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ABSTRACT 

"Virtual bid" and "Virtual offer" are purely financial products offered in certain 

electricity markets. Theoretically, virtual bids and offers can change the electricity price 

as the bids and offers are stacked along with the demand and supply, respectively. This 

dissertation discusses how virtuals can be used to hedge and speculate in the electricity 

market. 

111 

A statistical simulation model is developed based on the day-ahead (DA) demand 

and real time (RT) load data from Midwest Independent Transmission System Operator's 

(MISO) footprint and DA and RT price observed at Cinergy hub. The simulation models 

are intended to mimic the load and price processes, taking the cyclical and correlation 

patterns in the market data into account as well as to provide a mechanism to incorporate 

stochastic variations that impact the processes. This model can then be utilized to study 

how the various trading strategies perform under deferent scenarios and thus provide 

better decision making tools to a trader. TheDA Demand and RT Load are simulated 

using a combination of unobserved component models (UCM) and a set of regression 

variables. TheDA Price and RT Price processes are replicated with GARCH based 

regression models. The regressor variables include principal components of different 

weather variables to capture the weather variation across MISO footprint and a set of 

dummy variables to model key patterns observed in the electricity market. The 

simulation models are used to generate test data sets which are then used to analyze 

different strategies involving virtuals. The simulation models also help to understand the 

relationship between DA and RT clearing prices. This research finds no evidence of 

DA/RT price convergence purely based on the virtuals trading at MISO. Based on the 

simulation results, the virtual bids appear to be most profitable during summer and winter 

and virtual offers appears to be most successful during shoulder months. 
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1. INTRODUCTION 

"Virtual bid" and "Virtual offer" are purely financial products offered in certain 

electrical markets. Market participants 'virtually' bid to buy or offer to sell electricity in 

the Day-Ahead Market (DAM). Therefore the instruments are termed as virtual bids and 

offers, respectively. The victuals are created to allow the market participants to hedge 

their positions or speculate based on their understanding of the price divergence between 

Day Ahead and Real Time. The clearing house clears the virtual bids or offers based on 

the bid and offer price. However, the cleared victuals are bought or sold at the Locational 

Marginal Price (LMP) observed at the Pricing Node or hub where the bid or offer was 

made. The cleared virtual bid and offers are stacked along with demand and supply to 

determine the market clearing price of electricity and therefore, theoretically, the 

increment in virtual bids and offers can move price. While the virtuals can be used for 

hedging different types of electricity market risks, a market maker can manipulate the 

price by using its bid and offer strategies (Isemonger and Rahimi, 2006; Saravia 2003). 

In the recent past, there have been many scholarly publications studying 

electricity market and its elements (Bartels and Fiebig, 2000; Wen and David, 2001; 

Shawky and Barrett 2003; Isabel and Soares, 2005; Cuaresmaa et al., 2004; Harris 2006; 

Isemonger and Rahimi, 2006; Hadsell and Shawky, 2006). However, publications related 

to the virtual trading strategy and its effectiveness are very limited. This dissertation 

discusses how virtuals can be used to hedge and speculate in electricity market. We also 

show certain cases where one can manipulate the market situation with its bidding 

strategies and make arbitrage profits using victuals. Also, most of the published literature 

in electricity market refer to the New York Independent Transmission Systems Operators 

(NYISO) or Pennsylvania-New Jersey-Maryland Interconnection (PJM) or California 

Independent Transmission Systems Operators (CAISO) (Duffie, Gray and Hoang, 1999; 

Saravia 2003). The focus of this research is the Midwest Independent Transmission 

Systems Operators or MISO, which is relatively new market and therefore did not find 

enough presence in the literature. 
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The simulation models presented in this dissertation are intended to mimic the 

load and price processes, taking the cyclical and correlation patterns in the market data 

into account as well as provide a mechanism to incorporate stochastic variations that 

impact the processes. This model can then be utilized to study how the various hedging 

strategies perform under different scenarios and thus provide better decision making tool 

to the trader. A combination of unobserved component models (UCM) and a set of 

regression variables are used to simulate the DA Demand (DAD) and RT Load (RTL). 

The DA/RT price processes are modeled using regression equations with GARCH errors. 

The regression variables include principal components of different weather variables to 

capture the weather variation across MISO footprint and a set of dummy variables 

indicating calendar effects in electricity market. Test data set is generated using the 

simulation models. These test data sets are used to analyze different trading scenarios 

involving virtuals. These simulation models also help to understand what could be DA 

and RT clearing prices. Understanding load and price processes would help the trader to 

make a decision on what price he or she should bid in or offer for In DA market. 

In the following section, a brief description about some important features of the 

electricity markets have been discussed (Section 2). Literature related to the load 

modeling is discussed in Section 3 and literature related to price modeling is discussed in 

Section 4. Section 5 discusses two main risks involved in electricity market and hedging 

and speculative strategies using virtuals. Introduction to the unobserved component 

model (UCM) and GARCH models are given in Section 6. Preliminary data analysis and 

simulation modeling are discussed in Section 7. Finally, Section 8 discusses how to 

simulate the fitted model, trade analysis and inferences about the simulation results. For 

better readability, some of the figures and tables are included in the main text. Rest of the 

figures and tables are included in appendices. 
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2. ELECTRICITY MARKET 

An electricity market provides a system and a mechanism to purchase and sell, or 

in other words trade electricity and electricity related physical and financial products. 

The price for electric energy is largely set by the supply and demand for it. The 

economics and the mechanics of the electricity market are quite different from those of a 

traditional commodity markets such as natural gas, corn or gold. The fundamental 

difference between the electricity market and other traditional commodity markets is that 

the underlying product, namely electric energy, cannot be stored. 

Electricity price also depends on other variables such as weather, unit outage, 

transmission properties of electricity such as congestion, energy price, customer behavior 

and economy in general. The unpredictable and volatile nature of such variables creates 

higher risk for the generation and marketing companies. As a result, demand for financial 

products that could help the electricity generators and marketers hedge their risk against 

any possible financial losses have grown tremendously. This dissertation discusses how 

one such financial product, namely virtuals offered in organized markets such as P JM or 

MISO, can help the generators and marketers swing their risks based on their forecast and 

analysis. The product also creates opportunities for the speculators to make speculative 

trade profit. The most important aspect of these particular products is that they are not 

traded bilaterally and participants do not need to have physical generation assets. This 

brings much needed liquidity to the market. In later chapters we will demonstrate in 

detail how these variables can influence the electricity price. First, a brief explanation 

about the general electricity market structure and some key market fundamentals which 

will set the foundation for the rest of the dissertation are given. 

The market design concepts, data, and analysis presented in this dissertation are 

based on data related to the Midwest Independent Transmission System Operator (MISO) 

Market and Cinergy hub. Nevertheless, the market concepts and analysis presented in 

this dissertation can be generalized and are applicable to any electricity market in US. 



2.1. ELECTRICITY MARKET STRUCTURE 

An organized electricity market consists of Independent Transmission System 

Operators(! SO) or Regional Transmission System Operators (R TO), Generation 

Companies (Genco), Asset Owners, Load Serving Entities (LSE), Power Marketers, 

Trading Exchanges and Market Makers. These entities are discussed further in the 

following pages. There are authorized electricity markets which do not have any ISO or 

RTP status. 

4 

The Independent Transmission System Operators (ISO) or Regional Transmission 

System Operators (RTO) are not-for-profit organizations whose primary job is to 

coordinate all the transmission systems, balance power flow, manage congestion and 

deliver load across their respective footprint. These organizations ensure safe, cost­

effective and reliable delivery of electric power. The ISOs and RTOs also offer an 

organized market which helps the market participants trade electricity and manage the 

risk associated in electricity market. The ISOs and RTOs are usually supported by their 

stakeholders. The stakeholders are usually the generation and load distribution companies 

as well as other market participants who are for-profit organizations. The ISOs and R TOs 

are approved by the Federal Energy Regulatory Commission (FERC) and the North 

American Electric Reliability Corporation (NERC). 

The Generation Companies or Gencos are the corporations which own any form 

of electricity generation unit. The Load Serving Entities or LSE are the ones who serve 

load to a large customer base and serve as an intermediary between the Gencos and the 

customers. A market participant does not necessarily have to own a generation unit. The 

trading exchanges and market makers facilitate a system where participants can trade 

electricity related products. This attracts a large number of financial institutions and 

hedge funds into the electricity market. Their involvement increases the much needed 

liquidity in the electricity market. 

Currently, there are five ISOs overseeing transmission grids and electricity flow 

across US. These are the California ISO (CAISO), New York ISO (NYISO), ISO New 

England (ISO-NE), and Pennsylvania-New Jersey-Maryland-ISO (PJM). However, for a 

Genco or LSE, participation is not required in a particular ISO or RTO. There are plenty 

of bilateral arrangements that still supply electricity across USA. The market is hopeful 
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that it will change in the near future as the market matures and participants become more 

experienced with centralized power markets. Figure 2.1 shows different organized 

electricity markets across US. Please note that the Northwest, Southwest, and Southeast 

markets are not considered either as ISO or RTO. The ERCOT and SPP are examples of 

RTOs. Figure 2.2 shows the Midwest Independent Transmission System Operators 

(MISO) footprint. Participating Gencos, LSEs and other market participants across this 

vast footprint trade energy and energy related products in MISO system. 

PJM 

CAISO 

South East 

SPP 

Figure 2.1. Electricity Markets across USA 

Source: Federal Energy Regulatory Commission 's (FERC) web page 
Web address: http:llwww.ferc.gov/market-oversightlmkt-electric/overview.asp 

Last visited: June 20, 2008) 



In the following section, some fundamental mechanisms and characteristic of the 

electricity market are discussed. 

\\ ' 

o lori>do 

Minneapolis 

Area 

Oll~llom1 

St Louis Area 

Milwaukee 

Area 

Chicago Area 

Detroit Area 

Indianapolis 

Area 

Cincinnati 

Area 

Figure 2.2. MISO Footprint Indicating Some Important Constituent Cities 

(Source: http://www.platts. com/Resources/map/images/MISO 5 25.gi( 
Last visited: June 20, 2008) 

6 
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2.1.1. Day-Ahead (DA) Market. The Day-Ahead (DA) market works as a 

forward market for electricity in which market participants can buy and sell energy prior 

to the operating day. An operating day denotes the market date or the trade date in which 

the market is operating. TheDA market provides an opportunity for the participants to 

hedge against possible spikes in the Real-Time (RT) electricity spot price. Clearly, the 

DA market is purely financial as there exists no physical generation or load. 

In the DA market, all the market participants submit their power supply bids to 

the Independent System Operators (ISO). The bid is a function of the cost and volume 

(Harris 2006, MISO Business Practice Manual 1). This function determines the price at 

which the generator would supply the megawatts (MW). Once all the market participants 

submit their individual bids, ISO creates a stack of generation units based on the 

economics of the bids. The generation stack is determined primarily by the fuel type. 

The stacking order first stacks the nuclear or renewable generation sources. These units 

are termed as 'must run' units. The gas/oil fired generation units are placed higher in the 

stacking order. These costly generation units are called 'peakers.' A schematic view of 

the generation stack is shown in Figure 2.3. The stacking order makes sure that the 

consumers have reliable source of electricity at the cheapest price. 

The market participants are required to submit their bids and offers by a certain 

timeline, mostly in the morning. These contain both physical and financially binding bids 

and offers. The ISO awards the MW s to different generation units based on their security­

constrained economic dispatch model to ensure that the cheapest generation units are 

cleared first. The ISO announces the award details in the same afternoon the bids and 

offers are submitted. The awarded units are guaranteed the DA price for the MWs they 

are awarded as long as the unit generates and dispatches the MW s in real time. 

2.1.2. Real-Time (RT) Market. The Real-Time (RT) Market acts as a balancing 

market between what has been cleared in the DA Market and the actual RT energy 

consumption or load. The ISOs run the Economic Dispatch program every five minutes 

of the operating hour to generate dispatch instructions for generators to meet the future 

load of the next five minutes. Figure 2.4 shows how DA and RT markets operate. 

1MISO Business Practice Manual or BPM can be found at http://www.midwestmarket.org/publish (Last 
visited: June 20, 2008) 
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If the load increases more than the forecasted demand in the real time, the ISO 

may instruct the generators to produce more MW s and the generators are awarded make 

whole payment. However, if the load is less, the generator pays back to the ISO for the 

unused MWs at the rate ofRT price. TheDA market participants may have bilateral 

contracts among themselves. Such existing contracts may influence the DA market 

participants' bid or offer decisions. The dispatch ladder or stacking order issued in DA 

market goes in effect in RT. In the RT market, the Gencos produce electricity which is 

served to the consumers through the dispatchers. The ISO provides R T updates the R T 

need to the dispatchers and Gencos and instructs if the Gencos should produce more or 

less than DA Award. The Gencos can also serve other commitments they may have in 

RT. The Genco may decide to buy power from some other Genco instead of producing 

and serve its commitments to the ISO. 

2.2. KEY DEFINITIONS 

Now, some key definitions for the electricity market are presented in the 

following section. These terms are repeatedly used later in this dissertation. 

9 

2.2.1. Electricity Trade. Electricity trading provides an infrastructure for the 

generation units and electricity marketers to hedge against various risks. The market also 

allows speculators and financial organizations to trade, which bring liquidity to the 

market. Apart from ISO or RTO platform, many financially and physically binding 

electricity related products (e.g., options, swaps) are traded in Intercontinental Exchange 

or ICE. 

2.2.2. Base Load and Base Load Unit. The Base Load represents the amount of 

electricity generation or load that exists continuously in the market during a given period. 

The Base Load Units are those units which produce the base load on a continuous basis. 

2.2.3. Day-Ahead Demand (DAD). The demand for energy in the DA market is 

termed as Day Ahead Demand (DAD). The DAD for energy is the forecasted value for 

the next day's RT load. The cleared DAD contains fixed and/or price-sensitive demand 

bids. The demand is different from the load. However they are expressed with the same 

unit. The usual unit measurement for DAD is kilowatts (KW) or megawatts (MW) or 

gigawatts (GW). 
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2.2.4. Real Time Load (RTL). The actual amount of energy that being consumed 

by the customer. 

2.2.5. Native Load (NL). The native load or NL is defined as the load consumed 

by a utility company's retail customer base. 

2.2.6. Hour Ending (HE). Since most of the electricity trade is indicated on 

hourly basis, the term "hour ending" is commonly used in the market. HE denotes hourly 

time blocks starting from midnight. For example, the hour following midnight is HE 1, 

and the hour between 1 am to 2 am is HE 2. The hour that ends at midnight is denoted as 

HE24. 

2.2.7. Locational Marginal Price (LMP). LMP is nothing but the market 

clearing price for energy at a given location at any given hour. Clearly, they vary from 

location to location. In this dissertation, without loss of generality, it is assumed that the 

LMPs are quoted and reported on hourly basis. The LMPs are observed in both DA and 

RT market and are denoted as DA Price or DA LMP and RT Price or RT LMP, 

respectively. 

2.2.8. Commercial Pricing Node (CPNode). The CPNodes are aggregate price 

for one or more Elemental Pricing Nodes (EPNodes). 

2.2.9. Peak/Off Peak Periods. The Peak period or Peak Hour is the time of the 

day when the load is expected to be at its maximum. Usually the 16 hour block from HE 

7 through HE 22 during the weekdays (Monday through Friday) except NERC listed 

holidays are considered as peak hours. The off-peak hours are the remaining 8 hour 

period during the weekdays or 24 hour period during weekends or NERC listed holidays. 

The Peak/Off peak Hour time block changes along with the day light savings time shift. 

Later in this dissertation, we will analyze how peak/off-peak periods affect the load and 

pnce. 

2.2.10. Long and Short Position. A long position indicates that the company has 

enough generation resources to meet the load. A short position indicates the opposite. 

The short position indicates that the company does not have enough resources to meet its 

sales position. Usually the generation companies are always long as they have the 

generation resources to meet the demand. 
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2.2.11. Heating Degree Days (HDD) and Cooling Degree Days (CDD). The 

Heating degree day (HDD) and the cooling degree day (CDD) are defined as the 

difference between 65°F and the average outside temperature for that day. The HDD and 

CDD indicate the demand for energy on a given day. 

2.2.12. Swap. The Swap is a bilateral agreement between two counterparties to 

exchange physical electricity or settle for cash only during the agreed time and hours. In 

this contract the buyer of the swap deal pays to the counter party at the time of agreement 

and the counterparty pays when the contract actually is settled. In electricity market, 

swap deals can both physical and financial. Most of the Swaps are traded in ICE 

platform. 

2.2.13. Virtual Bids and Offers. Virtual bids and offers are financial instruments 

provided to the market participants that allow the participants to bid to buy or offer to sell 

MWs in the DA market. Virtual bids allow the participants to buy "virtual megawatts" in 

the DA market and virtual offers allow the participants to sell "virtual megawatts" in the 

DA market. The assumed position in the DA market automatically reverses back in the 

RT market. The settlement is the difference between the DA and RT prices observed at 

the particular node where the virtuals are awarded. 

2.2.14. Basis Risk. The basis risk is defined as the difference between prices. The 

basis risk can be of two types-locational basis and time basis. The locational basis is 

defined as the difference between the prices observed in two different nodes or locations. 

The time basis is defined as the difference between the forward and spot price or 

difference between the DA and RT price observed at a particular node. 

2.2.15. Hub. It is a CPNode that represents an aggregate price for a collection of 

EPNodes. Cinergy hub or Detroit hub are typical example of hubs. Essentially, the hub is 

a node or location on the power grid which represents a delivery point. Power traded with 

reference on a particular hub changes ownership at such node or hub. Clearly, the hubs 

support bilateral trading among the market participants which brings more liquidity to the 

market. Figure 2.5 shows 10 major trading hubs in US. Five of these hubs are located in 

the western part of US, four in the Midwest region, and one in the east. There are, 

however, many other small nodes in the electricity grids which also act as hubs. Many 

financial products refer to the major hubs for a price reference for the settlement purpose. 
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3. LOAD MODELING 

3.1. INTRODUCTION 

Understanding how the load and demand behave and producing accurate model 

for these are very important for those dealing with the electricity market. A better model 

helps in better planning and reliable load generation. According to a survey conducted in 

UK, even one percent increase in the forecasting error can increase the net operating cost 

by almost £10 million (Guo, et al. 2006). A good model captures the general trend in 

energy consumption as well as the impact of sudden weather changes on energy demand. 

Demand, as mentioned in Section 1, represents the DA Demand (DAD) or the 

forecasted value of the Real Time Load (RTL). The word "load" is used in RT to indicate 

the power consumption in the market. In the past decade, especially after certain 

electricity markets have been de-regularized and financial markets for electricity trading 

have flourished, load forecasting has become more important. In this chapter, the 

literature on the load forecasting models as well as the variables that directly affect the 

DAD and RTL are discussed. We first present some DAD and RTL data from the MISO 

market and patterns one can observe in this data. This will help us understand how 

demand and load pattern varies time to time. 

In general, the daily electricity usage pattern follows a very usual shape (see 

Figure 3.1 ). Starting at HE 1 (1 :OO:OOam), the demand load drops until the early morning 

time and gradually peaks up again. The load reaches its peak sometime in the afternoon 

and gradually drops back to its original position. This is not surprising if one considers 

people's daily life-styles. Usually peoples' needs for electricity starts early in the 

morning when they prepare to go to work. Offices and factories resume their regular 

working hours during the morning causing the load to peak up. As the day progresses 

peoples' need for energy also increases. However, the load peaks in the late afternoon 

when people return home. During this time, the office lights are still on and the 

household energy needs kick in. Figure 3.1 shows a typical load profile for a 24 hour 

period and how it varies on a single day. Figure 3.2 shows co-movements of the DA 

demand and RT load for one week period in August 2007. 
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Figure 3.1. Hourly DA Demand and RT Load (June 8, 2006) 

Since DA demand is market's forecast about RT load, it follows a similar shape. 
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However, the actual values could be different depending on the weather and other 

variables. In the following section, some key published studies on electricity load will be 

studied. This will help us understand precisely why the DAD and RTL may be different. 

3.2. LOAD MODELS 

Generally, the load forecasting models can be classified into three segments-

short term (one hour to a week), medium term (ranging from one month to up to a year or 

even up to three years), and long term forecasts (over three years) (Willis,1996). Also, 

all the load forecasting models can be classified as statistical, mathematical, econometric, 

and others (Feinberg, Hajagos, and Genethliou (2002, 2003)). 
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Figure 3.2. DA Demand and RT Load (Aug 1-Aug 11, 2007) 

Feinberg, Hajagos, and Genethliou (2002, 2003) developed a statistical model for 

a load pocket incorporating weather parameters, the day of the week, and the hour during 

the day. They defined the load pocket as an area which does not have sufficient 

transmission capability to support 1 00% of the electric load without any disruption and 

dependency on generation resources physically located within that area Feinberg, 

Genethliou, and Hajagos (2002, 2003) included four different weather parameters­

temperature, humidity, sky cover, and wind speed for their load model. The models are 

based on a set of linear regressions. The regression based load forecasting model 

developed in this paper uses historical weather and load data from several load pockets in 

the Northeastern part of the USA for several consequent years. The weather variables 

include temperature, humidity, wind speed, sky cover, and variable sunshine. The time 

variables consist of a day of the week, or a holiday, and an hour during the day. In their 

model, Feinberg, Hajagos, and Genethliou (2002, 2003) used a new variable which is a 

multiplicative form of daily and hourly load component and weather factors. Feinberg, 

Hajagos, and Genethliou (2006) extend their previous work by adding one more 



explanatory variable, namely "sunshine," which indicates the period when the sun light 

appears. 
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There are other publications that support the views proposed by Feinberg, 

Hajagos, and Genethliou (2002, 2003) on the weather variables. Load models provided 

in Douglas et al. (1998), Owayedh, Al-Bassam, and Khan (2000), Taylor and Buizza 

(2002), and Dong, Xu, and Teo (2003) show that climate data such as temperature, 

humidity, dryness or even sunshine are important input to any load model, especially the 

ones dealing with short and medium term forecasts. Even human psychology can play an 

important role (e.g.: if the temperature is consistently higher for a period of time, then 

even if the temperature drops by few degrees for a day, the consumers may not turn the 

air-conditioners off) (Owayedh, Al-Bassam, and Khan, 2000). So, using the temperature 

data alone may not be sufficient. 

It is important to note that an increase or decrease in the temperature may not 

always change the load shape from its historical pattern except for some summer days 

and some winter days when the climate conditions are quite different from rest of the 

year. As shown in the Figure 3.3, if the temperature change is between 55°F and 70°F, 

the change in load is not significant. Figure 3.3 shows the MISO R T load and daily 

average temperature across Cincinnati, St Louis and Minneapolis. Mirasgedis et al. 

(2006) show a similar effect of temperature data on load observed in Greece. According 

to their finding, the load fluctuation is more sensitive to the temperature change during 

summer compared to winter (except in cases of severe winter weather). Moreover 

different load classes have different sensitivity to temperature (Eydeland and 

Wolyniec,2003; Mirasgedis et al., 2006). For example, the industrial load shows lowest 

sensitivity to temperature fluctuation whereas the residential load shows highest 

sensitivity to temperature (Eydeland and Wolyniec,2003). 

