;var3=cv*mu3;%standard variance
alpha=0.5; %step size important
i_max=20;

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 u1 u2 u3 pc1 pc2 pc3 po1 po2 po3 y;
%Objective function, need be minimized
y=(u1^2+u2^2+u3^2)^0.5;

x1=mu1+u1*var1; x2=mu2+u2*var2; x3=mu3+u3*var3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);
% rod 3
g=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
% g=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% first order partial direvatives of objective function wrt ui
po1=diff(y,u1);
po2=diff(y,u2);
po3=diff(y,u3);
% first order partial direvatives of constraint function wrt ui
pc1=diff(g,u1);
pc2=diff(g,u2);
pc3=diff(g,u3);

% set u2, u3 at decision variables, u1 as state variable
% the following are the partial derivatives:
pfpd=[po2 po3];
pfps=[po1];
phpd=[pc2 pc3];
phps=[pc1];

u_ini=[0 -1 -1]; %initial value for decision varialbes
u=zeros(i_max,3);% each step point u
x=zeros(i_max,3);% each step point x
Y=zeros(i_max,1);% objective function value
s=zeros(i_max,4);% inner loop for u1 to return to constraint surface
error=zeros(i_max,1);% Y errors at each step

i=1;
u(i,2)=u_ini(2);
u(i,3)=u_ini(3);
alpha=0.5; % step size
u2=u(i,2);u3=u(i,3);
u1=solve_u1(u2,u3);
u(i,1)=u1; %compute s_k, store it in u()
x(i,1)=mu1+var1*u(i,1);
x(i,2)=mu2+var2*u(i,2);
x(i,3)=mu3+var3*u(i,3);
Y(i)=eval(y);
error(i)=1;

172

while [error(i)>0.0001 i<i_max]
 ev_fd=eval(pfpd);
 ev_fs=eval(pfps);
 ev_hd=eval(phpd);
 ev_hs=eval(phps);

 ev_zd=ev_fd-ev_fs*ev_hs^(-1)*ev_hd;

 %******************
 % compute d_k+1 or u2 u3
 %******************
 d_new=[u(i,2) u(i,3)]'-alpha*ev_zd';
 %******************
 % compute s_k+1'
 %******************
 s_new0=u1+alpha*ev_hs^(-1)*ev_hd*ev_zd';
 %******************
 % s_k+1' return s to constraint plane as s_k+1 or u1
 %******************
 s(i,1)=s_new0;
 for j=1:2
 u2=d_new(1);u3=d_new(2);u1=s_new0;
 s_new1=s_new0-ev_hs^(-1)*eval(g);
 s_new0=s_new1;
 s(i,j+1)=s_new0;
 end

 %******************
 % update u() and x() and Y()
 %******************
 u(i+1,2)=d_new(1);u(i+1,3)=d_new(2);u(i+1,1)=s(i,j+1);
 x(i+1,1)=mu1+var1*u(i+1,1);
 x(i+1,2)=mu2+var2*u(i+1,2);
 x(i+1,3)=mu3+var3*u(i+1,3);
 i=i+1;
 u1=u(i,1);u2=u(i,2);u3=u(i,3);
 Y(i)=eval(y);
 error(i)=abs(Y(i)-Y(i-1))/(Y(i));
end
Pf=normcdf(-Y);

%% code 31 Reduced Gradient Method for safety-index rod7
clear;
P=3000;
s_allow=100e6;%max permissible stress
mu1=1e-4;mu2=0.3e-4;mu3=1e-4;
cv=0.2;% coeff of variance
var1=cv*mu1;var2=cv*mu2;var3=cv*mu3;%standard variance
alpha=0.5; %step size important
i_max=20;

173

% xi:rod section area; pi:differential of limit-state func gi;
syms x1 x2 x3 u1 u2 u3 pc1 pc2 pc3 po1 po2 po3 y;
%Objective function, need be minimized
y=(u1^2+u2^2+u3^2)^0.5;

x1=mu1+u1*var1; x2=mu2+u2*var2; x3=mu3+u3*var3;
DT=4*x2^2*(8*x1^2+x3^2)+4*2^0.5*x1*x2*x3*(3*x1+4*x2)+x1*x3^2*(x1+6*x2);
% rod 3
% g=s_allow-P/x1*(2+(x1*x2*x3*(2*2^0.5*x1+x3))/DT);
% rod 7
g=s_allow-P/x3*(2+2^0.5*x1*x2*x3*((2*2^0.5*x1+x3))/DT);

% first order partial direvatives of objective function wrt ui
po1=diff(y,u1);
po2=diff(y,u2);
po3=diff(y,u3);
% first order partial direvatives of constraint function wrt ui
pc1=diff(g,u1);
pc2=diff(g,u2);
pc3=diff(g,u3);

% set u2, u3 at decision variables, u1 as state variable
% the following are the partial derivatives:
pfpd=[po1 po2];
pfps=[po3];
phpd=[pc1 pc2];
phps=[pc3];

u_ini=[1 2 0]; %initial value for decision varialbes
u=zeros(i_max,3);% each step point u
x=zeros(i_max,3);% each step point x
Y=zeros(i_max,1);% objective function value
s=zeros(i_max,4);% inner loop for u1 to return to constraint surface
error=zeros(i_max,1);% Y errors at each step

i=1;
u(i,1)=u_ini(1);
u(i,2)=u_ini(2);
alpha=0.5; % step size
u1=u(i,1);u2=u(i,2);
u3=solve_u3(u1,u2);
u(i,3)=u3; %compute s_k, store it in u()
x(i,1)=mu1+var1*u(i,1);
x(i,2)=mu2+var2*u(i,2);
x(i,3)=mu3+var3*u(i,3);
Y(i)=eval(y);
error(i)=1;

while [error(i)>0.0001 i<i_max]
 ev_fd=eval(pfpd);
 ev_fs=eval(pfps);
 ev_hd=eval(phpd);
 ev_hs=eval(phps);

 ev_zd=ev_fd-ev_fs*ev_hs^(-1)*ev_hd;

174

 %******************
 % compute d_k+1 or u1 u2
 %******************
 d_new=[u(i,1) u(i,2)]'-alpha*ev_zd';
 %******************
 % compute s_k+1'
 %******************
 s_new0=u3+alpha*ev_hs^(-1)*ev_hd*ev_zd';
 %******************
 % s_k+1' return s to constraint plane as s_k+1 or u3
 %******************
 s(i,1)=s_new0;
 for j=1:2
 u1=d_new(1);u2=d_new(2);u3=s_new0;
 s_new1=s_new0-ev_hs^(-1)*eval(g);
 s_new0=s_new1;
 s(i,j+1)=s_new0;
 end

