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SUMMARY

Flexible multibody dynamics simulations have been performed sequentially on

a single processor because the problem sizes for the simulations were not large. How-

ever, advanced designs of rotor blades or CSD/CFD (Computational Structural/Fluid

Dynamics) coupled problems call for more stringent accuracy requirements and faster

computations in multibody dynamics simulations.

For parallel computations, a novel non-overlapping domain decomposition method

is developed and implemented to perform flexible multibody dynamics simulations in

parallel. Non-overlapping domain decomposition methods such as classical substruc-

turing methods and finite element tearing and interconnecting (FETI) methods are

also reviewed and compared to see how they have been developed and improved for

better domain decomposition.

The proposed domain decomposition approach with a localized version of Lagrange

multiplier technique and an augmented Lagrangian formulation in conjunction with

the Lagrange multipliers, is formulated and discussed in detail. Within the frame-

work of direct solvers, the solution procedure with LU factorization and forward and

backward substitutions has been designed for parallel computations. The actual im-

plementation of the parallel algorithm with the domain decomposition method on a

finite-element-based multibody dynamics simulation program (Dymore), is also de-

scribed.

Finally, the parallel algorithm is tested on parallel hardware with numerical exper-

iments to evaluate the accuracy and scalability of the algorithm for various domain

decomposition cases.
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CHAPTER I

INTRODUCTION

1.1 Why “Parallel Computing?”

Today, multi-processors for parallel processing are everywhere and not expensive any-

more. They have been already used to solve large-scale engineering problems. Flexible

multibody dynamics problems can become another candidate that requires parallel

processing.

Blade tip
shell model

Blade tip
beam model

Rotor blade

Rotor blade
Anhedral

Swept tip

Figure 1.1: Advanced rotor blade configurations

1.1.1 Advanced design for rotor blades

Traditionally, the structural dynamics simulation of rotor systems has relied on beam

models for the analysis of blades. Furthermore, to simplify the process, modal re-

duction is typically performed to further reduce the computational complexity of the

problem [8]. In the past decade, geometrically exact beam models have been devel-

oped even for composite beams [44, 10, 16], enabling the fully nonlinear analysis of

realistic rotor systems [9]. These models are now used by industry because they meet
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their ever more stringent accuracy requirements.

To improve aerodynamic performance, industry is considering the use of curved

blades presenting sweep and anhedral [47]. The accurate analysis of such structures

calls for geometrically exact shell models [64, 65] rather than their geometrically exact

beam counterparts. The shell models may provide a better environment for meshing

at the interface between the rotor blade surface and the air stream over the surface.

Figure 1.1 illustrates these considerations for the advanced blade design in rotorcraft

industry.

Shell

element

Beam

element

Figure 1.2: Rotor blade modeling with beam elements or shell elements

When it comes to the computational costs, the difference between beam and shell

modelings is remarkable, see Figure 1.2. The most expensive operation of the solution

procedure with finite element analysis is the factorization of the stiffness matrix. Since

the finite element discretization mostly creates a sparse stiffness matrix, the average

or mean bandwidth of the matrix is used to represent the sparsity of the matrix.

The factorization cost of a stiffness matrix is proportional to the square of the mean

bandwidth of the matrix.

A simple estimation of the factorization cost can be done. For the beam modeling,

a quadratic beam element is used for rotor blade modeling so that the degrees of

freedom (dofs) will be 18 and the mean bandwidth will be the same size. For the

shell modeling, two different mesh cases are considered. Thus, the mean bandwidths
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for the coarse and fine mesh cases will be 480 and 960, respectively.

Table 1.1: Computational cost estimation: Beam vs. Shell

Element type
Number of
elements

Mean
bandwidth

Cost ratio

Beam 1 18 (18/18)2 = 1
Shell (Coarse mesh) 32 480 (480/18)2 = 711.1
Shell (Fine mesh) 64 960 (960/18)2 = 2844.4

As can be seen in Table 1.1, the difference between the factorization costs of the

beam and shell elements is huge in that it can be simply said that one hour run with

the beam model becomes 2,800 hour or 120 day run with the shell model for the fine

mesh. This significant difference between the factorization costs with the beam and

shell modelings is one of the main reason calling for parallel computations.

Figure 1.3: Typical rotor blade section

Most rotor blades are made of composites as seen in Figure 1.3. If the composite

rotor blade of the UH-60 helicopter is modeled with 3-D elements such as the 20-node

brick element, it can be meshed with a number of the brick elements. It is assumed
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Table 1.2: 3-D finite element problem size estimation for composite rotor blade

Rotor blade dimensions L = 8.6 m; Chord = 0.72 m
Main D-spar 60 plies; Thickness/ply = 125 µm
Element type 20-node brick
Element/ply 1 (assume 1/10 aspect ratio)

Elements (length × width × height) 6,880 × 1,152 × 60 ≈ 476 million
Nodes (length × width × height) 12,760 × 2,304 × 120 ≈ 3.5 billion
Dofs (total nodes × dofs/node) 3527884800 × 3 ≈ 10.6 billion

that as a rough estimate, at least, one element per ply is used to capture the inter-

laminar stress and the aspect ratio of the element is set to 1/10 within a reasonable

range where an aspect ratio is defined as the ratio of the longest mesh edge divided

by the shortest mesh edge. The dofs of the problem with 3-D finite elements becomes

over 10 billion which is way beyond today’s computer capabilities. In fact, only the

12 dofs or modes were considered to design the UH-60 helicopter. This estimation is

tabulated in Table 1.2.

1.1.2 Aeroelastic analysis

Over the past decade, aeroelastic analysis codes have moved in a novel direction:

CFD (Computational Fluid Dynamics) codes have been linked to Flexible Multibody

Dynamics codes using various fluid-structure coupling techniques to provide a fun-

damentally new aeroelastic analysis approach that will change the way helicopters

are designed [67, 68, 4, 53]. The CFD codes provide three-dimensional solutions of

Navier-Stokes equations using the massive computational capabilities of parallel com-

puters. In contrast, comprehensive rotorcraft codes solve geometrically exact beam

problems on single processor machines.

When beam elements are used for the structural modeling, the computational

cost of the CFD analysis outweighs that of the CSD (Computational Structural Dy-

namics) analysis by several orders of magnitude. Nevertheless, as parallel computers

become more powerful and more widely available, the wall-clock time required by the
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CFD analysis keeps dropping, whereas that required by the CSD on single processor

machines remains constant or increases as the complexity of rotor systems increases.

When the loose coupling strategy is used, the CFD computations are run for a few ro-

tor revolutions only. On the other hand, comprehensive simulation codes are used to

trim the rotor, requiring the simulation a far larger number of rotor revolutions. Con-

sequently, the wall-clock times used by the parallel CFD computations and the serial

CSD simulations are bound to become similar as machines with an ever increasing

number of cores become available.

Clearly, the development of parallel computational schemes for rotor dynamics is a

timely research topic. First, the present computations using geometrically exact beam

models will be considerably quickened, helping speed-up coupled CSD/CFD simula-

tions. Second, comprehensive modeling tools using more traditional aerodynamics,

such as lifting line and table look-up procedures, will benefit from this technology

greatly. Indeed, comprehensive rotorcraft analysis based on fully nonlinear beam

models will require as little as a few minutes of wall-clock time in a parallel compu-

tational environment. Finally, the development of parallel computational tools for

structural dynamics is an enabling technology for future rotor development. Indeed,

advanced rotor concepts, such as those involving curved blades with sweep and an-

hedral, will require the use of shell models for better meshing at the interface between

the blade surface and the air stream. On the other hand, despite of the difficulties

in the application of 3-D finite elements to the design of composite rotor blades, the

3-D elements can still be used for more reliable analysis in locally developed stress

concentration. Performance of all these modeling approaches such as geometrically

exact beam/shell modeling and 3-D finite element modeling, can be improved with

parallel algorithms, and hence, they can be all candidates in the development path

to the parallel computing for the advanced design for rotor blades in conjunction

with the aeroelastic analysis, although shell models and 3-D finite elements are not
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investigated in this thesis. The routine use of these models is not practical with to-

day’s comprehensive codes running on single processor machines. The availability of

parallel computational tools for rotor dynamics will give new impetus to the field,

open new areas of research, allow higher-accuracy predictions than possible before,

provide far more detailed description of the three-dimensional stress distributions in

rotors, and enable designers to simulate novel rotor configurations confidently.

1.2 Why “Domain Decomposition” for Parallel Comput-
ing?

There are many ways to perform parallel computations. Parallel computations can be

achieved by either computer hardware-based approach or software-based counterpart.

The hardware-based approach such as pipelining of CPU, vector processors, etc.,

usually falls in the category of fine-grained parallelism which requires frequent inter-

processor communications and is not suitable for large-scale engineering problems. On

the other hand, the software-based approaches or parallel algorithms are mostly in

the category of coarse-grained parallelism. This parallelism is basically accompanied

by a decomposition of a task. The decomposition approach can be largely classified

into functional and domain decompositions. The functional decomposition divides the

algorithm of a program into parts while the domain decomposition divides the data

used in a program into parts. Since a finite element analysis program deals with a huge

data of model geometry and physical properties, the domain decomposition approach

is more suitable than the functional counterpart because the functional decomposition

for the finite element analysis could bring about severe load imbalance.

The domain decomposition method has many advantages. Unlike the ready-to-

plug-in parallel algorithms, the domain decomposition algorithm for parallel compu-

tations can be tailored based on the physical characteristics of a given problem, in

order to get the optimal approach to the more accurate numerical solution. For ex-

ample, the analysis of fluid-structure interaction problem requires that the different
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governing equations be applied to the two physically different fields. The domain

decomposition method can be applied to this type of problem with the proper do-

main partitioning along the boundary between the fluid and structure fields. If the

parallel computations proceed without the consideration about the physical differ-

ence between the heterogeneous fields, it would be questionable whether the resulting

parallel solution is acceptable and accurate.

The domain decomposition method is also based on the divide-and-conquer con-

cept which is the most fundamental approach to make any problem easier to solve.

The concept is able to dramatically reduce the size of a problem through partition-

ing the problem and the partitioned subproblems would be much easier to handle.

An engineering problem with a complex geometry can be divided into subproblems

with simpler geometry. When the topology of a model can be expressed in a graph

where vertices, edges and faces are used to define the topology of the model, the

domain decomposition can be optimized by a graph partitioner to achieve optimal

load balancing.

The rotor system which is the most representative model of the finite-element-

based multibody systems, has a complex geometry and various mechanical compo-

nents. The mechanical components can be partitioned into subproblems, which is the

domain decomposition. Any challenging problem like the rotor system can be divided

into subproblems, and they can be solved in parallel. The dynamic analysis of the ro-

tor system is also often performed with a fluid-structure interaction modeling, which

is a multidisciplinary problem with physically heterogeneous fields, and this can be

handled by the domain decomposition method as previously stated. All in all, the

domain decomposition approach is one of the most suitable approaches, especially for

the engineering problems of finite-element-based multibody systems.
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1.3 Parallel Computing for Finite Element Analysis

The finite element method is one of most widely used approaches for computational

mechanics and it originated from structural mechanics. The method basically sub-

divides a problem into smaller subproblems and each subproblem is called a finite

element. Each finite element can represent a partial solution to an original global

problem. In finite element procedure, the global stiffness matrix is assembled from

element stiffness matrices of local finite elements. Since the element stiffness matrices

are added up in a global stiffness matrix with a proper mesh connectivity between

each finite element and the global structure, it is clear that each element stiffness

matrix can be computed in parallel. Hence, the underlying idea of the finite element

method is naturally applicable to parallel computation algorithms because they share

the same idea which is the decomposition of an original problem.

The most expensive operation of the finite element procedure is the factorization

of the stiffness matrix specifically for direct solvers. For a sequential direct solver, the

execution time for only matrix factorization takes about 50 ∼ 60% in an iteration for

typical structure problems. In order to reduce the execution time of the expensive

operation, several parallel approaches have been developed and used for the finite

element analysis.

1.3.1 Vector processor

A vector processor or array processor is a hardware-based approach to parallel com-

putations. Many common supercomputers since 1970’s have been designed by the

vector processors. The well-known Cray computer is a supercomputer with vector

processors.

As a vector usually means a linear array of numbers i.e., multiple data, a vector

processor performs an instruction (operation) on multiple data at once, in contrast

to a scalar processor which does on only a single datum. This parallel approach
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is referred to as SIMD (Single Instruction Multiple Data) and is considered a data

parallelism. If a vector processor accesses memory for massive data simultaneously,

it takes dramatically less processing time than a scalar processor does. The vector

processor, however, takes more execution time to execute an instruction on a single

data than a scalar processor, because the vector processor is designed to handle

only vectorized multiple data accompanying large overhead. Moreover, vectorization

of data is required for the efficient usage of vector processors; this increases the

complexity of a computer code. Most finite element codes use various data structures

for program efficiency while vector processors can maximize the efficiency with only

vector-like data structures.

Today, General-Purpose Graphics Processing Unit (GPGPU), which is based on

vector processors, has gained growing popularity because of its reasonable price in the

market, unlike the expensive vector processors which were rarely used for personal

computers in the past. The research about the parallel computations with efficient

usage of GPGPU has been actively performed [54]. GPGPU has a strong potential

to enhance the parallel performance of finite element codes.

1.3.2 Multifrontal solver

One of the popular parallel approaches for finite element analysis is the multifrontal

method [21] which is a parallel version of the frontal method [45]. The frontal method

basically utilizes the sparsity so that the solution procedure can effectively minimize

the computations associated with zero entries like the other direct solvers for sparse

matrices in the form of skyline or banded structure. Briefly speaking of the idea

about the frontal solver, as a boundary along a set of elements or a front advances,

a process of variable elimination is performed similarly to the condensation process.

The original frontal method not only assembles element matrices and arrays but also

eliminates variables at the same time in order to avoid constructing a full global
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stiffness matrix which becomes huge to handle for large-scale problems. Rather, the

method keeps the problem size small enough to fit in the core storage and performs

the solution procedure faster. The original frontal method has been improved to use

multi-processors for multiple fronts so that the elimination process can be performed

in parallel. This improved version is the multifrontal solver. The multifrontal solvers

have been studied and developed extensively until today [46, 43, 52].

1.3.3 Domain decomposition methods

A domain decomposition method is an approach to solve boundary value problems

by partitioning a computational domain into a desired number of subdomains. The

partitioned subdomains can be either overlapping or non-overlapping with each other

depending on the type of domain decomposition methods. The domain between dif-

ferent subdomains is called an interface. Briefly speaking, the domain decomposition

method with overlapping subdomains doesn’t need to solve a separate interface prob-

lem, but instead solves subdomain problems including the interface, and updates the

boundary solution iteratively. In contrast, the non-overlapping-subdomain domain

decomposition methods solve the interface problem separately. The domain decom-

position methods originated from a paper by Schwarz, who proposed an alternating

approach to solve a problem with complicated domain which includes a rectangle and

a circle as shown in Figure 2.3 [63]. Many domain decomposition approaches have

been studied, developed and investigated until today: additive and multiplicative

Schwartz methods are overlapping approaches, while iterative substructuring meth-

ods such as Balancing Domain Decomposition methods (BDD), Finite Element Tear-

ing and Interconnecting methods (FETI), and Mortar methods are non-overlapping

approaches [48, 42].
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1.4 Parallel Computing for Multibody Dynamics

Efficient algorithms have been developed for modeling multi rigid body dynamical

systems presenting chain or tree-like topologies. By taking advantage of specific

system topologies, parallel O(log(n)) formulations have been developed by Fijani et

al. [37]. Anderson [1] developed an O(n) parallel algorithm for the simulation of sys-

tems presenting tree topologies. Featherstone proposed a divide-and-conquer parallel

O(log(n)) strategy for articulated bodies [34], which he then generalized to tree and

loop configurations [35]. Anderson and Duan [2] considered general systems of rigid

bodies, which may contain arbitrary joint types, multiple branches, and/or closed

loops. Their proposed scheme allows a substantially higher degree of parallelization

than is generally obtainable using the more conventional recursive O(n) procedures.

Critchley and Anderson [20] further refined the approach by introducing a new re-

cursive coordinate reduction parallel algorithm that provides improved computation

performance.

In recent years, the field of flexible multibody dynamics has embraced the finite

element approach for modeling flexible structures, as described in the textbook of

Géradin and Cardona [39] and numerous references therein. In those formulations,

the kinematic constraints found in multibody systems are typically enforced via the

Lagrange multiplier technique, leading to differential algebraic governing equations.

In most cases, complex flexible multibody systems do not present the tree-like topol-

ogy that characterizes traditional multi rigid body dynamical systems. For instance,

when modeling a shell structure, all degrees of freedom are coupled through the two-

dimensional finite element mesh. On the other hand, the finite element modeling of

flexible multibody systems involves orders of magnitude more degrees of freedom than

those typically involved in the modeling of multi rigid body systems. Consequently,

detailed and accurate time simulation of flexible multibody systems using the finite

element approach can typically not be performed in real time. The use of a finite

11



element approach, however, does not preclude the development of parallel solution

algorithms.

In fact, a voluminous body of literature deals with the development and imple-

mentation of parallel computational strategies for finite element models. A complete

review of the field is beyond the scope of this thesis, but the many approaches that

have been proposed fall into the following categories.

First, because one of the most expensive operations in a finite element simula-

tion is the factorization of the stiffness matrix, strategies for parallel implementation

of factorization algorithms have been developed. The use of vector computers was

proposed to speed up the factorization algorithm. This approach is very robust, but

seems to have met limited success in terms of scalability [18]. Multi-frontal solvers [21]

have also been proposed for the task of factorization [46]. This approach seems to

be very arduous to implement; furthermore, for multibody systems, the presence of

Lagrange multipliers as additional solution variables would require the development

of appropriate multi-frontal solvers. This helps explain why this approach does not

seem to have been applied to the types of problems appearing in flexible multibody

dynamics.

The second approach relies on iterative solvers, such as the conjugate gradient

or generalized minimal residual algorithms [62]. This approach has been applied to

the solution of structural dynamics problems. It must be noted, however, that their

efficiency crucially depends on system conditioning. Hence, good pre-conditioners

are required for the efficient implementation of this approach. Flexible multibody

systems often involve rigid-body modes associated with zero frequencies, and the La-

grange multipliers used to enforce kinematic constraints introduce numerous “infinite

frequencies.” Consequently, flexible multibody problems are typically ill-conditioned,

more so than their structural dynamics counterparts, and the use of iterative solvers

does not seem to be desirable.
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Finally, domain decomposition techniques have been the approach of choice for

the last two decades. In particular, the FETI method developed by Farhat and

coworkers has received considerable attention [29, 30, 25, 24]. A distinctive feature

of this approach is that an auxiliary problem appears as a byproduct of the solution

process. It is based on the rigid-body modes of the floating sub-domains, and because

its size is small compared to that of the overall problem, it is called the “coarse

problem.” For plate and shell problems, imposing the continuity of the transverse

displacement at sub-domain cross-points, also called “corner points,” is found to be

beneficial and is enforced via an additional set of Lagrange multipliers. This leads

to a two-level procedure [31, 32, 23, 26]. Finally, the second generation, dual-primal

FETI method [50, 28, 27, 33, 12] combines many of the techniques developed earlier

in a unified manner.

Limited work has been done to apply the algorithms described the previous para-

graphs to flexible multibody systems. Chiou et al. [17] combined the null space

formulation with a preconditioned conjugate gradient algorithm to obtain a natural

partitioning scheme for multibody systems. Coulon et al. [19] investigated the appli-

cation of the FETI method to flexible multibody systems. Finally, Quaranta [58] used

a domain decomposition method based on the Schur complement matrix to perform

parallel simulation of multibody systems.

The FETI method is an approach by which the computational domain is divided

into non-overlapping sub-domains. At the interface between the sub-domains, kine-

matic constraints are imposed to enforce the continuity of the displacement field over

the entire structure. These kinematic constraints are enforced via fields of Lagrange

multipliers that act at the interface between the sub-domains and can be interpreted

as the interface connection forces. The method then proceeds in two steps. First,

an interface problem is solved that yields the Lagrange multipliers. Second, the sub-

domains are now independent structures subjected to known boundary forces, the
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fields of Lagrange multipliers. The displacement fields in each sub-domain can be

computed in parallel because each sub-domain is now independent of the others.

In the literature cited above, the FETI method is seen as a purely computa-

tional algorithm, and researchers have focused on the efficiency and scalability of the

approach. In this paper, domain decomposition methods are investigated from the

viewpoint of constrained dynamical system. Once the system is decomposed into sub-

domains for the purpose of parallel computation, these sub-domains can be viewed

as flexible bodies connected by kinematic constraints, as is typically found in flexible

multibody systems. Clearly, the tools and techniques developed for the analysis of

such systems become relevant. In rigid and flexible multibody dynamics, the method

used to enforce of the kinematic constraints plays a pivotal role in the formulation.

Bauchau and Laulusa [49, 11] have reviewed the literature on this topic. Some widely

used techniques are not desirable in this case. For instance, many approaches seek a

minimum set of variables by eliminating the Lagrange multipliers from the formula-

tion. While this might be a computationally efficient way to proceed for sequential

processing, it is not necessarily required for parallel computations. On the other

hand, the augmented Lagrangian approach is a well established procedure for solving

constrained dynamical systems and seems to be very much applicable to the problem

at hand.

1.5 Objectives

Multibody systems are composed of various mechanical components. The components

are often connected by mechanical joints which are modeled by constraint elements.

A constraint element enforces kinematic constraints via Lagrange multipliers. The

Lagrange multiplier technique is a routinely used scheme for the analysis of multibody

systems and has already been extensively used in the multibody dynamics community.

The technique has been continuously developed and demonstrated by the community
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for the robust multibody dynamics simulations.

While domain decomposition methods have been developed for finite element anal-

ysis, the methods especially for multibody dynamics have not been studied much. But

it becomes clear that the schemes routinely used for multibody dynamics simulations

can also be applied for a new approach to the domain decomposition methods because

the Lagrange multiplier techniques used to enforce kinematic constraints between de-

composed subdomains are also one of the underlying schemes used to connect various

mechanical components of a multibody system. The Lagrange multiplier techniques

used in the multibody community are already robust in static and dynamic simula-

tions. Therefore, it will be guaranteed that the application of the technique to the

domain decomposition is also powerful for both simulations.