In their research, Feinberg, Hajagos, and Genethliou (2002, 2003) originally 

included the temperature, humidity, sky cover, and wind speed; however, not all these 

variables were statistically significant for the load data they tried to fit. After trying 

different combinations, they report that temperature, humidity, wind speed along with a 

new variable called sun-shine can significantly explain the load in their model. 
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Avgerage Temperature vs. RT MISO Load 
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Figure 3.3. Real Time Load vs. Average Temperature 

Chen, Canizares, and Singh (2001) proposed a model based on Neural Networks 

to forecast short-term load. The authors considered the electricity price as one of the main 

factors in determining the load. They described the system load at any given time as a 

combination of four different components-normal part, weather-sensitive part, special 

event part and a random part. The normal part is nothing but a set of standardized load 

shapes. The load shape is classified based on the "type", which is recurring throughout 

the year. This takes care of the daily pattern observed in the load shape. The weather­

sensitive part represents the seasonality of the model. The special event part signifies any 

unusual event that can cause a significant deviation in the load pattern. Finally, the model 

adds a random part represented by a standard zero mean white noise process and signifies 

the randomness in the load pattern. 
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Chen, Canizares, and Singh (200 1) presented a different approach compared to 

other load forecasting publications. The authors argued that the price of electricity can 

also considerably affect the system load. According to the authors, the price elastic 

customers would adjust their energy consumption patterns based on the price level to 

reduce energy cost from the monthly bill and to maximize savings. Based on this 

argument, the authors produced a non-linear relationship between the system load and the 

factors influencing the system load. While this is a valid argument for a long term 

purpose, this is not a strong and necessary argument that can be applied without loss of 

generality to DAD modeling. This theory can be applicable mainly in deregulated 

markets where the customers have the option to see the energy price as they use the 

electricity. However, in regulated markets like Missouri, customers paying a fixed price 

for consumption may not be very price conscious on a day-to-day basis. A study 

published by the Edison Electric Institute (EEl) shows that the electricity consumption 

has increased (which can be attributed to the higher economic and demographic growth) 

in past two decades despite the huge increment in the cost of natural gas, crude oil and 

coal. 

Nowicka-Zagrajek, and Weron (2002) presented a pure statistical model for the 

load forecasting based on the ARMA process. The data used in their paper is collected 

from the California power market. The authors fitted an ARMA(1,6) model. The data set 

included load information for every hour between April 1st, 1998 and December 31st, 

2000. Since electricity load data exhibits a strong daily cycle, the authors created a 1006 

days long sequence of daily loads. The authors also founded weekly and annual 

seasonality. They authors used the spectral density technique (Periodogram) to detect the 

seasonal pattern in the dataset. Their analysis showed well-defined cycles with period 7 

and 365 days and smaller peaks close to periods of 3.5 and 2.33 days. The seven day 

cycle which is not sinusoidal also exhibit lagged autocorrelation. The authors removed 

the weekly cycle with moving average (MA) techniques; however, they could not remove 

the annual seasonality using the same techniques as they did not have enough data to 

support it. Their paper proposes a new scaling method in which the logarithmic return 
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value of the load data is divided by a smoothed annual volatility. The ACF and PACF2 of 

the newly derived time series with the smoothed data (considered to be a stationary 

process) rapidly converge to zero suggesting that a mean corrected ARMA processes can 

be fitted. AIC3 was used to select the best fitted model. They fitted a hyperbolic 

distribution to the residuals obtained after the ARMA fit because the residuals seem to 

exhibit tails heavier than the Gaussian distributed error. 

Most of the load forecasting models discussed in the previous section have used 

only a single point weather forecast as an explanatory variable. However, it is important 

to understand how weather variables could change during a particular day and how 

different weather scenarios could change the load shape. Such shortcomings of the 

forecasting models can be overcome by the model proposed by Taylor and Buizza 

(2002). These authors proposed a demand forecasting model to forecast the load for one 

day up to 10 days ahead using weather ensemble predictions. The weather ensemble 

helps to produce 51 different scenarios for the weather-related component of electricity 

demand. The authors proved that the average of these ensemble generated scenarios 

produces more accurate forecast than the forecast produced by traditional weather 

forecasts. The paper used the weather ensemble predictions for temperature, wind speed 

and cloud cover. The forecasts were produced for lead times from 12 hours ahead to 1 0 

days ahead. The paper uses ensemble predictions produced by the European Centre for 

Medium-range Weather Forecasts (ECMWF) between 1 November 1998 and 30 April 

2000. However, since ensemble predictions were available only for midday, the model 

discussed in this paper is able to forecast the load only for the midday period. While this 

is a significant drawback, the authors argue that midday often represents the peak hour 

during several summer months. This may be true for the geographic region the data 

represents; however, it may be different in other geographic locations. The authors use 

the 51 different ensemble scenarios for temperature, wind speed and cloud cover to 

substitute in the weather-related demand expression. This substitution produces 51 

2 ACF or autocorrelation function describes the correlation between two different points in time of a given 
process. PACF or partial autocorrelation function of order k describes the correlation between two points 
beyond k lagged terms in the time series data. 
3 Akaike's Information Criterion or AIC is used as selection criterion among many nested econometric 
models. It was originally proposed by Professor Akaike in 1974 as a measure for statistical model fit. 



scenarios for the weather-related demand. Then the probability density function for the 

demand is constructed using the 51 different scenarios. The estimate of the mean is 

considered as the mean of the 51 different weather related demand scenarios. 
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Most of the load research literature devote time and energy in building models 

with weather, and other explanatory variables such as day, week, season, holiday etc. The 

methodologies used vary from statistical (e.g.: regression analysis and time series) to 

machine learning algorithm to neural networks. However, one completely different, yet 

significant, approach could be to take meter reading data of different household and their 

electrical appliance usage pattern and model the demand function. Paatero and Lund 

(2006) propose a similar idea where the load is constructed using elementary load 

components such as load from households or even from individual appliances. The 

authors called their approach a "bottom up" approach as the data used is at the user end. 

The model proposed in this paper can be used to generate the domestic electricity load 

forecast on an hourly basis from a few up to thousands of households. The main 

advantage of this proposed model is that it has been constructed using publicly available 

reports and statistics on electricity consumption. 

The biggest drawback, however, for the above approach is that while trying to 

understand the overall market load and demand, households represent only a fraction of 

the overall load. The model proposed by Paatero and Lund (2006) has two parts. The first 

part addresses the general fluctuation of diurnal consumption levels and separate 

appliance stocks for each household. The second part attempts to simulate the usage of 

each appliance in the household. Essentially the first part of the model determines the 

daily values of social random factor and the second component of the model signifies the 

electricity consumption profile of each individual appliance at different time space. 

The load models described above aim to accurately forecast future load based on 

currently known data. For example, to forecast the load at 5 pm tomorrow, one has to use 

the forecasts of temperature as well as other variables such as humidity, and sunshine for 

that time. Such models are important for determining DAD and making bids and offers 

for electricity for a given hour in the future. The load models developed for this 

dissertation have a different goal. The aim is not to forecast tomorrow's load using data 

that is available today, but to model the behavior of the hourly load so that the resulting 
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model can be used to simulate hundreds of feasible load patterns, each patterns a 

realization of the infinite number of patterns that are statistically possible. Each hedging 

strategy can then be tested on each of these "virtual" time series and the net gain or loss 

averaged over the ensemble of the generated series, thus giving us an estimate of the 

expected gain or loss across all possible scenarios. One can say that what is needed to 

satisfy this objective is a model that explains how past load values as well as real-time 

variables such as current temperature and humidity affect current electricity load. Such a 

model should also take into account seasonal variations, daily cycles, as well as 

autocorrelations among the stochastic components. In addition, such a model should 

allow for stochastic variations, not only in the error component, but also in the seasonal 

and cyclical parts as well. The Unobserved Components Models (UCM) with input 

variables such as lagged load, temperature, humidity, fit these requirements and thus 

utilized for modeling RT Load and DAD. 

In this section a variety of hourly, short term and long term load models have 

been discussed. These publications propose a wide variety of methodologies-from 

expert systems (Irismi, Widergren and Yehsakul , 1992) to Artificial Neural Networks 

(Peng, Hubele and Karady, 1993; Chow and Leung, 1996; Chen, Canizares, and Singh, 

2001; Taylor and Buizza; 2002) to time series modeling (Nowicka-Zagrajek, and Weron; 

2002, Feinberg, Hajagos, and Genethliou, 2002). Each publication claims to have strong 

results. Many of them use virtually the same type of explanatory input variables and 

almost all the models have a good fit. These methodologies are of particular interest 

because of the non- linear relationships we observe between the load and different 

explanatory variables. However, these sophisticated models are complex and are subject 

to over fitting. These models are also computationally cumbersome. The over fitting of a 

time series results when the methodology models the random "noise" component of the 

process as part of the "signal." The use of a model estimated by complex non-linear 

methods such as neural nets for simulating feasible hourly load patterns for a hypothetical 

year is inappropriate because the over fitting "locks-in" at least part of the noise 

component as a "signal" and therefore will not allow the simulation process to generate 

time series with the full variability that is naturally present due to unobserved factors. For 

use in a simulation study, one needs a model that captures (1) the seasonal patterns, (2) 
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the daily consumption patterns, (3) the autocorrelation between time series values that are 

temporally close, and ( 4) the relationship between weather variables and load, while 

allowing the measurement of the variability of the noise component so that this noise can 

be generated as a random process during the simulation study. 

As mentioned in Palacio and Edenor (2001) and London (2007), weather changes 

month by month and week by week. Weather pattern also shows significant difference 

across the geographic locations. The models proposed in this dissertation not only 

capture the seasonal and cyclical pattern of the weather on historical basis, but also 

include the variability in weather across the MISO footprint. Since hourly observations 

of the climate data are not available, this dissertation does not include hourly observation 

to improve the model. 
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4. PRICE MODELING 

Section 3 discussed different aspects of the load and demand profiles and 

publications on load forecasting models. In this chapter, the DA and RT price processes 

will be discussed. 

4.1. ELECTRICITY PRICE MODELING 

The electricity price is governed mainly by the demand for energy and supply of 

electricity that is available to satisfy that demand. Both are stochastic in nature. Typical 

electricity markets in the US have two settlement systems and therefore observe two 

different prices, namely DA LMP or DA Price (DAP) and RT LMP or RT Price (RTP). 

In this dissertation, we will use either the LMP or Price to denote electricity price without 

loss of any generality. As shown in Figure 1.3, DAP is observed in the DA Market and 

RTP is observed in the RT Market. While DAP is primarily a function of the DA 

Demand and Supply Curve (or, Generation Stack), later we will discuss how market 

makers in electricity market can influence the DA price. Similar theory counts for RTP 

too. From this fundamental understanding, it is clear that the load is the key determinant 

for price. 

The Locational Marginal Price or LMPs observed in the hubs such as Cinergy hub 

or PJM West hub are the arithmetic average ofLMPs in nodes coming to the hub. By 

definition, the locational marginal prices indicate the cost of generating and supplying the 

block of electricity at those locations. LMPs include three components-marginal cost of 

energy, congestion cost and transmission losses. The LMP gives a precise and market­

based method for pricing energy that includes the congestion cost and transmission 

losses. The ISOs first clear the marginal and cheapest units such as nuclear, hydro and 

wind. Renewable generation units are called must run units. Next in the generation stack 

are more expensive coal or oil fired units and then the gas fired units (called peakers) 

which are most expensive to run. All the units up to coal in the generation stack are 

considered base load units. If a base load unit does not clear in the market or if all the 

base load units do not meet the demand, then there may be a price hike as the market will 
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consume from upper level of the generation stack. The LMPs during the off peak hours 

are usually lower than the peak hours as the cheapest units are in service. The peakers are 

usually utilized during the peak load and considered as price setters in the market 

(Nagaraj an, 1999). This is because less expensive units such as nuclear, hydro or coal 

fired generators are cleared first in the generation stack and are used during the off peak 

as well as peak hours. Generally, the peaking units are used when the load increases. The 

market participants offer their generation at least "at cost" or "at cost plus mark up" price. 

The forward market price of natural gas has a strong correlation with the forward market 

price for power (especially during the peak hours) [Nagarajan, 1999; Skantze and Ilic, 

2001; Eydeland and Wolyniec, 2003]. Clearly, the cost of gas, coal or oil indirectly set 

the market price of electricity. As the cost of natural gas or oil or coal increases, the cost 

per megawatt in the generation stack becomes costlier and therefore, it raises the price of 

the electricity in both DA and RT Market. Therefore, the price of electricity can be 

expected to increase over a period of time if the cost of gas, oil or coal increases. 

As mentioned earlier, Smith (2000) also agrees that load is a key determinant for 

the price movement. Figure 4.1 shows the empirical relationship between price and load. 

The higher the demand is the higher the expected spot price of the electricity is. As seen 

in Section 2 and as shown by Smith (2000), electricity load follows strong daily, weekly, 

and yearly cyclical behavior, and has strong correlation with weather parameters. The 

load profile can also be identified by geographical regions. This suggests LMP 

forecasting should have also become easy. Nevertheless, weather parameters that play 

crucial role in load modeling are very unpredictable. Research conducted by Floehr 

(2003) shows that the "best" weather forecasting service has approximately 24.68% of 

RMSE4 on the temperature forecast over the year. Moreover if the weather prediction has 

higher errors, the load prediction will not be correct. Therefore traders will not have best 

understanding of the price. Also, unlike other commodity prices, the electricity price 

depends a lot on congestion, unit outage etc. making it harder to forecast the price very 

precisely. 

4 RMSE stands for Root Mean Square Error 
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There are different types of pricing models available-statistical, production cost 

base, economic equilibrium based, agent based, and fundamental models (Skantze and 

Ilic, 2001 ). Each has its own merits and disadvantages. Statistical forecasting models are 

generic and attempt to capture the stochastic properties of the price (Skantze and Ilic, 

2001). These models usually capture price movement pattern based on historical trends 

and cycles. However, the electricity price is governed by many different factors other 

than just the market based economy which creates a need for other types of models 

(Skantze and Ilic, 2001 ; Eydeland and Wolyniec, 2003). The production cost based 

models look at the marginal cost of production and determines the price based on the cost 

based bidding (Skantze and Ilic, 2001 ; Eydeland and Wolyniec, 2003). These models 

essentially look at the demand and supply functions and set the market price. However, 

they ignore strategic bidding or any kind of gaming intended by the market participants. 

Also, the diverse participant pool (such as financial institutions or hedge funds that may 

not have any generation units and participate in the financial market of the electric 

market) and their playing strategies are not captured by the cost based models. Economic 

equilibrium models do consider the market forces and their strategies along with the cost 

model (Skantze and Ilic, 2001). The fundamental modeling of electricity prices which is 
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based on the stochastic nature of the commodity, tries to capture the relationship between 

the basic physical and economic relationship among different variables of the electricity 

trading (Skantze and Ilic, 2001). Researchers have also come up with different simulation 

based pricing models (Skantze and Hie, 2001 ). 

The deregulation and resulting market competition have helped to increase the 

interest among research community to explore the issues related to the electricity spot 

prices modeling. However, the number of publications that address the issue of modeling 

and or forecasting electricity prices have been relatively small when compared to studies 

that target other commodities. There are several reasons for this. The methodologies 

traditionally employed to model the behavior of the stock prices and the price of other 

commodity products may not apply to electricity because of the non-storability of the 

electricity. The fact that electricity cannot be stored in meaningful quantities makes it 

impossible for the LSEs to create an arbitrage opportunity using inventory of electricity 

and exploiting the spot price process. The market maturity may be another reason. Many 

of the electricity markets are relatively young and are still developing. 

The publications that investigate the modeling of electricity spot prices using time 

series methods mostly investigate the univariate modeling of a single series of spot 

prices. An exception is de V any and Walls (1999) who introduced the concept of co­

integration and convergence of electricity markets. In simple terms, co-integration means 

that a set oftime series exhibits similar non-stationary behavior over the long run. Such 

co-integration can occur when all the components of a multivariate time series are 

correlated to an observed or unobserved component series that has a unit root. 

Among the studies that employed univariate modeling, Knittel and Roberts (200 1) 

utilized simple time series modeling techniques to analyze California market price data. 

Escribano, Peiia, and Villapana (2002) proposed a relatively general modeling technique 

for electricity prices, and applied it to four different markets. Cuaresmaa et al. (2004) 

used univariate time series models to forecast the high frequency electricity spot-prices. 

The results indicated a strong overlapping seasonal behavior. According to Cuaresmaa et 

al. (2004), electricity spot-prices follow superposed seasonal cycles, and have properties 

of mean reversion and price spikes. Gibson and Schwartz (1990) and Brennan ( 1991) also 

support mean reversion property of electricity price. However, it is not a simple random 



walk (Camero et al., 2004). Escribano, Pefia, and Villaplana (2002) present salient 

features of electricity prices such as seasonality, mean-reversion, and jumps and 

volatility. Although such properties of the electricity spot price processes may shift the 

model towards a non-linear type of analysis, Cuaresmaa et al. (2004) concentrates only 

on linear univariate models. It helps to keep the model parsimonious. However, as 

Cuaresmaa et al. (2004) points out, non-linear time series analysis can provides very 

helpful and interesting framework to understand the price movements. Robinson 

develops a non-linear time series model for non storable commodities like electricity. 

Both of the above studies use ARMA models and include unobserved components and 

jumps in their study to forecast the electricity spot prices using hourly data. 
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Price spike can be observed in the market which can be attributed by the supply 

sided of the equation such as unplanned outage of a particular power plant in the market 

footprint or heavy congestion in the transmission line or even a transmission line trip off 

(Cuaresmaa et al., 2004). The price spikes can also be explained by the demand side of 

the equation. For example, extreme warm summer could cause more demand for power 

causing sudden spikes for the demand of electricity. In the competitive electricity 

market, it will most likely shoot the price up therefore causing a spike. However, it is 

important to note that the ISOs have cap on how much the price could spike up for a 

given hour. NYISO, MISO, ISO-NE and PJM capped the hourly spot market price bids at 

$1000/MWh. 

Cuaresmaa et al. (2004) shows that the price jumps are mostly during the peak 

hours (peak hours are defined as the time period starting with 0800 hrs till2300 hrs, 

Monday through Friday except holidays). Our analysis confirms their findings. 

As Gibson and Schwartz (1990), Brennan (1991), Cuaresmaa et al. (2004) and 

Knittel and Roberts (200 1) point out, the standard model for mean reverting processes 

is simple first order autoregressive process [AR(l)], which is a discrete time 

representation of an Ohrstein-Uhlenbeck process. Structural time-series models such as 

the unobserved components model (UCM) are popular in econometric studies and these 

models are developed to identify the unobserved components that drive the process. 

Characteristics of such components can be directly extracted from the data (Harvey and, 

Jaeger, 1999; Harvey, 1989; Harvey, 1985; Harvey, 1993). UCM helps to decompose 
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the time series of interest into different components namely a trend component, cyclical 

components, seasonal components and an irregular component, in an additive fashion. 

Each of the components models different aspect of the behavior of the time series. 

Cuaresmaa et al. (2004) defines the cyclical component in a sine-cosine wave form with 

constant frequency, and models the seasonal component using seasonal dummies. The 

authors model the irregular component as white noise. 

Other contributions on electricity spot price analysis and modeling are studies by 

Knittel and Roberts (2001), Lucia and Schwartz (2002), Escribano et al. (2002), and 

Wilkinson and Winsen (2002). Unlike the above contributors, Camero et al. (2004) 

presents a model to investigate in the conditional mean and in the volatility of the 

innovations of the electricity spot pricing process. They argue that mean and variance of 

electricity spot prices do not only depend on the day of the week, but also on skewness, 

kurtosis and autocorrelation between hourly prices. Their argument involves around 

European market and for these markets, the variance of innovations depends on the 

specification for the conditional mean. Based on this aforementioned finding, they claim 

that the previous empirical studies on price volatility may have produced spurious results. 

Another approach is to model the hourly price separately for each hour. Huisman, 

Huurman and Mahieu (2007) discuss a panel method approach for DA hourly electricity 

prices. The authors divide hourly prices as a panel of collection for that hour and create 

24 cross-sectional panels. Each panel data set represents the hourly price data for that 

node for a particular hour. This paper proposes a panel model for DA hourly electricity 

prices in which the authors describe the dynamics of hourly cross section over time. 

However this model may fail to capture the autocorrelation between hourly prices lagged 

by, say, one hour. The daily average price (peak, off peak or overall) for electricity can be 

significantly different from the actual hourly prices and therefore, the forecasting models 

developed for average prices cannot be applied to forecast the hourly price Huisman, 

Huurman and Mahieu (2007). The issue is even more complicated as the electricity price 

follows mean reversion property. Also, there is no guarantee that the mean reversion rate 

would be constant for every hour or every season or week. The electricity price depends 

a lot on unit availability, weather, transmission constraints and demand for energy. And 



such properties can change every hour. Therefore, a daily average model will not work 

to forecast the hourly price. 
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As mentioned by Eyedeland and Wolyniec (2003) a good price forecasting model 

should be able to assimilate price spikes (kurtosis), mean reversion, fat tails of the price 

distribution and seasonality component. The model should also a include volatility 

surface, correlation structure between different forward contracts and cross commodity 

correlation between different commodities. 

Although load profile seems to follow certain shape depending on different 

calendar effects, there is no single quick methodology to forecast the price. Part of the 

reason is that the physical properties of the locational marginal price vary from market to 

market (Smith, 2000). The electricity pricing is coupled with the fundamental differences 

in different markets, different generation types, volatility structure and regulations. The 

nonstorablity of the electricity makes it harder follow a particular path. Also availability 

of financial instruments makes modeling more market centric. For example, let us 

consider virtuals. One of the objectives of this dissertation is to investigate if the virtuals 

can cause a price convergence or divergence. But virtuals may not be offered in all 

electricity markets in US. PJM & ISO-NE were among first few to introduce this 

instrument. The MISO was third to introduce virtuals. 

One of the major characteristics of electricity market is the possibility of negative 

LMPs. It is a unique characteristic of electricity price. Nevertheless, we could find only 

one paper which addresses the issue of negative LMP; unfortunately, the authors did not 

address the issue in depth (Sewalt and DeJong, 2003). This crates problem if one tries to 

model the price data by normalizing the price with natural logarithm. Also since negative 

LMPs do not occur in a pattern, it is difficult if not impossible to model such data. 

There is evidence that the DA electricity price has a high correlation with the gas 

price observed in the gas market (Eydeland and Wolyniec, 2003). Also, publications by 

Smith (2000), Harvey (1989) and Bartels and Fiebig (2000) have pointed that, hourly 

price has a strong relationship with the load pattern. Figure 4.1 proves such claims. 

There are other factors that could affect the electricity price. For example, let us 

consider a day in summer in which the temperature is expected to be really high. This 

indicates that there would be a higher demand and that will probably increase the price of 
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the electricity. Let us assume that there is a forecast of thunderstorm with higher 

probability in the evening. If the temperature remains high and there is thunderstorm, 

then the general expectation is that the price will remain high. However, if the 

thunderstorm occurs, then the expectation is that the demand for load will drop and 

therefore the price should also drop. A power trader will keep this information which is 

different for both morning and evening in mind and set his trade price with this rational 

expectation. With this example it is clear how information set could change from hour to 

hour and therefore, could change rational expectation of market price. 

4.2. ELECTRICITY PRICE VOLATILITY MODELING 

In a typical commodity market such as com or oil or gold, where the underlying 

asset can be stored, price fluctuation due to the demand and supply can be lessened by 

surplus storage. However, since electricity is non-storable commodity, sudden increase in 

the system load must be satisfied either through instant production or buying from 

another generator which may have surplus generation capability. This could spike up the 

price instantly. Also, if there is any congestion or transmission outages in a particular 

line, then market will react with a higher price. Such phenomenon in the electricity 

market cause short-term volatility in the price. The volatility can exist for hours, days 

before it returns to the normal price level. Other factors such as availability of generation 

fuels can also affect the price volatility. So, in the context of the electricity price 

modeling, one must discuss the volatility associated with the electricity price. The fitted 

model must be able to capture the volatility observed in the market. The following 

section briefly discusses some of the volatility models widely used in the electricity 

market. 

4.2.1. Constant Volatility Models. In simple term one can compute historical 

standard deviation using standard statistical formulation of the standard deviation of 

lognormal electricity price. If option price data is available, then one can find constant 

volatility in the Black-Scholes frame-work by expressing volatility as a function of option 

price, exercise price, time to expire, interest rate and underlying price (Duffie, Gray and 

Hoang, 1999). However, this process requires employing numerical methods such as 

Newton-Raphson method to solve for the unknown variable. Although Black-Scholes 



31 

world requires constant volatility as an input to the pricing model, Duffie, Gray and 

Hoang (1999) explains how it can still be used to forecast the volatility. It is possible as 

option price reflects the true nature of the market uncertainty and risk premium. 

