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SUMMARY 

 

Tailoring the radiative properties of periodic micro/nanostructures can be used as 

an efficient way to create devices which have applications in energy harvesting, 

bioengineering and optical sensing. Analysis of these structures is typically performed by 

either an approximation or a rigorous solution of the electromagnetic wave phenomena at 

the interfaces. The thesis explores the application of rigorous coupled-wave analysis 

(RCWA) method to study the optical responses of microstructure arrays. 

The first part of the thesis elucidates the various mechanisms responsible for 

causing enhanced light absorption in inclined parallel plate grating arrays which cause 

them to act as resonators. Parallel plate resonators have been widely used for surface 

impedance measurements of high-temperature superconductor films. Wood’s anomaly 

(W.A), surface plasmon polariton (SPP) resonance and magnetic polariton (MP) 

resonance phenomena are discussed with regard to both long and short plate lengths. 

Illustrative evidences of SPP and MP resonances are provided through electromagnetic 

field distributions, spectral-directional contour plots and polar plots computed by RCWA 

method. Analytical agreement with visual data is obtained through use of a LC circuit 

model. The effects of different geometric parameters on the magnetic resonance 

conditions are investigated through the use of both RCWA and LC circuit model. 

The second part of the thesis deals with application of RCWA to study the effect 

of light scattering on inclined silver nanorod (AgNR) arrays grown on compact disc (CD) 

substrates. AgNR arrays have been previously studied by other researchers for their 

optical responses such as Surface Enhanced Raman Scattering (SERS) effect for 
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biological applications. In the present study, AgNRs exhibit diffraction characteristics 

due to the gratings present in the underlying CD layer. Depending on the manner in 

which AgNRs are oriented with respect to CD gratings, they exhibit different optical 

behavior to incoming light. Effects of both incident light polarization and AgNR 

orientation with respect to the substrate are studied. Effective medium theory is used to 

calculate the effective properties of AgNR-air layer. Calculated results are compared with 

experimental values and good agreements are observed for total reflection as well as 

trends of individual diffraction orders. 

 

   

 

 

 

 



 

 

CHAPTER 1 

INTRODUCTION 

 

Tailoring the radiative properties of micro/nanostructured surfaces through 

structural and/or optical modification has been an active area of interest in recent years. 

They have tremendous uses in energy conversion applications, photonics, diffraction 

gratings, thermophotovoltaic devices, solar cells, drug delivery systems and many others 

[1-3]. They are also extensively used in biological sensing applications and can enhance 

the sensitivity for some chemical and biological binding events by up to a factor of 10
9
 

[4]. A nanorod-mediated surface plasmon resonance sensor for sensitivity enhancement is 

an example of an application in this direction [5]. Characterizing the radiative properties 

of these surfaces becomes very important as they control much of the morphological 

dependent phenomena such as wettability, SERS and photonic bandgap [6]. 

   Micro/nanostructures, including diffraction gratings and its various 

modifications, have been the source of numerous applications in the fields of integrated 

optics, holography, spectral analysis and optical data processing among others [7]. 

Diffraction gratings are periodic media known to behave differently from other rough 

surfaces in that they diffract incident light in certain directions, instead of scattering it 

over the entire space. This property, which is a direct function of periodicity and 

wavelength, has made them famous in spectroscopic applications [8]. Gratings are also 

modified for many other applications such as arrayed waveguides which are used in 

input-output coupling thereby increasing transmission capacity of optical fibers [9, 10]. 

They can be combined with stacks of dielectric layers for hostile-environment protection 
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or to reduce absorption losses, as done in high-power laser pulse compression methods 

[11, 12]. Gratings made of modulated metallic and dielectric layers are used in X-ray 

domain for focusing and beam shaping. One can introduce anisotropy, chirality or 

nonlinearity into the gratings to excite guided or surface waves in order to enhance 

various nonlinear effects [13, 14]. They are also used for precise control of light 

propagation and emission in photonic devices, in which photonic bandgaps are created by 

arranging metallic or dielectric particles in a periodic lattice [15]. Another kind of 

diffraction gratings, known as crossed gratings, have modulations of refractive indices in 

two or three directions [16].  

Micro/nanostructures have been studied by many groups for their reflection and 

transmission behavior. In 1971, Neviere was one of the first authors who were able to 

map the grating surface to a plane and, later on, were able to predict diffraction 

efficiencies or DEs (implying energy distribution via reflectance or transmittance) for 

each order [17-19]. Soon after, Maystre et al. performed an analysis of reflection 

diffraction efficiencies of blazed and holographic gratings for different blazing angles 

[20]. Following these preliminary works, many authors started working on both design as 

well as fabrication methods of gratings with the objective of achieving high diffraction 

efficiencies [21-23]. By 1989, high efficiency, high dispersion diffraction gratings were 

being designed based on total internal reflection principles, which were independent of 

both grating shape and material [24]. In 1995, through computational and experimental 

measurements, Li demonstrated the use of compressor diffraction gratings, which exhibit 

very high first order reflection efficiency, for use in high-power laser applications [12].  
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In 1997, Ebbesen et al. demonstrated that sub-wavelength hole arrays can exhibit 

unusually high transmission efficiencies which fall well outside the predictions [25]. 

Soon after, Pendry et al. [26], through a theoretical analysis of the transmission response 

of deep and narrow slits on metallic gratings, showed that near perfect transmittances can 

be obtained at certain incident wavelengths. He attributed this due to either resonance 

caused by surface plasmons or coupling of incident waves with waveguide resonances of 

the slit. At this time, two-dimensional evanescent waveguide arrays were also fabricated 

and studied by Pertsch who was able to demonstrate ideal discrete diffraction [27]. 

Labeke and Baida [28], in their study of spectral response of metallic films with engraved 

2D periodic structure of annular aperture arrays, achieved enhanced transmission of up to 

90% which they attributed to guided modes inside the subwavelength coaxial structure. 

From the study of optical transmission behavior of hole arrays perforated in trilayer 

structures, Li et al. proposed the concept of magnetic polaritons indicating coupling 

between incident light and magnetic resonance inside subwavelength periodic structures 

[29, 30]. Wang and Zhang elucidated the effect of magnetic polaritons on the radiative 

properties of double layer nanoslit arrays, and used a LC circuit model to prove their 

existence [31]. Lee and Zhang [32] studied the confinement of infrared radiation to 

nanometer scales through metallic slit arrays. They also analyzed the transmission 

enhancement through nanoscale metallic slit arrays from visible to infrared spectrum. 

Depending on the spectral region analyzed, they attributed the enhancement to Wood’s 

anomaly, cavity resonance and the effective-medium behavior [33].   

 At the same time, several groups focused their efforts on efficient fabrication 

techniques for the synthesis of microstructures. Novel techniques such as glancing angle 
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deposition [34], nanolithography [35], X-ray lithography, soft lithography [36] and 

monolayer colloidal crystal (MCC) template approaches [37] were invented. These 

techniques have the advantages of high resolution, high repeatability, flexibility and 

ability to fabricate ordered microstructured arrays with controllable morphologies. These 

improved methods have enabled researchers to work on nanostructure applications which 

can now be easily fabricated and mass replicated. 

The thesis is primarily focused on numerical studies on the radiative properties of 

different types of micro/nanostructured arrays. The work focuses on two types of 

nanostructures: inclined parallel plate aluminum gratings on an aluminum substrate and 

inclined silver nanorods grown on planar gratings formed by compact discs. 

Diffraction of a plane electromagnetic wave by inclined parallel plate sub-micron 

gratings is numerically treated by the use of RCWA technique. The effects of various 

resonance mechanisms responsible for enhancing the absorption behavior of these 

structures are considered. Two-dimensional electromagnetic field plots and spectral-

directional contour plots help to visualize the light entrapment phenomenon achieved 

through the different resonance mechanisms. LC circuit model is described and used to 

analytically predict the magnetic resonance frequencies. The effects of plate length, plate 

thickness, inclination angles and grating period on the magnetic resonance frequency are 

investigated, through both RCWA and LC circuit models.  

The other types of nanostructures are silver nanorod arrays which are anisotropic 

in nature due to their high-aspect ratios. However, with a few reasonable assumptions, 

they can be assumed to be behaving isotropically. Firstly, the nanorods-on-CD structures 

are subjected to diffraction measurements to measure their radiative properties. Then 
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quantitative methods such as RCWA and effective medium theory are used to calculate 

their radiative properties, in order to obtain a qualitative agreement with the measured 

values. 

These studies help us gain a fundamental understanding of the radiative properties 

of engineered micro/nanostructures from their scattering, absorption and resonance 

behavior and will facilitate the design and applications of similar structures.  
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CHAPTER 2 

THEORETICAL BACKGROUND AND NUMERICAL METHOD 

 

2.1 Review 

Since 1930, many physicists, starting with Rowland, have attempted to solve the 

problem of finding the light distribution within a given diffraction order with various 

approximation techniques. Exact solutions of Maxwell’s electromagnetic equations were 

not possible before the advent of high-speed computers, and hence earlier work focused 

mainly on scalar approximations (wavelength greater than grating period). It was only in 

1956 when Meecham [38] followed by Stroke (1960) [39] was able to formulate a 

rigorous solution for an infinitely conducting surface. Their solution, based on an integral 

formalism, focused mainly on TE wave polarization and was applicable only for shallow 

grooves with sharp discontinuities, as was later shown by Petit and Cadilhac [18]. Here 

TE waves are defined as the case when electric field vector is perpendicular to the plane 

of incidence which is defined by the surface/interface normal and incident light’s 

wavevector. For TM waves the same condition holds for magnetic field vector instead of 

electric field vector. The next major development was proposed in 1972 by Maystre when 

he expanded the solution’s usefulness to include materials with finite conductivities [20]. 