In this thesis, for the development of a novel non-overlapping domain decompo-

sition method, the Lagrange multiplier technique to ensure the continuity between

subdomains will be modified so that the Lagrange multipliers will not belong to the

global interface, but rather will be localized into subdomains. Due to the charac-

teristics of multibody systems, sparse direct solvers will be used for the solution

procedure within the standard finite element procedure. Parallel processing for the

solution procedure will be implemented with a message passing interface (MPI). The

static and dynamic simulations with parallel computations will be performed for nu-

merical experiments to validate the accuracy and scalability of the proposed domain

decomposition method on parallel hardware.

1.6 Chapter Overview

In Chapter 2, the domain decomposition methods developed for finite element analysis

are discussed. They are classical substructuring methods, Finite Element Tearing and

Interconnecting method and its variants. In Chapter 3, the proposed domain decom-

position method especially for the finite-element-based multibody dynamic analysis,
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is formulated and discussed. The application of the domain decomposition method

to the solution procedure within the finite element framework is also detailed. In

Chapter 4, the implementation of the parallel algorithm with the proposed domain

decomposition method will be described. Implementation of the domain decompo-

sition and inter-processor communication will be detailed. In Chapter 5, numerical

experiments with three example modes will be presented and studied to validate the

parallel algorithm with the proposed domain decomposition method. Finally, the

conclusions of this thesis and the possible future work will be discussed in Chapter 6.
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CHAPTER II

DOMAIN DECOMPOSITION METHODS FOR FINITE

ELEMENT ANALYSIS

A domain decomposition method is a method that partitions a computational domain

of a given problem into multiple subdomains in order to gain several advantages. First,

subdomain problems can be computed in parallel i.e., subproblems can be solved

simultaneously. Second, domain decomposition can transform complex geometry of

an original problem into much simpler geometry of subdivided problems. Third,

different formulas can be applied to physically heterogeneous fields in a multiphysics

problem where each subdomain problem is governed solely by a single formula with

a proper domain decomposition along the exact boundary between heterogeneous

fields. Four, if an original problem is too large to fit into computer memory, this issue

can be resolved by splitting the problem into smaller problems. Last but not least,

the divide-and-conquer concept mostly reduces the total computational cost which is

usually higher if an original problem is not divided and is solved as a whole. With

these advantages, domain decomposition methods have been one of the most popular

approaches for finite element analysis with parallel algorithms.

The application spectrum of domain decomposition methods is very wide. In this

chapter, however, the application area of the methods is focused on the finite element

analysis. Domain decomposition can also be applied to either spatial or time domain.

But the domain decompositions in this thesis are all decompositions in the spatial

domain associated with finite element discretization.

In this chapter, how to classify each domain decomposition method is presented.

Then historical non-overlapping domain decomposition methods will be covered to
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study the root of the proposed domain decomposition approach with the comparison

among the methods.

2.1 Classification of Domain Decomposition Methods

Topological
entities

Vertex

Edge

Face

Geometric
components

Curve

Surface

Structural
elements

VolumeBlock

Point mass

Boundary condition

Beam, Cable

Rigid bar

Constraint elements

Boundary condition

2D elasticity

Membrane

Shell

Boundary condition

3D elasticity

"brick elements"

Point (x, y, z)

Figure 2.1: Relationship between topological entities, geometric components and
structural elements (Source: Dymore User’s Manual [7])

In general, a domain decomposition method generates two types of computation-

ally artificial problems: subdomain and interface problems. Through the domain

decomposition, the original problem is divided into smaller problems and each prob-

lem is now a local problem. The interface problem is a byproduct of partitioning

and is placed along the boundary of adjacent subdomains. The interface problem

is always coupled with local subdomain problems and is solved with data transfer

between subdomains and the interface. Saad says in his textbook [61], a domain de-

composition method can be classified by four factors: type of partitioning, subdomain
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overlapping, interface design and subdomain solution.
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Figure 2.2: Types of partitioning for edge-based elements (Top: Element-based
partitioning; Bottom: Vertex-based partitioning)

2.1.1 Type of partitioning

A type of partitioning depends on where one can split a computational domain over a

set of topological entities: vertices, edges or faces. For each finite element, an entity

or a set of entities can be used to define the element geometry. For example, a point

mass can be defined by a vertex, a beam or a cable by an edge, a plate or a shell by

a face, as seen in Figure 2.1.

In this thesis, however, only the edge-based structures will be considered for nu-

merical experiments. Thus, it should be noted that the face-based structures will not

be used in the partitioning process. Consider a grid of beams which is composed of

a set of vertices and edges, see Figure 2.2. When one splits the domain over a set of

vertices, it is called edge-based partitioning because the set of original edges is intact.
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On the contrary, when one splits over a set of edges, it is called vertex-based parti-

tioning because of the opposite reason to the previous. But since the vertex-based

partitioning will destroy the edge-based element mesh, this type of partitioning will

not be used and considered. Only the edge-based partitioning will be used in this

thesis.

Ω
(1)

Ω
(2)

Γ

Ω
(i)

: Subdomain

Γ : Interface

Figure 2.3: Overlapping domain decomposition

2.1.2 Overlapping or non-overlapping subdomains

Subdomains may be overlapped or not overlapped depending on the used domain

decomposition method. The solution procedure of overlapping domain decomposition

method is very closely related to classical iterative methods such as Gauss-Seidel or

Jacobi iteration. On the other hand, non-overlapping domain decomposition methods

have been used with the Schur complement for classical substructuring which is the

early version of parallel structural analysis under the direct solver framework. Today,

modern domain decomposition methods for finite element based structural analysis

also use the Schur complement as a fundamental concept which is straightforward.

2.1.3 Design of interface

Although subdomain problems usually have most of the dofs out of the total dofs

of the original problem, the characteristics of a domain decomposition method is
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dictated by the interface problem. The local subdomain problems can be solved in

parallel while the solution procedure of the interface problem must somehow pass

through sequential steps, which becomes a bottleneck for parallel computations. Be-

cause the neighboring subdomains were not detached from each other at interface

for the original unpartitioned domain, the way of interconnecting them at the inter-

face is very important to ensure the continuity between the neighboring subdomains.

How to interconnect them affects the characteristics of the interface problem such

as matrix bandwidth, problem conditioning, convergence behavior, etc. Thus, the

design of interface is very important to minimize the bottleneck impact on parallel

performance and to achieve a well-posed problem at the interface for solid continuity

across subdomains.
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Boundary

Subdomain 2

Boundary

=
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u
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u
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23 u
22

(2)
(1) [13](2)

1 2

Figure 2.4: Various interface connections (Subscript: Local node number within
a subdomain; Superscript in parentheses: Subdomain number; Other superscripts:
Global interface node number)

Three types of the interface design are described in Figure 2.4. Multiple types

of interface can be combined for a domain decomposition process, or only one type

can be used. The interface at the top shares a primal node (square in blue) between

two subdomains so that the primal node belongs to the global interface problem as
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well as the two local subdomain problems. Since one identical primal node is used

for both interface and subdomain problems, the long equal sign is used to express

the connection between the interface and the two subdomain boundaries. This type

of interface is used for classical substructuring methods. The interface in the middle

shares a dual Lagrange multiplier node (circle with a cross in green) between two

subdomains, but the subdomain boundary nodes (square in red) are localized into

subdomain problems. This type of interface is used in Finite Element Tearing and

Interconnecting (FETI) method. The interface at the bottom has its own independent

primal node (circle with a cross in pink), but the subdomain boundary nodes and the

Lagrange multiplier nodes are localized into subdomain problems. The last type of

interface will be used in this thesis for the proposed domain decomposition method

and this approach is advocated by Park et al. [56].

2.1.4 Solution method for subdomain problems

Subdomain problems can be solved by either a direct or an iterative method. Direct

methods are robust and reliable even for ill-conditioned problems. Their performance

depends only on the sparsity of the system matrix. Computational cost of them can

also be predictable. On the other hand, iterative methods heavily depend on the

conditioning of the system matrix. The more ill-conditioned, the slower convergence

to the solution. Thus preconditioning of the system matrix is crucial for every iterative

method. The computational cost of iterative methods is often unpredictable. But,

they can better use the sparsity of the matrix so as to be faster than direct methods

for sufficiently large problems. Thus, a solution method for subdomain problems

should be carefully chosen by the sparsity and conditioning of the system matrix.
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2.2 Non-overlapping Domain Decomposition Methods for
Finite Element Analysis

In structure engineering, the substructuring method was developed in 1960’s for the

finite element analysis of complex and large-scale problems [57] allowing both global

and local approaches to the problems systematically. The substructuring method falls

into the category of non-overlapping domain decomposition methods and the method

is also considered another origin of the modern domain decomposition methods as

they are all in family methods. It should be very helpful to understand how the non-

overlapping domain decomposition methods in the same family have been formulated

and how they are distinguished from each other. Thus, the notations used for and

the brief derivations of the classical substructuring method and its successors will be

covered in the next several sections.

Subdomains and interface

Similar terminology is usually used throughout the literature about domain decompo-

sition methods. To describe the methods without vagueness, it is necessary to define

a clear concept of the subdomain, the interface and their connection under the finite

element framework.

In the preprocessing phase of the finite element procedure, the finite element

discretization generates a complete mesh of a structural model. The finite element

mesh consists of elements and nodes. A node is an entity where a set of degrees of

freedom (dofs) is defined while an element consists of a set of nodes and represents a

partial solution field of a whole problem. The dofs of a node can be primal or dual

variables which usually indicate generalized coordinates (displacements and rotations)

or Lagrange multipliers, respectively. The type of a node is also defined as a primal

node or a dual node depending on the type of dofs.

Assume that a computational domain with a finite element mesh is subdivided
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Figure 2.5: Domain decomposition

into non-overlapping subdomains, see Figure 2.5. The in-between entity between sub-

domains is defined as the interface. The interface nodes can be defined by either just

dual variables (forces and moments) between subdomains or actual independent pri-

mal variables (displacements and rotations). Conceptually subdomains are connected

at the interface. A subdomain can be composed of multiple finite elements, in turn,

also composed of the associated nodes with the elements. The nodes can belong to

either internal (non-boundary) or boundary of a subdomain. The boundary nodes

of a subdomain connects somehow to the nodes of either other subdomain(s) or the
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interface itself, while the internal nodes doesn’t. The boundary nodes are special

because they are the information gates between the subdomains and the interface.

The definition of a subdomain is tangible and fixed because it is just a smaller

domain of the original problem, while the interface is quite conceptual, artificial and

easily customizable, see Figure 2.4. For example , classical substructuring methods,

see Section 2.3, define the interface problem by a set of boundary nodes of subdomains.

Thus, for classical substructuring methods, the interface nodes are directly identical

to the boundary nodes of subdomains. On the other hand, the methods of the FETI

family have different interface structures. Interface nodes are defined by either only

dual variables, see Section 2.5 or a combined set of dual and primal variables, see

Section 2.7. The design difference of the interface problem is directly related to the

characteristics and scalability of a domain decomposition method.

Subdomain problems are inherently local while the interface problem is usually

global. The purpose of domain decomposition is basically to divide a large problem

into small problems and each problem becomes localized. On the other hand, adjacent

subdomains are somehow associated with each other at an interface. This indicates

that the interface is global. Thus, usually, the subdomain problem is local while the

interface problem is global.

Some authors [42] call a boundary of a subdomain a local interface because the

boundary belongs to a subdomain which is local, but the boundary can also directly

communicate with the other subdomain(s). On the other hand, the interface can be

called a global interface because the interface is an aggregate entity over all subdo-

mains and it globally communicates with all the subdomains.
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2.3 Classical Substructuring Method

The history of non-overlapping domain decomposition methods started at substruc-

turing for finite element analysis in structure engineering. Substructuring was ini-

tially designed for systematic approach to large scale problems with finite element

discretization. In finite element framework, a structure model can be constructed ele-

ment by element, just like building blocks. This means a physical problem can initially

be split into smaller problems by engineer’s convenience and can be re-assembled into

the whole problem. From these reasons, finite element methods enable us to model

any kinds of complex structures for quality predictions in structural engineering. This

divide-and-conquer concept of finite element methods could be readily applicable to

the substructuring.

Figure 2.6: Substructuring of an aircraft (Source: Course material for Introduction
to Finite Element Methods [36])

Substructuring is basically partitioning an original structure into components

(substructures) at the outset of finite element analysis, see Figure 2.6. It enables

engineers to be able to systematically manage a very large finite element model so
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that different design groups can work on different substructures separately and in-

dependently. It is also able to control the size of each subproblem to be fitted into

limited computer resources. Substructuring can be applied to the problems with

repetitive structures.
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Figure 2.7: Mesh of classical substructuring

This classical substructuring has been the origin of modern domain decomposition

methods such as finite element tearing and interconnecting (FETI) methods. The

term classical is used to stress the original motivations of the substructuring method.

But the original motivations of the substructuring methods have shifted the focus

into computational efficiency with parallel computing.

As seen in Figure 2.7, in the classical substructuring method, all boundary nodes

are shared between subdomains unlike the modern domain decomposition methods.

Hence, subdomains are not completely detached from each other. Rather they are

strongly coupled to their adjacent subdomains. Another illustration of classical sub-

structuring is shown in Figure 2.8. The explanation of the interface in the figures are
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Figure 2.8: Detached-subdomain version of mesh

found in Section 2.1.3 with Figure 2.4.

2.3.1 Condensation process for substructuring

The formulation of substructuring is based on condensation process. Assume that

substructuring divides the domain of a whole structure into Ns subdomains or sub-

structures, as in Figure 2.7. The equations of equilibrium of a local subdomain j can

be written as

K(j)u(j) = Q(j), (2.1)

where K(j), u(j) and Q(j) are the stiffness matrix, displacement array and exter-

nally applied load array, respectively, for the local subdomain j. This can be further
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expressed with another subdivision into the internal and boundary parts as in Equa-

tion (2.2),  K(j)

ii
K(j)

ib

K(j)T

ib
K(j)

bb


u

(j)
i

u
(j)
b

 =

Q
(j)

i

Q(j)

b

 , (2.2)

The subscripts i and b denote internal nodes and boundary nodes, respectively. It

should be noted that boundary nodes are also interface nodes in classical substruc-

turing methods. The first row of Equation (2.2) can be solved for the internal dis-

placement array u
(j)
i as

u
(j)
i = K(j)−1

ii

{
Q(j)

i
−K(j)

ib
u
(j)
b

}
. (2.3)

To eliminate the internal displacement array from the local subdomain problem, sub-

stituting u
(j)
i into the bottom row of Equation (2.2) writes[

K(j)

bb
−K(j)T

ib
K(j)−1

ii
K(j)

ib

]
u
(j)
b = Q(j)

b
−K(j)T

ib
K(j)−1

ii
u
(j)
i (2.4)

Equation (2.4) is a condensed expression of the subdomain j with respect to the

boundary nodes u
(j)
b ; the boundary nodes view the subdomain j in this way. This

condensation process can be done for allNs subdomains and every local Equation (2.4)
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can be properly assembled in a global matrix-vector equation. The schematic descrip-

tion of the condensed set of boundary nodes can be seen in Figure 2.9.

2.3.2 Governing equations of substructuring

In classical substructuring, the boundary nodes are shared between subdomains i.e.,

the boundary nodes themselves are the interface nodes. Thus it is better to introduce

a global array of all the boundary nodes from all subdomains. The array can be called

the global array of boundary/interface nodes. A boolean matrix mapping from the

global array of interface nodes to the local array of boundary nodes of a subdomain,

is also defined as

u
(j)
b = B(j)ub. (2.5)

The energy method can be used to derive governing equations of a substructuring

problem. The total strain energy, A, can be evaluated by adding up the strain

energies, A(j) of the Ns subdomains

A =
Ns∑
j=1

A(j) =
Ns∑
j=1

1

2
u(j)TK(j)u(j)

=
Ns∑
j=1

1

2

 u
(j)
i

B(j)ub


T  K(j)

ii
K(j)

ib

K(j)T

ib
K(j)

bb


 u

(j)
i

B(j)ub

 .

(2.6)

The potential of externally applied loads can also be evaluated by adding up the

potentials for each of the subdomains

Φ =
Ns∑
j=1

Φ(j) = −
Ns∑
j=1

u(j)TQ(j)

= −
Ns∑
j=1

 u
(j)
i

B(j)ub


T Q

(j)

i

Q(j)

b

 .

(2.7)

Taking the variation in the total potential energy Π = A+ Φ,

0 = δΠ = δA+ δΦ

=
Ns∑
j=1

{
δu

(j)T
i

[
∂A

∂u
(j)
i

+
∂Φ

∂u
(j)
i

]}
+ δuTb

[
∂A

∂ub
+
∂Φ

∂ub

]
,

(2.8)
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the principle of minimum total potential energy tells that the square-bracketed terms

in Equation (2.8) must vanish for all arbitrary variations in u
(j)
i and ub, yielding the

governing equations from the classical substructuring method as,

K(j)

ii
u
(j)
i +

[
K(j)

ib
B(j)

]
ub = Q(j)

i
, (2.9)

Ns∑
j=1

[
K(j)

ib
B(j)

]T
u
(j)
i +K

bb
ub = Q

b
, (2.10)

where

K
bb

=
Ns∑
j=1

B(j)TK(j)

bb
B(j) and Q

b
=

Ns∑
j=1

B(j)TQ(j)

b
. (2.11)

Equation (2.9) is the equations of equilibrium of a local subdomain, which is equiva-

lent to the first row of Equation (2.2). Equation (2.10) is the equations of equilibrium

of the globally condensed interface as they are expressed in the summation of the con-

tributions from local subdomains.

2.3.3 Global interface problem

The classical substructuring method sets up the global interface problem by eliminat-

ing the local subdomain displacement array, see Equation (2.12) from the formulation,

which is the condensation process explained in the previous Section 2.3.1,

u
(j)
i = K(j)−1

ii

{
Q(j)

i
−
[
K(j)

ib
B(j)

]
ub

}
. (2.12)

Substituting Equation (2.12) for u
(j)
i in Equation (2.10) yields the global interface

problem as

S ub = f (2.13)

where

S = K
bb
−

Ns∑
j=1

[
K(j)

ib
B(j)

]T
K(j)−1

ii

[
K(j)

ib
B(j)

]
, (2.14)

f = Q
b
−

Ns∑
j=1

[
K(j)

ib
B(j)

]T
K(j)−1

ii
Q(j)

i
. (2.15)
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The matrix S in Equation (2.13) is so-called Schur complement. Once the global

interface solution array ub is known by solving Equation (2.13), then every local

subdomain problem, see Equation (2.12) can be solved for the local solution, u
(j)
i , of

each subdomain problem.

2.4 FETI and Its Variants

Finite Element Tearing and Interconnecting or FETI method was first introduced by

Farhat and Roux [29] and the method has gained its popularity and continuously

improved in the last two decades. As the name suggests, finite element discretization

is used for meshing before domain decomposition. The tearing process is the domain

decomposition to divide a computational domain into non-overlapping subdomains

while the interconnecting process is interpreted as enforcing the continuity of the

displacement field across subdomain interfaces. Thus, the FETI method falls in the

category of non-overlapping domain decomposition methods. Since the FETI method

succeeds the classical substructuring method and uses iterative methods to solve a

global interface problem with Schur complement matrix, it is also classified as an

iterative substructuring method. Because this domain decomposition method opens

an avenue to a solid approach to general structural problems with parallel scalability,

the original FETI method has been continuously developed in more refined and unified

manners.

In order to easily distinguish the original FETI method and its variants, from

now on, the original FETI method is denoted by FETI-1 (one-level FETI). Its vari-

ants, two-level FETI and Dual-Primal FETI are denoted by FETI-2 and FETI-DP,

respectively.

2.5 FETI-1

The FETI-1 method has two fundamentally distinct features from the classical sub-

structuring methods: Lagrange multipliers and rigid body modes. The FETI-1
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method introduces Lagrange multipliers to enforce equality constraints along the

boundary between subdomains. With the existence of Lagrange multipliers, sub-

domains don’t share any primal dofs between subdomains and they are connected

only through Lagrange multipliers which are dual dofs. As a result of Lagrange mul-

tipliers, rigid body modes of unrestrained subdomains must appear in the formulation

to correctly account for “floating” subdomains which are non-overlapping and com-

pletely detached from each other, unlike the classical substructuring methods where

subdomains share primal dofs along the boundaries and are not detached from each

other. Although earlier works by Roux [59, 60] already used Lagrange multipliers for

domain decomposition, they couldn’t be applied to more general problems because of

no consideration of rigid body modes.

1

2

3

4

1 Sub-domain number Internal node

Boundary node

Boundary condition

Lagrange multiplier

Interface

Figure 2.10: FETI-1 domain decomposition method

One more difference of the FETI-1 method from the classical substructuring meth-

ods is that it doesn’t have zero-measure interface, i.e., the FETI-1 method doesn’t

need to consider vertex interface and edge interface in 2D problems and 3D problems,
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respectively. This change reduces the inter-processor communication in parallel com-

puting so that the FETI-1 method can achieve better scalability than the classical

substructuring methods.
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Figure 2.11: Mesh of FETI-1 domain decomposition

2.5.1 Subdomains and constraints at interface

Consider the planar solid depicted in Figure 2.10. The solid is partitioned into Ns

non-overlapping subdomains. The degrees of freedom (dofs) for each subdomain are

collected in arrays denoted u(i), i = 1, 2, . . . Ns. The array u(i) stores the dofs of the

subdomain i i.e., the displacement components at all the nodes of the subdomain.

This array is of size n
(i)
u , which is the total number of dofs for subdomain i. Notation

(·)(i) indicates quantities associated with subdomain i. The global array of dofs is

defined as

uT =

{
u(1)T , u(2)T , . . . u(Ns)T

}
. (2.16)
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Array u is of size nu =
∑Ns

i=1 n
(i)
u , which is the total number of dofs for the complete

structure. As the original domain is divided into subdomains, the nodes along the

interfaces and the associated dofs are duplicated; an internal node before decom-

position become two or more boundary nodes between subdomain interfaces after

decomposition. Consequently, the array u contains a large number of redundant dofs:

all interface dofs appear twice or more times. The variables stored in array u should

be called generalized coordinates because they do not form a minimum set, but the

term dofs, more widely used in the finite element literature, will be used here.