4.2.2. Stochastic Volatility Models. GARCH models are widely used to forecast 

the price volatility (Hadsell and Shawky, 2006). Guirguis and Felder (2004, 2005) 

presents GARCH (1,1) model to forecast the volatility in the electricity price models. 

Their model also incorporates natural gas prices of the previous period (lag one data), 

which is not surprising as the gas and power market generally has a strong correlation. 

The problem with the GARCH or any other time series based models is that it usually 

takes the natural logarithm of the price to process the data. However, since electricity 

price can be negative or zero, such models will not be able to process the data. Alvarado 

and Rajaraman (1998) consider a Wiener process and mean reversion process to 

characterize the price volatility. Hadsell and Shawky (2006) also use GARCH model to 

estimate volatility in wholesale electricity prices observed in both the DA and RT 

markets. They study marginal cost of congestion and DA premium and show how these 

variables impact price volatility. Li and Li-zi (2008) also used GARCH based model to 

forecast the volatility and price. Hadsell and Shawky (2006) found that the price 

volatility is higher but less persistent in the RT market than in the DA market. They also 

consider the importance of transmission congestion in the price volatility and empirically 

estimate impact of congestion on volatility observed in electricity prices. Borenstein et 

al. (2002), support their theory to include the congestion etc. by arguing that the main 

reasons for the observed price behavior are inelastic demand, non-storability of 

electricity, and congestion. Hadsell, Marathe and Shawky (2004) study five different U.S. 

markets and estimate conditional volatility that exists in those markets. They show that 

that the deregulated markets usually exhibit higher level of price volatility compared to 

other traditional commodity markets. Further research asserts the importance of 

congestion in determining prices. Isabel and Soares (2005) also use GARCH based model 

to study the volatility observed in the spot prices in Spanish electricity market. There are 

several other publications where researchers used other methods such as TGARCH, 

regime-switching model etc. to develop the volatility model. 
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While historical volatility helps us to understand how the market behaved in the 

past, it is also important to have the price models that correctly capture the volatility 

arising from other commodity markets such as natural gas or oil. However, most of the 

analysis reviewed so far in this dissertation are based on the historical data and therefore, 

gives a good judgment on the historical volatility. This merely gives enough information 

on how the future movement will be, especially in electricity market that is quite different 

from other traditional financial market. A good measure of the forward volatility is 

probably the implied volatility extracted from the market quoted option prices (Eydeland 

and Wolyniec, 2003). Expressing the market quoted option value as a function of quoted 

forward price, expiration time, volatility and interest rate one can solve the equation for 

the volatility using numerical methods such as Newton's method. Volatility extracted 

from the market quoted price information reflects the true market sentiment about the 

forward price volatility. 

4.3. FORWARD ELECTRICITY MARKET 

There exists several forward market products that are structured based on time of 

the day (peak/off peak hours), day of the week, weekday or weekend etc. Most of them 

are traded over the counter on a platform called ICE5. ICE also works as clearing 

organization. Although the forward electricity price does not converge to the actual 

observed spot price, it may be possible for someone to find an empirical relationship 

between the forward market and the DA market price. Literature (Shawky, Marathe and 

Barrett, 2003; Longstaff and Wang, 2004) related to the forward and spot market price try 

to express the forward price by capturing the risk premia that exists between the spot 

price and forward market. We are not sure if the same can be reversed (by expressing 

spot price as a function of forward price). There may be other explanatory variables that 

will explain the reverse relationship. 

There are two main challenges in forward price modeling for electricity price 

process-nonstorablity of electricity (and therefore typical risk neutral method cannot be 

5 Intercontinental Exchange or ICE is the trading place for most of the OTC prod~cts in th~ po~er market. 
The market participants in the ICE platform include some of the large global tradmg orgamzat10n to small 

utility companies. 
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applied) and basis risk. Models that try to provide prices of the individual contracts are 

most likely to fail to capture the right phenomenon as the cash flow from a particular 

derivate does not depend just on one futures, but also on the term structure of the forward 

prices at a given time. Many models have been developed with this approach based on 

HJM (Heath, Jarrow and Morton, 1992) interest rate model (Eydeland and Wolyniec, 

2003). Nevertheless, these models also do not capture the non-convergence of the 

forward and spot market power price. Also, the risk neutral approach is not well suited in 

the power market. Some of the interesting papers, which explain the relationship 

between spot price and futures to quantify the basis risk, are discussed below. The 

quantification of the specific parameters of these models are not discussed in this 

dissertation as they would change based on the test market. However, we believe that the 

same model or a similar model can be fitted to other electricity markets. 

The two factor model proposed by Schwartz-Smith (2000) attempts to capture 

some dynamics from the spot market by adding a risk premium. It's important to note 

that the model is still formulated in the risk neutral world. In this model, the forward 

price process is linked to spot price process through two different random variables--one 

shows the long term behavior of the spot price process whereas the other one captures the 

short term behavior. The formulation provided by Schwartz-Smith (2000) shows the 

necessary price evolution and interaction between the spot price and the forward price. 

However, it sometimes fails to capture the initial forward curve (Eydeland and Wolyniec, 

2003). Also, since the model parameters are estimated using the data which may exhibit 

negative spot price, lognormal assumption may be troublesome at times. 

Hadsell, Marathe, Barrett (2004) fits a GARCH based model to present the 

empirical relationship between the futures price and spot price in electricity market. 

Longstaff and Wang (2004) author another paper that tries to model the forward price 

based on the difference that exists between the forward and spot markets. Their model is 

based on the PJM spot and forward market data. The authors present a formulation for the 

expected premium based on a time series model where they have an expected local and 

conditional volatility (GARCH) variable. 

Based on the above discussions, price forecast models can be classified into 

several types-some based on fundamentals and some based on temporal relationships 



between the market dynamics and load. No matter what approach is followed, the RT 

LMP is always the hard nut to crack. This is because of the uncertainty observed in the 

R T Market arising from weather and physical properties of distribution systems. These 

uncertainties are difficult to forecast. In this dissertation, the second approach has been 

followed. 
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5. HEDGING AND SPECULATION USING VIRTUALS 

5.1. RISKS AND RISK MANAGEMENT 

As discussed in the Sections 3 and 4, load and price depend on many variables 

including weather, unit outage, congestion, transmission line problems etc. Each of these 

could cause significantly on a market participant. The risks can be classified in to two key 

categories-volumetric and price risks. Figure 5.1 shows how these risks affect the 

market participants for any given hour. Let us assume a hypothetical generation company 

that also serves load. Lets consider that the Genco/LSE serve approximately 500MW to 

its native load (NL). 

HEIO(DAM) 

DA Award 

Case: GENCO arullor LSE 

The company 
pays back to 
the ISO for 
the unused 
MWsfrom 
DAAward. 

HElO(RlM) 

RTLoad 
Scenario 1 

HElO(RlM) 

BU.. 
lOOMW 

Scenario 2 

Figure 5.1. Price and Volume Risks 

To meet the excess RT 
load, the company buys 
loadRT 
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To make it more realistic, it is assumed that the company has another 100MWs of 

commitment from a physical bilateral agreement that it intends to serve from its own 

generation resource. Let us assume that the company participates in the DA market 

associated with a certain ISO and it receives DA award for HE 10 as shown in Figures 

5.1 and 5.2. If it does not receive any generation award in DA market (which means the 

company can purchase electricity at a cheaper rate than it offered to sell at DA market), 

then it must purchase the electricity in the RT market. With the DA award, the company 

is guaranteed an amount at the rate ofDA LMP for the awarded MWs. Let us assume 

that it receives 600MW as DA award. 

5.1.1. Example of Risks Involved: Case 1. In RT the company can face several 

situations. In Scenario 1 (Figure 5.1), it is assumed that the NL drops to 450MW. This 

means that the company must return the 50MW that it did not produce in RT at RTP to 

the ISO. If the RTP is lower than DAP, then the company would make money. However, 

if the RTP is higher than the DAP, then the company would loose money. In Scenario 2 

(as shown in Figure 5.1), it is assumed that the NL increases by 50MW. In this case, the 

company will have to purchase extra MWs from the market and if the RTP is higher, the 

company's risk of loosing money increases. The company faces price risk and volume 

risk at the same time. 

5.1.2. Example of Risks Involved: Case 2. Usually the corporations engage in 

dynamic hedging strategy in which long term desk sets position almost a year in advance, 

then short-term desk reviews the position and then it comes to the DA/RT desk. The 

DAIRT desk has better understating about the weather and other physical factors which 

long term (LT) or short-term (ST) desk did not have. In the DA/RT market, it can either 

be net short or long depending on their position. Net short would be net sales position and 

net long would indicate that it would buy power. Let us assume that the company has 

1 OOMW financial fixed for floating swap (bilateral) trade made by one the desks. Figure 

5.2 explains the Case 2. 
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Since the company had received DA awards, its margin without any hedge 

position can be given by: 

IJw!o = QDAAward * DGt- C. 

With a fixed for floating hedge the hedge margin equation changes to the 

following 

Where, 

IT=(FR-c)+((DG1 -D~)+(D~ -P))*QfWap 

II = Hedge margin 

FR =Fixed revenue from swaps 

c = Generation cost 

DG1 = DA generation LMP 

D~ = DA LMP at the hub 

P = RT LMP at the hub 

Q,wap =Swap volume 

Q DA Award = MW s awarded in the D A market. 

Now the trader's main objective is 

Maximize II=(FR-c)+((DG1 -D~)+(D~ -P))*Q,wap· 
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(1) 

(2) 

(3) 

Clearly, even with the hedges, the company now face two different risk-location 

basis (difference between the LMPs observed in two nodes-hub and the generation unit) 

and time basis (difference between DA and RT price). Virtual bid and offers help to 

manage the time basis risk by moving exposure from DA market toRT market or vice 

versa. Ifthe DNRT desk has better understanding of the price divergence between the 

DA and RT, then it will be able to better manage the risk using virtuals. 

The market participants face different risks even though they try to hedge long­

term in advance. There seem to be no perfect hedge in electricity market unlike other 

markets where the participants can take consecutive long and/or short position along with 
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the position on derivative products on the same underlying to create a perfect hedge. This 

happens because of some unique properties of electricity discussed in earlier chapters. 

Organized markets such as MISO or PJM gives an opportunity to its participants to better 

manage their risk using a financial instrument called victuals. Virtuals (offer and bid) are 

purely financial tools which allow the market participants to hedge the DA/RT risk by 

offering or bidding for "virtual megawatts or generation" in the market. If a market 

participant is awarded certain amount of virtual bids in the DA market, those awarded 

virtual MWs would be sold back to the RT market at the RT LMP at that CPNode where 

the original bid was submitted and subsequently cleared. Virtual offers act in opposite 

direction. The virtual offers or supply cleared in the DA market are bought back from 

RT market at RT LMP observed at that CPNode where the original offer was submitted 

and subsequently cleared. Clearly, the payoff for the market participants is the difference 

between the DA and RT LMP at the respective CPNode for the MWs the participant was 

awarded. 

5.2. VIRTUAL BIDS AND OFFERS 

Virtual trading is "somewhat" similar to futures trading in traditional commodity 

markets. Similar to futures market, the virtual trading market can also be divided into two 

groups-hedgers and speculators. The objective of the "Hedgers" is to protect their 

position in electricity market from price variations in DA/RT market and on the other 

hand, speculators try to make arbitrage profit by guessing market moves and buying or 

selling a commodity without any physical presence for which they have no practical use. 

However, the difference between the "virtual" and "futures" contract is manifold. The 

primary difference is in the market mechanism in which they settle. The futures market 

trade many months before the actual delivery date where as one can bid or offer the 

virtual trade on the seven days prior to the operating day (in MISO). Every market has its 

own rule on how virtuals be traded and cleared. Forward market works almost in same 

mechanism in every market in the US. Also, a major difference with the forward market 

is that all submitted bids and offers may not be cleared. The virtuals are always cleared 

in DA market. The mechanism of the cleared virtuals in the DA market is such that it 

automatically creates a position that would be reversed in RT market. 
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Virtuals were introduced in the market with the intent of bringing more liquidity 

and provide another hedging tool to the participants. It was first introduced in US in PJM 

on Jun 1, 2000. NYISO subsequently introduced virtuals as a trading instrument 

November 8, 2001. New England (ISO-NE) introduced in March 1, 2003 and MISO on 

April 1, 2005. Although some literature on market design have indicated virtuals, there 

are only a few publications that deal with the virtual in depth. In addition, we did not find 

any comprehensive literature that identifies how different trading strategies can be 

implemented using virtuals. Dr. Peter Cramton testified that virtual trading could help in 

increasing efficiency in the response time for both the supply and demand in the real-time 

market6. According to his testimony, it can reduce price volatility, improve market 

competition, and ultimately increase market liquidity, which was a big concern at the 

onset of power market trading and deregulation. Different market monitors (Isemonger 

and Rahimi, 2006) have endorsed Dr. Cramton's opinion. 

The market participants do not need to be backed by physical generation units and 

that is why it is called virtual. However, the virtual bids or offers must be submitted for a 

particular Commercial Pricing Node or CP Node (generation node, load zone/node, 

interface node, or hub) in the footprint of that particular market clearing authority. The 

participants submit their bids and offer which are purely financial to the market clearing 

authority (such as ISO). The market clearing authority stack the orders on top of the 

physical demand bids and offers before it clears the DA/RT awards. The price for the 

cleared virtual bids or offers is the Locational Marginal Price (LMP) of the where the 

virtual bid or offer was submitted. Clearly, the traders make their bids and offers based 

on their speculation over the DA and RT prices. 

There is no counterparty involved in the virtual transaction and therefore the 

market participant assumes all the risks involved with its transaction. This is another 

major difference with the forward market. However, the ISO may require the participant 

to deposit collateral with ISO to ensure protection against risk arising from future non 

payment during the settlement. The ISO usually has a credit limit for each individual 

participant that may limit its trading limit for the virtual. The ISO may also have a 

6 See Isemonger and Rahimi, 2006 



41 

general cap on the amount of virtual bids or offers a market participant can submit. This 

limit may vary for one ISO to another. 

The instrument essentially helps the market participants hedge their market 

position or exposure by moving their DA/R T exposure either way depending on their 

judgment. The virtual market attracts many financial organizations and therefore 

bringing much liquidity to the market (Saravia, 2003)7. 

From the market structure, it is clear that financial speculators can influence the 

DA/RT price difference (Saravia, 2003). Saravia (2003) indicates two important 

reasons-i) speculators or financial participants help market to be more liquid and 

efficient and ii) by participating in the market, they assume some of the market risk 

which should decrease risk premium that exists between DA/RT market. Since virtual 

bids and offers are included in the DA stacking, they can increase or decrease LMP at 

certain nodes. Clearly, there is no distinction between virtual and physical bids in the DA 

market. However, since the cleared participants will have to reverse the position in the 

RT market, they would have all the incentive the influence the market in their favor. 

Saravia (2003) indicates that the DA LMP cannot be an unbiased estimator or 

forecast of the RT price. If this were true then in a market (for virtual) where there is no 

transaction costs associated with the trades, speculative risks should not have been 

correlated with the overall market risk. This infers that that virtual demand and supply 

patterns along with DA LMP and other factors can give well indication of the RT price 

movements. 

Saravia (2003) also indicates how gaming can be done in the electricity market in 

the absence of the speculative traders. Generators in the exporting zone can withhold 

sales in the exporting zone so that the DA market will be uncongested for that particular 

line. In the RT market, the generators can actually increase the generation which will 

increase the congestion amount more than what was in the DA market and therefore 

would raise the LMP in that node. The opposite is also possible. The generator can over 

schedule a particular transmission line and therefore the congestion would increase in that 

line. However, in the RT, the load will be lower and therefore less congestion and lower 

7 Also refer to MISO Business Practice Manual from http://www.midwestmarket.org/publish 
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LMP. With lower LMP, the generator can purchase electricity from the market and make 

arbitrage profit. Similarly, it is possible to game the market using the Congestion 

Revenue Rights virtuals and the virtuals8 

No hedge will probably bring zero risk, especially in the electricity market. The 

generation companies try to hedge based on long term, short term and then on a DA/RT 

basis. The climate forecasts can (and will) change since when the long term or short-term 

deals are entered. Therefore, it is left to the DA desk to shift the LT or ST hedges as 

needed based on the updated weather forecast. However, in RT market the participants 

may incur losses based on the sudden line or plat tip off or higher congestion on certain 

lines or even with higher or lower consumption of electricity. Also, credit risk or counter 

party risk has been emerging as an important factor in the risk management process. For 

example, let's consider the case of Bear Energy. Although people anticipated Bear Stem 

(the parent company of Bear Energy) to incur huge losses from mortgage crisis, very few 

if not none expected them to suddenly face severe liquidity crisis which resulted in 

selling itself at a very low price. Many power-trading companies which had Bear Energy 

as counterparty may have to forego any profit if the company declares bankruptcy. 

Clearly, even if a trading or electricity marketing or producing company is optimally 

hedged against possible volume and price fluctuation, it may not actually have a zero risk 

at all. 

5.3. TRADING STRATEGIES INVOLVING VIRTUALS 

In this section, different speculative and hedging strategies involving virtual bids 

and offers are discussed. The strategies are described with specific situation in mind. In 

this example, a hypothetical Genco, which has approximately 500MWs load commitment 

for a particular hour is considered. In this case, the following assumptions are made: 

• The Genco does not have position in any other financial or physical instrument to 

hedge their risk. 

• The Genco's offer for 500MW generation is cleared in DA market. 

• TheDA LMP for that particular hour is $100/MW. 

8 Oren, S.,"The Nordic Electricity Market", Presented at the 23rd Arne Ryde Symposium, Lund, Sweden, 



• The virtual bid or offer amount shown in the example is also cleared in DA 

market. All the cleared virtuals are on the same CPNode. 

Tables 5.1, 5.2, 5.3 and 5.4 show different strategies involving virtuals and the 

payoff structures associated with those strategies. 
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5.3.1. Position and Strategy: Case 1. Genco has a long position. The Genco has 

been awarded a 50MW Virtual bid which also clears at $100/MW. Tables 5.1 discusses 

trading related to Case 1. 

Table 5.1. Strategies Using Virtuals and Payoff Structures: Case 1 

Situations 

1. RTLMP>DA 

LMP and RT load 

does not change. 

RTLMPis 

$110/MW. 

2. RTLMP<DA 

LMP and RT load 

does not change. 

RT LMP is 

$90/MW. 

Payoff 

1. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

($11 0-$1 00/MW) = $500 

Therefore, net benefit= $55,000- Cost of Production. 

2. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

($90-$100/MW) = -$500 

Now since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 500MW in RT = $45,000. 

Therefore, net benefit= $50,000-45,000- 500 = $4500. 

October 2003; We reference: www.nek.lu.se/ryde/23symp03/Papers/oren.ppt (Last visited: 20 June 2008) 



Table 5.1 (Continued). Strategies Using Virtuals and Payoff Structures: Case 1 

Situations Payoff 

3. DA Awards= 500MW *$100/MW = $50,000. 

3. RT LMP > DA In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

LMP and RT load ($110-$100/MW) = $500 

increases 20 MW. However, the company buys 20MW in RT at RT LMP. Cost ofRT 

RT LMP is purchase= 20MW* $110/MWh = $2200. 

$110/MW. Therefore, net benefit= $50,500- 2200- Cost of Production.= 

$48,300- Cost of Production 

4. DA Awards= 500MW *$100/MW = $50,000. 

4. RT LMP <DA In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 
LMP and RT load ($90-$100/MW) = -$500 

increases 20 MW. Now since the RT LMP is lower than DA LMP, the company does not 

RT LMP is generate the electricity; it instead buys from market to serve the load. 

$90/MW. Cost to buy 520MW in RT= $46,800. 

5. RTLMP>DA 

LMP and RT load 

decreases 20 MW. 

RTLMPis 

$110/MW. 

Therefore, net benefit= $50,000-46,800- 500 = $2,700. 

5. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 
($11 0-$1 00/MW) = $500 

However, the company has to pay back to the ISO for 20MW that it 

did not produce because of decreased load. It pays RT LMP. Loss due 

to this= 20MW* $110/MWh = $2200. 

Therefore, net benefit= $50,500- 2200- Cost of Production =$48,300 

- Cost of Production 
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Table 5.1 (Continued). Strategies Using Virtuals and Payoff Structures: Case 1 

Situations 

6. RT LMP<DA 

LMP and R T load 

decreases 20 MW. 

RT LMP is 

$90/MW. 

Payoff 

6. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 
($90-$1 00/MW) = -$500 

Now since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 480MW in RT = $43,200. 

However, the company has to pay back to the ISO for 20MW that it 

did not produce because of decreased load. It pays R T LMP. Loss due 

to this = 20MW* $90/MWh = $1800. 

Therefore, net benefit= $50,000-43,200- 500 -1800= $4,500. 
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5.3.2. Position and Strategy: Case 2. Genco has a long position. The Genco has 

been awarded a 50MW virtual offer. The virtual offer clears at $100/MWh. Tables 5.2 

discusses the trading strategies and payoffs involving Case 2. 

Table 5.2. Strategies Using Virtuals and Payoff Structures: Case 2 

Situations Payoff 

1. DA Awards= 500MW *$100/MW = $50,000. 
1. RT LMP> DA 

LMP and RT load 
In RT, the virtuals are converted. Proceeds from virtuals = 50MW * (-

does not change. 
$11 0+$1 00/MW) = -$500 

RT LMP is 

$110/MW. 
Therefore, net benefit= $49,500- Cost of Production. 



Table 5.2 (Continued). Strategies Using Virtuals and Payoff Structures: Case 2 

Situations Payoff 

2. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * (-

2. RT LMP < DA $90+$100/MW) = $500 

LMP and RT load 

does not change. 

RT LMP is 

$90/MW. 

3. RT LMP > DA 

LMP and RT load 

increases 20 MW. 

RT LMP is 

$110/MW. 

4. RT LMP <DA 

LMP and RT load 

increases 20 MW. 

RT LMP is 

$90/MW. 

Now since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 500MW in RT = $45,000. 

Therefore, net benefit= $50,000-45,000 + 500 = $5500. 

3. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * (­

$11 0+$1 00/MW) = -$500 

However, the company buys 20MW in RT at RT LMP. Cost ofRT 

purchase= 20MW* $11 0/MWh = $2200. 

Therefore, net benefit= $49,500- 2200 -Cost of Production. = 

$47,300- Cost of Production 

4. DA Awards= 500MW *$100/MW- $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * (­

$90+$1 00/MW) = $500 

Since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 520MW in RT = $46,800. 

Therefore, net benefit= $50,000-46,800 + 500 = $3,700. 
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Table 5.2 (Continued). Strategies Using Virtuals and Payoff Structures: Case 2 

Situations 

5. RTLMP>DA 

LMP and RT load 

decreases 20 MW. 

RTLMPis 

$110/MW. 

Payoff 

5. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * (­

$110 +$100/MW) =- $500 

However, the company has to pay back to the ISO for 20MW that it 

did not produce because of decreased load. It pays RT LMP. Loss due 

to this= 20MW* $110/MWh = $2200. 

Therefore, net benefit= $49,500- 2200- Cost of Production =$47,300 

- Cost of Production 

6. DA Awards= 500MW *$100/MW = $50,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * (­

$90 +$100/MW) = $500 

6. RT LMP <DA Now since the RT LMP is lower than DA LMP, the company does not 

LMP and RT load generate the electricity; it instead buys from market to serve the load. 

decreases 20 MW. Cost to buy 480MW in RT = $43,200. 

RTLMPis 

$90/MW. However, the company has to pay back to the ISO for 20MW that it 

did not produce because of decreased load. It pays RT LMP. Loss due 

to this= 20MW* $90/MWh = $1800. 

Therefore, net benefit= $50,000-43,200+ 500 -1800= $5,500. 
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5.3.3. Position and Strategy: Case 3. Genco has a short position of 1 OMW. Let's 

assume that the company was awarded 490MW in DA Market. The Genco has been 



awarded a IOOMW virtual bid with aDA price of$100/MW. Table 5.3 discusses the 

trading strategies and payoffs involving Case 3. 

