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SUMMARY

The purpose of the Next Generation Air Transportation System (NextGen) is to en-

hance the efficiency and safety of air transportation and reduce the associated environmental

impacts such as noise and aircraft engine gaseous emissions. One promising procedure for

reducing these environmental impacts is the Continuous Descent Arrival (CDA), in which

aircraft, at or near idle thrust, descend from their cruise altitude to their Final Approach

Fix (FAF) without leveling off. CDA flight trials and implementations at several airports

indicate that CDAs also provide fuel and flight time savings.

The first operational CDA in the U.S. was introduced in 2007 at the Los Angeles In-

ternational Airport (LAX) where CDAs are flown at all times by aircraft arriving from

the East. Since then, CDA/OPD procedures have been added to 28 airports. However,

at many of these airports, usage of CDAs has to date been limited to periods when air

traffic controllers are not required to achieve near minimum separation. This is in large

part due to the reduction in runway throughput that results when controllers add buffers to

compensate for their inability to accurately predict the trajectory variations of the different

aircraft types in stochastic wind conditions.

The task of predicting the future trajectory of aircraft would be significantly easier if all

aircraft were able to perform their CDA over the same duration. Such a procedure, a specific

instantiation of the proposed concept of Trajectory Based Operations (TBO), requires that

each aircraft be given Required Time of Arrival (RTA) and duration constraints, and that

the Flight Management System (FMS) onboard the aircraft be able to generate a trajectory

that satisfies the given constraints.

In this thesis, a novel design and analysis method for CDA is proposed. The methodology

is developed within the context of an optimal control framework as follows.

The CDA trajectory optimization problem is first formulated as a multi-phase optimal

xiv



control problem with several constraints (including flight envelope and flap setting con-

straints, and constraints due to FAA regulations), and optimality is evaluated with respect

to two performance indices: flight time and fuel consumption.

An en route CDA trajectory generation algorithm is then developed for minimizing the

environmental impact given an RTA at a meter fix. The trajectory generation method in the

FMS is modeled as a hybrid system that has both a continuous state and a discrete state.

Therefore, the optimal trajectory generation problem is the optimal control problem of the

hybrid system, and this problem can be solved using a sequential method that performs

the mode sequence estimation and parameter optimization, sequentially. The semi-analytic

solution with the simplified aircraft dynamics is obtained from the necessary conditions

of the path constrained optimal control problem. The optimal switching structure of the

semi-analytic solution is used for the mode sequence estimation, thereby reducing the com-

putational time significantly.

Finally, a performance-bound analysis framework is developed using optimal control

techniques to help controllers or traffic management advisors make a feasible schedule for

CDA operations at a meter fix. This tool is then used to analyze a feasible time range for a

wide variety of aircraft and propose a single flight time strategy for the application of CDA

in high traffic conditions. Using simulation, we show that this strategy guarantees conflict

free flight during the descent phase.

xv



CHAPTER I

INTRODUCTION

1.1 Continuous Descent Arrival Procedures

The purpose of Next Generation Air Transportation System (NextGen) is to enhance the

efficiency and safety of the future air transportation system while reducing the environmen-

tal impact such as noise and aircraft engine gaseous emissions. One promising approach to

reduce the environmental impact is the Continuous Descent Arrival (CDA); where arriving

aircraft descend from cruise altitude to a Final Approach Fix (FAF) without level flight seg-

ments and with the engines operating at or near flight idle thrust [11]. Level flight segments

occur frequently during the arrival and approach phases as aircraft are vectored by Air Traf-

fic Control(ATC). These segments serve two purposes; the use of speed control to manage

the required separation, and to create a “bridge” for the routing of departing aircraft. Since

an increase in engine power or thrust is needed to maintain level flight, a CDA can reduce

the environmental impacts of both noise and emissions which has been demonstrated by

analysis and flight demonstrations. CDA procedures are typically constructed by modifying

the vertical descent path along an existing Standard Terminal Arrival Route (STAR) lateral

path. These lateral paths are normally chosen for the CDA to prevent the possibility of

generating a requirement for an Environmental Impact Statement (EIS). The vertical path

is constructed with altitude and speed constraints, where necessary, along the lateral path

waypoints to allow the aircraft to continuously descend with the engines at or near flight

idle power or thrust. The initial flight trials evaluating CDA procedures were conducted

during late night landing operations by UPS at Louisville International Airport (KSDF)

in 2004[13]. This flight trial, leveraging the capability of the Flight Management System

(FMS), proved the stated benefits of a CDA procedure. Following the flight demonstration

at KSDF, additional flight trials by several researchers also confirmed the environmental

benefits of CDA at several airports: Los Angeles (KLAX) in 2007[12], Atlanta (KATL) and
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Miami (KMIA) in 2008[65].

Despite the proven benefits of CDA procedures, implementation of the procedure, with

the exception of KLAX, has been limited to relatively low density arrival traffic. The prob-

lem is, with existing airborne and ground equipage, managing the required aircraft spacing

while they are continuously descending and decelerating as they approach the runway. In

addition, there are variations in the CDA vertical profile that are the result of differences in

aircraft specific aerodynamic characteristics, wind, weight, and pilot response times to flap

extensions as the aircraft decelerates. These trajectory variations are problematic for ATC

with regard to maintaining the separation minimums, and additional spacing is applied

which degrades the runway throughput. Both the required airborne and ground equipage

and their capability are the subject of a number of research efforts.

1.2 Trajectory Based Operations

Trajectory Based Operations (TBO) is also a NextGen initiative and accurate trajectory

prediction is one of the key technologies required to address the ATC problem of managing

minimum separation for CDAs. Using TBO for CDA consists of identifying one of the

waypoints along the CDA ground path as a metering fix and determining the spacing at

the metering fix that would result in the arrival stream of aircraft successfully flying a CDA

while maintaining the required minimum spacing or separation.

1.2.1 Separation Management

Several decision support tools for ATC have been developed to support TBO. Ren and

Clarke[55, 56] developed the Tool for Analysis of Separation and Throughput (TASAT),

that is used to determine the required minimum separation between leading and trailing

aircraft, when the leading aircraft is at a metering fix, to successfully conduct CDA. TASAT

is a high fidelity descent analysis model that uses proprietary aircraft performance data and

embedded FMS logic to construct a descent path. The TASAT airframe/engine specific

analysis begins with a chosen cruise altitude and lateral path to a terminating waypoint.

Numerous descent paths are generated by using a Monte Carlo simulation to randomly vary

the aircraft weight and wind derived from the airport historical data for each descent. In
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addition to weight and wind, a pilot response time is injected to vary the time associated

with flap extension. With the descent analysis complete, TASAT then determines the

required spacing, with a chosen confidence interval, at a selected metering point along

the lateral path to result in the regulatory minimum spacing at the runway threshold.

TASAT has been validated by the flight test demonstrations described above and during

full flight simulator testing in support of CDA development in the United States and Europe

[59, 60, 10].

NASA Ames research center developed the Traffic Management Advisor (TMA) that

produces a Required Time of Arrival (RTA) at a metering fix to achieve a target separation[66].

NASA Ames also developed the Efficient Descent Advisor (EDA) that combines a ground

trajectory generation tool with a specific RTA[15]. This combination was used to demon-

strate the proposed tailored arrival concept for flight trials at San Francisco airport (KSFO)

in 2007[14].

1.2.2 Trajectory Generation

Another key component of TBO is the capability of the FMS to generate a 4D trajectory

for the anticipated arrival and approach operation. In this scenario, ATC will transmit to

inbound aircraft an RTA to a metering fix, determined by analysis from TMA, TASAT,

or a similar tool, that will result in the arrival stream maintaining the required minimum

separation for the intended flight path to the runway threshold. Therefore, optimal trajec-

tory generation subject to a given RTA in the FMS is essential for maximizing the benefits

associated with the successful implementation of CDAs.

Many researchers have applied optimal control techniques to the trajectory generation

problem of the arrival and approach phase because trajectories generated via the optimal

control problem provide both feasible solutions that satisfy various constraints, and optimal

trajectories with respect to various performance indices such as: time and fuel cost[18, 64,

8, 9, 62, 49, 48], energy consumption cost[76], emission cost[73], maximum glide[22] and

noise cost[69].
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In the 1980s, to reduce the computational time, most researchers replaced aircraft dy-

namics equations with simplified energy state equations with energy as the independent

variable instead of time[18, 64, 8, 9, 62]. Erzberger and Lee[18] proposed a specified range

optimal trajectory by using Direct Operational Cost (DOC) combining time and fuel cost as

a performance index. Sorrenson and Waters[64] addressed a fuel optimal trajectory problem

with a fixed arrival time and analyzed a time delay performance by using a negative time

cost. Burrows[8] converted a fixed arrival time fuel optimal control problem to a free final

time DOC problem with an unknown time cost. In this way, they solved the DOC optimal

control problem with a one time cost parameter, which should be determined to satisfy

the arrival time constraint. Chakravarty[9] used a singular perturbation method as well as

an energy state approximation to investigate the sensitivity of fuel optimal trajectories to

wind. Shultz[62] addressed a three dimensional minimum time problem with a fixed initial

and final point. These approaches which used an energy state approximation have advan-

tages in terms of calculation time and computational load. However, since the model is

oversimplified and some constraints required in an actual procedure are not considered, the

resulting trajectories do not have the accuracy for application in real air traffic situations.

Since the early 2000s, several studies have been conducted to produce an optimized

trajectory for minimizing the environmental impact. Visser and Wijnen [69] researched

an optimized noise abatement trajectory. They formulated the problem as a multi-phase

optimal control problem and solved it by using a chosen direct numerical method. However

a fixed RTA at a meter fix was not taken into account. Wu and Zhao [73] assumed a

multi-segmented descent trajectory and optimized the segments using fuel and emission

costs. Few researchers have used the CDA trajectory structure assuming flight idle thrust

[22, 49, 48]. Franco and et al. [22] solved a maximum descent range problem by a singular

arc analysis. Zhao and Tsiotras [76] proposed an optimal speed profile generation method

for minimizing energy for a given RTA and path using a singular arc analysis. However,

they did not consider factors such as wind and flap extensions.

Another proposed development for producing an RTA is one in which a descent trajec-

tory is constructed of varying flight segments which can be generated with the FMS Vertical
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Navigation (VNAV) capability[75, 63]. In this development, multiple segments were created

by switching between the various available FMS mode capabilities (flight path angle, verti-

cal speed, vertical path, etc.). While the resulting flight path segments and subsequent RTA

could be generated by this iterative technique, it should be noted that these trajectories

were feasible, not optimal.

1.3 Thesis Objectives

To achieve the environmental goals of NextGen by enabling CDA arrivals, there is a need

to expand the use of the procedure into increasing traffic conditions. For this purpose,

it is necessary to resolve the existing barriers of CDA implementation, and in particular,

the inherent variation in the CDA trajectories which contribute to the separation issue.

Furthermore, to enhance traffic efficiency with TBO, the FMS must have the capability of

commanding an optimal trajectory with a given RTA in order to achieve the CDA benefits.

The objective of this thesis is to achieve the following:

• Maximize the benefits of a CDA by formulating the trajectory optimization problem

with respect to the various performance indices.

• With existing FMS capability, develop a fast trajectory optimization algorithm with

consideration of an RTA constraint.

• Develop a tool to analyze the performance bounds of a CDA trajectory considering

varying aircraft types and wind conditions for TBO.

• Develop a time based CDA operation concept that can be implemented in dense traffic

conditions.

By achieving the goals above, 1) an optimal 4D trajectory can be generated in the FMS,

and hence the fundamental requirement for a time based CDA operation can be achieved.

2) Without degrading the runway throughput, a feasible time scheduling at a meter fix can

be established by the analysis of the performance bounds associated with a CDA 3) Ensure

a conflict free descent flight path can be achieved.
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1.4 Thesis Outline

This thesis consists of two major parts. Part 1 consists of Chapters 2, 3, and 4 describing

the CDA optimum trajectory problem. Part 2 is the development of a CDA performance

bound analysis tool for a time based CDA.

Chapter 2 formulates the CDA trajectory optimization problem as a multi-phase opti-

mal control problem, considering a number of constraints such as FAA regulations, flight

envelope protection, and flap extension or schedule speeds. In Chapter 3, since the FMS

trajectory generation has a finite automaton, which is a directed graph representing the

mode transitions, and the aircraft has continuous dynamics; trajectory generation with the

FMS can be modeled as a hybrid system. This chapter also includes an algorithm to solve

this hybrid optimal control problem. Chapter 4 analyzes the optimal CDA solution using

the necessary condition of the optimality. Based on this analysis, we derive an algorithm

for the optimal switching structure and by using this algorithm we discuss a means of re-

ducing the computational time for the hybrid optimal control problem algorithm presented

in Chapter 3.

The second major part, Chapter 5, proposes a framework for the trajectory performance

bound analysis using the optimal control technique presented. We analyze the performance

bound of a defined aircraft fleet mix using the proposed framework. Based on the analyses,

we propose a concept for a time based CDA operation which guarantees a conflict free

descent during the procedure. In this manner, we can transfer the issue of runway separation

to the cruise portion of the flight, which is much easier to resolve for ATC.

6



CHAPTER II

UNCONSTRAINED CDA TRAJECTORY OPTIMIZATION

2.1 Introduction

In this chapter, we address the vertical trajectory optimization problem for Continuous

Descent Arrival (CDA) procedures. Since the successful CDA provides flight time and

fuel savings[13], we solve the minimum time and minimum fuel CDA to maximize the

benefits of the CDA. To this end, we first investigate the CDA trajectory structure of

current CDA procedures. Based on the structure of the CDA trajectory, we then formulate

the unconstrained CDA trajectory optimization problems with respect to the performance

indices of flight time and fuel consumption. An ‘unconstrained’ CDA is a defined flight path

than has no altitude or speed constraints other than those for the terminating waypoint of

the procedure. Therefore, the ‘unconstrained’ optimal CDA trajectory provides the lower

bound performances in terms of flight time and fuel.

The final formulation for the CDA trajectory optimization problem is a multi-phase opti-

mal control problem with a fixed range and several constraints for both operating conditions

and the speed bound. The trajectory is optimized from cruise altitude to the intercept of

the Instrumental Landing System (ILS) glide slope. By dividing the optimal trajectory into

two flight segments, cruise and descent, we can simultaneously obtain both the position

of the Top of Descent (TOD) and the subsequent optimal descent path. Furthermore, we

develop suboptimal trajectories for a VNAV CDA based on the optimal trajectory results.

These VNAV CDA profiles can be implemented in the onboard FMS computer without

additional equipment.

The remainder of this chapter is organized as follows. In section 2.2, we derive the

equations of motion of the aircraft and formulate a multiple-phase Bolza optimal control

problem for CDA. In section 2.3, we provide numerical optimization results and sensitivity

analyses of the optimal trajectories for a B737-500 and B767-400. In section 2.4, we propose
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two suboptimal VNAV CDA trajectories, which are constructed using the existing VNAV

descent algorithms in the FMS: flight idle thrust constant CAS/MACH descent, constant

rate of descent, and constant flight path angle. The conclusions of this study are summarized

in section 2.5.

2.2 Optimal Control Problem Formulation

Initially we derive a point mass flight dynamics model. Then, we introduce the CDA

trajectory structure based on the flight trials of a CDA. Based on the CDA structure,

we formulate a CDA trajectory optimization problem with various path constraints for

the flight envelope protection, passenger comfort, and regulations of the Federal Aviation

Administration (FAA).

2.2.1 Flight Dynamic Model

The dynamic model of the aircraft greatly influences the optimization results, and an ac-

curate model is necessary to obtain realistic results. While a high order dynamics model

can capture accurate aircraft behaviors, a simplified dynamics model, on the other hand,

can reduce computational time by reducing the order of equations. After considering this

trade-off, we decided to use a 3D point mass flight dynamics model, in which moment

equations are ignored by assuming that the attitude of the aircraft is controlled by an

autopilot. Therefore, only force equations are used to describe the aircraft’s vertical and

lateral movement or motion.

The aircraft’s equations of motion are derived by using the following right-hand coordi-

nate frames:

• North-East-Down (NED) frame: the origin of this frame is the runway threshold with

the North-East plane tangent to the Earth’s surface at the origin of the frame. The

X axis points to the North, the Y axis points to the East, and the Z axis points

downward.

• Relative wind frame: the origin of this frame is the aircraft center of gravity. The Xw

axis points in the direction of the true airspeed.
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The relative wind frame is obtained by three consecutive 3-2-1 rotations from the NED

frame. The 3-2-1 rotation angles from the NED frame to the relative wind frame are

aerodynamic heading angle χ, aerodynamic flight path angle γ, and aerodynamic roll angle

µ, respectively. The resulting rotation matrix from the NED frame to the relative wind

frame is

RW =


cos γ cosχ cos γ sinχ − sin γ

sinµ sin γ cosχ− cosµ sinχ sinµ sin γ sinχ+ cosµ cosχ sinµ cos γ

cosµ sin γ cosχ+ sinµ sinχ cosµ sin γ sinχ− sinµ cosχ cosµ cos γ

 (1)

To simplify the dynamics model, we use the following assumptions: 1) The wind has no

vertical component in the NED frame. 2) The sideslip angle β is zero. 3) The thrust vector

is in the same direction as the true airspeed vector. 4) The mass of the aircraft remains

constant during the arrival procedure. Assumption 1) means that the wind speed vector in

the NED frame can be expressed as follows:

VW =


UW

VW

0

 (2)

The zero side slip angle in assumption 2) indicates a coordinated flight, during which the

Y component of the aerodynamic force in the relative wind frame is zero. Assumption

4), which results in us ignoring the effect mass changes, is quite reasonable since the fuel

consumption during the arrival procedure is below 0.5% of the total mass[13]. The velocity

vector is the vector sum of the true airspeed and wind speed vectors as

V = VT + VW = RT
WVW

T + VW. (3)

The angular velocity expressed in the relative wind frame is

ωW =


µ̇− χ̇ sin γ

γ̇ cosµ+ χ̇ cos γ sinµ

−γ̇ sinµ+ χ̇ cos γ cosµ

 . (4)
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The time derivative of true airspeed expressed in the relative wind frame is:

V̇W
T =

d

dt
(VTw1) = V̇Tw1 + VT ẇ1 = V̇Tw1 + ωW ×VW

T

= V̇T


1

0

0

+ VT


0

−γ̇ sinµ+ χ̇ cos γ cosµ

−γ̇ cosµ− χ̇ cos γ sinµ

 .
(5)

Hence,

V̇W = V̇W
T +V̇W

W =
1

m

∑
FW =

1

m
(FW

A + TW +mgW ), (6)

where FA and T are the aerodynamic force and thrust vector, respectively. Assumptions

1), 2) and 3), can be used to rewrite Eq. (6) in the relative wind frame as

V̇W
T =

1

m



T −D

0

−L

+ RW


0

0

mg


−RW


U̇W

V̇W

0

 . (7)

By combining Eq. (5) and Eq. (7), we obtain the equations of motion for the aircraft.

In addition, by using Eq. (3) and (4), we obtain the navigation equations. Finally, the

equations of motion of aircraft are expressed as follows:

V̇T =
1

m
(T −D)− g sin γ − cos γ(U̇w cosχ+ V̇w sinχ) (8)

γ̇ =
1

mVT
L cosµ− 1

VT
g cos γ +

sin γ

VT

(
U̇w cosχ+ V̇w sinχ

)
(9)

χ̇ =
1

mVT cos γ
L sinµ+

1

VT cos γ

(
U̇w sinχ− V̇w cosχ

)
(10)

ẋ = VT cos γ cosχ+ Uw (11)

ẏ = VT cos γ sinχ+ Vw (12)

ḣ = VT cos γ (13)

Combining Eq. (11) and (12), we obtain the following along track distance equation:

ẋs =
√
ẋ2 + ẏ2 (14)

In the above equations of motion, we define state x = [VT γ χ xs h]T , and control

input u = [L T µ]T .
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To reduce the order of the state and control variables for computational effectiveness,

we add the following assumption on the lift force:

L =
mg cos γ

cosµ
. (15)

From Eq. (15), the first two terms in Eq. (9) are canceled, and hence only the third

term remains. Since the flight path angle is small (sinγ ≈ γ), and the time derivative of

the wind is divided by VT , which is much larger than U̇w and V̇w, γ has very slow dynamics.

Hence, we can neglect the flight path angle and the heading angle dynamics.

Lateral path of CDA procedures are determined by Standard Terminal Arrival Route

(STAR). Therefore, the aerodynamic heading angle can be calculated using the lateral path,

wind profile, and true airspeed. Using this information, we calculate the aerodynamic roll

angle and ignore the aerodynamic heading angle dynamics. Finally, we obtain the order

reduced equations of motion as Eq. (8), (13), and (14) for a vertical profile optimization

with reduced state x = [VT xs h]T and a newly defined control input u = [T γ]T .

2.2.2 CDA Trajectory Structure

In this chapter, the flight range covers some portion of the cruise segment, which is from

an initial waypoint to the TOD, and a flight idle descent segment, which is from the TOD

to IAF as shown in Figure 1. In the first segment, which is the cruise segment, it is

assumed that the aircraft flies at its cruise altitude at a constant speed. In order to get the

optimal TOD point, the initial waypoint should be far enough from the runway threshold,

and hence some range of cruise segment should be included. The reason for this condition

follows lemma 2.1. The fixed range dmax is defined as the along track distance of the

initial waypoint on the defined lateral path to the runway threshold. The second segment

is from the TOD point to a final point, in other words, the termination point of the CDA

procedure. In this segment, the aircraft descends continuously at flight idle thrust, and flaps

are extended in accordance with the aircraft specific flap speed schedule as specified by the

airframe manufacturer. While the maximum and minimum airspeeds for each flap setting

are defined to prevent any structural damage and provide a stall margin respectively, the flap

extension speed can be optimized within the speed bound of two adjacent flap settings[31].
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However, in this chapter, to reflect what is done in actual operation, we use a specific flap

extension speed within the speed bound for each flap extension, as is typically the case in

commercial air carrier operations.

Since the CD varies with flap setting, the aircraft dynamics changes, and it is therefore

necessary to distinguish the phase based on flap setting. In addition, an interior point con-

straint is required due to the FAA speed limitation, which limits aircraft to an indicated air

speed of 250 knots at or below 10,000 ft. In order to handle such an interior point constraint,

it is necessary to distinguish the phase before and after the interior point constraint even

though flaps are not extended. For this reason, as shown in Figure 1, the second segment is

divided into several separate phases. The first phase is from the TOD point to an altitude

of 10,000 ft. Subsequent phases start from the 10,000 ft altitude and are separated at the

points where the aircraft reaches each required flap extension speed. Each segment of flap

extension and its associated speed depends on the aircraft type and weight. The final phase

terminates upon the aircraft reaching the final point of the CDA procedure.

An example of the required phases for three segments of flap extension is shown in Fig. 1.

According to the segment and phase split in Fig. 1, we can define the performance index

and various constraints to formulate a CDA trajectory optimization problem.

Figure 1: Phase condition of CDA trajectory optimization
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2.2.3 Multi-phase Optimal Control Problem Formulation

A multi-phase optimal control problem formulation may be used to obtain both the optimal

TOD point and the optimal descent vertical profile of a CDA. In general, the trajectory op-

timization can be formulated as a multi-phase continuous Bolza optimal control problem[4].

To obtain a realistic trajectory, we consider several practical constraints such as the speed

limitation of FAA regulation 91.117 and aircraft operating constraints including their flap

speed schedule. Including all practical constraints in the optimal control problem for a CDA

requires a multi-phase continuous Bolza optimal control problem formulation. The general

formulation of multi-phase optimal control problem is as follows:

J =

N∑
p=1

Φ(p)(x
(p)
0 , t

(p)
0 , x

(p)
f , t

(p)
f ) +

t
(p)
f∫

t
(p)
0

L(p)(x(p), u(p), t)dt

 (16)

subject to the dynamic constraint

ẋ(p) = f (p)(x(p), u(p), t) (17)

subject to the event constraint of each phase

φ
(p)
min ≤ φ(x

(p)
0 , t

(p)
0 , x

(p)
f , t

(p)
f ) ≤ φ(p)

max (18)

subject to the path constraint

g
(p)
min ≤ g

(p)(x(p), u(p), t) ≤ g(p)
max (19)

subject to phase link constraint

P (s)(x
(p−1)
f , t

(p−1)
f , x

(p)
0 , t

(p)
0 ) = 0 (20)

where N is the number of phases; Φ(p) and L(p) are the Mayer cost and Lagrangian of the

pth phase, respectively. The detailed description of each component in Eq. (16) ∼ (20) will

be explained in the subsequent subsections.