Now, for the interface of the problem with the FETI-1 domain decomposition,

consider an equality or homogeneous kinematic constraint C[1] between two boundary

nodes u
(1)
10 and u

(2)
10 of the two subdomains 1 and 2 as seen in Figure 2.11,

C[1] = u
(1)
10 − u

(2)
10 = 0, (2.17)

V [1]
c = λ[1]TC[1], (2.18)

where the superscript in parentheses (·)(i) indicates a subdomain number while the

square-bracketed superscript (·)[α] denotes the constraint α in the global array of all

constraints. Equations (2.17) and (2.18) tells that the continuity of the displacement

at the boundary between two subdomains is enforced by the equality constraint C[1]

via a Lagrange multiplier λ[1] which is a constraint force rigidly connecting the two

boundary nodes and also yields a constraint potential V
[1]
c with the constraint.

Due to the inter-subdomain relation of every kinematic equality constraint in

the FETI-1 domain decomposition, a global collection of all the equality constraints

is expressed only by the sum of boolean operations of all subdomains as seen in

Equation (2.19). Each boolean operation is to extract only the boundary nodes from

the node arrays of each subdomain. All B(i)’s have the same number of rows for the

size of a single global problem but they can have different numbers of columns because

they are associated with different subdomains. To connect the Ns subdomains, let
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say, a total of Nc equality constraints is defined for the domain decomposition and the

size of the global constraint array C is nc =
∑Nc

α=1 n
[α]
c in total because each constraint

equation may have different dofs n
[α]
c . Then the size of each B(i) is the size of (nc ×

n
(i)
u ).

0 = C =



C[1]

C[2]

...

C[Nc]


= B(1)u(1) +B(2)u(2) + · · ·+B(Ns)u(Ns) =

Ns∑
i=1

B(i)u(i). (2.19)

A signed boolean matrix B(i) performs two operations: mapping a node array of a

subdomain i onto its boundary nodes and assembling the boundary nodes into the

global array of all equality constraints. It is clear that each B(i) is very sparse with

many zero entries.

It should be noted that each equality constraint equation is not localized into a

subdomain, but coupled with two subdomains, and this gives rise to inter-subdomain

coupling via unknown dual variables, i.e., Lagrange multipliers as in Equation (2.18),

which are one of the key ingredients of the FETI-1 method.

For the generalization of the definition of an inter-subdomain equality constraint,

more sophisticated notations may be used as the following. To better identify a

constraint equation α associated with two boundary nodes of two subdomains i and

j, a combined match of a parenthesis and a square bracket can be used for a superscript

of a boundary node with both a subdomain number and a constraint number, e.g.

, u
(i,α]
b and u

(j,α]
b . Two boundary nodes associated with the constraint α can be

extracted by two boolean matrices B(i,α] and B(j,α] from the two node arrays of the

two subdomains, u(i) and u(j), and they yield an equality constraint equation as

C[α] = u
(i,α]
b − u(j,α]b = B(i,α]u(i) +B(j,α]u(j). (2.20)

Now a boolean matrix for a subdomain can be assembled by sub-boolean matrices

B(i,α] where α = 1, 2, . . . , Nc as in Equation (2.21),
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B(i) =



B(i,1]

B(i,2]

...

B(i,Nc]


, (2.21)

where the size of a sub-boolean matrix B(i,α] is (n
[α]
c × n

(i)
u ).

2.5.2 Governing equations

The governing equations of the problem which is domain-decomposed by the FETI-1

method can be derived by variational principles such as the principle of the minimul

total potential energy.

The total strain energy in the structure, A, can be evaluated by summing the

strain energies, A(i), of the various subdomains

A =
Ns∑
i=1

A(i) =
Ns∑
i=1

1

2
u(i)TK(i)u(i), (2.22)

where K(i) is the stiffness matrix for subdomain i. The stiffness matrix of each sub-

domain is obtained by assembling the stiffness matrices of all finite element belonging

to the subdomain. If the original solid is suitably constrained by a set of boundary

conditions that prevent overall rigid body motions, its global stiffness matrix will not

be singular. This property is not shared by the stiffness matrices of individual sub-

domains: indeed, due to the partitioning of the solid into possibly unconstrained or

“floating subdomains,” the stiffness matrix of each subdomain is potentially singular.

The total potential of the externally applied loads, Φ, is found by summing up the

potentials for each of the subdomains

Φ =
Ns∑
i=1

Φ(i) = −
Ns∑
i=1

u(i)TQ(i), (2.23)

where array Q(i), of size n(i), stores the load applied to subdomain i. The kinematic

constraints of the problem give rise to the potential of the constraints, Vc, which is
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written as

Vc = λT
Ns∑
i=1

B(i)u(i), (2.24)

where array λT =

{
λT1 , λ

T
2 , . . . , λ

T
Nc

}
, of size nc stores all the Lagrange multipliers of

the problem.

The total potential energy of the system, Π = A+ Φ + Vc, is found by combining

Equations (2.22), (2.23), and (2.24) leading to

Π =
Ns∑
i=1

[
1

2
u(i)TK(i)u(i) − u(i)TQ(i)

]
+ λT

Ns∑
i=1

B(i)u(i), (2.25)

The variation of the total potential energy must vanish for all arbitrary variations in

unknown variables (every subdomain node array and global Lagrange multipliers),

and this can be written as,

0 = δΠ =
Ns∑
i=1

δu(i)T
[
K(i)u(i) −Q(i) +B(i)Tλ

]
+ δλT

[
Ns∑
i=1

B(i)u(i)

]
. (2.26)

Consequently, the bracketd terms must vanish and this writes Equations (2.27) and (2.28).

K(i)u(i) +B(i)Tλ = Q(i), i = 1, 2, ..., Ns (2.27)

Ns∑
i=1

B(i)u(i) = 0. (2.28)

Equation (2.27) clearly indicates the equations of equilibrium of each subdomain

under both externally applied loads and constraint forces from adjacent subdomains

via Lagrange multipliers to enforce the continuity across the subdomain boundary.

Equation (2.28) is just the global collection of equality constraint equations as seen

in Equation (2.19).

However, a subdomain which is not restrained by any prescribed boundary condi-

tions, is floating as explained earlier. This means that a stiffness matrix of a floating

subdomain is singular and not invertible. Thus, instead of a regular inverse, a pseudo

inverse of the stiffness matrix must be used for all floating subdomains. Also, the
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total response of a floating subdomain must be expressed by the sum of the rigid body

mode response as well as the elastic mode response. In fact, the rigid body modes of

a subdomain correspond to the null space of the stiffness matrix of the subdomain.

The total response of a floating subdomain i with the additional treatment for rigid

body modes, can be expressed as in Equation (2.29),

u(i) = d(i) + r(i) = K(i)+
[
Q(i) −B(i)Tλ

]
+R(i)α(i), (2.29)

where, for a floating subdomain i, d(i) is the elastic mode response, r(i) the rigid

body mode response, K(i)+ the pseudo inverse of the stiffness matrix, R(i) the rigid

body modes of the subdomain i, α the amplitude of the rigid body modes. The

size of the additional unknown vector α is six or fewer because there are at most

six rigid body modes in three dimensional problems. It is necessary to introduce

additional equations for the additional unknowns α and they are formulated from the

orthogonality condition between the elastic modes and the rigid body modes as in

Equation (2.30),

R(i)T
[
Q(i) −B(i)Tλ

]
= 0. (2.30)

2.5.3 Global interface problem

The global coarse problem is set up by eliminating the local subdomain response

u(i) from the formulation. Substituting Equation (2.29) into Equation (2.28) and

combining it with Equation (2.30) yields the global coarse interface problem in a

matrix-vector form as in Equation (2.31), F
I
−G

I

−GT

I
0


λα
 =

 d

−e

 , (2.31)
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where

F
I

=
Ns∑
i=1

B(i)K(i)+B(i)T

G
I

=
[
B(1)R(1), . . . , B(Ns)R(Ns)

]
αT =

[
αT1 , . . . , α

T
Ns

]
d =

Ns∑
i=1

B(i)K(i)+Q(i)

e = R(i)TQ(i)

K(i)+ = K(i)−1 if the subdomain i is not floating.

(2.32)

It should be noted that the submatrix F
I

can be positive semi-definite if any redun-

dant equality constraint equation is defined at any cross point where two or more

subdomains are connected to. Even though F
I

is positive semi-definite, if the prob-

lem is solved by an iterative method, the method will yield a unique solution at

convergence anyway because iterative methods don’t require an explicit inverse of

system matrix. But, the FETI-1 domain decomposition method doesn’t provide a

unique way of defining constraint condition at the cross point, the convergence be-

havior of the problem depends on how the constraint condition is defined because

information flow or solution propagation is not uniform for different choices of the

constraint condition, which is pointed out by Park et al.[56].

2.5.4 Solution procedure for global coarse interface problem

Equation (2.31) of the global coarse interface problem may be solved by iterative

methods such as Preconditioned Conjugate Gradient (PCG) to avoid computing the

explicit inverse matrix and matrix-matrix multiplications. Equation (2.31) is ex-

pressed in terms of both λ and α and the unknown α can be eliminated by an orthog-

onal projection of the matrix G
I
. The orthogonal projection operator P is defined

as

P = I −G
I

[
GT

I
G
I

]−1

GT

I
(2.33)
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where I is the identity matrix. Then, Equation (2.31) is pre-multiplied by the or-

thogonal projection operator and transformed into

PF
I
λ = Pd subject to GT

I
λ = e. (2.34)

Since Equation (2.34) is equivalent to a constrained optimization problem as

Minimize Φ(λ) =
1

2
λTPF

I
λ− λTPd subject to GT

I
λ = e, (2.35)

the residual of Equation (2.35) or the negative gradient on the paraboloid of the

minimization problem can be defined as

P
[
d− F

I
λ
]

= Pr. (2.36)

Thus, the gradient must be projected at each PCG iteration and this modified PCG

method is called Preconditioned Conjugate “Projected” Gradient (PCPG).

In the FETI-1 method, local subdomain problems are in general solved by di-

rect methods in parallel while the global coarse interface problem is solved by the

PCPG iterative method. Direct methods are better than iterative methods for lo-

cal subdomain problems because the computational time of direct methods can be

predicted unlike iterative methods and every subdomain problem can be solved in

similar computing time once the workloads on CPUs are well balanced.

2.5.5 Preconditioning

The convergence speed of iterative methods is directly related to the condition number

of the system matrix. Thus, a good preconditioner is necessary for an iterative method

to solve a problem in a reasonable computation time. The FETI-1 method also uses

the preconditioner for better convergence and the condition number, κ, is expressed

as

κ = O

(
1 + log

H

h

)m
m ≤ 3, (2.37)
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where m is the dimension of a problem, H the subdomain size, h the element mesh

size. Although the FETI-1 method achieved the optimal scalability with a good

preconditioner for the second-order elasticity problems, it didn’t for the fourth-order

problems such as plate or shell problems.

2.6 FETI-2

The improved version of the original FETI method came out to resolve the corner

point/node problem of fourth order plates and shells, see Figure 2.12, by introducing

the second level coarse grid problem. This is why the method is called two-level FETI

or FETI-2 method.

The main problem of FETI-1 was bad scalability for the fourth-order plate or shell

problems because the coarse problem becomes more ill-conditioned as the number of

elements of a subdomain increases. It turns out that, for example, when a rectangular

plate is partitioned like a chessboard, the amplitudes of Lagrange multipliers get

erroneously too high at corner points where more than two subdomains are crossing

or two subdomain edges are crossing. This leads to a slow convergence to the solution.

Thus, it was necessary to modify the global coarse problem of the FETI-1 method by

adding corrective terms to the Lagrange multipliers and enforcing the exact continuity

at subdomain corner points.

FETI-2 method has two coarse problems. One coarse problem is the same as

FETI-1, which accounts for both the continuity of the displacement field along the

subdomain boundary and rigid body modes of floating subdomains. Another coarse

problem is generated by a projection of FETI-1 coarse problem only onto corner

points. In other words, FETI-2 solves both a first-level interface problem along sub-

domain boundary and a second-level interface problem at corner points. This two-

level interface problem approach guarantees optimal scalability even for fourth-order

problems with corner points.
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2.7 FETI-DP

The next improved version is called Dual-Primal FETI or FETI-DP method. In the

very beginning of the formulation, the FETI-DP method introduces new segregation

of primal nodes of a subdomain, unlike the previous FETI methods. A primal node

of a subdomain falls into either a corner or remainder node, see Figure 2.12; the

remainder nodes of a subdomain include internal nodes and boundary nodes, except

for the corner nodes. The definition of a corner node was already raised in the

FETI-2 method because the corner nodes are the major barrier to optimal scalability

of the fourth-order problems with the FETI-1 method. In the FETI-DP method,

the primal corner point dofs of fourth-order problems, are collected into the global

problems together with Lagrange multipliers which are dual dofs. Now the global

coarse problem is expressed by both dual and primal dofs, which is the origin of

the Dual-Primal name. Lagrange multipliers are shared by neighboring subdomains

only at the remainder nodes along the subdomain boundary, not at the corner nodes.

Physical interpretation of this is that neighboring subdomains are detached only at

the remainder nodes along subdomain boundary while the subdomains are attached

at corner points and no longer floating, see Figure 2.12. Thus the stiffness matrices

of subdomains are never singular once the whole structure is properly restrained. No

floating subdomains completely eliminate the requirement of rigid body modes from

the formulation. This change obviously distinguishes FETI-DP from the previous

FETI methods all at once. Null spaces or rigid body modes are no longer required

and this enables the FETI-DP method to be used for dynamic problems without

additional treatments. As one last note, the change in the separation of nodes into

the corner and remainder nodes makes the global interface matrix more sparse than

the previous FETI methods.
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Figure 2.12: FETI-DP corner and remainder nodes

2.7.1 New formulation with corner and remainder nodes

The new arrangement of dofs of the FETI-DP method give rises to the changes in

the underlying physics of the previous versions of this domain decomposition method.

Instead of the traditional arrangement of the subdomain dofs where a dof falls into

internal or boundary of a subdomain, the FETI-DP method uses different separation

of dofs as in Equation (2.38),

K(i) =

 K(i)

rr
K(i)

rc

K(i)T

rc
K(i)

cc

 , u(i) =

u
(i)
r

u
(i)
bc

 , Q(i) =

Q
(i)

r

Q(i)

bc

 , (2.38)

where i = 1, 2, ..., Ns. The subscripts r and c denote remainder and corner nodes,

respectively. It should be noted that all remainder nodes of a subdomain include both

internal nodes and boundary nodes except for the corner nodes of the subdomain.

Equation (2.39) shows the arrays of displacement and of externally applied loads.
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Figure 2.13: FETI-DP domain decomposition mesh

u(i)r =

u
(i)
i

u
(i)
br

 and Q(i)

r
=

Q
(i)

i

Q(i)

br

 , (2.39)

where the subscripts i and b denote internal and boundary nodes of a remainder node

array, respectively. It is noted that the subscript i without parentheses indicates

internal to a subdomain, not a subdomain number.

Two boolean matrices mapping to boundary nodes both from the remainder nodes

of each local subdomain and from the global corner nodes, are also defined as

u
(i)
br = B(i)

r
u(i)r and u

(i)
bc = B(i)

c
uc. (2.40)

2.7.2 Governing equations

As in the derivation of the governing equations for the FETI-1 method, the FETI-DP

method goes through the same derivation process. The total strain energy in the

structure, A, can be evaluated by summing up the strain energies, A(i), of the various
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subdomains,

A =
Ns∑
i=1

A(i) =
Ns∑
i=1

1

2
u(i)TK(i)u(i) =

Ns∑
i=1

1

2

 u
(i)
r

B(i)

c
uc


T  K(i)

rr
K(i)

rc

K(i)T

rc
K(i)

cc


 u

(i)
r

B(i)

c
uc

 .

(2.41)

The total potential of the externally applied loads, Φ, is also found by summing up

the potentials for each of the subdomains,

Φ =
Ns∑
i=1

Φ(i) = −
Ns∑
i=1

u(i)TQ(i) = −
Ns∑
i=1

 u
(i)
r

B(i)

c
uc


T Q

(i)

r

Q(i)

bc

 . (2.42)

Lastly, the kinematic constraints of the problem give rise to the potential of the

constraints, Vc, which is written as

Vc = λT
Ns∑
i=1

B(i)

r
u(i)r . (2.43)

The total potential energy of the system, Π = A + Φ + Vc, is found by adding

up Equations (2.41), (2.42), and (2.43). Taking the variation in the total potential

energy is leading to as in Equation (2.44),

0 = δΠ = δA+ δΦ + δVc

=
Ns∑
i=1

{
δu(i)Tr

[
∂A

∂u
(i)
r

+
∂Φ

∂u
(i)
r

+
∂Vc

∂u
(i)
r

]}
+ δuTc

[
∂A

∂uc
+
∂Φ

∂uc

]
+ δλT

[
∂Vc
∂λ

]
,

(2.44)

The principle of minimum total potential energy tells that the square-bracketed terms

in Equation (2.44) must vanish for all arbitrary variations in u
(i)
r , uc and λ, yielding

the governing equations from the FETI-DP domain decomposition method as,

K(i)

rr
u(i)r +

[
K(i)

rc
B(i)

c

]
uc = Q(i)

r
−B(i)T

r
λ, (2.45)

Ns∑
i=1

[
K(i)

rc
B(i)

c

]T
u(i)r +K

cc
uc = Q

c
, (2.46)

Ns∑
i=1

B(i)

r
u(i)r = 0. (2.47)
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where

K
cc

=
Ns∑
i=1

B(i)T

c
K(i)

cc
B(i)

c
and Q

c
=

Ns∑
i=1

B(i)T

c
Q(i)

bc
. (2.48)

Equation (2.45) is the equations of equilibrium of each local subdomain. The equa-

tion is also very similar to the equations of equilibrium of a local subdomain in the

case of classical substructuring, see Equation (2.9), except for the different separation

of nodes and the existence of Lagrange multipliers. Equation (2.46) is the equations

of equilibrium of the global corner nodes. This equation more resembles the counter

part, see Equation (2.9), of the classical substructuring case. Because the global

primal nodes (FETI-DP: corner nodes; Classical substructuring: boundary nodes)

are directly shared by subdomains without additional kinematic constraints via La-

grange multipliers, in both domain decomposition methods of the FETI-DP and the

classical substructuring. As in the FETI-1 method, the FETI-DP domain decomposi-

tion method also ensures the continuity between subdomains by enforcing kinematic

constraints in global manner, which are expressed in Equation (2.47).

Ω Ω
b

Br
(i)

λ(i) (i) Br
(j)

r

(j)

(i)

r

(j)

(j)

c c

Bc
(i)

Bc
(j)

Bc
(i)

cBc
(j)

Figure 2.14: FETI-DP domain relationship

2.7.3 Global interface problem

Just as in the FETI-1 method, the FETI-DP method sets up the global coarse inter-

face problem by eliminating the local subdomain responses from the formulation.
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F Irr
F
Irc

F T

Irc
−K∗

cc


λ

uc

 =

 dr

−Q∗
c

 , (2.49)

where

F
I

=
Ns∑
i=1

B(i)

r
K(i)−1

rr
B(i)T

r

F
Irc

=
Ns∑
i=1

B(i)

r
K(i)−1

rr

[
K(i)

rc
B(i)

c

]
K∗
cc

= K
cc
−

Ns∑
i=1

[
K(i)

rc
B(i)

c

]T
K(i)−1

rr

[
K(i)

rc
B(i)

c

]
dr =

Ns∑
i=1

B(i)

r
K(i)−1

rr
Q(i)

r

Q∗
c

= Q
c
−

Ns∑
i=1

[
K(i)

rc
B(i)

c

]T
K(i)−1

rr
Q(i)

r

(2.50)

The dual-primal coarse problem of Equation (2.49) is further reduced into a dual

coarse problem by eliminating uc,[
F
Irr

+ F
Irc
K∗−1

cc
F T

Irc

]
λ = dr − F Irc

K∗−1

cc
Q∗
c
, (2.51)

which is similar to the global coarse problem of the FETI-1 method, see Equa-

tion (2.34), but the dual coarse problem of the FETI-DP method doesn’t require any

projection because the corner point dofs can be completely eliminated from Equa-

tion (2.49) unlike the FETI-1 method, being able to express the coarse problem in

terms solely of Lagrange multipliers. Thus the projected gradient is also not needed

to use PCG method. That is, FETI-DP uses the regular PCG method, not the PCPG

method.

2.8 Interface Problem: Classical Substructuring and FETIs

Interface problem dictates a domain decomposition method. The interface problem

of each domain decomposition method is expressed by the different set of dofs: the
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subdomain boundary nodes ub for the classical substructuring method, the Lagrange

multipliers λ and the amplitudes of rigid body modes α for the FETI-1 method, the

Lagrange multipliers λ and the corner nodes uc for the FETI-DP method. With the

importance of the interface problem for domain decomposition methods, it would be

worth checking the difference among them in a table.

To express interface problems of several non-overlapping domain decomposition

methods in one single format, a block-matrix-vector equation can be used and written

as Equation (2.52), A11
A

12

AT
12

A
22


 λ

ub, α or uc

 =

b1b2
 . (2.52)

The block matrices and arrays of the interface problem of each method are sum-

marized in Tables 2.1 and 2.2. As seen below, the classical substructuring method is

associated with only the boundary nodes ub for the global interface problem, and thus

the first row of the block matrix-vector equation is not existing. The first columns of

Tables 2.1 and 2.2 are very similar between the FETI-1 and FETI-DP methods be-

cause both methods use the Lagrange multipliers to enforce the equality constraints.

The second and third columns of Tables 2.1 and 2.2 are also almost identical between

the classical substructuring method and FETI-DP methods because they directly

share the global primal variables at the interface and generate Schur complement

problems.