Table 5.3. Strategies Using Victuals and Payoff Structures: Case 3 

Situations 

1. RT LMP> DA 

LMP and RT load 

does not change. 

RTLMP is 

$110/MW. 

2. RTLMP<DA 

LMP and RT load 

does not change. 

RTLMP is 

$90/MW. 

3.RTLMP>DA 

LMP and RT load 

increases 20 MW. 

RTLMP is 

$110/MW. 

Payoff 

1. DA Awards= 490MW *$100/MW = $49,000 

It buys 10MW in RT. So, cost for 10MW = 10 MW*$110/MW = 

$1100 

In RT, the virtuals are converted. Proceeds from virtuals =100MW * 

($110-$100/MW) = $1000 

Therefore, net benefit= $49,000- 1100 + 1000 -Cost of Production 

=$48,900 -Cost of Production. 

2. DA Awards= 490MW *$100/MW = $49,000 

It buys 1 OMW in RT. So, cost for 1 OMW = 10 MW*$90/MW = $900 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

($90-$100/MW) = -$500 

Now since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 490MW in RT = $44,100. 

Therefore, net benefit= $50,000-44,100- 500 -900= $4500. 

3. DA Awards= 490MW *$100/MW = $49,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

($11 0-$1 00/MW) = $500 
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Table 5.3 (Continued). Strategies Using Virtuals and Payoff Structures: Case 3 

Situations 

4. RTLMP<DA 

LMP and RT load 

increases 20 MW. 

RTLMP is 

$90/MW. 

5. RTLMP>DA 

LMP and RT load 

decreases 20 MW. 

RT LMP is 

$110/MW. 

6.RTLMP<DA 

Payoff 

The company buys 20MW in RT at RT LMP to serve the load. Since 

the company is short, it needs to buy 10 MW in the RT market. The 

cost= 30MW* $110/MWh = $3300 

Therefore, net benefit= $49,500- 3300 - Cost of Production. = 

$46,700- Cost of Production 

4. DA Awards= 490MW *$100/MW = $49,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

($90-$1 00/MW) = -$500 

Since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 520MW in RT = $46,800. 

Therefore, net benefit= $49, 000-46,800- 500 = $1,700. 

5. DA Awards= 490MW *$100/MW = $49,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

($11 0-$1 00/MW) = $500 

However, the company has to pay back to the ISO for 1 OMW that it 

did not produce because of decreased load. It pays RT LMP. Loss due 

to this= 10MW* $110/MWh = $1100. 

Therefore, net benefit= $49,500- 1100 - Cost of Production =$48,400 

- Cost of Production 

LMP and RT load 6. DA Awards= 490MW *$100/MW = $49,000. 

decreases 20 MW. In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 

R T LMP is ($90 -$1 00/MW) = -$500 

$90/MW. 
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Table 5.3 (Continued). Strategies Using Virtuals and Payoff Structures: Case 3 

Situations Payoff 

Now since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 480MW in RT = $43,200. 

However, the company has to pay back to the ISO for 1 OMW that it 

did not produce because of decreased load. It pays RT LMP. Loss due 

to this= lOMW* $90/MWh = $900. 

Therefore, net benefit= $49,000-43,200- 500 -900= $4,400. 
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5.3.4. Position and Strategy: Case 4. The Genco has a short position of 50MW. 

The company was awarded 450MW in DA Market. The Genco has also been awarded a 

50MW Virtual bid at $1 00/MW. Table 5.4 discusses the trading strategies and payoffs 

involving Case 4. 

Table 5.4. Strategies Using Virtuals and Payoff Structures: Case 4 

Situations Payoff 

1. DA Awards= 450MW *$100/MW = $45,000. 
1. RT LMP > DA 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 
LMP and RT load 

($11 0-$1 00/MW) = $500 
does not change. It also buys 50MW in RT. Cost associate with this =50*$110=$5500. 
RT LMP is Therefore, net benefit= $45000+500-5500- Cost of Production 
$110/MW. 

=$44,000- Cost of Production. 

2.RTLMP<DA 2. DA Awards= 450MW *$100/MW- $45,000. 

LMP and RT load In RT, the virtuals are converted. Proceeds from virtuals = 50MW * (-

does not change. $90+$100/MW) =- $500 



Table 5.4 (Continued). Strategies Using Virtuals and Payoff Structures: Case 4 

Situations 

RT LMP is 

$90/MW. 

3.RTLMP>DA 

LMP and RT load 

increases 20 MW. 

RT LMP is 

$110/MW. 

4. RTLMP<DA 

LMP and RT load 

increases 20 MW. 

RTLMP is 

$90/MW. 

5. RTLMP>DA 

LMP and RT load 

decreases 20 MW. 

RTLMP is 

$110/MW. 

Payoff 

Now since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 500MW in RT = $45,000. 

Therefore, net benefit= $45,000-45,000 - 500 =- $500. 

3. DA Awards= 450MW *$100/MW = $45,000. 

In RT, the virtuals are converted. Proceeds from victuals= 50MW * 

($11 0-$1 00/MW) = $500 

However, the company buys 20MW in RT at RT LMP. It also needs 

to buy 50MW in RT. Cost ofRT purchase= 70MW* $110/MWh = 

$7700. 

Therefore, net benefit= $45, 000- 7700 + 500 - Cost of Production. = 

$37,800- Cost of Production 

4. DA Awards= 450MW *$100/MW = $45,000. 

In RT, the virtuals are converted. Proceeds from victuals= 50MW * 

($90-$1 00/MW) = -$500 

Now since the RT LMP is lower than DA LMP, the company does not 

generate the electricity; it instead buys from market to serve the load. 

Cost to buy 520MW in RT = $46,800. 

Therefore, net benefit= $45,000-46,800 -500 =- $23,00. 

5. DA Awards= 450MW *$100/MW- $45,000. 

In RT, the virtuals are converted. Proceeds from victuals= 50MW * 

($110 -$100/MW) = $500 

However, the company still needs to buy 30MW in RT. Loss due to 

this= 30MW* $11 0/MWh = $3300. 
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Table 5.4 (Continued). Strategies Using Victuals and Payoff Structures: Case 4 

Situations Payoff 

Therefore, net benefit= $45,500- 3300- Cost of Production =$42,200 

- Cost of Production 

6. DA Awards= 450MW *$100/MW = $45,000. 

In RT, the virtuals are converted. Proceeds from virtuals = 50MW * 
6. RTLMP<DA 

LMP and RT load 
($90 -$1 00/MW) =- $500 

decreases 20 MW. 
Now since the RT LMP is lower than DA LMP, the company does not 

RTLMP is 
generate the electricity; it instead buys from market to serve the load. 

$90/MW. 
Cost to buy 480MW in RT = $43,200. 

Therefore, net benefit= $45,000-43,200+ 500= $300. 

Clearly the virtual strategy in Case 4 did not give as much as benefits as the trader 

may have thought. Clearly, a virtual bid strategy would have worked better in this 

situation. Table 5.5 summarizes different expected conditions and the virtual trading 

strategies the market participants may engage. 

Table 5.5. Summary of Strategies Using Virtual Bid and Offers 

Position Forecasted Situation Strategy 

Use Demand bid to 

secure the position in 

DA market and 

Net Long Position RT LMP > DA LMP subsequently use virtual 

bid to convert the risk 

from RT Settlement to 

DA Settlement. 
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Table 5.5 (Continued). Summary of Strategies Using Virtual Bid and Offers 

Position Forecasted Situation Strategy 

Shift load price exposure 

from DA to RT with Virtual 

RT Load< DA demand and/or Offer. Buy the forecasted 
Net Long Position 

RT LMPs < DA LMP load with a demand bid, and 

use the virtual offer to sell 

back part of the load. 

RT Load> DA demand and/or 
Net Long Position Use Virtual bid. 

RT LMPs < DA LMP 

Net Short Position RT LMP < DA LMP 
Shift RT exposure to DA 

using virtual bid. 

Since we are not sure about 

Units trips off and is expected to the availability ofthe unit, it 

return any time. However, we will be safer to limit the 

are not sure what time it may exposure to DA prices only 

Net Short Position return to full capacity. A ramp using virtual bid. Offer 

up period may be necessary. DA generation in DA market 

LMP is expected to be lower and generator, but buy some 

thanRT LMP. back if the prices are low 

enough. 

Since the DA LMP is 
Units trips off and is expected to 

expected to be higher, the 
return any time. However, we 

trader will take advantage 
are not sure what time it may 

using Virtual Offer. The 
Net Short Position return to full capacity. A ramp 

strategy will be to offer the 
up period may be necessary. DA 

generation with a 
LMP is expected to be higher 

complementary virtual 
thanRT LMP. 

offer. 
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5.4. MARKET MANIPULATION USING VIRTUALS 

The following section discusses one more trading strategy that can potentially 

manipulate the market. Please note that the market manipulation is illegal. This case has 

been discussed for study purpose only. 

Consider the same Genco/LSE which was mentioned in the previous section. It is 

assumed that the company has a significant presence in the ISO it participates. It is 

further assumed that the Genco/LSE has a long position. The company significantly 

drops the demand bids in DA market, the over all demand for energy across the ISO 

would also drop. Then the Genco/LSE can make a full offer on its generation awards thus 

making the demand supply relationship settle for a lower DA price. Knowing this fact, 

the Genco/LSE in this example can put higher amount of virtual bids thus making money 

from the virtuals. The ISO would clear less generation offer as there was less demand for 

the energy in DA market. However, in RT, the load would come stronger compared to the 

DA market (or in other words, to the original level). With higher load than the DAD, the 

RT price would also come stronger. Now with higher load, the ISO will have to RAC 

some units, which were not cleared in DAM. The RAC will increase possibility for the 

Genco/LSE to earn revenue from make-whole payment scheme. Alternatively, the 

Genco/LSE can now increase its RTP to serve any extra MWs. The company will be able 

to perfectly manipulate the market and make money if there was no RSG fee. However, 

the RSG fee is distributed among all the market participants. There is also higher 

possibility of congestion related issues in RT market as the transmission lines were 

originally planned for lesser MWs in DAM. The congestion related issues can also be 

hedged using the FTR or CRR etc. So, there still exists a good possibility that a market 

participant with significant capacity will be able to manipulate the market prices. 
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6. UNOBSERVED COMPONENT MODELS AND GARCH MODELS 

As discussed in the previous sections, electricity demand and load follow certain 

cyclical and seasonal patterns, which must be captured by the model. The long-term 

demand for energy also increases over long term due to economic growth and people's 

life style changes. Such change, however, may not be observed in the short term. The 

seasonal and cyclical nature of the electricity data has a direct interpretation of the load 

shape. Clearly, the load models should capture the cyclical and seasonal changes in the 

observed data. The main challenge is to model the seasonal and cyclical components of 

the demand and load data not as deterministic entities but as possess with stochastically 

changing patterns. The impact of weather and other variables must also be taken into 

account. This motivates us to consider Unobserved Component Model (UCM) to fit the 

load and demand datasets. 

6.1. UNOBSERVED COMPONENT MODELS 

Unobserved Component Model (UCM) is a structural time series model. Like 

other structural time series, UCM also helps us to break the response series into four 

components namely trend, seasonal, cyclical and regression components that can be 

observed from the predictor series (Harvey, 1989). The benefits ofUCM are manifold. 

The UCM model helps to decompose the observed time series data into unobserved 

stochastic processes with component specific error terms (Koopman and Ooms, 2004 ). 

The error terms provide a better knowledge of the stochastic nature of the observed series 

and the changes in the components (Koopman and Ooms, 2004). The second advantage 

of the UCM is that it uses Kalman filter (1960) to generate optimal point-and interval 

forecasts. Thirdly and most importantly the Kalman filter algorithm expresses the 

observation weights of the forecasting functions as a function of previous observations 

(Koopman and Ooms, 2004). This is of particular interest as this helps to bring 

knowledge about the load from the previous hour. It is true that the unobserved state 

variables estimated using Kalman Filter (1960) does not consider the prior information 

[Vitek, 2005]. However, the framework ofUCM provides prior information related to the 
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values of unobserved components estimators. The UCM is also capable of dealing with 

non-Gaussian observations and nonlinear data sets (Harvey, 1989). Another advantage of 

UCM is that it can be applied by including some or all of the components or even adding 

new variables. 

where, 

A general model for UCM is given by 

p m 

Yt =fit+ Yt +'1ft+ rt + I¢;Yt-i + Ifl.ixrt + & (4) 
i;J j;J 

(5) 

Yt = Response series 

fit =Trend component 

Yt = Seasonal component 

'1ft = Cyclical component 

~ = Seasonal component 

p I ¢;Yt-i =Regression component showing the lag values of the response variable 
j;J 

m I {J1xu = Regression component with predictor variables 
j;J 

& = Error component or irregular component; Independent, identically distributed 

with mean 0 and variance a;. 

In the following sections, each of the components is discussed briefly. 

6.1.1. Trend Component. The trend component shows the natural trend that 

exists in the observed data in the absence of any disturbing factors. Published literature 

show that there are two ways to model a stochastic trend component-random walk 

model and locally linear time trend model (Harvey, 1989; Harvey 2006). The random 

walk model gives a trend that is approximately constant over the span of the observed 



series without any drift (Harvey, 1989; Harvey 2006). The random walk model ofthe 

trend component is given by: 

/1, = 11t-l + 'lt 

171 ~ i.i.d. N(O,a~). 

The second methodology, as the name speaks, is locally linear and has a slope 

and level. The slope introduces stochastic nature in the model. The model is given 

by: 

11t = 11t-l + Pr-1 + "lt 

/3, = Pr-1 + ~~ 

ry, ~ i.i.d. N(O,a~) 
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(5) 

(6) 

(7) 

(8) 

(9) 

~~ ~ i.i.d. N(o,a:), (10) 

where 

j3 = Stochastic Slope 

& 1 = Irregular disturbances 

~~ =Slope disturbances 

ry, =Level distubances. 

In the above models the irregular, level and slope disturbances are mutually 

independent. It is interesting to note that if level and slope disturbances are zero, then the 

trend becomes deterministic. If the slope disturbance is zero then the locally lineal model 

turns into random walk model described earlier. 

6.1.2. Cyclical Component. The general representation of the cyclical component 

lf/1 is by the following recursive formula 



where, 

If/ = Cycle component 

p = Damping factor and 0 ~ p ~ 1 

A = Frequency of the cycle component 

v, and v: =Mutually independent Gaussian noise component 

with mean 0 and variance a v. 

The cycle component If/, is modeled as a periodic function. The cycle period is 

given by 2tr I A where A is the frequency of the cycle and range of the frequency is 
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(11) 

[ 0< A < 1r ] . For the frequency 0 < A < n, the range of cyclical component demonstrate a 

peak that is centered around A. The peak becomes sharper as the damping factor reaches 

closer to one (Harvey, 1989). The amplitude of the cycle is (a 2 + P2 ) 112 with a phase 

angle tan -t (pI a) . While the period is fixed, the amplitude is time varying. The a and f3 

are initially set as: 

The stationarity properties of the random sequence If/, depend on the damping 

2 

factor p1 • If 0 < p1 < 1, If/, becomes stationary with mean zero and variance a~ . 
Pt 

If p1 = 1, f.//1 is non-stationary. 

(12) 

The UCM is flexible enough to incorporate several cycles. So, if there exists two 

cycles such as daily and weakly cycle then, those two can be introduced in the same 

model. The two cycles will have the same formulation except for the fact that they will 

have differing frequencies, ~ and ~, as shown below. 
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[VI~ ]~A [Cos~ Sin).,] [VI~-1] + [:~] (13) 
If/ -SmA, Cos A. 

it lj/lt-1 It 

[VI:} p, [Cos A, SinA,] [V':l-1] + [::'] (14) 
If/ -SmA.z CosA.z 

21 'If 21-l 2t 

The subscript 1 represent the daily cycle and the subscript 2 represent the weakly 

cycle. Rest of the notation remains same. The actual model for Yr would have two 

different cyclical components-If 11 and If/ 21 instead of only one component, If/, . 

6.1.3. Seasonal Component. Time series data such as electricity load or demand 

data, or sales often observes a seasonal pattern, which arises from regular changes in 

seasons or other periodic events that occur over the span of of year .. The seasonal effect 

can be modeled in different ways. One of the ways to model the seasonal component is 

using dummy variables (Harvey, 2006) and is given by-

s-1 

LYr-i =w,, 
i=O 

In the above model for the seasonal component, Yr is modeled as a stochastic 

periodic pattern. The period is denoted by the integers. For example, if the period of a 

monthly dataset with a seasonal component is 12, and t denotes December of a given 

year, then the variables y1_1p y,_10 , ... , r, denote seasonal components for January, 

February, etc. up to December. 

(14) 

(15) 

6.1.4. Autoregressive Component. Generally, an autoregressive (AR) model can 

explain many data sets. However, the AR models alone can do a poor job when the data 

contains seasonal or cyclical effects. This is because the seasonal variation may be slow 

and this may require the simple AR model to use long seasonal lags. Nevertheless, 

combination of an autoregression component with other stochastic seasonal components 

may produce a very powerful explanatory model (Harvey and Scott, 1994). The 

autoregressive model of order one is given by: 



m 

V1 - i.i.d. N(O, a;) 

O~p<I. 

p 

6.1.5. Regression Components. The regression components I r/J;Yt-i and 
i;] 

I fJixtJ , give the UCM the flexibility to add other explanatory variables, lags or any 
j;l 

kind of transformations that may be applied. 

6.2. THE GENERALIZED AUTOREGRESSIVE CONDITIONAL 
HETEROSCEDASTICITY (GARCH) MODEL 
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(16) 

(17) 

(18) 

While the simple AR model accounts for the autocorrelation present in the 

dataset, the generalized autoregressive conditional heteroscedasticity or GARCH model 

is employed to model the heteroscedasticity present in the series (Bollerslev, 1986). The 

challenge in modeling electricity price, which shows high volatility, is that the error 

variance, conditional on the past values, is not constant. Regression models, even those 

with an autoregressive error, assume a constant volatility in the residuals which does not 

make such a model suitable for electricity price data. GARCH based models method that 

can handle such heteroscedasticity. The GARCH (p,q) based regression model which 

includes an m1h order autoregressive error term is given in the equations (19)-(23). 

The following GARCH based model is termed as AR(m)-GARCH(p,q) model. 

e1 - N(O,I) 

q p 

h1 ={J)+ L:a;&/_; + L:rjht-r 
i;] j;] 

(19) 

(20) 

(21) 

(22) 

(23) 
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If p and q are 1, then the error process is GARCH (1, 1) and the above equation 

becomes: 

(24) 

q p 

The quantity :La;£1~; is called the ARCH(q) component and LYA-1 is called 
j=l 

the GARCH(p) component. The ARCH (q) component indicates a short memory process 

whereas GARCH component represents the long term memory process of the model. 

With ARCH component, the model considers only the last q squared residuals in 

calculating time varying variance in the residuals. The ARCH components help to 

capture the short term volatility. The GARCH component captures all the previous 

squared residuals or errors terms up to time t to estimate the time varying variance for 

timet. 
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7. BUILDING SIMULATION MODELS 

Figure 7.1 summarizes different important variables discussed in chapters 3, 4 and 

5. The figure describes how DAD, RTL, DAP and RTP are influenced by different 

variables and how they interact between themselves. 

Congestion, transmission 

outage, unit outage in RT, 

market gaming. 

Temperature and other 

climate conditions (e.g.: 

humidity, dryness in the 

air), day of the week, 

month, type of holiday, 

human psychology etc. 

If the RT Market 

requires more peaking 

units, the price will 

DA Market is highly 

correlated with forward 

power market, Gas Price, 

Coal Price, Crude Oil, 

Aluminum market etc. 
increase I ·-----------© 

DA Demand is 

an expected 111 

value of what 

could be the RT 

Load 

Expected weather 

condition and unit 

l Generation stack 

determines DA LMP 

Figure 7.1. Factors Influencing the DAIRT Market 
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In the proposed simulation model in this dissertation, interactions among DAD, 

RTL, DAP and RTP (as shown in Figure 7.1) are considered. Nevertheless, relationship 

between power price and other commodity (such as gas or oil) prices is not addressed. 

This dissertation uses publicly available data from MISO webpage9. 

7.1. PRELIMINARY DATA ANALYSIS AND MODEL BUILDING 

This dissertation seeks to understand the dynamic relationship between the price 

and load better. This requires test the relationship between DA and RT price convergence 

or divergence and the change in DA demand and RT Load. The divergence is defined as 

the difference between RT LMP and DA LMP. Also, the relationship between cleared 

virtual volume and DA/RT prices is checked to investigate ifthere exists any 

convergence or divergence in DA/RT prices due to the cleared virtual volume. This 

dissertation considers the demand, load and virtual trading data related to MISO and the 

LMP data related to Cinergy hub. 

The Tables 7.1, 7.2 and 7.3 show the descriptive statistics for the DA LMP, RT 

LMP, and divergence between DA and RT LMP. Figure 7.2 shows the DA/RT price 

divergence and Figure 7.3 shows the RTL deviation from the DAD between June 2006 

and December 2007. Figures 7.4 and 7.5 show DA/RT Price divergence as compared to 

DA Demand/RT Load deviation percentage. Figure 7.4 represents data for 2007 and 

Figure 7.5 the DA/RT LMP divergence for January 2007. 

The descriptive statistics clearly indicates that both the DA and RT LMP have 

higher volatility, kurtosis, and skewness. The distribution has relatively fat tails and the 

data is positively skewed indicating spikes in the RT LMP. The data confirms that there 

have been more spikes in the RT LMP compared to the DA LMP. The divergence 

oscillated month to month and was different from peak hours and off peak hours. Figures 

7.2, 7.3 and 7.4 indicate that a straight forward general trend can not be established 

between DA/RT Price divergence and DA Demand/RT Load deviation. Although in 

some hours or months, higher RT Load resulted in higher price divergence, it can not be 

generalized for sure that higher demand always causes higher DA price. 