2.2.3.1 Performance Index

CDA procedures provide significant benefits relative to a conventional arrival/approach

with level flight segments. In addition to the noise reduction, CDA procedures enable

13



reductions in fuel consumption and flight time[13]. To maximize the benefits of a CDA,

fuel consumption and flight time for the fixed range CDA were selected as the performance

indices. Through the thesis, the wind is assumed to be a function of altitude, which means

that wind speed is constant at the same altitude with regardless of the lateral position.

From this assumption, the performance indices can be expressed as the following simple

formulations:

• Flight time performance index

J = Φ(1)(x(1)
s (t0), Vt

(1)(t0)) + t
(N)
f

= (x(1)
s (t0)− dmax) /V

(1)
G︸ ︷︷ ︸

1st segment flight time

+ t
(N)
f︸︷︷︸

2nd segment flight time

(21)

• Fuel consumption performance index

J = Φ(1)(x(1)
s (t0), VT

(1)(t0), h(1)(t0)) +
N∑
p=1

tf
(p)∫

t0

L(p) dt

= ḟcr,cruise × (x(1)
s (t0)− dmax) /V

(1)
G︸ ︷︷ ︸

1st segment fuel consumption

+
N∑
p=1

tf
(p)∫

t0

ḟ (p)
cr dt

︸ ︷︷ ︸
2nd segment fuel consumption

(22)

where dmax, ḟcr,cruise and ḟcr are the maximum range, fuel flow rate at cruise at a given

cruise speed and idle thrust fuel flow rate, respectively.

As shown in Eq. (21) and (22), both the flight time and fuel consumption performance

indices are divided into two parts; one for each segment. The first Mayer cost represents

a cost during the cruise segment, and the second cost term is for the flight idle descent

segment.

By defining the performance index in two parts as shown above, with the free TOD

condition, we can transform a fixed range optimal control problem into a free initial condi-

tion optimal control problem. Hence, we can obtain both the optimal TOD point and the

optimal vertical trajectory for CDA procedures regarding both minimum flight time and

minimum fuel consumption. Furthermore, dmax does not affect the optimal TOD point and

vertical profile from the following lemma.
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Lemma 2.1. Let’s assume that the optimal solution with respect to the performance index

in Eq. (21) or (22) exists with a given dmax, which is farther than TODopt from the runway

threshold. Consider the optimal solution pair (TODopt1 , uopt1) associated with dmax1. Then

the optimal solution pair (TODopt2 , uopt2) associated with a different dmax2 is the same as

(TODopt1 , uopt1) if dmax2 is farther than TODopt1 from the runway threshold.

Proof. The TOD x
(1)
s (t0) is limited by dmax as

dmax ≤ x(1)
s (t0). (23)

We can express performance indices in Eq. (21) and (22) as follows:

J = J1 + J2 (24)

where J1 is the Mayer cost and J2 is the Lagrange cost. J1 is a function of dmax and TOD

x
(1)
s (t0). Furthermore, J1 is expressed as a summation of the TOD term J1,TOD and dmax

term J1,dmax . Therefore, J in Eq. (21) and (22) can be rewritten as

J = J1,dmax + J2(TOD, u) (25)

where, J2(TOD, u) = J1,TOD + J2. If dmax is given, J1,dmax is a constant. Therefore, the

original problem is equivalent to the problem with J2(TOD, u), which is independent to

dmax. For this reason, (TODopt2 , uopt2) = (TODopt1 , uopt1) if both TODopt1,2 are interior

points of Eq. (23).

Remark 1. Lemma 2.1 provides the condition for setting dmax. The dmax value should be

farther from the runway threshold than the optimal TOD. Since xs at the runway threshold

is zero, and dmax is always negative, farther from the runway threshold means a smaller

value. We should select the smaller value if dmax = TODopt.

Remark 2. Lemma 2.1 implies that dmax value which satisfies Eq. (23) does not affect

the optimal solution. We can select any dmax from TODopt as the starting point of the

cruise phase. Therefore, the optimal solution can include all flight segments except climb.

However, the initial waypoint must not be too far from the runway threshold because the
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aircraft mass is assumed to be a constant during the CDA procedure which includes some

portion of cruise as shown in Figure 1. Therefore, this fact gives the minimum limit of dmax

value.

2.2.3.2 Constraints for CDA

In order to obtain a realistic trajectory resulting from the optimal control problem, we

should consider operating conditions such as the flap speed schedule, landing gear extension,

regulated speed restrictions, and bounded control input constraints. These conditions can

be expressed as specific constraints in Eq. (18), (19), and (20). The followings are constraints

implemented in the optimal control problem for a CDA.

� Event constraint of each phase

dmax ≤ x(1)
s (t0) (26)

V
(1)
CAS(tf ) ≤ 250KCAS (27)

V
(p)
CAS(tf ) = VF (p), for p = 2, 3, · · · , N (28)

� Path constraints of each phase

V
(p)
min,CAS ≤ V

(p)
CAS(t) ≤ V (p)

max,CAS (29)

ḣmin ≤
dh

dt
≤ ḣmax (30)

M
(p)
min ≤M

(p)(t) ≤M (p)
max (31)

� Phase link constraints

x(p−1)(tf ) = x(p)(t0) (32)

� Input constraint

γmin ≤ γ ≤ γmax (33)

Equation (27) is formulated to meet the FAA regulation that limits the maximum al-

lowable CAS speed to 250 knots below 10,000 ft. Equation (28) implies that the speed at

the end of the phase should be the same as the next flap extension speed, where VF (p) is

the flap extension speed to F (p) setting.
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Equation (29) constrains the aircraft CAS to be between the published maximum and

minimum flap extension speeds. Equation (30) restricts the descent rate to the maximum

established for passenger comfort and the minimum to prevent level flight and also to restrict

deceleration performance. Usually, the flight envelope is restricted by both CAS and the

Mach number. Therefore, avoiding a violation of the flight envelope can be accomplished

by using Eqs. (29) and (31) as path constraints.

To ensure state variables remain continuous, we add the phase link constraint in Eq. (32).

Since we assume idle power during the second segment of the optimal trajectory, the aero-

dynamic flight path angle is the only control input. Equation. (33) imposes a limit on the

aerodynamic flight path angle.

2.2.4 Optimal Control Problem

As a result, we can formulate the following unconstrained CDA trajectory optimization

problem to be solved in this chapter.

Problem 2.1. (Unconstrained CDA Trajectory Optimization Problem)

minimize
γ

Jt or Jf

subject to

V̇T =
1

m
(T −D)− g sin γ − cos γ(U̇w cosχ+ V̇w sinχ),

ẋs =
√

(VT cos γ)2 −W 2
c +Wh

ḣ = VT sin γ

ḣmin ≤
dh

dt
≤ ḣmax

γmin ≤ γ ≤ γmax

V
(p)
min,CAS ≤ V

(p)
CAS(t) ≤ V (p)

max,CAS p = 1, · · · , N

M
(p)
min ≤M

(p)(t) ≤M (p)
max p = 1, · · · , N

V
(1)
CAS(t

(1)
f ) ≤ 250KCAS

V
(p)
CAS(t

(p)
f ) = VF (p) p = 2, · · · , N f = 1, · · · , N − 1

x(p−1)(t
(p−1)
f ) = x(p)(t

(p)
0 ) p = 2, · · · , N

(UCP)
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where the flight range dmax, cruise speed, flap extension speed schedule, flight envelope

range, and FAF conditions including speed and altitude are given, the final time at the

FAF is free.

In this problem, both the cross wind and horizontal wind component are expressed as

Wc = W sinλ and Wh = W cosλ, where λ = Ψw − ψ. The relationship between true

airspeed, ground speed, and wind speed with corresponding angles are depicted in Fig.2.

Figure 2: Relations between airspeed, ground speed, and wind speed.

2.3 Trajectory Optimization Results for CDA

In this section, we present the trajectory optimization results of an unconstrained CDA

vertical trajectory optimization problem.

To simplify the unconstrained problem (UCP) and focus on only the vertical trajectory,

we assume that the lateral path is essentially a straight line and that turns, if any, have

very large radii. As a consequence, we ignore the aerodynamic roll angle effect, and hence

only consider vertical plane dynamics. Since flight idle thrust is assumed during the second

segment of the optimal trajectory, the aerodynamic flight path angle is the only control

input in this problem. In the numerical experiment, a constant wind profile is considered.

We also assume that wind has the same direction as true airspeed, which means that there

is no cross wind component.

As seen in section II, the equations of motion are nonlinear differential equations, both

drag and lift force vectors are nonlinear functions of air density, airspeed, and altitude.

18



Furthermore, many constraints with respect to IAS have a nonlinear relationship with true

airspeed[2], making it difficult to solve the problem analytically. For this reason, we use

a numerical optimization technique. A pseudospectral method is chosen for this problem

to determine an optimal trajectory. A pseudospectral method is one of direct collocation

methods in which the state and control input are expressed as piecewise polynomials, and the

collocation points are determined by quadrature rules[20, 23, 32]. Using this assumption, we

transform the optimal control problem into a nonlinear programming (NLP) problem that

already has many efficient solvers. We solve the problems with GPOPS[53],the MATLAB

software designed for solving multi-phase optimal control problems using the pseudospectral

method in [23]. We use SNOPT[25] as the NLP solver.

2.3.1 Descent Profile Simulation

We simulate two aircraft types, B737-500 (B735) and B767-400 (B764), with predetermined

flap speed schedules. In the simulation, the altitudes are specified relative to mean sea level

(MSL) and the airspeed constraints in section 2.2 are given as CAS instead of indicated

airspeed (IAS). We assume that CAS is equivalent to IAS by ignoring the installation error.

The aircraft performance data from BADA[2] is used in the analysis. However, other general

performance data can be used since the formulation is quite general. The predetermined

flap speed schedules are shown in Table 1. The aircraft mass chosen is 52,000 kg for the

B735 and 158,800 kg for the B764 based on BADA.

Table 1: Flap speed schedules of B737-500 and B767-400(CAS)

B737-500 B767-400

flap mode Flap0 Flap1 Flap2 Flap0 Flap1 Flap2
angle(deg) 0 1 5 0 5 15
extension(kt) - 210 190 - 230 190
min CAS(kt) 210 190 180 230 190 170

We choose the boundary condition for the numerical examples based on the CDA flight

test in Louisville International Airport (KSDF) in [13]. We select a cruise altitude of 35,000

feet and a cruise speed of Mach 0.7818 (265 KCAS). The maximum allowable descent speed

is 350 KCAS for both B735 and B764. As shown in Table 2, the trajectory optimization
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starts at the chosen cruise altitude and cruise speed and terminates at the IAF with an

altitude of 3,000 feet at a track distance of 8 NM from the runway threshold and a speed of

180 knots. After this point, the aircraft captures the Instrumental Landing System (ILS)

glide slope and flies the ILS approach. The initial along track distances dmax are set as 150

NM for both the B735 and the B764. International Standard Atmosphere (ISA) conditions

are assumed for this simulation, and the air density, pressure, and temperature equations

in [2] are used.

Table 2: Initial and final point conditions

Initial condition Final condition

Aircraft H (ft) CAS (kt) Dist. (NM) H (ft) CAS (kt) Dist. (NM)
B737-500 35,000 265 -150 3,000 180 -8
B767-400 35,000 265 -150 3,000 180 -8

2.3.2 VNAV CDA

We also compare the optimal trajectories to a reference CDA trajectory generated by the

FMS VNAV function. This vertical trajectory was used for a flight test conducted at KSDF

in September 2004[56]. As shown in Fig. 3, the KSDF VNAV CDA profile is determined

by a series of VNAV modes. The first segment of this trajectory is the cruise segment. The

second segment of VNAV CDA profile is the idle thrust segment. In the second segment,

the en route part, which is above 10,000 ft, is generated by constant MACH, constant CAS,

and constant descent rate modes[58]. In the en route part, constant MACH/CAS is set to

0.7818/350. At the end of the en route part in the second segment, the aircraft attains the

FAA regulated speed of 250 knots at 10,000 ft. From that point onwards, constant CAS at

250 knots and constant FPA segments are used to satisfy the final point conditions. The

VNAV CDA profile is calculated via backward integration from the final point to TOD. The

mode change between constant CAS and constant FPA occurs when the CAS reaches 250

knots during the backward integration from IAF. By this way, the engine throttle would

remain at idle during the entire procedure from the TOD to the final point.
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Figure 3: VNAV CDA trajectory structure

2.3.3 B737-500 Results

The results of the B735 minimum time and minimum fuel optimal trajectories are shown in

Figures 4 and 5 along with the VNAV CDA trajectory. For the minimum time case shown

in Figure 5, the aircraft accelerates until it reaches the 350 knot maximum allowable speed,

and then descends at a constant CAS. To satisfy the FAA speed limit regulation, prior to

10,000 ft, the aircraft decelerates at the minimum descent rate. Below 10,000 ft, the aircraft

flies at the maximum speed of 250 knots as long as possible before decelerating to reach the

final speed and altitude conditions. The altitude and speed profiles are determined at the

boundaries of several constraints. These characteristics of the minimum time profile imply

that the aircraft flies with maximum performance to reduce flight time.

The minimum fuel trajectory is quite different from the minimum time trajectory. For

the minimum fuel trajectory, the aircraft flies with idle power as long as possible; hence,

the aircraft starts descending much earlier than in the minimum time case. From TOD

to 10,000 ft, the aircraft descends with small variations in flight path angle as shown in

Figure 4. Furthermore, the speed variation from TOD to the end point of the first phase

is also small. The speed profile is determined to be near 250 knots, which is the maximum

allowable speed below 10,000 ft.

Figures 4 and 5 reveals an interesting result. At 10,000 ft, the minimum fuel and
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minimum time trajectories intersect and are identical below 10,000 ft. This fact means

that the noise impact is the same for both optimal trajectories since the noise impact in

the vicinity of the airport is a function of the state of aircraft below 10,000 ft. Another

important result is that the performance difference between the minimum time and the

minimum fuel trajectories occurs only above 10,000 ft trajectory which is during the en

route descent.

Table 3 reflects the numerical results of the optimal vertical profiles for the B735. As

shown in the table, the optimal TOD position in the minimum time case is 89.853 NM

from the runway threshold, which is about 18 NM closer to the runway threshold than

the optimal TOD for the minimum fuel case, which is about 107.129 NM from the runway

threshold. In addition, if the aircraft flies along the minimum fuel trajectory, as much as

54.56 kg fuels can be saved, which is about 11.88% of the total fuel burned in the minimum

time case. On the other hand, if the aircraft flies along the minimum time trajectory, we can

reduce flight time by 177.2 seconds, which is a 12.16% reduction in the flight time compared

to the flight time needed for the minimum fuel case. The VNAV CDA case results are very

similar to the results of the minimum time case with a difference in fuel burn of only 5.7 kg

and a flight time difference of only 19.71 seconds.
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Figure 4: B737-500 optimal vertical profiles, zero wind case
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Figure 5: B737-500 optimal CAS profiles, zero wind case

Table 3: Numerical results of B737-500 optimal trajectories

Performance Index TOD (NM) Fuel burn (kg) Arrival time (sec)

minimum time -89.853 459.320 1,280.26
minimum fuel -107.129 404.756 1,457.50
VNAV CDA -91.714 453.640 1,299.97

2.3.4 B767-400 Results

The optimal vertical and speed profiles of a CDA procedure for the B764 with respect to

minimum time and minimum fuel performance indices are shown in Figs. 6 and 7, respec-

tively. Compared to the B735, the B764 is quite large and heavy; hence, the performance

characteristics of the aircraft are quite different from those of the B735. Despite the large

differences in the parameters, we can see that the tendencies of the B764 optimal trajectories

are very similar to those of the B735 when comparing the trajectories and speed profiles

in Figs. 4 through 7. In the minimum time case, the optimal CDA speed and altitude

profiles for the B764 are determined at the boundaries of the constraints, and this tendency

is the same as that for the B735 optimal profiles. The minimum fuel optimal profiles for

the B764 intersect the minimum time optimal profile at 10,000 ft, and below this point, the

optimal profiles of two performance indices are the same as in the B735 case. As in the

B735 profiles, the noise impacts below 10,000 ft are identical between minimum fuel and

minimum time trajectories.

The numerical values of the optimal vertical profiles for the B764 are shown in table 4.
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Flight along the minimum fuel profile consumes 84.7 kg less fuel than in the VNAV CDA

case, which is an 11.7% fuel savings when compared to the VNAV CDA case. A minimum

time profile can reduce flight time by as much as 22.83 sec when compared to the VNAV

CDA case and 161.32 sec when compared to the minimum fuel case.
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Figure 6: B767-400 optimal vertical profiles, zero wind case
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Figure 7: B767-400 optimal CAS profiles, zero wind case

Table 4: Numerical results of B767-400 optimal trajectories

Performance Index TOD (NM) Fuel burn (kg) Arrival time (sec)

minimum time -104.417 741.636 1,296.86
minimum fuel -118.801 642.359 1,458.18
VNAV CDA -106.445 727.074 1,319.69
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2.3.5 Effect of Wind

Since the wind profile strongly affects the aircraft trajectory, it is very important to observe

the sensitivity of the optimal trajectory with respect to various wind speeds and directions.

To observe the wind effect on the optimal trajectory, we performed numerical experiments

with various wind speeds and directions. In this study, we consider a wind speed range

from -20 m/s to 20m/s, where a negative value denotes a headwind and a positive value

denotes a tailwind.

The effects of wind on the B735 minimum time and minimum fuel trajectories are shown

in Figures 8 and 9, respectively. As expected, the TODs in the headwind cases are more

distant than they are in the zero wind case, and the TODs in the tailwind cases are closer

than in the zero wind case. However, the structures of the vertical profile in all wind

cases are the same as they are in the zero wind case. The wind cases also do not alter

the relationship between the minimum time and minimum fuel vertical profiles. The TOD

variations with respect to the wind conditions are shown in Figure 10 comparison to the zero

wind case. The variations are almost linear for both the minimum time and fuel profiles.

However, the slope of the TOD variation with wind for the minimum fuel trajectory is

steeper than that for the minimum time trajectory. This implies that the minimum fuel

optimal profile is more sensitive to wind than the minimum time optimal profile.
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Figure 8: B737-500 minimum time trajectories for different wind conditions
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Figure 9: B737-500 minimum fuel trajectories for different wind conditions
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Figure 10: B737-500 TOD variations with respect to the wind conditions

2.3.6 Effect of Cross Wind

To evaluate the cross wind effects on the optimal trajectory, we compared the case in which

the cross wind term Wc is zero and non-zero Wc case with the same horizontal wind speed.

We simulated three different Wh cases; Wh is zero, 10m/s, and −10m/s. The wind vector

can be described as a combination of total wind speed and angle Ψw. Note that Ψw is the

direction of the wind from the North as shown in Figure 2. For example, (10,90) means the

total wind speed is 10 m/s and the Ψw is 90 degree. Therefore, (0/0,20/90), (10/0,20/60),

and (10/180,20/120) are the cases where the Wh is the same each other, but the Wc is

different. We compared the results with these wind speed pairs.

The cross wind effects on the B735 minimum time and minimum fuel CAS profiles are

shown in Figures 11 and 12, respectively. These figures show that the effect of the cross
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wind term is relatively smaller than effect of the horizontal wind in both minimum time

and minimum fuel cases.
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Figure 11: B737-500 minimum time CAS profiles with different cross wind conditions
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Figure 12: B737-500 minimum fuel CAS profiles with different cross wind conditions

2.3.7 Effect of Wind Shear

To evaluate the wind shear effect on the optimal trajectory, we solved the optimal control

problem with the following nominal wind model:

W = A0

(
h

h0

)A1

(34)

where A0 is the wind at h0, A1 represents the wind shear effect terms. We used the four

different wind conditions; (A0, A1) are (20,0), (20,1/7), (20,3/7), and (20,1). Here, we used

the cruise altitude as h0, and hence A0 is the wind speed at the cruise altitude.
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The wind shear effects on the B735 optimal CAS profiles are shown in Figure 13. The

CAS profiles in minimum time cases are the same regardless of different wind shear terms

as shown in Figure 13(b). The minimum time CAS profiles in all cases are generated on the

boundaries of the path constraints. In minimum fuel case in Figure 13(c), the CAS profiles

are not exactly same, but they are very similar to each other. This observation means that

wind shear effects on the minimum fuel trajectories are small, and the dominant wind term

is the wind speed at the cruise altitude as shown in Figures 9 and 12.
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Figure 13: B737-500 optimal CAS profiles with different wind shear conditions

2.4 Suboptimal VNAV Trajectories Strategy

In the current CDA arrival procedures, the vertical flight path and speed profile are cal-

culated by the FMS using VNAV descent algorithms that have been in use for over two

decades. For this reason, an arrival procedure with FMS generated trajectory can produce

many benefits including enhancement of both the pilot’s and controller’s situational aware-

ness and, therefore, enhanced safety. Thus, even though some performance degradation may

occur when compared to arrivals flying the optimal trajectories obtained in section 2.3, a

VNAV CDA procedure can have many benefits from a practical implementation point of

view.

In this section, we present suboptimal VNAV CDA trajectories in terms of minimum

flight time and minimum fuel consumption. The suboptimal VNAV trajectories are divided

28



into several segments, and each segment is built with existing VNAV descent algorithms.

VNAV descent algorithms are categorized in terms of constant CAS/Mach mode, constant

flight path angle (FPA) mode, and constant rate of descent (ROD) mode[58]. Since flight

idle thrust setting is assumed for the purpose of reducing the noise impact, the same as

with optimal trajectories in section 2.3, VNAV CDA trajectories are typically built with

idle thrust assumption. Hence, each mode calculates flight path angle which is the control

input of Problem 2.1.

2.4.1 Minimum Time Suboptimal VNAV CDA

In both the B735 and the B764 cases in section 2.2, the minimum time speed profiles are

determined at the maximum performance bounds such as the maximum rate of descent, the

maximum flight path angle, and the maximum CAS as shown in Figures 5 and 7. From this

observation, we propose the minimum time suboptimal VNAV CDA trajectory structure as

shown in Figure 14.

Figure 14: Proposed mintime VNAV altitude and speed profile

The proposed minimum time VNAV CDA suboptimal speed profile consists of two

segments; a cruise segment and a flight idle descent segment. The idle descent segment is

generated by forward and backward integration using the VNAV mode sequence: maximum

acceleration - constant MACH/CAS - minimum rate of descent - constant CAS of 250 knots

- minimum rate of descent. The first component of the second segment in Figure 14, which is
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maximum acceleration mode, starts at the TOD and is generated by the forward integration

with the CAS increasing during this portion of the descent. Depending on the initial speed,

this component can be generated by using either one of two modes, the maximum descent

rate mode or the fixed flight path angle mode, or by using both modes. From the descent

rate constraint in Eq. (30) and the control input constraint in Eq. (33), the aerodynamic

flight path angle for maximum acceleration is given by

γ = max(sin−1(ḣmin/VT ), γmin) (35)

The VNAV CDA trajectory from the second component of the flight idle descent segment

to the last component in Figure 14 is generated by backward integration. The second

component starts at the point where the CAS reaches the maximum allowable CAS and

continues to fly at this CAS as long as possible. If the airspeed reaches the maximum

allowable MACH before reaching the maximum CAS, the constant MACH mode with the

maximum value should be inserted between the first and second segments in Figure 14. At

the end of the second component, the aircraft decelerates using the minimum descent rate

until reaching 250 knots, which is the maximum speed below 10,000 feet as stipulated by

the FAA regulation. The rest of the trajectory below 10,000 feet is similar to the upper

trajectory. Since the maximum allowable speed is 250 knots below 10,000 ft, the speed

constraint in Eq.(29) is active. Therefore, the third component is generated using constant

CAS. The last component is at the minimum descent rate to decelerate to the final point

speed restriction at the specified altitude.

2.4.2 Numerical Results of Minimum Time VNAV CDA

To evaluate the VNAV CDA trajectory with various wind conditions, we compared three

wind condition cases; (0/0), (10/0), and (20/0). The first number means the total wind

speed in m/s and the second number means ψw in degrees. Minimum time CAS profile

comparisons between an optimal minimum time CDA and a suboptimal VNAV CDA built

as described above are shown in Figures 15 and 16. In both cases, the VNAV results are the

same as the optimal results. Since the minimum time optimal trajectories are determined

by the aircraft performance bounds such as speed limit, rate of descent limit, and control
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input limit, the minimum time trajectories can be generated by the combination of VNAV

algorithms.
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Figure 15: B737-500 minimum time CAS: true optimum and VNAV cases
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Figure 16: B767-400 minimum time CAS: true optimum and VNAV cases

2.4.3 Minimum Fuel Suboptimal VNAV CDA

While the minimum time VNAV CDA trajectory is easily built using the general aspects of

the minimum time optimal control problem, the minimum fuel VNAV CDA profile cannot

be determined intuitively because the profile is not determined by the boundaries of the

constraints. Therefore, generating an identical profile using a combination of VNAV descent

algorithms is impossible. Hence, we need to simplify the optimal profile considering the

characteristics of the minimum fuel profiles.