Table 2.1: Comparison of interface matrices between classical substructuring (CS)
and FETIs

A
11

A
12

A
22

CS N/A N/A K
bb

−
∑Ns

j=1

[
K

(j)
ib B

(j)
]T

K(j)−1
ii

[
K

(j)
ib B

(j)
]

FETI-1
∑Ns

i=1B
(i)K(i)+B(i)T

[
B(1)R(1), . . . , B(Ns)R(Ns)

]
0

FETI-DP
∑Ns

i=1B
(i)
r
K(i)−1

rr
B(i)T

r

∑Ns
i=1B

(i)
r
K(i)−1

rr

[
K(i)

rc
B(i)

c

]
K

cc
−

∑Ns
i=1

[
K(i)

rc
B(i)

c

]T
K(i)−1

rr

[
K(i)

rc
B(i)

c

]
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Table 2.2: Comparison of interface right-hand-side arrays between classical sub-
structuring (CS) and FETIs

b1 b2

CS N/A Q
b
−
∑Ns

j=1

[
K(j)

ib
B(j)

]T
K(j)−1

ii
Q(j)

i

FETI-1
∑Ns

i=1B
(i)K(i)+Q(i) R(i)TQ(i)

FETI-DP
∑Ns

i=1B
(i)

r
K(i)−1

rr
Q(i)

r
Q
c
−
∑Ns

i=1

[
K(i)

rc
B(i)

c

]T
K(i)−1

rr
Q(i)

r
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CHAPTER III

DOMAIN DECOMPOSITION BY LOCALIZED

LAGRANGE MULTIPLIER TECHNIQUE

In this chapter, a new approach to the non-overlapping domain decomposition method

and the formulation of it will be presented. Both multibody systems and domain de-

composition have a fundamental routine in common; they divide into components and

assemble them into a system. Multibody system dynamics community has developed

many schemes to analyze many types of many-body-connected systems in a stable

and efficient manner. The new domain decomposition approach is closely related to

the robust and reliable schemes which were already developed and have been widely

used in multibody dynamics community.

It is important for a subdomain to be as independent as possible to each other

for computation in parallel. Stronger independence requires more localization of

subproblems and the localization applies to Lagrange multipliers in the proposed

domain decomposition method. In addition, primal nodes of the independent interface

are introduced so that uncertainty of defining constraint equations at corner points

has been completely eliminated for better computer implementation.

3.1 Multibody Dynamics

The Lagrange multiplier technique is an essential ingredient of multibody system

modeling. Multibody dynamic analysis can be performed well when the kinematic

constraint equations are well enforced via Lagrange multipliers. Lagrange multipliers

have been used for constraint conditions in multibody dynamics community while the
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domain decomposition method community started to use them for domain decom-

position and parallel computing. The domain decomposition of a multibody system

can also be done by the Lagrange multipliers just as the way multibody dynamics

community has done for enforcing constraints.

3.1.1 Formulation of dynamics with constrained system

Multibody systems are characterized by mechanical joints that connect subcompo-

nents of the system. Many connections by mechanical joints are formulated by kine-

matic constraint equations and they are added to the formulation in the form of

algebraic equations. The formulation can lead to a set of the index-3 Differential

Algebraic Equations (DAEs), see Equations (3.1) and (3.2).

M(q, t)q̈ +BT (q, t)λ = F (q, q̇, t), (3.1)

C(q, t) = 0, (3.2)

where M(q, t) is the mass matrix, q the array of generalized coordinates, C(q, t) the

array of kinematic constraints, B(q, t) the constraint Jacobian matrix, λ the array of

Lagrange multipliers, F (q, q̇, t) the nonlinear elastic, gyroscopic and externally applied

generalized forces. The notation ˙(·) is used to denote a derivative with respect to time.

While Equation (3.1) represents the equations of motion of the system, Equation (3.2)

does the (holonomic) kinematic constraints.

3.1.2 Scaling technique and augmented Lagrangian formulation

In general, solving DAEs has been known to be much more difficult than Ordinary

Differential Equations (ODEs). If the popular solution approaches to ODEs are used

for solving DAEs, they usually yield erroneous results such as drift phenomenon,

divergence with small time step sizes, etc. Although so many approaches have been

proposed to solve DAEs such as index reduction or eliminating Lagrange multipliers

from the formulation, the direct solution of index-3 DAEs has regained popularity.
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The common problem of solving index-3 DAEs was about badly ill-conditioned system

matrix for small time step sizes. This problem has been resolved by a physical-

property-based scaling technique for DAEs, which was proposed by Bauchau et al. [6,

15, 22]. This approach provides a better conditioning of a system matrix, in turn, a

stable time integration without the stability concerns from the time step size. The

scaling technique also balances the magnitudes between generalized displacements and

Lagrange multipliers; Lagrange multipliers are usually much larger than generalized

displacements in magnitudes. By the scaling technique, the previous index-3 DAEs

are slightly changed into the Equations (3.3) and (3.4).

M ¨̂q +BT sλ̂ = h2F , (3.3)

sC = 0, (3.4)

where the scalar scaling factor s is defined as,

s = mr + drh+ krh
2, (3.5)

and mr, dr and kr represent reference mass, damping and stiffness coefficients of

the system, respectively. h is the time step size. The notation ˙(·) now becomes a

derivative with respect to the non-dimensional time, τ = t/h, and another notation

(̂·) indicates generalized coordinates normalized by the reference length, lr of the

system. Because the scaling factor depends on the characteristics of a problem, it can

change problem by problem. This explains and agrees with the statement “The basic

recommendation is that the scaling of the equations and unknowns must proceed on

a problem-by-problem basis. General scaling strategies are unreliable” by Golub and

Van Loan [41].

On the other hand, the Lagrange multiplier technique to enforce kinematic con-

straints has experienced the drift phenomenon due to the numerical approximation

and round-off errors as a dynamic simulation proceeds. To remedy this problem,

53



the penalty method has been integrated with the Lagrange multiplier technique, and

this combined approach is called Augmented Lagrangian Formulation (ALF) [13, 14].

The ALF with appropriately chosen penalty factors makes the solution convergent

within an error threshold. The ALF can be done through an iterative process which is

usual for solving nonlinear problems. The ALF also provides the system matrix with

positive definiteness which is crucial when the skyline solver should be used without

pivoting. With the help of ALF, the previous scaled equations of motion are now

changed into Equation (3.6), by introducing the augmented Lagrangian term λ̂+ p
s
C.

M ¨̂q +BT s
(
λ̂+

p

s
C
)

= h2F , (3.6)

where p is the penalty factor. This ALF approach has been studied extensively [38, 40]

and verified by Bayo et al. [14, 13] in order to prove that the approach is effective for

the kinematic constraint enforcement in multibody dynamics.

The scaling technique and the ALF with the penalty method have helped to

achieve reliable solutions to DAEs. In multibody dynamics, DAEs consist of both

equations of motion and kinematic constraints. The role of kinematic constraint

equations is identical to that of equality constraint equations in non-overlapping do-

main decomposition methods. If a structural dynamic simulation is performed with

the domain decomposition, the associated governing equations are to be in the form

of DAEs with no doubt. In this sense, the reliable schemes developed from the multi-

body community, can certainly be applied to the domain decomposition methods.

3.2 Domain Decomposition

Consider the planar solid depicted in Figure 3.1. To develop a parallel solution algo-

rithm for this problem, the solid is partitioned into Ns non-overlapping subdomains.

Each of these subdomains could themselves be multibody systems comprising both

elastic elements and nonlinear kinematic constraints. For convenience, Figure 3.1

depicts a planar system, but all the developments presented here are applicable to
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general, three-dimensional problems. The degrees of freedom (dofs) for each subdo-

main are collected in arrays denoted u(i), i = 1, 2, . . . Ns. Array u(i) stores the dofs of

subdomain i, i.e., the displacement components at all the nodes of the subdomain.

This array is of size n
(i)
u , which is the total number of dofs for subdomain i. Notation

(·)(i) indicates quantities associated with subdomain i. The global array of dofs is

defined as

uT =

{
u(1)T , u(2)T , . . . u(Ns)T

}
. (3.7)

Array u is of size nu =
∑Ns

i=1 n
(i)
u , which is the total number of dofs for the complete

structure. As the original domain is divided into subdomains, the nodes along the

interfaces and the associated dofs are duplicated. Consequently, array u contains a

large number of redundant dofs: all interface dofs appear twice or more times. The

variables stored in array u should be called “generalized coordinates” because they do

not form a minimum set, but the term “dofs,” more widely used in the finite element

literature, will be used here.

1

2

3

4

1 Subdomain number Internal node

Boundary nodeBoundary condition

A

Figure 3.1: Planar solid partitioned into four non-overlapping subdomains

The dofs of each subdomain can be split into two mutually exclusive groups, the
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internal and boundary dofs, respectively. The boundary dofs are those that are ex-

posed in the process of dividing the original problem into subdomains, whereas the

remaining dofs are internal. Kinematic constraints will be imposed at the boundary

nodes to enforce the continuity of the displacement field, thereby ensuring that the be-

havior of the connected subdomains is identical to that of the original, un-partitioned

solid.

3.2.1 Classical Lagrange multiplier technique

The continuity of the displacement field across subdomain boundaries is enforced

by imposing linear constraints, the equality of the dofs of corresponding nodes in

adjacent subdomains. Typically, this is achieved by using the classical Lagrange

multiplier technique, which is illustrated in a conceptual manner in Figure 3.2. Let

the displacement vectors at two nodes belonging to two adjacent subdomains be

denoted u1 and u2. The continuity of the displacement field across the interface

of the two subdomains implies C = u1 − u2 = 0, where C is the constraint to be

imposed. In the classical Lagrange multiplier technique, the constraint is imposed

via the addition of a constraint potential, Vc = λTC, where λ is the array of Lagrange

multipliers used to enforce the constraint.

u1_ u2_

u1_ u2_

λ_

_λ1 _λ2

c_

Classical

Lagrange multipliers

Localized

Lagrange multipliers

u1_ u2__λ1 _λ2

u4_ u3__λ4 _λ3

c_

Simple connection Multiple connections

Figure 3.2: Classical and localized Lagrange multipliers.
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3.2.2 Localized Lagrange multiplier technique

An alternative approach is to define an independent interface node, denoted c, then

impose two kinematic constraints: the displacement components at the boundary

nodes in the two subdomains adjacent to the interface must equal those at the in-

dependent interface nodes. For the simple connection illustrated in Figure 3.2, the

two kinematic constraints become C[1] = u1 − c = 0 and C[2] = u2 − c = 0, and the

corresponding constraint potential is Vc = λ[1]TC[1] +λ[2]TC[2]. Notation (·)[j] indicates

quantities associated with constraint j.

In this approach, Lagrange multipliers λ[1] enforce the constraint between the

boundary dofs of subdomain 1, denoted u1, and the interface dofs, c. Similarly,

Lagrange multipliers λ[2] enforce the constraint between the boundary dofs of adjacent

subdomain 2, denoted u2, and the same interface dofs, c. No direct constraint is

written between the dofs of the two subdomains. Consequently, Lagrange multipliers

λ[1] and λ[2] become “localized,” i.e., λ[1] and λ[2] are local variables of subdomains 1

and 2, respectively. The name “localized Lagrange multiplier technique” stems from

this feature of the approach. Note that constraints are localized as well: constraints

C[1] and C[2] are associated with subdomains 1 and 2, respectively.

The domain decomposition process also creates corner nodes, such as that de-

noted A in Figure 3.1. Because four subdomains meet at this node, four boundary

nodes were created, one for each subdomain. Note that for multiple connections, con-

straints and Lagrange multipliers remain localized, i.e., each associated with a single

subdomain. Figure 3.2 illustrates how the single interface node, denoted c, is now

connected to the four boundary nodes with the help of four sets of localized Lagrange

multipliers. In finite element formulations, this approach has been used to enforce the

continuity of displacement fields between adjacent incompatible elements [66]. The

same approach, called “localized version of the method of Lagrange multipliers,” has

been advocated by Park et al. [55, 56].
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Figure 3.3: Connection through localized Lagrange multipliers.

Figure 3.3 illustrates the application of the localized Lagrange multiplier tech-

nique to enforce the continuity of the displacements field for the planar solid problem

depicted in Figure 3.1. Note that each constraint and corresponding Lagrange mul-

tipliers are associated with a single subdomain unambiguously.

Let N
(i)
b denote the total number of boundary nodes of subdomain i and λ[j], j =

1, 2, . . . , N
(i)
b the sets of Lagrange multipliers used to enforce the kinematic constraint

at these boundary nodes. Because all Lagrange multipliers are localized, the following

notation is introduced λ(i)T =

{
λ[1]T , λ[2]T , . . . , λ[N

(i)
b ]T

}
: array λ(i) stores the localized

Lagrange multipliers associated with subdomain i. The nodal dofs and Lagrange

multipliers of subdomain i are combined into a single array

ǔ(i)T =

{
u(i)T , λ(i)T

}
, (3.8)
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and the array storing the dofs of all subdomains is now

ǔT =

{
ǔ(1)T , ǔ(2)T , . . . ǔ(Ns)T

}
. (3.9)

For the clarity of the presentation, the nodal dofs and Lagrange multipliers appear

segregated in Equation (3.8), but this is not required; in practice, nodal dofs and

Lagrange multipliers are interspersed so as to minimize the bandwidth of the stiffness

matrix, as is done commonly in finite element implementations.

3.3 Formulation of the Problem

The method described in the previous section, called the “Localized Lagrange multi-

plier (LLM) technique” as opposed to the “Classical Lagrange multiplier (CLM) tech-

nique”, can be combined with the scaling technique and the augmented Lagrangian

formulation for robust multibody dynamics, which were already stated in Section 3.1.

The LLM technique adds independent primal variables (generalized coordinates) to

the interface and the dual variables (Lagrange multipliers) are now localized into sub-

domains as in Figure 3.4. Each equality constraint for kinematic continuity conditions

between subdomain interfaces, is formulated by the LLM technique with scaling and

penalty factors, as proposed by Bauchau [5]. The total potential energy of the system

can be expressed as Π = A+ Φ + Vc, where A is the strain energy, Φ the potential of

the externally applied loads, and Vc the potential of the constraints.

3.3.1 Strain energy of the system

The total strain energy in the structure, A, can be evaluated by summing the strain

energies, A(i), of the various subdomains

A =
Ns∑
i=1

A(i) =
1

2

Ns∑
i=1

u(i)TK(i)u(i) =
1

2
uTdiag(K(α))u, (3.10)

where K(i) is the stiffness matrix for subdomain i. The stiffness matrix of each subdo-

main is obtained from the stiffness matrices of each finite element of the subdomain
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Interface
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1 c

Figure 3.4: CLM method vs LLM method

using standard finite element assembly procedures [3]. The block diagonal, global

stiffness matrix of the system, diag(K(α)), is of size (nu × nu). If the original solid is

suitably constrained by a set of boundary conditions that prevent overall rigid body

motions, the global stiffness matrix will not be singular. This property is not shared

by the stiffness matrices of individual subdomains: indeed, due to the partitioning of

the solid into possibly unconstrained or “floating subdomains,” the stiffness matrix

of each subdomain is potentially singular.

Domain decomposition methods exploit the special structure of the global stiffness

matrix. Because it is block-diagonal, its inverse is computed readily as diag(K(α)−1).

Since the subdomain stiffness matrices are independent of each other, their inverses

can be computed by Ns processors independently.

For subsequent developments, it will be necessary to express the total strain energy
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in terms of array ǔ defined in Equation (3.9) to find

A =
1

2
ǔTdiag(Ǩ

(α)
)ǔ, (3.11)

where the subdomain stiffness matrix is now

Ǩ
(i)

=

K(i) 0

0 0

 . (3.12)

3.3.2 Potential of the externally applied loads

The total potential of the externally applied loads, Φ, is found by summing up the

potentials for each of the subdomains

Φ =
Ns∑
i=1

Φ(i) = −
Ns∑
i=1

u(i)TQ(i) = −uTQ = −ǔT Q̌, (3.13)

where Q(i) is the load array for subdomain i. The system’s global load array is

defined as QT =

{
Q(1)T , Q(2)T , · · · , Q(Ns)T

}
and array Q̌ is expanded as Q̌

T
={

Q(1)T , 0T , Q(2)T , 0T , · · · , Q(Ns)T , 0T
}

.

3.3.3 Potential of a typical constraint

As discussed in Section 3.2.2, the kinematic continuity conditions between subdomain

interfaces is enforced via the localized Lagrange multiplier technique. Let u
[j]
b and c[j]

denote the arrays of dofs at a boundary node and at an interface node, respectively.

Kinematic constraint j is written as C[j] = u
[j]
b − c[j] = 0 and the associated potential

is

V [j]
c = sλ[j]TC[j] +

p

2
C[j]TC[j], (3.14)

where λ[j] is the array of Lagrange multipliers used to enforce the constraint, and

s the scaling factor for those multipliers. The second term of the potential is a

penalty term and p is the penalty coefficient. The potential defined by Equation (3.14)

combines the localized Lagrange multiplier technique with the penalty method. This
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combination is known as the augmented Lagrangian formulation and has been studied

extensively [38, 40]. It is an effective approach for the enforcement of kinematic

constraints in multibody dynamics, as proposed by Bayo et al. [13, 14]. Furthermore,

Bottasso et al. [15, 6] have proved that scaling of the Lagrange multipliers and the

addition of penalty terms help the solution of the differential-algebraic equations that

characterize flexible multibody systems.

A variation of the potential defined by Equation (3.14) is obtained easily,

δV [j]
c =δu

[j]T
b

[
sλ[j] + pC[j]

]
+ δλ[j]T

[
sC[j]

]
+ δc[j]T

[
−sλ[j] − pC[j]

]
,

(3.15)

and gives rise to the following generalized forces of constraint,

f [j] =


sλ[j] + pC[j]

sC[j]

−sλ[j] − pC[j]

 . (3.16)

Taking a derivative of these forces of constraint with respect to the dofs yields the

stiffness matrix of the constraint,

k[j] =


pI sI −pI

sI 0 −sI

−pI −sI pI

 , (3.17)

where I denotes the identity matrix of size d× d. For the planar problem illustrated

in Figure 3.1, each node features two dofs, and hence, d = 2; for three-dimensional

problems, d = 3, and for beam problems, d = 6, because each node has six dofs, three

displacements and three rotations.

As mentioned in Section 3.2.2, the Lagrange multipliers become localized in the

proposed formulation, i.e., Lagrange multipliers are associated with one subdomain

unequivocally. The potential of kinematic constraint involves two types of dofs, the

subdomain dofs, u
[j]
b and λ[j], and the interface dofs, c[j]. The constraint forces and
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stiffness matrix are partitioned to reflect this fact

f [j] =

f
[j]

b

f [j]

c

 , k[j] =

 k[j]bb k[j]
bc

k[j]T
bc

k[j]
cc

 . (3.18)

Subscripts (·)b and (·)c denote dofs associated with boundary and interface nodes,

respectively. Partitioning the constraint forces defined by Equation (3.16) yields

f [j]

b
=

sλ
[j] + pC[j]

sC[j]

 , f [j]

c
= −

{
sλ[j] + pC[j]

}
. (3.19)

A similar operation for the constraint stiffness matrix leads to

k[j]
bb

=

pI sI

sI 0

 , k[j]
cc

=

[
pI

]
, k[j]

bc
=

−pI
−sI

 . (3.20)

In summary, each kinematic constraint generates an array of constraint forces and

a constraint stiffness matrix. Clearly, each kinematic constraint can be viewed as

finite element and in the sequel, the terms “kinematic constraint” and “constraint

element” will be used interchangeably.

3.3.4 Assembly procedure for the constraints

In the previous section, the development has focused on a single constraint. As

illustrated in Figure 3.3, each subdomain is connected to its neighbors via a number

of boundary nodes. To connect the Ns subdomains, a total of Nc interface nodes will

be defined and the following array stores the dofs at all these interface nodes,

cT =

{
cT1 , c

T
2 , . . . , c

T
Nc

}
. (3.21)

Array c is of size nc. The total potential of all constraints associated with subdomain i,

denoted V
(i)
c , is found by summing up the potentials of the corresponding constraint,

V (i)
c =

N
(i)
b∑

j=1

V [j]
c . (3.22)
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Figure 3.5: LLM domain decomposition mesh

Finally, the total potential of all kinematic constraints is

Vc =
Ns∑
i=1

V (i)
c . (3.23)

Each constraint element contributes constraint forces and stiffness matrices de-

fined by Equations (3.19) and (3.20), respectively. Using the standard assembly pro-

cedure used in the finite element method [3], the force arrays and stiffness matrices

generated by all the constraint elements associated with subdomain i are assembled

into the following subdomain arrays and matrices

F̌
(i)

b =

N
(i)
b∑

j=1

B[j]T

b
f [j]

b
, Ǩ

(i)

bb
=

N
(i)
b∑

j=1

B[j]T

b
k[j]
bb
B[j]

b
, (3.24)

where B[j]

b
is the Boolean matrices used for the assembly process, i.e., u

[j]
b = B[j]

b
ǔ(i).

Of course, the assembly procedure can be performed in parallel for all subdomains.
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Similarly, the constraint elements contribute force arrays and stiffness matrices to the

interface problem,

F (i)
c =

N
(i)
b∑

j=1

B[j]T

c
f [j]

c
, K(i)

cc
=

N
(i)
b∑

j=1

B[j]T

c
k[j]
cc
B[j]

c
, (3.25)

where B[j]

c
is the Boolean matrices used for the assembly process, i.e., c[j] = B[j]

c
c.

Finally, the constraint coupling stiffness is assembled to find

K(i)

bc
=

N
(i)
b∑

j=1

B[j]T

b
k[j]
bc
B[j]

c
. (3.26)

Ω Ω
B

(i , j]

(i) (i , j]

Γ
[j] Bc

[j]

Γ

(i , j]

Figure 3.6: LLM domain relationship

3.3.5 Governing equations

The total potential energy of the system, Π = A + Φ + Vc, is found by combining

Equations (3.10), (3.13), and (3.23), and the principle of minimum total potential

energy then yields the governing equations asdiag(Ǩ
(α)

+ Ǩ
(α)

bb
) K

bc

KT

bc
K
cc


ǔc
 =

Q̌− F̌ b

− F c

 , (3.27)

where arrays F̌ b and F b are the assembly of their subdomain counterparts, F̌
(i)

b and

F (i)
c , respectively, K

cc
=
∑Ns

i=1K
(i)

cc
and

KT

bc
=

[
K(1)T

bc
, K(2)T

bc
, . . . , K(Ns)T

bc

]
. (3.28)

The block-diagonal nature of the leading entry of the system matrix makes this ap-

proach amenable to parallel solution algorithms.
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3.4 Physical Interpretation of the Proposed Approach

It is interesting to give a physical interpretation of the various matrices appearing

in Equation (3.27). Matrix Ǩ
(α)

bb
is the assembly of its counterparts defined for each

constraint element by Equation (3.20). For each constraint element, the leading

entry of matrix k[j]
bb

is a diagonal matrix, pI, which is added to the diagonal entries of

stiffness matrix K(i) associated with the boundary nodes. Physically, this corresponds

to adding springs of stiffness constant p connected to the ground at each boundary

node of subdomain i.