 %******************
 % update u() and x() and Y()
 %******************
 u(i+1,1)=d_new(1);u(i+1,2)=d_new(2);u(i+1,3)=s(i,j+1);
 x(i+1,1)=mu1+var1*u(i+1,1);
 x(i+1,2)=mu2+var2*u(i+1,2);
 x(i+1,3)=mu3+var3*u(i+1,3);
 i=i+1;
 u1=u(i,1);u2=u(i,2);u3=u(i,3);
 Y(i)=eval(y);
 error(i)=abs(Y(i)-Y(i-1))/(Y(i));
end
Pf=normcdf(-Y);

%% Code 32
n = 500;
figure;
rho = 0.0;
Z = mvnrnd([0 0], [1 rho; rho 1], n);
X = exp(Z);
U = normcdf(Z);
subplot(2,2,1)
plot(Z(:,1),Z(:,2),'.'); xlim([-4 4]); ylim([-4 4]);
subplot(2,2,3)
plot(X(:,1),X(:,2),'.'); xlim([0 10]); ylim([0 10]);
rho = 0.8;
Z = mvnrnd([0 0], [1 rho; rho 1], n);
X = exp(Z);
U = normcdf(Z);
subplot(2,2,2)
plot(Z(:,1),Z(:,2),'.'); xlim([-4 4]); ylim([-4 4]);
subplot(2,2,4)

175

plot(X(:,1),X(:,2),'.'); xlim([0 10]); ylim([0 10]);

%% Code 33
n = 500;
figure;
rho = 0.8;
Z = mvnrnd([0 0], [1 rho; rho 1], n);
U = normcdf(Z);
subplot(2,2,1);
plot(Z(:,1),Z(:,2),'.'); xlim([-4 4]); ylim([-4 4]);
title('X: correlated bivariate Gaussian');
subplot(2,2,2);
plot(U(:,1),U(:,2),'.');
title('U: after taking CDF transform');
subplot(2,2,3);
hist(U(:,1),10);
title('histogram of U1');
subplot(2,2,4);
hist(U(:,2),10);
title('histogram of U2');

%% Code 34
n = 500;
figure;
rho = 0.8;
Z = mvnrnd([0 0], [1 rho; rho 1], n);
U = normcdf(Z);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];
subplot(1,3,1)
plot(Z(:,1),Z(:,2),'.'); xlim([-4 4]); ylim([-4 4]);
subplot(1,3,2)
plot(U(:,1),U(:,2),'.');
subplot(1,3,3)
plot(X(:,1),X(:,2),'.');

%% Code 35
n = 500;
figure;
rho = 0.8;
Z = mvnrnd([0 0], [1 rho; rho 1], n);
U = normcdf(Z);
X = [gaminv(U(:,1),2,1) gaminv(U(:,2),2,1)];
subplot(1,3,1)
plot(Z(:,1),Z(:,2),'.'); xlim([-4 4]); ylim([-4 4]);
subplot(1,3,2)
plot(U(:,1),U(:,2),'.');
subplot(1,3,3)

176

plot(X(:,1),X(:,2),'.');

%% Code 36
n = 500;
figure;
rho = 0.8;
Z = mvnrnd([0 0], [1 rho; rho 1], n);
U = normcdf(Z);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];
subplot(2,3,1)
plot(Z(:,1),Z(:,2),'.'); xlim([-8 8]); ylim([-8 8]);
subplot(2,3,2)
plot(U(:,1),U(:,2),'.');
subplot(2,3,3)
plot(X(:,1),X(:,2),'.'); xlim([0 10]); ylim([-6 6]);
Z = mvtrnd([1 rho; rho 1], 1, n);
U = tcdf(Z,1);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];
subplot(2,3,4)
plot(Z(:,1),Z(:,2),'.'); xlim([-8 8]); ylim([-8 8]);
subplot(2,3,5)
plot(U(:,1),U(:,2),'.');
subplot(2,3,6)
plot(X(:,1),X(:,2),'.'); xlim([0 10]); ylim([-6 6]);

%% Code 37
n = 1000;
tau = 0.7

alpha = copulaparam('Clayton',tau,'type','kendall')
U = copularnd('Clayton',alpha,n);
subplot(1,3,1)
plot(U(:,1),U(:,2),'.');
title(['Clayton Copula, {\it\theta} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

alpha = copulaparam('Frank',tau,'type','kendall');
U = copularnd('Frank',alpha,n);
subplot(1,3,2)
plot(U(:,1),U(:,2),'.')
title(['Frank Copula, {\it\theta} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

alpha = copulaparam('Gumbel',tau,'type','kendall');
U = copularnd('Gumbel',alpha,n);
subplot(1,3,3)
plot(U(:,1),U(:,2),'.')

177

title(['Gumbel Copula, {\it\theta} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

%% Code 38: exponential covariance function model:
syms x y;
y=exp(-abs(x));
x=[-5:0.1:5];
y=eval(y);
plot(x,y);

%% Code 38: Gaussian covariance function model:
syms x y;
y=exp(-(x)^2);
x=[-3:0.1:3];
y=eval(y);
plot(x,y);

%% Code 39: KL to reduce data dimension example
rho=0.9;
K=[1 rho;rho 1];
[V,D] = eig(K);
A=V*(D.^0.5);
X=mvnrnd([0 0], [1 0; 0 1], 100);
X=X';
Y=A*X;
figure;

% plot the uncorrelated data X
subplot(2,3,1);
plot(X(1,:),X(2,:),'.'); axis equal; xlim([-4 4]); ylim([-4 4]);
title('uncorrelated random variables');

% plot the correlated data Y
subplot(2,3,2);
plot(Y(1,:),Y(2,:),'.'); axis equal; xlim([-4 4]); ylim([-4 4]);
title('correlated random variables');

% Find the Kendall's tau
tau=copulastat('Gaussian', rho)

% Plot the coordinates of Y points projected on eigenvectors
C=V^(-1)*Y;
subplot(2,3,3);
plot(C(1,:),C(2,:),'.'); axis equal; xlim([-4 4]); ylim([-4 4]);
title('projections on eigenvectors');

% Reducing dimension

178

C1=C;
C1(1,:)=0;
Y1=V*C1;
X1=A^(-1)*Y1;
% subplot(2,3,6);
% plot(X1(1,:),X1(2,:),'.'); axis equal; xlim([-4 4]); ylim([-4 4]);
% title('');
subplot(2,3,5);
plot(Y1(1,:),Y1(2,:),'.'); axis equal; xlim([-4 4]); ylim([-4 4]);
title('back to the original coordinate system');
subplot(2,3,4);
plot(C1(1,:),C1(2,:),'.'); axis equal; xlim([-4 4]); ylim([-4 4]);
title('minor component discarded');