Since the profiles below 10,000 ft are the same for both the minimum time and minimum
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fuel profile, we can build the same minimum fuel VNAV profile with the minimum time

VNAV profile, which consists of a following series of VNAV modes; constant CAS with 250

knots - constant rate of descent with minimum value. The problem is en route descent

part, which is the area above 10,000 ft. As shown in Figures 5 and 7, the minimum fuel

descent profiles are not determined by the boundaries of the path constraints. Therefore,

we must approximate the en-route descent profile with a series of VNAV modes. In this

chapter, we use constant rate of descent - constant CAS - constant rate of descent for the

en route trajectory generation since constant MACH/CAS descent is used for the current

VNAV CDA trajectory generation[13, 56]. The overall structure of the minfuel VNAV CDA

trajectory is shown in Figure 17.

Figure 17: Proposed minfuel VNAV altitude and speed profile

Since the minimum fuel VNAV profile is simple and most of the descent is at a constant

speed, the proposed VNAV trajectory has the benefit of pilot controllability. With the pro-

posed VNAV profile, the procedure is executed and controlled by the FMS which monitors

the progress of the planned descent both laterally and vertically. Control inputs are not

required by the pilot unless the FMS senses that the aircraft cannot maintain the desired

trajectory within its control capability and prompts the pilot that specific action is needed

to maintain the profile.

The minimum fuel VNAV CDA trajectory optimization problem in Figure 17 can be

solved by modifying the original optimal control problem described in section 2.2. By using

the VNAV mode sequence for minimum fuel en route descent profile, we divide the en route
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descent phase of the idle thrust segment in Figure 2 into three phases: constant rate of

descent, constant CAS, and constant rate of descent. The rate of descent values of the first

and the third phases are determined by CAS value in the second phase. If the optimal

CAS in the second phase is lower than cruise speed, the first rate of descent is set to the

minimum rate of descent value to decelerate. On the other hand, the rate of descent is set

to the maximum value to accelerate if the CAS in the second phase is larger than cruise

speed. The rate of descent at the third phase is determined by comparing the optimal

CAS with 250 knots, which is the CAS at 10,000 ft. Then, the minimum fuel VNAV CDA

trajectory can be described only one parameter, which is the CAS value in the second phase.

Therefore, the original optimal control problem can be converted to the following parameter

optimization problem:

min J(VCAS)

Vmin,CAS ≤ VCAS ≤ Vmax,CAS
(36)

2.4.4 Numerical Results of Minimum Fuel VNAV CDA

Evaluating the performance of the proposed minimum fuel VNAV profile requires a com-

parison with the minimum fuel optimal profile. Since the minimum VNAV CDA trajectory

optimization problem in Eq. (36) is the parameter optimization problem with only one

parameter, it can be solved very easily using the nonlinear programming solvers. In this

section, we used an interior point method to solve this optimization problem.

Altitude and speed profile comparisons between the minimum fuel optimal CDA and

the proposed VNAV CDA are shown in Figures 18 and 19. Although the speed profiles

above 10,000 feet of the proposed VNAV trajectory are different from the optimal profile,

we can observe that the altitude profiles of the proposed VNAV trajectory are similar for

all wind cases. The CAS determined by the parameter optimization is very close to the

average CAS of the en route descent segment of the true optimal trajectory in section 2.3.

The characteristics of the minfuel VNAV CDA are documented in Tables 5 and 6.

As expected, there is performance degradation with regard to fuel consumption. This
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degradation may have occurred due to the differences in the speed profiles. Since the TOD

points of VNAV trajectories are smaller than those of true optimal trajectories for all wind

cases for both aircraft, the fuel burns of VNAV trajectories during the cruise are smaller

than those of true optimal trajectories. Therefore, the fuel burn difference between true

optimal and VNAV suboptimal trajectories comes from the descent segment.

In the B735 case, the maximum difference among the three wind cases is 1.042 kg in fuel

and 7.413 sec in flight time. In the B764 case, the maximum difference in fuel consumption

between the two trajectories is only 0.407 kg. As these numerical results show, we can

observe that the performance degradation that results from simplifying the speed profile is

very small. Therefore, by using the proposed VNAV profile, we can obtain many practical

benefits of a VNAV approach while introducing only very small performance degradation

when compared to the optimal trajectory.
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Figure 18: B764 minimum fuel trajectory comparison of optimal and VNAV suboptimal
result

Table 5: Numerical comparison of B767-400 VNAV trajectories

True optimal VNAV suboptimal
Wind(W/ψw) time (sec) Fuel (kg) TOD (NM) time (sec)) Fuel (kg) TOD (NM)

(20,180) 1,570.169 825.216 -105.382 1,574.091 825.436 -105.537
(0,0) 1,458.181 642.359 -118.801 1,461.071 642.766 -118.910
(20,0) 1,362.887 486.195 -132.535 1,363.354 486.330 -132.533

The optimal CAS values of B735 and B764 for the en route descent with different wind

conditions are shown in Figure 20. The optimal CAS values varies as the wind speed at
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Figure 19: B735 minimum fuel trajectory comparison of optimal and VNAV suboptimal
result

Table 6: Numerical comparison of B737-500 VNAV trajectories

True optimal VNAV suboptimal
Wind(W/ψw) time (sec) Fuel (kg) TOD (NM) time (sec)) Fuel (kg) TOD (NM)

(20,180) 1,566.065 494.365 -94.506 1,573.478 495.407 -94.811
(0,0) 1,457.488 404.756 -107.129 1,463.787 405.380 -107.436
(20,0) 1,363.354 328.066 -119.990 1,367.821 328.395 -120.253

cruise altitude changes. The optimal CAS decreases as tailwind increases. However, the

parameter A1 in the nominal wind model in Eq. (34) does not affect the optimal CAS values.

This result means that optimal CAS value is more sensitive to A0, which is the wind speed

at the cruise altitude, than the wind shear term A1. This result is very similar to the result

of the wind shear effects in section 2.3.

The cross wind effects on the optimal CAS values of B735 and B764 are shown in

Figure 21. The variation of the optimal CAS due to the cross wind is much smaller than

the variation due to the horizontal wind.

From the above results, we found that the horizontal wind speed at the cruise altitude

is the most dominant factor to determine the optimal CAS value for minimum fuel VNAV

CDA trajectory with the given structure in Figure 17. As shown in Figures 20 and 21,

the differences of optimal CAS when compared to the constant horizontal wind case are

less than 2 knots for all tested wind conditions. Furthermore, the optimal CAS values

can be approximated by a quadratic equation with respect to the horizontal wind speed at
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Figure 20: Minimum fuel CAS with various wind shear conditions
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Figure 21: Minimum fuel CAS with various cross wind conditions

the cruise altitude. Therefore, if the FMS has this approximated equation, then FMS can

generate minfuel VNAV CDA trajectory close to the true optimal trajectory without solving

the optimization problem in Eq. (36). The approximated optimal CAS value functions for

B735 and B764 are as follows:

V opt
CAS =


2.0305× 10−3W 2

h − 0.4255Wh + 240.33 if B737-500

1.5544× 10−3W 2
h − 0.3770Wh + 255.05 if B767-400

(37)

2.5 Conclusion

A Continuous Descent Arrival (CDA) procedure is beneficial in that its application can

reduce operating costs by reducing flight time and fuel burn and has the environmental

benefits of reducing noise and gaseous emissions. To maximize these benefits, we formulated

a CDA trajectory optimization problem with a specified range which includes a part of the
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cruise segment. The CDA trajectory optimization formulation was aided by a multiple

phase optimal continuous Bolza problem framework. Each phase was divided according to

the flap speed schedule and the FAA speed limit regulation. In the proposed formulation,

a point mass model in a relative wind frame was used as equations of motion for the

aircraft by considering the trade-off between model accuracy and computational burden. By

establishing a free condition at the initial along track distance, we simultaneously obtained

both an optimal Top of Descent (TOD) position and a descent trajectory.

The formulated multi-phase optimal control problems were solved using a pseudospectral

method for two aircraft types: the B737-500 and the B767-400. The various numerical

results presented here have led to an understanding of the characteristics of the optimal

trajectories with respect to flight time and fuel consumption. The two optimal trajectories

are identical below 10,000 ft while the speed and altitude profiles of the en route descent

part are quite different. This result means that the possible performance variations come

from the en route descent part.

Based on this analysis of true optimal trajectories, we were able to find the Vertical

Navigation (VNAV) mode sequence for both minimum time and minimum fuel cases. By

using these fixed mode sequence, we were able to build the suboptimal VNAV CDA profiles

with objective functions of minimum flight time and minimum fuel consumption. Since the

proposed VNAV CDA profiles can be calculated by onboard Flight Management System

(FMS) computers without additional equipment, they represent a practical implementa-

tion. In the minimum time case, all segments of the optimal trajectory are determined

at the boundary of the constraints, and the proposed VNAV CDA profile is constructed

with the aircraft descending under maximum allowable operating conditions. The resulting

performance of the VNAV CDA profile was identical to the optimal results. In the mini-

mum fuel case, the suboptimal VNAV trajectory problem was converted to the parameter

optimization problem, and the optimal CAS was calculated with different wind cases. The

numerical results showed that the dominating factor in determining the optimal CAS is the

horizontal speed at cruise altitude. Based on this result, we approximated the optimal CAS

value functions using quadratic formulation.
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The analysis result and the proposed VNAV trajectory generation method can be applied

in both ground and airborne automation systems. If the aircraft has the capability to

calculate the parameter optimization, using the proposed VNAV sequence, the optimal

trajectory can be calculated very quickly, and hence realize the online trajectory planning.

The alternative way is that a ground automation tool solves the parameter optimization

problem using the proposed VNAV sequence and sends the optimal parameter to the aircraft

via datalink.

Another application of this study is the decision supporting tool to determine the optimal

scheduling of the traffic flow to the runway. To determine the optimal scheduling, which is

Required Time of Arrival (RTA), air traffic controller should have to know the performance

bound of the individual aircraft such as the feasible time range of CDA flight. This study

provides the methodology to analyze the performance bound of individual aircraft. The

performance bound analysis results can be used as constraints of the optimal scheduling

problem.
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CHAPTER III

EN ROUTE DESCENT TRAJECTORY OPTIMIZATION

In Chapter 2, the CDA trajectory optimization problem was formulated as a multi-phase

optimal control problem from cruise altitude to a Final Approach Fix (FAF). While an un-

constrained CDA trajectory was considered, it must be acknowledged that many published

Standard Arrival Routes (STARs) used for CDA procedures have both speed and altitude

constraints at some waypoints along the ground track inside the Terminal Radar Approach

Control (TRACON) area.

The traffic efficiency problem associated with a CDA procedure comes from the difficulty

in predicting the aircraft trajectory. Since the CDA trajectory is constantly descending,

management of the required aircraft separation becomes problematic when compared to

the existing “step-down” arrival where level flight segments and speed changes are used to

manage the aircraft separation. ATC’s response to CDA separation management is to apply

larger separations to accommodate the change in management procedure. To address this,

Ren developed the Tool for Analysis of Separation and Throughput (TASAT) [54]. TASAT

is a high fidelity aircraft specific descent analysis that uses a Monte-Carlo simulation to

vary aircraft weight, wind, and pilot response times. With the descent profiles resulting

from TASAT, a minimum time or distance separation can be determined for any leading

and trailing aircraft to produce the required minimum separation as the aircraft crosses the

runway threshold. This minimum time or distance is then applied to a chosen metering fix

along the intended aircraft ground track. When applied, CDA operations can be flown with

a minimum of ATC intervention in the TRACON area. By using this required minimum

separation at the meter fix, the ATC or Traffic Management Advisor (TMA) determines the

Scheduled Time of Arrival (STA) of each aircraft to maximize runway without degrading

the success rate of the CDA. Therefore, from the individual aircraft point of view, the

Required Time of Arrival (RTA) at the meter fix represents the time required to ensure the
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minimum separation is maintained during the CDA.

To implement efficient traffic management, aircraft should have the capability to calcu-

late the descent trajectory to meet RTA constraints or ground advisor tools should calculate

the required trajectory associated with the RTA trajectory and transmit this information

to the aircraft via datalink. In the onboard calculation case, the trajectory prediction issue

still remains. The trajectory prediction tools assume that the aircraft vertical trajectory

is generated by a combination of Vertical Navigation (VNAV) modes. Therefore, if the

trajectory generated by the FMS does not comply with this assumption the errors become

larger. In the latter case, for current FMS systems, ground advisory tools are required to

transmit the FMS inputs such as VNAV mode sequence and mode parameters. Hence, in

both instances, the trajectory generation method using VNAV modes should be maintained.

Therefore, the trajectory optimization method with current VNAV modes is necessary to

address this issue.

In this chapter, we address the CDA trajectory optimization problem in the en-route

phase with an RTA constraint at the meter fix and propose a fixed RTA optimal trajectory

generation algorithm that is possible to implement in the FMS. In the FMS, the VNAV mode

transition pairs are predetermined and occur only when some components of an aircraft’s

state meet a certain condition. Therefore, a VNAV mode transition in the FMS can be

modeled as a hybrid automaton. Hence, the vertical trajectory generation within an FMS

framework is a hybrid system. Therefore, minimizing costs while satisfying RTA constraints

requires solving the optimal control problem for a hybrid system. This problem is much

more difficult to solve compared to typical optimal control problems of continuous systems

because, in a hybrid system, the discrete state mode sequence and mode switching times

are control variables as well as control inputs for the continuous state evolution[29].

The sequential method, in which the mode sequence is determined and the optimal

control problem with determined mode sequence is solved, is proposed as a way to solve

optimal control problems of hybrid systems. This proposed method is applied to the en-route

trajectory optimization problem and evaluated with numerical examples for two aircraft

types; B737-500 and B767-400.
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3.1 Introduction

3.1.1 Switched Dynamical Systems

A hybrid system is a dynamical system that has both a continuous state and a discrete state,

which is commonly referred to as a mode. The following definition of a hybrid automaton

describes hybrid systems [43].

Definition 3.1. (Hybrid Automaton) A hybrid automaton H is defined by the collection

H = (Q,X, V, f, Init,Dom,E,G,R) where

• Q = (q1, q2, · · · ) is a set of discrete states;

• X = Rn is a set of continuous states;

• V is a set of control variables;

• f : Q×X × V → X is a vector field;

• Init ⊆ Q×X is a set of initial states;

• Dom : Q→ 2X is a domain;

• E ⊆ Q×Q is a set of edges;

• G : E → 2X×V is a guard condition;

• R : E ×X × V → 2X is a reset map.

where 2X denotes the set of all subsets of X and hence, G and R are set value maps.

Switched dynamical systems are a subset of hybrid systems that consist of several sub-

systems, which are referred to as modes, and switching laws that determine the active

subsystem at a given time. Typically, in switched systems, there is no jump in state at the

switched time, which means the reset map R in definition 3.1 has the identical mapping.

The control inputs of switched systems include the sequence of modes, the duration of each

mode, and the continuous input or mode parameters.

Many control systems can be modeled in a switched dynamical system framework: au-

tomotive systems with different gears[30, 52], and semi-active damping control system[52],
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tracking problems of mobile robots[71], and aircraft lateral/vertical trajectory generation

with Lateral/Vertical Area Navigation (LNAV/VNAV) modes in Flight Management Sys-

tems (FMS)[33, 48, 67, 75].

In the literature[3, 27, 17, 38, 70, 74] , the switched system is expressed as

ẋ = fi(x(t), u(t), t), i ∈ Q. (38)

where fi(x(t), u(t), t) is a mode dynamics which is the combined formulation of a vector

field f and a mode set Q in definition 3.1. However, Eq. (38) cannot express the trajectory

generation problem in the FMS using the VNAV function due to the existence of mode

parameters in the VNAV modes.

In this chapter, to capture the natural property of the VNAV function, we focus on the

special class of switched systems in which each mode dynamics is expressed as a combination

of common dynamics and a mode specific constraint with a mode parameter. The control

inputs of such a system can be grouped into two categories: parameter independent inputs

and parameter dependent inputs. This class of system is formulated as
ẋ = f(x(t), u(t), v(t), t)

gi(x, u, v, pi) = 0

, i = 1, · · · , N (39)

where the state x ∈ Rn, independent control u ∈ U ⊆ Rm and parameter dependent input

v ∈ Rq; the ith mode parameter pi has a same dimension with v, and N is the number

of modes. The function f : Rn × Rm × Rq × R → Rn represents the common dynamics,

and it is assumed that f is Lipschitz continuous. In addition, it is assumed that the mode

constraint gi : Rn × Rq × Rq → Rq is smooth and v is determined by pi uniquely.

From Eq. (39), we can define the equivalent switched dynamical system with a parameter

by combining common dynamics and mode constraints:

ẋ = fi(x(t), u(t), v(pi), t), i = 1, · · · , N (40)

where fi is the dynamics of each mode.

The switched systems expressed with Eq. (38) also can be described in the same format
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as Eq. (39) in the following manner:
ẋ = f(x(t), u(t), v(t), t) =

∑
1≤i≤N vifi(x(t), u(t), t)

gi(x(t), v(t)) = v(t)− ei = 0.

where vi is the ith component of v, and ei is a unit vector that has its ith component as

one. Therefore, the switched system expressed as Eq. (39) includes the switched systems in

[3, 17, 27, 38, 70, 74].

3.1.2 Numerical Methods for Optimal Control Problems of Hybrid Systems

Several researchers have developed various computational techniques to solve the optimal

control problem of switched systems as expressed in Eq. (38). The methods in the literature

can be classified as one with a fixed mode sequence[74, 17, 38] or a sequence optimization in

which the optimal mode sequence is unknown[3, 27, 70]. In [74, 17, 38], the original optimal

control problem was converted to an equivalent optimal control problem by the parame-

terization of the switching instances and developed algorithms to compute the gradient of

the cost function. In [27], Gonzalez et al.developed a bi-level algorithm that divided the

problem into two sub-problems. At the lower level, they assumed a fixed mode sequence

and solved the optimal control problem with this sequence. At the higher level, the mode

sequence was updated using a single mode insertion technique.

In [3], Bengea and DeCarlo proposed a relaxation based method in which switched

dynamics were embedded into a continuous system by relaxation of the discrete input to

determine the switching instance. This method has a great advantage in that it does not

need to assume the mode sequence at all. Optimal mode sequence is obtained directly by

solving the embedded optimal control problem. In this chapter, we will extend the relaxed

based method to solve the optimal control problem of the switched system expressed in

Eq. (39).

3.1.3 Chapter Outline

The remainder of this chapter is organized as follows: In section 2, we present the path con-

strained optimal control problem for the switched dynamical systems expressed in Eq. (39).
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In Section 3, we discuss the lower bound solution of the optimal control problem. In section

4, we propose a sequential method to solve optimal control problems of switched dynamical

systems. In section 5, we explain the hybrid system modeling of FMS and analyzes the

properties of each VNAV mode. In section 6, we present the formulation of the en-route

descent trajectory optimization problem. In section 7, we present the trajectories generated

by the proposed algorithm, and compare the results to those of the lower bound solutions.

Our conclusions of this study are then presented in section 8.

3.2 Problem Formulation

In this chapter, we address the path constrained optimal control problem of switched dy-

namical systems in Eq. (40) as follows:

Problem 3.1.

min J1 = Φ(x0, t0, xf , tf ) +

tf∫
t0

L(x(t), u(t), v(t)) dt

s.t.  ẋ = f(x(t), u(t), v(t), t)

gi(x, u, v, pi) = 0
, i = 1, · · · , N

C(x(t), u(t), v(t)) ≤ 0

S(x(t)) ≤ 0

where C(x, u, v) and S(x) are the mixed state-input and pure state path inequality con-

straints, respectively.

These inequality constraints represent the operational envelope constraints. The prob-

lem is an unknown mode sequence optimal control problem of a non-autonomous switched

system with path constraints. We have to find the optimal mode parameter as well as the

optimal mode sequence.

The switched dynamical system has a fully connected directed graph between modes.

In addition, in some modes, self mode transition is allowed if the parameter is changed.
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Therefore, the self mode transition with different parameters can be part of the optimal

mode sequence.

3.3 Relaxed Optimal Control Problem

Since each mode can be expressed as a combination of a common dynamics and a mode

constraint, we can formulate the relaxed optimal control problem by eliminating the mode

constraint in (39). The relaxed optimal control problem is converted to a conventional

optimal control problem of continuous systems as follows:

Problem 3.2.

min J2 = Φ(x0, t0, xf , tf ) +

tf∫
t0

L(x(t), ua(t)) dt

s.t.

ẋ = f(x(t), ua(t), t)

C(x(t), ua(t)) ≤ 0

S(x(t)) ≤ 0.

where the augmented input ua = [u, v]T .

Let F1 and F2 be the feasible solution set of Problem 3.1 and Problem 3.2, respectively.

Since we eliminate the mode constraint in Problem 3.2, F1 ⊆ F2. Therefore,

Jopt2 ≤ Jopt1 . (41)

From Eq. (41), we can conclude that the optimal solution of Problem 3.2 provides

the lower bound solution of the Problem 3.1. Since the relaxed optimal control problem

now becomes a conventional optimal control problem, we can choose one of numerical

methods which have been developed with proven performance. For this reason, we can

solve Problem 3.2 more easily than the original problem.

3.3.1 Structure Analysis of Lower Bound Solution

To analyze a structure of the optimal solution, we need to investigate the necessary condition

for the optimality. The Hamiltonian of the relaxed problem is defined as

H(t) = L(x(t), ua(t)) + λT f(x(t), ua(t), t). (42)
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The optimal control uopta is determined by the minimum principle, and it has a following

formulation[28]:

uopta (t) = argminΩH(t) (43)

where Ω = {ua ∈ U |C(x(t), ua(t)) ≤ 0}

From Eq, (104), the optimal solution xopt(t) is split into two categories: 1) nonsingular

arc on whichHua 6= 0 and one of the C(x, ua) is active, and 2) singular arc on whichHua = 0.

Since the relaxed problem has state inequality constraints, the singular arc can be further

divided into two sub-categories, boundary subarc and interior subarc[35]. The boundary

subarc is the arc that one of the state constraints is active, which means the optimal solution

is satisfied Sa(x
opt(t)) = 0 on the boundary arc. Note that the subscript “a” denotes the

active path constraint. The interior arc denotes the arc that all state inequality constraints

are inactive. Therefore, xopt(t) consists of the several subarcs that is categorized as shown

in Fig. 22. At junction points where two different subarcs intersect, the optimal control

input uopta can be discontinuous by the discontinuity of the costate variables[35].

Optimal trajectory 

Nonsingular arc Singular arc 

Interior arc Boundary arc 

Figure 22: Tree structure of the optimal trajectory

3.4 Sequential Method

The main in this chapter is to find a mode sequence that can generate a similar trajectory

when compared to the lower bound trajectory. Then, using the resulting sequence, we

can solve a fixed mode sequence optimal control problem instead of an unknown sequence

optimal control problem.
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To find the optimal solution of problem 3.1, we propose a sequential method which

consists of the following four steps.

• STEP1 : Solve the relaxed optimal control problem

• STEP2 : Partition the optimal trajectory of the Problem 3.2.

• STEP3 : Find the mode sequence with the partitioned trajectory from STEP2.

• STEP4 : Solve a multi-phase optimal control problem with the given mode sequence

from STEP3.

The relaxed optimal control problem in STEP1 is described as Problem 3.2. In the next

subsection, we discuss in detail the processes required to progress from STEP2 to STEP4.

3.4.1 Partition

As shown in Fig. 22, we can group the optimal trajectory xopt(t) of the relaxed problem into

three classes: nonsingular arc, interior arc, and boundary arc. First, to distinguish between

a nonsingular arc and a singular arc, we use Hv information from the optimal solution of

the relaxed problem. If an analytic solution can be obtained, the singular arc segment can

be found easily using the analytic value of Hv. However, as in the general case, it is very

difficult to find the analytic solution of the optimal control problem with state inequality

constraints. Therefore, we have to use a numerical method to solve the relaxed problem.

In this case, even though a singular arc exists, the Hv value is not identical to zero and

it includes some noise due to the numerical error. To handle this issue, we normalize the

Hv value and use the threshold value of Ts to distinguish between a singular arc and a

nonsingular arc:  singular arc

nonsingular arc

if |Hv| ≤ Ts

otherwise
(44)

As shown in Fig. 22, a singular arc is divided into two subarcs, boundary and interior

arcs. From the discontinuity of costate variables, in Problem 3.2, the parameter dependent

control v or v(q) is discontinuous at the junction point[35]. From the smoothness of the mode
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constraint, in Problem 3.1, v is continuous except for the switching instance. Since the mode

constraint changes at the switching instance, v is discontinuous at that point. Therefore,

the best mode that is selected from the mode estimation in STEP3 can be different before

and after the junction points. For this reason, we partition the singular arc at junction

points. By checking the S(x(t)) along the optimal trajectory, we can find the boundary

subarcs of the singular arc. Due to the error issue, we use a threshold Tb. The remaining

singular arc is the interior arc.