Interface

node

1

Boundary node

Equivalent spring

p p

p

p

Sub-domain

Figure 3.7: Physical interpretation of the penalty terms.

Figure 3.7 shows the structure characterized by stiffness matrix Ǩ
(1)

+ Ǩ
(1)

bb
: the

first subdomain of the planar structure shown in Figure 3.1 is now connected to

the ground at each boundary node by two springs of stiffness constant that equal

the penalty coefficient. Whereas matrix Ǩ
(i)

is singular for any floating subdomain,

Ǩ
(i)

+ Ǩ
(i)

bb
is not.

Similarly, matrix K
cc

is the assembly of its counterparts defined for each con-

straint element by Equation (3.20). Here again, matrix k[j]
cc

is a diagonal matrix,

pI, which corresponds to connecting each interface node to the ground by springs of

stiffness constant p, as illustrated in Figure 3.7. At corner points, the interface node

is connected to the ground in parallel by several springs of stiffness constant p.
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As expected, the Lagrange multipliers can be interpreted as the forces that inter-

connect the various parts of the structure. At convergence, all kinematic constraints

will be satisfied, C[j] = 0, and the constraint forces defined in Equation (3.16) reduce

to equal and opposite forces, ±sλ[j], applied to the boundary and interface nodes, as

expected from Newton’s third law; this is illustrated in Figure 3.8.

C
[1]_ C

[2]_

-sλ[1]_

sλ[1]_

-sλ[2]_

sλ[2]_

Interface node

Boundary node

Figure 3.8: Physical interpretation of the Lagrange multipliers

Consider now two kinematic constraints, say C[1] and C[2], imposing the continuity

of the displacement field at two adjacent boundary nodes, as shown in Figure 3.8. The

connections between the boundary nodes and the common interface node are enforced

by means of pairs of distinct constraint forces, ±sλ[1] and ±sλ[2], as illustrated in

the figure. It is easy to prove that the system (3.27) also imposes the constraint

λ[1] = λ[2]: this equation imposes Newton’s third law for the forces acting on adjacent

subdomains. While the Lagrange multipliers are localized, i.e., while λ[1] and λ[2] are

variables associated with distinct subdomains, the governing equations (3.27) impose

Newton’s third law across subdomain boundaries.

The proposed method involves primal variables: the nodal displacement is all sub-

domains and the displacements at the interface nodes. It also involves dual variables:

the forces at the subdomain interfaces represented by localized Lagrange multipliers.

The interface problem is expressed in terms of primal variables only, the displacements

at the interface nodes. Consequently, the proposed method falls in the category of

primal methods. In contrast, the original FETI [29] method is a dual method, and

the more recent FETI-DP [27] is a dual-primal method.

These approaches were developed to overcome the shortcoming of earlier primal
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methods. Typically, in primal methods, the interface problem is very poorly condi-

tioned, limiting the use of these approaches. In the present approach, however, the

stiffness of the interface problem is not dictated by the physical characteristics of the

structure, but rather by the user selected penalty factor. If the penalty factor is iden-

tical for all constraint elements, the interface problem is very well conditioned. These

advantages stem from the combined use of the Lagrange multiplier technique and

penalty method. Because the Lagrange multiplier technique enforces the constraints

exactly, it is not necessary to select a “very large penalty factor” to obtain accurate

solutions. The penalty term conditions the problem, but does not limit the accuracy

of the solution.

3.5 Solution Procedure with Factorization

There are two classes of solving linear system of equations. One is direct methods

and the other is iterative methods. Direct methods like Gauss eliminations and

LU factorization solve the system of equations for exact solution within machine

accuracy in a finite number of steps. On the other hand, iterative methods solve for

approximate solution converging to the exact solution with iterations.

Direct methods have several advantages against iterative methods. Multiple right

hand side load arrays, i.e. multiple loading cases, can be easily dealt with only by

the forward- and back-substituions, once the factorization is done at a time step.

Unlike iterative methods, the direct methods are not sensitive to the conditioning

of the system matrix. The solution of iterative methods converges, over iteration,

fast or slow based on the condition number of the system matrix, but the direct

methods do not. Thus a direct method doesn’t care the condition number and this is

very advantageous especially in flexible multibody dynamics where the system matrix

might be often badly ill-conditioned due to the kinematic constraints and the rigid

body modes.
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In the previous sections, the concept of LLM technique has been introduced and

the advantages of it were stressed in contrast to CLM technique, for parallel compu-

tations in multibody dynamics. This proposed domain decomposition approach using

LLM technique has been implemented in Dymore, a finite element based multibody

dynamics code for comprehensive analysis of rotorcraft, for better validation of the

approach on general multibody structures such as rotorcrafts, wind turbines, satellite

solar panels, etc. It is also important to note that Dymore uses skyline solver to solve a

linearized system of equations from the nonlinear DAEs with the finite element based

formulation. In order to use the LLM technique in finite element formulation, an

LLM is defined to be an independent finite element to impose the equality constraint

between an interface node and a boundary node of the associated subdomain.

3.5.1 Expected block matrices from LU factorization

In this section, a general solution procedure for block-diagonal systems is presented.

For simplicity, the linear system is rewritten as

Ax = b, (3.29)

where x is the array of unknowns, b the known right-hand side, and matrix A has the

following form

A =



A(1) 0 0 . . . 0 A(1)

bc

0 A(2) 0 . . . 0 A(2)

bc

0 0 A(3) . . . 0 A(3)

bc

...
...

...
. . . 0

...

0 0 0 0 A(Ns) A(Ns)

bc

A(1)T

bc
A(2)T

bc
A(3)T

bc
. . . A(Ns)T

bc
A
cc


. (3.30)

The procedure described in the previous section leads to system matrices presenting

the structure shown in Equation (3.30).
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System (3.29) will be solved using the classical skyline solver [3], which is based

on the factorization of the system matrix as

A = LU, (3.31)

where L and U are lower and upper triangular matrices, respectively. A fundamental

property of the skyline solver is that the skylines of matrices L and U are identical

to that of matrix A. This implies that matrices L and U have the following structure

L =



L(1) 0 0 . . . 0 0

0 L(2) 0 . . . 0 0

0 0 L(3) . . . 0 0

...
...

...
. . . 0

...

0 0 0 0 L(Ns) 0

M (1) M (2) M (3) . . . M (Ns) L
cc


, (3.32)

U =



U (1) 0 0 . . . 0 V (1)

0 U (2) 0 . . . 0 V (2)

0 0 U (3) . . . 0 V (3)

...
...

...
. . . 0

...

0 0 0 0 U (Ns) V (Ns)

0 0 0 . . . 0 U
cc


. (3.33)

Note that matrices M (i) and V (i), i = 1, 2, . . . , Ns are, in general, fully populated

matrices.

3.5.2 Details of the factorization procedure

The goal of the factorization procedure is to evaluate all the entries of the lower

triangular matrix, L and upper triangular matrix, U defined by Equations (3.32)

and (3.33), respectively. The factorization expressed by Equation (3.31) implies

A(i) = L(i)U (i), i = 1, 2, . . . , Ns. (3.34)
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Clearly, the matrices associated with each subdomain, A(i), can be factorized indepen-

dently to find lower and upper triangular matrices L(i) and U (i), respectively, using

the classical skyline solver. Equation (3.31) also implies

A(i)

bc
= L(i) V (i) , i = 1, 2, . . . , Ns, (3.35a)

A(i)

bc
= U (i)TM (i)T , i = 1, 2, . . . , Ns. (3.35b)

Once matrices L(i) and U (i) have been obtained, eqs (3.35a) and (3.35b) allow the

evaluation of matrices V (i) and M (i), respectively, using back-substitution. Here

again, these operations can be carried out in parallel in each subdomain.

The last relationship implied by Equation (3.31) is A
cc

=
∑Ns

i=1M
(i)V (i) +L

cc
U
cc

,

which lead to the following factorization

Ā
cc

= L
cc
U
cc
, (3.36)

where

Ā
cc

= A
cc
−

Ns∑
i=1

A(i)

cc
, (3.37)

and

A(i)

cc
= M (i)V (i), i = 1, 2, . . . , Ns. (3.38)

Matrices A(i)

cc
can be computed in parallel. All subdomain contributions are then col-

lected to form matrix Ā
cc

, the factorization of which yields lower and upper triangular

matrices L
cc

and U
cc

, respectively, using the classical skyline solver. This operation

completes the factorization of the system matrix according to Equation (3.31).

3.5.3 Details of the forward- and back-substitution procedures

Once the system matrix has been factorized, the solution is obtained via forward-

and back-substitution. The first step of the procedure is to write the system (3.29)

as Ly = b, where intermediate solution array y is defined as y = U x. This array

is partitioned as yT = {y(1)T , y(2)T , . . . , yT
c
}, where y(i), i = 1, 2, . . . , Ns, are the
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intermediate solution arrays in each of the subdomains and y
c

the corresponding

interface quantities.

Given the structure of lower triangular matrix L expressed by Equation (3.32),

forward-substitution yields the components of intermediate solution array y as

L(i)y(i) = b(i), i = 1, 2, . . . , Ns, (3.39a)

L
cc
y
c

= bd, (3.39b)

where

d(i) = M (i)y(i), (3.40)

bd = bc −
Ns∑
i=1

d(i), (3.41)

and the right-hand side array was partitioned as bT = {b(1)T , b(2)T , . . . , bTc }. While

Equations (3.39a) and (3.40) are performed in parallel for each subdomain, Equa-

tion (3.39b) is not for the interface.

Finally, the solution of the problem is obtained from back-substitution

U
cc
xc = y

c
, (3.42a)

U (i)x(i) = y(i)
v
, i = 1, 2, . . . , Ns (3.42b)

where

y(i)
v

= y(i) − V (i)xc. (3.43)

Again, while Equation (3.42b) is performed in parallel for each each subdomain,

Equation (3.42a) is not for the interface.

3.5.4 Summary of the solution procedure

The input to the factorization procedure are as follows.

1. Stiffness matrices A(i) and A(i)

bc
, i = 1, 2, . . . , Ns, for each of the subdomains.

Matrices A(i) are in compact storage form. According to Equation (3.20), each
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constraint applied to subdomain i generates two non-vanishing entries in A(i)

bc
;

all other columns of this matrix vanish. Hence, these matrices A(i)

bc
are not

assembled. The columns of matrix A(i)

bc
featuring non-vanishing entries are called

the “active columns” of that matrix.

2. Interface stiffness matrix A
cc

. This matrix is in compact storage form.

In summary, the solution procedure can be divided into the five phases detailed

below, three of which are parallelized easily.

• Phase 1: factorize subdomain stiffness matrices (parallel)

For each subdomain, perform the following operations in parallel.

1. Perform the factorization of matrix A(i) expressed by Equation (3.34) to

find matrices L(i) and U (i). Matrices L(i) and U (i) are computed “in place,”

i.e., they replace matrix A(i) as the computation proceeds, without addi-

tional storage requirement.

2. Evaluate matrix V (i) with the help of Equation (3.35a). Each column of

this matrix can be found from the corresponding column of matrix A(i)

bc

using back-substitution. Clearly, only the active columns of matrix A(i)

bc

generate non-vanishing entries in matrix V (i), i.e., the active columns of

matrix V (i) match those of matrix A(i)

bc
. Storage must be provided for the

active columns of matrix V (i) only.

3. Evaluate matrix M (i) with the help of Equation (3.35b). Each row of this

matrix can be found from the corresponding column of matrix A(i)

bc
using

back-substitution. Storage must be provided for the active rows of matrix

M (i) only.

4. Evaluate matrix A(i)

cc
defined by Equation (3.38). Storage must be provided

for this matrix.
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In steps 2 and 3, the columns of matrix V (i) and rows of matrix M (i), respec-

tively, can all be evaluated independently, providing fine grain parallelelization

opportunities.

• Phase 2: factorize interface stiffness matrix

To complete the factorization of the system matrix, perform the following op-

erations dealing with the interface stiffness matrix.

1. Evaluate matrix Ā
cc

using Equation (3.37).

2. Factorize matrix Ā
cc

according to Equation (3.36).

• Phase 3: forward-substitute in subdomains (parallel)

Once the system matrix factorization has been completed, the forward-substitution

phase can begin.

1. Find the intermediate solution array, y(i), in each of the subdomains via

forward-substitution using Equation (3.39a). Vector y(i) is computed “in

place,” i.e., it replaces vector b(i) as the computation proceeds without

additional storage requirement.

2. Compute the contribution of the subdomain to interface forces, d(i), using

Equation (3.40). Storage must be provided for vector d(i).

• Phase 4: solve for interface displacements

The solution of the interface problem proceeds in three steps.

1. Evaluate bd of Equation (3.41) using the intermediate solution arrays, y(i),

computed in the previous phase. Accumulate subdomain vectors d(i) in

place in array bc.

2. Find array y
c

via forward-substitution.
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3. Evaluate interface displacements from Equation (3.42a) by back-substitution.

• Phase 5: solve for subdomain displacements by back-substitution (parallel)

In the last phase of the solution process, the subdomain nodal displacements

are recovered via back-substitution.

1. Evaluate subdomain arrays y(i) from Equation (3.39a).

2. Evaluate y(i)
v

using Equation (3.43).

3. Find subdomain nodal displacements, x(i), via back-substitution using

Equation (3.42b)

This solution procedure is also organized in Table 3.1 with inputs and outputs for

each sub-phase.
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Table 3.1: Phases of solution procedure

5 phases Sub-phases

Phase Description Sub-phase Inputs and Outputs

Phase 1

Each subdomain:
Assembly and
Factorization

(Parallel)

Computation and assembly of
element matrices and arrays

Out: A(i), b(i), b(i)c

LU factorization of
subdomain matrix

In: A(i); Out: L(i), U (i)

Computation of
partial sbd-int coupling matrices

In: A(i)

bc
; Out: V (i), M (i)

Computation of
partial interface matrices

Out: A(i)

cc

Phase 2

Interface:
Assembly and
Factorization
(Sequential)

Data transfer
(Subdomains → Interface)

Transfer: A(i)

cc
, b(i)c

Adding up partial contributions
from subdomains

In: A(i)

cc
, b(i)c ; Out: A

cc
, bc

LU factorization of
interface matrix

In: A
cc

; Out: L
cc

, U
cc

Phase 3
Each subdomain:

Forward-substitution
(Parallel)

Forward-substitution for
intermediate subdomain equations

In: L(i), b(i); Out: y(i)

Computation for d(i) In: M (i), y(i); Out: d(i)

Phase 4

Interface:
Forward- and back-

substitutions
(Sequential)

Data transfer
(Subdomains → Interface)

Transfer: d(i)

Computation for bd In: b(i)c , d(i); Out: bd

Forward-substitution for
intermediate interface equations

In: L
cc

, bd; Out: y
c

Back-substitution for
interface equations

In: U
cc

, y
c
; Out: xc

Data transfer
(Interface → Subdomains)

Transfer: xc

Phase 5
Each subdomain:
Back-substitution

(Parallel)

Computation for y(i)
v

In: y(i), V (i), xc; Out: y(i)
v

Back-substitution for
subdomain equations

In: U (i), y(i)
v

; Out: x(i)
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CHAPTER IV

PARALLEL IMPLEMENTATION

Practical implementation of the parallel algorithm with the proposed domain decom-

position within the finite element framework, will be presented in this chapter. An

existing sequential analysis computer program for finite element based multibody sys-

tem, can be modified for the parallel counter part. A domain decomposition process

and a solution process are added and modified. Parallel programming is much more

challenging than the sequential counterpart. It always requires that programmers

think simultaneous flows of the algorithm on multiple processors Thus, the imple-

mentation must be very carefully performed. To accommodate the two big processes

for efficient parallel computation, data structures must be also efficiently designed in

organized way.

4.1 Parallel Finite Element Procedure

The finite element procedure is largely divided into the three main steps: prepro-

cessing, analysis and postprocessing. The preprocessing step can also be subdivided

into three sub-processes: parsing user inputs, checking the consistency of a model

and finite element meshing. Once the preprocessing is done and the data for finite

element discretization is all ready, the analysis step can proceed. Depending on prob-

lems, the type of analysis would be a static or dynamic analysis. The problems of

multibody systems are usually nonlinear and the nonlinear analysis for such problems

must proceed with an iterative process such as Newton-Raphson iteration. Once the

simulation through a static or dynamic analysis is done, postprocessing can proceed

with the resulting data from the analysis step. This series of processes is usually

performed in most sequential finite element analysis programs.
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To transform the existing sequential program into a parallel version, all the three

main steps can be modified to get the best parallel performance. But in this thesis,

only the preprocessing and analysis steps are modified to check the parallel perfor-

mance of the proposed domain decomposition method. Two new steps are added and

one existing step is modified as seen in Figure 4.1. The two new steps are the domain

decomposition and the adjustment for an existing finite element mesh. The exist-

ing analysis step of a sequential program needs to be considerably modified to enable

parallel computations with the help of parallel library for interprocess communication.

Read and parse input files

Check modeling consistency 

of topology and geometry

Finite element meshing

Analysis at time steps

Postprocessing

Read and parse input files

Check modeling consistency 

of topology and geometry

Finite element meshing

Parallel computations for

Analysis at time steps

Postprocessing

Domain decomposition

Finite element mesh adjustment

Figure 4.1: Finite element procedures (Left: Sequential; Right: Parallel)
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4.2 Domain Decomposition

To partition a computational domain into non-overlapping subdomains, a domain

decomposition step is added to the preprocessing step. The domain decomposition

step is placed after the first finite element meshing for the original computational

domain. Since subdomain problems are independent of each other, for implementa-

tion convenience, each subdomain problem can be managed by a subdomain manager

which is a data structure to store finite element information of a subdomain. Sim-

ilarly the interface problem can be managed by an interface manager. The domain

decomposition process can be subdivided into the following sub-processes:

1. Generate partitioning inputs by a user.

2. Assign a subdomain number to each existing finite element based on the parti-

tioning inputs.

3. Distribute the subdomain-number-assigned finite elements to the corresponding

subdomain managers.

4. For every single node, detect whether a node is located at interface or is internal

to a subdomain.

5. If a node is internal to a subdomain, no additional process is required.

6. If a node is at interface, figure out which subdomains are adjacent to the node.

7. For the node at interface, designate it as an interface node and create subdomain

boundary nodes of the adjacent subdomains.

8. Create LLM elements associated with the subdomain boundary nodes around

the interface node

9. Store the interface node in the interface manager

79



10. Store each LLM element and the associated subdomain boundary nodes, in a

corresponding subdomain manager.

This series of sub-processes for domain decomposition is briefly depicted in Figure 4.2.

Through the domain decomposition, for each subdomain, a subdomain manager will

have a set of finite elements which belong only to the associated subdomain. The set of

finite elements may include structural elements, constraint elements, LLM elements,

etc.

4.2.1 Interface node detection

User-generated partitioning inputs can be used to assign subdomain numbers on every

finite element. Once this is done, the interface node detection step can proceed, see

Figure 4.2. To detect interface nodes, consider a reference node (each blue circle the

first step) of a finite element model. If connected elements around the reference node

are associated with two or more different subdomains, the reference node becomes an

interface node (each red circle in the second step). Otherwise the reference node is

an internal node to a subdomain. Every time the interface detection process is done

for each node, an interface node will be found and the domain decomposition process

is ready to create an LLM element.

4.2.2 LLM element

If a reference node turns out to be an interface node from the previous step, an LLM

element for the node can be defined and created. An LLM element is defined by two

primal nodes and one dual node: a subdomain boundary node, an interface node and

a Lagrange multiplier node. The finite element information of the interface node is

duplicated and passed to the newly generated subdomain boundary nodes. A pair of

the subdomain boundary node and the Lagrange multiplier node will be passed to

the corresponding subdomain manager while the interface node will be passed to the

interface manager.
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This element is a type of constraint elements, which enforces the equality of gener-

alized coordinates of two adjacent nodes while they are in two different subdomains.

The geometric positions and orientations of the two primal nodes must be identical

at every time step at convergence because they were originally the same node before

the domain decomposition.

It is interesting to note that if two independent primal nodes are somehow defined

in the same subdomain and their positions and orientations must be identical, the

definitions of the two different nodes are not even required because they can be im-

plicitly expressed by a single node with the help of the master-slave node elimination

method. For an LLM element, however, since the two primal nodes of the element

are in two different subdomains and the subdomains are independent of each other,

the two nodes must be explicitly and independently defined to enforce a kinematic

constraint between them across the different subdomains.

4.2.3 Job distribution to processors

Through a domain decomposition process, subdomain managers and an interface

manager can be ready to perform computations in parallel because they are all inde-

pendent managers. For parallel computations, multiple processors must be assigned

for the subdomain managers and the interface manager. For this purpose, it is helpful

to divide the multiple processors into a master processor (or just a master) and slave

processors (or just slaves) for the rest. The master processor can collect data from

slave processors, process the collected data and distribute the processed data back

to slave processors while the slave processors can do their own job and communicate

only with the master processor. This separation of processors into master and slaves

would be a good match with another separation of the interface manager and the sub-

domain managers. As expected, the interface manager can be assigned to the master

processor while each subdomain manager to a slave processor. But a slave processor
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can have multiple subdomain managers as seen in Figure 4.3 as a more general case.

Once the distribution of managers to processors is done, the domain decomposition

process for parallel computations may finish. It should be noted that, in the actual

implementation, the standard master-slave framework is slightly modified so that the

master processor includes a subdomain manager, say Subdomain 1, as well as the

interface manager because this modified framework is not expected to significantly

affect the total parallel performance and the modified framework doesn’t also need to

subtract one processor which is the master, from counting the total number proces-

sors used for parallel performance assessment (otherwise, counting the total number

of processors for parallel performance may be confusing).

4.3 Finite Element Mesh Adjustment

Although every element of an original finite element model is already meshed before a

domain decomposition process, the mesh of each subdomain must be modified because

the subdomain boundary has been created after the domain decomposition process.

Along the subdomain boundary, interface nodes and LLM elements have also been

created. Since the LLM elements are added and localized to corresponding subdo-

mains, each subdomain manager must reflect the changes by some mesh adjustment.