%% Code 40: Bivariate Gaussian Plot
syms x y z;
s1=1;s2=1;u1=0;u2=0;rho=0.8;
z=(1/(2*pi*s1*s2*(1-rho^2)^0.5))*exp(-(1/(2*(1-rho^2)))*(((x-u1)^2/s1^2)+((y-
u2)^2/s2^2)-((2*rho*(x-u1)*(y-u2))/(s1*s2))));
x=[-3:0.1:3];
y=[-3:0.1:3];
[X,Y]=meshgrid(x,y);
x=X;y=Y;
Z=eval(z);
mesh(X,Y,Z);
figure;
surf(X,Y,Z);
figure;
surfl(X,Y,Z);
shading interp;
colormap pink;

%% Code 41: Gumbel-Hougaard Copula CDF and PDF plotting
clear;
syms u v C c;
t=2;
C=exp(-((-log(u))^(t)+(-log(v))^(t))^(1/t));
c=diff(diff(C,u),v);
x=[0:0.05:1];
y=[0:0.05:1];
[u,v]=meshgrid(x,y);
C1=eval(C);
c1=eval(c);
figure;
surf(u,v,C1);
figure;
surfl(u,v,C1);
%shading interp;
%colormap gray;
figure;

179

surf(u,v,c1);
figure;
surfl(u,v,c1);
%shading interp;
%colormap gray;

%% Code 42: Finding Bilinear Interpolation function coefficients C&D
clear;
X1=1e-4 * [1 1 1.2 1.2]';
X3=1e-4 * [1 1.2 1 1.2]';
Pf3=[0.0303 0.0307 0.0083 0.0084]';
Pf7=[0.033 0.00899 0.0331 0.00904]';
A=[[1 1 1 1]' X1 X3 [X1(1)*X3(1) X1(2)*X3(2) X1(3)*X3(3) X1(4)*X3(4)]'];
C=A^(-1)*Pf3;
D=A^(-1)*Pf7;

%% Code 43: Solve the system of nonlinear functions specified by myfunc01.m
x0 = [1.0e-4; 1.0e-4]; % Make a starting guess at the solution
options=optimset('Display','iter'); % Option to display output
[x,fval] = fsolve(@myfun01,x0,options) % Call optimizer

%% Code 44: Bilinear Interpolation illustration example
clear;
syms x y f
P11=1;P12=0;P21=0;P22=1;
f=P11*(1-x)*(1-y)+P21*(x)*(1-y)+P12*(1-x)*(y)+P22*(x)*(y);
X=[0:0.1:1];
Y=[0:0.1:1];
[x,y]=meshgrid(X,Y);
f=eval(f);
mesh(x,y,f);
figure;
surf(x,y,f);

%% Code 45: Copula boundaries illustration
clear;
syms x y f1 f2;
X=[0:0.05:1];
Y=[0:0.05:1];
[x,y]=meshgrid(X,Y);
f1=max(x+y-1, 0);
f2=min(x,y);
figure;
subplot(1,2,1);
surfl(x,y,f2);
% axis equal;
subplot(1,2,2);
surfl(x,y,f1);

180

% axis equal;

%% Code 46: FloorGrid g1 g2, compute Pf and material volume
clear;

%constants
stress_allow=241e6;
delta_allow=5e-3;
D=0.75; %transverse beam spacing
W_fl=6; %fuselage width
k=0.05; %defection coefficient
E=69e9; %Young's modulus
u=2200; %mean value of plate load
var=400;%variance of plate load
c=4.2649;%norminv(1e-5)

% Design variables
b=0.0070809;
d=0.467327;
t=0.003;
h=3*b;

% stress limit-state function:
q11=stress_allow*4*b*h^2/(3*d*D^2);
q10=(q11-u)/var;
Pf1=normcdf(-q10)
W1=b*h*D*W_fl/d
% deflection limit-state function
q21=delta_allow*E*t^3/(k*d^4);
q20=(q21-u)/var;
Pf2=normcdf(-q20)
W2=W_fl*D*t

%% Code 47: Gradient Projection method to solve floor board problem
% with only 2 limit-state Pf constraints as equality constraints
clear;
% x1, x2, x3: b, d, t
syms x1 x2 x3 f h1 h2
alpha=1.5; %step size important
i_max=30;

%constants
stress_allow=241e6;
delta_allow=5e-3;
D=0.75; %transverse beam spacing
W_fl=6; %fuselage width
k=0.05; %defection coefficient
E=69e9; %Young's modulus
u=2200; %mean value of plate load
var=400;%variance of plate load
c=4.2649;%norminv(1e-5)

181

f=3*D*W_fl*(x1^2/x2)+W_fl*D*(x3);
h1=stress_allow*4*x1*(3*x1)^2/(3*x2*D^2)-(c*var+u);
h2=delta_allow*E*x3^3/(k*x2^4)-(c*var+u);

pfx1=diff(f,x1);
pfx2=diff(f,x2);
pfx3=diff(f,x3);

p1x1=diff(h1,x1);
p1x2=diff(h1,x2);
p1x3=diff(h1,x3);

p2x1=diff(h2,x1);
p2x2=diff(h2,x2);
p2x3=diff(h2,x3);

A0=[p1x1 p1x2 p1x3
 p2x1 p2x2 p2x3];
pf0=[pfx1 pfx2 pfx3];

x_ini=[0.007 0.5 0.0035]; %initial value for decision varialbes
x=zeros(i_max,3);% each step point x
Y=zeros(i_max,1);% objective function value
s=zeros(i_max,4);% inner loop for u1 to return to constraint surface
error=zeros(i_max,1);% Y errors at each step

i=1;
error(i)=1;
x(i,1)=x_ini(1);x(i,2)=x_ini(2);x(i,3)=x_ini(3);
x1=x(i,1);x2=x(i,2);x3=x(i,3);
Y(i)=eval(f);

while [error(i)>1e-5 i<i_max]
 x1=x(i,1);x2=x(i,2);x3=x(i,3);
 A=eval(A0);
 pf=eval(pf0);
 P=eye(3)-A'*(A*A')^(-1)*A;
 temp=[x1 x2 x3]'-alpha*P*pf';
 %---------------------------------
 % Move back to constraint plane
 %---------------------------------
 for j=1:2
 x1=temp(1);x2=temp(2);x3=temp(3);
 A=eval(A0);
 h=eval([h1 h2]');
 temp=temp-A'*(A*A')^(-1)*h;
 end
 x1=temp(1);x2=temp(2);x3=temp(3);
 x(i+1,1)=x1;x(i+1,2)=x2;x(i+1,3)=x3;
 Y(i+1)=eval(f);
 error(i+1)=abs(Y(i+1)-Y(i))/(Y(i+1));
 i=i+1;
end