He came up with single integral equation formalism that could handle real metals with no 

geometric restrictions. He compared these results to those with infinite conductivity and 

found significant differences in reflectivity for TE waves.  

On the other hand, Neviere et al. [18, 19] discovered a differential formalism for 

the solution of Maxwell’s equations that would not only lead to same results as above, 

but also apply to dielectric coatings. It could also handle other concave shaped periodic 
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diffracting structures such as cylinders and grating couplers. This was called the classical 

differential method, which was much simpler and worked fine for both TE and TM 

polarizations in the case of dielectric gratings. However accurate results were only 

obtainable for TE polarization in case of highly reflective metallic gratings with deep 

grooves. For TM polarization, the solution suffered from poor convergences with respect 

to number of spectral orders as well as numerical instability for some groove depths and 

metal conductivity, thus violating energy balance. The instability was claimed to be due 

to numerical integration process that was used in differential formalism. To counter the 

instability due to integration process, a special technique for rectangular profiles was 

developed in 1981 called the rigorous coupled-wave analysis or RCWA [40-43]. This 

technique, popularized by Moharam and Gaylord, bypassed the integration process 

altogether with an eigenvalue technique. It was later extended to arbitrary profiles 

through staircase approximation. However, this method also suffered from lack of 

convergence for TM polarization and was limited to special profiles.  

The first breakthrough in solving the stability issue came in 1990 when Tayeb  

[44] was able to use an orthonormalization procedure to avoid shrinking of Fourier space 

dimensions during integration process. This work spurred several other approaches which 

worked to ensure the solution’s stability, notable among them being the ‘S-matrix 

propagation algorithm’ [45]. These approaches when combined with RCWA method 

completely eliminated the stability issue. The second breakthrough came when Lalanne 

and Morris [46] were able to improve the convergence issue by reformulating the wave 

propagation equations . Surprisingly, the method worked well on lamellar gratings but 

did not for sinusoidal profiles. The explanation was provided by Li [47, 48] who studied 
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the convergence behavior of truncated Fourier series of two continuous or discontinuous 

functions, and found that the propagation equations became ill-suited when truncated in 

the Fourier space. He was able to propose appropriate factorization rules which were used 

to improve the propagation equations when being truncated. After including all these 

improvements, rigorous coupled-wave analysis is currently able to solve for energy 

distribution in any diffraction order for both TE and TM polarizations and is applicable 

for both metallic and dielectric gratings with arbitrary profiles and depths.  

 

2.2 Theory of Rigorous Coupled-wave Analysis 

The rigorous coupled-wave theory is widely used for diffraction analysis of 

micro/nanostructured surfaces of arbitrary shapes and dimensions. It is an exact solution 

of Maxwell’s electromagnetic equations and the accuracy of the solution depends solely 

on the number of retained terms in the space-harmonic expansion of the fields in the 

diffracting structures. It also satisfies the principle of conservation of energy [49, 50]. 

The following paragraphs outline the principle of rigorous coupled-wave theory for both 

TE and TM polarizations when applied to diffraction gratings. 
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Figure 2.1 Schematic of diffraction of electromagnetic radiation by a grating (for TE 

wave) 

Figure 2.1 shows a plane electromagnetic wave of wavelength  is incident at an 

angle inc on the grating structure, with the plane of incidence being perpendicular to the 

grooves. According to Huygens principle, this incident wave results in many reflected 

waves at the point of incidence. Region 1 is free space with an electric permittivity of 1

=1 where
2( )n i   , n  being the refractive index and  being the extinction 

coefficient. Region 3 is also a homogenous medium with electric permittivity 3 . Region 

2 is the grating layer and is a heterogeneous medium, whose permittivity is a periodic 

function of x, i.e. ( )x   . The dielectric function in the ridges is a  
where as 

dielectric function in the grooves is b , as shown in the figure above.  

Let k1x be the x component of the incident wavevector k1 and k1z be its z 

component. The magnitude of the wave vector is given by  
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 1
1

2 2n
k k

 

 
    (2.1) 

Similarly for region 3,  

 3
3 3

2 n
k n k




   (2.2) 

For a TE wave, the normalized incident electric field is given by  

  1  1  
ˆexp  ,x zik x ik z E y  (2.3) 

where exp( )i t  term has been dropped for this and all subsequent instances. For each 

of the diffracted waves, the x component of their wave vectors is given by the Bloch-

Floquet condition which is applicable inside a periodic structure,  

 ,

2 sin 2
,x mk m

  


 


 (2.4) 

where m  is order of the diffracted wave. Phase matching conditions specify that 

tangential components of electric and magnetic fields should be continuous across an 

interface. Because of the phase matching condition, xk  must be same in all the media. We 

can calculate ,z mk  for the first medium by using the relation 

 
2 2 2

, ,x m z mk k k   (2.5) 

Similarly, ,z mk  for second and third media is calculated by using eq. (2.5) with the 

corresponding wavevectors. Clearly if , 1x mk k , ,z mk will be purely imaginary and the mth 

order diffracted wave will decay exponentially towards z-direction and become an 

evanescent wave.  

Total magnitude of electric field in region 1 is given by superimposition of 

incident and reflected waves as,  
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    1 1 , 1 ,( , ) exp exp ,x z m x m z m

m

E x z ik x ik x r ik x ik z     (2.6) 

where mr  is the reflection coefficient for the interface between first and second medium. 

Similarly, total electric field in region 3 is given by superimposition of all transmitted 

waves as  

   3 , 3 ,( , ) exp ,m x m z m

m

E x z t ik x ik z d    (2.7)  

where mt is transmission coefficient for mth order transmitted wave. 

The electric field in grating layer E2 can be expanded in terms of its space 

harmonic components due to the periodicity. These components are phase matched with 

the diffraction orders in the first and third regions. Normalized form of E2 is   

  2 ,( , ) ( )exp ,m x m

m

E x z z ik x  (2.8) 

where m
 
is the field amplitude for the mth diffraction order. Also, because relative 

permittivity in the grating layer is a periodic function with the period Λ, it can be 

expanded in terms of a Fourier series as  

 
2

( ) exp ,u

u

i u
x x


 

 
  

 
  (2.9) 

where u is the  uth  Fourier coefficient given by  

 0

( )sin( )
(1 )   and a b

a b u

u

u

  
    




     (2.10) 

Here  is the filling fraction of material A in the grating layer.  

To obtain the wave equation for the electric field in the grating layer, one needs to 

solve the Maxwell’s equations. However, since the layer is non-homogeneous, the wave 

equation becomes  
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    2 2

2 2 2 2ln ln 0k         E E E E  (2.11) 

Since 2E is along y-direction and ln  is non-zero only along z-direction, their dot 

product results in 0. Also  =1 as the medium is nonmagnetic. Hence the wave equation 

becomes  

      2 2

2 2, , 0E x z k x E x z    (2.12) 

Equations (2.7) and (2.8) are substituted into (2.12) to yield the final coupled wave 

formulation  

 

2
2 2

, ,2
exp( ) 0m

x m m m p p x m

m p

d
k k ik x

dz


  

 
   

 
   (2.13) 

This equation has to be satisfied for every mth term and hence the coefficients of 

,exp( )x mik x
 
must be identically zero for each term. Equation (2.13) is a set of second 

order coupled difference-differential equations where each space harmonic term is 

coupled to other terms through the harmonics of the grating. The numerical solution is 

obtained with sufficiently large number of diffraction orders. 

 The magnetic field in region 2 is obtained from Maxwell’s equations:  

 
 

0
t


  



H
E  (2.14) 

where  = 1 is the magnetic permeability of region 2. Based on the form of electric field 

given in equation (2.8), magnetic field in region 2 is expressed as  

  2, ,exp( )x m x m

m

i
H k z ik x


   (2.15) 

  2, , ,

1
exp( )z x m m x m

m

H k z ik x


   (2.16) 
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where m and 
m  are related by  

 
 

( )
m

m

d z
k z

dz


  (2.17) 

To solve the above equation, we need another relation between m and m . It can be 

obtained by substituting eq. (2.15), eq. (2.16) and eq. (2.8) into the following equation 

 
 

0
E

H
t


  


 (2.18) 

From eq. (2.18), we obtain another set of relationships between m and m , which upon 

expansion yields,  

 
 

   
2

,

( )

x mm

m m n m

n

kz
z k z

z k


  

 
     

  (2.19) 

Solution of (2.17) and (2.19) is expressed in matrix form as  

 
 

  
2

2
kz

  
  

  

A  (2.20) 

 Here  is the matrix of ( )m z . If the diffraction orders are given as 0, 1, 2,....,m q   

, then 2 1N q  is the total number of diffraction orders and the size of matrices  and 

A are N N . Also, A is defined as   

 
2 '

x A K E  (2.21) 

xK
 
is a diagonal matrix whose elements are given by 

,( 1)
( , )

x a q

x

k
a a

k

 
K and 

'
E is a 

N N matrix formed by the Fourier coefficients of the dielectric function. Eq. (2.20) is 

solved by eigenvalue analysis and application of relevant boundary conditions. This work 

is focused primarily on the application of RCWA code to arbitrary grating profiles. 
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  2.3 RCWA Implementation for an Arbitrary Grating Profile 

 

In the present thesis, RCWA has been used to calculate the directional-

hemispherical reflectance of binary diffraction gratings. 