3.4.2 Mode Estimation

The key to finding the best mode sequence is a projection of the partitioned trajectory to

the trajectory space of each mode. This approach is based on the assumption that if we

can generate a trajectory very close to the lower bound trajectory, then its performance is

also very close to the lower bound performance Jopt2 . Therefore, we select the mode that

has the minimum projection error.

This approach is similar to the mode estimation techniques of hybrid systems. For

the mode estimation of hybrid systems, many researchers have used the Interactive Multi

Model (IMM) filter techniques. The IMM filter consists of the several Kalman filters and

each Kalman filter uses the dynamics of the corresponding mode. Therefore, the same

number of Kalman filters as the number of modes is necessary. Similar to this method, we

need to calculate the projection routine N times. The overall procedure for mode estimation

is described in Fig. 23.

Mode 1
Parameter 
Estimation

Mode 2
Parameter 
Estimation

Mode N
Parameter 
Estimation

Mode N-1
Parameter 
Estimation

Voting to select best suitable mode

Input : partitioned trajectory 

Output : selected mode

…

Figure 23: Concept of mode estimation
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In order to find the projected trajectory of the lower bound solution into the each mode

trajectory space, we have to optimize the corresponding mode parameter. The parameter

optimization problem is defined as follows:

minpi f(pi)

f(pi) =
∫
Is

x̃TQx̃+ ṽTRṽ dt

+(xt0 − x0(pi))
TQ0(xt0 − x0(pi)) + (xtf − xf (pi))

TQf (xtf − xf (pi))

(45)

where x̃ = xt − x(pi) and ṽ = vt − v(pi); xt is a partitioned trajectory of the lower bound

solution, and x(pi) is the ith mode trajectory with parameter pi; vt is a parameter dependent

input of the lower bound solution, and v(pi) is a parameter dependent input from the ith

mode constraint with pi.

After N iterations of the parameter optimization routine, we calculate a Λi value for

each mode and select the mode that has the largest Λ value as a mode for the corresponding

partitioned trajectory. Λ is determined by the following formulation.

Λi =
ri

4∑
i=1

ri

, i = 1, · · · , N (46)

where

ri =
1

fi(p
opt
i )

, i = 1, · · · , N (47)

By repeating this mode estimation process for all partitioned trajectories, we can deter-

mine the final mode sequence that is used for STEP4.

3.4.3 Multi-Phase Optimal Control

As a result of STEP3, we obtain the mode sequence for fixed mode sequence optimal control

problem of switched dynamical system. Fixed mode sequence optimal control problem is

expressed as a multi-phase optimal control problem. Let{σq}Q1 be the sequence from STEP3,

and Q is the number of sequence. Then, we can define following multi-phase optimal control

problem.
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Problem 3.3.

min J1 = Φ1 + ΦQ +

Q∑
q=1

t
(q)
f∫

t
(q)
0

L(x(q), u(q), v(q)) dt

s.t. 

ẋ = f(x(q), u(q), v(q), t),

gσq(x
(q), u(q), v(q), pσq) = 0

C(x(q)(t), u(q)(t), v(q)(t)) ≤ 0

S(x(q)(t)) ≤ 0

, q = 1, · · · , Q

x(q−1)(tf ) = x(q)(t0) , q = 1, · · · , Q− 1

(48)

where Φ1 = Φ(x
(1)
0 , t

(1)
0 ) and ΦQ = Φ(x

(Q)
f , t

(Q)
f ).

The last inequality in Problem 3.3 is the link condition for the continuity of the state.

This problem also can be solved by the direct method for a conventional continuous optimal

control problem. For fast convergence, we use the estimated parameter, the mode trajectory

and the parameter dependent control of σq mode, which are the results from STEP3, for

the initial guess of Problem 3.3.

3.5 Optimal Control Problem for the En Route Descent Trajectory

In this section, CDA trajectory optimization problems in the en-route descent phase are

formulated to maximize the benefits of the CDA procedure. Two performance indices, min-

imum time and minimum fuel, are used to quantify the performance of the CDA trajectory

similar to Chapter 2.

Jt = (x(1)
s (t0)− dmax) /V (1)

g + t
(N)
f (49)

Jf = ḟcr,cruise(x
(1)
s (t0)− dmax) /V (1)

g +

N∑
p=1

t
(p)
f∫

t
(p)
0

ḟ (p)
cr dt (50)

where ḟcr,cruise and ḟ
(p)
cr denote a fuel flow rate in the cruise segment and a flight idle descent

fuel flow rate of phase p; dmax denotes the along track distance of the RTA frozen point.
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The first term in both cost functions are the cost during the cruise segment, and the second

term are for the descent segment. Here, since both constant Mach and altitude are assumed

in the cruise segment, ḟcr,cruise is constant, yet ḟ
(p)
cr is a function of the aircraft state.

If altitude and speed constraints exist at the meter fix, they would be published in

the charting of the STAR. By introducing RTA constraints, that would be determined and

transmitted by ATC, thus the unconstrained CDA trajectory optimization problem 2.1

must be modified to obtain the en-route optimal descent trajectory. For this problem, the

path constraints for the flight envelope protection, passenger comfort, and flight path angle

limitation remain. If a crossing altitude at the meter fix is above 10,000 ft the required speed

can be above 250 knots. If the crossing altitude is at or below 10,000 ft, then the ATC

limitation of at or below 250 knots applies. The following is the optimal control problem

formulation for the en-route CDA trajectory optimization:

Problem 3.4. (En route CDA Trajectory Optimization Problem)

minimize
γ

Jt or Jf

subject to

V̇T =
1

m
(T −D)− g sin γ − cos γ(U̇w cosχ+ V̇w sinχ)

ẋs =
√

(VT cos γ)2 −W 2
c +Wh

ḣ = VT sin γ

ḣmin ≤
dh

dt
≤ ḣmax

γmin ≤ γ ≤ γmax

V
(p)
min,CAS ≤ V

(p)
CAS(t) ≤ V (p)

max,CAS p = 1, · · · , N

M
(p)
min ≤M

(p)(t) ≤M (p)
max p = 1, · · · , N

x(p−1)(t
(p−1)
f ) = x(p)(t

(p)
0 ) p = 2, · · · , N

t
(1)
0 − (x(1)

s0 − dmax)/V (1)
g = 0

t
(N)
f = tRTA (if RTA is given)

(ECP)
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3.6 Flight Management System: Hybrid System Modeling

Hybrid system approaches for air traffic control applications, especially for the Conflict

Detection and Resolution (CD&R), have been used by several researchers[33, 67]. Tomlin

et al.[67] modeled CD&R problem as a hybrid automaton with discrete state set Q =

{CRUISE,LEFT, STRAIGHT,RIGHT} where each discrete state represents an air-

craft’s lateral dynamics with a specific strategy. Hwang et al.[33] used a discrete state

set Q = {TURN,CRUISE} for a hybrid automaton to model aircraft lateral maneuvers.

Similar to these approaches, vertical trajectory can be modeled as a hybrid system using

VNAV modes in the FMS. FMSs from different companies have different mode sets, but

there are several common VNAV modes, which are constant Mach/CAS mode(CD/CV),

constant descent rate mode(CD), and constant Flight Path Angle(FPA) mode(CP) [57].

RNAV CDA trajectories used in CDA flight tests[12, 13] and those of Efficient Descent

Advisor (EDA) from NASA are generated by combining these four modes. These four

common VNAV modes represent the discrete state set Q = {CV CV,CD,CP,CM} in

definition 3.1. In each mode, the control input γ in Problem 3.4 is calculated by the state

of the aircraft and the mode parameter with each mode assumption. Therefore, the control

variable set V of each mode is a mode parameter for calculating γ. For example, target

MACH/CAS speed is the mode parameter of the CM/CV mode, the target descent rate is

the mode parameter of the CD mode, and the target FPA is the mode parameter of the CP

mode.

The vector field f of each mode is the same as the aircraft dynamics in Problem3.4.

Hence, the aircraft dynamics is a common dynamics in Eq. (39). Init(Q,X) is determined

by the initial conditions of Problem 3.4. Dom(Q) of each mode is a subset of the range

inside the flight envelope and is determined by the possible trajectory with γ calculated from

the mode parameter: Dom(Q) = {x ∈ R3|trajectory of Eq. (8) ∼ (13) with γ = γ(P (Q))}.

The reset map of this problem is R(E,X, V ) = {x}, which means there is no jump in the

continuous state when the mode transition occurs.

The mode transition is determined by E and G from the definition 3.1, and these

components of a hybrid automaton are determined by the properties of each mode.
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3.6.1 Mode Analysis

As stated above, the common mode dynamics of the system in Eq. (39) are the equations

of motion of aircraft in Problem ECP. Therefore, in this subsection, we analyze each mode

constraint and parameter only. Since this thesis focuses on the trajectory generation for

CDA, idle thrust/power is assumed for all modes. Therefore, the only control input is the

flight path angle.

The parameters of the four modes are the following: Vtarget for constant CAS mode,

ḣtarget for constant rate of descent mode, γtarget for constant FPA mode, and Mtarget for

constant Mach mode. Each mode has different characteristics under its own strategy. Fur-

thermore, under each mode assumption, some continuous state variables can be calculated

algebraically by using other continuous state variables and γ. In this way, the dimension of

the problem can be reduced. The detailed descriptions of each mode are presented below.

3.6.1.1 constant CAS mode : CV

Calibrated airspeed VCAS is a function of VT and h, so VCAS = fV (VT , h). The formulation

of fV is as follows

VCAS = fV (VT , h) =

7R(Θ0)ISA


(

1 + Pδ

[(
1 +

V 2
T

7RΘ

)3.5

− 1

]) 2
7

− 1


0.5

. (51)

where Θ(h) is an atmosphere temperature, and it is a function of an altitude.

In this mode, the mode parameter pCV is VCAS itself. Therefore, the following equality

constraint should be hold during CV.

gCV (VT , h, pCV ) = fV (VT , h)− pCV = 0. (52)

Since the constraint is not an explicit function of control γ, control is determined by time

derivative of (52).

ġCV (VT , h, pCV , γ) = ḟV (VT , h, γ) = 0 (53)

From Eq. (51), time derivative of VCAS can be obtained as:

V̇CAS =
1

fDA(h, VT )

(
dVT
dh
−

{
Vt
2

(
dΘ/dh

Θ

)
+

z

(1 + z)
5
7

[
RΘ

VT

] [
−dP/dh

P

]})
ḣ (54)
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where

z(h, VT ) =

[
V 2
T

7RΘ
+ 1

]3.5

− 1, (55)

fDA(h, VT ) =

(
1 + Pδz

1 + z

) 5
7
(
Tθ
Pδ

)(
VCAS
VT

)
. (56)

In this mode, V̇CAS should be zero, and dVT /dh can be calculated with Eq.(54) for

maintaining the current VCAS .

dVT
dh

=
VT
2

(
dΘ/dh

Θ

)
+

z

(1 + z)
5
7

[
RΘ

VT

] [
−dP/dh

P

]
> 0 (57)

In Eq.(8), V̇T = dVT /dh · ḣ, and flight idle thrust is assumed. Hence, the only unknown

variable is FPA γ and it can be solved algebraically by using Eq. (8) and (57).

Two observations can be made regarding this mode. The first observation is that de-

scending at constant CAS results in a decelerating descent mode in terms of true airspeed.

The true airspeed gradient during the flight in this mode is given in Eq. (57). The true

airspeed range in which Eq. (57) is positive can be obtained by substituting Eq. (55) and

the ISA pressure equation into Eq. (57). This range covers the entire operating speed range

for all aircraft. Hence, the result of Eq. (57) is always positive. Therefore, V̇t = dVt/dh · ḣ

is always negative during descent because ḣ is negative during descent. The second ob-

servation is that we can eliminate true airspeed dynamics, V̇T , in the equations of motion

because VT is a function of altitude and VCAS . Therefore, the reduced state of the CV mode

is xCV = [xs h]T .

3.6.1.2 constant descent rate mode : CD

In CD mode, ḣ is constant and the mode parameter pCD is the rate of descent. Hence, γ is

obtained from the equations of motion for altitude. The constraint of the CD mode is

gCD(VT , γ, pCD) = VT sin γ − pCD = 0. (58)

Since gCD is an explicit function with respect to γ, it is calculated directly from (58)

and γCD is:

γCD = sin−1

(
ḣtarget
VT

)
. (59)
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In this mode, V̇T can be both positive and negative. Therefore the CD mode can generate

both an acceleration and deceleration segment in terms of true airspeed by setting different

values of the parameter ḣtarget.

3.6.1.3 constant FPA mode : CP

The parameter pCP is the control input γ itself. During the CP mode, γ is constant. The

constraint of the CP mode is:

gCP (γ, pCP ) = γ − pCP = 0. (60)

Similar to the CD mode, where the CP mode can generate true airspeed terms for both

acceleration and deceleration segments.

3.6.1.4 constant Mach mode : CM

The CM mode is the descent mode with constant Mach number. The parameter pCM of

this mode is the target Mach number, and the relationship between VT and M is:

M = fM (VT , h) =
VT√

1.4RΘ(h)
, (61)

where R is the universal gas constant; Θ is atmospheric temperature that is a function of

altitude. The mode constraint of the CM mode is:

gCM (VT , h, pCM ) = fM (VT , h)− pCM = 0. (62)

Since the constraint gCM is not an explicit function of control γ, the control is determined

by the time derivative of (62).

ġCM (VT , h, pCM , γ) = 0 (63)

The time derivative of Mach number can be calculated by the following equation:

Ṁ =

[
VT /dh√
1.4RΘ

− VT · dΘ/dh

2Θ
√

1.4RΘ

]
ḣ (64)

In order to descend with constant Mach number, Ṁ should be zero. From Eq. (64), we can

get the target true airspeed gradient as follows:

dVT
dh

=
VT
2Θ

dΘ

dh
. (65)
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Since dΘ/dh < 0 in ISA model and VT > 0, dVT /dh is negative always; hence, V̇T is

always positive during descent. Therefore, the CM mode is always accelerating in terms of

true airspeed.

3.6.2 Mode Transition

Figure 24 represents the directed graph of hybrid automaton for the aircraft trajectory

generation in the FMS. Each directed line denotes the direction of mode transition between

two modes. In other words, this directed line represents the component of the edge E in the

definition 3.1. As shown in Fig. 24, all four modes in FMS can be connected to each other.

Any mode in the FMS can be transited to CV mode except the CV mode itself because the

speed state is a continuous variable and cannot jump at the moment of mode transition.

This transition is denoted by the red color line in Figure 24. As with the CV mode, any

mode can be transited to the CM mode except the CM mode itself. Blue lines in Fig. 24

denotes this transition. On the other hand, in the CD and CP modes, the mode can be

transited to itself if the following and preceding parameters are different.

The guard condition G in the definition 3.1 is as follows. The mode transition to the

CV mode can occur when the calibrated airspeed in the previous mode meets the target

calibrated airspeed in the CV mode. Therefore, G(·, CV ) = {VCAS(VT , h) = Vtarget}. Mode

transition to the CM mode is very similar to the CV mode. This mode can occur when

the airspeed in the previous mode meets the target Mach number in the CM mode; hence,

G(·, CM) = {M(VT , h) = Mtarget}. On the other hand, a specific transition condition does

not exist in either the CD or CP modes. Here altitude h or time t is selected as the mode

transition condition. A summary of mode characteristics and respective transition condition

is shown in Table 7.

Table 7: Mode characteristics and transition conditions
Mode parameter reduced state transition cond. accel. decel.

CV VCAS [xs h]T VT = f(VCAS , h) X O

CD ḣ [VT xs h]T h or t O O
CP γ [VT xs h]T h or t O O
CM M [xs h]T VT = f(M,h) O X
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Figure 24: FMS modes for vertical trajectory generation.

3.7 Numerical Examples

To test the validity of the proposed trajectory generation method, a numerical simulation

was performed. To evaluate the performance of trajectory generated by the proposed se-

quential method, aircraft specific relaxed optimal control problems were calculated with

variations in RTA. These solutions have the lower bound performance of the original hy-

brid optimal control problems. The optimal solutions were calculated using the proposed

method with the same conditions as the lower bound solutions, and the performances of

the hybrid optimal solutions are evaluated by comparing the results to the lower bound

performance.

3.7.1 Simulation condition

A simulation was performed for both B737-500 (B735) and B767-400 (B764) aircraft. BADA

was used as the aircraft performance model. To simplify the problem, the lateral path was

assumed to be a straight line. Since this chapter focuses on the systematic methodology

to determine FMS input for a CDA profile generation, wind was simplified as a constant.

The numerical values of the operational constraints using this numerical simulation are

shown in Table 8. The boundary condition of the problem is the same as Park and Clarke

used[48]. To solve the optimal control problem, a pseudospectral method was used along
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with many numerical optimal control schemes. There are several version of pseudospectral

methods[61, 23]. In this numerical example, GPOPS[23] was used as a numerical solver

for an optimal control problem with both a relaxed optimal control case and a fixed mode

sequence hybrid optimal control case.

Table 8: Numerical values of constraints
ḣ[m/s] VCAS [kt] (B735/B764) γ[deg]

min -25.0 220/230 -6
max -2.54 340/360 0

3.7.2 Results of Relaxed Optimal Control Problems

The optimal solutions of the relaxed optimal control problem were calculated for two per-

formance indices: mintime and minfuel. These two results construct a feasible time range

of a CDA flight with a given environmental condition[50]. The formulation of the ECP

problem is applicable for general wind profiles, but since the feasible time range depends

on the wind for setting a feasible RTA condition, the wind is assumed to be zero. In a

zero wind condition, the feasible time range is 983.03 ∼ 1,130.06 sec for B735 and 972.39 ∼

1,112.47 sec for B764, respectively. Considering the feasible flight time range of two aircraft,

we pick three RTAs, which are 1,000 sec, 1,050 sec, and 1,100 sec, and calculate the fixed

RTA minimum fuel trajectories. The trajectory performances of several cases for the B735

and B764 are shown in Table 9 and 10, respectively. These results give the lower bound of

performance for the hybrid system approach.

Table 9: B735 optimal trajectory performances with various RTA conditions

Type TOD (nm) fuel (kg) ETA (sec)

mintime -103.32 416.24 983.03
RTA1000 -106.71 402.46 1000.00
RTA1050 -112.73 381.29 1050.00
RTA1100 -116.00 372.46 1100.00
minfuel -117.06 371.16 1130.06
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Table 10: B764 optimal trajectory performances with various RTA conditions

Type TOD (nm) fuel (kg) ETA (sec)

mintime -111.42 747.36 972.39
RTA1000 -116.83 702.70 1,000.00
RTA1050 -122.07 664.15 1,050.00
RTA1100 -124.54 650.78 1,100.00
minfuel -124.85 650.27 1,112.47

3.7.3 Results of Hybrid Optimal Control Problems

The performance results from the proposed sequential method using the same performance

indices and RTAs are shown in Table 11 and 12 for B735 and B764, respectively. The last

two columns in the tables, segments and sequence, are the results of a trajectory partition

and mode estimation of the sequential method. As shown in the tables, the estimated

mode sequence is dependent on optimal type, RTA, and aircraft type. If the RTA is close

to the lower limit, which is determined by the minimum time result, the CV mode with

the maximum allowable CAS is inserted to increase the descent speed to meet the RTA

condition. If the RTA is close to the upper bound, which is determined by the minimum

fuel result, the mode sequence result is the same as that of the minimum fuel case. For the

B735, the estimated mode sequence of the minimum fuel case is CD-CD-CD while for the

B764 it has a CD-CV-CD sequence. The minimum time case of the B764 has an additional

CM mode, when compared to the B735 case, to capture the constant Mach descent with

the maximum allowable Mach number.

The performance gaps between the lower bound and the optimal solutions from the

proposed method are very small for all simulation cases. The maximum performance gap is

less than 0.5 kg in fuel burn, 0.02 NM in TOD, and 1 sec in the flight time for both the B735

and B764 simulations. In the minimum time case, two results; the relaxed optimal solution

and the FMS applicable solution, are the same. As stated in chapter 2, the minimum time

trajectory is determined at a maximum performance limit such as the maximum CAS/Mach

and a maximum ROD/FPA. Therefore, it can be generated by a combination of FMS VNAV

modes with maximum mode parameters.
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Table 11: B735 optimal trajectory performances with various RTA conditions

Type TOD (nm) fuel (kg) ETA (sec) Segments Sequence

mintime -103.32 416.24 983.03 4 CP-CD-CV-CD
RTA1000 -106.71 402.46 1,000.00 5 CP-CD-CD-CV-CD
RTA1050 -112.74 381.33 1,050.00 3 CD-CD-CD
RTA1100 -116.00 372.46 1,100.00 3 CD-CD-CD
minfuel -117.05 371.17 1,129.90 3 CD-CD-CD(CP)

Table 12: B764 optimal trajectory performances with various RTA conditions

Type TOD (nm) fuel (kg) ETA (sec) Segments Sequence

mintime -111.42 747.36 972.39 5 CP-CD-CM-CV-CD
RTA1000 -116.83 702.77 1,000.00 4 CP-CD-CD-CD
RTA1050 -122.07 664.16 1,050.00 3 CD-CD-CD
RTA1100 -124.56 650.95 1,100.00 3 CD-CV-CD
minfuel -124.88 650.35 1,113.20 3 CD-CV-CD(CP)

The trajectory comparisons between the lower bound and the optimal solution from the

sequential method for the B735 and B764 are shown in Figures 25 and 26, respectively.

The left column represents the trajectories of the lower bound solutions, and the right

column represents the optimal trajectories obtained by the sequential method. As shown in

the Figures, the optimal speed and altitude profiles are quite similar to those of the lower

bound solutions in all RTA cases. As mentioned above, the minimum time trajectories are

identical in both cases. This result shows that the optimal solution from the sequential

method have a very similar performance to the lower bound solution from the relaxed

optimal control problems.

3.7.3.1 Results of Mode Estimation

In the sequential method, from STEP 1, the relaxed optimal control problem to STEP

3, the mode estimation is the procedure to find the optimal mode sequence to make a

similar trajectory to the lower bound solution. Hence, if the mode sequence is fixed for all

variations in wind, RTA, and aircraft type, the mode estimation procedure does not require

an onboard calculation in the FMS. This procedure can be an offline mode sequence design

procedure, and hence the computational load can be reduced significantly.
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(e) Relaxed solution: Alt.
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(f) Sequential Method: Alt.

Figure 25: Comparison of the optimal solutions of B735
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(f) Sequential Method: Alt.

Figure 26: Comparison of the optimal solutions of B764

62



In order to evaluate the possibility of this strategy and find a general optimal sequence

of modes for a fixed RTA fuel optimal trajectory generation in the FMS if possible, we

analyze the mode estimation procedure with various wind and RTA conditions. The mode

estimation results with various RTA and wind conditions are shown in Table 13. Note that

“tail” denotes a 20m/s tail wind, and a “head” denotes a -20m/s head wind.

Using the proposed rule, there are a total of four partitioned segments for mintime

trajectories applying three wind conditions; zero wind, a head wind, and a tail wind. The

resulting estimated mode sequences were the same as {CP CD CV CD}. This result

is exactly the same as with previous research[49]. In this previous research, the minimum

time CDA trajectory was generated with the existing VNAV function with the same VNAV

mode sequence as in Table 13. In the mintime trajectories, the first two segments, the CP

and the CD are for the maximum acceleration performance as shown in Fig.25 and 26. The

first mode in the mintime cases is CP and its minimum cost is zero because the control

input limit is active in this segment. However, the CD mode has very small cost values for

all cases below 0.02. That means the CD mode can be an alternative mode for the first CP

mode by accepting a small performance degradation.

The estimated mode sequence is {CP CD CD CV CD} in and RTA of 1000 in

a zero wind case. In this case, the first two CP-CD mode sequences are for the acceleration

during descent, and the mode parameters were determined at the limit for maximum accel-

eration. The period of the CP mode is also very short and the cost value is very close to the

CD mode. Therefore, similar to the minimum time case, the CP-CD mode can be approx-

imated by only the CD mode. Another interesting observation is that all cases except the

mintime case have three segments and same estimated mode sequence {CD CD CD}.