182

%% Code 48: Optimization under all inequal constraints (Floor Grid Problem)
clear;
syms f h a1 a2 a3 a4 a5 a6 a7 a8 a9 ;
syms x1 x2 x3;

%model related constants
stress_allow=241e6;
delta_allow=5e-3;
D=0.75; %transverse beam spacing
W_fl=6; %fuselage width
k=0.05; %defection coefficient
E=69e9; %Young's modulus
u=2200; %mean value of plate load
var=400;%variance of plate load
c=4.2649;%norminv(1e-5)

%algorithm related constants
SP=[0.01 0.4 0.0035].'; %starting point
% SP=[0.02 0.4 0.0035].'; %starting point
% SP=[0.01 0.6 0.0035].'; %starting point
% SP=[0.02 0.6 0.0035].'; %starting point
% SP=[0.01 0.4 0.004].'; %starting point
% SP=[0.02 0.4 0.004].'; %starting point
% SP=[0.01 0.6 0.004].'; %starting point
% SP=[0.02 0.6 0.004].'; %starting point

alpha=0.001; %step size
i_max=50;

%objective function and constraints definition
f=3*D*W_fl*(x1^2/x2)+W_fl*D*x3;
h=[stress_allow*4*x1*(3*x1)^2/(3*x2*D^2)-(c*var+u);
 delta_allow*E*x3^3/(k*x2^4)-(c*var+u);
 x3-0.003;
 x2-0.3;
 0.75-x2];
pf=[diff(f,x1) diff(f,x2) diff(f,x3)];
ph=[diff(h,x1) diff(h,x2) diff(h,x3)];
[m,n]=size(h);

x=zeros(3,i_max);% each step point x, column vectors
xt=zeros(3,i_max);% testing point on negtive gradient direction, column
vectors
y=zeros(i_max,1);% objective function value
flag=zeros(m,i_max);% recording which constraint becomes active (+1);, column
vectors
error=zeros(i_max,1);% Y errors at each step
h1=[a1 a2 a3 a4 a5 a6 a7 a8 a9].'; % maximum constraint number:9

i=1;
error(i)=1;error(i+1)=1;

183

x(:,1)=SP;
while [error(i)>1e-5 i<i_max]
 x1=SP(1);x2=SP(2);x3=SP(3);
 y(i)=eval(f);
 temp=(eval(pf))';
 % normalizing gradient vector:
 temp=temp/(temp(1)^2+temp(2)^2)^0.5;
 EP=SP-alpha*temp; % Gradient Descent method
 xt(:,i+1)=EP; % testing point on -gradient direction
 x1=EP(1);x2=EP(2);x3=EP(3);
 flag0=eval(h).'; % find any constraint violation
 flag0=sign(flag0);
 flag0=flag0-1;
 flag0=sign(abs(flag0));% +1 represent constraint violation, column vector
 flag(:,i)=flag0;
 temp=sum(flag0); % test if any constraint violation
 if temp==0 % no constraint violation
 xt(:,i)=EP;
 SP=EP;
 x(:,i+1)=SP;
 elseif temp~=0 % constraint violated at least once
 counter=1;
 for j=1:m
 if flag0(j)==1
 h1(counter)=h(j);
 counter=counter+1;
 end
 end
 h1=h1(1:(counter-1)); % # of active constraint: counter-1
 EP=gradproj(f,h1,SP,alpha);
 x(:,i+1)=EP;
 SP=EP;
 end
 if i>1
 error(i+1)=abs((y(i)-y(i-1))/y(i));
 end
 i=i+1;
end

%% Code 49: when d is known, compute b and t and Weight
clear;

%model related constants
stress_allow=241e6;
delta_allow=5e-3;
D=0.75; %transverse beam spacing
W_fl=6; %fuselage width
k=0.05; %defection coefficient
E=69e9; %Young's modulus
u=2200; %mean value of plate load
var=400;%variance of plate load
c=4.2649;%norminv(1e-5)

184

x2=0.462;

x1=((c*var+u)*((3*x2*D^2))/(stress_allow*36))^(1/3)
x3=((c*var+u)*k*x2^4/(delta_allow*E))^(1/3)
x3=max(x3,0.003);
W1=3*x1^2*D*W_fl/x2;
W2=W_fl*D*x3;
W=W1+W2

%% Code 50: Floor Grid: compute beta value of Limit-state function at sample
points
clear;
syms g g1 g2 q t1 t2 b d t;
%model related constants
stress_allow=241e6;
delta_allow=5e-3;
D=0.75; %transverse beam spacing
W_fl=6; %fuselage width
k=1e-10; %defection coefficient
E=69e9; %Young's modulus of Aluminum
h=0.0254; %track height
u_q=2200; var_q=400;%mean and variance of plate load
u_t1=0.003; var_t1=0.0003; %web of I beam
u_t2=0.003; var_t2=0.0003; %flange of I beam
c=4.2649; %norminv(1e-5)
rho=0.8;
% q=2200;t1=0.003;t2=0.003;b=0.004;d=0.3;t=0.012;

b0=[0.004:0.002:0.01];
d0=[0.3:0.15:0.75];
t0=[0.012:0.003:0.021];
beta0=zeros(4,4,4);
I=zeros(4,4,4);

g1=stress_allow-q*d*D^2*h/(16*(t1*(0.0254-2*t2)^3/12+b*t2^3/6+b*t2*(0.0254-
t2)^2/2));
g2=delta_allow-k*q*d^4/t^3;
g=g1;

% partial diff. of g wrt three variables x1 x2 x3
p1=diff(g,q);
p2=diff(g,t1);
p3=diff(g,t2);
corr=2*(p1*p2*var_q*var_t1*0+p1*p3*var_q*var_t2*0+p2*p3*var_t1*var_t2*rho);
den=((p1*var_q)^2+(p2*var_t1)^2+(p3*var_t2)^2+corr)^0.5;
den0=((p1*var_q)^2+(p2*var_t1)^2+(p3*var_t2)^2)^0.5;
q=u_q;
t1=u_t1;
t2=u_t2;

i_max=15;