For example, Lagrange multiplier nodes of LLM elements are added to subdomains

and the nodes provide additional dofs to subdomain problems. While an interface

node of an LLM element belong exclusively to the interface manager, a subdomain

manager owning the LLM element should be able to retrieve the interface node when

necessary because the LLM element always connects a subdomain boundary node,

a Lagrange multiplier node and an interface node. Re-ordering all node numbers of

each subdomain is also an important step to minimize the bandwidth of the subdo-

main system matrix. If a sparse solver is used, auxiliary arrays, such as diagonal

and skyline arrays, for the sparse storage scheme also need to be re-computed and
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re-generated.

4.4 Message Passing between Processors

To perform computations in parallel, one must implement an API (Application Pro-

gramming Interface) for inter-processor communications. There are several parallel

APIs such as POSIX threads (or just pthreads), OpenMP (Open Multi-Processing)

and MPI (Message Passing Interface). For a parallel program, an API can be exclu-

sively used or they can be implemented in combined manner. The parallel APIs have

their own characteristics such as portability, performance, ease of implementation,

etc. Out of the options above, MPI can provide the best portability and perfor-

mance [51]. MPI can be implemented distributed memory platforms like clusters, as

well as shared memory platforms like workstations or multi-core CPU PCs. Thus

MPI will be the best option for large scale finite element problems at the end.

MPI commands

An inter-processor communication with MPI can be defined by the following ques-

tions:

• Which processor sends?

• Where is the data in the sending processor?

• What type of data is sent?

• How much is the data?

• Which processors receive the data?

• Where is the data stored in the receiving processor?

• How much data does the receiving processor expect?

83



An MPI message consists of two components: body and envelope. The body of

a message can be defined by three subcomponents: buffer, data type and count.

The buffer indicates a starting memory address where sending or receiving data is

stored. The data type is the type of the message data and the data type must be

identical for both sending and receiving processors. The count means the number

of items in the data. On the other hand, the envelope of a message is composed of

four subcomponents: source, destination, communicator and tag. The source simply

indicates the sending processor while the destination does the receiving processor. The

communicator specifies a group of processors to which both source and destination

belong to. The tag is to distinguish the sending or receiving message.

If two processors need to send and receive an array of numbers, a pair of simple

MPI commands for the two processors can be written as:

MPI Send(array,arraySize,MPI DOUBLE,sendRank,tag,MPI COMM WORLD,status)

MPI Recv(array,arraySize,MPI DOUBLE,recvRank,tag,MPI COMM WORLD,status)

This kind of inter-processor communication happens at several locations in the so-

lution process of the proposed parallel algorithm. On the other hand, when a con-

vergence norm needs to be computed at each iteration, convergence norms for all

subdomains must be added up. In this case, a collective communication command

can be used to add them up as the following:

MPI Reduce(subNorm,norm,size,MPI DOUBLE,MPI SUM,rank0,MPI COMM WORLD)

Point-to-point communication commands such as MPI Send and MPI Recv and col-

lective communication commands such as MPI Reduce and MPI Bcast, can be prop-

erly used to effectively transfer data between processors. The structure of data to
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be transferred can be customized by a user just as struct type in C programming

language. MPI also supports writing on a file in parallel. All these kinds of functions

are well defined in the MPI library and the library has been continuously and actively

updated. Table 4.1 shows some MPI commands.

Table 4.1: Various MPI commands

MPI command Remarks

Minimal
MPI subset

MPI Init Initialize MPI
MPI Comm size Get number of processors
MPI Comm rank Get processor number

MPI Send Send a message
MPI Recv Receive a message

MPI Finalize Finalize MPI

Collective
communication

MPI Barrier Synchronize processors
MPI Bcast Broadcast a message to all processors

MPI Reduce Reduce values on all processors to a single value
Custom

data type
MPI Type create struct Create a derived data type

MPI Type commit Commit the data type

Writing
on a file

MPI File open Open a file
MPI File write Write the file in parallel
MPI File close Close the file

4.5 Data Structures for Parallel Computations

The parallel finite element analysis program requires different and additional data

structures compared to the sequential counterpart. As stated earlier, subdomain

managers and an interface manager are defined. For inter-processor communication,

memory buffers are also necessary to seamlessly pass messages/data between master

and slave processors. The recommended data structures for the proposed parallel

algorithm are depicted in Figure 4.4 and organized as the following:

• Parallel Info

– Rank (Processor ID)

– Number of subdomains assigned to this processor

• Interface Manager

: Sub-fields are exclusively for Interface except MPI Buffer
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– Finite elements and nodes with their mesh info

– Jacobian matrix and residual array (Ā
cc

and bc)

– Auxiliary arrays for sparse solver

– Incremental solution array (∆xc)

– Reference, initial and final configurations (xc0, x
c
i and xcf )

– MPI buffer arrays for inter-processor communication

• Subdomain i Manager

: Sub-fields are for Subdomain i and its partial contribution to Interface

– Finite elements and nodes with their mesh info

– Jacobian matrix and residual array (A(i), A(i)

bc
, Ā

(i)

cc
, b(i) and b(i)c )

– Auxiliary arrays for sparse solver

– Incremental solution array (∆x(i))

– Reference, initial and final configurations (x
(i)
0 , x

(i)
i and x

(i)
f )

• MPI Buffer for inter-processor communication between Interface manager

and Subdomain i manager

– Messages to be passed from Master to Slaves: B(i)

c
xcf and B(i)

c
∆xc

(B(i)

c
: Mapping from the interface to a subdomain)

– Messages to be passed from Slaves to Master: Ā
(i)

cc
, b(i)c and d(i)

4.6 Nonlinear Dynamic Analysis in Parallel

Many multibody dynamics problems are nonlinear. The governing equations of the

problem usually form a set of nonlinear differential algebraic equations (DAEs). Thus

it is necessary to linearize the governing equations. Finite element discretization and
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a time integration scheme further transform the linearized governing differential equa-

tions into a set of linearized algebraic equations. This linearized algebraic equations

can be solved for incremental solution by an iterative process such as Newton-Raphson

method.

Consider a dynamics problem of a multibody system which is partitioned into non-

overlapping subdomains by the proposed domain decomposition method. Through

the domain decomposition process, the original problem is now divided into subdo-

main problems and an interface problem. For implementation, each subdomain prob-

lem is assigned to a subdomain manager and the interface problem to an interface

manager. With the slightly modified master-slave framework for efficient MPI imple-

mentation, a master processor takes the interface manager and a subdomain manager

while each slave processor takes only a subdomain manager by job distribution.

Now it is ready to start the analysis procedure in order to solve the system of lin-

earized algebraic equations for incremental solutions with an iterative process. Inter-

processor communications are necessary whenever the subdomain managers need the

interface solution or the interface manager needs to add up the contributions from the

subdomains. The iterative process starts with a predictor step for an initial guess.

The initial guess for the interface problem needs to be passed to every subdomain,

which requires inter-processor communication. The main analysis step with the five

phases also include inter-processor communications at the Phase 2 and 4 as stated in

Section 3.5.4. At each iteration during a time step, the final configuration is updated

by adding the solution increments to the final configuration at the previous iteration.

The updated final configuration of the interface must be passed to every subdomain

again. Once the solution reaches convergence, the initial configuration for the next

time step must be updated by the final configuration at the current time step. This

series of the analysis procedure for a nonlinear dynamics problem during a time step
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is described below (subscripts [0], [i] and [f ] indicate reference, initial and final con-

figurations, respectively):

Time step start: given x
(i)
[0] , xc[0], x

(i)
[i] , xc[i]

1. Predict initial guess

(a) Slaves: predict x
(i)
[f ]

(b) Master: predict xc[f ]

(c) MPI (Master→Slaves): xc[f ]

2. Iteration up to convergence

(a) Solution procedure for an incremental solution

• Slaves: ∆x(i)

• Master: ∆xc

(b) Update final configuration by the increment

i. Slaves: x
(i)
[f ] ← x

(i)
[f ] + ∆x(i)

ii. Master: xc[f ] ← xc[f ] + ∆xc

iii. MPI (Master→Slaves): xc[f ]

(c) Check convergence

3. Update initial configuration for the next step by x
(i)
[f ] and xc[f ]

Time step end.
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Figure 4.2: Schematic of domain decomposition process
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Slave Processor 1 Manager

Parallel Info

Subdomain Manager Array

Subdomain 1 Manager

Subdomain 3 Manager

Slave Processor 2 Manager
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Subdomain 4 Manager
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MPI Buffer for Subdomain 3

MPI Buffer for Subdomain 4

Interface Manager

Figure 4.4: Hierarchy of parallel data structures

91



CHAPTER V

NUMERICAL EXPERIMENTS

In this chapter, the performance of the proposed domain decomposition method will

be assessed by numerical experiments. The proposed domain decomposition method

has been implemented in the flexible multibody dynamic simulation program, Dy-

more, and the parallel version of the program has been run and tested on parallel

machines such as multi-core processor PC’s or clusters.

Parallel performance of a domain decomposition method can be measured by

comparing the parallel execution times on multiple processors with its sequential

counterparts on a single processor. Several definitions for parallel performance mea-

surements are described. Then, three numerical experiments will be introduced to

verify the accuracy and scalability of the proposed domain decomposition method.

5.1 Testbed for Parallel Simulations

The software and hardware to run the parallel simulation tests are briefly described

below:

• Software: Parallel version of Dymore

– Multibody dynamics code

– Direct method rather than iterative method

– Skyline storage for sparse subdomain and interface matrices

– Localized Lagrange multiplier technique for domain decomposition

• Hardware: “Garuda” cluster in AE at Georgia Tech

– 608 processors on 152 nodes (4 processors per node)
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– 4GB memory per node

– Intel(R) Xeon(R) CPU 5150 @ 2.66GHz

5.2 Performance Assessment

For the study of parallel performance, CPU times have been measured for the so-

lution procedure. Two important additional metrics are used to evaluate parallel

performance based on the measured CPU time: speed-up and efficiency.

Table 5.1: Parallel simulation cases

Abbrev. Description Remarks

SPSD
Single Processor

for Single Domain
Sequential without

domain decomposition

SPMD
Single Processor

for Multi-Domains
Sequential with

domain decomposition

MPMD
Multi-Processors

for Multi-Domains
Parallel with

domain decomposition

5.2.1 CPU time

The program execution time must be measured to study parallel performance. Two

important definitions of the execution time are defined as: CPU time and wall clock

time. The CPU time is the execution time for which the CPU has been dedicated

to a process while the wall clock time measures the elapsed time from start to end

including CPU time, programmed delays, wait time for resources, etc. Thus the

CPU time has been measured for parallel performance to account for only the time

dedicated to computations by CPU. In the sequel, CPU time and execution time are

used interchangeably.

To measure the CPU time for a computer program, a programmer must implement

a timer function in the program. Some factors are important to choose the timer func-

tion: precision, CPU time measurability and availability on multi-platform. Among
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many timer libraries for C programming, getrusage() function has been used to

measure the CPU time and it measures the CPU time in microseconds.

For one iteration with factorization vs. For the entire simulation

The CPU time can be measured for one iteration with factorization or for the en-

tire simulation. The two different CPU time measures show different aspects of the

performance because of the modified Newton-Raphson iteration process. In the mod-

ified Newton-Raphson iteration process, the tangent stiffness matrix is not updated

at each iteration. Rather, the tangent matrix is updated at the first iteration only

and remains unchanged in the subsequent iterations, leading to considerable saving

of computational time.

When the CPU time is measured for one iteration only, it includes every phase of

the process including the LU-factorization phase. On the other hand, when the CPU

time is measured for the entire simulation, the entire simulation includes all iterations

at every time step of the simulation and the LU-factorization is not performed at every

iteration, in accordance with the modified Newton-Raphson iteration process.

5.2.2 Speed-up

In general, the speed-up is defined as the ratio of the speed of the sequential algorithm

to that of its parallel counterpart,

Speed-up =
Execution time of the sequential algorithm

Execution time of the parallel algorithm with multi-processors
. (5.1)

In this thesis, the parallel algorithm is enabled by the domain decomposition pre-

sented earlier. Part of the acceleration of the computation is due to the domain

decomposition, part is due to the use of parallel computations. Note that the domain

decomposition enables the use of parallel hardware. These two factors combine to

provide better computational performance.
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The effect of the domain decomposition technique on execution time can be eval-

uated as follows

Effect of domain decomposition =
CPU time for SPSD

CPU time for SPMD
. (5.2)

The speed-up measures the performance of the algorithm implemented on parallel

hardware and is defined as

Speed-up =
CPU time for SPMD

CPU time for MPMD
. (5.3)

Finally, the overall performance of the domain decomposition implemented on parallel

hardware is measured by the following index

Overall performance =
CPU time for SPSD

CPU time for MPMD
. (5.4)

The overall performance is the product of the effect of the domain decomposition by

the speed-up:

Overall performance = Effect of domain decomposition× Speed-up. (5.5)

Table 5.2 summarizes the definition of the various performance indices.

Table 5.2: Performance indices

Abbrev. Definition Remarks

SPMD
CPU time for SPSD

CPU time for SPMD
Effect of domain decomposition only

Speed-up
CPU time for SPMD

CPU time for MPMD
Speed-up due to parallel processing

MPMD
CPU time for SPSD

CPU time for MPMD
Overall performance
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5.2.3 Efficiency

The parallel efficiency shows how efficiently the parallel hardware is used. One might

expect that a parallel program runs twice faster when two processors are used. Effi-

ciency is calculated dividing speed-up by the number of processors.

Efficiency =
Speed-up

Number of processors
(5.6)

5.2.4 LU factorization phase

The LU factorization phase is the most expensive operation in the finite element

procedure. Thus it is interesting to assess the parallel performance of the factorization

phase only. The computational cost of the factorization is the function of the size

of the stiffness matrix. When the skyline solver is used as a solution scheme, an

additional metric for matrix sparsity needs to be defined to assess the effect of many

vanishing entries of the stiffness matrix. Let n be the total dofs of a sparse stiffness

matrix and s be the required memory size for the stiffness matrix with a sparse storage

scheme. Then the mean bandwidth, m, of the stiffness matrix is defined as

m =
s

n
. (5.7)

Because the cost of the LU factorization with a sparse matrix is approximately pro-

portional to nm2, defined as the factorization cost index,

Factorization cost index = nm2. (5.8)

The accuracy of this estimate can be assessed by meaning the CPU time required to

factorize matrix of given size and bandwidth.

As an increasing number of subdomains used, the size of the subdomain stiffness

matrix becomes smaller while that of the interface stiffness matrix becomes larger.

Thus, as the number of subdomains increases, the CPU time required for the factor-

ization of the subdomain stiffness matrices is expected to decrease, whereas the CPU

time required for the factorization of the interface stiffness matrix increases.
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5.2.5 Inter-processor communication time

In the solution procedure, communication between subdomain managers and an in-

terface manager is necessary to add up contributions of the subdomains to that of

the interface or to broadcast the solution at the interface back to subdomains. Since

the managers of subdomains and an interface are assigned to different processors, the

inter-processor communication phase is an essential process during execution. The

interface manager must communicate with all subdomain managers. Inter-processor

communication phase is the bottleneck of a parallel algorithm because this phase

must proceed sequentially, not in parallel. Thus, minimizing the inter-processor com-

munication time is one of the challenging tasks for designing parallel algorithms.

Since MPI has been used for the inter-processor communication API, the inter-

processor communication time is a function of sender/receiver overhead and commu-

nication data size. While the communication data size can be easily measured, the

overhead can’t be measured easily. Therefore, in this thesis, communication data size

is used to assess the communication time.

During the domain decomposition process, LLM elements are generated and as-

signed to corresponding subdomains. The number of LLM elements of a subdomain

is directly related to the size of the inter-processor communication data. Let n
(i)
b be

the dofs of all LLM elements of the subdomain i, the size of communication data can

be calculated by adding up the sizes of the matrix A(i)

cc
and the arrays b(i)c , d(i) and

x
(i)
c , see Table 3.1. The size of matrix A(i)

cc
is n

(i)
b × n

(i)
b while that of the three arrays

is n
(i)
b × 1. Thus, the total data size for the inter-processor communication (MPI) per

iteration is expressed as

Total MPI data size per iteration =
Ns∑
i=1

n
(i)
b · n

(i)
b + 3n

(i)
b . (5.9)

It should be noted again that the actual inter-processor communication time will

include the overhead of senders and receivers in addition to the data transmission
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time.

5.2.6 Contributions of sub-phases

As the number of subdomains increases, the problems handled by the various sub-

domains and an interface also change, leading the changes in the execution times for

the various phases of the algorithm. For cases with different numbers of subdomains,

relative contributions of sub-phases can be evaluated by normalizing the execution

times for sub-phases. The sub-phases which are most significantly contributing to the

execution time will be scrutinized. Because the normalized execution times include

significant sub-phases only, the total sum of the normalized execution times may be

less than 100%. For instance, sub-phases less than 2% are not included for visu-

alization in graphs. When multi-processors are used for parallel computations, the

inter-processor communication becomes relevant. The inter-processor communication

is denoted by “MPI Comm” and “MPI Wait” to indicate inter-processor communica-

tion time and synchronization time between processors, respectively. The significant

sub-phases are listed in Table 5.3.
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Table 5.3: Significant sub-phases for execution time in solution procedure

5 phases Sub-phases

Phase Description Sub-phase Abbrev.

Phase 1

Each subdomain:
Assembly and
Factorization

(Parallel)

Computation and assembly of
element matrices and arrays

P1 Sbd Assy

LU factorization of
subdomain matrix

P1 Sbd LU

Computation of
partial sbd-int coupling matrices

P1 Sbd Abc

Computation of
partial interface matrices

P1 Sbd Acc

Phase 2

Interface:
Assembly and
Factorization
(Sequential)

Data transfer
(Subdomains → Interface)

MPI Comm

Adding up partial contributions
from subdomains

P2 Int Acc

LU factorization of
interface matrix

P2 Int LU

Phase 3
Each subdomain:

Forward-substitution
(Parallel)

Forward-substitution for
intermediate subdomain equations

P3 Sbd Subs

Computation for d(i) P3 Sbd VecD

Phase 4

Interface:
Forward- and back-

substitutions
(Sequential)

Data transfer
(Subdomains → Interface)

MPI Comm

Forward-back-substitutions for
interface equations

P4 Int Subs

Data transfer
(Interface → Subdomains)

MPI Comm

Phase 5
Each subdomain:
Back-substitution

(Parallel)

Back-substitution for
subdomain equations

P5 Sbd Subs

MPI
Synchronization
of all processors

All processors need
to synchronize

MPI Wait
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5.3 Cantilever Beam

The first example is a simple cantilever beam. This simple example is used to verify

the accuracy of the proposed domain decomposition method when implemented on

parallel hardware. The displacement predictions and the convergence behavior are

compared for its sequential and parallel implementations.

P

Subdomain 1

i2

i1

Subdomain 2 Subdomain 3

Interface 1 Interface 2

Fixed boundary node Beam node

Figure 5.1: Cantilever beam: Partitioned into three subdomains

The beam length is 5 m. The cross-sectional properties are uniform over the span

and are defined as following: bending stiffness H33 = 1.0 × 106 N.m2 and shearing

stiffness K22 = 1.0 × 107 N. The beam is subjected to a vertical force P = 10 N in

the direction of ı2 at the beam tip. The beam is meshed into five elements of equal

size and for simplicity, each beam element features two nodes only, as illustrated in

Figure 5.1. As the node at the root is fixed by the boundary condition, the beam

presents five active structural nodes and each node has six dofs for three displacements

and three rotations. Thus, the total number of dofs for the beam is 30. For a static
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simulation, the convergence tolerance for iteration termination is set to 1.0× 10−9.

Table 5.4: Cantilever beam: Problem sizes for domain decomposition

Number of
subdomains

Subdomain dofs
Interface dofs Total dofs

1 2 3
1 30 N/A N/A N/A 30
3 18 30 18 12 78

The cantilever beam is then partitioned into three subdomains by the proposed

domain decomposition method. Through the domain decomposition process, four

subdomain boundary nodes, four localized Lagrange multiplier nodes, and two inter-

face nodes are added to the domains as illustrated by Figure 5.1. Subdomains 1 and

2 have two elements for each with the same length of 2 m. Subdomain 3 has one

element with 1 m long. The total problem size changes when the domain decom-

position is performed, as shown in Table 5.4. While the unpartitioned problem has

30 dofs, the partitioned problem with three subdomains has 78 dofs, which means

that the partitioned problem size has increased by 160 % from the unpartitioned

counterpart, because of the additional dofs of subdomain boundary nodes, localized

Lagrange multiplier nodes and interface nodes. Therefore, the domain decomposition

is not efficient for such a simple problem.

Table 5.5: Cantilever beam: Tip displacement

Computation Displacement prediction
Sequential 8.699999998356e-05

Parallel 8.699999998356e-05
Difference 0.000000000000e+00

For the verification of the proposed domain decomposition method, the displace-

ment prediction is evaluated at the tip in the direction of ı2. Tables 5.5 and 5.6 show

the displacement predictions and the achieved convergence norms over iterations, re-

spectively, for both the sequential and parallel computations. As seen in the two
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tables, both sequential and parallel computations with the proposed domain decom-

position method have generated the identical predictions and convergence behaviors

within machine accuracy.

Table 5.6: Cantilever beam: Convergence norms over 3 iterations

Iteration number 1 2 3
Convergence

norm
Sequential 1.643167672515e-02 2.439493338641e-06 9.432866543467e-10

Parallel 1.643167672515e-02 2.439493338641e-06 9.432866555410e-10
Norm difference 0.000000000000e+00 0.000000000000e+00 1.194299912016e-18
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5.4 Grid of Beams

The second example is a grid of beams. This structure is built up only by multiple

beams and the beams are interwoven as seen in Figure 5.2. Various domain decom-

positions of this structure can generate interfaces at many places so that the effect of

interface size can be investigated.

i1

i2
P

Q

(t)

(t)

Figure 5.2: Grid of beams

Table 5.7: Grid of beams: Structural properties of a beam segment

Property Unit Value
Axial stiffness (S) N 4.0× 107

Bending stiffness (EI22, EI33, EI23) N.m2 2.4× 106, 2.4× 106, 0.0
Torsional stiffness (J) N.m2 2.8× 105

Shearing stiffness (K22, K33, K23) N 2.0× 106, 2.0× 106, 0.0
Mass per unit span (m) kg/m 3.2

Moment of inertia (m11, m22, m33) kg.m 2.4× 10−2, 1.2× 10−2, 1.2× 10−2

5.4.1 Model description

Each cell of the grid is a square of size 1.2 × 1.2 m with a diagonal connection.