Here, the parameters of each segment are different while the modes are the same, which

means that the initial mode is a CD and all mode transitions are to the CD mode itself in

Fig.24

By this analysis, we propose {CD CD CV CD} as a general optimal mode se-

quence for the fixed RTA minfuel trajectory. To cover the feasible time range determined

by the minimum fuel and minimum time trajectories[48], a CV mode is added as the third

63



Table 13: B735 Mode sequencing algorithm results

Type wind segments mode seq.

mintime zero 4 {CP CD CV CD}
RTA1000 zero 5 {CP CD CD CV CD}
RTA1050 zero 3 {CD CD CD}
RTA1100 zero 3 {CD CD CD}
minfuel zero 3 {CD CD CD(CP )}
mintime tail 4 {CP CD CV CD}
RTA950 tail 3 {CD CD CD}
RTA1000 tail 3 {CD CD CD}
RTA1050 tail 3 {CD CD CD}
minfuel tail 3 {CD CD CD(CP )}
mintime head 4 {CP CD CV CD}
RTA1100 head 4 {CP CD CD CD}
RTA1150 head 3 {CD CD CD}
RTA1200 head 3 {CD CD CD}
minfuel head 3 {CD CD CP (CD)}

segment. This is a means of covering all mode sequences in Table 13. If the time interval

of the CV mode is small, we can make the trajectory similar to the trajectory generated by

the three CD modes.

3.7.4 Results with Fixed Mode Sequence

The optimal trajectories with the proposed optimal sequence {CD CD CV CD} were

calculated. The optimal profiles for the B735 with various RTA conditions are shown in

Figure 27. These results show that the optimal profiles with a given structure are very

similar to the lower bound solutions shown in Fig. 25. The numerical values of trajectories

generated by the proposed method are shown in Table 14. The optimal parameters for

modes of each case are shown in Table 15. These parameters are FMS inputs for generating

minimum fuel trajectory with an RTA constraint.

The feasible time range of trajectories with the proposed structure is 983.08∼1,131.12

sec. This result shows that performance degradation by restricting the trajectory structure

is negligible from the feasible time range point of view. In all cases, fuel burn differences from

the lower bound are below 0.2 kg. From this result, it is concluded that optimal solutions

with a fixed CD-CD-CV-CD mode have very similar performances when compared to those
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Table 14: B735 minfuel FMS trajectory performances with various RTA condition

Type TOD (nm) fuel (kg) ETA (sec)

mintime -103.32 416.20 983.08
RTA1000 -106.64 402.60 1000.00
RTA1050 -112.74 381.33 1050.00
RTA1100 -116.00 372.46 1100.00
minfuel -117.09 371.17 1131.12

Table 15: B735 optimal parameters of each mode with various RTA conditions

Type CD(ḣ[m/s]) CD(ḣ[m/s]) CV(VCAS [kt]) CD(ḣ[m/s])

mintime -24.27 -25.00 340.00 -2.54
RTA1000 -16.05 -17.49 340.00 -2.54
RTA1050 -9.28 -12.62 296.87 -2.54
RTA1100 -2.54 -10.80 268.76 -2.54
minfuel -2.54 -10.27 242.29 -9.59

of lower bound solutions in Table 9 or the optimal solutions from the sequential method in

Table 11.
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Figure 27: B735 Fixed Mode Sequence Solutions
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3.8 Conclusion

The trajectory generation method in the FMS VNAV framework was addressed for the

en-route descent portion of a CDA trajectory. For the successful CDA operation in the

TRACON area, an RTA constraint is given at a meter fix. The FMS trajectory generation

function was modeled as a hybrid system with four VNAV modes: CV, CD, CP, and

CM. With a hybrid system model of the FMS VNAV function, the en-route trajectory

generation problem was formulated as a hybrid optimal control problem. To design the

trajectory structure, which is a mode sequence in a hybrid system, the sequential method,

using the relaxed optimal solution was proposed. By analysis of the lower bound minimum

fuel trajectories with variations in RTA and wind profiles, we designed a single sequence

{CD CD CV CD}. Since the mode sequence is fixed for a CDA en-route trajectory

generation, the original hybrid optimal control problem was converted to a multi-phase

optimal control problem which can be solved relatively easily. By solving this problem,

optimal parameters of each mode are obtained, and these parameters are the FMS inputs

of a designed VNAV mode sequence. The proposed trajectory structure was evaluated by

numerical analysis, and the result showed that the performance of an optimal trajectory with

a given structure are very similar to the lower bound performances in various conditions.
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CHAPTER IV

ANALYSIS OF EN ROUTE DESCENT OPTIMAL TRAJECTORY

In this chapter, we analyze the relaxed optimal en-route trajectory formulated in chapter

3. To analyze the switching structure of the optimal solutions, we simplified the dynamics

with small angle approximation. From the necessary conditions for optimality, we analyze

the interior singular arc and boundary arc. Based on this analysis, the switching structure

is analyzed, and it provides the mode sequence for the sequential method.

4.1 Introduction

In the previous chapter, the method to solve optimal control problems of switched systems

was proposed and applied to the en-route descent trajectory generation problem using the

FMS VNAV modes. The algorithm uses the optimal solution of the relaxed optimal control

problem, and hence two optimal control problems have to be solved: the relaxed optimal

control problem, and a fixed-mode optimal control problem of a switched system. The

optimal mode sequence was analyzed for various wind and RTA conditions in the previous

chapter, and the common optimal mode sequence solution covered almost all cases. By

using this common mode sequence, the required computational load can be reduced.

An alternative method to reduce the computational time is to use analytic or semi-

analytic solutions instead of directly solving the relaxed optimal control problem. In this

chapter, we address the analysis of the en-route descent trajectory optimization problem by

using simplified dynamics. The simplified dynamics have an affine formulation with respect

to the control input, therefore, the optimal solution may have a singular arc as a part of the

solution[44]. An analysis of this singular arc is necessary to acquire information regarding

the structure of the optimal solution.

In the same framework as the previous chapter, the en-route trajectory optimization

problem is formulated as a two-phase optimal control problem since the flight range covers

the latter portion of the cruise segment. This original problem is converted to an equivalent
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single phase, free initial and final time optimal control problem with unknown cost index,

which is similar to the approach in [9]. The optimal trajectory is analyzed based on the

three possible subarcs; interior singular arc, nonsingular arc, and boundary arc. Based

on the analysis of the switching structure of the optimal solution, an algorithm can be

used to generate the optimal trajectory by forward and backward integration instead of

solving an optimal control problem using a numerical optimization method. The solution

from this proposed method can replace the solution of the relaxed optimal control problem.

Furthermore, the optimal mode sequence can be directly estimated from this solution. In

this manner, the computational time can be reduced significantly. The numerical examples

are presented to demonstrate the validity of this proposed method.

4.1.1 Singular Optimal Control

The equation of motion of an aircraft can be formulated in a nonlinear affine form in

control by using several assumptions such as a point mass and small angle approximation.

Furthermore, in many applications, the cost functional depends only on the state variables;

minimum time[46, 77], minimum fuel[7, 49, 48, 51], minimum DOC[8, 9, 21], minimum

energy[76], and maximum distance[22]. For this reason, the singular arc can be a part of

the optimal trajectory in those problems, and the singular optimal control have appeared in

many works of literature about aircraft trajectory optimization problems[7, 8, 21, 22, 46, 76].

In this chapter, the aircraft equations of motion presented in Chapter 2 are simplified

using a small angle approximation in the control input γ. As a result, the dynamics has

a control affine form. In addition, the performance indices of interest; fuel cost and emis-

sions cost are functions of vehicle state only (the detail formulation will be shown later).

Therefore, the analysis of a singular arc is studied.

4.1.2 Necessary Conditions for State Inequality in Constrained Problems

Necessary conditions for the optimality of the optimal control problems with state inequality

constraints have been studied in two ways: direct adjoining approach and indirect adjoin-

ing approach. In the direct adjoining approach, the necessary conditions are derived by
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directly adjoining the pure state inequality constraint to the cost functional with a La-

grange multiplier[35, 47]. On the other hand, in the indirect approach, the time derivative

of the pure state inequality which contains control are adjoined to the cost functional with

a Lagrange multiplier[6, 5]. The main difference of two approaches is the difference in the

Euler-Lagrange equations. The relationship of the Lagrange multipliers of both approaches

which are associated with state inequality or the time derivative of the state inequality are

explained in section 5 of [35]. In this chapter, the direct adjoining approach is used to

analyze the boundary arc conditions.

4.2 Mathematical Preliminaries

Presented in this section are a few theorems for analyzing the boundary arc on state in-

equality constrained optimal control problems. Jacobson and et al.[35] have studied the

necessary conditions for the junction points between interior arc and boundary arc with the

assumption that the Hamiltonian should be regular. The definition of regular Hamiltonian

is as follows:

Definition 4.1. The Hamiltonian H is said to be regular if along a given x(t), and λ(t),

H(u, x̄, λ̄) has a unique minimum u,t ∈ [0, T ].

Note that, if the cost functional is a function of the state variable only, and the dynamics

has an affine form in control, Hamiltonian fails to be regular. Therefore, the junction

theorems in [35] cannot be used in this case. Maurer[44] addressed this problem and derived

the following two junction theorems to address this issue.

Theorem 4.1 (Theorem 5.1 in [44]). Let t1 be the time at which an interior nonsingular

arc and a boundary arc of an optimal control u are joined. Let u(r), r ≥ 0, be the lowest

order derivative of u which is discontinuous at t1 and let p be the order of state inequality

and q be the order of a singular arc. Let p ≤ 2q + r. If ν(t1) > 0, then p + r is an even

integer.

Theorem 4.2 (Theorem 5.4 in [44]). Let t1 be a point where an interior singular arc and

a boundary arc of an optimal control u are joined. Let q be the order of the singular arc
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and assume that the strengthened GLC-condition holds. Let u(r), r ≥ 0, be the lowest order

derivative of u which is discontinuous at t1 and let p ≤ 2q + r. Then ν(t1) = 0, and q + r

is an odd integer.

Note that Theorem 4.1 is for the junction point between the interior nonsingular arc

and boundary arc, and Theorem 4.2 is for the junction point between the interior singular

arc and boundary arc.

4.3 Optimal Control Problem Formulation

In this section, we modify Problem 3.4 with simplified dynamics. First, we will introduce

the new simplified dynamics and formulate the optimal control problem to be solved in this

chapter.

4.3.1 Flight Dynamic Model

Since the lateral path of an arrival procedure is typically provided by the STAR, we con-

sider only the vertical path or motion in this chapter. Furthermore, from the small angle

approximation on γ , which results in sin γ ≈ γ and cos γ ≈ 1, the aircraft equations of

motion in Eq. (8) ∼ (13) in Chapter 2 can be simplified as follows:

V̇T =
1

m
(T −D)− gγ − VTγ

(
c(VT , h)

dWh

dh
+ s(VT , h)

dWc

dh

)
(66)

ẋs = c(VT , h)VT +Wh (67)

ḣ = VTγ (68)

where, VT is the true airspeed of aircraft, xs is the along track distance from the runway

threshold; h is the altitude; γ is the aerodynamic flight path angle; Wh and Wc are the

altitude dependent horizontal wind speed and cross wind speed, respectively; dWh/dh and

dWc/dh are the wind shear terms. c(VT , h) = cosψw and s(VT , h) = sinψw. Here, the

aircraft mass m is considered constant during the entire en-route descent phase similar to

the assumption in Chapter 2. The lift force L and drag force D are given by

L =
1

2
ρ(h)V 2

T SCL = mg (69)

D(h, VT ) =
1

2
ρ(h)V 2

T SCD(VT , h, CL) (70)
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where ρ is the air density which is a function of h, and CL and CD are the lift and the

drag coefficients, respectively. The International Standard Atmosphere (ISA) model is used

for ρ(h). Assuming that the lift force is equal to gravity in Eq. (69), CL = CL(VT , h), the

drag in Eq. (70) is a function of VT and h also. During the descent segment, thrust T is

set to flight idle thrust. Generally, as done in several airframe manufacturer’s performance

models and BADA, flight idle thrust is modeled as a function of VT and h . Therefore, γ is

the only control input during the flight idle descent segment.

4.3.2 Environmental Cost Indices

In this study, fuel burn and emission costs are used as environmental cost indices. Since the

en-route descent trajectory consists of two phases; cruise and descent, the cost functional is

defined as a summation of the cost of the cruise segment plus that of the flight idle descent

segment. From the wind speed assumption, the ground speed is constant during the cruise

flight. Therefore, the cost for the cruise phase can be expressed as the Mayer cost term. For

this reason, the optimal control problem for the en route descent part of CDA is formulated

as a single phase optimal control problem. The cost functional form is given by

J = Kcr(xs(t0)− dmax) +

tf∫
t0

Kdes(VT , h) dt (71)

where Kcr is the cruise cost coefficient which is the cost per distance, and Kdes is the flight

idle descent cost coefficient which is the cost per time; dmax is the along track distance

from the runway threshold to the initial waypoint of the CDA procedure; xs(t0) is the Top

of Descent (TOD) point. From Lemma 2.1, dmax does not affect the optimal solution if

dmax < xs(t0). Note that since the runway threshold is set as the origin, and dmax is set to

a negative value, this inequality means dmax should be strictly farther than the TOD.

The fuel cost and emission cost can be expressed as follows:

� Fuel burn cost

Kcr =
ḟcr
Vcr

Kdes(VT , h) = ḟidle(VT , h)

(72)
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� Emission cost

Kcr =
EIX ḟcr
Vcr

Kdes(VT , h) = EIX(VT , h)ḟidle(VT , h)

(73)

where ḟcr and ḟidle denote fuel flow rate in the cruise segment and the flight idle de-

scent segment, respectively; EIX denotes the emission index, and subscript X denotes the

emission gas types:CO, HC, and NOx.

The emission index table can be obtained from the International Civil Aviation Orga-

nization (ICAO) engine exhaust emissions databank[1], and EI is interpolated by Boeing

method2 (BM2) which is the EI correction method considering the airspeed and atmo-

spheric conditions such as temperature, pressure, and humidity[16]. Since the flight idle

fuel flow rate is a function of Mach number and h, EI obtained by BM2 is also a function

of VT and h. Therefore, Kdes in Eq. (71) can be expressed as Kdes(VT , h) in both the fuel

and emission cost cases. Therefore, the combination of the two performance indices can be

formulated as Eq. (71) also.

4.3.3 Constraints for CDA

The path constraints of Problem 3.4 are applied to the problem in this chapter. CAS

bound, Mach number bound, Rate of Descent (ROD) bound, and flight path angle bound

are accounted for in the flight envelope protection and passenger comfort consideration.

Since CAS and Mach are functions of VT and h, CAS/MACH bound constraints are the

pure state inequality constraints. The detail formulations of these are in Eq. (51) and (61).

Boundary conditions are given in Eq. (74) and (75). CAS speed and altitude constraints

are usually given at a meter fix from the published STAR chart. The operational constraint

in the terminal area is considered by adding the RTA constraint at the meter fix. The RTA

is defined as a flight time from dmax to the meter fix. The initial descent time t0 is the

flight time associated with the cruise segment. The initial manifold in Eq. (76) is added for

time continuity.
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� Boundary conditions

VT (t0) = VT0, h(t0) = h0, xs(t0) = free, t0 = free (74)

VT (tf ) = VTf , h(tf ) = hf , xs(tf ) = sf , tf = RTA (75)

xs(t0) ≥ dmax, Φ(xs(t0), t0) = (xs(t0)− dmax)/Vcr − t0 = 0 (76)

4.3.4 Problem Formulation

By combining the flight dynamics, cost functionals, and constraints, the constrained optimal

control problem for the en-route trajectory optimization is defined as follows:

Problem 4.1 (Original Problem). Consider the following optimal control problem

minimize
γ

J in Eq. (71)

s.t.

V̇T =
1

m
(T −D)− gγ − VTγ

(
c(VT , h)

dWh

dh
+ s(VT , h)

dWc

dh

)
ẋs = c(VT , h)VT +Wh

ḣ = VTγ

ḣmin ≤
dh

dt
≤ ḣmax

γmin ≤ γ ≤ γmax

Vmin,CAS ≤ VCAS(t) ≤ Vmax,CAS

Mmin ≤M(t) ≤Mmax

boundary conditions : Eq. (74) ∼ (76)

(77)

4.4 Analysis of the Optimal Trajectory

To analyze the optimal solution of the Problem 4.1, first we will find the equivalent free ini-

tial and final time optimal control problem. Then, we will analyze the necessary conditions

using direct adjoining approaches in [28, 35] with the equivalent optimal control problem.

4.4.1 Equivalent Optimal Control Problem

Consider the following Problem 4.2 which is the mixed cost problem with free final time.
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Problem 4.2 (Mixed Cost with free final time problem).

min
γ

J + cttf

s.t.

dynamic constraints: Eq. (66) ∼ (68)

path constraints : Eq. (29) ∼ (33)

boundary conditions : Eq. (74) ∼ (76) but tf is free

(78)

The following lemma shows that Problem 4.1 and 4.2 are equivalent if tf of both problems

are the same.

Lemma 4.1. Assume that the optimal solution of Problem 4.1 is unique. The optimal so-

lutions of the Problem 4.1 and the Problem 4.2 are identical if the optimal tf of Problem 4.2

is the same as the RTA of Problem 4.1.

Proof. Let (x1, γ1) and (x2, γ2) be the optimal solution pairs of Problem 4.1 and Prob-

lem 4.2, respectively. By this assumption, tf are the same in both problems. Since the

constraints of the two problems are the same, (x1, γ1) is a feasible solution of Problem 4.1

and vice versa. This implies the following two relationships:

J(u2) + cttf ≤ J(u1) + cttf (79)

J(u1) ≤ J(u2) (80)

From the above relations,

J(u1) = J(u2) (81)

Therefore, (x2, γ2) is the optimal solution of Problem 4.1 and vice versa. From the assump-

tion of the uniqueness, (x1, γ1) = (x2, γ2).

Consider the other optimal control problem:
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Problem 4.3.

min
γ

J =

tf∫
t0

−
(
Kcr +

ct
Vcr

)
(cVT +Wh) +Kdes(VT , h) + ct dt

s.t.

dynamic constraints: Eq. (66) ∼ (68)

path constraints : Eq. (29) ∼ (33)

boundary conditions : Eq. (74) ∼ (76)

(82)

The following lemma shows that Problem 4.3 is equivalent to the Problem 4.2.

Lemma 4.2. Let x∗s(t0) be the optimal TOD of Problem 4.3. If x∗s(t0) ≥ dmax, Problem 4.3

is equivalent to the Problem 4.2.

Proof. Since x∗s(t0) ≥ dmax, the optimal solution of Problem 4.3 is a feasible solution of

Problem 4.2. Furthermore, adding constant term
(
Kcr + ct

Vcr

)
(xs(tf ) − dmax) to the cost

functional of Problem 4.3 does not change the optimal solution. Hence, the optimal solution

of Problem 4.3 is the optimal solution with the following cost functional:

J =

(
Kcr +

ct
Vcr

)
(xs(tf )−dmax)+

tf∫
t0

−
(
Kcr +

ct
Vcr

)
(cVT +Wh)+Kdes(VT , h)+ct dt (83)

From Eq. (11)

xs(tf )− xs(t0) =

tf∫
t0

cVT +Wh dt. (84)

Substituting Eq. (84) into Eq. (83), we can get the equivalent cost functional

J =

(
Kcr +

ct
Vcr

)
(xs(t0)− dmax) +

tf∫
t0

Kdes(VT , h) dt + ct(tf − t0) (85)

Since xs(t0) − dmax = t0Vcr, by substituting this into Eq. (85), we can get the equivalent

cost functional expressed as

J = Kcr(xs(t0)− dmax) +

tf∫
t0

Kdes(VT , h) dt + cttf , (86)

which is the same as the cost functional of Problem 4.2. Therefore, the optimal solution of

Problem 4.3 is the optimal solution of Problem 4.2.
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From the Lemma 4.1 and 4.2, Problem 4.3 is equivalent to Problem 4.1 if tf of both

problems are the same. Hence, we use Problem 4.3 to derive the necessary conditions.

4.4.2 Necessary Conditions

The Hamiltonian for Problem 4.3 is defined as follows:

H = −Kt
cr(cVT+Wh)+Kdes(VT , h)+ct+λV (

T −D
m
−gγ−VTγWh,χ)+λx(cVT+Wh)+λhVTγ

(87)

where λV , λx, and λh are the costate variables corresponding to the state variables VT , xs

and h, respectively. In Eq. (87), Kt
cr = Kcr + ct

Vcr
, and Wh,χ = cdWh

dh + sdWc
dh .

As stated previously, we follow a direct adjoining approach in [35] for the analysis of the

necessary conditions. The Lagrangian L including path constraints is given by

L = H + µTC(VT , h, γ) + ηTS(VT , h) (88)

where inequality constraints C(VT , h, γ) : R3 → Rq and S(VT , h) : R2 → Rs represent mixed

path constraints and pure state inequality in Problem 4.3, respectively; µ ∈ Rq and η ∈ Rs

are the Lagrange multipliers for mixed and pure state inequality constraints, respectively.

The following equations are the necessary conditions for the optimality of the Prob-

lem 4.3[28]. From the Euler-Lagrange equations,

λ̇V = − ∂L

∂VT

= (Kt
cr − λx)

(
c+

∂c

∂VT
VT

)
− ∂Kdes

∂VT

+ λV (
1

m

∂D̃

∂VT
+ Wh,χγ +

∂Wh,χ

∂VT
VTγ)− λhγ − µT

∂C

∂VT
− ηT ∂S

∂VT

(89)

λ̇x = − ∂L
∂xs

= 0 (90)

λ̇h = −∂L
∂h

= (Kt
cr − λx)

(
∂c

∂h
VT +

dWh

dh

)
− ∂Kdes

∂h

+ λV (
1

m

∂D̃

∂h
+ VTγ

∂Wh,χ

∂h
)− µT ∂C

∂h
− ηT ∂S

∂h

(91)

where D̃ = D − T , which means the net drag force. From the Karush-Kuhn-Tucker
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(KKT) conditions,

µ ≥ 0, µTC(VT , h, γ) = 0,

η ≥ 0, ηTS(VT , h) = 0.

(92)

The jump condition at a contact point or junction point ti is as follows[35]:

λV (t+i ) = λV (t−i )− νi
∂Sa
∂VT

(93)

λx(t+i ) = λx(t−i )− νi
∂Sa
∂x

(94)

λx(t+i ) = λh(t−i )− νi
∂Sa
∂h

(95)

where Sa is an active state inequality. Since state inequalities are independent of time and

xs, for any time τ on the boundary arc where S(VT , h) = 0, λx is continuous with respect

to time at a junction or contact point.

λx(τ−) = λx(τ+) (96)

The optimal control γo is determined by the following minimum principle[28]:

γo = argminγ∈Ω(VT ,h)H (97)

Lγ = Hγ + µTCγ = 0 (98)

where Ω(VT , h) = { γ | C(VT , h, γ) ≤ 0 } is the admissible control set, and is dependent on

the state variable VT and h.

From the initial manifold constraint in Eq. (76) and the initial and final time free

conditions in Eq. (74) and (75), the following transversality conditions hold:

λx(t0) = −ν0
∂Φ

∂xs
= − ν0

Vcr
(99)

H(t0) = ν0
∂Φ

∂t0
= −ν0 (100)

H(tf ) = 0 (101)

where ν0 is the Lagrange multiplier for the initial manifold.

The Hamiltonian is constant along the optimal trajectory since the Hamiltonian in

Eq. (88) is not an explicit function of time. Hence, Eq. (100) and (101) imply

H(t) = −ν0 = 0 for t ∈ [t0, tf ] . (102)
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Since λx is constant on the optimal trajectory from the Eq. (90) and (96). In addition,

from (99) and (102),

λx(t) = − ν0

Vcr
= 0 for t ∈ [t0, tf ] . (103)

The solution of the constrained optimal control problem can be grouped by two subarcs:

the interior arc on which S(VT , h) < 0 and the boundary arc on which at least one of the

components of S(VT , h) is zero. Therefore, analyses of both subarcs are necessary to solve

the constrained optimal control problem 4.3.

4.4.3 Interior Arc

First, assume that all the state constraints S(VT , h) are not active. Then η is set to zero.

By the minimum principle in Eq. (97), the optimal control input γ is determined as

γo =


γmax if Hγ < 0

γ̃ if Hγ = 0

γmin if Hγ > 0

(104)

where γ̃ is the singular control, and γmax and γmin are determined by Ω(VT , h). The switch-

ing function Hγ in Eq. (104) is given by

Hγ = −λV (g + VTWh,χ) + λhVT . (105)

For the analysis of the singular arc, assume that Hγ is zero during a singular arc interval.

Then, from the zero Hamiltonian in Eq. (102), the remaining term H0 is

H0 = −Kt
cr(cVT +Wh) +Kdes − λV

D̃

m
+ ct = 0. (106)

The singular control and singular arc are obtained by the time derivatives of Hγ and

Eq. (102) and (106). From Hγ = 0,

(g + VTWh,χ) =
λh
λV

VT . (107)

By differentiating Eq. (105) and inserting time derivatives of costate and state variables

Eq. (107), Ḣγ is expressed as

Ḣγ = Kt
cr

[
−
(
c+

∂c

∂VT
VT

)
λh
λV

VT +
∂c

∂h
V 2
T + VTWh,χ

]
+
∂Kdes

∂VT

λh
λV

VT −
∂Kdes

∂h
VT

+
λV
m

[
D̃

(
Wh,χ +

∂Wh,χ

∂VT

)
+
∂D̃

∂h
VT

]
− λh
m

(
∂D̃

∂VT
VT + D̃

)
= 0.