185

for i1=1:4
 for i2=1:4
 for i3=1:4
 b=b0(i1); d=d0(i2); t=t0(i3);
 cosine=zeros(i_max,3);
 beta=zeros(i_max,1);
 X=zeros(i_max,3);
 U=zeros(i_max,3);
 temp_g=zeros(i_max,1);
 temp_p=zeros(i_max,3);

 i=1;
 beta_pre=0;
 temp1=eval(g); temp2=eval(den);
 beta(i)=eval(g/den);
 X(i,:)=[u_q u_t1 u_t2];
 U(i,:)=[0 0 0];
 while [abs((beta(i)-beta_pre)/beta(i))>0.0001 i<=i_max]
 i=i+1;
 x1 = X(i-1,1); x2 = X(i-1,2); x3 = X(i-1,3);
 q=x1; t1=x2; t2=x3;
 u1 = U(i-1,1); u2 = U(i-1,2); u3 = U(i-1,3);
 % compute the gradient and limit state value at each point.
 temp_p(i-1,1)=eval(p1);
 temp_p(i-1,2)=eval(p2);
 temp_p(i-1,3)=eval(p3);
 temp_g(i-1)=eval(g);
 % compute cosine values based on previous Xi
 cosine(i-1,1)=eval(-(p1*var_q)/den0);
 cosine(i-1,2)=eval(-(p2*var_t1)/den0);
 cosine(i-1,3)=eval(-(p3*var_t2)/den0);
 % compute new Ui
 U(i,1) = beta(i-1)*cosine(i-1,1);
 U(i,2) = beta(i-1)*cosine(i-1,2);
 U(i,3) = beta(i-1)*cosine(i-1,3);
 % compute new Xi
 X(i,1) = u_q+var_q*U(i,1);
 X(i,2) = u_t1+var_t1*U(i,2);
 X(i,3) = u_t2+var_t2*U(i,3);
 % compute new beta
 x1=X(i,1);x2=X(i,2);x3=X(i,3);
 q=x1; t1=x2; t2=x3;
 beta(i)=eval((g-
(p1*var_q*U(i,1)+p2*var_t1*U(i,2)+p3*var_t2*U(i,3)))/den);
 beta_pre=beta(i-1);
 end
 % beta evaluated:
 beta0(i1,i2,i3)=beta(i);
 I(i1,i2,i3)=i;
 end
 end
end

186

%% Code 51A: Floor Grid: Computing multiquadric interpolation coefficients
% plot the interpolation effect on 3D space
clear;
load beta_for_interpolation;
v1=zeros(4^3,1); %beta1 values
v2=zeros(4^3,1); %beta2 values
points=zeros(3,4^3);
A=zeros(64,64);
x=(0.004:0.002:0.01);
y=(0.3:0.15:0.75);
z=(0.012:0.003:0.021);
alpha=0.0001;

counter=1;
for i=1:4
 for j=1:4
 for k=1:4
 points(1,counter)=x(i);
 points(2,counter)=y(j);
 points(3,counter)=z(k);
 v1(counter)=beta1(i,j,k);
 v2(counter)=beta2(i,j,k);
 counter=counter+1;
 end
 end
end
distance=dist(points); %d is a 64x64 matrix
for i=1:63
 for j=i+1:64
 A(i,j)=(distance(i,j)^2+alpha^2)^0.5;
 A(j,i)=A(i,j);
 end
end
b1=A^(-1)*v1;% multiquadric interpolation coefficients
b2=A^(-1)*v2;% multiquadric interpolation coefficients

x=(0.004:0.0006:0.01);y=(0.3:0.045:0.75);z=0.012;
[x,y,z]=meshgrid(x,y,z);
f1=0;f2=0;
for i=1:64
 d1=((x-points(1,i)).^2+(y-points(2,i)).^2+(z-points(3,i)).^2).^0.5;
 f1=f1+b1(i)*(d1.^2+alpha.^2).^0.5;
 f2=f2+b2(i)*(d1^2+alpha^2)^0.5;
end
surf(x,y,f1);

%% Code 51B: Floor Grid: Computing multiquadric interpolation coefficients
% plot the interpolation effect on 4D space
clear;
load beta_for_interpolation;
v1=zeros(4^3,1); %beta1 values

187

v2=zeros(4^3,1); %beta2 values
points=zeros(3,4^3);
A=zeros(64,64);
x=(0.004:0.002:0.01);
y=(0.3:0.15:0.75);
z=(0.012:0.003:0.021);
alpha=0.0001;% determined by several test

counter=1;
for i=1:4
 for j=1:4
 for k=1:4
 points(1,counter)=x(i);
 points(2,counter)=y(j);
 points(3,counter)=z(k);
 v1(counter)=beta1(i,j,k);
 v2(counter)=beta2(i,j,k);
 counter=counter+1;
 end
 end
end
distance=dist(points); %d is a 64x64 matrix
for i=1:63
 for j=i+1:64
 A(i,j)=(distance(i,j)^2+alpha^2)^0.5;
 A(j,i)=A(i,j);
 end
end
b1=A^(-1)*v1;% multiquadric interpolation coefficients
b2=A^(-1)*v2;% multiquadric interpolation coefficients

x=(0.004:0.0006:0.01);y=(0.3:0.045:0.75);z=(0.012:0.0009:0.021);
[x,y,z]=meshgrid(x,y,z);
f1=0;f2=0;
for i=1:64
 d1=((x-points(1,i)).^2+(y-points(2,i)).^2+(z-points(3,i)).^2).^0.5;
 f1=f1+b1(i).*(d1.^2+alpha.^2).^0.5;
% f2=f2+b2(i).*(d1.^2+alpha.^2).^0.5;
end
% surf(x,y,f1);
% slice(x,y,z,f1,[0.005 0.008],[0.45 0.6],[0.015 0.018]);
slice(x,y,z,f1,[],[],[0.012 0.015 0.018 0.021]);
xlabel('b axis');
ylabel('d axis');
zlabel('t axis');

%% Code 52: Floorgrid compute the analytical form of gradients at any given
% point based on multiquadric interpolation.
clear;
syms g1 g2 g3 x1 x2 x3;
index=1;% select which reliability index:stress=1;deflection=2
load b1b2;
if index==1

188

 b=b1;
elseif index==2
 b=b2;
end
points=zeros(3,4^3);
x=(0.004:0.002:0.01);
y=(0.3:0.15:0.75);
z=(0.012:0.003:0.021);
alpha=0.0001; % determined by several test

counter=1;
for i=1:4
 for j=1:4
 for k=1:4
 points(1,counter)=x(i);
 points(2,counter)=y(j);
 points(3,counter)=z(k);
 counter=counter+1;
 end
 end
end
f=0;
for i=1:64
 d1=((x1-points(1,i)).^2+(x2-points(2,i)).^2+(x3-points(3,i)).^2).^0.5;
 f=f+b(i).*(d1.^2+alpha.^2).^0.5;
end
g1=diff(f,x1);
g2=diff(f,x2);
g3=diff(f,x3);
% g1,g2,g3 are analytical form of gradient based on multiquadric
% interpolation, they are stored in data file b1b2.mat together with
% interpolation coefficients b1 and b2.