9 MISO website: http://www.midwestiso.org/ 
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Table 7.1. Descriptive Statistics of Peak Hour Cinergy Hub Price 

Peak Hours Price at Cinergy hub (June 2006- December 2006) 
DALMP Stat RTLMP Stat RT-DALMP Stat 

Mean 53.02 Mean 49.66 Mean 3.36 
Median 47.34 Median 40.92 Median 4.33 
Standard Deviation 23.64 Standard Deviation 30.38 Standard Deviation 22.99 
Sample Variance 558.75 Sample Variance 922.99 Sample Variance 528.65 
Kurtosis 4.12 Kurtosis 23.23 Kurtosis 19.79 
Skewness 1.57 Skewness 3.28 Skewness 1.93 
Range 180.80 Range 458.95 Range 423.69 
Minimum 18.67 Minimum -2.64 Minimum -316.46 
Maximum 199.47 Maximum 456.31 Maximum 107.23 

Table 7.2. Descriptive Statistics of Peak Hour Cinergy Hub Price 

Peak Hours Price at Cinergy hub (January 2007 - December 2007) 

DALMP Stat RTLMP Stat RT-DA LMP Stat 

Mean 61.50 Mean 60.94 Mean 0.56 

Median 58.85 Median 54.15 Median 3.64 

Standard Deviation 22.93 Standard Deviation 35.81 Standard Deviation 29.87 

Sample Variance 525.67 Sample Variance 1282.12 Sample Variance 892.18 

Kurtosis 1.03 Kurtosis 43.60 Kurtosis 64.29 

Skewness 0.78 Skewness 3.53 Skewness 3.87 

Range 171.93 Range 775.59 Range 768.69 

Minimum 18.30 Minimum -6.04 Minimum -654.55 

Maximum 190.23 Maximum 769.55 Maximum 114.14 

Table 7.3. Descriptive Statistics of Off Peak Cinergy Hub Price 

Off Peak Cinergy Hub Price (Jun 2006-Dec 2007) 

DALMP Statistics RTLMP Statistics RT-DA Price Statistics 

Mean 31.82 Mean 31.33 Mean (0.49) 

Median 25.37 Median 23.75 Median (1.15) 

Mode 25.00 Mode 19.56 Mode (2.55) 

Standard Deviation 16.97 Standard Deviation 21.51 Standard Deviation 15.49 

Sample Variance 287.93 Sample Variance 462.66 Sample Variance 239.99 

Kurtosis 4.66 Kurtosis 13.01 Kurtosis 19.06 

Skewness 2.00 Skewness 2.87 Skewness 2.31 

Range 125.00 Range 311.53 Range 272.02 

Minimum 8.00 Minimum (55.44) Minimum (81.82) 

Maximum 133.00 Maximum 256.09 Maximum 190.20 
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LMP Divergence 
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Figure 7.2. LMP Divergence between DA and RT Market 

DA Demand and RT Load 

- DA Demand - RTLoad 

140 ~------------------------------------------------------~ 

120 

100 

80 

60 

40 

20 ------------------------------------------------------------------------------------------------------------------------------

<Y­
f> 

Operating Hours (June 2006- December 2007) 

Figure 7.3. DA Demand and RT Load 
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DAIRT Price change vs DA demand/RT Load change 
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Figure 7.4. DA/RT Price Divergence vs. DA Demand/RT Load Change 
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Figure 7.5. DA/RT Price Divergence vs. DA Demand/RT Load Change 

The amount of cleared virtual bids and offers are also considered to investigate if 

the price divergence is caused by the amount of cleared virtual bids and offers. Figure 7.6 

shows the cleared virtual bids, offers and deviation between them for each operating hour 

during June 2006-December 2007. Figure 7.7 shows the relationship between the price 

divergence and the virtual bids and offer divergence. Once again, a general trend cannot 

be established that would indicate that the price divergence between DA and RT is due to 

the divergence in the cleared virtual bids and offers. The hypothesis to test the 

correlation between the difference of virtual bids and offers cleared and price divergence 

failed at 95% confidence interval. 
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Cleared Virtual Bids and Offers at MISO 
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Figure 7.6. Virtual Bids, Offers and Deviation 

LMP Deviation vs. Cleared Virtual Deviation 
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Figure 7.7. LMP Deviation vs. Virtual Deviation 
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Spectral analysis of the Cinergy hub data set (for the period June 1, 2006 to 

December 31, 2007) was conducted to examine the cyclical and seasonal behavior ofthe 

price and load. The following section shows the results of the spectral analysis of the 

Cinergy hub data set. The spectral analysis identified that there is a daily, weekly and 

yearly cycle in the DA and RT demand, load and price. The analysis also identified a 

potential 83 day (approximate) cycle in the price data set. The daily, weekly and yearly 

cycles can be justified from the fundamental understanding of how electricity market 

works. During the weekdays the consumption of the electricity increases as there are 

more industrial consumers (such as office building etc.). The yearly cycle explains the 

seasonal component of the data. The 83 day cycle cannot be justified as more data is 

required to check if this cycle actually reoccurs every year or not. 

As it has been mentioned in the literature, weather component is the most crucial 

piece in the load model. In modeling the load pattern across the footprint of MISO or any 

other ISO or region, one needs to take care of the weather information from all the 

stations in that footprint. Because of unavailability of such a database, this dissertation 

considers seven large cities, namely Chicago, Indianapolis, Detroit, Minneapolis, St 

Louis, Cincinnati and Milwaukee for weather related information. These cities are 

located across MISO footprint and would help us explain average weather affect on the 

MISO load, demand and price. Figure 7.8 shows the cities across MISO footprints which 

have been considered in our model. Figure 7.9 shows the daily minimum humidity data 

from the seven cities are shown in Figure 7.8. Appendix A shows rest ofthe weather 

data. 

Tests were conducted for autoregression in the lagged terms and for any cycle 

present in the DA Demand, RT Load and the price data. The hypothesis test was 

conducted under UCM set up and the daily and yearly cycles and autocorrelation terms 

become significant. However, it was not possible to get a complete understanding of how 

the load or price varied just by setting these components alone. The UCM took longer 

time to converge with yearly cycle component. Although from this test the yearly cycle 

appears to be significant, it was not convincing to include the yearly cycle component in 

the final model because of lack of enough data to test. Table 7.4 shows these hypothesis 

results for DA Demand and Table 7.5 shows the hypothesis results for RT Load. 
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Figure 7.8. Prominent Cities across MISO Footprint 

Cincinnati 
Area 

Weather factors which influence the electricity market are namely temperature, 

humidity, wind speed, cloud cover, dew point, precipitation, rain, thunderstorms, and 

snow. However, because of data limitation, this dissertation considers daily maximum, 

minimum and average of the temperature, humidity, wind speed, cloud cover, and dew 

point only. 
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Principal Component Analysis (PCA) was used to summarize weather variations 

across the aforementioned seven cities across MISO footprint. PCA is a strong tool that 

exploits the covariance structure among the variables to produce linear combination of 

the variables (called Principal Components) that explains the variation in the data. If there 

is strong correlation among variables, then a few Principal Components can explain most 



70 

of the variation. Thus PCA is helpful in dimension reduction. With PCA, one can explain 

a certain p variables (p> 1) and information provided by these p variables by using k 

components (p>k>O). 

Daily Average Minimum Humidity of Milwaukee Daily~ Mninunfbridty a Mmeepolis 

2006 ?JJ07 

Days and Year DJysard Year 

Daily Average Minimum Humidity of Indianapolis 
Dally Average Minimum Humidity of DetroH 

2006 '1!XJ7 

Days and Yur Dlyu ndY .. r 

Daily Aver11ge Minimum Humid;ty of Chicago Daily Average Minimum Humidity of StLouis 

Daily Average Minimum Humidity ofCinoinnati 

2006 'Jf1J7 

Figure 7.9. Daily Minimum Humidity Data Observed in Seven Cities across MISO 



71 

Table 7.4. Test for Cycle Components and Autoregression in DA Demand 

1.66748£-7 0.00 <.0001 

11.50865 0.09 <.0001 

0.00001904 0.00 <.0001 

2.34481£-6 426447 <.0001 

0.0008856 1117.03 <.0001 

0.11025 12.24 <.0001 

This research considered both simple average temperature of the seven cities 

considered and the PCs of Heating degree days (HDD) and cooling degree days (CDD) as 

explanatory variables. However, the PCs ofHDD and CDD are found to be better 

explanatory variable for load and price models than the simple average. The PCA 

indicates that the first principal component describes almost 90% of the variations in 

HDD and CDD across these seven cities representing MISO footprint. The second 

principal component for both HDD and CDD did not only appear to be insignificant at 

the 0.05 significance level, but also could not improve the R-Square or Adjusted R­

Square or AIC value. The square of the temperature, HDD and CDD and PC of these 

three variables have also been tried as explanatory variables. The square terms appeared 
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to be statistically insignificant. The PCs for both HDD and CDD are shown in Appendix 

B along with PCs of other weather variables. 

Table 7.5. Test for Cycle Components and Autoregression in RT Load 

4.29794 

Approx 

Pf)lltl 

0.00 <.0001 

0.23 <.0001 

5.177117E-8 0.00005820 0.00 <.0001 

3.1631E-6 316121 <.0001 

0.0051966 101.60 <.0001 

0.0010593 929.69 <.0001 

1.86381 0.12824 14.53 <.0001 

0.01492 2.66 0.0077 

Next other climate variables such as cloud cover, dew point (maximum, minimum 

and mean dew point measure of the day), wind speed (maximum, minimum and average 

wind speed measure of the day), humidity (maximum, minimum and average humidity of 
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the day) and precipitation (maximum, minimum and average precipitation of the day) 

during the time period Jun 1, 2006-Dec 31, 2006 are considered as explanatory variables. 

Principal component analysis was applied on these variables for dimension reduction 

purpose. Appendix B shows the PCA results for these variables. The principal 

components that explain at least 90% of the variability in the data set are used to build the 

proposed simulation models. However, not all the PCs are statistically significant. There 

may be several reasons why these PCs are statistically insignificant for the propose 

simulation model, including the facts that they represent only a few cities in the MISO 

foot print or these variables do not represent the hourly variation. The weather data 

represent daily average or maximum or minimum. Electricity load or demand change 

quickly during certain hours depending on the weather. For an example, during summer, 

it may be very hot a morning which will increase the load; however, if there is a 

thunderstorm in the afternoon, the load may decrease during the thunderstorm periods 

and the hours following the thunderstorm. Load may go back to the original level the 

very next day. Similarly, if there is congestion or unit or transmission line outage during 

some particular hours, there may be a sudden price spike. However, these variations 

across hours would not be captured by daily average or maximum or minimum weather 

variables. Certain PCs are also rejected if including lesser number of variables did not 

reduce the adjusted R-square value or increase the AIC value significantly. This helps to 

make the model parsimonious and reduce prediction error. It also helps to minimize 

simulation time. 

The following equations (equations #25-35) show the first principal components 

for different weather variables used in this analysis. Please refer to the Appendix B for 

details on the Eigen vectors that constitute all the principal components. In the following 

equations, PC 1 stands for the Principal Component 1. The weather variable is indicated 

next to "PC 1 ". In the right hand side of the equations, the city names are shown. The city 

name indicates for the weather variable for that city. 

Let us assume, 

PC1_ Cloud_ Cover = First Principal Component for Cloud Cover 

PC1_ Precipitation = First Principal Component for Precipitation 
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PCl_ Mean_ Wind_ Speed = First Principal Component for Mean Wind Speed 

PCl_ Max_ Wind_ Speed = First Principal Component for Maximum Wind Speed 

PCl_ Mean_ Humidity = First Principal Component for Mean Humidity 

PCl_ Max_ Humidity = First Principal Component for Maximum Humidity 

PCl_ Min_ Humidity =First Principal Component for Minimum Humidity 

PCl_ Mean_ Dew Point = First Principal Component for Dew Point 

PCl_Temp _ CDD =First Principal Component for Cooling Degree Days 

Cl_ Temp_ HDD =First Principal Component for Heating Degree Days 

Then, 

PC1_ Cloud_ Cover = 0.2336 *Minneapolis + 0.4176 *Milwaukee + 

+ 0.4493 *Indianapolis + 0.3644 *Detroit + 

+ 0.4496 *Chicago + 0.3339 *StLouis + 

+ 0.3500 *Cincinnati, 

PC1 Precipitation= 0.2716 *Minneapolis + 0.3333 *Milwaukee + 

+ 0.5050 *Indianapolis + 0.4394 *Detroit + 

+ 0.3748*Chicago + 0.3628*StLouis + 

+ 0.4096 *Cincinnati, 

PC1_Mean_Wind _Speed= 0.2599* Minneapolis + 0.3963* Milwaukee 

+ 0.4546 *Indianapolis+ 0.3662 *Detroit+ 

+ 0.4284 *Chicago + 0.3842 *StLouis 

+ 0.3213*Cincinnati, 

PC1 Max Wind_ Speed = 0.1945 *Minneapolis + 0.3927 *Milwaukee + 

+ 0.4405 *Indianapolis + 0.3950 *Detroit + 

+ 0.4258*Chicago + 0.3517*StLouis + 

+ 0.3912 *Cincinnati, 

PC1_Mean _Humidity= 0.2719 *Minneapolis + 0.3873 *Milwaukee + 
+ 0.4240 *Indianapolis + 0.3889 *Detroit + 

+ 0.4411 *Chicago + 0.3524 *StLouis + 

+ 0.3549 *Cincinnati, 

(25) 

(26) 

(27) 

(28) 

(29) 



PC1_ Max_ Humidity = 0.2496 *Minneapolis + 0.4308 *Milwaukee + 

+ 0.4093 *Indianapolis + 0.3856 *Detroit + 
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+ 0.4666 *Chicago + 0.3752 *StLouis + (30) 

+ 0.28l4*Cincinnati, 

PC1_Min_Humidity = 0.26353 *Minneapolis+ 0.3711 *Milwaukee+ 

+ 0.4282 *Indianapolis+ 0.3920 *Detroit+ 

+ 0.4305 *Chicago+ 0.3509 *StLouis 

+ 0.3836 *Cincinnati, 

PC1_Mean_DewPoint = 0.3644* Minneapolis + 0.3828* Milwaukee + 

+ 0.3815*Indianapolis + 0.3762*Detroit + 

+ 0.38l5*Chicago + 0.3771*StLouis + 
+ 0.3780*Cincinnati, 

PC1_Max_DewPoint = 0.3613* Minneapolis+ 0.3836* Milwaukee + 

+ 0.3819 *Indianapolis + 0.3781 *Detroit + 

+ 0.3858 *Chicago + 0.3773 *StLouis + 

+ 0.3769 *Cincinnati, 

PCI_Temp _ CDD = 0.3740* Minneapolis + 0.3800* Milwaukee + 

+ 0.3777* Indianapolis+ 0.3817* Detroit+ 

+ 0.3728 *Chicago + 0.3795 *StLouis + 

+ 0.3797 *Cincinnati, 

PCl_Temp _HDD = 0.3497 *Minneapolis + 0.3742 *Milwaukee + 

+ 0.3883 *Indianapolis + 0.3827 *Detroit + 

+ 0.3943 *Chicago + 0.3781 *StLouis + 

+ 0.3775*Cincinnati. 

7.2. FITTING SIMULATION MODELS 

(31) 

(32) 

(33) 

(34) 

(35) 

The preliminary analysis of the load and demand data shows that the DA demand 

and RT load observed at the MISO follow daily cycles. The load and demand also 

changes based on seasonality, which gives the suspicion that there should be a seasonal 

variable. The UCM model used for this simulation model should help identifying such 

cyclical, season components by itself. However, given the nature of the data, the model 

takes longer time to run. In this dissertation, the UCM model is used to account only for 

the daily cycle component. A set of dummy variables are added to the overall model. 
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These dummy variables act as regressor variables. The dummy variables account for the 

seasonality, part ofthe week, and part of the day (peak and off peak). Comparison of this 

model with other models that did not include the dummy variables but instead included 

standard UCM cyclical components representing weekly and yearly (seasonal) cycles 

showed that the model with the dummy variables did as well as the model with UCM 

cyclical components, based on adjusted R2 and AIC criteria. Thus, a simpler model was 

constructed using dummy variable terms. 

The weekly cycle is clearly not sinusoidal. The cyclical nature arises due to 

weekends being different from weekdays. Thus the use of a dummy variable is more 

appropriate than employing a sinusoidal cyclical component. 

The seasonality is defined based on the Fernandez-Morales (2003). The dummy 

variables representing seasonality are: 

1. Summer months (July, August, and September): Dummy Variable 1 is "0" and 

Dummy Variable 2 is "0." 

n. Winter months (November, December, January, and February): Dummy 

Variable 1 is "1" and Dummy Variable 2 is "0." 

111. Shoulder months (March, April, May, June and November): Dummy Variable 1 

is 0 and Dummy Variable 2 is 1. 

Since people's electricity usage change depending on the day of the week and 

time ofthe day, two other dummy variables are added recognizing part of the week and 

period of the day. These dummy variables are: 

i) Peak/Off Peak period of the day: "1" for Peak periods and "0" for off peak period 

ii) Weekday/Weekend: "1" for weekday and "0" for weekend 

Although the Unobserved Component Model (UCM) has four components, the 

final model consists of only one component other than the regressor variables and the 

irregular component. The UCM component represents the daily cycle. The details of the 

daily cycle component for DA demand are shown in Table 7.6. The trend component 

was rejected from the final model as the trend component is not very significant. 

The general representation of the daily cycle component If/, is shown in equation 

(18) and has been modeled using a recursive algorithm. This model can be described as 



follows (The recursive formula shown below addresses the stochastic nature of the 

cycle): 

where, 0::::; p::::; 1, and the white noise terms v1 and <are IN(O,a-; ) (IN stands for 

Independent Normally distributed) variables. 
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(36) 

The daily cycle component is modeled as a periodic function. The cycle period is 

given by 2tr I A where A is the frequency of the cycle [O<A <;r]. The final model is 

selected based on Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). The smaller the AIC or BIC is, the better the model is. 

Table 7.6. Summary of Daily Cycles (DA Demand) 

7.2.1. DA Demand Model. Finally, the DA Demand model is expressed as a 

function of the following components and regressor variables. 

1. Components of Unobserved Component Model (UCM) 

a. Irregular component or the disturbance component 

b. Daily cycle component 

2. Regressor variables 

a. First Principal Components of HDD 



b. First Principal Components of CDD 

c. First, second, third and fourth Principal Components of Daily 

Minimum Humidity 

d. First, second, third and fourth Principal Components of Daily 

Maximum Wind Velocity 

e. First, second, third, fourth and fifth Principal Components of Daily 

Mean Wind Velocity 

f. First, second, third, fourth and fifth Principal Components of Daily 

Precipitation 

g. First, second, and third Principal Components of Daily cloud cover 

measurement 

h. Dummy variables indicating 

1. Peak/Off Peak period of the day, 

11. Weekday/Weekend and 

111. Season (Summer/Shoulder/Winter months). 

The DA Demand model has the following mathematical expression: 
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(37) 

where, 

L1 =DADemand 

I = Irregular component 

1f11 =Daily cycle component of UCM 

Ci = Coefficient of regression for ith regressor 

R; = ith Regressor. 

The AIC and BIC values for the fitted DA demand model is given in Table 7.7. 

The Regression coefficients C and Damping Factor for Cyclical Component ofUCM 

and value for the irregular component are given in Table 7.8. In this table, PCl, PC2, 
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PC3, PC4 and PC5 represent the First, second, third, fourth and fifth Principal 

Components of that particular variable. Table 7.8 also shows the estimated standard error 

and t statistic values for each variable in the model. One important fact to note is that the 

error variance associated with the daily cycle is significantly different from zero. This 

indicates that the daily cycle is not deterministic. 

Table 7.7. Likelihood Based Fit Statistics for DA Demand Model 

Table 7.8 . Final Estimates of the DA Demand Model 

0.96714 0.0015758 613 .76 <.0001 

4.93748 0.23354 21.14 <.0001 

3.24391 0.08816 36.80 <.0001 

4.75425 0.14065 33 .80 <.0001 

0.27157 0.01279 21.24 <.0001 
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Table 7.8 (Continued). Final Estimates of the DA Demand Model 

0.09662 0.0030168 32.03 <.0001 

3.87488 0.21192 18.28 <.0001 

-3 .26998 0.25655 -12.75 <.0001 

0.23298 0.0028184 82.66 <.0001 

0.04899 0.0052713 9.29 <.0001 

0.07210 0.0057839 12.47 <.0001 

0.02834 0.0068785 4.12 <.0001 

0.63719 0.01068 59.65 <.0001 

0.27705 0.01485 18.66 <.0001 

-0.08672 0.01469 -5.90 <.0001 

0.09610 0.01678 5.73 <.0001 

-0.37646 0.01846 -20.40 <.0001 

-0.18672 0.02024 -9.23 <.0001 

0.21 156 0.02218 9.54 <.0001 

-0.18099 0.02170 -8.34 <.0001 

0.19371 0.02527 7.67 <.0001 

-6.773 17 0.18352 -36.91 <.0001 

-2.11522 0.23422 -9.03 <.0001 

-2.44678 0.28437 -8.60 <.0001 

2.33523 0.27100 8.62 <.0001 

-1.71043 0.30530 -5.60 <.0001 

-0.27438 0.01903 -14.42 <.0001 
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Table 7.8 (Continued). Final Estimates of the DA Demand Model 

<.0001 

-0.21062 0.02619 -8.04 <.0001 

The model's fit is described by the Mean Absolute Percentage Error (MAPE), R­

Square and Adjusted R-Square. Generally speaking, the lower the MAPE is and the 

higher the R-Square and Adjusted R-Square values are, the better the model is. The 

MAPE for this fitted model is calculated to be approximately 3.027 and Adjusted R­

Square value is calculated to be approximately 0.94113. The fit statistics based on the 

residuals of the fitted model is shown in Table 7.9. 

7.2.2. DA Price. TheDA price is mainly decided by the demand and supply 

function. So, if the DA demand for the energy is forecasted to be high, then it is expected 

that the DA price will be higher. This happens because costlier units (units in the higher 

stacking order) will be used to meet higher demand. Using costlier units increases the 

price. However, as discussed in section four the DA price follows certain trend and 

cyclicality and therefore can be expressed with a time series model. The preliminary data 

analysis affirms that there exists a daily cycle for the price process. 

The DA price process was initially modeled as a function of UCM components 

with a daily cycle and DA demand as a regressor variable. However, the model provided 

a lower Adjusted R-Square, higher MAPE and RMSE. Also, the AIC value was very 

high. The UCM model does not provide a good result as it missed many other variables 

such as seasonality, time of the day (peak/off peak) or week (weekday/weekend). 

Inclusion of a yearly cycle (seasonal UCM component) and the peak/off peak dummy 

variable yielded better results but we are not certain that the seasonal cycle component 

can be estimated accurately using only two years of data. Since the seasonal cycle is 

fitted as a stochastic term, the lack of data across many years may result in the complex 

seasonal component explaining the noise component in the data rather than the actual 



seasonal behavior. The evidence of seasonal components can be observed because the 

irregular component obtained from the fitted model had a variance that could not be 

statistically differentiated from zero. In simple terms, the model fitted the data almost 

perfectly, a clear indication of over-fitting. 

Table 7.9. Fit Statistics Based on Residuals (DA Price) 

2.49607 

3.02790 

0.94114 

0.94113 
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The DA price process could have been modeled with regression analysis using 

various key variables we indicated in our literature review. However, the biggest 

drawback of ordinary regression process in the context of electricity market is that 

residuals of ordinary regression analysis are considered to be independent of each other. 

This is a classical assumption of the ordinary regression analysis. The residuals obtained 

from such a regression fit showed clear autocorrelation. It was also learnt from the 

preliminary data analysis that the electricity price tends to be heteroscedastic. Therefore, 

a Generalized Autoregressive Conditional Heteroscedasticity or GARCH based model 

was fitted to the residual data to account for non constant error variance observed in the 

electricity market. The final model has the following variables. The variables under 

Regression Component refer to the ordinary regressors and the Heteroscedasticity and 

GARCH Component indicate the modeling of the error variance. 



where, 

The proposed GARCH based regression model has the following components. 

1. Regression Component 

a. Natural Logarithm ofDA price for previous hour 

b. Natural Logarithm of DA price for previous day (this is one 

way to model cyclical behavior with a one-day period) 

c. DA Demand 

d. Dummy variable 

1. Peak/Off Peak 

n. Weekday/Weekend 

111. Seasonal (Summer/Winter/Shoulder months) 

2. Heteroscedasticity and GARCH Component 

a. Mean of the GARCH model (denoted by ARCH (0) in Table 

7.10). 

b. ARCH Coefficient (denoted by ARCH (1) in Table 7.10). 
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c. GARCH component (denoted by GARCH(1,1) in Table 7.10). 

So, the final DA Price model is given by: 

DA~ = a1 * DA~_1 + a2 * DA~_24 + a3DAD, + a4 *Dum peak/off-peak 

+ a5 * Dumweelday!weekend + a6Sea _ Dum1 + a7Sea _ Dum2 + &1 

e, ~ N(O,I) 

h, = m+ 'fa;&,~;+ IrA- 1 · 
1=l ;=I 

If p and q are set to be one, then equation ( 41) becomes 

DA~ =Natural Logarithm of DA Price at timet 

(38) 

(39) 

(40) 

(41) 

(42) 



DAP,_, =Natural Logarithm of DA Price at timet -1 

DAP,_24 =Natural Logarithm of DA Price at timet- 24 

DAD1 = DA Demand for load at timet 
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Dum peak/off-peak= Dummy variable indicating Peak and Off Peak hours of the day 

Dumweekday!weekend = Dummy variable indicating part of the week 

Sea_ Dum, = Dummy variable indicating first column of the Seasonal Dummy 

Sea_ Dum2 = Dummy variable indicating second column of the Seasonal Dummy 

a1 =Coefficients of Rgression fori= 1, ... ,6 

&1 =Error component at timet 

w= ARCH(O) 

a, =ARCH(l) 

y, = GARCH(l, 1 ). 