(108)
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From H0 = Hγ = 0, λV and λh can be expressed as

λV
m

=
1

D̃
(−Kt

cr(cVT +Wh) +Kdes + ct)

λh
m

=
λV
m

1

VT
(g + VTWh,χ).

(109)

By substituting Eq. (109) into Eq. (108), the final formulation of the singular arc Γs(VT , h)

is obtained as

Γs(VT , h) = −ḢγD̃

=
[
−ct +Kt

cr(cVT +Wh)−Kdes(VT , h)
] [
VT
∂D̃

∂h
− ∂D̃

∂VT
(g + VTWh,χ) + D̃

∂Wh,χ

∂VT

]

− D̃
[
Kt
cr

(
cg +

Wh

VT
g −

(
c+

∂c

∂VT
VT

)
(g + VTWh,χ) +

∂c

∂h
V 2
T + VTWh,χ

)]
− D̃

[
−Kdes

VT
g − ctg

VT
+
∂Kdes

∂VT
(g + VTWh,χ)− ∂Kdes

∂h
VT

]
= 0

(110)

Since the singular arc Γs(VT , h) in Eq. (110) is not an explicit function of control γ, a

second time derivative Ḧγ is needed to obtain the analytic formulation of optimal singular

control γ̃. From Eq. (66) and (68),

Ḧγ =
∂Ḣγ

∂VT
V̇T +

∂Ḣγ

∂h
ḣ

= −∂Ḣγ

∂VT

D̃

m
+

(
−∂Ḣγ

∂VT
(g + VTWh,χ) +

∂Ḣγ

∂h
VT

)
γ = 0

(111)

Hence,

γ̃ =
∂Ḣγ

∂VT

D̃

m

(
−∂Ḣγ

∂VT
(g + VTWh,χ) +

∂Ḣγ

∂h
VT

)−1

(112)

Furthermore, if the singular arc is a part of the optimal trajectory, the following Gen-

eralized Legendre-Clebsch (GLC) condition should be satisfied:

∂

∂γ

[
d2

dt2
Hγ

]
≤ 0. (113)

Proposition 4.1. Assume that the solution of Γs(VT , h) = 0 in Eq. (110) is unique for fixed

h in every h ∈ {hf ≤ h ≤ h0}. Furthermore, suppose the following conditions are satisfied:

1.
∂Ḣγ
∂VT

> 0 on the singular arc in Eq. (110);
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2. dVT
dh ≥ −( g

VT
+ Wh,χ) holds;

Then, the GLC condition in Eq. (113) holds on the singular arc in Eq. (110).

Proof. From Eq. (111) and (113),

∂

∂γ

[
d2

dt2
Hγ

]
= −∂Ḣγ

∂VT
(g + VTWh,χ) +

∂Ḣγ

∂h
VT . (114)

From the Implicit Function Theorem, dVTdh = − ∂Ḣγ/∂h

∂Ḣγ/∂VT
. Hence, the condition 2 implies that

− ∂Ḣγ/∂h

∂Ḣγ/∂VT
≥ −(

g

VT
+ Wh,χ),

and hence GLC condition in Eq. (113) holds with the condition 1 and Eq. (114).

Remark 3. The assumption of the uniqueness of the solution of Γs(VT , h) = 0 implies that

Γs(VT , h) value of the right side of the singular arc in the VT −h diagram is either positive or

negative. Condition 1 in Proposition 4.1 implies that the right side of curve has a positive

Ḣγ , and hence Γs < 0 (Γs = −ḢγD̃). In both minimum fuel and minimum NOx cases, this

condition is satisfied as shown in Fig. 28 and 29.

Remark 4. In nominal wind case Wh,χ ≥ 0. Hence, the right side of the condition 2 in

Proposition 4.1 is negative. Figures 28 and 29 show that the singular arcs with various ct

values satisfy the condition 2 in Proposition 4.1.

As shown in Figures 28 and 29, conditions 1 and 2 in Proposition 4.1 holds for various

ct values, and hence GLC condition holds.

4.4.4 Boundary Arc

In the analysis of boundary arc, it is assumed that the mixed state inequality C(VT , h, γ) is

not active on the boundary arc. Therefore, µ(t) = 0, t ∈ [t1, t2]. This assumption is reason-

able because the flight path angle during the flight idle descent with maximum/minimum

constant MACH/CAS is within the bound of the flight path angle limit. This assumption

implies that the boundary arcs are singular arcs.
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Figure 28: B737-500 minimum fuel singular arc and slope in various ct values
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Figure 29: B737-500 minimum NOx singular arc and slope in various ct values

The following conditions are the necessary conditions for the optimality when the opti-

mal trajectory has boundary arc intervals:

Lγ(VT , h, γ, λV , λh) = Hγ = 0 in Eq. (105)

H0(VT , h, λV , λh) = 0 in Eq. (106)

Sa(VT , h) = 0

Ṡa(VT , t, γ) = 0

λ̇V = − ∂H
∂VT

− ηa
∂Sa
∂VT

λ̇h = −∂H
∂h
− ηa

∂Sa
∂h

ηa(t) ≥ 0, t ∈ [t1, t2]

(115)
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The active state inequality constraint Sa = 0 gives the relationship between VT and

h. Since Sa(VT , h) is the first order state inequality in this problem, which means that γ

related terms revealed in the first time derivative Ṡa, γ on the boundary arc can be obtained

from the Ṡa = 0, and it has an explicit formulation as

γba = −
[
∂Sa
∂VT

(g + VTWh,χ)− ∂Sa
∂h

VT

]−1 ∂Sa
∂VT

D̃

m
. (116)

Lemma 4.3. If the boundary arc is a part of the optimal trajectory, the Lagrange multiplier

of the active state inequality ηa is expressed as

ηa = −mγba
D̃2

Γs(VT , h)
∂Sa
∂VT

−1

(117)

where, Γs(VT , h) is in Eq. (110).

Proof. Since boundary arc is a singular arc by the assumption, Hγ = Ḣγ = 0. From the

time derivative of Eq. (105),

Ḣγ = Ḣγs + ηa

[
∂Sa
∂VT

(g + VTWh,χ)− ∂Sa
∂h

VT

]
= 0, (118)

where Ḣγs is the same as Eq. (108), and hence Ḣγs = −Γs
D̃

.

From Eq. (116), [
∂Sa
∂VT

(g + VTWh,χ)− ∂Sa
∂h

VT

]
= − D̃

mγ

∂Sa
∂VT

. (119)

Eq. (117) is obtained by substituting Eq. (119) into Eq. (118).

Note that Γs(VT , h) is not zero for ∀τ ∈ [t1, t2] on the boundary arc, where [t1, t2] is the

boundary arc interval.

Proposition 4.2. If the boundary arc is a part of the optimal trajectory, Γs(VT , h) ∂Sa∂VT
≥ 0

on the boundary arc.

Proof. From the necessary condition in Eq. (115), ηa ≥ 0. From Lemma 4.3, −mγ/D̃2 is

always positive during the descent. Therefore, if the boundary arc is a part of the optimal

trajectory, Γs(VT , h) ∂Sa∂VT
should be nonnegative on the boundary arc.
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The possible boundary arc that satisfies the necessary condition is obtained by Proposi-

tion 4.2. The analysis of the possible boundary arcs of the CAS bound are shown in Fig. 30.

The bold lines represent the possible boundary arcs that can be a part of optimal trajectory

when a singular arc crosses the state inequality bound. Though the CAS bound case in

Eq. (29) is considered only in Fig. 30, the MACH bound case can be analyzed in the same

manner.

Figure 30: Boundary arcs satisfying necessary conditions

4.4.5 Continuity of Adjoint Variables

The adjoint variables λV and λh can be discontinuous at the junction point of the boundary

arc from the jump condition in Eq. (93) ∼ (95). In addition, the adjoint variables can have

discontinuities at any time for the boundary arc interval [t1, t2][28]. Since the boundary

arc is a singular arc from the assumption that C(VT , h, γ) < 0, λV and λx have the same

formulations with those in the interior singular arc in Eq. (109). This implies that λV and

λh are continuous on the boundary arc. Therefore, the only possible discontinuous points

are the junction points of the boundary arc. The following lemmas shows the continuity of

the adjoint variables at the junction points of the boundary arc.

Lemma 4.4. Both λV and λh are continuous at time t1 at which an interior nonsingular

arc and a boundary arc of an optimal control u are joined.
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Proof. Let u(r), r ≥ 0, be the lowest order derivative of u which is discontinuous at t1, and

let p be the order of state inequality, and q be the order of singular arc. Here, r = 0, and

p = 1 from the Eq. (110). Therefore, p+ r = 1 which is an odd integer. From the junction

point theorem 5.1 in [44], since p+ r is an odd integer, ν(t1) = 0. This implies that λV and

λh are continuous at t1 with the Eq. (93) and (95).

Lemma 4.5. Assume that the strengthened GLC-condition holds. Then, both λV and λh

are continuous at time t1 at which an interior singular arc and a boundary arc of an optimal

control u are joined.

Proof. Let u(r), r ≥ 0, be the lowest order derivative of u which is discontinuous at t1, and

let p be the order of state inequality, and q be the order of singular arc. In this problem,

q = 1 from the Eq. (110) and p = 1 from the CAS/MACH formulation. This implies

p ≤ 2q + r. Therefore, ν(t1) = 0 from the junction point theorem 5.4 in [44]. Hence, λV

and λh are continuous at t1 from the Eq. (93) and (95).

The above two lemmas conclude the following proposition.

Proposition 4.3. Both λV and λh are continuous on the entire optimal trajectory.

Proof. From Lemma 4.4 and 4.5, both λV and λh are continuous at junction points where a

boundary arc and an interior arc are joined. In addition, λV and λh are continuous on both

interior arc and boundary arc from Eq. (89) and (91). Hence, λV and λh are continuous for

the entire optimal trajectory.

4.5 Optimal Trajectory Generation

In this section, we present the optimal trajectory generation algorithm based on the analysis

results in the previous section. The algorithm consists of two parts: the optimal trajectory

generation of Problem 4.3 with given ct, and the finding of ct to meet the RTA constraint.

The overall procedure of the trajectory generation method is shown in Figure 31.

The algorithm A in Figure 31 generates the optimal trajectory by the combination of a

nonsingular arc, an interior singular arc, and a boundary arc. The trajectory is calculated

by forward and backward integrations without solving the optimal control problem directly.
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Figure 31: Algorithm

Therefore, it can be implemented in the FMS without additional computational capability.

For the updating ct to meet the RTA constraint, the gradient of RTA dRTA
dct

should be

calculated. In this thesis, this gradient is calculated numerically.

4.5.1 Algorithm A

The proposed optimal trajectory generation algorithm is as follows:

STEP 1. Find the singular arc Γs(VT , h) = 0 in Eq. (110) using a numerical method (In this

thesis, Newton-Raphson method is used).

STEP 2. Find the initial segment of the optimal trajectory by forward integration of the equa-

tions of motion in Eq. (66) ∼ (68) from the initial point with either γmax or γmin in

Ω(VT , t). The control input is determined so that the trajectory moves toward the

singular arc. The integration stops when the trajectory reaches either the possible

boundary arc or the interior singular arc.

STEP 3. Find the last segment of the optimal trajectory by backward integration of the equa-

tions of motion from the terminating point with either γmax or γmin in Ω(VT , t). The

control input is determined so that the trajectory moves toward the singular arc. The

backward integration stops when the trajectory reaches either the possible boundary

arc or the interior singular arc.
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STEP 4. Calculate the trajectory from the junction point of STEP 2 to the junction point of

STEP 3 following either the boundary or interior singular arc.

In STEP 4, if the type of the junction points in STEP 2 and 3 are different, the trajectory

generated in STEP 4 is switched from singular arc to the boundary arc or vice versa at

least once.

The expected optimal trajectories with different ct values are shown in Fig. 32. Since

the singular arc Γs(VT , h) = 0 changes according to ct, the possible boundary arcs changes

according to Proposition 4.2. The nonsingular controls in STEP 2 and 3 can be changed

based on ct value also. Therefore, ct is one of the significant factors in determining the

structure of the optimal trajectory as shown in Fig. 32. In case 1 of Fig. 32, junction points

Figure 32: Structure of the optimal trajectory

of STEP 2 and STEP 3 are on the boundary arc for the lower CAS bound, and interior

singular arc, respectively. Therefore, the structure of the optimal trajectory is a nonsingular

arc with γmax - boundary arc for the lower CAS bound - interior singular arc - nonsingular

arc with γmin. On the other hand, the junction points of STEP 2 and STEP 3 in case 2

are the interior singular arc and boundary arc, respectively. Therefore, the structure of the

optimal trajectory is a nonsingular arc with γmin - interior singular arc - boundary arc for

the upper CAS bound - nonsingular arc with γmax.
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4.5.2 Optimality Check

In this trajectory generation algorithm, we assume that the initial and the final parts of the

trajectory, which move toward the singular arc in STEP 2 and 3, are parts of the optimal

solution. To check if these parts are satisfied the necessary conditions, the sign of Hγ should

be known. From the Proposition 4.3, the adjoint variables λV and λh are continuous at the

junction points in STEP 2 and 3. Therefore, the values of λV and λh at junction point are

known from Eq. (98) and (106). From Eq. (102), λV can be expressed as a function of VT ,

h, and λh. Then Eq. (91) is expressed as follows:

λ̇h = Kt
cr

(
∂c

∂h
VT +

dWh

dh

)
−∂Kdes

∂h
+
λhVTγ + (Kdes −Kt

cr(cVT +Wh))

D̃ +m (g + VTWh,χ) γ

(
∂D̃

∂h
+mγVT

∂Wh,χ

∂h

)
.

(120)

From the continuity of λh, the values of λh at the junction points in STEP 2 and STEP

3 are known. The value at the junction point in STEP 2 is the final value of the initial

segment, and the value of STEP 3 is the initial value of the final segment. By integrating

Eq. (120) with the known values at the junction points in the backward direction along the

initial segment or in the forward direction along the final segment, λh(t) can be calculated.

From H = 0 and known λh, λV also can be calculated. Therefore, the time history of Hγ

is obtained from Eq. (105), and the optimality condition can be verified by Eq. (104). The

trajectory generated by the proposed algorithm has satisfied this necessary condition, as

will be shown by numerical examples.

4.6 Numerical Example

Both the minimum fuel and NOx trajectories with various RTA and wind conditions are

analyzed using two aircraft types: B737-500 (B735) and B767-400 (B764). Since Kdes and

D̃ are functions of VT and h, which are quite general, various performance models can be

adopted for the formulation derived in previous sections. BADA from EuroControl[2] is

used as a performance data in this chapter. The boundary conditions are given in Table 16.

The maximum range dmax is set to -150 NM, which is large enough to satisfy the assumption

in Lemma 4.2. The numerical values of the path constraints in Eq. (29) ∼ (33) are given

in Table 17.
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Table 16: Boundary condition for numerical example

Initial Condition Final Condition

VCAS (Kt) h (ft) xs (NM) VCAS (Kt) h (ft) xs (NM)
265 35,000 > dmax 250 13,000 -40

Table 17: Path constraints of B735 and B764
B737-500 B767-400

min max min max

MACH 0.45 0.82 0.45 0.86
CAS (Kt) 220 340 230 360
ROD (m/s) -25.0 -2.54 -25.0 -2.54
γ (deg) -6 0 -6 0

4.6.1 Fuel optimal trajectory

The structure of the optimal trajectory depends on the RTA constraint. The RTA effect

on the fuel optimal trajectories are shown in Fig. 33 for B735 and Fig. 34 for B764. Here,

RTA is given as the flight time from dmax to the meter fix, which is the terminal point in

Table 16. As RTA increases, the types of the first and the last nonsingular arcs changes

from the γmin, which represents either the maximum ROD or the maximum descent angle,

to the γmax, which represents the minimum ROD.

The RTA curve as a function of ct and the pareto curve between RTA and fuel perfor-

mance are shown in Fig. 35. Since ct represents the ratio between time and fuel costs, the

RTA decreases as ct value increases. At a certain point, the RTA does not decrease with ct

increases. The RTA converges to the minimum value, which is the minimum time case in

Fig. 33. In the minimum time case, the singular arc with given ct value is larger than the

upper bound of MACH/CAS, and hence the structure of the trajectory is the nonsingular

arc - boundary arc with the maximum MACH/CAS - nonsingular arc. On the other hand,

if ct is zero, the trajectory represents the minimum fuel case in Fig. 33.
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Figure 33: Fuel optimal trajectories of B735 with various RTA conditions. Wind is zero.
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Figure 34: Fuel optimal trajectories of B764 with various RTA conditions. Wind is zero.
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Figure 35: Performance bound results of B735 with various ct. Wind is zero.
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4.6.1.1 Horizontal Wind Effect

The fuel optimal trajectories with various wind conditions with a given 950 sec RTA are

shown in Fig. 36 and 37. The positive/negative wind represents the tail/head wind case.

The wind affects the structure of the optimal trajectory. In the B735 case, the optimal

trajectory includes the boundary arc on the upper bound of CAS when wind is -10 m/s.

The wind also affects the TOD point. The TOD points moves farther from the runway as

wind increases (tail wind increases). The type of nonsingular arc is changed according to

wind. In a strong tail wind case, the initial bang is the γmax to decelerate for both B735 and

B764. However, in the tail wind case, the initial bang is the γmin for the steepest descent.
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Figure 36: Fuel optimal trajectories of B735 with various wind conditions (RTA:950 sec).
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Figure 37: Fuel optimal trajectories of B764 with various wind conditions (RTA:950 sec).
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4.6.1.2 Cross wind effect

To evaluate the cross wind effect, we compare two different cross wind cases, Wc = 0m/s

and 30m/s, in which horizontal wind components are both zero (RTA is set to 800 sec).

The optimal trajectories of both the B735 and B764 are shown in Fig. 38 and 39. The

optimal structures for two different cross wind cases are the same; nonsingular - singular -

boundary - nonsingular arc. The cross wind component affects the singular arc to meet the

same RTA constraint at a meter fix. For a stronger cross wind, one has higher speed on the

singular arc, and hence the TOD point moves toward runway threshold. Therefore, for the

correct prediction of TOD, the cross wind should be considered in the formulation.

-140 -120 -100 -80 -60 -40
220

240

260

280

300

320

340

360

V
C

A
S (

kn
ot

s)

along track distance (NM)

 

 

W
c
=0 m/s

W
c
=30 m/s

(a) Speed profiles

-140 -120 -100 -80 -60 -40
1

1.5

2

2.5

3

3.5
x 10

4

H
ei

gh
t 

(f
t)

along track distance (NM)

 

 

W
c
=0 m/s

W
c
=30 m/s

(b) Altitude profiles

Figure 38: B735 fuel optimal trajectories with different cross winds, RTA : 800 sec
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Figure 39: B764 fuel optimal trajectories with different cross winds, RTA : 800 sec
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4.6.1.3 Wind Shear Effect

The effect of the wind shear term on the optimal trajectories is analyzed by a comparison of

the performance bound with various wind profiles, which have the same cruise wind speed

but different wind shear terms. The wind profiles for this analysis is shown in Fig. 40 (a)

and the RTA curve as a function of ct is shown in Fig. 40 (b). The influence of the wind

shear term is relatively small compared to the horizontal and cross wind effect. For small

ct, the performances of the four wind profiles are almost the same. However, for large ct,

the RTA gap between the four cases becomes larger.
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Figure 40: Performance bound results with various wind shear conditions

4.6.2 Emission optimal trajectory

In this section, minimum NOx trajectories are analyzed with different RTAs and wind

profiles. The RTA effect on the optimal trajectories for both the B735 and the B764 are

shown in Fig. 41 and 42, respectively. Compared to the minimum fuel cases in Fig. 33 and

34, the optimal speed profiles for a large RTA case are quite different. However, as the RTA

decreases, the minimum fuel and minimum NOx trajectories become similar. At the end,

the two different optimal trajectories converge to the minimum time trajectory as shown in

Fig. 33, 34, 41, and 42.

The minimum NOx CAS profiles for both the B735 and B764 for several constant

horizontal wind components are shown in Fig. 43 and 44, respectively. In this numerical
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evaluation, the RTA for all cases is the same 950 sec. Similar to the minimum fuel case,

the wind speed affects the structure of the optimal trajectory. The optimal structure of the

B735 CAS profile in the head wind case is different from the others.

The comparison of the minimum NOx trajectories with two different cross wind profiles

are shown in Fig. 45. The cross wind components used in this analysis are the same as the

wind for the minimum fuel case. The results are quite similar to the minimum fuel case.

The cross wind term increases the speed on the singular arc and moves the TOD point

toward the runway threshold.
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Figure 41: B735 minimum NOx trajectories with various RTA conditions. Wind is zero.
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Figure 42: B764 minimum NOx trajectories with various RTA conditions. Wind is zero.
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Figure 43: B735 minimum NOx trajectories with various wind conditions. RTA is fixed as
950 sec.
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Figure 44: B764 minimum NOx trajectories with various wind conditions. RTA is fixed as
950 sec.
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Figure 45: Minimum NOx speed profiles with different cross winds, RTA : 800 sec
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4.7 FMS Application

A sequential method to solve optimal control problems of hybrid systems was proposed to

generate the optimal trajectory using the FMS VNAV modes. The proposed method uses

the relaxed optimal solution, which is the lower bound of the original problem.

In this section, to reduce the computational time of the proposed method, we use the

solution of Problem 4.1 instead of the relaxed optimal problem. To evaluate the computa-

tional time saving, we compare the computational time to solve to solve the relaxed optimal

solutions of B735 in Fig. 25 in Chapter 3. For the numerical approach in Chapter 3, we used

GPOPS ver.5 for optimal control problem solver. Since the minimum time trajectory can

be generated by the combination of the current FMS VNAV modes, we used the minimum

time trajectory as an initial trajectory in the numerical approach. In the semi-analytic

approach proposed in this chapter, ct was set to 0.5 as the initial value for the fixed RTA

case. Since the switching structure of the minimum time trajectory is known, it can be

obtained by one time calculation. In the minimum fuel case, ct is zero, and hence it can be

calculated immediately without any iteration.

The comparison result is shown in Table 18. The computational time was measured

on an AMD Athlon II dual core M320, 2.1 GHz, 3.0 GB RAM HP laptop with MATLAB

R2010b implementation. The computational times with the semi-analytic approach are

less than 3.5 sec for all cases. In the minimum time and minimum fuel cases when the

solutions are converged by one time calculation, the computational times are less than 1

sec. However, we need over 100 sec to solve the minimum fuel problems since the minimum

fuel solutions contains singular sub arc which is difficult to solve numerically[4]. Therefore,

if we replace the original relaxed solution with the semi-analytic solution, we can reduce

the computational time significantly.

Table 18: Computational time comparison
Method mintime RTA1000 RTA1050 RTA1100 minfuel

numerical(GPOPS) [sec] 14.52 79.95 158.29 191.93 141.42
semi-analytic (sec 4.5)[sec] 0.90 2.18 3.09 3.13 0.55

The simplified algorithm is shown in Fig. 46. STEP 1 and STEP 2, which are the steps to
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solve the relaxed optimal control problem and to partition the trajectory using the relaxed

optimal solution, can be replaced to the step to calculate the trajectory using the algorithm

in section 4.5. Since all junction points are obtained, the trajectory partitioning is auto-

matically performed through the algorithm A in section 4.5. Furthermore, by the analysis

of the switching structure, the nonsingular arc is either min/max ROD or min/max FPA,

the estimated mode for the nonsingular arc is determined during the trajectory calculation.

The boundary arc is either min/max CAS/MACH also. Hence, the remaining partitioned

trajectories belong to the interior singular arcs. Therefore, we reduce the iterations in mode

estimation by doing this step for only singular arc.

Figure 46: Simplified Algorithm

4.7.1 Comparison of Mode Estimation

With the same initial and final conditions in chapter 3, we investigated the optimal switch-

ing structure using the proposed algorithm in section 4.5. Table 19 compares the mode

estimation results in chapter 3 and the results from the algorithm in section 4.5 with var-

ious wind and RTA conditions. As the same in chapter 3, the tail/head wind denotes the

constant 20/-20 m/s horizontal wind profile. As shown the results, for all computed cases,

the mode segments and the corresponding mode sequence from the different approaches are

identical.

This result supports the simplified sequential method depicted in Fig. 46. The simplifi-

cation in dynamics does not affect the optimal switching structure compared to the relaxed
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optimal control problem in chapter 3. Therefore, by generating the approximated solution

using the method in this chapter, we can reduce the computational load and time signif-

icantly. Furthermore, this approximated solution provides the initial guess on the mode

parameter with high quality.