% in b1b2.mat file:
% g11,g12,g13 are for stress limit-state function;
% g21,g22,g23 are for deflection limit-state function;
% b1,b2 are interpolation coefficients for stress and deflection
% limit-state functions

% Compute next point by Gradient Projection Method, with 3 variables only
% This function computes one step only
% This function is for optimization problem with reliability index
% constraints that do not have a analytical form.
function y = gradproja(f,h,index,SP,step)
% y: next point, column vector;
% f: objective function of x1,x2,x3;
% h: equality constraints, not including beta constraints, column vector;
% index: specify which beta constraint is active: 0:none; 1:beta1; 2:beta2;
3:both
% SP: starting point, column vector;
% step: step size;
global b1 b2 g11 g12 g13 g21 g22 g23;
syms ph % partial derivatives of h

189

syms x1 x2 x3 % design variables
[n,m]=size(h); % constraint number n
c=4.2649;
% ph=[diff(h,x1) diff(h,x2) diff(h,x3)];

if index==0 %no beta constraint
 ph=[];
elseif index==1 % beta1 stress constraint
 ph=beta_gradient(1,SP);
elseif index==2 % beta2 deflection constraint
 ph=beta_gradient(2,SP);
elseif index==3 % both beta constraints
 ph=[beta_gradient(1,SP);beta_gradient(2,SP)];
end

pf=[diff(f,x1) diff(f,x2) diff(f,x3)];
ph0=[diff(h,x1) diff(h,x2) diff(h,x3)];%all non-beta constraints
x1=SP(1);x2=SP(2);x3=SP(3);
% ph1=eval(ph);
pf1=eval(pf);
temp1=eval(ph0);
ph1=[ph;temp1];
% projection matrix P:
P=eye(3)-ph1'*(ph1*ph1')^(-1)*ph1;
% EP: end point
EP=SP-step*P*pf1';
for i=1:2
 SP=EP;
 x1=SP(1);x2=SP(2);x3=SP(3);
 % ph1=eval(ph);
 if index==0 %no beta constraint
 ph=[]; %numerical value of beta constraint gradients
 h1=[]; % beta-4.2649 values
 elseif index==1 % beta1 stress constraint
 ph=beta_gradient(1,SP);
 h1=beta_interp(1,SP)-c;
 elseif index==2 % beta2 deflection constraint
 ph=beta_gradient(2,SP);
 h1=beta_interp(2,SP)-c;
 elseif index==3 % both beta constraints
 ph=[beta_gradient(1,SP);beta_gradient(2,SP)];
 h1=[beta_interp(1,SP)-c; beta_interp(2,SP)-c];
 end
 temp1=eval(ph0);%evaluation of all non-beta constraints
 ph1=[ph;temp1]; %numerical value of gradient of h at the new point
 % h1=eval(h);
 temp=[];
 if n~=0
 temp=eval(h);
 end
 h1=[h1;temp]; %numerical value of h at the new point
 EP=SP-ph1'*(ph1*ph1')^(-1)*h1;
end
y=EP;

190

% This function is for floorgrid problem, evaluate the reliability index
% values at any given point by multiquadric interpolation.
function y=beta_interp(index,P)
%index: indicate which limit-state function: stress=1,deflection=2;
%P: interpolation point, row vector (x,y,z)
global b1 b2 g11 g12 g13 g21 g22 g23;
% load b1b2;
if index==1
 b=b1;
elseif index==2
 b=b2;
end
points=zeros(3,4^3);
x=(0.004:0.002:0.01);
y=(0.3:0.15:0.75);
z=(0.012:0.003:0.021);
alpha=0.0001; % determined by several test

counter=1;
for i=1:4
 for j=1:4
 for k=1:4
 points(1,counter)=x(i);
 points(2,counter)=y(j);
 points(3,counter)=z(k);
 counter=counter+1;
 end
 end
end

f=0;
for i=1:64
 d1=((P(1)-points(1,i)).^2+(P(2)-points(2,i)).^2+(P(3)-
points(3,i)).^2).^0.5;
 f=f+b(i).*(d1.^2+alpha.^2).^0.5;
% f2=f2+b2(i).*(d1.^2+alpha.^2).^0.5;
end
y=f;

% This function is for floorgrid problem, given a point P it will return
% the gradient (row vector) at the point based on interpolation model
function y=beta_gradient(index,P)
%index: indicate which limit-state function: stress=1,deflection=2;
%P: interpolation point, column vector (x,y,z)
global b1 b2 g11 g12 g13 g21 g22 g23;
syms g1 g2 g3 x1 x2 x3;
% load b1b2;
if index==1
 g1=g11;g2=g12;g3=g13;
elseif index==2

191

 g1=g21;g2=g22;g3=g23;
end

x1=P(1);x2=P(2);x3=P(3);
y=eval([g1 g2 g3]);

%% Code 53: Floorgrid:Optimization under all inequal constraints based on
% multiquadric interpolation surrogate constraints
clear;
syms f h a1 a2 a3 a4 a5 a6 a7 a8 a9 ;
syms x1 x2 x3;
global b1 b2 g11 g12 g13 g21 g22 g23;
load b1b2;
%model related constants
stress_allow=241e6;
delta_allow=5e-3;
D=0.75; %transverse beam spacing
W_fl=6; %fuselage width
k=1e-10; %defection coefficient
E=69e9; %Young's modulus of Aluminum
h=0.0254; %track height
u_q=2200; var_q=400;%mean and variance of plate load
u_t1=0.003; var_t1=0.0003; t1=u_t1; %web of I beam
u_t2=0.003; var_t2=0.0003; t2=u_t2; %flange of I beam
c=4.2649; %norminv(1e-5)
rho=0.8;% correlation coefficient
density_al=2.7e3; %density of aluminum
density_hc=20; %density of honeycomb

%algorithm related constants
SP=[0.004 0.7 0.015].'; %starting point
% SP=[0.0074424 0.4544 0.01437].'; %starting point
% SP=[0.0076 0.4555 0.0142].'; %starting point
% SP=[0.02 0.4 0.03].'; %starting point
alpha=0.001; %step size
i_max=20;