This grid structure consists of five cells in width and four cells in height. Thus this

model is designed to have the total of 64 beam segments to match 2N partitioning,
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see Figure 5.3. The finite element mesh for each beam segment is generated by three

cubic (four-node) beam elements.

5.4.2 Domain decomposition

The proposed domain decomposition process has been performed to partition the

structure into 2N subdomains where N = 0, 1, · · · , 5. The problem sizes of the six

cases for different domain decompositions are summarized in Table 5.8 and depicted in

Figure 5.4. The problem size for each case can be expressed by dofs of the subdomains

and the interface. Because there are multiple subdomains, the subdomain problem

dofs for each case in Table 5.8 is an averaged value for all subdomains, unlike the

interface problem. The average number of dofs for each case are rounded for easier

reading in the table. The total number of dofs is the sum of the number of dofs of

the interface problem and all subdomain problems.

For the domain decompositions of the grid of beams, as the number of subdomains

increases by the factor of two, the average number of dofs of a subdomain problem

decreases at a constant rate while the interface problem size increases at a slower

rate except for the increase of the number of subdomains from two to four, as seen in

Figure 5.4. The slower increase rate of the interface problem size is due to the feature

of the independent interface node of the proposed domain decomposition method.

Table 5.8: Grid of beams: Problem sizes for 6 domain decomposition cases

Number of
subdomains

Subdomain
dofs (Avg.)

Interface
dofs

Total dofs

1 3216 N/A 3216
2 1662 36 3360
4 885 108 3648
8 454 114 3744
16 237 132 3924
32 128 138 4248

As the domain decomposition becomes finer, the total number of dofs increases

slightly because of the increase in the numbers of independent interface nodes and
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2 subdomains:

each subdomain

with two floors

Partitioned grids

4 subdomains:

each subdomain

with a floor

8 subdomains:

each subdomain

with a half of a floor

16 subdomains:

each subdomain

with a quarter of a floor

32 subdomains:

each subdomain with two segments

Figure 5.3: Grid of beams: Partitioning of grids

localized Lagrange multiplier nodes which are added to the subdomain problems.

The number of interface dofs exceeds the number of dofs per subdomain for the

32-subdomain case. Note that, for the multi-processors for multi-domain (MPMD)

simulation cases, one processor is assigned to each subdomain.

5.4.3 Predictions of dynamic response

The dynamic simulations of the grid of beams were performed for 400 time steps with

a constant step size of ∆t = 5.0 × 10−3, which means 2.0 sec simulation. Harmonic

loading of force P (t) and moment Q(t) are applied at the upper right corner of the
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Figure 5.4: Grid of beams: Problem sizes for 6 domain decomposition cases

structure. The time history of loading is depicted in Figure 5.5 and expressed as,

P (t) or Q(t) =


0.0 for t < 0

3 (1− cos 2πt)× 103 for 0 ≤ t ≤ 2.0.

(5.10)

The structural properties of a beam segment are summarized in Table 5.7. The

convergence tolerance for the iteration termination has been set to 10−6.

The predictions of dynamic responses such as displacements, velocities and accel-

erations are investigated at the point of application of the loading in order to validate

the proposed parallel approach and implementation.

The single processor for the single domain case (SPSD) and the multi-processors

for the 32-subdomain case (MPMD) are compared as shown in Figures 5.6 and 5.7.

The time histories of translational or rotational response predictions from both se-

quential and parallel computations are on the left of the figure sets. On the other

hand, the response differences between sequential and parallel computations are on

the right of the figure sets. As seen from the figure sets, both sequential and parallel
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Figure 5.5: Grid of beams: Time history of loading

solutions are identical within machine accuracy through all the dynamic simulations.

5.4.4 Performance for solution procedure

With the dynamic simulations of the grid of beams, the parallel performance is pre-

sented in three metrics: CPU time, speedup and efficiency. The base metric is the

CPU time only for the solution procedure which is explained in Section 3.5. The

CPU time, speed-up and efficiency are listed in Tables 5.9 and 5.10 for the two dif-

ferent periods: for one iteration with factorization and for the entire simulation. For

one iteration with factorization, the domain decomposition with 32 subdomains has

achieved the shortest CPU times for both SPMD and MPMD cases with the largest

speed-up of 7.60. On the other hand, for the entire simulation, the SPMD case has

obtained the shortest CPU time with 32 subdomains while the MPMD case has ob-

tained that with 16 subdomains, and the speed-up starts to drop for more than 16

subdomains.

The measured CPU times for various cases are plotted in Figure 5.8. For both one
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Figure 5.6: Grid of beams: Predictions of translational responses (Left) and their
differences (Right) between two cases: Single domain vs. 32 subdomains

iteration and the entire simulation cases, the CPU time for the SPMD case (solid line

in blue) monotonically decreases. The CPU time for the MPMD case (dash-dot line in

green) is, however, going back up after hitting the shortest time with 16 subdomains.
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Figure 5.7: Grid of beams: Predictions of rotational responses (Left) and their
differences (Right) between two cases: Single domain vs. 32 subdomains

When the plots of the speed-up or the ratio of CPU time to the SPSD case are

considered, see Figure 5.9, the performance aspect is more remarkable. The speed-up

(dashed line in red) clearly has a performance limit which is for 16 subdomains or
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Table 5.9: Grid of beams (for one iteration with factorization): CPU time, speed-up
and efficiency for solution procedure

Number of
subdomains

CPU time [sec]
Speed-up Efficiency

SPMD MPMD
1 0.0727 0.0727 1.00 1.00
2 0.0704 0.0349 2.02 1.01
4 0.0674 0.0220 3.06 0.76
8 0.0485 0.0082 5.95 0.74
16 0.0378 0.0039 9.60 0.60
32 0.0265 0.0035 7.60 0.24

Table 5.10: Grid of beams (for the entire simulation): CPU time, speed-up and
efficiency for solution procedure

Number of
subdomains

CPU time [sec]
Speed-up Efficiency

SPMD MPMD
1 52.05 52.10 1.00 1.00
2 44.57 23.12 1.93 0.96
4 40.24 12.89 3.12 0.78
8 29.50 5.13 5.75 0.72
16 23.59 3.25 7.27 0.45
32 18.20 3.76 4.85 0.15

processors for this example model. For more than 16 processors, it is evident that the

increase rate of both the speed-up and the overall performance (MPMD, dash-dot

line in green) starts to decrease. It is also confirmed here that as the number of

subdomains increases, the effect of domain decomposition (SPMD, solid line in blue)

steadily increases the performance ratio to the SPSD case. Thus, it is clear from the

plots that the overall performance (MPMD) with the domain decomposition and the

multi-processors is dictated by the speed-up or parallel processing. The ratios of the

CPU time to the SPSD case, speed-up and efficiency are also listed in Tables 5.11

and 5.12.

The efficiency for multi-processor usage shows slightly different aspects for the

parallel performance, as shown in Figure 5.10. Since this metric applies only to

multi-processor cases, the SPMD case cannot be shown here. A notable point is at
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Figure 5.8: Grid of beams: CPU time for solution procedure (Top: for one iteration
with factorization; Bottom: for the entire simulation)

the four subdomain case. Unlike the neighboring cases such as two or eight subdomain

cases, the efficiency plots show the V-shaped drops at the four subdomain case for
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Table 5.11: Grid of beams (for one iteration with factorization): Ratio of CPU time
to SPSD case, speed-up and efficiency

Number of
subdomains

Ratio to SPSD
Speed-up Efficiency

SPMD MPMD
1 1.00 1.00 1.00 1.00
2 1.03 2.09 2.02 1.01
4 1.08 3.30 3.06 0.76
8 1.50 8.91 5.95 0.74
16 1.92 18.47 9.60 0.60
32 2.75 20.85 7.60 0.24

Table 5.12: Grid of beams (for the entire simulation): Ratio of CPU time to SPSD
case, speed-up and efficiency

Number of
subdomains

Ratio to SPSD
Speed-up Efficiency

SPMD MPMD
1 1.00 1.00 1.00 1.00
2 1.17 2.25 1.93 0.96
4 1.29 4.04 3.12 0.78
8 1.76 10.15 5.75 0.72
16 2.21 16.03 7.27 0.45
32 2.86 13.87 4.85 0.15

both one iteration and the entire simulation cases. This is because while each V-

shaped drop is a normal degradation, the efficiency-going-back-up for more-than-

four-subdomain cases is due to the slow increase of the number of interface nodes,

which is beneficial. The efficiency dramatically reduces and becomes poor as the

number of subdomains increases. This is simply because the size of the problem is

not large. It is expected that the efficiency degradation will be more delayed as the

size of the problem increases more.

Speaking of difference between one iteration case and the entire simulation case,

it should be first understood that one full iteration includes every sub-phases of the

solution procedure while every iteration of the entire simulation doesn’t include every

sub-phase because of the modified Newton-Raphson process, which is explained in

Section 5.2.1. The increase of the speed-up or the performance ratio to the SPSD
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Figure 5.9: Grid of beams: Speed-up or ratio of CPU time to SPSD case for
solution procedure (Top: for one iteration with factorization; Bottom: for the entire
simulation)

case for the entire simulation case is more rapid than that for one iteration case,

but, at the same time, the entire simulation case also reaches the saturation of the
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Figure 5.10: Grid of beams: Efficiency for solution procedure (Top: for one iteration
with factorization; Bottom: for the entire simulation)

performance increase faster than the one iteration case with factorization.
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5.4.5 Performance for LU factorization phase

In the finite element solution procedure for typical structural problems, the LU factor-

ization phase takes the largest portion of the execution times. Thus it will be helpful

to estimate and measure the computational cost and the CPU time, respectively, of

the factorization phase with various domain decomposition cases.

Table 5.13: Grid of beams: Degrees of freedom, required memory size, mean band-
width and LU factorization cost index for a subdomain problem

Number of
subdomains

Degrees of
freedom

Required size
of memory [kB]

Mean
bandwidth

LU factorization
cost index

Max Avg Max Avg Max Avg Max Avg
1 3216 ← 2202 ← 87 ← 24341904 ←
2 1680 1662 848 824 64 63 6881280 6600408
4 912 885 311 293 43 42 1686288 1548870
8 468 454 168 151 46 42 990288 811478
16 252 237 78 73 41 39 403440 357454
32 132 128 32 30 30 29 118800 111512

Table 5.14: Grid of beams: Degrees of freedom, required memory size, mean band-
width and LU factorization cost index for an interface problem

Number of
subdomains

Degrees of
freedom

Required size
of memory [kB]

Mean
bandwidth

LU factorization
cost index

2 36 10 36 46656
4 108 71 84 762048
8 114 62 69 542754
16 132 65 63 523908
32 138 67 61 513498

The estimation of the factorization cost is organized in Tables 5.13 and 5.14 for the

subdomain and interface problems, respectively. One can see that the load balancing

for this problem is not bad when the maximum and averaged dofs are compared for

each domain decomposition case. As explained in Section 5.2.4, the factorization

cost is proportional to the dofs while it is so to the square of the mean bandwidth

of the tangent stiffness matrix. This means that the mean bandwidth might be a

115



more dominant factor when the orders of magnitudes of both the dofs and the mean

bandwidth are similar.

As the number of subdomains increases, one might expect that the factorization

cost index of the subdomain matrix tends to decrease while the counterpart of the

interface matrix tends to increase. But the estimation and the actual experiment show

that the cost varying aspect for the interface matrix is not what it is expected to be.

This unexpected behavior can be explained by the mean bandwidths in Table 5.13. It

is understood that the mean bandwidth is the dominant factor for the factorization

cost in this example model. The mean bandwidth jump from the two-subdomain

case to the four-subdomain case is normal, however, for eight or more subdomain

cases the mean bandwidth does not increase but even slightly decreases because the

additional interface nodes are not necessary any more for the cases with more than

four subdomains. This behavior is mainly due to the geometry of this example model

and can be also affected by different partitionings.

Table 5.15: Grid of beams (MPMD, for the entire simulation): LU factorization
CPU time and its percentage of the total simulation time

Number of
subdomains

Total
simulation
time [sec]

Subdomain Interface
Factorization

time [sec]
Percentage

[%]
Factorization

time [sec]
Percentage

[%]
1 52.099 17.583 33.75 N/A N/A
2 23.124 5.191 22.45 0.057 0.25
4 12.890 1.436 11.14 0.595 4.62
8 5.133 0.824 16.05 0.429 8.36
16 3.250 0.360 11.08 0.403 12.40
32 3.757 0.106 2.82 0.405 10.78

The factorization times of the actual numerical experiments are organized in Ta-

ble 5.15 only for the entire simulation case. The close correlation of the factorization

cost between the estimation and the experiment can be seen in Figure 5.11.
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Figure 5.11: Grid of beams (MPMD): LU factorization performance (Top: Ratio
of performance to single domain case for a subdomain problem; Bottom: Ratio of
performance to 2-subdomain case for an interface problem)

5.4.6 Inter-processor communication time

Inter-processor communication time is another important portion of the parallel solu-

tion procedure. The size of the transferred data through MPI can be calculated by the
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number of LLM elements which are generated in the domain decomposition process.

The total size of the transferred data and the actual inter-processor communication

time through MPI are tabulated, see Table 5.16.

Table 5.16: Grid of beams (MPMD, for the entire simulation): Dofs for all LLM
elements, total MPI data size and inter-processor communication time

Number of
subdomains

Dofs for
all LLM
elements

Total MPI
data size

[kB]

Total
simulation
time [sec]

Total MPI
communication

time [sec]

Time
percentage

[%]
2 72 22 23.124 0.022 0.10
4 216 106 12.890 0.101 0.78
8 264 80 5.133 0.180 3.51
16 354 73 3.250 0.654 20.12
32 516 80 3.757 2.206 58.72

As mentioned in Section 5.2.5, the overhead of the sender and receiver of the

data, is not easily measured and, in turn, is not counted in the table. The correlation

between the total MPI data size and the MPI communication time is not close. The

abnormal jumps in the MPI communication time, compared to the transferred data

size, might also be due to the fact that the used cluster for the parallel simulations has

four processors per node so that the much slow network between nodes significantly

impacts the MPI communication time when more than four processors are used for

the cases with more than four subdomains.

Figure 5.12 shows the increase of the inter-processor communication time relative

to the CPU time as the number of processors increases. One can easily see that the

inter-processor communication time takes the significant portion of the total execution

time especially in the case of 32 subdomains. There is a slight difference of the

proportions of the inter-processor communication time between one iteration case and

the entire simulation case. Since the factorization phase doesn’t take part in every

iteration of the entire simulation, the proportion of inter-processor communication

time for the entire simulation case, becomes higher than the counterpart for one

iteration case with factorization.
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Figure 5.12: Grid of beams (MPMD): Inter-processor communication time (Top:
for one iteration with factorization; Bottom: for the entire simulation)

5.4.7 Contributions of sub-phases

Contributions of the sub-phases of the solution procedure are visualized in Fig-

ures 5.13 and 5.14. Figure 5.13 is for the SPMD case while Figure 5.14 is for the
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MPMD case. As stated in Section 5.2.6, note that some of the bar graphs don’t reach

100% in total because minor sub-phases less than 2% have been excluded from the

graphs.

In the SPSD case (the first bar graph), this typical structural problem shows the

typical distribution of the execution time proportions. For one iteration with factor-

ization case, computations and assemblies of the element matrices and arrays take

about 10% of the total execution time, LU factorization does about 60% and forward-

back-substitution does about 30%. On the other hand, for the entire simulation case,

the modified Newton-Raphson process remarkably affects the distribution as 15%,

35% and 50% in the same order as the previous. The execution time for the factor-

ization considerably reduces while the counterpart for the forward-back-substitution

boosts up.

In the SPMD case, it doesn’t exhibit inter-processor communication time and a

single processor processes all sub-phases. It is clearly shown that the execution time

proportion for the computations and assemblies of the subdomain element matrices

and arrays, steadily increases while the counterpart for the forward-back-substitution

phase steadily decreases as the number of subdomains increases. This graphs also

clearly indicate the decrease in the execution time proportion for the LU factorization

of the interface matrix, with the four subdomain case as mentioned in Section 5.4.5.

In the MPMD case, the most significant change can be found from the inter-

processor communication time. In the case of 32 subdomains, the execution time

proportion for the inter-processor communication is dominant taking about 60% of the

total execution time. The inter-processor communication time is the main bottleneck

of the parallel solution procedure.
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P5 Sbd Subs

P3 Sbd SubsP2 Int LUP1 Sbd Acc

P1 Sbd AbcP1 Sbd LUP1 Sbd Assy

Figure 5.13: Grid of beams (SPMD): Normalized execution times for sub-phases
(Top: for one iteration with factorization; Bottom: for the entire simulation; Pi:
Phase i; Sbd: Subdomain; Int: Interface; Assy: Element matrix computation and
assembly; LU: Factorization; Abc: Partial Sbd-Int coupling matrix computation;
Acc: Partial Int matrix computation/assembly; Subs: Forward/Back substitution)
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P5 Sbd Subs

P4 Int SubsP2 Int Acc LUP1 Sbd Acc

P1 Sbd AbcP1 Sbd LUP1 Sbd Assy

MPI Wait MPI Comm

Figure 5.14: Grid of beams (MPMD): Normalized execution times for sub-phases
(Top: for one iteration with factorization; Bottom: for the entire simulation; Pi:
Phase i; Sbd: Subdomain; Int: Interface; Assy: Element matrix computation and
assembly; LU: Factorization; Abc: Partial Sbd-Int coupling matrix computation;
Acc: Partial Int matrix computation/assembly; Subs: Forward/Back substitution;
MPI Wait: Processor synchronization; MPI Comm: Inter-processor communication)
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5.5 Rotor System

The third example is a helicopter rotor system which is one of the most representative

and complex multibody systems. The rotor system is usually composed of various

mechanical components such as rotor blades, a rotor hub, swash plates, pitch links,

inner blade parts, etc. The mechanical components are modeled with rigid elements,

flexible elements such as beams, plates or shells as well as constraint elements which

represent mechanical joints such as revolute joints, prismatic joints, spherical joints,

universal joints, etc.

Revolute joint Flexible joint

Spherical joint

Universal joint

Ground clamp

Prismatic joint

i1

i3

i2

T(t)

Figure 5.15: Rotor system: Four-bladed hingeless flexbeam rotor system under a
driving torque at the hub

The parallel algorithm with the proposed domain decomposition method has been

developed for and focused on flexible multibody systems which are distinguished from

typical structures without mechanical joints. If the proposed parallel algorithm works

well for this complex multibody system, it is expected that the algorithm can be
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further developed for and extended to advanced application areas.

5.5.1 Model description

The rotor system under consideration is a four-bladed hingeless flexbeam rotor system

as seen in Figure 5.15. Thus the inner blade configuration of this rotor system is

simpler than that of the fully articulated rotor system. Each rotor blade is 17.5 ft

long. The cross sectional properties of the rotor blade vary along the blade span

and they are depicted in Figure 5.16; mass per unit span, torsional stiffness and two

bending stiffnesses for flap and lead-lag, are plotted in the figure set. The total dofs

from the finite element meshing of the unpartitioned rotor system is 10,288 and each

rotor blade has 128 cubic (four-node) beam elements.

Figure 5.16: Rotor system: Blade sectional properties
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5.5.2 Domain decomposition

The proposed domain decomposition method applies to the rotor system to partition

the system into non-overlapping subdomains. Due to the special geometry of the rotor

system, the partitioning has been performed as seen in Figure 5.17. Both subsystems

of the rotor hub and the swash plates are grouped as Subdomain 1. Because of the

four blades, there are four sets of three subsystems which are the inner blade and the

pitch link and the rotor blade. Out of the three subsystems, a pair of the inner blade

and the pitch link is assigned to a subdomain so that the four sets of the pair are

assigned as Subdomain 2, Subdomain 3, Subdomain 4 and Subdomain 5. The rest four

rotor blades are assigned as Subdomain 6, Subdomain 7, Subdomain 8 and Subdomain

9.

The further domain decomposition is, however, applied only to the four blades by

2N partitioning, see Figure 5.18, where N = 0, 1, · · · , 4 while the first 5 subdomains

(Subdomains 1 ∼ 5 ) are fixed and not further partitioned for more than 9-subdomain

cases. Thus, except for the unpartitioned case, the numbers of subdomains (Ns) are

calculated as

Ns = 5 + 4 · 2N . (5.11)

Therefore, there are six domain decomposition cases in total and the problem sizes

in dofs for all cases are organized in Table 5.17 and depicted in Figure 5.19. Because

there are multiple subdomains for each domain decomposition case, each subdomain

dofs is an averaged value for all subdomains. It should be noted that the averaged

dofs for every case are rounded for easier reading in the table. The total dofs are the

sum of the dofs of an interface problem and all subdomain problems.

For the domain decompositions of the rotor system, as the number of subdomains

increases, the averaged dofs of a subdomain problem decreases at a constant rate

while the interface problem size increases at the similar constant rate, as seen in

Figure 5.4.
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Hub
+

Swash plate

Inner blade
+

Pitch link
(four sets for four rotor blades)

Four rotor blades

Figure 5.17: Rotor system: Domain decomposition

Table 5.17: Rotor system: Problem sizes for 6 domain decomposition cases

Number of
subdomains

Subdomain
dofs (Avg.)

Interface
dofs

Total dofs

1 10288 N/A 10288
9 1171 60 10600
13 816 84 10696
21 512 132 10888
37 298 228 11272
69 168 420 12040
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Figure 5.18: Rotor system: 2N partitioning of each rotor blade

Figure 5.19: Rotor system: Problem sizes for 6 domain decomposition cases

Similarly to the grid of beams example, as the subdomain size gets smaller, the

total dofs slightly increases because of the additional independent interface nodes

and localized Lagrange multiplier nodes. It can be easily found from Table 5.17 that

the interface dofs and the subdomain (averaged) counterpart cross over between the
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37-subdomain and 69-subdomain cases. Note that, for the multi-processors for multi-

domain (MPMD) simulation cases, only one processor is assigned to each subdomain.