Table 19: Comparison of mode estimation result

Sequential method algorithm in sec 4.5
Type wind seg. mode seq. seg. mode seq.

RTA1000 zero 5 {CP CD CD CV CD} 5 {CP CD CD CV CD}
RTA1050 zero 3 {CD CD CD} 3 {CD CD CD}
RTA1100 zero 3 {CD CD CD} 3 {CD CD CD}
RTA950 tail 3 {CD CD CD} 3 {CD CD CD}
RTA1000 tail 3 {CD CD CD} 3 {CD CD CD}
RTA1050 tail 3 {CD CD CD} 3 {CD CD CD}
RTA1100 head 4 {CP CD CV CD} 4 {CP CD CV CD}
RTA1150 head 3 {CD CD CD} 3 {CD CD CD}
RTA1200 head 3 {CD CD CD} 3 {CD CD CD}

4.8 Conclusion

We have presented a method to generate the optimal descent trajectory to minimize the

environmental impact with a fixed-range and fixed Required Time of Arrival (RTA) in

the presence of both horizontal and cross wind components. The fuel cost and NOx cost

has been used as environmental costs. Both the cross wind and the horizontal wind were

assumed to be a function of altitude. Flight idle thrust was assumed during the entire

descent phase. The flight range was specified from the point at the latter stages of the

cruise segment to the meter fix. MACH and calibrated airspeed (CAS) bounds, rate of

descent limit, and flight path angle limit have been taken into account for both flight

envelope protection and passenger comfort.

The two-phase optimal control problem has been converted to an equivalent free initial

and final time single phase optimal control problem with unknown cost index. The analytic

formulation of the singular arc and the possible boundary arc condition have been analyzed

using the necessary conditions of optimality. Based on this analysis, the structure of the

optimal trajectory has been derived. The switching structure is affected by a specific aircraft
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type, an RTA, and wind condition.

In the proposed method, the optimal solution is computed by iterating to find the cost

index ct for satisfying an RTA condition. Since the optimal trajectory is generated by

forward and backward integration, the proposed algorithm does not require the additional

computational power compared to the current FMS vertical trajectory generation method

using VNAV functions. Hence, this algorithm can be implemented in a current FMS system

and can be applied to time based operations for the arrival phase.
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CHAPTER V

PERFORMANCE BOUND ANALYSIS OF CDA TRAJECTORY

The methodology for the performance bound analysis for a time based CDA operation

is described in this chapter. We propose an optimal control based methodology using

the trajectory optimization method described in the previous chapters. We perform the

trajectory performance bound analysis for an arrival to Hartsfield Jackson International

airport (ATL) from the Northwest with ATL in an East flow operation (i.e. aircraft landing

towards the East). Based on results of the analysis, we propose a single flight time strategy

for conflict resolution during the entire CDA flight.

5.1 Introduction

5.1.1 Time Based CDA Operation

Trajectory Based Operation (TBO) is a key component of the Next Generation Air Trans-

portation System (NextGen). One objective with TBO is to reduce the environmental

impact while maximizing the capacity and enhancing the safety of the airspace. As men-

tioned in Chapter 1, a CDA procedure is a proven procedure for reducing the environmental

impact. Therefore, the time based CDA operation concept, which is the operational concept

which combines a CDA with TBO in the arrival phase, supports the stated objectives of

NextGen.

The key concept of the time based CDA operation, from the ATC standpoint, is the Con-

trolled/Scheduled Time of Arrival (CTA/STA). ATC assigns the STA to individual aircraft

for the sequencing and scheduling at the meter fix to ensure separation management inside

the TRACON airspace, thereby increasing the success rate of CDA procedures. A regula-

tory minimum separation is required at the runway threshold and managing the separation

at or near this minimum is necessary to maximize the runway throughput. When ATC

or the Traffic Management Advisor (TMA) assigns an RTA to the aircraft, the minimum

required separation time should be one of the constraints.
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For an individual aircraft, the assigned STA is interpreted as the Required Time of

Arrival (RTA). To meet the RTA condition at the meter fix, four dimensional (4D) trajectory

generation and 4D guidance functions should be implemented in the FMS.

5.1.2 Related Works and Motivation

Several researchers have studied the strategy of a time based CDA operation concept and

proven the potential benefits through simulations and/or flight trials [15, 14, 24, 26, 34, 40,

42, 41]. However, far fewer researchers have focused on an RTA assignment while considering

conflict resolution during the entire CDA flight has been accomplished.

In order to make appropriate sequencing and scheduling, which results in an RTA as-

signment for the aircraft at a meter fix, ATC needs the following information: 1) a minimum

required time separation at meter fix between leading and trailing aircraft, and 2) a feasible

RTA range of each aircraft. This is explained in Fig. 47 where a) is for information in 1),

and b) is for information in 2).

(a) minimum separation (b) feasible range

Figure 47: Information for RTA Assignment

Ren and Clarke [55] developed TASAT which was described earlier in this thesis. This

tool provides a separation analysis result to determine the required separation in terms

of distance or time between any aircraft pair at a selected meter fix/waypoint along the

lateral path. Therefore, by using TASAT, we can obtain ∆tmin information in Fig. 47

a). However, since TASAT assumes the user defined descent speed, e.g. (Mach/CAS) =

(0.8/300), it cannot provides the feasible RTA range information in Fig. 47 b).

As stated, the issue in time based CDA operation is the conflict resolution during the
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descent with a given RTA. One of the tools to address this issue is the Efficient Descent

Advisor (EDA)[15] from NASA. EDA is a ground automation tool for the speed and the path

stretch advisory in order to meet an RTA at a meter fix without conflict. In a field test of

the Oceanic Tailored Arrival (OTA) the performance of EDA was proven successfully[14].

However, EDA calculates the trajectory of a single aircraft without knowing the exact

aircraft weight. If variance in the weight is larger than expected, a descent using the EDA

advisory speed cannot meet a RTA constraint within an acceptable error range. In addition,

the conflict can occur even though EDA only checks the conflict possibility for all aircraft

approaching the same meter fix. Therefore, airborne RTA capability is necessary to reduce

the RTA accuracy. This topic has been addressed in Chapter 3 and 4 of this thesis.

Because of the difference in speed and vertical profile, a loss of minimum spacing between

in-trail aircraft can be possible, and simulation in [72] has shown the case. Therefore, conflict

resolution during the descent still remains a problem though aircraft have the capability to

generate a trajectory to meet a fixed RTA.

5.1.3 Goal

In this chapter, we address the issues of scheduling and spacing at the meter fix, and he

goal is to answer the following questions:

1. What is the feasible schedule/RTAs of the arrival aircraft for the successful CDA

procedure?

2. What is required to guarantee a conflict free CDA operation?

3. Does the feasible schedule guarantee a conflict free CDA procedure?

To address these questions, we describe in this chapter an optimal control based method-

ology to analyze the feasible time range of a CDA procedure. Based on the result of the

feasible time range analysis, a single transit time flight strategy is proposed in order to

apply CDA procedures in dense or heavy traffic conditions. A numerical simulation with

a proposed operating strategy at ATL is conducted to evaluate the performance of the

proposed concept in terms of the conflict resolution during the entire CDA.

102



The remainder of this chapter is organized as follows; In section 5.2, we introduce the

TPA concept. In section 5.3, we show the analysis results for various aircraft types operating

into ATL. In section 5.4, we propose a single transit time strategy and shows the numerical

evaluation of this strategy. Our conclusions are presented in section 5.5.

5.2 Methodology for Analysis of Trajectory Performance

5.2.1 CDA Trajectory Performance

We define the term ‘trajectory performance’ for the en-route CDA trajectory under a time

based CDA operation. Since the key component, in this thesis, is an RTA for the time based

CDA operation, the trajectory performance is defined as the flight time from a fixed RTA

waypoint to a meter fix. This definition will be applied in the remainder of this chapter.

The concept of a Trajectory Performance Analyzer (TPA) is used in this section to

analyze the performance bound of the CDA trajectory for a selected aircraft type. The CDA

trajectory performance varies depending on the performance index and a RTA condition

as shown in Chapter 2 ∼ 4. Therefore, the trajectory performance is not determined as a

single value, but a set P. Any feasible flight time at a given condition belongs to this set

(The condition will be explained in the next subsection).

Since the performance is the flight time from the RTA frozen waypoint to a meter fix,

the smallest value point tmin in P is determined by the minimum time solution of the

Problem 3.4. In the same way, the largest value point tmax in P is determined by the

solution of the Problem 3.4 with −Jt, which is the maximum time case. Therefore, the set

P is expressed as:

P = {t ∈ R|tmin ≤ t ≤ tmax}. (121)

From the the airline’s perspective, a flight that consumes more fuel with a longer arrival

time does not have any benefit. Based on this fact, the trajectory performance should be

modified by using the end points of the pareto frontier curve of the two performance indices:

minimum time and minimum fuel. Figure 48 shows the time of arrival and fuel consumption

curve. In the Figure, the curve between the minimum time point and the minimum fuel

103



point is the pareto frontier from Lemma 4.1. Therefore, we modified the set P using the

tfuel, which is the time of the minimum fuel solution of Problem 3.4. The resulting modified

performance set P̃ is:

P̃ = {t ∈ R|tmin ≤ t ≤ tfuel}. (122)

Figure 48: Trajectory Performance Limit

5.2.2 Trajectory Performance Analyzer

The optimal control based methodology used to analyze the CDA trajectory performance

is detailed below. As stated in Eq. (122), the CDA trajectory performance bound is de-

termined by different types of optimal solutions to Problem 3.4. Hence, calculation of the

performance bound of a CDA trajectory requires solving the optimal control problems with

different performance indices.

As shown in Chapters 3 and 4, the optimal solution varies according to the variations

in wind, aircraft weight, and the initial condition of cruise speed and altitude. Information

regarding cruise flight conditions can be transmitted to ATC via aircraft-ground commu-

nication links, while ATC does not know the aircraft weight. For this reason, a sensitivity

analysis of the optimal solution is necessary. For the robust performance bound that covers

all possible variations, the following intersection of all sets of particular conditions must be

computed:
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P̃f =

N⋂
i=1

P̃i (123)

where N is the number of the scenario for the sensitivity analysis.

The TPA is used to perform an analysis of the CDA trajectory performance. The overall

concept of the TPA is shown in Figure 49. As shown in the Figure, the TPA consists of

three parts; input generator, trajectory optimizer, and performance analyzer. Each column

in Figure 49 represents a component of the TPA. The next subsection describes the detailed

functions and input/output of each component.

Figure 49: The Concept of TPA

5.2.2.1 Input generator

As stated above, the CDA trajectory varies with variations in aircraft weight, wind, and

cruise conditions. In the TPA input generator, one scenario is for the CDA trajectory

optimization. This scenario is categorized by three terms as shown in Figure 49. The first

category generates aircraft performance data, and the second category generates geometrical

related inputs. The third category generates the environmental input and constraints. The
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inputs and constraints can be changed by setting a different aircraft type, STAR charting,

and current wind conditions.

• Aircraft performance data and constraints

Any aircraft performance data can be used for the TPA. In this thesis, Base of Aircraft

Data (BADA)[2] is used for the aircraft performance data. Aerodynamic parameters,

thrust and fuel flow data are loaded depending on the aircraft type. The flap extension

speed range is calculated relative to the aircraft type and weight. The maximum

Mach/CAS is set for generating path constraints to protect the flight envelope.

• Geometric constraints

In this category, guidance for the lateral path is generated using the FMS function

according to the published STAR chart that is cleared for the arrival. The boundary

condition at the meter fix is also generated. Typically, the STAR specifies the altitude

at this point and in some cases both the altitude and speed. In the case that only

altitude is given, 250 KCAS is used as the speed constraint at the meter fix.

• Environmental input and constraints

In this category, forecasted wind data is generated. Wind is assumed to be a function

of altitude. Atmospheric properties such as temperature, pressure, and air density are

also generated according to the ISA model.

5.2.2.2 Trajectory Optimizer

A Trajectory Optimizer (TO) initializes multi-phase optimal control problems using the

numerical data from the input generator. If the altitude constraint at a meter fix is higher

than 10,000 ft, the optimal control problem can be formulated as explained in Chapter

3. Since the performance bound is determined by two optimal solutions, which are the

minimum time and the minimum fuel solutions, the optimal control problem in Problem 3.4

with two performance indices are solved in the TO. In the TO, a pseudospectral method

is chosen because it guarantees fast convergence and robustness to an initial guess[23],

and it has been used in CDA trajectory optimization problems[49, 51] . GPOPS[53] and
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SNOPT[25] are used as the pseudospectral method code and an NLP solver, respectively.

As shown in Chapter 2∼4, the minimum time trajectory is determined at the boundary

at the path constraints, and it can be generated by the combination of the current FMS

VNAV. Hence, using this fact, the minimum time trajectory can be solved with a given

mode sequence and the limit of the parameter in each mode.

For the minimum fuel solution, the flight time of the relaxed minimum fuel solution

is very close to that of the FMS optimal solution from the sequential method, therefore,

we can use the relaxed optimal solution instead of the FMS optimal solution for a fast

calculation.

5.2.2.3 Sensitivity Analysis

The CDA trajectory can have very large variations as the aircraft performance parameters

change. Among the many parameters, weight variation can have a substantial influence and

significantly affects the trajectory performance. While known and available, the airlines do

not want to share their aircraft weights (competitive issue) to ATC or other advisory tools

such as the EDA. Hence, the weight is a very critical uncertainty to be accounted for when

considering the performance bound analysis of each aircraft.

It should be noted here that TASAT has historical aircraft weights for arrivals into ATL

for a number of aircraft types, and it can be modeled as a Gaussian distribution as shown

in Fig. 50 (due to the nondisclosure agreement, the label of x axis is omitted).

TASAT only has weight data for a limited number of aircraft. To handle this issue, the

TPA generates weight distributions for the selected aircraft by using the Operating Empty

Weight (OEW), the Maximum Take Off Weight (MTOW), and the maximum payload Mp

which are more easily obtained.

The aircraft weight is expressed as

Wdes = OEW + cpMp + cfMf , (124)

where cp is the payload ratio between actual payload and Mp, and Mf is the maximum fuel

when Mp is assumed. Mf = MTOW − (EOM + Mp). cf is the fuel weight ratio between

actual fuel weight and Mf .

107



Figure 50: Descent Weight Distribution for B767-400

From the mass distribution for the available aircraft in TASAT, min/max cp and cf

values can be obtained by matching the weight range. The estimated (cp, cf ) for the max-

imum/minimum descent weight is (1, 0.4)/(0.1/0.2). From these parameter sets, the max-

imum and minimum weight can be calculated. In addition, from the mass distribution in

TASAT, the min/max value among the historical weight data is outside of ±2σ boundary.

From this fact, we assume that min/max value is ±3σ value, and hence we can calculate

mean and standard deviation of the weight for the selected aircraft.

From the generated weight distribution, the weight samples are chosen (the methodology

to choose a sample set will be explained in the next subsection). By using the sampled weight

set, several scenarios are generated and the sensitivity analysis is performed.

5.2.3 Scenario Generation

Obviously, limit points tfuel and tmin of the performance set P̃ are a function of the weight

from the results in Chapter 2. Since weight is a random variable, the limit performance

tfuel and tmin are also random variables. However, the relationship between the weight

and performance is not a linear function, so the distributions of tfuel and tmin may not be

Gaussian although the weight has a Gaussian distribution.

The most frequently used method to calculate a distribution for a nonlinear mapping
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in the presence of uncertainty is the Monte-Carlo simulation. Figures 51 and 52 show

the simulation results and the histograms of tfuel for the for B735 and B764, respectively.

These results are obtained by a Monte-Carlo simulation with 200 samples from the weight

distribution. As expected, the distributions of tfuel and tmin are not Gaussian. Furthermore,

the shape of the histogram in two cases are quite different. This difference is due to the

lower bound of CAS. In B735, the speed profile is limited by the CAS lower bound. On the

other hand, for the B764, very few cases are limited by the CAS lower bound.

There are several important observations from this Monte-Carlo simulation. the first is

that the curve tfuel versus weight is smooth. As shown in Figures 51 and 52, even though

the shape of the curve is different, the performance curves in both aircraft are smooth.

The second observation is that 95 % of the results are within a 2σ range. The statistical

data for both aircraft are shown in Table 20. Since tfuel is the upper limit point, the

only concern is the lower range of tfuel, and hence tfuel, which has a t̄fuel − 2σt value is

considered. In both cases, shown in Fig. 51 and 52, tfuel covers 95 % of the 200 simulation

results. Based on this observation, we will use tfuel as the lower bound of the tfuel. Hence,

the mean and variance information is needed to calculate tfuel.

Table 20: Statistics of Monte-Carlo simulation results
minfuel mintime

ACtype mean (sec) σ mean (sec) σ

B735 1,065.3 7.4413 873.1 1.018
B764 1,044.3 14.435 868.63 0.583

5.2.3.1 Unscented Transformation

Several sampling based mean and variance estimation methods for reducing the itera-

tion number have been developed. Unscented Transformation (UT) is one of the method

for calculating the statistics of a random variable which is transformed by the nonlinear

mapping[37]. In UT, sample points, which is called sigma points, are chosen deterministi-

cally to catch the statistical properties of the transformed random variable by Taylor series

expansion of the nonlinear mapping[37].

The most popular application of UT is the state estimation of a dynamical system. It
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Figure 51: Monte-Carlo simulation of the B735: minimum fuel case
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Figure 52: Monte-Carlo simulation of the B764: minimum fuel case

has been adopted to the Kalman filter, which is called Unscented Kalman Filter (UKF),

for the propagation of the mean and covariance along the nonlinear dynamics[36], and

its performance has been proved in many nonlinear system applications including state

estimation for six degrees of freedom aircraft dynamics[39].

Let x̄ and Pxx be a mean and covariance of a n-dimensional random variable. According

to [37], the sigma points and associated weighting factors are selected as follows:

χ0 = x̄ ,W0 = κ/(n+ κ)

χi = x̄ +
(√

(n+ κ)Pxx

)
i

,Wi = 1/2(n+ κ)

χi+n = x̄−
(√

(n+ κ)Pxx

)
i
,Wi+n = 1/2(n+ κ)

(125)

110



3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

x 10
4

865

870

875

880

Descent weight (kg)

F
lig

ht
 t

im
e 

(s
ec

)

(a) B735

1.1 1.2 1.3 1.4 1.5 1.6 1.7

x 10
5

860

865

870

875

Descent weight (kg)

F
lig

ht
 t

im
e 

(s
ec

)

(b) B764

Figure 53: Monte-Carlo simulations of the minimum time cases for the B735 and B764

where κ ∈ R,
(√

(n+ κ)Pxx

)
i

is the ith column of the matrix square root of (n + κ)Pxx.

Wi is the weight of the ith sigma point. As shown in Eq. (125), 2n + 1 sigma points are

needed for the statistical estimation of transformed n-dimensional random variable.

The following are the statistical estimation results of tfuel by UT. This result shows that

the error in the mean is less than 0.02 sec and the error in σ is less than 0.2. Based on this

result, we will use UT for a sensitivity analysis and 2σ value for tfuel and tmin.

Table 21: Statistics estimation from Unscented Transform)

B737-500 B767-400
value error(vMC − vUT ) value error(vMC − vUT )

mean 1,065.4 -0.0637 1044.3 -0.0153
σ 7.5867 -0.1453 14.385 -0.0503

5.3 Case Study : Atlanta International Airport (ATL)

ATL is one of 22 airports in the US for which CDA procedures have been developed and

operated. The CDA trajectory performance bound in ATL is analyzed using TPA. For a

realistic result, the nominal wind profile in TASAT, which is obtained from historical wind

data, is used for the analysis. The fleet used in the analysis is determined from ATL data

for a 24 hour period. In the TPA, two performance indices, fuel cost and time cost are used

for the trajectory optimization in the TO. Furthermore, an additional analysis is performed

using the maximum time cost to evaluate the time range extension.
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5.3.1 Test Environment

5.3.1.1 Path

All arrival traffic to ATL pass over one of four arrival/meter fixes; DIRTY, CANUK,

HONIE, and ERLIN, and each is located at points on the boundary of the TRACON

airspace which is a radius of approximately 40 NM from the airport. For ATL, there are

four charted STARs, one each using these meter fixes. For this analysis, the ERLIN NINE

RNAV STAR was selected. ERLIN NINE is used by inbound traffic from the Northwest

quadrant.

The published chart for the ERLIN9 STAR is shown in Figure 54. In this analysis,

the lateral path from the Memphis (MEM) transition is used. Since the CDA procedure

starts at the initial waypoint which is in the cruise phase, it should be distant enough from

the meter fix to track along the optimal trajectory obtained in the previous chapter, as

described in Lemma 2.1 in Chapter 2, which provides one of the conditions for choosing the

initial waypoint.

Figure 54: KATL STAR chart of ERLIN9

ATC assigns an RTA at a meter fix, and once assigned it cannot be changed after aircraft

pass the initial waypoint. Hence, the initial waypoint becomes the RTA freeze point, and
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the RTA at this fix is associated with the flight time to the meter fix.

The charted waypoint DEVAC in Fig. 54 was chosen as the initial waypoint or RTA

freeze point since it is located on the boundary of ATL airspace and is the first encountered

when transiting from MEM airspace.

The sequence of waypoints used for this analysis is DEVAC - CALCO - ROME(RMG) -

ERLIN. with ROME coded navigationally as a fly-by waypoint. This coding is interpreted

by the FMS LNAV as no requirement to pass directly over the RMG waypoint and allowing

the FMS to anticipate a turn to intercept the required path from RMG to the next waypoint.

For this arrival a landing on ATL runway 9R is planned. The lateral path and the along

track distance is generated by the FMS logic contained in TASAT and the resulting distance

from DEVAC to the runway threshold is approximately 170 NM. Since a landing on ATL

9R is planned, both charted speed and altitude constraints at ERLIN are given as shown

in Fig. 54. The constraints at ERLIN are 250 kt CAS and an altitude of 13,000 ft.

5.3.1.2 Fleet

The target aircraft types were determined from historical flight data extracted from En-

hanced Traffic Management System (ETMS) data (09. 30. 2005), the aircraft types arriving

at ATL were chosen as a target fleet set. On this date, a total of 1,510 aircraft arrived in

ATL.

BADA was used for the aircraft performance data to calculate the CDA trajectory

performance in the TPA. Since not all of the aircraft types operating into ATL identified

by the ETMS data are contained in BADA, the analysis was limited to only the aircraft

types with available performance data.

As shown in Table 22, a total of 43 aircraft types were used with 23 classified as middle

weight class and 20 as heavy weight class. It should be noted that BADA categorizes the

aircraft weight into two classes, Middle and Heavy and differs from the FAA classification

which is heavy, large, and small.
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Table 22: Arrival Fleet in KATL
Weight Aircraft type

A319 A320 A321 B712 B722 B732 B733 B734 B735
Middle

B736 B737 B738 B752 B753 CRJ1 CRJ2 CRJ9 E170
E190 LJ35 LJ45 MD82 MD83

A306 A30B A310 A332 A333 A343 A346 A388 B742
Heavy

B743 B744 B762 B763 B764 B772 B773 DC10 DC87
L101 MD11

5.3.1.3 Environmental Condition and Initial Condition

In this test, the atmosphere was assumed to be the ISA Standard. Historical wind data

for ATL in TASAT was used for the test. The wind vector is assumed to be a function of

altitude, and wind data is given as a lookup table. The speed and direction of the wind at

a specific altitude is calculated by the interpolation of the lookup table. The wind direction

and speed used in this test are shown in Figure 55. Note that the wind direction denotes

the heading angle of the wind vector from the North. Therefore, the wind in Fig. 55 is a

westerly wind.

Since the initial cruise condition affects flight time, from the observed historical data,

the initial cruise speed was set at MACH 0.782 and the flight level in cruise is set to 35,000

ft.

5.3.2 Test Result

5.3.2.1 Feasible Time Range

The feasible time range analyzed by the TPA are shown in Figures 56 and 57, where the

results are grouped according to the weight classification in BADA. The feasible time range

can be calculated by two ways. The first way is by determining the feasible time range

between minimum time and minimum fuel flight time, as depicted by the green bars in

Fig 56 and 57. This set is the performance set P̃. The second way is by calculating the

feasible time range using the minimum time and the maximum time range, which is the set

P. The summation of two color bars in Figures denotes this set.

The extended time ranges for aircraft in the middle weight classification for the fleet

mix used are shown in Figure 56 and are very small. This means that the 2σ range of the
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(a) wind direction (b) wind speed

Figure 55: Historical wind data used in ATL test

tfuel is very close since the minimum fuel trajectory is determined at the lower bound of

CAS. The LJ45 has the shortest time range and for the P̃, the MD83 has the smallest tfuel

while the LJ45 has the smallest tmax.