%objective function and constraints definition
f=(t1*(0.0254-2*t2)+2*x1*t2)*D*W_fl/x2*density_al+W_fl*D*x3*density_hc;

h=[x2-0.3;
 0.75-x2;
% x1-0.003;
% x3-0.01
];
pf=[diff(f,x1) diff(f,x2) diff(f,x3)];
ph=[diff(h,x1) diff(h,x2) diff(h,x3)];
[m,n]=size(h);

x=zeros(3,i_max);% each step point x, column vectors
xt=zeros(3,i_max);% testing point on negtive gradient direction, column
vectors

192

y=zeros(i_max,1);% objective function value
flag=zeros(m+2,i_max);% recording which constraint becomes active (+1);,
column vectors
error=zeros(i_max,1);% Y errors at each step
h1=[a1 a2 a3 a4 a5 a6 a7 a8 a9].'; % maximum constraint number:9
beta=zeros(i_max,2);

i=1;
error(i)=1;error(i+1)=1;
x(:,1)=SP;
while [error(i)>1e-2 i<i_max]
 beta(i,1)=beta_interp(1,SP);beta(i,2)=beta_interp(2,SP);
 x1=SP(1);x2=SP(2);x3=SP(3);
 y(i)=eval(f);
 temp=(eval(pf))';
 EP=SP-alpha*temp; % Gradient Descent method
 xt(:,i+1)=EP; % testing point on -gradient direction
 x1=EP(1);x2=EP(2);x3=EP(3);
 flag0=[beta_interp(1,EP)-c beta_interp(2,EP)-c eval(h).']; % all
constraint values
 flag0=sign(flag0);
 flag0=flag0-1;
 flag0=sign(abs(flag0));% +1 represent constraint violation, column vector
 flag(:,i)=flag0;
 temp=sum(flag0); % test if any constraint violated
 if temp==0 % no constraint violation
 xt(:,i)=EP;
 SP=EP;
 x(:,i+1)=SP;
 elseif temp~=0 % constraint violated at least once
 counter=1;
 for j=3:m+2 % search all violated non-beta constraints
 if flag0(j)==1
 h1(counter)=h(j-2);
 counter=counter+1;
 end
 end
 h1=h1(1:(counter-1)); % # of active non-beta constraint: counter-1
 temp=[flag0(1)==1 flag0(2)==1];
 if temp==[0 0] index=0;
 elseif temp==[1 0] index=1;
 elseif temp==[0 1] index=2;
 elseif temp==[1 1] index=3;
 end
 EP=gradproja(f,h1,index,SP,alpha);
 h1=[a1 a2 a3 a4 a5 a6 a7 a8 a9].'; %reset h1
 x(:,i+1)=EP;
 SP=EP;
 end
 if i>1
 error(i+1)=abs((y(i)-y(i-1))/y(i));
 end
 i=i+1;
end

193

REFERENCES

• Abbas, A.E. 2009 “Multiattribute Utility Copulas” Operations Research, Vol.57, No.6. Nov—
Dec 2009, pp.1367-1383

• Bailey, R.A. (2008). “Design of Comparative Experiments”, Cambridge University Press

• Bendsoe, M. and N. Kikuchi, “Generating Optimal Topologies in Structural Design Using a
Homogenization Method” Computer Methods in Applied Mechanics and Engineering, 1988. 71:
p. 197-224.

• Bonabeau, E., Dorigo, M., Theraulaz, G., “Swarm Intelligence: From Natural to Artificial
Systems”, Oxford University Press, 1999

• Brujic,D., Ristic,M., Mattone,M., Maggiore,P., Poli,G.P.D., “CAD based shape optimization for
gas turbine component design”, Struct. Multidisc. Optim. (2010) 41:647-659

• Choi, S.K., “Reliability-based Structural Design”, Springer, 2006

• Choi,S.K. 2006 “Estimation of Structural reliability for Gaussian Random Fields” Structure and
Infrastructure Engineering, Vol.2 Nos.3-4

• Chowdhury, M., Alouani, A., Hossain, F., “Comparison of Ordinary Kriging and Artificial
Neural Network for Spatial Mapping of Arsenic Contamination of Groundwater”, Stoch Environ
Res Risk Assess (2010) 24: 1-7

• Dennis G. Zill, “Advanced Engineering Mathematics”, Jones & Bartlett Publishers; 4 edition
(December 21, 2009)

• Desktop Aeronautics, Inc., copy right 1997-2006, “Aircraft Design: Synthesis and Analysis”, CD
version.

• Doucet,A., N de Freitas and N Gordon, “Sequential Monte Carlo Methods in Practice”, Springer,
2001. ISBN 978-0387951461

• Embrechts,P., Lindskog,F., McNeil,A., “Modelling Dependence with Copulas and Applications
to Risk Management”, http://www.risklab.ch/ftp/papers/DependenceWithCopulas.pdf

• Evans,A.G., Hutchinson,J.W., Fleck,N.A., Ashby,M.F., Wadley,HNG, “The Topological Design
of Multifunctional Cellular Metals”, PROGRESS IN MATERIALS SCIENCE 46 (3-4): 309-327
2001

• Farshi,B., Jahed,H., Mehrabian,A., “Optimum Design of Inhomogeneious Non-uniform Rotating
Discs”, Computers and Structures 82 (2004) 773-779

• Frees, E.W., Valdez,E.A.(1998) “Understanding relationships using copulas” North Am. Act. J.,
2(1),1-25

194

• Genest, C. (1987) “Frank’s family of bivariate distributions” Biometrika, 74(3), 549-555

• Genest, C. and Favre,A.C. (2007) “Everything you always wanted to know about copula
modeling but were afraid to ask” J. Hydrologic Engrg

• Genest, C. and MacKay,J (1986) “The joy of Copulas: Bivariate distributions with uniform
marginals”

• Genest, C. and Rivest, L.P. (1993) “Statistical inference procedures for bivariate Archimedean
copulas” J.Am.Stat.Assoc., 88(3), 1034-1043

• Ghanem,R.G.; Spanos,P.D., ” Stochastic Finite Elements: A Spectral Approach”, Dover
Publications, 2003

• Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R. “New light on first-and second-order
reliability methods”. Structural Safety 1987;4:267–84.

• Hohenbichler R, Rackwitz R. “Improvement of second-order reliability estimates by importance
sampling”, J Eng. Mech ASCE 1988;114(12):2195–9.