Figure 5.20: Rotor system: Time history of driving torque

5.5.3 Predictions of dynamic response

The dynamic simulations of the Rotor system have been performed for 3,000 steps

with a constant step size of ∆t = 5.0 × 10−3 sec. The rotor hub is subjected to a

driving torque T(t) which changes in time as seen in Figure 5.20. The driving torque

generates about three revolutions of the rotor during the dynamic simulations. The

convergence tolerance for the iteration termination has been set to 10−6.

The dynamic responses of the rotor system are investigated at the tip of a blade for

the validation of the proposed parallel algorithm. The single processor for the single

domain case (SPSD) and the multi-processors for the 69-subdomain case (MPMD)

are compared as shown in Figures 5.21, 5.22, 5.23 and 5.24.

All figure sets are configured as the following: the time histories of translational

or rotational response predictions from both sequential and parallel computations are
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Figure 5.21: Rotor system: Predictions of in-plane translational (along ı̄2) responses
at blade tip (Left) and their differences (Right) between two cases: Single domain vs.
69 subdomains

on the left of the figure sets while the response differences between sequential and

parallel computations are on the right. The first two figure sets, Figures 5.21 and 5.22,
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Figure 5.22: Rotor system: Predictions of in-plane rotational (about ı̄3) responses
at blade tip (Left) and their differences (Right) between two cases: Single domain vs.
69 subdomains

are about the rotor in-plane responses and the last two figure sets, Figures 5.23

and 5.24, are about the rotor out-of-plane counterparts. Here again, both sequential
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Figure 5.23: Rotor system: Predictions of out-of-plane translational (along ı̄3)
responses at blade tip (Left) and their differences (Right) between two cases: Single
domain vs. 69 subdomains

and parallel predictions are kept identical within machine accuracy during all the

dynamic simulations.
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Figure 5.24: Rotor system: Predictions of out-of-plane rotational (about ı̄2) re-
sponses at blade tip (Left) and their differences (Right) between two cases: Single
domain vs. 69 subdomains

5.5.4 Performance for solution procedure

Through the dynamic simulations with the rotor system, the parallel performance has

been evaluated. The base metrics, CPU times have been measured for the various
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domain decomposition cases and the derived metrics, speedup and efficiency, are then

calculated. The CPU times or the execution times are measured for the duration

for the solution procedure only, which is explained in Section 3.5. The CPU time

and the speed-up are listed in Tables 5.18 and 5.19 for the two different periods:

for one iteration with factorization and for the entire simulation. As stated earlier,

the difference between the two different periods are characterized by the modified

Newton-Raphson iteration process. For one iteration with factorization, the domain

decomposition with 37 subdomains has achieved the shortest CPU time for both

SPMD and MPMD cases with the maximum speed-up of 10.08. On the other hand,

for the entire simulation, the SPMD and MPMD cases have obtained the shortest

CPU times with 69 and 21 subdomain cases, respectively. But it should be noted

that, it is unavoidable that the speed-up starts to drop at a performance limit for

this example problem as well.

Table 5.18: Rotor system (for one iteration with factorization): CPU time, speed-up
and efficiency for solution procedure

Number of
subdomains

CPU time [sec]
Speed-up Efficiency

SPMD MPMD
1 0.3519 0.3519 1.00 1.00
9 0.0949 0.0215 4.40 0.49
13 0.0879 0.0129 6.80 0.52
21 0.0772 0.0080 9.60 0.46
37 0.0734 0.0073 10.08 0.27
69 0.0750 0.0098 7.65 0.11

The measured CPU times for various cases are plotted in Figure 5.25. For both

one iteration and the entire simulation cases, the CPU times decrease at first but

tend to be going back up for more than 37 subdomains.

The ratio of CPU time to the SPSD case and the speed-up are plotted in Fig-

ure 5.26 and tabulated in Tables 5.20 and 5.21. The performance by the effect of

domain decomposition only (SPMD, solid line in blue) slowly increases at first and

stays almost flat while the speed-up (dashed line in red) starts to noticeably decrease
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Table 5.19: Rotor system (for the entire simulation): CPU time, speed-up and
efficiency for solution procedure

Number of
subdomains

CPU time [sec]
Speed-up Efficiency

SPMD MPMD
1 2646.90 2646.90 1.00 1.00
9 749.04 177.68 4.22 0.47
13 593.64 88.60 6.70 0.52
21 489.41 58.91 8.31 0.40
37 445.26 60.59 7.35 0.20
69 441.83 89.93 4.91 0.07

at some performance limit for both period cases. The overall performance with the

domain decomposition and the multi-processors (MPMD, dash-dot line in green), is

remarkable until the domain decomposition with 37 subdomains. Again, the overall

performance is degraded mainly by the parallel processing after some performance

limit.

Table 5.20: Rotor system (for one iteration with factorization): Ratio of CPU time
to SPSD case and speed-up

Number of
subdomains

Ratio to SPSD
Speed-up Efficiency

SPMD MPMD
1 1.00 1.00 1.00 1.00
9 3.71 16.33 4.40 0.49
13 4.00 27.22 6.80 0.52
21 4.56 43.74 9.60 0.46
37 4.79 48.32 10.08 0.27
69 4.69 35.91 7.65 0.11

As observed in the plots of the performance ratio to the SPSD case or the speed-up,

the overall performance (MPMD) provides efficiency over one up to the 37-subdomain

cases, as seen in Figure 5.27, because of the remarkable effect combining both the

domain decomposition and the parallel processing. Since this metric applies only to

multi-processor cases, the SPMD case cannot be shown here.

As for the comparison between one iteration and the entire simulation cases, the

saturation or degradation of the speed-up for one iteration with factorization case is
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Figure 5.25: Rotor system: CPU time for solution procedure (Top: for one iteration
with factorization; Bottom: for the entire simulation)

relatively delayed compared to the counterpart for the entire simulation case because

of the modified Newton-Raphson iteration process.

The parallel efficiency for this problem appears to be poor for multiple subdomain
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Table 5.21: Rotor system (for the entire simulation): Ratio of CPU time to SPSD
case and speed-up

Number of
subdomains

Ratio to SPSD
Speed-up Efficiency

SPMD MPMD
1 1.00 1.00 1.00 1.00
9 3.71 16.33 4.22 0.47
13 4.00 27.22 6.70 0.52
21 4.56 43.74 8.31 0.40
37 4.79 48.32 7.35 0.20
69 4.69 35.91 4.91 0.07

cases. Again, the size of the problem is not large and this leads to the low parallel

efficiency. The efficiency is expected to be better for the problems with larger dofs.

5.5.5 Performance for LU factorization phase

In order to study the computational cost of the LU factorization phase with parallel

simulations, both the cost estimation and the actual execution time for the factor-

ization phase are compared and correlated with various domain decomposition cases.

The estimates of the factorization cost are organized in Tables 5.22 and 5.23 for the

subdomain and interface problems, respectively. Unlike the grid of beams example,

Table 5.22: Rotor system: Degrees of freedom, required memory size, mean band-
width and LU factorization cost index for a subdomain problem

Number of
subdomains

Degrees of
freedom

Required size
of memory [kB]

Mean
bandwidth

LU factorization
cost index

Max Avg Max Avg Max Avg Max Avg
1 10288 ← 5220 ← 64 ← 42139648 ←
9 2358 1171 552 274 29 28 1983078 981470
13 1212 816 285 191 30 28 1090800 706139
21 636 512 150 119 30 29 572400 436428
37 348 298 82 69 30 29 313200 252411
69 263 168 62 39 30 29 221183 141364

the load balancing for this problem is poor when the maximum and averaged dofs are

compared for each domain decomposition case. This is because the geometry of the

rotor system is special and no optimal partitioner was used for domain decomposition.
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Figure 5.26: Rotor system: Speed-up or ratio of CPU time to SPSD case for
solution procedure (Top: for one iteration with factorization; Bottom: for the entire
simulation)

As explained in Section 5.2.4, the factorization cost is proportional to the dofs while

it is so to the square of the mean bandwidth of the tangent stiffness matrix.
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Figure 5.27: Rotor system: Efficiency for solution procedure (Top: for one iteration
with factorization; Bottom: for the entire simulation)

As the number of subdomains increases, the factorization cost index of the sub-

domain matrix decreases while the counterpart of the interface matrix increases as

expected. Therefore, the factorization speed-up and speed-down for the subdomain
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Table 5.23: Rotor system: Degrees of freedom, required memory size, mean band-
width and LU factorization cost index for an interface problem

Number of
subdomains

Degrees of
freedom

Required size
of memory [kB]

Mean
bandwidth

LU factorization
cost index

9 60 28 60 216000
13 84 44 67 377076
21 132 58 56 413952
37 228 85 47 503652
69 420 139 42 740880

matrix and the interface matrix, respectively, are expected to monotonically increase.

It is interesting to note that the mean bandwidth of the subdomain stiffness matrix

remains flat as the number of subdomains increases. It should also be noted that the

factorization cost index of the interface matrix first exceeds the counterpart of the

subdomain matrix for the 37-subdomain case.

Table 5.24: Rotor system (MPMD, for the entire simulation): LU factorization
CPU time and its percentage of the total simulation time

Number of
subdomains

Total
simulation
time [sec]

Subdomain Interface
Factorization

time [sec]
Percentage

[%]
Factorization

time [sec]
Percentage

[%]
1 2646.90 355.11 13.42 N/A N/A
9 177.68 14.69 8.27 1.45 0.82
13 88.60 7.59 8.57 2.34 2.64
21 58.91 4.02 6.82 2.77 4.70
37 60.59 2.24 3.70 3.57 5.89
69 89.93 1.29 1.43 5.27 5.86

Figure 5.28 shows the speed-up and the speed-down for the factorization of the

subdomain matrix and the interface matrix, respectively. The relative performance

evaluations are from both the cost estimations and the actual execution times for the

factorization. As seen in the figure, The estimations and the actual experiments have

a good correlation. Table 5.24 shows the actual execution time of the factorization

phase and its percentage relative to the total simulation time. As expected in the

previous paragraph, the factorization times of the subdomain matrix and the interface
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Figure 5.28: Rotor system (MPMD): LU factorization performance (Top: Ratio
of performance to single domain case for a subdomain problem; Bottom: Ratio of
performance to 9-subdomain case for an interface problem)

matrix cross over for the 37-subdomain case; the factorization of the interface matrix

takes more CPU time than the counterpart of the subdomain matrix for the 37 or

more subdomain cases.
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5.5.6 Inter-processor communication time

For this rotor system problem, the inter-processor communication time remarkably

increases as the number of subdomains or processors increases. The size of the trans-

ferred data through MPI can be calculated by the number of LLM elements. The

total size of the transferred data and the actual inter-processor communication time

through MPI are tabulated, see Table 5.25.

Table 5.25: Rotor system (MPMD, for the entire simulation): Dofs for all LLM
elements, total MPI data size and inter-processor communication time

Number of
subdomains

Dofs for
all LLM
elements

Total MPI
data size

[kB]

Total
simulation
time [sec]

Total MPI
communication

time [sec]

Time
percentage

[%]
9 156 27 177.68 4.00 2.25
13 204 35 88.60 9.42 10.63
21 300 46 58.91 17.62 29.91
37 492 69 60.59 29.52 48.72
69 876 114 89.93 54.42 60.51

As stated in Section 5.2.5, the information about the overhead time of the sender

and receiver of the transferred data, is not easily available. When the total size of the

transferred data and the actual inter-processor communication time are compared,

they seem to have some correlation but not so close.

It is confirmed again that, the inter-processor communication time takes the sig-

nificant portion of the total execution time as seen in Figure 5.29. But, unlike the

other example problem, Grid of beams, there is a less difference between one iteration

case and the entire simulation case. Because the factorization phase is not the most

dominant phase, which is explained in Section 5.5.7, the modified Newton-Raphson

process doesn’t make a large difference between the two cases.

5.5.7 Contributions of sub-phases

Contributions of the sub-phases are plotted in Figures 5.30 and 5.31. Figure 5.30 is

for the SPMD case while Figure 5.31 is for the MPMD case. Here again, as stated
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Figure 5.29: Rotor system (MPMD): Inter-processor communication time (Top: for
one iteration with factorization; Bottom: for the entire simulation)

in Section 5.2.6, note that some of the bar graphs don’t reach 100% in total because

minor sub-phases less than 2% have been excluded from the graphs.

In the SPMD case (the first bar graph), the most expensive sub-phase is the
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back-substitution unlike typical structural problems. This is because the system

matrix of the unpartitioned Rotor system problem has a very narrow bandwidth. The

very narrow bandwidth stems from the fact that each rotor blade is sliced into 128

elements which are many. Thus the most dofs are concentrated on the rotor blades

and the finite element discretization of them renders the resulting stiffness matrix

very sparse. This fact can be checked in Table 5.22. The dofs (n) of the problem

is 10,288 while the mean bandwidth, m, is just 64. Considering the factorization

index which is proportional to nm2, m2 is just 4,096 which is less than the half of

n. Thus the computational cost for the factorization phase is expected be relatively

small compared to the counterpart for the other phases. That is, the LU factorization

won’t take the largest portion of the execution times. Rather, the back-substitution

phase becomes more dominant because the cost of the back-substitution phase is

proportional to n2. A simple calculation of the back-substitution cost index is n2 =

105,842,944 which is about 2.5 times of the factorization cost index nm2 = 42,139,648.

In the SPMD case, it can be easily seen that the proportion of the back-substitution

phase steadily decreases as the domain decomposition gets finer. This is because the

domain decomposition process reduces the dofs of the subdomain problem and this

directly affects the cost of the subdomain back-substitution phase (P5 Sbd Subs).

In the MPMD case, as the domain decomposition gets finer, while the proportion

of the subdomain back-substitution phase (P5 Sbd Subs) dramatically decreases,

the counterpart of the interface matrix assembly and factorization (P2 Int Acc LU)

increases. This stems from the fact that, as the domain decomposition gets finer, the

subdomain problem dofs decreases while the interface problem dofs increases. The

inter-processor communication time grows fast for more and more subdomains and is

still the main bottleneck of the parallel solution procedure.
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P3 Sbd VecD

P3 Sbd SubsP2 Int LUP1 Sbd Acc

P1 Sbd AbcP1 Sbd LUP1 Sbd Assy

P4 Int Subs P5 Sbd Subs

Figure 5.30: Rotor system (SPMD): Normalized execution times for sub-phases
(Top: for one iteration with factorization; Bottom: for the entire simulation; Pi:
Phase i; Sbd: Subdomain; Int: Interface; Assy: Element matrix computation and
assembly; LU: Factorization; Abc: Partial Sbd-Int coupling matrix computation;
Acc: Partial Int matrix computation/assembly; Subs: Forward/Back substitution)
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P5 Sbd Subs

P4 Int SubsP2 Int Acc LUP1 Sbd Acc

P1 Sbd AbcP1 Sbd LUP1 Sbd Assy

MPI Wait MPI Comm

Figure 5.31: Rotor system (MPMD): Normalized execution times for sub-phases
(Top: for one iteration with factorization; Bottom: for the entire simulation; Pi:
Phase i; Sbd: Subdomain; Int: Interface; Assy: Element matrix computation and
assembly; LU: Factorization; Abc: Partial Sbd-Int coupling matrix computation;
Acc: Partial Int matrix computation/assembly; Subs: Forward/Back substitution;
MPI Wait: Processor synchronization; MPI Comm: Inter-processor communication)
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

A novel non-overlapping domain decomposition method was developed and imple-

mented to perform flexible multibody dynamics simulations in parallel. The pro-

posed domain decomposition approach partitions a computational domain into non-

overlapping subdomains and kinematic constraints are enforced via a localized version

of Lagrange multiplier technique to ensure both continuity between the subdomains

and better convergence behavior. The localized Lagrange multiplier (LLM) technique

introduces independent interface nodes which belong to a global interface problem

while the Lagrange multipliers belong to local subdomain problems. Moreover, an

augmented Lagrangian formulation is used in conjunction with the localized Lagrange

multipliers for robust multibody dynamics simulations.

The finite element tearing and interconnecting (FETI) method has been widely

used for parallel finite element analysis. The FETI method is also a non-overlapping

domain decomposition method and it uses Lagrange multipliers to enforce the kine-

matic constraints between subdomains. The interface problem generated by the FETI

domain decomposition is solved by an iterative solver. The performance and conver-

gence of iterative solvers, however, critically depend on the condition number of the

system matrix. Thus, it is not desirable to use the FETI method for multibody prob-

lems because multibody systems are inherently ill-conditioned due to the presence of

rigid body modes and kinematic constraints. The proposed domain decomposition

method solves multibody dynamics problems using the direct solvers that have been

developed and validated by the multibody community to overcome these problems.
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Within the framework of direct solvers, the solution process can be divided into

two parts: factorization of the stiffness matrix, followed by forward and backward

substitutions. These two parts are further subdivided into five phases for parallel

computations. In the first two phases, the subdomain stiffness matrices are factorized

in parallel and an interface problem is factorized sequentially. In the last three phases,

the linear equations for local subdomain problems are solved in parallel to obtain the

intermediate subdomain solutions by forward substitutions and the linear equations

for the global interface problem are solved sequentially for interface solutions by

forward and backward substitutions. Finally, the solutions for the local subdomain

problems are obtained by backward substitutions based on the interface solution. This

parallel algorithm solution procedure requires data transfer between each subdomain

and the interface.

Because the parallel algorithm with the proposed domain decomposition approach

can be applied to standard finite element problems, the algorithm has been imple-

mented in a finite-element-based nonlinear multibody dynamics simulation program

(Dymore) to perform numerical experiments. During the domain decomposition pro-

cess, an LLM element is defined for each localized Lagrange multiplier and is imple-

mented as a finite element to enforce the kinematic constraints between interface and

subdomain boundary nodes. After the domain decomposition, the original problem

is split into subproblems, which are distributed to multiple processors for parallel

computations. The interface problem is assigned to a master processor while subdo-

main problems are assigned to slave processors. The message passing interface (MPI)

library has been used to implement inter-processor communication in the parallel

solution procedure.

Several numerical experiments have been performed to assess the performance of

the proposed domain decomposition method and to study the scalability of the par-

allel solution procedure. First, the static analysis of a cantilever beam was performed
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to ascertain that both sequential and parallel algorithms yield identical solutions and

convergence behavior. Next, dynamic simulations for a grid of beams, a typical struc-

tural dynamics problem, were performed to assess the performance of both domain

decomposition and parallel implementation. Finally, a four-bladed helicopter rotor

system, treated as a complex flexible multibody system, was considered. It was veri-

fied numerically that for both statics and dynamics simulations, the proposed domain

decomposition approach yields solutions identical, within machine accuracy, to those

obtained using serial processing and a single domain. This should be expected be-

cause the proposed domain decomposition method uses numerical techniques that

have been fully validated for the solution of multibody problems.

To assess the performance of the proposed approach, three cases were contrasted.

The SPSD (Single Processor for Single Domain) case is the baseline problem used as

reference to assess performance. The SPMD (Single Processor for Multi-Domains)

case introduces the proposed domain decomposition, which already improves perfor-

mance significantly, without using parallel hardware. Finally, the MPMD (Multi-

Processor for Multi-Domains) case implements the proposed approach in parallel

hardware; this implementation is enabled by the proposed domain decomposition.

The computational performance of these three cases has been contrasted.

From the SPMD case, it has been confirmed that the proposed domain decom-

position method, by itself, can reduce CPU time dramatically by decreasing the

bandwidth of the system matrices thereby reducing the computational cost of the

factorization phase. The proposed domain decomposition approach lends itself natu-

rally to a parallel implementation as demonstrated by the performance of the MPMD

case. For the MPMD cases, the computational bottlenecks were expected to be the

solution of the interface problem and the inter-processor communication time; the

latter was observed to be the dominant bottleneck.

The numerical experiments presented here show poor scalability. This can be
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attributed to the fact the number of degrees of freedom used for the modeling of

multibody systems is rather modest and hence, it is not possible to use a large num-

ber of processors. Furthermore, as the number of subdomains increases, the size of

the interface problem increases, creating a bottleneck in the solution process. Note

that the FETI method uses iterative solvers to solve the interface problem, leading

to better scalability. Finally, load balancing was not implemented in the proposed

approach, leading to uneven subdomain sizes and computational requirements.

In summary, the proposed domain decomposition method enables parallel compu-

tations for flexible multibody dynamics simulations. The localized Lagrange multi-

plier technique leads to a robust solution procedure that relies on direct solvers only.

The combined effects of domain decomposition and parallel processing shows great

potential for better parallel performance.

6.2 Main Contributions of the Thesis

The main contributions of this thesis are:

• Developing a non-overlapping domain decomposition method which can deal

with the differential algebraic equations nature of flexible multibody dynamics

problems

• Employing localized version of Lagrange multipliers to enforce kinematic con-

straints between subdomains for better localization of subproblems and better

convergence behavior

• Designing a parallel solution procedure which uses direct solvers only for both

subdomain and interface problems

• Implementing parallel algorithms in a finite-element-based nonlinear multibody

dynamics simulation program (Dymore) to perform numerical experiments on

parallel hardware
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6.3 Future Work

This work has introduced two techniques: domain decomposition and parallel pro-

cessing. Future work should focus on further parallelization of all the phases of the

solution procedure.

For instance, in Phase 1 of the solution procedure, element matrices and arrays

are computed for each element. The computations of element matrices and arrays

are usually done by numerical integration using Gauss integration, which implements

the integration as a loop over the Gauss points. In the present implementation,

this loop over the Gauss points is performed sequentially. Clearly, the same task

can be implemented in parallel. Because this type of task is a fine-grained size,

GPGPU can be used for parallel computations. If this parallelization is implemented

with the proposed algorithm, the entire implementation falls into the category of a

hybrid parallel approach that implements both fine- and coarse-grained parallelism

simultaneously.

The factorization of the interface stiffness matrix is a bottleneck for the parallel

implementation. To further speed up the factorization of the interface stiffness matrix,

multifrontal solvers could be used to bring some level of parallelism into this phase of

the solution process. Multifrontal solvers are widely available and have shown good

scalability for large-scale problems. The use of multifrontal solvers should be explored

for the solution of the interface problem.

As stated earlier in Section 6.1, optimal partitioning of the system is necessary

for optimal load balancing. When dealing with multibody systems, load balanc-

ing is particularly difficult because the system cannot be partitioned along arbitrary

boundaries. Indeed, the Lagrange multipliers used to enforce kinematic constraints

and the constrained degrees of freedom must all belong to the same subdomain, im-

posing stringent requirements on partitioning of the system and hindering optimal

load balancing.
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