 

 

Figure 2.2 Arbitrary binary grating profile which has been approximated by 

multiple rectangular binary gratings 

 

 Figure 2.2 shows an arbitrary profile grating which is broken into multiple 

rectangular slices such that each slice is parallel to the substrate and can be treated as a 

binary diffraction grating by itself. As the number of slices increase, these slices closely 

approximate the actual profile. Each layer is numbered from top to bottom, the 1
st
 layer 

being topmost layer and jz is the z coordinate for the center of jth layer. Given that total 



15 

grating depth is d and assuming each layer to be equally thick, then thickness of each 

layer can be computed by 

 1j j j

d
h z z

M
    (2.22) 

for the jth layer where M is the total number of rectangular slices. Based on this 

definition 

  1 , 0,1,...
2

j

j j

h
z j h j M     (2.23) 

The width of each layer is so chosen such that the actual grating profile bisects the 

vertical edges of the rectangular slices [48]. The left and the right x coordinates, or 

abscissas for jth layer, are defined as 1, jx  and 2, jx , respectively. Depending on the actual 

grating profile, the values of abscissas may change significantly. The electric 

permittivities may also depend on j, but within each layer they are piecewise constant:  

  
2. 1, 2,

1,

,  

,  

j j j

j

j

x x x
x

otherwise






 
 


 (2.24) 

  In the analysis considered in this thesis, the magnetic permeability of each layer 

j is assumed to be unity. Along with the above parameters, the dielectric constants of 

the grating structure and the surrounding media are required as inputs to the RCWA 

program. The RCWA utility is coded in MATLAB and can calculate the total directional- 

hemispherical reflectance and transmittance, spectral-directional reflectance and 

transmittance for each diffraction order, as well as plot both the actual profile and the 

approximated profile of the given microstructure for profile verification. The code has 

been validated by comparison with several publications. Two specific validation cases are 

included below: dielectric rectangular gratings and triangular metallic gratings. 
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2.4 Code Validation 

2.4.1 Validation for rectangular profile dielectric gratings 

The RCWA program is validated against the results published by Moharam and 

Gaylord [49] who performed the diffraction analysis of one-dimensional binary gratings 

with rectangular profiles as illustrated in fig. 2.3. The grating period is equal to 

wavelength and the refractive index of the grating layer as well as the substrate is 2.04. 

The incident medium is air (refractive index =1).  

 

Figure 2.3 One-dimensional rectangular binary grating made of a dielectric material, 

having a depth d and period Λ. These are deep gratings with depth as much as 5 Λ 

 

The first order diffraction efficiencies are validated against the RCWA program 

for planar polarization cases (TE and TM waves) only in fig 2.4.  It can be seen that the 

agreement is very good even for gratings which are 5 deep. For this calculation, 101 

Fourier diffraction orders are used. The relative difference between using 151 and 101 

orders is less than 2% and hence 101 orders are deemed to be sufficient.  
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Figure 2.4 Validation of first order diffraction efficiencies of deep dielectric gratings in 

(a) published results against (b) RCWA program for TE and TM polarizations. 
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2.4.2 Validation for arbitrary profile metallic gratings 

The RCWA program is validated against results obtained by R-matrix multilayer 

modal method (R-matrix MMM) followed by Li [48]. The grating approximates a right 

angled triangle whose period is 0.8233 um and depth is 0.341 um. Refractive index of 

silver is  
2

0.1 5.58i  while the refractive index of medium is 1.96. Wavelength and 

number of diffraction orders used are 0.85 um and 51, respectively. The grating profile 

and sample results are shown below. To simulate the exact conditions in [48], only 4 

layers are used to model the profile. However, the diffraction efficiency does not change 

appreciably on using more layers (=20) or higher number of diffraction orders (=101).  

Figures 2.5 (a) and (b) below depict the actual geometrical profile of the 

triangular grating and a MATLAB plot of the grating itself for plot verification. Figures 

2.6 (a) through (d) show the comparison of DE’s calculated from RCWA with results 

achieved through R-matrix MMM method. RCWA is able to simulate the same trends 

and values for individual diffraction orders as well as the sum of all diffraction orders. 

Hence one can reasonably assume that the RCWA code can be used to predict the 

refletances/transmittances of diffraction microstructures of arbitrary shapes and materials. 
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Figure 2.5 (a) A metallic binary grating with triangular profile used for validating RCWA 

program against published results (b) MATLAB plot of the grating showing the 

decomposition of triangle (shown in blue) into 4 rectangular layers (shown in black). The 

MATLAB profile plots are part of RCWA program 

  

  

 



20 

  
(a) (b) 

  

  

  
(c) (d) 

 

Figure 2.6 Diffraction Efficiencies of different orders for a silver four-level binary 

grating in TE (left) and TM polarizations (right). Figures (a) and (b) are obtained from 

RCWA calculations while (c) and (d) are obtained by R-matrix MMM  
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CHAPTER 3 

RADIATIVE PROPERTIES OF MICRO/NANOSTRUCTURES 

 
3.1 Introduction 

 

 Spectral control of thermal radiation by micro/nanostructures has been the focus 

of research in radiative heat transfer since the last decade. It becomes an important issue 

while designing energy-efficient devices or minimizing energy consumption in heating 

and lighting systems. Generally spectral control can be achieved by multilayer coatings 

[51]. However devices utilizing spectrally controlled optical properties, such as 

thermophotovoltaic (TPV) devices and solar absorbers, are often operated in high-

temperature environments, where these coatings are quickly degraded [52, 53]. In such 

cases, periodic surface microstructures with tailored spectral radiative properties can be 

considered as an attractive option to multilayer coatings. Periodic microstructures also 

have many advantages such as adjustable structural shape and period as well as freedom 

of choice of material [54]. 

 Recent developments in the fields of microfabrication, such as nanolithography 

[35] and monolayer colloidal crystal methods [37], have made it possible to design 

structures with sub-wavelength dimensions. Resonance effects between incident light and 

periodic micro/nanostructures have been utilized to achieve spectral control of the 

radiative properties of these structures. Hesketh and Zemel [55, 56] and Wang and Zemel 

[57, 58] have reported on polarized spectral emittance from one-dimensional silicon 

lamellar gratings. Buckius [59] has published a detailed paper on reflectance from two-

dimensional metallic gratings. Heinzel et al. [60] have utilized thermal radiation from 

microstructured W surfaces to fabricate TPV selective emitters. 
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3.2 Mechanisms Responsible for Extraordinary Optical Behavior 

The effect of resonance on the optical behavior of microstructures has been 

studied by many research groups. Petit and Maystre [20] were one of the earlier authors 

who performed theoretical and numerical studies to understand grating anomalies linked 

to energy absorption. They discussed absorption due to excitation of surface plasmon 

polaritons [61], which occur at interfaces between dielectric and metals and are 

responsible for enhanced transmission/emission. Sensors based on SPPs have been 

fabricated and studied by many groups such as Kim et al. [62] who used periodic metallic 

nanowires, and Quinn et al. [63] who developed SPP resonance-based biosensors for 

detection of cell-ligand interactions. Other forms of resonance such as Wood’s anomaly 

and cavity resonance are also responsible for enhanced transmission and absorption in 

some cases. Wood’s anomaly [64], named after R.W. Wood, was discovered when he 

observed narrow spectral regions on many diffraction gratings which showed a sharp 

change of diffracted energy. The anomaly occurs when a diffraction order shows up at 

the grazing angle. The power which would have otherwise been sent into the forbidden 

region was redistributed among the propagating orders, resulting in genuine enhancement 

of reflection efficiency. There have been multiple studies on the effects of Wood’s 

anomaly on both reflectance and transmittance spectra of gratings [33]. On the other 

hand, cavity resonance occurs when standing waves exist in cavities formed by the 

gratings. At resonance conditions, strong electromagnetic fields exist inside the grating 

which subsequently enhances the structure’s reflection/transmission efficiency, as 

observed in subwavelength nanoslit arrays [33]. Another concept which can enhance light 

absorption are magnetic polaritons, proposed by Li [29, 30] which represent coupling 
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between incident light and magnetic resonances inside subwavelength periodic structures. 

MPs are used to realize optical negative-index metamaterials, with applications such as 

superlens [31]. It should be noted that while SPP’s and MP’s are valid only for TM 

waves, cavity resonance and Wood’s anomalies can occur for both TE and TM waves.  

 

3.3 Inclined Parallel Plate Grating Array 

Inclined parallel plate grating arrays have been previously used to demonstrate the 

spectral control of radiative properties of micro/nanostructures through their filter and 

resonator characteristics [65]. However, most of the previous studies introduced some 

form of approximation while obtaining the radiative properties. Kobayashi et al. 

performed theoretical studies on the diffraction behavior of inclined parallel plate grating 

by Weiner-Hopf technique, and were able to derive asymptotic solutions [66]. They also 

studied plane wave diffraction by open-ended parallel plate waveguide cavity [67] via the 

same technique to obtain approximate solutions. Cornet et al. investigated the conical 

diffraction behavior of inclined grating by rigorous differential methods, but he assumed 

the walls to be perfectly conducting [65].  

 This study focuses on a rigorous numerical investigation of the thermal radiative 

properties of inclined parallel plate grating array using RCWA in a broad spectrum range 

from 0.1 μm  (ultraviolet) to 8.0 μm  (infrared). Two types of plates: short plates (plate 

length < grating period) and long plates (plate length > grating period) are considered. 

Effect of SPP resonance and MP resonance to achieve high absorptance is demonstrated 

with one-dimensional spectral plots and two-dimensional spectral-directional contour 

plots of wavelengths and incidence angles. Kirchoff’s law can be used to link the 
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absorptance to emittance [68] and hence these structures can also be good emitters. 

Electromagnetic field plots are used to show confinement of magnetic field, and hence 

light entrapment, caused by the resonance in these structures.  Also, validity of MP 

resonance is further confirmed by quantitative evidence provided by an approximate LC 

circuit model of the structure. Finally, a parametric study is conducted which illustrates 

the effect of geometric parameters, such as plate length, plate thickness, inclination angle 

and grating period on the radiative properties of these micro/nanostructures.   

 

3.4 Numerical Study 

3.4.1 Geometry 

 In the present work, the plane of the paper is assumed to be the X-Z plane, and Y- 

direction is into the plane of the paper. The cross section of the inclined parallel plate 

grating array is in X-Z plane and is assumed to be infinitely extended into the Y-direction. 