• Isaaks, E. H., and Srivastava, R. M. (1989), An Introduction to Applied Geostatistics, Oxford
University Press, New York

• Jonathan F. Bard, “Practical Bilevel Optimization Algorithms and Applications”, Kluwer
Academic Publishers, 2010

• Kim S.R., Park J.Y., Lee W.G., Yu J.S., Han S.Y., “Reliability-Based Topology Optimization
Based on Evolutionary Structural Optimization”, World Academy of Science, Engineering and
Technology 32, 2007

• Kim,H., Garcia,M.J., Querin,O.M., Steven,G.P., Xie,Y.M., “Introduction of Fixed Grid in
Evolutionary Structural Optimisation”, Engineering Computations 17 (4): 427-439 2000

• Kodiyalam,S., Kumar,V., Finnigan,P.M., “Constructive Solid Geometry Approach to 3-
dimensional Structural Shape Optimization”, AIAA JOURNAL 30 (5): 1408-1415 MAY 1992

• Kuczera,R.,Mourelatos,Z.P.,Nikolaidis,E., 2010 “System RBDO with Correlated Variables using
Probabilistic Re-Analysis and Local Matamodels” Draft unbublished

• Kumar,S., Pippy,R.J., Acar,E., Kim,N.H., Haftka,R.T., “Approximate Probabilistic Optimization
Using Exact-capacity-approximate-response-distribution (ECARD)”, Structural and
Multidisciplinary Optimization 38 (6): 613-626 JUL 2009

• Laslett, G.M., “Kriging and Splines: An Empirical Comparison of Their Predictive Performance
in Some Applications”, Journal of the American Statistical Association, Vol.89, No.426
(Jun.,1994), pp.391-400

• Lemaire, M., “Structural Reliability”, Wiley-ISTE, 2009

195

• Li,G., Wang,H., Aryasomayajula,S.R., Grandhi,R.V., “Two-level Optimization of Airframe
Structures Using Response Surface Approximation”, Structural and Multidisciplinary
Optimization 20 (2): 116-124 OCT 2000

• Liu,B., Haftka,R.T., Akgun,M.A., “Two-level Composite Wing Structural Optimization Using
Response Surfaces”, Structural and Multidisciplinary Optimization 20 (2): 87-96 OCT 2000

• Liu,J.S., Parks,G.T., Clarkson,P.J., “Optimization of Turbine Disk Profiles by Metamorphic
Development”, JOURNAL OF MECHANICAL DESIGN 124 (2): 192-200 JUN 2002

• Matias, J.M., Vaamonde, A., Taboada, J., Gonzalez-Manteiga, W., “Comparison of Kriging and
Neural Networks With Application to the Exploitation of a Slate Mine”, Mathematical Geology,
Vol.36, No.4, May 2004

• Nelsen,R.B. “An Introduction to copulas”. New York: Springer, 1999

• Oksuz,O., Akmandor,I.S., “Multi-Objective Aerodynamic Optimization of Axial Turbine Blades
Using a Novel Multilevel Genetic Algorithm”, JOURNAL OF TURBOMACHINERY-
TRANSACTIONS OF THE ASME 132 (4): - OCT 2010

• Panos Y. Papalambros; Douglass J. Wilde, “Principles of Optimal Design”, Cambridge
University Press, 2000

• Papaefthymiou, G. 2009 “Using Copulas for Modeling Stochastic Dependence in Power System
Uncertainty Analysis” IEEE Transaction on Power Systems, Vol 24-1

• Papaefthymiou,G., Kurowicka,D., “Using Copulas for Modeling Stochastic Dependence in Power
System Uncertainty Analysis”, IEEE Transactions on Power Systems Feb2009, Vol. 24 Issue 1,
p40-49 10p

• Papoulis, A.; Pillai,S.U., “Probability, Random Variables and Stochastic Processes”, McGraw
Hill Higher Education, 4th Ed., 2002

• Paredis,C. 2009 “ME6105 course material”, Georgia Institute of Technology

• Parkinson DB. First-order reliability analysis employing translation systems. Eng Struct
1978;1:31–40.

• Rackwitz, R., (2001), “Reliability Analysis – A Review And Some Perspectives”, Structural
Safety 23 (2001) 365-395

• Rao,A.R., Scanlan,J.P., Keane,A.J., “Applying Multiobjective Cost and Weight Optimization to
the Initial Design of Turbine Disks”, Journal of Mechanical Design, December 2007, Vol.129 /
1303-1310

• Rao,J.R.J.; Badhrinath,K.; Pakala,R.; Mistree,F., “A Study of Optimal Design Under Conflict
Using Models of Multi-Player Games”, Engineering Optimization 28 (1-2): 63-94 1997

• Roy,A., Hinduja,A., Teti,R., “Recent Advances in Engineering Design Optimisation: Challenges
and Future Trends”, CIRP ANNALS-MANUFACTURING TECHNOLOGY 57 (2): 697-715
2008

196

• Saxena,A., Ananthasuresh,G.K., “On an Optimal Property of Compliant Topologies”, Structural
and Multidisciplinary Optimization 19 (1): 36-49 MAR 2000

• Sigmund,O., “Topology Optimization: A Tool for the Tailoring of Structures and Materials”, Phil.
Trans. R. Soc. Lond. A (2000) 358, 211-227

• Simaan, M. and Cruz, J.B., Jr., “On the Stackelberg Strategy in Nonzero-Sum Games”, Journal of
Optimization Theory and Applications, Vol. 11, No. 5, May 1973, pp. 533-555

• Stephan Dempe, “Foundations of Bilevel Programming”, Kluwer Academic Publishers, 2010

• Stephen P. Timoshenko; J.N.Goodier, ”Theory of Elasticity”, McGraw Hill Higher Education;
3rd edition (October 1, 1970)

• Tvedt L. “Distribution of quadratic forms in normal space-application to structural reliability”. J
Eng Mech 1990; 116(6):1183–97.

• Tvedt, L., “Two Second-order Approximation to the Failure Probability”, Section on Structural
Reliability, A/S Vertas Research, Hovik, Norway, 1984

• Watenberg, D., Uchrin, C., Coogan, P., “Estimating Exposure Using Kriging: A Simulation
Study”, Environmental Health Perspectives, Vol.94, pp.75-82, 1991

• Yang,R.J., Chuang,C.H., “Optimal Topology Design Using Linear Programming”, Computers &
Structures Vol.52, No.2, pp.265-275, 1994

• Zimmerman, D., Pavlik, C., Ruggles, A., Armstrong, M.P., “An Experimental Comparison of
Ordinary and Universal Kriging and Inverse Distance Weighting”, Mathematical Geology,
Vol.31, No.4, 1999