The AIC is -16729.283, MSE is 0.03292 and the Total R-Square is computed to 

be 0.9976 for the fitted model. The final estimates for the parameters are shown in Table 

7.1 0. The fitted model generated natural logarithm of price and natural logarithm of 

actual price are compared in Figure 7.10. 

7.2.3. RT Time Load. RT Market is the balancing market. In RT, the market 

observes all the corrections and changes made in the DA clearing data based on the 

market dynamics such as weather. While weather is a primary explanatory variable in RT 

Load models, one can also identify certain trends or cycles in the load pattern. During the 

preliminary data analysis, it was observed that the pervious hour's load is correlated with 

the next hour's load. Therefore, the previous hour's load is included as an input to the 

model. The load is usually low in the morning and then it slowly increases reaching a 

peak at certain time during the day. The load is usually higher during the peak hours and 

lower during the off peak hours. Thus a daily cycle component is included in the RT 

Load model. The load shape also changes between weekdays and weekends. From these 

understandings, dummy variables for peak/off peak hours, and weekday/weekend are 

included in the final model. Similarly two seasonal dummies are also included to model 



85 

the effects of summer, winter, and shoulder months. The dummy variables for different 

seasons are constructed in the same manner as was done earlier. The dummy variables 

work as explanatory or independent variable in the model. 

Table 7.10. Final Estimates of the Parameters for DA Price 

0.4844 0.002840 170.55 <.0001 

0.007520 0.000159 47.16 <.0001 

0.000345 0.0000267 12.95 <.0001 

-0.0269 0.002951 -9.12 <.0001 

0.002132 0.000571 3.74 0.0002 

0.0326 0.002388 13.65 <.0001 

0.006312 0.0001 20 52.64 <.0001 

0.7991 0.0 11 1 72.20 <.0001 

0.0443 0.007410 5.98 <.0001 
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Predicted and Actual Values of LogDAprice 
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Figure 7.10. Predicted and Actual Values ofNatural Logarithm ofDA Price 

The cycle component is modeled in the same fashion we showed for DA Demand. 

The summary statistics for the cycle component is shown in the Table 7.11 below. The 

estimates of regression coefficients for these variables are shown in the Table 7 .12. 

Table 7.11. Summary of Daily Cycles (RT Load) 

Summary of Cycles 

Name Type Period Frequency Damping Final Cycle Error 

Factor Amplitude Variance Variance 

Cycle Stationary 24.000 .26180 0.87379 4.08376 7.99615 1.89097 
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The weather variables play crucial role in determining the R T Load. This study 

commenced building the model by using all the principal components of different 

weather variables that explain at least 90% of the variability for that weather variable 

from different cities. The PCs that are either not significant or does not change the model 

fit statistics significantly are eliminated. The significant principal components and the 

regression coefficients are shown in the Table 7.12. 

Table 7.12. Final Estimates of the Significant Parameters for RT Load 

0.9925 

0.87379 0.0037503 232.99 <.0001 

1.89097 0.05323 35.52 <.0001 

0.85099 0.0039790 213 .87 <.0001 

1.27766 0.05627 22.70 <.0001 

0.52823 0.08619 6.13 <.0001 

0.09071 0.0048918 18.54 <.0001 

0.01699 0.0017983 9.45 <.0001 

0.63336 0.12196 5. 19 <.0001 
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Table 7.12 (Continued). Final Estimates of the Significant Parameters for RT Load 

where, 

0.04022 0.0019126 21.03 

0.08826 0.0061096 14.45 

0.05141 0.0072407 7.10 

-0.04374 0.0096535 -4.53 

-1.20751 0.11053 -10.92 

-0.32274 0.13034 -2.48 

-0.06455 0.01103 -5.85 

-0.05767 0.01295 -4.45 

The final RT Load model in mathematical form is given by: 

RTL1 = Plf/1 +ClRTLt-l +C2DUMPeak /Off-Peak +C3DUMWeekday/Weekend 

+ C4DUMlseason + C5DUM2season + C6PC1Min _humidity + 

+C7PC2Max_wind +CgPC3Max_wind +C9PC1Precipitation + 

+ CIOPC2Precipitation +ell PC I cloud + Cl2PC2cloud + 

+C13PC1Max_wind +lrreg 

RTL1 = R T Load at timet 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

0.0133 

<.0001 

<.0001 

(43) 



p =Damping factor from Unobserved Component Model (UCM) 

lf/1 =Daily Cycle Compnent from UCM 

RTLH = RT Load at timet -I 

DUM Peak/Off -Peak =Dummy variable representing Peak/Off- peak periods 

DUM weekday/Weekend= Dummy variable representing Weekend/Weekday 

DUM1 season = First Column of Dummy variable representing Season (Summer/ 

Winter/Shoulder) 

DUM2,_ason = First Column of Dummy variable representing Season (Summer/ 

Winter/Shoulder) 

PCIMin_humidiry =First Pricipal Component of daily minimum humidity 

PCIMax_wind =First Pricipal Component of daily maximum wind speed 

PC2Max wind =Second Pricipal Component of daily maximum wind speed 

PC3 Max_ wind =Third Pricipal Component of daily maximum wind speed 

PC! Precipitation =First Pricipal Component of daily Precipitation 

PC2Precipitation = Second Pricipal Component of daily Precipitation 

PClcloud = First Pricipal Component of daily cloud cover 

PC2cloud =Second Pricipal Component of daily cloud cover 

C; = Cp···· C13 =Regression Coefficients 

Irreg =Irregular or error component of the UCM. 

89 

The model fit statistics for the RT Load model are given in the Table 7.13. 

7.2.4. RT Price. Although the electricity price is determined by the demand and 

supply curve, there is possible gaming in the RT Market. RT Market which acts as a 

balancing market adjusts for possible outage, and extra load etc. and all these changes 

reflect in the RT price. To capture different market sentiments or how market could 

generate price spikes, physical variables that can be manipulated by some market 

participants are considered. Such variables can give a price signal. Apart from regular 



variables such as RT Load forecast, RT Price for the previous hours and other dummy 

variables, the following variables are introduced. 

Table 7.13. Fit Statistics Based on Residuals 

1.42188 

1.54150 

11.43843 

0.98194 

0.98194 

0.70728 
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i) Net Scheduled Imports: This variable represents the total net interchanges 

import to the MISO (in GW) for a given hour for a particular market day. A 

higher import amount is an indication that there is not enough economic 

generation resource available in the market which has forced to import MWs. 

This could potentially hike the price in RT. Again, if some ofthe regular units 

do not clear or are not offered, it may be necessary to import from the 

interchange. If net import increases then speculators can take the chance to 

hike the price. 

ii) Committed Emergency Resources (GW): This represents the total economic 

maximum energy committed by units across MISO footprint for emergency 

purpose. As the name suggests they are used during the emergency need for 

MW s. If this emergency commitment number is high, it is possible that the 



where, 

market is expecting higher turbulence in the RT and the speculators would 

take their chance to increase price. 
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iii) Generation Resource (Must Run): This indicates the MWs committed by must 

run units. These units are usually the nuclear and renewable energy generation 

units and are designated as must run. As the name suggests, the units would 

always clear unless there is a problem. The must run units are good indicator 

to judge whether the base load units are cleared or not. If there is a base load 

unit not working or a generation corporation does not offer its must run units, 

it is obvious that the market must use the MWs from higher order in the 

generation stacking thus by increasing the price of the energy. 

The final RT Price model has the following mathematical form: 

ln_RTP, = a1 *ln_RTP,_1 + a2 * RTL, +a3 *Sch_imp, + 

+a4 *Gen_mustrun, +a5 * Dumpeakloff-peak + 

+ a6 * Dumweetday/weekend + a7Sea _Dum! + 

+ a8Sea _ Dum2 + &1 

e, ~ N(O,l) 

h, = m + Ia;&,z_; + Irih,_J 
i=l j=l 

Setting p= 1 and q= 1 the equation ( 4 7) becomes, 

ln RTP =Natural Logarithm of RT Price at timet 
- t 

ln_RTPt-I =Natural Logarithm of DA Price at timet -1 

(44) 

(45) 

(46) 

(47) 

(48) 
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RTL, = RT Load at timet 

Durn peak 1 off_ peak = Dummy variable indicating Peak and Off Peak hours of the day 

Durnweekday!weekend = Dummy variable indicating part of the week 

Sea_ Durn1 = Dummy variable indicating first column of the Seasonal Dummy 

Sea_ Durn2 = Dummy variable indicating second column of the Seasonal Dummy 

Sch _imp, =Net Scheduled Import of MW 

Gen _ rnustrun1 = Cleared Must Run Generation MW 

Gen _ Erng1 = Cleared MW s for emergency generation 

ai =Coefficients of Rgression fori= 1, ... ,6 

& 1 =Error component at timet 

OJ = Mean of the GARCH 

a1 = The ARCH Coefficient 

y1 = The GARCH Coefficient. 

Table 7.14 shows the final estimates of the RT price model. The fitted model 

generated natural logarithm of RT price and natural logarithm of actual R T price are 

compared in Figure 7 .11. The preliminary data analysis, the DA Price for an hour was 

found to have some correlation with the RT Price for the same hour. TheDA price also 

appears to be significant variable in the fitted model. This is not surprising because the 

DA market, in theory, acts as a forward market for the RT Market. RT market is the 

balancing market which takes care of the RT situation. DA market is the expected 

situation of the RT market based on the forecasted data. However, including this variable 

in the simulation model will make the model too much dependent on the forecasted or 

simulated data. Since the model should be as much self explanatory as possible, the DAP 

is not included in the final RTP model. Model's fit statistic does not change significantly 

by excluding this variable. 
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Table 7.14. Final Estimates ofthe RT Price 

0.0180 0.000717 25 .08 <.0001 

-0.0262 0.002782 -9.41 <.0001 

0.005440 0.001022 5.32 <.0001 

0.0190 0.006220 3.06 0.0022 

-0.1398 0.008468 -16.51 <.0001 

-0.0534 0.008235 -6.49 <.0001 

0.0918 0.0111 8.23 <.0001 

-0.0426 0.009031 -4.72 <.0001 

0.0703 0.002672 26.31 <.0001 

0.1662 0.008897 18.69 <.0001 

0.3330 0.0239 13.91 <.0001 



94 

Predicted and Actual Values of lnP _t 
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Figure 7.11. Predicted and Actual Values ofNatural Logarithm ofRTP 

Virtuals, as traders believe in the industry, can influence the price. The general 

market belief is that if higher amount of the virtual supply is submitted in the market, 

then the speculators are expecting the R T price to be lower than the DA price. The 

cleared virtual offers or supplies must be bought back in RT market at RT LMP observed 

at the CP Node where the original offer was submitted and subsequently cleared. Clearly, 

the speculators with virtual supply award in DA market would gain from a lower price. 

This increases suspicion of market gaming by market leaders. A GARCH based model 

was fitted with cleared virtual supply and the difference between the cleared virtual bids 

and offers as two explanatory variables. Both the variables appear to be significant with 

small regression coefficients. However, these two variables were not included in the 

final proposed simulation model as it is difficult to model the cleared virtuals. Also, the 

virtual market is very new and do not have enough data and regulation in place to 

correctly simulate the bidding pattern by the participants. Virtuals are primarily used by 
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the participants either to hedge or to speculate. The hedgers use virtual to financially 

hedge not only their generation offers or congestions, but also their power trading 

portfolio convoluted with financial products traded in the power market which are mostly 

structured products. The data is not publicly available unlike other financial commodity 

products traded in the different organized markets. This makes it even more difficult to 

model the reasons that influence the virtuals and determine how it should be modeled. 

The fit statistics for the fitted model does not significantly change when remove the 

virtuals are removed from the model. 
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8. SIMULATING THE FITTED MODEL AND TRADE ANALYSIS 

This section shows how the models presented in section seven can be simulated to 

make a trading decision using either virtual bids or offers. First the fitted models for the 

demand, load and price processes are reiterated. 

8.1. FITTED MODELS 

8.1.1. DA Demand. The DA demand process for electricity is given by: 

where, 

2*Jr 
A, = Period = --

24 

L1 = DA Demand 

I = Irregular component of UCM 

l.f/ 1 =Daily cycle component of UCM 

C = Cofficient of regression for ith regressor 

R1 = ith Regressors 

p =Damping factor, 0::;; p::;; 1 

v and v· ~ IN(O,rr;) 
{ I 

rr v = Volatility of the cycle. 

(49) 

(50) 
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8.1.2. DA Price. TheDA price process is given by the following set of equations. 

DA~ = a1 * DA~_1 + a 2 * DA~_24 + a3DAD1 + a4 * Dumpeaktoff-peak + 

+as* Dumweetdaytweekend + a6Sea _ Dumt + 

+ a7Sea _ Dum2 + £ 1 

er ~ N(O,l) 

q p 

h1 = m+ Ia;t}_, + LY1h1_r 
i~I 1~1 

If p and q are set to be one, then the equation (54) becomes 

where, 

DAP, =Natural Logarithm of DA price at timet 

DAP,_1 =Natural Logarithm of DA price at timet -I 

DAP,_24 =Natural Logarithm of DA price at timet- 24 

DAD1 = DA Demand for load at timet 

Dum peak 1 off -peak =Dummy variable indicating peak and off peak hours 

Dum k·' 1 k d = Dummy variable indicating part of the week wee uay wee en 

Sea_ Dum1 =Dummy variable indicating first column of the 

seasonal dummy 

Sea_ Dum 2 =Dummy variable indicating second column of the 

seasonal dummy 

a. =Coefficients of regression fori= 1, ... ,6 
I 

£ 1 =Error component at timet 

m = The mean of the GARCH 

a 1 =The ARCH component 

y1 =The GARCH component 

(51) 

(52) 

(53) 

(54) 

(55) 



8.1.3. RT Load. The RT load process is given by the following equation. 

RTLI = Plf/1 + CIRTLt-1 + CzDUMPeak/Off-Peak + C3DUM Weekday/Weekend+ 

+ C4DUMiseason + C4DUM1,eason + C5DUM2,eason + 

+C6PC1Min_humidity +C7PC2Max_wmd +CsPC3Max_wrnd + 

Where, 

+ C9PCIPrecipitation + CIOPC2Precipitation + CIIPCicloud + 

+ C12 PC2ciaud + C13 PCIMax_wind + Irreg 

RTL1 = RT Load at timet 

p =Damping factor from Unobserved Component Model (UCM) 

lf/1 =Daily Cycle Compnent from UCM 

RTL1_1 = RT Load at timet -I 
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(56) 

DUM Peak/Off -Peak =Dummy variable representing Peak/Off- peak periods 

DUM weekday/Weekend =Dummy variable representing Weekend/Weekday 

DUMI season = First Column of Dummy variable representing Season 

(Summer/Winter/Shoulder) 

DUM2 = First Column of Dummy variable representing Season season 

(Summer/Winter/Shoulder) 

PCIM;n humidity =First Pricipal Component of daily minimum humidity'. 

8.1.4. RT Price. The RT price process is given by the following equations. 

ln_RTP, =a1 *ln_RTP,_1 + a2 *RTL, +a3 *Sch_imp, +a4 *Gen_mustrun, 

+a5 *Dumpeak!aff-peak +a6 *Dumweetdaylweekend + a?Sea_Duml (57) 

+a8Sea_Dum 2 + Et. 

e, ~ N(O,l) 

(58) 

(59) 

(60) 
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If p and q are set to be one, then the equation (60) becomes: 

(61) 

Where, 

In_ RTP, = Natural Logarithm of R T Price at timet 

In_ RTP,_1 =Natural Logarithm of DA Price at timet -l 

RTL1 = RT Load at timet 

Dumpeak!off-peak =Dummy variable indicating Peak and Off Peak hours 

Dumweekday!weekend = Dummy variable indicating part of the week 

Sea_ Dum1 = Seasonal dummy variable 1 

Sea_ Dum2 = Seasonal dummy variable 2 

Sch _ imp1 =Net Scheduled Import of MW 

Gen _ mustrun1 = Cleared Must Run Generation MW 

Gen _ Emg1 = Cleared MW s for emergency generation 

a; =Coefficients of Rgression fori= 1, ... ,6 

&1 =Error component at timet 

w = Mean of GARCH 

a1 =The ARCH Component 

y1 =The GARCH Component. 

8.2. GENERATING SIMULATED DATA 

The models are intended to run before one would submit the final bid and offers 

to respective ISO. Ideally the models would be run with the actual weather data. The 

same weather data cannot be used in estimating the models fitted in the previous chapter. 

Use of the same weather data will result in simulated series that may not reflect the 

weather variance one would expect from one year to the next. To overcome this 

drawback, the methodology described in Section 8.2.1 is used to generate simulated 

weather data that maintains the average seasonal patterns observed over the years, but 
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still produces variability across different simulated series. This derived weather dataset 

would be called normalized weather database. 

8.2.1. Normalizing Weather Data. The block bootstrap method is used to 

randomly pick a set of weather data from 10 years of actual weather data. The bootstrap 

methodology is sued on the residuals of the principal components of the weather 

variables. The bootstrapped data is constructed from a sample of 10 years of weather 

data for each of the seven stations. The bootstrap method is particularly helpful when 

there are enough observation available from the past. The block bootstrap maintains the 

autocorrelation structure that exists in the inter-day weather observations. Since the 

weather pattern does not change suddenly and daily weather patterns have significant 

similarities during a month, block bootstrap is an ideal sampling procedure to use. 

First, the principal components of daily weather data are calculated based on the 

Eigen vectors computed during the model building. Then each yearly average PC was 

subtracted from its respective daily PC to get the residuals. Then the residual data was 

separated for each month for each year. The data from the same month are grouped into a 

set, indexed with the respective years. This procedure yields the sample space for a 

particular month. Then the block bootstrap methodology is conducted with a block size 

equal to the length of the month. A block of data was randomly selected form the 

bootstrapped data. The selected block of residual is then added back to the average of the 

respective PCs, to get bootstrapped PC for that month. Similar bootstrapped data was 

constructed for each month during the calendar year. The monthly bootstrapped data are 

combined to get the yearly data. 

8.2.2. Modeling the Daily Cycle Component of the UCM Model. The 

following section shows the daily cycle of the UCM based on the following steps. 

i) Estimate the angular frequency of the cycle. The angular frequency of the cycle 

is given by: 

.A= 2tr 
Period 

(62) 
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For a daily cycle, the Period is set to 24 hours. Thus, set Period= 24 

ii) Generatev1 and v~ are using!N(O,a;) process. The fitted model provideda; 

iii) Set initial condition (t=O) for lf/1 and If/;. 
Set, 

lfft=o =a and (63) 

Where, 

(64) 

In practice, a and p should be estimated based on the previous day's 

data. For this case, the last day of the previous month's actual data is 

considered to estimate a and P . 

iv) Set p as the difference between the maximum DA demand (or RT Load 

whichever is applicable) observed in the last day of the previous month and 

mean DA demand (or RT Load) observed in the last day of the previous 

month. Therefore, 

Where, 

P=Max-Mean (65) 

Max= Maximum DA demand or RT Load whichever is applicable, 

observed in the last day of the previous month 

Mean= Mean DA demand or RT Load whichever is applicable, 

observed in the last day of the previous month. 

Now, set the a as follows: 

Where, 

(66) 

HEJ = DA demand or RT Load whichever is applicable, observed 

at the first hour of the last day of the previous month, 

Mean= Mean DA demand or RT Load whichever is applicable, 

observed in the last day of the previous month, 

p = As estimated above. 
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v) Simulate the cyclical component, lf/1 , using the following recursive formula. 

The model has already been discussed in Section 6. The damping coefficient, 

p , is estimated and taken from the fitted model. 

[lf/~J=p [Co~A SinA] [lf/r.-I] + [vr·]· 
lj/1 -Sm-1 Cos-1 lj/1_ 1 V1 

(67) 

8.3. SIMULATING THEDA DEMAND, RT LOAD, DA PRICE AND RT PRICE 
PROCESSES 

Once all the bootstrapped samples of principal component data for the time frame 

in consideration are generated, the DA Demand function given by equation (30) is used. 

The dummy variables are generated based on actual dates in 2007. It is important to 

understand the following constraints and assumptions for simulation purpose. 

i) Physical properties of transmission such as congestion or transmission loss are 

not considered directly into the model. The model does not directly capture the 

plant outage or transmission line outage etc. which could potentially spike the 

price of electricity. The price fluctuations due to congestion, outages, and 

transmission loss are, however, addressed indirectly through the use of the 

conditional heteroscedastic (GARCH) formulation. 

ii) GARCH based model presented in this dissertation is able to capture any 

volatility arising from dynamics between different commodity markets. 

iii) The principal components of the climate variables shall capture the weather 

variation across the footprint. 

iv) It is assumed that the hypothetical Genco/LSE must serve its native load from 

cheapest generation. The Genco follows a dynamic hedging strategy involving 

long term (L T) hedge, short term (ST) hedge and then it tries to manage the 

risk in DAIRT market using virtuals. In real life the hedge plan may be more 

complicated with the usage of different types of structured derivative products. 

A simple case where the generation company is able to produce and market the 

load is considered in this dissertation. It does not need to serve the ancillary 
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services market, nor does it have any regulatory instructions on how much it 

needs to sell. 

v) Demand bids or generation offers made by the LSE/Genco completely clear in 

the DA market. 

vi) All the generation companies in the market make offers based on the "cost 

plus" policy and there is no foul playing in the market. No gaming occurs in 

the market. 

vii) The virtual bids and offers made by our market participants clear in the DA 

market. It is assumed that the market participant's bid or offer amount equal 1 

MW and it gets cleared. 

viii) All the participants follow MISO rules. 

ix) The market participant meets the MISO's credit limit to trade victuals. 

x) The Genco owns a must run/base load unit. If the unit ramps down or trips off, 

the generation stack is affected and it reflects in the amounts cleared by must 

run (usually in decreased amount). 

xi) Since the MISO imposes a cap of $1 000/MWh on price bids, the simulation 

also imposes a cap of $1 000/MWh. 

xii) The bootstrapped data based on past 10 years of weather data produces a 

possible weather pattern for the region. 

8.4. SIMULATION RESULTS AND TRADING ANALYSIS 

8.4.1. Simulation Results. After the weather data preparation is done, the fitted 

models are simulated. Since price models have demand or load as input, the demand and 

load data are generated first. Data generated by all the four series-RTL, DAD, RTP and 

DAP are used to test the performance of different strategies. Each process was simulated 

for 1 000 times. Then performance statistics for each strategy is computed based on the 

1,000 runs. Figure 8.1 and Figure 8.2 shows the simulated DAP and RTP. Tables 8.1, 

8.2, 8.3 and 8.4 show the monthly and hourly average simulated DAP and RTP. Please 

note that usually the peak hours are the operating hours between HE7 and HE 22 for 

Eastern Standard Time (or HE8 through HE23 during the day light savings months) 

during weekdays and non-holidays. However, in the tables showing statistics for the 



shoulder and winter months, you will note that both HE 7 and HE 8 are recognized as 

peak hours. This is because day light savings time shift that happens in those months. 
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Figure 8.1. Simulated DA LMP 
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8.4.2. Trading Performance Analysis. Market participants use various 

forecasting methods to predict DAP and RTP and based on these forecast values 

determine whether to make a virtual bid or a virtual offer. The effectiveness of their 

bidding strategies will depend on the accuracy of their forecasting models. The types of 

forecasting techniques used by market participants range from neural networks to 

statistical time series models as well as hybrid strategies that incorporate historical data, 

weather forecasts, and expert opinion. Some of these models are highly proprietary and 

are not available for academic investigations such as this doctoral study. Others use 

variables, such as information about unit breakdowns or congestion, which are not 

available to us. Thus, simulating the actual forecasting processes used by the various 

market participants is not feasible. Therefore, two alternative methods are applied to 

study the performance of various strategies. The first method is to assume that the market 
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participants have perfect prediction models with zero error. While this is not true in 

practice, the results obtained from this method will yield an upper bound for the relative 

profits one can make in the virtual electricity market. The second method is to assume 

that the predictive models used by the participants have a certain error rate (say 5% error) 

and perturb the actual DAP and RTP by this amount and use the error added values to 

make a decision on whether or not to make a virtual bid (or an offer). 