Aluminum (Al) is selected as the grating material as well as the material for the semi-

infinite substrate. The parallel plates are separated by air.  is the grating period; l  is the 

plate length; t is the plate thickness and   is the inclination angle of the plates. A 

schematic of the plate array is shown in fig. 3.1 below for reference.  
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Figure 3.1 Schematic of an inclined parallel plate grating array made of aluminum (Al) 

placed in air 

 

3.4.2 Radiative properties at normal incidence 

 

 The grating period is taken to be Λ=555 nm and the inclination angle is set to θ = 

26.75º. The lengths of the plates are 1 2  1.5   832.5 nm,   0.5   277.5 nm     l l , for 

the long plates (LP) and the short plates (SP) respectively. Plate thickness t = 100 nm is 

the same for both structures. Based on the above defined geometry, successive plates are 

separated by a distance    / sin   222 nm   b t  by air. Electromagnetic plane wave 

of wavelength λ is incident on the structure at a polar angle θinc. The spectral-directional 

reflectance 
'R  is calculated by RCWA algorithm. The grating substrate is considered to 

be opaque. Hence, absorptance is defined as
' '1 R    . As outlined in section 2.3, each 

Al plate grating is divided into M = 50 rectangular layers to approximate the inclined 

geometry for RCWA computation. A total of 81 Fourier components are used to 
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approximate the dielectric function in the grating layer and Al optical constants are taken 

from tabulated data at room temperature [69]. 

 

 

Figure 3.2 TM wave reflectance (at top) and TE wave reflectance (at bottom) of the 

structure at normal incidence (Long Plates) 
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Figures 3.2 shows the calculated reflectances of the microstructure at normal 

incidence, for both TE and TM waves in case of long plates. It is evident from the figures 

that there exist multiple reflectance dips/absorption peaks for certain wavelengths in case 

of TM waves, indicating enhanced absorption at these wavelengths. Some of these 

wavelengths (corresponding to absorption peaks) are at λ = 237 nm, 315 nm, 555 nm, 618 

nm, 823 nm, 1.27 µm and 3.55 µm. For TE waves, some of the reflectance dips can be 

seen at λ = 237 nm, 315 nm and 823 nm. It is to be noted that at λ = 237 nm, 315 nm and 

823 nm, both TE and TM waves exhibit reduced reflectance and hence the absorption 

mechanism here must be independent of polarization. These wavelengths correspond to 

Wood’s anomaly (labeled as W.A in the figure), when a diffracted order reaches grazing 

angle and the light energy is redistributed when a propagating diffraction order appears. 

However absorption enhancing wavelengths of 618 nm, 1.27 µm and 3.55 µm are unique 

only to TM waves, signifying the effect of magnetic resonance at play at these 

wavelengths.  This can be explained by excitation of fundamental and higher order MP 

modes (excited at higher frequencies or lower wavelengths). Hence, λ = 3.55 µm is the 

fundamental MP mode (labeled as MP1 in the figure) while λ = 1.27 µm is the second 

order MP mode (MP2). λ = 618 nm is a possible MP3 which has been coupled with a 

SPP. Higher order MPs cause a much greater absorption enhancement. MP2 results in 

roughly 2.3 times more absorption than MP1.  

It should also be noted that λ = 555 nm corresponds to increased absorption 

caused by excitation of SPPs caused by incident photons at Al/air interface (labeled as 

SPP in the figure). This can be validated by solving the SPP equation given below  

 1 2
spp

1 2

k
c

 

 



 (3.1) 
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 Here, sppk  is the x-component of the wavevector which is a function of both 

wavelength and incidence angles; 1  and 2  are the permittivities of air and Al, 

respectively; ω is frequency of the incident wave and c is the speed of light in vacuum. In 

case of gratings, the above equation is solved along with the grating equation which 

allows the dispersion curve to be folded, resulting in SPPs being excited by propagating 

waves in air. At normal incidence, SPP wavelength is equal to the grating period, as is 

seen in this case. At oblique incidence, SPP excitation wavelengths can be determined by 

their dispersion curves. 

   In case of short plates, TM waves show reflectance dips at  = 206 nm, 555 nm, 

840 nm and 1.26 μm , while TE waves have dips at  = 206 nm and 840 nm. Please note 

that the dip at 840 nm for TM wave is not so clear from fig. 3.3 (top) due to low 

resolution. Once again the dips at  = 206 nm and 840 nm correspond to Wood’s 

anomaly (W.A) which happens for both TE and TM waves. The dip at  =555 nm 

corresponds to SPP absorption which is only dependent on the grating period for normal 

incidence. Since the grating period for long and short plates is the same, the SPP 

wavelength remains identical. Increased absorption at  =1.26 μm  is explained by 

magnetic resonance (MP1). All these features have been labeled in figs. 3.3 below. 

 



29 

 

 

 

Figure 3.3 TM wave reflectance (at top) and TE wave reflectance (at bottom) of the 

structure at normal incidence (Short Plates) 
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   The physical mechanism of magnetic polaritons can be explained as follows. 

According to Maxwell’s equations, when a time varying magnetic field is incident 

perpendicular to the structure (TM waves), it induces an electric current at the surface of 

the microstructure, which in turn creates an induced magnetic field. When the incident 

magnetic field and the induced magnetic field are in resonance with each other, then 

diamagnetic condition is satisfied resulting in strong absorption at particular wavelengths. 

An important characteristic of magnetic resonance is that induced current forms a loop 

(antiparallel currents) called an eddy loop according to Lenz’s law. 

 Since we are interested in tailoring radiative properties of microstructures based 

on resonance behavior of SPPs and MPs which are observed only for TM waves, from 

now onwards we shall limit our discussion to TM waves only. 

 

3.4.3 Field distribution at magnetic resonance condition 

 The electromagnetic field distribution for both LP and SP are calculated using 

RCWA. These field distribution plots help us to understand the field confinement 

achieved by parallel plate grating array. For LP, field distribution at MP1 and MP2 is 

plotted at normal incidence and at λ = 3.55 μm and 1.27μm , respectively in fig. 3.4 (top 

and bottom). On the other hand, SP has only the fundamental MP resonance mode at λ = 

1.26 μm  whose field distribution is shown at normal incidence in fig. 3.5.  The shaded 

contour represents the logarithm of the square of the ratio of absolute value of magnetic 

field in the structure to that of the incident wave, and the arrows indicate the electric field 

directions with their lengths indicating the corresponding amplitudes. The blue colored 

loops indicate the induced electric currents. 
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Figure 3.4 Electromagnetic field distribution between long plates at MP1 resonance (at 

top) and MP2 resonance (at bottom)  
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Figure 3.5 Electromagnetic field distribution between short plates at MP1 resonance.  

 

 As visible in the above figures, there is strong magnetic field confinement, and 

hence strong absorption, in the cavity between parallel plates. The electric field vector 

directions suggest that an eddy current is induced in the structure due to oscillating 

magnetic fields. Due to formation of eddy currents, positive and negative charges are 

developed at the two ends of the cavity which suggests that the cavity can be modeled as 

a capacitor. The eddy current decays rapidly as one moves away from the center of the 

cavity. Since only one electric field loop is formed in the case for both LP and SP in figs. 

3.4 and 3.5, it suggests that magnetic resonance at these wavelengths 

 LP SP3.55 μm and 1.26 μm     is characterized by fundamental mode (MP1). It 

should be noted that an electric field vector loop is generally formed when antiparallel 

currents exist in the cavity. However, due the presence of Al substrate, antiparallel 



33 

currents cannot be easily visualized. We can still find the direction of the eddy current 

loop by noting the magnitude of eddy currents (length of electric field vector arrow in the 

figure) as we move across the entire length of the cavity. The loop in this case is formed 

by eddy currents flowing from higher electric fields to lower electric fields. Such loops 

are the ones that are formed in case of MP1 for both SP and LP. 

 In fig. 3.4 (bottom) for LP, two current loops with alternating directions, 

corresponding to anti-nodes of magnetic field, are induced in the cavity. This indicates 

that a second-harmonic MP mode is formed at λ = 1.27μm  . Due to the presence of 2 

magnetic field antinodes, there is much stronger confinement of magnetic field, resulting 

in much greater absorption for MP2, as compared to MP1. This provides an illustrative 

proof of the light confinement that occurs between the inclined parallel plate grating 

array. 

 

3.4.4 Spectral and directional dependence of the radiative properties 

 The spectral-directional reflectance of these microstructures is shown via two-

dimensional contour plots in wavelength-incidence angle (λ-θinc) coordinate system. 

Wavelength is plotted along the x-axis while angle of incidence θinc is along the y- 

direction. Each plot contains 400 data-points for both λ and θinc. These contour plots offer 

a wealth of illustrative information about the effect of different resonance mechanisms 

such as MPs and SPPs on the radiative properties of parallel plate grating arrays.  
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Figure 3.6 Contour plot of spectral-directional reflectance as functions of wavelengths 

and incidence angles for long plates (at top) and short plates (at bottom) 
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The SPP dispersion curves, which can be obtained by solving equation (3.1) with 

the grating equation (2.1), can be seen in the contour plots clearly. These curves are 

symmetrical with respect to normal incidence. The SPP dispersion curve shown in both 

the figures are folded at  = 555 nm due to the same grating period. For LP, the MP 

modes are shown as MP1, MP2 and MP3 occurring at  = 3.55μm , 1.27μm and 618 nm 

respectively. For SP, only MP1 is observed at  = 1.26μm . In case of fig. 3.6 (top) for 

LP, two symmetrical reflectance dips are observed at grazing incidence angles. These 

could be attributed to high absorption observed in metals at principal angles for TM 

waves, which occur very close to grazing angles. Another feature to be noted is the non-

geometrical optics behavior exhibited by these structures when the wavelength is 

comparable to the grating period. According to the convention used in this work, a 

negative angle of incidence implies light is incident on the structure from the right side, 

where as a positive angle means incident light is coming from the left direction. Since the 

plates are already inclined towards right, positive incidence implies more light falls 

directly on Al plates as compared to negative incidence when more light falls on the 

space between the plates (air). Since Al is a highly reflective metal, higher reflectance for 

positive incidences and lower for negative incidences is expected from geometric optics. 