The interesting observation is that there exists a common feasible time range for all

aircraft in the middle weight classification. The common set P̃c is determined by:

P̃c =
⋂

i∈Middle

P̃i.

The maximum time of all aircraft in the middle weight classification is limited by the LJ45.

Since the minimum fuel and the maximum time trajectories are identical for the LJ45, and

the tfuel of the LJ45 is very close to the lowest value of tfuel; using the maximum time

performance there is no benefit in expanding the common feasible time set based on the

LJ45 aircraft. However, the number of LJ45 landing operations is less than 10 flights for the

1,510 aircraft in Table 22. Therefore, the feasible time range of all middle class aircraft can

be extended if we remove consideration of both the LJ35 and LJ45 aircraft. The variation

in tmin according to the aircraft type is much smaller than the variation in tfuel. With this

action, the lower bound of P̃c is determined by the E190 aircraft.

Table 23 shows the numerical values of the minimum time, the minimum fuel, and the
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maximum time limits of each aircraft. The limit is determined by 2σ values. The feasible

time range of the middle weight classification is from 883.14 ∼ to 1,005.00 sec for P̃c. This

result can be extended from 883.14 ∼ to 1,009.48 sec if we use the maximum time results

as a performance bound. In the middle class case, the range extension is very small due

to the LJ45. However, the feasible time range is extended to 1,026.10 sec if we remove LJ

series aircraft due to it’s very low percentage of landing traffic.

In the heavy weight classification, with the exception of the A333, the flight time range

for each aircraft can be extended, and the level of extension is much larger than the aircraft

in the middle weight classification. This is due to the fact that the minimum fuel trajectories

are not restricted by the CAS lower bound as shown in the TASAT simulation results for

the B764. For the A346, B764, B773, DC10, DC87, L101, and MD11, the feasible time

range is extended by over 60 sec. Therefore, there exists a common feasible time range for

all heavy weight classified aircraft also. The feasible time range of the heavy weight class

is limited by the B743 for both Pc and P̃c.

Table 24 shows the performance limits of the heavy weight classification aircraft. In

this class, the feasible time range is from 891.36 ∼ to 986.14 sec if the minimum fuel case

is used as an upper bound. It can be extended to 1,009.08 sec by using the maximum time

range. The common feasible time range for all aircraft in the heavy weight classification is

from 891.36 ∼ to 986.14 sec, and this range can be extended from 891.36 ∼ to 1,009.08 sec

if the maximum time case is used.
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Figure 56: Feasible time range of middle class fleet

Table 23: Performance limit values: Middle class
ACtype mintime minfuel maxtime

A319 867.81 1094.76 1094.76
A320 868.40 1081.62 1081.62
A321 868.99 1085.63 1085.50
B712 875.73 1041.88 1090.95
B722 865.28 1016.20 1073.60
B732 869.59 1062.04 1087.31
B733 874.45 1064.97 1081.18
B734 874.34 1030.63 1069.73
B735 875.30 1047.89 1082.52
B736 873.63 1094.51 1094.41
B737 872.46 1081.57 1081.57
B738 873.08 1083.33 1082.50
B752 873.75 1048.69 1103.98
B753 871.99 1015.62 1098.11
CRJ1 875.79 1121.19 1121.19
CRJ2 874.52 1081.80 1097.43
CRJ9 881.98 1056.60 1117.72
E170 877.63 1026.10 1026.10
E190 883.14 1064.62 1063.96
LJ35 873.20 1045.55 1044.72
LJ45 881.36 1009.48 1009.48
MD82 876.19 1015.47 1088.05
MD83 877.31 1005.00 1080.69

Time Range 883.14 1,005.00 1,009.48
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Figure 57: Feasible time range of heavy class fleet

Table 24: Performance limit values: Heavy class

ACtype mintime minfuel maxtime

A306 879.39 1026.61 1079.45
A30B 871.07 1021.61 1063.63
A310 865.25 1050.20 1084.87
A332 889.15 1140.65 1145.76
A333 887.12 1140.54 1140.04
A343 886.47 1093.39 1121.82
A346 887.70 1049.66 1056.95
A388 880.76 1058.50 1064.26
B742 861.82 1009.60 1047.54
B743 864.63 986.14 1009.08
B744 865.28 1017.87 1044.27
B762 869.85 1058.31 1090.45
B763 870.01 1062.48 1079.39
B764 869.84 1013.77 1095.33
B772 887.52 1060.13 1114.18
B773 891.36 1009.30 1104.30
L101 862.96 1014.88 1104.94
DC10 867.94 1047.00 1158.22
DC87 867.37 1046.90 1195.70
MD11 866.33 987.73 1052.99

Time Range 891.36 986.14 1,009.08
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5.3.2.2 TOD range

The TOD ranges of the aircraft listed in Table 22 are shown in Figures 58 and 59. The

lower limit of the bar in the figures denotes the 2σ value of the TOD distribution for the

minimum fuel solutions, and the upper limit of the bar is the 2σ value of TOD distribution

for the minimum time solutions.

The TOD range analysis provides information for the marginal point to freeze the RTA

at the meter fix. There is a possibility that an RTA will be infeasible after passing the

lower bound of the TOD range. This occurs when the distance flown to meet the RTA is

greater than the distance to the minfuel trajectory TOD for the aircraft.As an example,

consider the B735 that has minfuel trajectories whose lower bound is -131.83 NM from the

runway threshold and an RTA of 1047.89 sec. If the RTA changes after passing through

a point -131.83 NM from the runway and the changed RTA is longer than the time to go

when B735 flies along the minimum fuel trajectory, given RTA is infeasible because it passes

minimum fuel TOD point already. On the other hand, before passing the lower bound of

TOD point, all variations of CDA trajectory do not start descending, and hence aircraft can

track all variations of CDA trajectory from the minimum time case to the minimum fuel

case. Therefore, the RTA can be changed within feasible range at any time before passing

the lower bound of TOD.

The lower bounds of TODs for all fleet listed in Table 22 except for DC87 are larger

(closer) than -170 NM which is the along track distance of DEVAC. Therefore, DEVAC is

the reasonable RTA freeze point in the sense of TOD analysis.

5.4 Time based CDA operation

Separation management between the leading and trailing pairs of aircraft is the one of the

most significant issues when implementing CDAs, particularly in heavy traffic conditions.

In this section, we discuss the time based CDA and its separation management strategy

using the trajectory performance analysis from the TPA. First, we describe the necessary

technologies to realize the time based CDA operation. Second, we explain the operational

concept and discuss the conflict free condition during the CDA.
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Figure 58: TOD range of middle class fleet
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5.4.1 Necessary Technologies

Before describing the time based CDA operation and the separation management strategy,

we assume that the following three technologies are implemented in the FMS or in a ground

automation tool for ATC:

1. 4D CDA trajectory generation

The aircraft participating in CDA operation has a capability to generate a fixed RTA

optimal CDA trajectory in the FMS, or the ground station has the same capability

and can transmit 4D trajectory parameters to the aircraft via datalink. In the case

that the ground station calculates the trajectory, the aircraft should provide their

descent weight information.

2. Separation analysis at a meter fix

The ground station has the capability to analyze the required minimum separation

with selected leading and trailing aircraft pairs. TASAT[55] provides this information.

Hence, it is assumed that TASAT is implemented in the ground automation tool, and

ATC uses this information for the RTA assignment.

3. Feasible time range analysis

The ground station uses the TPA for the feasible time range analysis. The fleet

mix information in a specific time window is provided based on the prediction of the

ETA at the RTA freeze waypoint, and the TPA uses this information to calculate the

feasible time range of each aircraft. As shown in the ATL example in the previous

section, it is assumed that there exists a common feasible time range for all aircraft

types.

5.4.2 Concept of Operation

The concept of the time based CDA operation is depicted in Fig. 60 where WP1 is the RTA

freeze waypoint. After this point, an RTA change is not allowed. The proposed operational

concept consists of two parts; the CDA part and the cruise flight operation part.
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Figure 60: Single transit time CDA operation concept

The key strategy for the operation of a time based CDA part is the single flight re-

quirement for all aircraft. As stated in the previous section, an RTA at the meter fix can

be interpreted as the flight time from WP1 to the meter fix and vice versa. For a feasible

operation, a single flight time should be determined within the common feasible time range

obtained by the TPA. If all aircraft fly at the same flight time from WP1 to the meter fix,

the separation time between a leading and trailing aircraft pair at WP1 will be maintained

at the meter fix as shown in Fig. 61.

In the Figure, ∆t denotes the separation time at WP1, and therefore the separation at

the meter fix. ∆min denotes the required minimum separation time at the meter fix for

the successful CDA within the TRACON. As assumed in the previous section, the RTA

is assigned considering ∆tmin, and hence ∆t should be greater than ∆tmin. Since the

separation time at the meter fix is the same as the separation time at WP1 by the single

flight time strategy, ∆min is a constraint to determine the scheduled time at WP1. If this

condition holds, and the conflict does not occur during the descent, the CDA procedure

from WP1 to the runway threshold guarantees a conflict free flight. In this manner, the

target point to control the arrival time can be moved from the meter fix, which is a point

along the the descent path, to WP1, which is a point along the cruise segment as shown in
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Figure 61: Separation analysis

Figure 60. Then, the traffic management problem becomes a 2D problem, which is much

easier to manage and control than the original 3D problem.

In cruise, the scheduling at WP1 is necessary to manage the separation during the

descent from WP1 to the meter fix. Scheduling at WP1 can be performed by modifying

the existing scheduling algorithms at the meter fix [19, 45]. In the meter fix scheduling

algorithm[45], a 5 NM minimum separation distance during the descent and the minimum

runway threshold separation matrix are the constraints. In the modified scheduling algo-

rithm for the proposed operation, the required minimum separation at the meter fix for a

successful CDA is used instead of the runway separation matrix. This required minimum

separation is analyzed by TASAT. To absorb the required delay from the scheduling al-

gorithm, a cruise speed adjustment or path stretching similar to Three-Dimensional Path

Arrival Management (3DPAM) concept[68] can be applied. The difference relative to the

original 3DPAM is that the path stretch required for delay absorption occurs only in the

cruise phase prior to WP1 as shown in Fig. 60.

For the successful time based CDA operation with a single flight time strategy, ∆tmin

at the meter fix, and an analysis of conflict from WP1 to the meter fix are needed. The

following subsections describes these two issues.

5.4.3 Analysis of Required Minimum Separation

In order to determine ∆tmin, TASAT[55] is used. Within TASAT, the CDA descent tra-

jectory for simulation is generated by the embedded FMS VNAV function considering all
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waypoint constraints, if any. Multiple simulations of the CDA trajectory are produced by

the Monte Carlo simulation to calculate the aircraft trajectory variations due to weight,

wind and pilot response uncertainty. With the trajectory variations defined, a separation

analysis is performed to determine the required minimum separation time at a meter fix

for a leading and trailing aircraft pair. The trajectory variation set and the sequence of

the aircraft at the meter fix become inputs to the separation analysis and the output is the

required minimum separation distance or time at the meter fix.

5.4.4 Analysis of Conflict Free Condition

The condition ∆t > ∆tmin implies a conflict free flight from the meter fix to the runway

threshold. Therefore, the only remaining portion of the flight that can result in a loss of

minimum separation is the flight segment from the WP1 to the meter fix. To analyze the

conditions required for a conflict free operation we calculate the minimum separation time

to guarantee no loss of separation from WP1 to the meter fix.

Similar to the sensitivity analysis in the TPA, the UT is used to calculate the ∆tCF in

Fig. 61. Since ∆tCF is related to both leading and trailing aircraft, the dimension of the

random vector is two, which is the weight of both leading and trailing aircraft. Hence, five

sigma points are used to calculate ∆tCF (i, j) where i is the leading aircraft type, and j is

the trailing aircraft type.

Since ∆tCF is the required minimum separation time during the flight from WP1 to the

meter fix, ∆t > ∆tCF implies the conflict free flight during the en-route CDA flight. Hence,

the condition for a conflict free flight of the entire CDA flight from cruise to the runway

threshold is as follows:

∆tCF ≤ ∆tmin ≤ ∆t. (126)

5.4.5 Numerical evaluation

Since the required minimum separation at WP1 and the meter fix are same, the trajectories

with a single flight time from WP1 to meter fix are conflict free if Eq. (126) holds. To

evaluate the proposed single flight time strategy for the time based CDA operation, we

calculated ∆tCF with a given traffic sequence. For a realistic result, ETMS data for one

124



day was used to determine the sequence of aircraft and the aircraft type mix for arrivals

into ATL.

According to the ETMS data, a total of 358 flights crossed the ERLIN waypoint, and

the peak traffic period was 18 : 00 ∼ 20 : 00 hr when 47 flights crossed ERLIN. The 47

flights were used for the test traffic condition, and the sequence of the 47 flights was used

to calculate ∆tmin and ∆tCF . If an aircraft crossing ERLIN was not in the aircraft fleet

type in Table 22, it was replaced by one in the table found to be the best match to the

manufacturer and weight class. To compute ∆tmin at ERLIN, TASAT was used. Since

TASAT has only Boeing aircraft performance data, non-Boeing aircraft were replaced by

Boeing aircraft matching the weight class.

The required minimum separation time matrix calculated by TASAT is shown in Ta-

ble 25. The results are grouped by four different weight class of aircraft: Heavy, B757,

Large, and Small. The longest required minimum separation time is 150.107 sec, and the

shortest is 58.286 sec.

Table 25: Required minimum separation time matrix from TASAT

Leading aircraft
Heavy B757 Large Small

Heavy 104.642 116.306 69.442 69.442
B757 123.268 106.981 58.286 58.286
Large 127.162 115.343 68.968 68.968
Small 150.107 138.480 103.489 68.968

Since the common feasible time range of the fleet in Table 22 is from 891.36 ∼ to 986.14

sec, three flight time cases, 900 sec, 950 sec, and 980 sec, were simulated to check the

condition in Eq. (126) during the flight from WP1 to the meter fix. The trajectories with

a given RTA were generated by the sequential method in Chapter 3, and the minimum

required separations were calculated using the tested sequence.

The results are shown in Fig. 62. The red bar denotes the required minimum separation

time provided by TASAT, and the blue bars denote∆tCF for the given RTAs of 900, 950,

and 990 sec, respectively. Since all three blue bars are below the TASAT result, the conflict

free condition in Eq. (126) holds for all three RTAs if the schedule at WP1 does not violate
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Figure 62: Required minimum separation with various RTAs

the separation matrix in Table 25.

The sequence of aircraft and their ∆tmin and ∆tCF with three different RTA conditions

are shown in Table 26. The interesting observation is that the required separation time for

conflict resolution ∆tCF has approximately 50 to ∼ 51 sec for almost all simulated leading

and trailing aircraft pairs for all three RTAs. The worst case occurs when a leading and

trailing aircraft pair is (B737,MD82) with a 980 RTA. The required ∆tCF in this case is

59.175 sec. In both RTA 900 and 950 cases, all ∆tCF are less than 55 sec, the only two

exceptions occurs in the RTA 900 case. The fuel optimal trajectories of five different aircraft

are shown in Figure 63 for the same three RTA conditions. The TOD of each aircraft is

quite different even though the RTA of each aircraft is the same. For any combination of

these five aircraft, ∆tCF is 48 ∼ to 52 sec except the (CRJ1,B763) case, in which the ∆tCF

is 55.69 sec. From these results, we can conclude that the required minimum separation

time under a single flight time strategy is not sensitive to aircraft type.
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Table 26: Required minimum separation time matrix from TASAT

ACtype Class ∆tmin ∆tCF :900 ∆tCF :950 ∆tCF :980

B737 L N/A N/A N/A N/A
MD82 L 68.968 51.010 52.714 59.175
B737 L 68.968 50.515 50.406 50.579
CRJ1 L 68.968 51.034 50.911 50.802
B738 L 68.968 50.708 50.573 51.831
B752 757 58.286 51.421 51.392 51.386
B752 757 106.981 51.457 51.431 51.471
B763 H 116.306 50.919 50.887 51.110
MD82 L 127.162 51.016 50.936 51.427
B752 757 58.286 51.390 51.284 51.455
B763 H 116.306 50.919 50.887 51.110
MD82 L 127.162 51.016 50.936 51.427
B763 H 69.442 50.837 50.721 51.083
CRJ2 L 127.162 50.645 50.557 50.621
B752 757 58.286 51.461 51.472 51.468
CRJ1 L 115.343 50.911 50.938 50.973
CRJ9 L 68.968 51.315 51.293 51.535
MD82 L 68.968 50.946 50.942 52.409
B763 H 69.442 50.782 50.721 51.083
MD82 L 127.162 51.022 50.936 51.427
B763 H 69.442 50.782 50.721 51.083
B712 L 127.162 50.988 50.901 51.085
MD82 L 68.968 50.835 50.821 51.470
B712 L 68.968 50.841 50.784 51.060
B763 H 69.442 50.729 50.724 51.154
MD82 L 127.162 51.022 50.936 51.427
CRJ1 L 68.968 50.799 50.759 50.945
A319 L 68.968 50.632 50.588 50.773
CRJ1 L 68.968 50.875 50.828 50.970
B752 757 58.286 51.384 51.366 54.195
CRJ9 L 115.343 51.354 51.371 51.419
CRJ9 L 68.968 51.309 51.331 51.226
B763 H 69.442 50.839 50.846 50.943
MD82 L 127.162 51.022 50.936 51.427
B752 757 58.286 51.333 51.284 51.455
B732 L 115.343 50.883 50.906 50.944
LJ45 S 103.489 48.341 50.586 51.350
B738 L 68.968 51.157 50.371 50.322
CRJ1 L 68.968 50.912 50.860 50.860
B738 L 68.968 50.623 50.573 51.831
B712 L 68.968 50.947 50.902 51.079
CRJ1 L 68.968 50.759 50.762 51.034
B763 H 69.442 50.835 50.816 57.203
CRJ9 L 127.162 51.391 51.322 51.414
B733 L 68.968 50.709 50.730 50.596
CRJ9 L 68.968 51.358 51.381 51.418
B737 L 68.968 50.881 50.537 50.362
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Figure 63: Trajectories with different RTAs
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5.5 Conclusion

The performance bound of a CDA trajectory was analyzed for ATL arrivals using the ER-

LIN9 STAR. The target fleet was determined for one day of ETMS data, and the historical

wind data in TASAT was used for the analysis. BADA data was used for aircraft perfor-

mance data. With the given test condition, all middle weight class aircraft can fly from

DEVAC to ERLIN with a time range of 883.14 ∼ 1,005.00 sec, and the common feasible

time range of the heavy weight class aircraft is 891.36 ∼ to 986.14 sec if the minimum fuel

case was used as the performance bound trajectory.

The time based CDA operational concept using the TPA analysis results appears to be a

feasible way of increasing the CDA success rate in the heavy traffic conditions. The proposed

concept uses a single flight time strategy from the RTA freeze waypoint to the meter fix

for all aircraft. The single flight time was determined to be within the common feasible

time range obtained from the TPA. The conflict resolution condition is analyzed under the

assumption that the required minimum separation obtained from TASAT maintains at the

RTA freeze waypoint. The numerical evaluation with ATL operating in a East traffic flow

stream showed that the single flight time strategy provided the conflict free flights if the

separation constraints at the RTA freeze waypoint are not violated.
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CHAPTER VI

CONCLUSIONS

An optimal control based trajectory generation method and analysis methodology to sup-

port the trajectory based or time based Continuous Descent Arrival (CDA) procedures have

been presented in this thesis. The contributions of this thesis are summarized in section

6.1, and directions of the future research are discussed in section 6.2.

6.1 Contributions

The major issue preventing the implementation of CDA procedures in high traffic conditions

is separation management during the idle thrust/power descent. To increase the runway

throughput without violating separation during CDA procedure, 1) aircraft should generate

4D trajectory, and 2) air traffic controller should know the performance bound of CDA

trajectory and manage the separation of in-trail aircraft efficiently. This thesis has addressed

these two problems. The specific contributions of this thesis are as follows:

• Optimal control problem formulation for CDA trajectory generation

To maximize the benefits of CDA procedure such as flight time and fuel savings, the

CDA trajectory optimization problem has been formulated as a multi-phase optimal

control problem considering the flight envelope bound, passenger comfort, regulations

from the FAA, and the flap and gear extensions. From the proposed optimal control

problem formulation, the practical optimal solutions along with several performance

indices have been obtained.

• Hybrid system approach for the onboard CDA trajectory generation

Trajectory prediction performance on the ground station is one of the key component

to manage the separation between aircraft. The trajectory prediction algorithms as-

sume that the trajectory is generated as a combination of several Vertical Navigation
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(VNAV) modes in the Flight Management System (FMS). By synchronizing the tra-

jectory structure with ground, thereby reducing the trajectory prediction error, the

vertical trajectory generation problem has been formulated as a hybrid/switched dy-

namical system. Four VNAV modes which are constant Calibrated airspeed (CAS),

constant rate of descent (ROD), constant flight path angle (FPA), and constant Mach

has been used for the problem formulation. Such a hybrid system has a different

formulation from other hybrid systems since it has a mode parameter. The hybrid

system with mode parameters has been formulated as a combination of the common

dynamics for all modes and mode specific constraint.

• Sequential algorithm to solve optimal control problem of hybrid systems

Based on the proposed formulation of the hybrid systems with mode parameter, se-

quential method to solve the optimal control problem of such a system has been devel-

oped. By relaxing mode specific constraint, the lower bound solution of the original

problem has been solved. From the analysis of the switching structure and the curva-

ture analysis, the number of mode transition has been estimated. By using the mode

estimation technique for hybrid systems, mode sequence has been estimated. Finally,

the fixed mode sequence problem has been solved. This algorithm has been applied

to the trajectory generation problem within FMS framework, and its performance has

been proved by numerical examples.

• Fast calculation algorithm for en route CDA trajectory optimization

Using simplified dynamics, the relaxed optimal solution for the en route CDA trajec-

tory optimization problem has been solved. The singular arc has been derived analyt-

ically, and the algorithm to find the optimal switching structure including boundary

arc has been developed. By using the result from the analysis, the mode sequence can

be estimated very fast.

• Optimal control based methodology for analysis of CDA performance

An optimal control based methodology for analyzing the performance bound of the

en route CDA trajectory has been developed. This methodology provides the feasible
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time range of each aircraft. The numerical case study for Atlanta International Airport

(KATL) has showed that the common feasible time range that all aircraft can attend

CDA procedure exists in ATL.

• Conflict free CDA operation using single flight time strategy

Based on the performance bound analysis, time based CDA operation with single

flight time strategy has been proposed. The conflict free flight condition has been

analyzed, and numerical evaluation showed that the entire CDA operation from the

RTA frozen waypoint to the runway can be achieved by appropriately chosen single

flight time, which is the selected time in the common feasible time range. Hence,

the arrival traffic management problem can be two-dimensional traffic management

problem instead of three-dimensional problem by moving an metering point at which

arrival time should be scheduled far away at the point in the cruise segment from the

runway threshold.

6.2 Future Research

To achieve the time based CDA operation, the possible extensions of the research presented

in this thesis are as follows:

4D Trajectory Guidance Law. In this thesis, we focused on the trajectory generation

problem with fixed RTA condition. This is the flight planning component. To realize the

time based CDA operation, a feedback guidance law to achieve the RTA is needed. In

chapter 4, we analyzed the optimal switching structure and derived the analytic formulation

of the optimal singular arc. Since the singular arc is the function of aircraft state, the natural

property of the singular control is a feedback control. The optimal trajectory with singular

arc presented in chapter 4 provides switching control between the open loop bang control

and the singular arc feedback control. Hence, by applying this research, the 4D trajectory

guidance law can be derived.

Trajectory Replanning Strategy. In some cases, for example when wind information

is not accurate, replanning the descent trajectory may be more beneficial in terms of fuel

and operating cost than trying to track the preplanned trajectory. Since CDA trajectory
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is generated assuming idle thrust, if severe uncertain disturbances exists, aircraft must use

either addition thrust or speedbrakes to track the preplanned trajectory and meet the RTA

constraint. Therefore, it is useful to employ a trajectory replanning strategy to determine

whether the new trajectory is more beneficial or not. The possible variations of the optimal

trajectory described in chapter 4 may provide the starting point of this research, as the

algorithm in chapter 4 can generate the new trajectory very quickly.

Scheduling Algorithm. The one issue that must be addressed by scheduling algo-

rithms for arrival management is the conflict resolution during the descent. The time based

CDA operation concept with single flight time strategy has showed the benefit on the con-

flict resolution during the entire CDA flight from the cruise to the runway. For the efficient

and safe traffic management, the scheduling algorithm with guaranteeing the conflict free

flight during the descent is necessary. This would be achieved by adding the proposed single

flight time strategy in the scheduling algorithm. To maximize the performance, the single

flight time should be also included as a parameter to optimized.
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