Simulated RT LMP 
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Figure 8.2. Simulated RT LMP 

A market participant who trades only virtual bids if the forecast data shows 

DAP<RTP and trades virtual offers if the forecast data shows DAP>RTP is considered. 

Assuming that they have perfect forecasts (with this assumption, forecasted DAP is equal 

to the actual DAP and forecasted RTP is equal to the actual RTP). For virtual bid trader, 

the profit and loss (P&L) calculated based on the simulated data are shown in Tables 8.5, 

8.6, and 8.7. P&L from virtual offer trading is shown in Tables 8.8, 8.9 and 8.10. 
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Table 8.1. Monthly Average Simulated DAP and RTP 

Average of DAP Average of RTP 
Month Off Peak Peak Off Peak Peak 

Janurary $ 53.54 $ 56.56 $ 60.86 $ 83.54 
February $ 57.89 $ 57.11 $ 62.66 $ 65.53 
March $ 37.86 $ 37.93 $ 44.86 $ 44.85 
April $ 37.92 $ 49.24 $ 37.90 $ 59.11 
May $ 38.37 $ 49.14 $ 32.34 $ 50.34 
June $ 46.67 $ 56.29 $ 60.22 $ 66.93 
July $ 48.79 $ 48.97 $ 59.05 $ 83.09 
August $ 53.68 $ 61.73 $ 77.28 $ 75.16 
September $ 46.75 $ 59.12 $ 56.97 $ 85.07 
October $ 37.33 $ 47.59 $ 42.46 $ 55.93 
November $ 38.11 $ 52.85 $ 40.95 $ 50.76 
December $ 56.78 $ 58.76 $ 62.21 $ 97.26 

Table 8.2. Hourly Average Simulated DAP and RTP for Shoulder Months 

Average of CAP Average of RTP 

Season HE Off Peak Peak Off Peak Peak 
1 $ 40.29 $ 46.43 
2 $ 36.90 $ 41.38 
3 $ 37.69 $ 41.47 
4 $ 34.38 $ 53.26 
5 $ 35.07 $ 51.00 
6 $ 40.94 $ 47.95 
7 $ 41.64 $ 48.84 $ 41.57 $ 44.96 
8 $ 35.96 $ 52.03 $ 37.01 $ 47.58 
9 $ 40.13 $ 46.10 $ 34.78 $ 40.63 
10 $ 42.25 $ 47.19 $ 33.64 $ 56.04 
11 $ 38.40 $ 50.20 $ 41.14 $ 51.69 

Shoulder 12 $ 51.34 $ 50.77 $ 46.30 $ 51.92 

Months 13 $ 45.75 $ 49.74 $ 39.38 $ 57.33 
14 $ 31.98 $ 42.80 $ 38.49 $ 54.32 
15 $ 36.62 $ 41.61 $ 32.10 $ 52.14 

16 $ 34.65 $ 43.71 $ 28.99 $ 58.05 

17 $ 41.31 $ 48.09 $ 24.77 $ 61.75 

18 $ 32.81 $ 45.68 $ 28.60 $ 69.23 

19 $ 39.46 $ 50.18 $ 31.32 $ 57.16 

20 $ 50.48 $ 51.21 $ 36.67 $ 61.12 

21 $ 44.30 $ 52.06 $ 33.24 $ 58.76 

22 $ 44.61 $ 45.93 $ 37.73 $ 60.55 

23 $ 44.64 $ 64.94 $ 53.75 $ 68.46 

24 $ 42.17 $ 51.00 
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Table 8.3. Hourly Average Simulated DAP and RTP for Summer Months 

Average of DAP Average of RTP 
Season HE Off Peak Peak Off Peak Peak 

1 $ 50.14 $ 78.51 
2 $ 46.73 $ 76.60 
3 $ 42.29 $ 66.78 
4 $ 42.63 $ 75.16 
5 $ 44.28 $ 67.93 
6 $ 53.44 $ 67.38 
7 $ 49.40 $ 53.65 $ 65.13 $ 76.61 
8 $ 47.03 $ 49.11 $ 52.49 $ 73.54 
9 $ 51.65 $ 44.91 $ 47.14 $ 72.20 

10 $ 47.15 $ 49.49 $ 47.28 $ 68.24 
11 $ 45.97 $ 60.05 $ 48.72 $ 80.54 

Summer 12 $ 58.17 $ 66.97 $ 49.64 $ 72.34 
Months 13 $ 51.67 $ 53.97 $ 72.97 $ 73.60 

14 $ 52.65 $ 59.56 $ 46.37 $ 79.60 
15 $ 51.97 $ 57.70 $ 59.58 $ 86.35 
16 $ 56.59 $ 68.12 $ 40.07 $ 86.88 
17 $ 62.45 $ 67.37 $ 39.35 $ 74.93 
18 $ 43.58 $ 57.93 $ 44.23 $ 78.72 
19 $ 49.89 $ 55.61 $ 41.92 $ 75.62 
20 $ 50.06 $ 51.52 $ 43.64 $ 96.27 
21 $ 59.08 $ 56.11 $ 42.35 $ 98.51 
22 $ 46.42 $ 54.95 $ 39.88 $ 98.75 
23 $ 56.90 $ 82.23 
24 $ 51.14 $ 74.66 

Table 8.4. Hourly Average Simulated DAP and RTP for Winter Months 

Average of DAP Average of RTP 

Season HE Off Peak Peak Off Peak Peak 

1 $ 49.55 $ 61.84 

2 $ 48.44 $ 54.09 

3 $ 48.33 $ 63.34 

4 $ 53.10 $ 59.32 

5 $ 49.20 $ 55.90 

6 $ 53.37 $ 64.93 

7 $ 50.15 $ 26.15 $ 56.69 $ 17.97 

8 $ 43.57 $ 50.88 $ 67.76 $ 67.98 

9 $ 45.04 $ 53.09 $ 67.96 $ 75.51 

10 $ 48.88 $ 55.17 $ 70.70 $ 81.29 

11 $ 54.85 $ 53.84 $ 73.88 $ 84.06 

Winter 12 $ 60.32 $ 59.69 $ 63.52 $ 80.74 

Months 13 $ 56.69 $ 66.53 $ 52.26 $ 63.06 

14 $ 64.81 $ 61.93 $ 43.31 $ 66.05 

15 $ 38.07 $ 46.28 $ 35.92 $ 66.89 

16 $ 38.23 $ 49.52 $ 40.20 $ 69.49 

17 $ 34.20 $ 52.34 $ 32.22 $ 69.58 

18 $ 53.93 $ 51.03 $ 36.27 $ 83.62 

19 $ 62.47 $ 55.62 $ 39.65 $ 83.87 

20 $ 60.19 $ 57.82 $ 51.17 $ 79.91 

21 $ 57.37 $ 64.45 $ 54.25 $ 77.84 

22 $ 61.07 $ 60.79 $ 45.86 $ 68.25 

23 $ 61.10 $ 62.46 $ 44.91 $ 70.50 

24 $ 55.75 $ 64.75 
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Table 8.5. Seasonal Average P&L for 1MW ofVirtual Bid 

Peak/Off-peak 
Seasonal Average Off Peak Peak Total Average 
Shoulder Months $ 19.54 $ 27.26 $ 23.21 
Summer Months $ 33.20 $ 40.83 $ 36.68 
Winter Months $ 23.63 $ 36.07 $ 29.37 

Table 8.6. Monthly Average P&L for 1MW ofVirtual Bid 

Peak/Off-peak 
Monthly Off Peak Peak Total Averaae 
January $ 26.15 $ 42.51 $ 33.89 
February $ 26.33 $ 30.69 $ 28.41 
March $ 19.49 $ 21.28 $ 20.34 
April $ 16.90 $ 31.26 $ 23.60 
May $ 11.47 $ 23.16 $ 17.00 
June $ 31.03 $ 32.66 $ 31.79 
July $ 29.30 $ 46.15 $ 36.91 
August $ 41.18 $ 34.16 $ 37.71 
September $ 29.80 $ 43.02 $ 35.38 
October $ 18.98 $ 28.33 $ 23.61 
November $ 15.87 $ 19.82 $ 17.71 
December $ 26.09 $ 51.45 $ 37.01 

Errors in weather forecast can cause significant error in the load forecast models. 

Load forecast error due to weather forecast error could be in the range of 8-10% (Atalo 

and Smith, 2004). This load forecast error could swing the predicted DA and RT price 

creating price risk for the trader. A market participant can use virtual bid and offer to 

protect itself from such price risk. In the following sections, the price outcomes are 

changed from the simulation generated data (simulation generated price data are 

considered the actual market values) by 5% to analyze the performance of the virtual 

trading strategies. Next the load and demand data inputs are changed by 10% to analyze 

the performance of the virtual trading strategies. 
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Table 8.7. Hourly Average P&L for lMW of Virtual Bid 

Peak/Off-peak 
HE Off Peak Peak Total Average 
1 $ 28.82 $ 28.82 
2 $ 27.54 $ 27.54 
3 $ 26.68 $ 26.68 
4 $ 32.60 $ 32.60 
5 $ 27.87 $ 27.87 
6 $ 27.36 $ 27.36 
7 $ 23.11 $ 26.89 $ 24.84 
8 $ 25.35 $ 29.10 $ 27.97 
9 $ 22.73 $ 28.48 $ 26.75 
10 $ 18.93 $ 33.92 $ 29.40 
11 $ 24.10 $ 33.35 $ 30.56 
12 $ 21.63 $ 31.28 $ 28.38 
13 $ 25.75 $ 29.10 $ 28.09 
14 $ 16.34 $ 30.86 $ 26.49 
15 $ 15.79 $ 32.46 $ 27.44 
16 $ 10.54 $ 33.03 $ 26.25 
17 $ 8.00 $ 31.27 $ 24.26 

18 $ 11.40 $ 42.68 $ 33.26 

19 $ 11.01 $ 36.26 $ 28.65 

20 $ 15.05 $ 42.93 $ 34.53 

21 $ 16.37 $ 37.23 $ 30.94 

22 $ 12.72 $ 36.32 $ 29.21 

23 $ 30.63 $ 28.50 $ 30.11 

24 $ 29.13 $ 29.13 

Grand Total $ 24.40 $ 33.48 $ 28.63 

Table 8.8. Monthly Average P&L for lMW of Virtual Offer 

Peak/Off-peak 

Month Off Peak Peak Grand Total 

January $ 19.53 $ 15.53 $ 17.60 

February $ 21.56 $ 22.27 $ 21.90 

March $ 12.50 $ 14.36 $ 13.38 

April $ 16.92 $ 21.40 $ 19.01 

May $ 17.50 $ 21.97 $ 19.62 

June $ 17.47 $ 22.02 $ 19.59 

July $ 19.04 $ 12.03 $ 15.87 

August $ 17.58 $ 20.74 $ 19.14 

September $ 19.58 $ 17.07 $ 18.52 

October $ 13.85 $ 19.99 $ 16.89 

November $ 13.03 $ 21.90 $ 17.17 

December $ 20.60 $ 12.96 $ 17.32 

Grand Total $ 17.45 $ 18.55 $ 17.96 
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Table 8.9. Hourly Average P&L for lMW of Virtual Offer 

Peak/Off-peak 
HE Off Peak Peak Grand Total 
1 $ 15.09 $ 15.09 
2 $ 16.32 $ 16.32 
3 $ 14.03 $ 14.03 
4 $ 14.49 $ 14.49 
5 $ 13.06 $ 13.06 
6 $ 17.15 $ 17.15 
7 $ 17.01 $ 20.70 $ 18.70 
8 $ 15.49 $ 19.40 $ 18.23 
9 $ 18.52 $ 16.78 $ 17.30 
10 $ 15.14 $ 17.00 $ 16.44 
11 $ 16.02 $ 17.82 $ 17.28 
12 $ 25.05 $ 22.61 $ 23.34 
13 $ 24.39 $ 22.14 $ 22.81 
14 $ 22.84 $ 19.65 $ 20.60 
15 $ 16.31 $ 14.17 $ 14.82 
16 $ 16.50 $ 15.76 $ 15.98 
17 $ 21.38 $ 17.95 $ 18.98 
18 $ 18.85 $ 16.87 $ 17.47 
19 $ 24.04 $ 19.13 $ 20.61 
20 $ 25.30 $ 20.45 $ 21.91 
21 $ 26.25 $ 19.53 $ 21.56 
22 $ 22.31 $ 16.82 $ 18.48 
23 $ 19.69 $ 20.82 $ 19.96 
24 $ 16.46 $ 16.46 

Table 8.10. Seasonal Average P&L for lMW ofVirtual Offer 

Peak/Off-peak 

Season Off Peak Peak Grand Total 

Shoulder $ 15.65 $19.92 $ 17.68 
Summer $ 18.77 $16.73 $ 17.84 
Winter $ 18.67 $18.15 $ 18.43 

8.4.2.1. Changing price data by 5%. Changing the price to incorporate possible 

prediction errors of the DAP and RTP would show how the virtual trading are impacted 

when traders use forecast data with error to make trading decisions. The 5% error in the 

price data was chosen arbitrarily. This error added data is called "forecast data." For the 
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four different cases shown in the following sections, the market participant trades virtual 

bids if the forecast data shows DAP<RTP and trades virtual offers if the forecast data 

shows DAP>RTP. For each case under this scenario, the trading performance has been 

discussed below. 

8.4.2.1.1. Case 1: Forecast RTP is S01o higher and forecast DAP is S01o lower 

than the true values. For virtual bid, the profit and loss (P&L) is calculated based on the 

simulated data are shown in Tables 8.11, and 8.12. P&L from virtual offer trading is 

shown in Tables 8.13, and 8.14. The virtual bids make profit approximately 45.86% of 

the time and approximately 54.13% of the times virtual offers make profit. Profits from 

the virtual bids are largest during the summer months followed by winter and shoulder 

months (for both peak and off peak hours). Virtual offers are most profitable during peak 

hours of the shoulder months. However, during off peak hours summer months seems to 

be mort profitable. 

Table 8.11. Case 1: Monthly Average P&L for IMW of Virtual Bid 

Peak/Off-peak 
Month Off Peak Peak 

January $ 29.25 $ 47.09 
February $ 29.58 $ 34.13 
March $ 21.81 $ 23.66 
April $ 18.79 $ 34.39 
May $ 13.07 $ 25.58 
June $ 34.31 $ 36.17 
July $ 32.38 $ 50.86 
August $ 45.52 $ 38.36 
September $ 32.77 $ 47.81 

October $ 21.21 $ 31.17 

November $ 18.00 $ 22.46 

December $ 29.38 $ 57.18 
Grand Total $ 27.19 $ 37.16 



Table 8.12. Case 1: Seasonal Average P&L for 1MW ofVirtual Bid 

I Peak/Off-peak 
Season I Off Peak Peak 

Shoulder $ 21.81 $ 30.11 
Summer $ 36.63 $ 45.38 
Winter $ 26.57 $ 40.17 

Table 8.13. Case 1: Monthly Average P&L for 1MW of Virtual Offer 

I Peak/Off-peak 
Month I Off Peak Peak 
January $ 16.21 $ 13.10 
February $ 18.78 $ 19.58 
March $ 10.68 $ 12.60 
April $ 15.02 $ 19.11 
May $ 15.57 $ 19.41 
June $ 15.41 $ 19.37 
July $ 16.73 $ 10.13 
August $ 15.37 $ 18.09 
September $ 17.37 $ 14.65 
October $ 12.09 $ 17.66 
November $ 11.21 $ 19.37 
December $ 18.01 $ 10.89 
Grand Total $ 15.23 $ 16.20 

Table 8.14. Case 1: Seasonal Average P&L for 1MW ofVirtual Offer 

r Peak/Off-peak 
Season T Off Peak Peak 

Shoulder $ 13.76 $ 17.60 
Summer $ 16.53 $ 14.40 
Winter $ 16.05 $ 15.71 

8.4.2.1.2. Case 2: Forecast RTP is 5°/o is lower and forecast DAP is 5% 

higher than the true values. For virtual bids, the profit is calculated based on the 
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simulated data are shown in Tables 8.15, and 8.16. Profits from virtual offer trading are 

shown in Tables 8.17, and 8.18. The virtual bids make profit approximately 46.67% of 

the time and approximately 53.32% of the times virtual offers make profit. Profits from 

the virtual bids are higher during the winter and summer followed by the shoulder months 

(for peak hours). The virtual offers are most profitable during peak hours of the shoulder 

months and during off peak hours of summer and winter months. 

Table 8.15. Case 2: Seasonal Average P&L for 1MW ofVirtual Bid 

I Peak/Off-peak 
Season I Off Peak Peak 

Shoulder $ 24.53 $ 17.68 
Summer $ 36.49 $ 21.19 
Winter $ 32.23 $ 21.16 

Table 8.16. Case 2: Monthly Average P&L for 1MW ofVirtual Bid 

I Peak/Off-peak 
Month I Off Peak Peak 
January $ 23.26 $ 38.26 
February $ 23.29 $ 27.39 
March $ 17.32 $ 19.02 

April $ 15.10 $ 28.23 

May $ 9.95 $ 20.82 

June $ 27.93 $ 29.27 

July $ 26.37 $ 41.60 

August $ 37.10 $ 30.19 
September $ 26.96 $ 38.48 

October $ 16.92 $ 25.63 

November $ 13.93 $ 17.44 

December $ 22.89 $ 45.95 

Grand Total $ 21.77 $ 29.99 
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Table 8.17. Case 2: Seasonal Average P&L for 1MW ofVirtual Offer 

I Peak/Off-peak 
Season I Off Peak Peak 

Shoulder $ 17.68 $ 22.34 
Summer $ 21.19 $ 19.26 
Winter $ 21.16 $ 20.82 

Table 8.18. Case 2: Monthly Average P&L for 1MW ofVirtual Offer 

I Peak/Off-peak 
Month I Off Peak Peak 
January $ 21.67 $ 18.28 
February $ 24.54 $ 25.11 
March $ 14.46 $ 16.24 
April $ 18.92 $ 23.78 
May $ 19.52 $ 24.60 
June $ 19.72 $ 24.79 
July $ 21.50 $ 14.08 
August $ 20.05 $ 23.61 
September $ 21.93 $ 19.74 
October $ 15.78 $ 22.47 
November $ 15.05 $ 24.71 
December $ 23.42 $ 15.26 
Grand Total $ 19.74 $ 21.09 

8.4.2.1.3. Case 3: Both forecast RTP and forecast DAP are 5% lower than the 

true values. For virtual bid, the profit calculated based on the simulated data are shown 

in Tables 8.19, and 8.20. Profits from Virtual offer trading is shown in Tables 8.21 and 

8.22. The virtual bids make profit approximately 50.60% of the time and approximately 

49.39% of the times virtual offers make profit. Profits from the virtual bids are higher 

during the summer months followed by winter and shoulder months (for peak hours). 

However, virtual offers are most profitable during peak hours of the shoulder months and 

during off peak hours of summer and winter months. 



Table 8.19. Case 3: Monthly Average P&L for 1MW ofVirtual Bid 

I Peak/Off-peak 
Month I Off Peak Peak 
January $ 24.84 $ 40.38 
February $ 25.02 $ 29.15 
March $ 18.52 $ 20.21 
April $ 16.05 $ 29.70 
May $ 10.90 $ 22.01 
June $ 29.48 $ 31.02 
July $ 27.83 $ 43.84 
August $ 39.12 $ 32.45 
September $ 28.31 $ 40.87 
October $ 18.03 $ 26.92 
November $ 15.07 $ 18.83 
December $ 24.72 $ 48.88 
Grand Total $ 23.17 $ 31.81 

Table 8.20. Case 3: Seasonal Average P&L for 1MW of Virtual Bid 

r Peak/Off-peak 
Season 1 Off Peak Peak 

Shoulder $ 18.57 $ 25.90 
Summer $ 31.54 $ 38.79 
Winter $ 22.43 $ 34.27 

Table 8.21. Case 3: Seasonal Average P&L for 1MW ofVirtual Offer 

I Peak/Off-peak 
Season I Off Peak Peak 

Shoulder $ 14.87 $ 18.92 
Summer $ 17.83 $ 15.89 
Winter $ 17.57 $ 17.24 

8.4.2.1.4. Case 4: Both forecast RTP and forecast DAP are 5% higher than 

the true values. For virtual bid, the profit calculated based on the simulated data are 

shown in Tables 8.23, and 8.24. Profits from virtual offer trading are shown in Tables 
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8.25, and 8.26. The virtual bids make profit approximately 50.60% of the time and 

approximately 49.39% of the times virtual offers make profit. Profits from the virtual 

bids are higher during the summer months followed by winter and shoulder months (for 

peak hours). However, virtual offers are most profitable during peak hours of the 

shoulder months and during off peak hours of summer and winter months. 

Table 8.22. Case 3: Monthly Average P&L for lMW of Virtual Offer 

I Peak/Off-peak 
Month I Off Peak Peak 

January $ 17.89 $ 14.75 
February $ 20.48 $ 21.15 
March $ 11.87 $ 13.64 

April $ 16.07 $ 20.33 

May $ 16.63 $ 20.87 

June $ 16.60 $ 20.92 

July $ 18.09 $ 11.42 
August $ 16.70 $ 19.70 

September $ 18.60 $ 16.22 

October $ 13.16 $ 18.99 

November $ 12.38 $ 20.81 

December $ 19.57 $ 12.31 

Grand Total $ 16.53 $ 17.62 

Table 8.23. Case 4: Seasonal Average P&L for lMW of Virtual Bid 

Season 
Shoulder 
Summer 
Winter 

I Peak/Off-peak 
I Off Peak Peak 

$ 20.52 $ 28.63 
$ 34.86 $ 42.87 
$ 24.79 $ 37.88 

8.4.2.2. Net long position and forecast RT load< forecast DA demand and/or 

forecast RT LMPs <forecast DA LMP. The forecasted price and load data are 
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compared for the conditions mentioned in the case title. In this strategy, the trader (who is 

long in the market) buys the forecasted load with a demand bid, and uses the virtual offer 

to sell back part of the load. If the forecasted RT Load is greater than the forecasted DA 

demand or the forecasted RT LMP is smaller than the forecasted DA LMP, then the 

strategy is to use the virtual offer to sell back part of the load. The profit and loss (P&L) 

associated with virtual offer strategy for 1 MW of virtual offer cleared is calculated based 

on simulated DAP and RTP. The P&L results are shown in Figure 8.3. Approximately 

80.33% of the times, the strategy yield a profitable position. 

Table 8.24. Case 4: Monthly Average P&L for lMW ofVirtual Bid 

I Peak/Off-peak 

Month I Off Peak Peak 

January $ 27.46 $ 44.63 

February $ 27.65 $ 32.22 

March $ 20.47 $ 22.34 

April $ 17.74 $ 32.83 

May $ 12.05 $ 24.32 

June $ 32.58 $ 34.29 

July $ 30.76 $ 48.46 

August $ 43.24 $ 35.87 

September $ 31.29 $ 45.18 

October $ 19.93 $ 29.75 

November $ 16.66 $ 20.81 

December $ 27.33 $ 54.03 

Grand Total $ 25.61 $ 35.16 

Table 8.25: Case 4: Seasonal Average P&L for lMW ofVirtual Offer 

I Peak/Off-peak 

Season I Off Peak Peak 

Shoulder $ 16.43 $ 20.91 

Summer $ 19.71 $ 17.56 

Winter $ 19.42 $ 19.05 
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Table 8.26. Case 4: Monthly Average P&L for 1MW of Virtual Offer 

I Peak/Off-peak 
Month I Off Peak Peak 
January $ 19.77 $ 16.30 
February $ 22.64 $ 23.38 
March $ 13.12 $ 15.07 
April $ 17.76 $ 22.47 
May $ 18.38 $ 23.07 
June $ 18.34 $ 23.12 
July $ 19.99 $ 12.63 
August $ 18.46 $ 21.77 
September $ 20.56 $ 17.93 
October $ 14.54 $ 20.99 
November $ 13.69 $ 23.00 
December $ 21.63 $ 13.61 
Grand Total $ 18.26 $ 19.48 

8.4.2.3. Market gaming. The market participant tries to manipulate the market 

condition by decreasing its demand bids, and at the same time offering full generation 

resources. It also uses virtual bids during the same hours. In this case, the DA demand is 

assumed to decrease by 10% because ofthe lower DA Demand bid by the participant. 