However, the opposite phenomenon is seen through the contour plots, indicating that 

simple geometrical optics concepts cannot be applied to inclined parallel plate grating 

arrays when wavelengths are comparable to structural dimensions. 

The vertical dispersion curves are a unique feature of MPs, suggesting that 

magnetic resonance is a weak function of incidence angles. The MPs are effectively 

excited by the y- component of the magnetic field while the x-component of the electric 
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field, which drives the electric dipole oscillation, contributes little to the magnetic 

resonance. It should also be noted that MP1 provides a more broadband absorption as 

compared to higher orders such as MP2. This can be utilized in applications where 

absorption enhancement over a broader spectrum is desired. However, MP2 results in 

much higher absorption, of up-to 76.5% as compared to 33.8% as achieved in MP1. Since 

MPs are insensitive to direction, they find use in many applications where SPPs cannot 

be implemented either because of their directional sensitivity or narrow spectral bands of 

absorption/reflection. The polar plots, figs. 3.7 and 3.8 included below, show the 

directional independence of MPs as compared to SPPs for both long and short plates. 

These plots are calculated at resonance wavelengths of the structure.  

 

Figure 3.7 Polar plot of reflectance as function of incidence angles for SPP resonance in 

long plates  
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Figure 3.8 Polar plot of reflectance as function of incidence angles for MP1 resonance in 

long plates (top), MP2 resonance in long plates (centre) and MP1 resonance in short 

plates (bottom) 
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From the polar plots above, it can be clearly inferred that MPs have a weak 

directional dependence whereas SPPs depend strongly on the direction of incoming 

radiation. One can also see that, on the overall, MP2 for long plates has much lower 

reflectance as compared to MP1 for either of the plates, a fact which has also been 

observed from spectral-directional contour plots. MPs not only are symmetrical with 

respect to normal incidence, but also have a relatively uniform reflectance for oblique 

incidence angles, signifying their directional and hemispherical independence. On the 

other hand, SPPs have an unsymmetrical reflectance profile with respect to normal 

incidence and a very strong dependence on incidence angles for oblique incidences. 

 

3.4.5 LC circuit model 

 The LC circuit model provides quantitative evidence of the existence of 

fundamental MP mode (MP1) present in the structure [70]. It analytically predicts the 

magnetic resonance frequency based on impedance analysis of structures composed of 

equivalent inductances and capacitances. Figure 3.9 shows the equivalent LC circuit of 

the grating structure. For periodic structures, each plate (or groove) can be considered as 

an isolated unit as long as the thickness of the plates is much greater than radiation 

penetration depth, which is true in our case.    
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Figure 3.9 Two-dimensional view of the grating array showing the LC circuit model as 

inset 

 The whole circuit is composed of two inductances and one capacitance. Lm is the 

magnetic inductance of the two parallel plates separated by distance    / sin b t , 

based on the coil inductance. It is expressed as 

 0
m

sin 


bl
L

w
 (3.2) 

Here 0  is the magnetic permeability in free vacuum; w  is the plate width along the y-

direction. For metallic nanoscale structures, the contribution of drifting electrons to the 

inductance (called the kinetic inductance) should also be taken into account as 

 k 2

p 0 eff


s

L
A 

 (3.3) 

where (2 )s l b  is the distance the induced current circulates in the open loop; 

16

p 2.4 10   rad/s is the plasma frequency of Al [3] ; effA is the effective cross-sectional 

area for the induced current due to skin effect and non-uniform charge distribution and 
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is frequency of the incident wave. By assuming that the flow of induced current is 

approximately limited to a depth equal to the skin penetration depth / (4 )    [3] we 

can take the effective cross sectional area to be effA w . After including some other 

approximations, eq. (2.27) can be rewritten as  

 
k 2

p 0

(2 )


l b
L

w  
 (3.4) 

The air gap between successive parallel plates is modeled by a gap capacitance 

gC  whose magnitude is given by 

 
1 0 proj

g

proj




c A
C

d
  (3.5) 

In the case of inclined parallel plates, projected areas and distances are calculated as 

 proj / cosA l b w 
 

and proj sind b , respectively. The factor 1c
 

is introduced to 

include the non-uniform charge distribution between the parallel plates. It is difficult to 

determine the exact value of 1c  without knowing the exact charge distribution. Here 1c is 

chosen to be 0.50.  It should be noted that the magnetic resonance conditions are 

independent of plate width in the y-direction, w . 

 The total complex impedance of the LC circuit is then given by  

 tot m k 2

g

1
Z i L L

C




 
    

 

 (3.6) 

where 1i   is the unit imaginary quantity. Magnetic resonance for the fundamental 

mode of MPs is achieved when the total impedance totZ = 0. This enables us to find the 
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resonant frequency R,1 , and hence resonance wavelength R,1 , for the fundamental mode 

of MPs, corresponding to a low reflectance value which is given by  

  R,1 m k g2 c L L C    (3.7) 

Based on Eq. (3.7), the resonance wavelength of MP1 for LP is predicted to be 

R,1 = 3.44 μm , which has a relative difference of 3.1% from the RCWA calculations. 

Considering the approximations made with regard to 1c
 

and effA , this agreement is 

reasonable. Further comparisons are made between LC circuit model and RCWA 

calculations by varying different geometric parameters, as discussed in the section below.  

 

3.5 Geometric Effects on Magnetic Resonance 

 The geometric effects on the magnetic resonance conditions are studied by 

individually changing plate length  l , thickness  t , period   , and inclination angle

  , keeping the LP configuration parameters as base values. Note that LC circuit model 

only predicts MP1 resonance condition; hence only MP1 calculations are compared 

between RCWA and LC circuit model. The spectral-directional contour plots show the 

reflectance at normal incidence calculated from RCWA method. All the plots consist of 

400 400 data points of wavelength and a relevant geometrical parameter. The predicted

R,1 ’s from LC circuit model is shown as a filled black colored triangles. 
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Figure 3.10 Effect of varying plate length l on magnetic resonance of the considered 

microstructures through spectral-directional contour plot of reflectance at normal 

incidence.  

 

In fig. 3.10, the effect of plate length on MP1 resonance conditions is 

investigated. For the RCWA calculations, plate length is varied from 0.1 μm to 1.15μm , 

while wavelength is varied from 0.1 μm  to 5μm . From the contour plot, it is clear that 

increasing the plate length causes the MP1 resonance wavelength to increase as well, 

which agrees with the prediction from LC circuit model. Lk, Lm and Cg increase or 

decrease with a corresponding increase or decrease in plate length, and hence according 

to Eq. (3.7), an increase in plate length does correspond to an increase in resonant 

wavelength. As the plate length decreases, the agreement is not so good which can be 

explained by the fact that MP1 resonance becomes coupled to SPP resonance at these 

plate lengths, and LC circuit model does not take coupling into account.  
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Figure 3.11 Effect of varying plate thickness t, on magnetic resonance of the considered 

microstructures through spectral-directional contour plot of reflectance at normal 

incidence. 

 

 In fig. 3.11, plate thickness is varied from 0.01 μm  to 0.2 μm while wavelength 

range is kept the same as in the previous case. From the RCWA calculations, it can be 

seen that an increase in plate thickness increases the resonance wavelength of MP1, a 

phenomenon that be clearly verified by the LC circuit model. The agreement between LC 

circuit model and RCWA calculations is very good over the range of plate thicknesses 

considered, with discrepancies cropping up for thin plates. As t increases, b decreases 

resulting in a corresponding decrease in Lm, Lk and increase in Cg. The increase in Cg may 

be able to compensate for the decrease in Lm and Lk, resulting in higher resonant 

wavelengths for thicker plates. The LC model may not be applicable for thin plates since 
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the neighboring cells do not remain uncoupled any more. There are two other interesting 

points that are worth noting. Firstly, on close scrutiny we can see that as the order of MPs 

increase, they become more independent of plate thicknesses. Thus MP3 is a much more 

flat curve compared to MP2 which is flatter than MP1. The second observation is that, for 

MP1 and, to a certain extent, for MP2, the strength of resonance increases with thickness 

with extremely strong absorption occurring for values of t greater than 175 nm. This 

phenomenon is not so clear in higher order harmonics. Put together, these 2 facts may be 

utilized to design directionally independent microstructures with high absorption. 

 

Figure 3.12 Effect of varying grating period   on magnetic resonance of the considered 

microstructures through spectral-directional contour plot of reflectance at normal 

incidence. 

Fig. 3.12 shows the effect of varying grating period on MP1 resonance conditions. 

The period is varied from 0.5 μm to 1.0μm .  As the grating period increases, the 

resonance frequency increases as well, resulting in decrease of resonant wavelength. The 
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RCWA agreement with LC circuit model decreases appreciably as the grating period 

increases i.e. the successive plates are farther apart. The reasons could that at higher 

periods, the MP resonance modes tend to become coupled to each other or the capacitor 

model may have larger error which becomes amplified with increase in period.  

 

Figure 3.13 Effect of varying plate inclination angle   on magnetic resonance of the 

considered microstructures through spectral-directional contour plot of reflectance at 

normal incidence. 

 

Finally the effect of variation of plate inclination angle   on MP1 resonance 

conditions is studied in fig. 3.13. Upper limit of   has been fixed at 40 degrees, because 

MP1 resonance starts fading beyond this value. RCWA calculations predict a slight 

decrease in MP1 resonance wavelength with increase in , which is confirmed by the LC 

circuit model as well. Variation in b can be assumed to be negligible in the given   

range. The agreement is quite good for shorter plate inclination angles. At higher values 
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of , it is difficult to quantify the level of agreement between the numerical and analytical 

approaches because MP1 resonance starts fading very fast for   beyond 35 degrees. 

  

3.6 Conclusion 

 

 This chapter discusses the various mechanisms responsible for causing enhanced 

absorption in inclined parallel plate grating arrays. Wood’s anomaly, SPP and MP 

resonances are discussed with regard to both long and short plate lengths. Visual 

evidence for SPP and MP is provided through electromagnetic field distribution plots, 

spectral-directional contour plots and polar plots in the case of TM waves which are 

computed using RCWA. Analytical agreement with visual data is obtained through use of 

LC circuit model which provides an approximate value of the MP1 resonance frequency. 

Finally a parametric study is conducted to investigate the effect of different geometric 

parameters on the resonance wavelength of MP, through the use of RCWA method and 

further confirmed by application of LC circuit model. A better understanding of the 

various resonance mechanisms and geometrical parameters responsible for enhancing 

grating absorption will facilitate design of microstructures which are optimally suited for 

energy harvesting and sensing applications. 
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CHAPTER 4 

APPLICATION OF RCWA TO STUDY OF SILVER NANORODS ON 

COMPACT DISC GRATINGS  

 

4.1 Introduction 

 

 Owing to their unique and tunable optical, plasmonic, and electrical properties, 

silver nanorods are widely used for applications such as SERS, biological sensors, and 

chemical detectors [4, 6].  Arrays of AgNRs are considered as prospective structures for 

near field transmission [71] and can be modified to enable subwavelength imaging of 

arbitrary coherent sources [72]. AgNR arrays have been previously used to create surface 

plasmon resonance sensors which are valuable tools for investigating chemical and 

biological events on surfaces [5]. Their SERS properties have also been exploited to 

create structures which can provide structural and quantitative information about 

biological virus strains through spectroscopic characterization [73]. Because of their 

immense use in life sciences related applications, experimental and theoretical studies to 

characterize their radiative properties are considered to be of crucial importance. This 

chapter aims at the characterization of radiative properties of AgNR arrays obliquely 

aligned on a grating layer. 

 

4.2 Fabrication of Silver Nanorod Samples 

The AgNRs are fabricated by an oblique angle deposition (OAD) method [4], 

which is a physical vapor deposition method with advantages of high yield, low cost and 

excellent geometry control. The deposition occurs in a custom designed electron-
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beam/sputtering evaporation chamber. The growth substrate is a CD which is 150 mm in 

diameter with a grating period of 1.5 m. On top of the CD, there is a thin uniform gold 

(Au) film with a thickness of 0.05 m.  The CD is positioned directly above the Ag 

evaporation source and rotated at an angle of 86 degrees with respect to the deposition 

vapor incoming direction. As the source evaporates, Ag is deposited on the CD surface in 

the form of nanorods which tilt downwards towards the incident vapor direction, making 

an angle of  =70 degrees with the CD normal. Two samples are cut from the CD 

substrate at the locations shown in the figure below. Sample 1 is cut in the vertical 

direction with AgNRs perpendicular to the CD grooves and sample 2 is cut in the 

horizontal direction with AgNRs parallel to the CD grooves. Depending on the location 

where the AgNRs are deposited on the CD, the AgNR projection of sample 1 is 

perpendicular to the CD grooves and that of sample 2 is parallel to the CD grooves. For 

sample 1, which is located directly above the source, AgNR distribution is relatively 

uniform in the CD ridges and grooves while for sample 2, which is not directly above the 

source, AgNR growth exhibits a strong radial dependence. This results in non-uniform 

deposition along CD ridges and grooves due to shadows cast by ridges on grooves. Based 

on Scanning Electron Microscope (SEM) images, the average length and diameter, 

statistically estimated over 50 rods, are approximately l = 1.2 m and d = 0.1 m, 

respectively. The volume filling fraction of AgNRs is also estimated to be   = 0.4. 

Fabrication of these samples was done in Dr. Yiping Zhao’s group at the University of 

Georgia. We have performed both experimental and theoretical studies on the diffraction 

behavior of AgNR to study their radiative properties. SEM images of the samples are 

shown in fig. 4.1 below. 
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Figure 4.1 SEM images of the sample: (a) locations of Samples 1 and 2 on the whole CD 

wafer, Samples 1 and 2 are cut along the vertical and horizontal directions, respectively; 

(b) SEM image taken at the center of Sample 2 with AgNRs parallel to CD grooves; (c) 

SEM image taken at the center of Sample 1 with AgNRs perpendicular to CD grooves 

 

4.3 Experimental Setup for Diffraction Measurement of AgNRs 

4.3.1 Three-axis automated scatterometer  

The instrument used to observe and quantify the diffraction phenomenon is a 

three-axis automated scatterometer (TAAS) [3, 74] setup at 635 nm wavelength. The 

TAAS is used to measure the bidirectional reflectance distribution function (BRDF) of 

rough surfaces and is capable of both in-plane and out-of-plane measurements. The 

estimated combined measurement uncertainty is 0.5% at r =45 degrees and 2% at r =80 
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degrees, where r  is the angle of reflection. This does not consider the effect of stray 

light and misalignments. 

  The BRDF is a material property that used to characterize the reflection features 

of a surface. It is essential for many applications in optical and thermal engineering, such 

as temperature measurement of silicon wafers in a rapid thermal processing furnace [75-

77]. BRDF depends on the surface properties (such as refractive index) as well incident 

light parameters. It is defined as [3] 

  
 

 
-1r i i r r

r i i r r

i i i i i

, , ,
, , , (sr ),

, cos

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L d

   
   

   
  (4.1) 

 where    i i r r,  and ,    denote the incidence and reflection directions, respectively, 

iL is the incident radiance within an elemental solid angle id  and rdL is reflected 

radiance. The product of iL
 
and i icos d

 
is called incident irradiance and has the unit of 

flux.  

 The instrument consists of the following major components: an optical source, a 

goniometric table, and detection and data acquisition systems. The optical source is a 

fiber-coupled laser diode which provides nearly collimated, coherent and unpolarized 

light of wavelength 635 nm.  The diode exhibits excellent power stability and 

monochromaticity with the full width at half maximum (FWHM) of the spectral peak to 

be less than 2 nm. The light passes through a linear polarizer which alters the polarization 

state of the beam to either TE or TM wave. The polarizer is followed by a beamsplitter 

which splits the incident light into 2 signals of unequal magnitudes. A labeled image as 

well as a schematic of the entire setup is shown in figures 4.2 (a) and (b), respectively. 
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(a) 

 

(b) 

Figure 4.2 (a) Setup and (b) Schematic of three-axis automated scatterometer for BRDF 

measurements 
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 The TAAS consists of 3 stages capable of independent rotation which are attached 

to the goniometric table.  Each stage rotation is controlled by step motors, which provides 

a high degree of resolution and repeatability. The sample is mounted in a vertical holder 

such that it is perpendicular to the table. Stage 1 controls the incidence polar angle of the 

sample. Stages 2 and 3 are responsible for controlling the movement of the detector. 

Stage 2 varies the reflection polar angle of the sample and Stage 3 changes the azimuthal 

angle. The zero position for the rotary stages correspond the normal incidence/reflection 

in the sample coordinate which is introduced in section 4.5. 

 Two silicon photodiode detectors are used for signal collection: detector A 

measures the signal reflected by the sample and detector B measures the reference signal 

reflected by a beamsplitter. The detector solid angle for both detectors is 

4

r 1.84 10  sr    resulting in half cone angle of 0.45 degrees. Two preamplifiers 

magnify the magnitude of the low power signals and a lock-in amplifier automatically 

phase locks the two detector signals at 400 Hz with respect to the internal reference of the 

amplifier for modulation of the laser source. LABVIEW program on a computer attached 

to the TAAS system is used to control stage rotation as well as perform automatic data 

acquisition.  Spectral-directional reflectance is calculated by the following formula [3] 

 
'

r r r

2

cos , R f



   (4.2) 

where BRDF related to measured quantities is given by [3] 
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A B and V V are the signals received by detectors A and B, respectively and IC  is a 

compensating factor accounting for beamsplitter ratio and the different responsivities of 

the two detectors. 

 

4.3.2 Integrating sphere system 

 

 The integrating sphere (IS) system is used to measure the directional-

hemispherical reflectance (DHR) of both samples [78]. The setup consists of a light 

source, a monochromator and the integrating sphere.  Incident light from a tungsten 

halogen lamp source is allowed to pass through the monochromator at selected 

wavelengths. The output signal from the monochromator is modulated by a mechanical 

chopper to achieve a high signal-to-noise ratio. The integrating sphere, 200 mm in 

diameter, has its inner wall coated by Polytetrafluoroethylene (PTFE). Both the entrance 

and exit port diameters are 25 mm. For reflectance measurements, the sample is placed 

behind the backport of the sphere and detector is placed at bottom of the sphere below a 

baffle shielding. LABVIEW program controls data acquisition and wavelength selection. 

 

4.4 Diffraction Measurements 

 

 Only the diffraction peaks are captured in TAAS measurement, and scattered 

components are not measured. Eq. (4.2) is used to calculate the peak reflectance, or 

diffraction efficiency, for each order. It should be noted that at normal incidence, 0
th

 

order ( m = 0) diffraction peak cannot be observed because the incident wave is blocked 

by the detector and hence an incidence angle of -4 degrees is used to capture this peak. 

The IS is used to measure the DHR of both samples for each polarization. Table 4.1 
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shows the individual reflectance of each diffraction order measured by TAAS as well as 

DHR values for each sample and polarization.  

 

Table 4.1 Measured values of individual reflectance as well as total reflectance for both 

polarizations for sample 1 and sample 2  

Sample 

# 
Polarization Diffraction Order  

        DHR 

Sample 

1 
TE 0.0006 0.0028 0.0291 0.063 0.0076 0.577 

 TM 0.001 0.0173 0.287 0.287 0.032 0.876 

Sample 

2 
TE 0.017 0.232 0.105 0.111 0.015 0.870 

 TM 0.003 0.025 0.013 0.010 0.005 0.463 

 

4.5 Sample Geometry and Orientation 

 

Figure 4.3 Front views of (a) sample 1 and (b) sample 2, showing the orientation of 

AgNRs with respect to the defined XYZ coordinate system. The grating grooves are along 

Y direction and the dotted X-Z plane is the plane of incidence. 

2m   1m   0m  1m  2m 
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The sample is loaded in the X-Y plane such that the CD grooves are along the 

positive Y direction. The AgNRs are inclined towards the incident vapor direction and 

hence as such, they are in positive X direction for sample 1 and along the negative Y 

direction for sample 2. Light is incident at near normal angles ( i  
= -4 degrees) on the 

CD grooves such that the X-Z plane is the plane of incidence. Based on this convention, 

positive diffraction orders are along negative X direction and negative diffraction orders 

are along positive X direction. When the incident magnetic field vector H is 

perpendicular to the optical axis of AgNR (denoted by ĉ ), the incident wave is denoted as 

an extraordinary wave. Correspondingly, when incident electric field E  is perpendicular 

to ĉ , the incident wave is called as ordinary wave. Hence, a TE polarized wave incident 

on sample 1 (or TM polarized wave on sample 2), results in an ordinary wave effect 

(dielectric behavior) and incident TM polarization on sample 1(or TE polarization on 

sample 2) results in extraordinary wave effect (metallic behavior).  Note that bold face 

implies a vector quantity. Figure 4.3 above graphically describes the above mentioned 

geometry and orientation graphically.  

 

4.6 Calculation of Optical Constants 

 The optical constants and dielectric function of AgNRs are calculated using the 

Drude model [3] of bulk silver with modified parameters. The Drude model used in this 

study has a scattering rate of  = 132.7 10  rad/s, plasma frequency of p = 161.39 10  

rad/s and  =3.4 [68].  To take into account the enhanced scattering rate due to size 

effect of AgNRs as compared to bulk silver,  is multiplied by a factor of 10. The 

dielectric constants silver (Ag) [69]. 
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4.6.1 Effective medium theory 

 Before proceeding to rigorous coupled-wave analysis of the samples, we need to 

determine the optical constants of the AgNR-air layer. Based on the SEM images of the 

sample, filling fraction for the nanorods is approximated as 0.4  . The rest of the space 

between nanorods is filled with air. We may approximate the composite layer made of air 

interspersed with AgNRs as an effectively homogenous layer, and model its optical 

constants using the Effective Medium Theory (EMT). EMT is a homogenization method 

used to characterize the optical properties of inhomogeneous media based on the field 

average [79]. Theoretical formulations by Maxwell-Garnett (MG) and Bruggeman (BG) 

are the two widely used approaches used in EMT. MG applies to particles which are 

embedded in a host (hence is valid for small filling fraction of the particles), while BG 

assumes structural equivalence between host and the embedded particles (hence is valid 

for relatively high filling fraction of particles). In our case, Ag rods are assumed to be the 

embedded particles and air to be the host. Although the filling fraction of AgNR array is 

not that small, but since they have very good alignment we use the MG approach in our 

calculations. Also due to the high-aspect ratio of the rods, the array can be considered as 

uniaxial medium [80]. Hence, their dielectric function can be divided into two 

components: O  and E corresponding to dielectric functions for ordinary and 

extraordinary waves, respectively. The relation between E and ĉ  for ordinary waves and 

H and ĉ  extraordinary waves is outlined in section 4.4. Based on MG theory, effective 

dielectric function for the composite layer is given by the following equation  

 
Ag airair
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where k =1 corresponds to the primary extraordinary case (to be discussed in section 

4.6.2)  and k = 2 corresponds to the ordinary case. kL is the depolarization factor which 

depends on the shape and geometry of the nanorods. Here the nanorods are assumed to 

have a prolate spheroid shape, and hence kL  is given by 
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Here d and l are the average diameter and length of the AgNRs, respectively. Based on 

these calculations, we obtained En =0.203+2.92 i  and On =1.62+0.0106 i  for the values of 

refractive indices for primary extraordinary and ordinary waves, respectively. Here

1i   , denoting the unity imaginary complex number. 

 

4.6.2 Anisotropic behavior of AgNRs 

 AgNR arrays, due to their high-aspect ratio geometry, belong to a class of 

anisotropic materials called uniaxial materials [80], which have a single axis of 

anisotropy as compared to biaxial materials with more than 1 axis of anisotropy. For 

uniaxial materials, light with linear polarizations parallel or perpendicular to the optical 

axis has unequal dielectric functions and hence different refractive indices. Incident 

waves with H  perpendicular to ĉ are called extraordinary waves while waves with E

perpendicular to ĉ  are classified as ordinary waves. However, there exists a special case 

when both H  is perpendicular to ĉ  and E is parallel to ĉ  , which is called the primary 
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extraordinary wave. Extraordinary waves provide a metallic like effect whereas ordinary 

waves provide a dielectric like effect. Schematic of a single AgNR is shown in fig. 4.4. 

 

 

 

 

 

 

 

 

Figure 4.4 Schematic of single Silver Nanorod (AgNR) depicting its optical axis  ĉ , 

length  l  and inclination angle   with respect to Z axis. 

 

In general, at anisotropic interfaces, pure TE and TM waves do not exist. This is 

due to coupling between the ordinary and extraordinary waves which occurs at these 

interfaces [81]. Polarization decoupling occurs when one of the principal axes of the 

permittivity tensor of both regions is normal to the plane of incidence. In other words, 

polarization decoupling occurs when the optical axis either lies in the plane of incidence 

or is perpendicular to it. Therefore, if the optical axis lies in the plane of incidence, the 

ordinary and extraordinary waves correspond to TE and TM polarizations, respectively. 

On the other hand, when the optical axis is perpendicular to the plane of incidence, 

ordinary and extraordinary waves correspond to TM and TE polarizations, respectively. 
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For sample 1, when AgNR projections are perpendicular to CD grooves, optical 

axis lies in the plane of incidence, and hence coupling is not a problem. For TE 

polarization, E is perpendicular to ĉ  for both reflected and refracted waves. Hence TE 

polarization corresponds to ordinary waves. However, for TM polarization ( H

perpendicular to ĉ ), at normal incidence, E is parallel to ĉ  only if  = 90 degrees. Also, 

the parallel condition holds only for specular reflection or 0
th

 order diffraction only. For 

other orders E and ĉ  are not truly parallel. Hence TM waves behave as general 

extraordinary waves. For RCWA calculation, the use of optical constants for primary 

extraordinary waves for this case will result in some deviation from measured 

experimental values. 

 For sample 2, when AgNR projections are parallel to CD grooves, optical axis lies 

neither in the plane of incidence nor in the plane perpendicular to it. Hence, extraordinary 

and ordinary waves are coupled to each other and pure TE and TM polarizations do not 

exist for this case. However, if we tilt the rods such that  = 90 degrees, then the optical 

axis becomes perpendicular to the plane of incidence, thus uncoupling the polarizations. 

For TE polarization both H and E becomes perpendicular and parallel to ĉ , respectively 

and hence results in a primary extraordinary wave. For TM polarization, E is 

perpendicular to ĉ  and hence results in an ordinary wave. 

 To include the effect of coupling in our calculations, we add a small portion (2 

percent) of ordinary wave property to the extraordinary wave property for TE 

polarization of sample 2 as well as add 2 percent of extraordinary wave property to the 

ordinary wave property for the TM polarization of the same sample. This approach does 

not produce any appreciable change in the optical constants used for TE polarization; 
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however by doing so, the extinction coefficient for TM waves increases to 0.3. Table 4.2 

below summarizes the final refractive indices used in the coupled-wave analysis. 

 

Table 4.2 Refractive indices for each sample and polarization 

 

Sample 1 Sample 2 

TE TM (  = 90º) TE ( = 90º degrees) TM (  = 90º degrees) 

1.62+0.0106 i  0.203+2.92 i  0.203+2.92 i  1.62+0.03 i  

 

To conclude this section, besides the parameters discussed above which affect the 

optical constants and radiative properties of AgNRs, some other parameters such as 

surface roughness, non-uniform deposition, nanorod shapes etc., which play a major role 

to the diffraction behavior of these samples, are very challenging to be quantified by pure 

numerical analysis. 

4.7 RCWA Calculation 

For RCWA calculation, the approach suggested by Moharam et al [49, 50] is 

followed. The method of calculation has already been outlined in section 4.2. For 

reference please see Fig. 2.1. A 635-nm beam of linearly polarized light falls on the 

sample (medium 2) from air (medium 1), at near normal incidence. Medium 3 is the 

semi-infinite CD substrate (made of polycarbonate) with a frequency independent 

refractive index of CDn =1.6. The optical constants of gold layer on  CD are obtained from 

tabulated data [69]. Medium 2 is a grating layer which is periodic and heterogeneous in 

nature. The gratings consist of AgNRs while space between 2 successive AgNRs is filled 
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with air. The optical constants of AgNR-air layer are modeled by EMT as shown in 

previous sections. For the purposes of RCWA analysis, it is assumed that the AgNR layer 

behaves like an isotropic medium. This approximation causes the calculated values to 

deviate from the measured values, but within the limits of reasonableness. Sample 1 is 

modeled by using a combination of rectangle and triangle shaped profiles, while sample 2 

is modeled by a rectangular profile throughout, as shown in the fig. 4.5. 

 

Fig 4.5(a) Sample 1 geometry: l =1.2 um, CDh = 0.1 um, Auh  = 0.05 um, a = 0.9 um, b = 

0.6 um,  =70 degrees (b) Sample 2 geometry:  AgNR cosh l   

The triangular profile is approximated as the superposition of 100 rectangular 

slices with equal height but varying widths, as illustrated in section 4.2. The widths are 
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non-dimensionalized with respect to grating period and converted to filling fractions (f) 

for each layer, which forms a vital input to the RCWA code. RCWA analysis for 

rectangular slices by RCWA follows the usual approach. For both samples, 161 Fourier 

diffraction orders are used. The following paragraphs outline the detailed geometries and 

computational parameters for each sample. 

Sample 1: 

 

Figure 4.6 Detailed geometry of sample 1. The actual nanorods are shown as blue colored 

lines, while the AgNR grating profile is drawn with a solid black line. The gold coating is 

shown in yellow color. 

Calculation of Parameters: From fig. 4.6, 

 cos(90 )u l    (4.7) 

 c u b   (4.8) 

 sin(90 ) tan(90 )d l c      (4.9) 

In the region 0<Z<d: The AgNR profile is divided into M layers of equal thickness, such 

that the vertical edge of each layer bisects the original profile. This is shown in fig. 4.7. 
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Figure 4.7 Approximation of triangular profile with multiple rectangular slices 

For layer j , let its height be denoted by jh  and distance of its left edge from the 

origin denoted by jx . From Eq. (2.22), j

d
h

M
  since all layers have the same thickness. 

The left abscissa for the j th layer is given by  

  
tan( )

( ) tan( ) 2( ) 1
2 2

j

j j

h d
x M j h M j

M




 
      
 

 (4.10) 

Thus, non-dimensional filling fraction for the left edge of j th layer of AgNR  1, jf =
jx


 

and that for the right edge of j th layer of AgNR  2, jf = 1. Similarly, filling fractions for 

the other layers are calculated and listed in Table 4.3. Note that f1 corresponds to the 

normalized position of left edge of a material in a particular layer and f2 corresponds to 

the normalized position of right edge of the same material in that layer.  

 

 



64 

Table 4.3 Filling fractions for each layer for sample 1. The quantity in the brackets in 

each cell denotes the material that the filling fraction is applicable for. For a binary 

grating, filling fraction of the second material in the each layer can be calculated by 

subtracting the cell value of that layer from the grating period  

Filling 

Fraction 
Z limits of layers 

 0 Z d   
d Z  

 sin 90l    

 sin 90l Z   

  2sin 90l h    

  2sin 90l h Z    

  1 2sin 90l h h     

f1 

(left 

abscissa) 

jx


 

(AgNR) 

1
  

(AgNR) 

 a c


 

(Air) 

 a c


 

(Au) 

f2 

(right 

abscissa) 

1 
 

(AgNR) 

1
  

(AgNR) 

 c


 

(Air) 

 c


 

(Au) 

 These values of f1, f2 along with relevant optical constants of each layer are input 

into the RCWA code. 

Sample 2 

 

Figure 4.8 Detailed geometry of sample 2. The AgNR profile is outlined in solid black 

lines. The gold coating is shown in yellow color. 
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From fig. 4.8,  

  sin 90h l    (1.11) 

Similar to sample 1, the filling fractions of each layer is calculated as a function of its Z 

coordinate and listed in Table 4.4. f1 corresponds to the filling fraction for the left edge of 

a material in a particular layer and f2 corresponds to the filling fraction for the right edge 

of the same material in the same layer. 

Table 4.4 Filling fractions for each layer for sample 2. The quantity in the brackets in 

each cell denotes the material that the filling fraction is applicable for. For a binary 

grating, filling fraction of the second material in the each layer can be calculated by 

subtracting the cell value of that layer from the grating period . 

Filling 

Fraction 
Z limits of layers 

 20 Z h   2h Z h   1h Z h h    

 

1 2h h Z h h     

 

2h h Z 
 

1 2h h h  
 

f1 

(left 

abscissa) 

0  

 

(AgNR) 

0
  

(AgNR) 

0
  

(Au) 

0
  

(CD) 

a

  
(Au) 

f2 

(right 

abscissa) 

a


 

(AgNR) 

1 
 

(AgNR) 

a


 

(Au) 

a


 

(CD) 

1
  

(Au) 
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4.8 Results and Analysis 

RCWA predicted values of reflectance are plotted together with the measured 

values (Meas) for both samples in Fig. 4.9, for trend analysis of diffraction energy of 

different orders, denoted by peakR . Based on the grating eq. (2.4), it is found that 

diffraction by the AgNR samples results in 5 diffraction orders ( = 2, 1 and 0m   ). 

Reflectance for all 5 diffraction orders are calculated and plotted in form of bar-graphs 

with corresponding measurement values for comparison.  

 

Figure 4.9 Plots (on log scale) comparing the RCWA calculated values (RCWA) with 

Measurements (Meas)  for (a) Sample 1, TE pol. (b) Sample 1, TM pol. (c) Sample 2, TE 

pol. (d) Sample 2, TM pol. 
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For sample 1, for which the relevant figures are 4.9 (a) and 4.9(b), there is good 

agreement between theory and experiment for TE polarization while a reasonably good 

agreement is evident for TM polarization.For both measurements and RCWA calculation, 

positive diffraction orders have higher energy than negative diffraction orders due the 

geometry of the grating. The higher predicted value of peakR for zeroth order TM 

polarized wave could be due to anisotropic properties of the AgNR layer which is 

difficult to incorporate into the RCWA model. For Sample 2, the rectangular profile 

results in a symmetric power distribution of diffraction peaks with respect to m=0, which 

agrees with the measurement trend by neglecting the experiment uncertainties and sample 

non-uniformity. A comparison is made between the DHR measurements performed by IS 

and totalR computation carried out by RCWA, and is presented in table 4.5. Here totalR is 

the sum of peak 'sR  from all five diffraction orders as computed by RCWA.  

Table 4.5 Comparison of total reflection between IS measurements (DHR) and RCWA 

calculations  totalR  

Total Reflectance Sample 1 Sample 2 

 TE TM TE TM 

RCWA( totalR ) 0.643 0.835 0.917 0.476 

IS (DHR) 0.577 0.876 0.870 0.463 

 

From Table 4.5, the predicted totalR  agree well with corresponding DHR 

measurements from IS with the largest absolute difference being less than 0.07. The 
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differences are caused by the uncertainties from modeling such as the unaccounted 

effects of geometry, anisotropy, and coupling, as well as the uncertainty from IS 

measurements. In general, totalR  values are higher, which might be due to the signal loss 

from the entrance and back ports of the IS. However, for the exceptional case of sample 1 

with TM polarization totalR  is lower than DHR, which may be due to the fact that the 

RCWA calculation does not consider the sample anisotropy as discussed earlier.  

It should be noted that RCWA analysis is valid for smooth surfaces only, and 

does not take the sample nonuniformity into account. Because of this, scattering or 

diffuse energy components cannot be calculated via this analysis. To implicitly include 

the effect of scattering caused by AgNR arrays, the scattering rate of bulk silver has been 

modified to 10 times of its original value as used by Modest. Based on this modification, 

one can calculate the optical properties of AgNR-air effective layer and then use them to 

calculate their radiative properties.  The total reflectance values calculated by RCWA are 

then compared with the experimental results and good agreement was observed. The 

factor of 10 was so chosen that one is able to obtain good agreements for both reflectance 

trends and overall reflectance values. In this manner, the effect of scattering is included in 

RCWA calculations in an implicit manner. 
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CHAPTER 5 

CONCLUSION 

 

Micro/nanostructures, through control of their thermal radiative properties, can be 

very useful in energy, biochemistry and optics related fields. They can act as diffraction 

gratings in monochromators and spectrophotometers, act as sensors in identification of 

biological virus strains and act as resonators and filters to trap or transmit light energy, 

respectively. Rigorous coupled-wave analysis is used to perform a numerical 

investigation of the radiative responses of these structures. 

Inclined parallel plate grating arrays were used to demonstrate the resonator 

characteristics of micro/nanostructures. These structures captured incident light at certain 

wavelengths, corresponding to resonance wavelengths of magnetic polaritons and surface 

plasmon polaritons. Electromagnetic field distribution and spectral-directional contour 

plots computed by RCWA confirmed the presence of these mechanisms. Analytical 

confirmation was provided by LC circuit model. Effects of variation of different 

geometrical parameters on the resonator behavior were studied through both RCWA and 

LC circuit models. 

Obliquely aligned silver nanorod arrays were used to demonstrate unique optical 

properties of nanostructures that exhibit remarkably distinct responses to different light 

polarizations and different nanorod orientations. These arrays, grown on compact disc 

gratings, consist of high-aspect ratio nanorods which endow them with the property of 

birefringency, leading to two types of behavior to incident light: dielectric and metallic 

corresponding to ordinary and extraordinary waves, respectively.  RCWA studies were 
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performed on nanorods-on-gratings structure to determine the peak diffraction 

efficiencies for individual orders. Trends of these values were compared against the 

measurements. Also peak total reflection values from RCWA was compared against the 

DHR measurements taken by IS. Both comparisons resulted in good agreements. 

This thesis demonstrated that structural geometries of microstructures can have 

significant effects on their radiative properties. On the basis of present work, a more 

detailed study can be considered in the future whereby additional geometries and a wider 

wavelength spectrum can be included to predict their effects on the radiative properties. 

The study can also be used to investigate the directional and spectral dependence of their 

optical responses, which in turn can be used to fine-tune the design of relevant 

applications. These micro/nanostructures promise to deliver better solutions in the design 

of energy efficient applications in the future.      
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