With this strategy, the market participant plays a speculative game in which their strategy 

causes the DA price to go down. However, in RT the load increases causing a price spike. 

This speculative trade will take the advantage of this price manipulation by using a 

virtual bid. It is assumed that the trader engages this strategy everyday during the year 

irrespective of what the models says about possible price deviation. The strategy is 

evaluated by using the simulated dataset. The P&L is also calculated based on simulated 

DAP and RTP. The simulation for this case uses the assumption that the DAD will 

decrease by 10% because of lowered DA demand bid by the participant. The P&L results 

are shown in Figure 8.3. The net P&L during the year from this strategy is $17, 6374.56. 

The maximum P&L from 1MW cleared virtual offer was $99.36 and minimum was 

$127.43 and the average P&L was $20.19. Although it seems that there were higher 

losses compared to daily profits, there were more profitable trades, which make the net 

P&L to be high profit. The simulation also shows that 75% of the times the strategy 

would yield a profitable position. 
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Figure 8.3. P&L from Virtual Supply Strategy when RTL<DAD and RTP<DAP 

8.5. DISCUSSION 
From the simulation results, it is inferred that the virtual bids are most profitable 

during the summer and virtual offer strategies are most profitable during the shoulder 

months. In summer months, it is often noticed that the R T price spikes up due congestion 

and weather related reasons. Summer months tend to be more volatile, at least in the past 

two years when. Therefore, the virtual bids were most profitable during the summer 

months. On the other hand shoulder months tend to be flat in terms of load. This makes 

the R T price not to fluctuate too much except when there is heaving congestion or other 

physical problems in the transmission line. Therefore, virtual offers which takes 

advantage when the DA price is higher than RT price, was more profitable during the 

shoulder months. 

Nevertheless, our model does not account for physical phenomenon in the 

electricity grids and their affect on the market speculation. While general consensus is 
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that the shoulder months exhibit lower volatility and summer months exhibit higher 

volatility, it is important for the participants to know different cases (where the price and 

load swings differently from their forecasts) as it was shown in the example cases. Since 

the weather forecast has huge impact on load and price changes, the virtual trader 

probably speculates more often than hedging. The speculators do bring more liquidity to 

the market; however, as shown in Section 8.4.2.3, speculators can influence RT price by 

changing their bidding habits. The proposed model does not capture such market gaming 

except through the GARCH component that captures the realized volatility in the model. 

The analysis presented in this dissertation provides some evidence that it is 

possible for a market participant with significant presence to manipulate the market price. 

While simulating this particular market gaming example, the profitability is tested by 

changing amounts of the must run units. The resulting case still yields the same expected 

situation. However, market manipulation is illegal and the independent market monitors 

(IMM) commissioned by the ISOs and regulatory commissions such as FERC constantly 

monitor the market happenings. If they find a consistent pattern in bidding strategy which 

may cause to price manipulation, the law takes its own course of action against such 

manipulators. The latest case is of Edison Electric Company which was fined $7 million 

by FERC in May 2008 for possible market manipulation and data manipulation. Every 

time there is a sudden spike in market price, the IMMs investigate the situation. 

In general, the virtuals are found to give an opportunity to the market participants 

to effectively shift their exposure. However, the constraint would be the feasibility of 

accurate forecasting and the bid and offer price the trader may be willing to submit. Since 

the market structure does not allow the trader to see what other participants are bidding or 

offering for, they have to rely on their model and expected bidding and offering amounts. 

Also, it is not necessary for your bid or offer to clear completely and even if it clears, the 

clearing price may not be attractive for the trader's purpose. This leads us to believe that 

although the main purpose for virtuals is to hedge, it is almost a speculative trading 

position. Clearly, the market structure and characteristics of the electricity market does 

not allow the trader to perfectly hedge his or her position using virtual. 

There are other examples where virtuals are used as a risk management tool 

against congestion risk. These strategies have not been discussed in this dissertation. 
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Researchers have indicated that the traders can also manipulate the market using the 

victuals and financial products related to the congestions. The trader can use heavy 

volume of the victuals to over schedule a particular CPNode area in DA market and then 

taking opposite position in the R T market using the victuals. Such manipulation is 

obviously illegal. 

While the proposed simulation models serve its main purpose of demonstrating 

virtual trading and how hedgers and speculators can manage their trades, they can further 

be improved. The following section discusses some of the drawbacks of the model and 

possible improvements. 

i) It was assumed that the congestion cost will be reflected in the actual market 

observed price. While it is true, the market speculation can also spike the price 

up. Therefore, it may not reflect true congestion cost or energy cost. 

Therefore, breaking down the price into its original components-energy cost, 

congestion cost and loss component will probably help to improve the 

performance. 

ii) MISO publishes the shadow price for different CPNodes. Shadow price 

refl~cts the possible congestion cost in different nodes. Inclusion of shadow 

price will probably improve the performance of our models. 

iii) Transmission line and unit outages are major issues in electricity market which 

can rise price speculation, congestion cost etc. Therefore, including outage 

information into the statistical model will help explain the impact of sudden 

changes in the market dynamics. 

iv) We had divided the weeks based on weekend and weekdays. However, 

people's energy usage pattern is different depending on different days. In fact, 

although Friday is a weekday, people's usage pattern change significantly from 

Thursday to Friday. So, the performance may improve by dividing the week 

into three parts-Monday through Thursday, Friday, Saturday and Sunday. 

Other possibility is modeling each day separately. 

v) Weather is an important part of the electricity market. The model was built 

based on daily average of weather variables. The hourly weather could 

significantly vary within the day and that would affect the load and price 
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information. Therefore, the model performance will significantly improve if 

actual hourly weather data is included. 

vi) The price models could become more robust if gas and oil prices are included. 

8.6. CONCLUSION 

The MISO electricity market is relatively new in the US and the market structure 

is still improving. The electricity market dynamics change fi'om market to market. The 

objective of this dissertation was to test the strategies under certain MISO market 

conditions. The proposed models were built and tested based on the MISO day-ahead and 

real time load data, Cinergy hub Locational Marginal Prices (LMP) and virtual bids and 

offers cleared at the same node. Since virtuals are relatively new financial products, it 

was important to test different hedging and speculative strategies involving virtuals. The 

motivation to analyze the virtuals came from the fact there are only a few literature that 

explicitly describe different hedging strategies involving the virtuals in this market. 

There are some market structure literatures that describe how virtuals may affect the 

market. This dissertation stands different from those. Instead of testing the market 

structure, a statistical simulation model is proposed to test how hedgers and speculators 

can use the available information to make an investment decision. The models test how 

different trading scenarios perform under different conditions. Based on the discussions 

presented in this dissertation, it can be concluded that the virtuals are helpful tools to 

manage the DA/RT risks. The key is to have an accurate understanding how the market 

moves. The simulation models serve the purpose. 

The analysis presented in this thesis shows that the cleared virtual supply volume 

and the difference between cleared virtual supply and bids help in price divergence. 

However, regression coefficients for these two explanatory variables are small. This 

indicates that the rate at which virtuals alone may affect the price divergence is not very 

large. There are other explanatory variables that help understand the divergence that 

exists between DA <:mel RT price. Also, the virtual bid appears to be safer strategy during 

the summer and winter periods and the virtual offer trading is more profitable during 



shoulder moatl1s. The model performance and robustness can improve if several other 

important variables are tested and possibly included. 
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Figure B.l. PCA of CDD 

Table B. I. EigenVectors ofPCs ofthe CDD 
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Table B.2. EigenVectors of PCs of the HDD 
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Table B.3. Eigen Vectors of PCs of the Cloud Cover 
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Figure B.4. PCA of Maximum Dew Point 

Table B.4. EigenVectors of PCs of the Maximum Dew Point 
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Figure B.S. PCA of Maximum Humidity 

Table B.S. EigenVectors ofPCs ofthe Maximum Humidity 
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Figure B.6. PCA ofMaximum Wind Speed 

Table B.6. EigenVectors ofPCs ofthe Maximum Wind Speed 
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Figure B.7. PCA of Mean Dew Point 

Table B.7. EigenVectors ofPCs of the Mean Dew Point 

0.268933 -.201168 -.405712 -.282734 0.380693 -.592620 

-.394306 0.098995 0.107003 -.166690 -.695957 -.406888 

-.147089 -.687824 0.125296 0.585371 0.032481 0.065574 

0.063253 -.101714 -.509649 -.303059 -.229626 0.658017 

-.070066 0.662075 -.262265 0.564714 0.163683 0.002375 

-.437550 0.110404 0.459290 -.372502 0.513134 0.201077 

136 



137 

4 

Eigenvalue Plot 
~------------------~~~ 

• Cumulati~~e Proportion 
· .. · · • .. · · Proportion 

3 
0.8 

<: 
0.6 0 

't 
0 
c. 
0 ..... c... 0.4 

0.2 ... 
0 

. .. .. .... .. .. .. ... . ........ . ......... . 

1 2 3 4 5 6 7 1 2 4 6 7 

Pri ncipal Component Number Principal Component Number 

Figure B.S. PCA of Mean Humidity 

Table B.S. Eigen Vectors of PCs ofthe Mean Humidity 
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Figure B.9. PCA of Mean Wind Speed 

Table B.9. EigenVectors ofPCs of the Mean Wind Speed 
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0.247943 -.573093 0.205089 0.371332 -.154193 0.508633 

-.563375 0.193866 0.563195 -.289663 0.222302 0.302042 
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Figure B.l 0. PCA of Minimum Dew Point 

Table B.IO. EigenVectors ofPCs ofthe Minimum Dew Point 

0.298028 -.205869 -.386705 -.183594 0.226276 -.698243 

-.396688 0.028759 0.106188 -.148353 -.777759 -.239935 

-.079119 -.650090 0.298380 0.5675 18 0.107445 0.084536 

0.103299 -.201353 -.542533 -.264930 -.096253 0.653472 

-.140184 0.63 1653 -.290778 0.582692 0.125994 0.008878 

-.470178 0.135703 0.340041 -.452257 0.540778 0.072410 

139 



4 

Eigenvalue Plot 
~----------------~---

<: 
0 

·~ 
0 
0. 
0 
ct 

2 4 6 

Principal Component Number 

0.8 

0.6 

0.4 

0.2 

0 

---- Cumulative Proportion 
··· ·· • ·· ·· Proportion 

•··. . ......... . •· 
······• ······· ·• 

2 4 6 

Principal Component Number 

Figure B.ll. PCA of Minimum Humidity 

Table B.ll. EigenVectors ofPCs ofthe Minimum Humidity 

0.413938 -.390477 0.387874 -.256777 0.465110 -.325200 

-.333273 0.040039 -.189666 -.114841 -.406086 -.699874 

0.126976 -.235773 -.511 270 0.678028 0.221989 0.064480 

0.160759 -.342899 0.133609 -.14611 4 -.610470 0.509269 

-.362645 0.333923 0.653004 0.433504 0.091502 0.105370 

-.422275 0.148991 -.305768 -.495880 0.427955 0.360275 
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Figure B.12. PCA ofPrecipitation 

Table B. 12. EigenVectors of PCs of the Precipitation 

0.580715 -.070300 -.129405 -.464474 0.557128 0.061717 

-.291258 0.079487 -.075995 -.0 I 6225 0.069066 -.801872 

0.043548 -.222256 -.089789 0.782106 0.266600 0.254541 

0.511992 -.156091 0.270753 0.004832 -.704983 -.051868 

-.348477 0.220584 0.730890 -.193375 0.146534 0.324259 

-.338488 0.083567 -.593275 -.289067 -.307625 0.424807 
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APPENDIX C. 

COMPUTER PROGRAMS 



C.l. SAS Program for DA Demand 

ods rtf; 

ods graphics on; 

proc ucm data=dademanddata; 

id HR interval=hour; 
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model DADemand_phy= Dum_Peak Dum_WKD tmpprnhdd tmphdd_tomo tmpprncdd 

Seaduml Seadum2 MinHumPrnl MinHumPrn2 MinHumPrn3 MinHumPrn4 MaxWindPrnl 

MaxWindPrn2 MaxWindPrn3 MaxWindPrn4 MaxWindPrnS MeanWindPrnl 

MeanWindPrn2 MeanWindPrn3 MeanWindPrn4 MeanWindPrnS preciPrnl 

preciPrn2 preciPrn3 preciPrn4 preciPrnS preciPrn6 cloudPrnl cloudPrn2 

cloudPrn3 cloudPrn4 cloudPrnS 

irregular; 

cycle period=24 noest=period plot=smooth; 

run; 

ods graphics off; 

ods all close; 



C.2. SAS Program for DA Price 

ods rtf; 

ods graphics on; 

proc 

model 

autoreg data=dapdata; 

LogDAprice = LogDAprice_t_l LogDAprice_t_24 DADemand_phy 

Seaduml Seadum2 Dum Peak Dum WKD 

/garch=(p=l,q=l) noint; 

run; 

ods graphics off; 

ods rtf close; 
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C.3. SAS Program for RT Price 

ods rtf; 

ods graphics on; 

proc autoreg data=allprice2; 

model lnP t = lnP_t_l RTLoad Net_Schedu_Imports Gen reso Must Run 

Gen_Reso_Emerg Seaduml Seadum2 Dum Peak Dum WKD 

I garch=(p=l,q=l) noint; 

run; 

ods graphics off; 

ods rtf close; 
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clear all; 
clc; 

C.4. Block Bootstrap 

[~~B~Cl=xlsread('C:\pcadata4Jan_Final' 1 'pcresidualdata' 'b1:ab373'). 
mJ..nhum1=A(: 11); 1 1 

minhum2=A ( : 1 2) ; 
minhum3=A (: 1 3) ; 
minhum4=A ( : 1 4) ; 
maxwind1=A(: 15); 
maxwind2=A(: 16); 
maxwind3=A(: 17); 
maxwind4=A(: 18); 
meanwind1=A(: 110); 
meanwind2=A(: 111); 
meanwind3=A(: 112); 
meanwind4=A(: 113); 
meanwind5=A(: 114); 
precip1=A(: 115); 
precip2=A(: 116); 
precip3=A(: 117); 
precip4=A(:I18); 
precip5=A(: 119); 
cloud1=A(: 121); 
cloud2=A (: 122) ; 
cloud3=A(: 123); 
temp1cdd=A(:I26); 
temp1hdd=A(: 127); 
n=372; 
1=31; 
k=12; 
blks=unidrnd(kl11k); 
for i=1:k 
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new_minhum1(((i-1)*1+1): (i*l))=minhum1(((blks(i)-1)*1+1): (blks(i)*l)); 
new_minhum2(((i-1)*1+1): (i*1))=minhum2({(b1ks(i)-1)*1+1): (blks(i)*l)); 
new_minhum3(({i-1)*1+1): (i*l))=minhum3(((b1ks(i)-1)*1+1): (blks(i)*l)); 
new_minhum4(({i-1)*1+1): (i*1))=minhum4(((blks(i)-1)*1+1): (blks(i)*l)); 
new_maxwind1(((i-1)*1+1): (i*1))=maxwind1(((b1ks(i)-1)*1+1): (blks(i)*l)); 
new_maxwind2(((i-1)*1+1): (i*1))=maxwind2(((b1ks(i)-1)*1+1): (blks(i)*l)); 
new_maxwind3(((i-1)*1+1): (i*1))=maxwind3(((blks(i)-1)*1+1): (blks(i)*l)); 
new_maxwind4(((i-1)*1+1): (i*l))=maxwind4(((b1ks(i)-1)*1+1): (blks(i)*l)); 
new_meanwind1(((i-1)*1+1): (i*l))=meanwind1(((blks(i)-
1) *1+1): (blks (i) *1)); 
new_meanwind2(({i-1)*1+1): (i*l))=meanwind2(((blks(i)-
1) *1+1): (b1ks (i) *l)); 
new_meanwind3(((i-1)*1+1): (i*l))=meanwind3(((blks(i)-
1) *1+1): (b1ks (i) *1)); 
new_meanwind4(((i-1)*1+1): (i*l))=meanwind4(((blks(i)-
1) *1+1): (blks (i) *l)); 
new_meanwindS(((i-1)*1+1): (i*l))=meanwindS(((blks(i)-
1) *1+1): (blks (i) *l)); 
new_precip1(((i-1)*1+1): (i*l))=precip1(((blks(i)-1)*1+1): (blks(i)*l)); 
new_precip2 ( ( (i-1) *1+1): (i*l)) =precip2 ( ( (blks (i) -1) *1+1): (blks (i) *l)); 
new_precip3 ( ( (i-1) *1+1): (i*l)) =precip3 ( ( (b1ks (i) -1) *1+1): (blks (i) *l)); 
new_precip4(((i-1)*1+1): (i*l))=precip4(((blks(i)-1)*1+1): (blks(i)*l)); 
new_precip5 ( ( (i-1) *1+1): (i*l)) =precipS ( ( (b1ks (i) -1) *1+1): (blks (i) *l)); 
new_c1oud1(({i-1)*1+1): (i*1))=cloud1(((b1ks(i)-1)*1+1): (blks(i}*l)); 
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new_c1oud2 ( ( (i-1) *1+1): (i*1)) =c1oud2 ( ( (b1ks (i) -1) *1+1): (b1ks (i) *1)). 
new_c1oud3 ( ( (i-1) *1+1): (i*1)) =c1oud3 ( ( (b1ks (i) -1) *1+1): (b1ks (i) *1)): 
new_temp1cdd(((i-1)*1+1): (i*1))=temp1cdd(((b1ks(i)-1)*1+1): (b1ks(i)~1)). 
new_temp1hdd ( ( (i-1) *1+1) : (i*1)) =temp1hdd ( ( (b1ks (i) -1) *1+1): (b1ks (i) *1)): 
end ' 

b1cboot minhum1=new minhum1' · 
b1cboot-minhum2=new-minhum2': 
b1cboot-minhum3=new-minhum3': - - ' 
b1cboot_minhum4=new_minhum4'; 
b1cboot_maxwind1=new_maxwind1'; 
b1cboot_maxwind2=new_maxwind2'; 
b1cboot_maxwind3=new_maxwind3'; 
b1cboot_maxwind4=new_maxwind4'; 
b1cboot_maxwind4=new_maxwind4'; 
b1cboot_maxwind4=new_maxwind4'; 
b1cboot_maxwind4=new_maxwind4'; 
b1cboot_maxwind4=new_maxwind4'; 
b1cboot_meanwind1=new_meanwind1'; 
b1cboot_meanwind2=new_meanwind2'; 
b1cboot_meanwind3=new_meanwind3'; 
b1cboot_meanwind4=new_meanwind4'; 
b1cboot_meanwind5=new_meanwind5'; 
b1cboot_precip1=new_precip1'; 
b1cboot_precip2=new_precip2'; 
b1cboot_precip3=new_precip3'; 
b1cboot_precip4=new_precip4'; 
b1cboot_precip5=new_precip5'; 
b1cboot_c1oud1=new_c1oud1'; 
b1cboot_c1oud2=new_c1oud2'; 
b1cboot_c1oud3=new_c1oud3'; 
b1cboot_templcdd=new_temp1cdd'; 
b1cboot_templhdd=new_temp1hdd'; 

for m=l: 31 
b1ockboot_minhumll(m, :)=b1cboot_minhum1(m, :) ; 
b1ockboot_minhum12(m, :)=b1cboot_minhum2(m, :) ; 
b1ockboot_minhum13(m, :)=b1cboot_minhum3(m, :) ; 
b1ockboot_minhum14(m, :)=b1cboot_minhum4(m, :) ; 
b1ockboot_maxwind1(m, :)=b1cboot_maxwind1(m, :) ; 
b1ockboot_maxwind2(m, :)=b1cboot_maxwind2(m, :) ; 
b1ockboot_maxwind3(m, :)=b1cboot_maxwind3(m, :) ; 
b1ockboot_maxwind4(m, :)=b1cboot_maxwind4(m, :) ; 
b1ockboot meanwindl(m, :)=b1cboot meanwindl(m, :) ; 
b1ockboot=meanwind2(m, :)=b1cboot=meanwind2(m, :) ; 
b1ockboot meanwind3(m, :)=b1cboot meanwind3(m, :) ; 
b1ockboot-meanwind4(m, :)=b1cboot=meanwind4(m, :) ; 
b1ockboot-meanwind5(m, :)=b1cboot_meanwind5(m, :) ; 
b1ockboot~recipl(m, :)=b1cboot_precipl(m, :) ; 
b1ockboot_precip2(m, :)=b1cboot_precip2(m, :) ; 
b1ockboot_precip3(m, :)=b1cboot_precip3(m, :) ; 
b1ockboot_precip4(m, :)=b1cboot_precip4(m, :) ; 
b1ockboot_precip5(m, :)=b1cboot_precip5(m, :) ; 

b1ockboot c1oud1(m, :)=b1cboot_c1oud1(m, :) ; 
b1ockboot-cloud2(m, :)=blcboot_c1oud2(m, :) ; 
b1ockboot-cloud3(m, :)=b1cboot_cloud3(m, :) ; 



blockboot_cdd(m, :)=blcboot_templcdd(m, :) ; 
blockboot_hdd(m, :)=blcboot_templhdd(m, :) ; 
m=m+l; 

end 
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bootstrppc_allvariable=[blockboot_minhumll, blockboot_minhuml2, 
blockboot_minhum13, blockboot_minhuml4, blockboot_maxwindl, 
blockboot_maxwind2, blockboot_maxwind3, blockboot_maxwind4, 
blockboot_meanwindl, blockboot_meanwind2, blockboot_meanwind3, 
blockboot_meanwind4, blockboot_meanwinds, blockboot_precipl, 
blockboot_precip2, blockboot_precip3, blockboot_precip4, 
blockboot_precipS,blockboot_cloudl, blockboot_cloud2, blockboot_cloud3, 
blockboot_cdd, blockboot_hdd] ; 

[status, message]=xlswrite('C:\simoutput', bootstrppc_allvariable, 
'simout'); 



clear all; 
clc; 

for col=1:1000 

C.4. Simulating DA Demand Process 

period=24; 
lamda=(2*3.14)/period; 
m=60.19; 
he1=48.53; 
mean=50.93; 
m_mean=m-mean; 
he1_mean=he1-mean; 
beta=he1_mean; 
alpha=sqrt((m_mean)A2- (he1_mean)A2); 
damping_factor=.96714; 
rho= damping_factor; 
sigma_v=sqrt(.0493748); 
A=[cos(lamda) sin(lamda); -sin(lamda) cos(lamda)]; 

for t=2:745 
v(t 1 :)=normrnd(0 1 sigma_v); 
v_star(t 1 :)=normrnd(0 1 sigma_v); 
psi(1 1 1)=alpha; 
psi_star(1 1 1)=beta; 
psi(t 1 :)= psi(t-1)*cos(lamda)*rho+ psi star(t- 1)*sin(lamda) 

*rho+v(t~:); 
psi star(t 1 :)=-psi(t-1)*sin(lamda)*rho+ cos(lamda)*psi star(t-1) 

*rho+v_star(tl :) ; 
t=1+1; 

end 
psi_final=psi; 

irreg=.0000001059335; 
[A 1 B 1 C]=xlsread('C:\PCA_2007HOURLY3' 1 'pc' I 'd1:ae8761'); 

dum _pk=A ( : 1 1) ; 
dum wkd=A ( : 1 2) ; 
seadum1=A (: 1 3) ; 
seadum2=A (: 1 4) ; 
minhum1=A ( : 1 5) ; 
minhum2=A (: 1 6) ; 
minhum3=A (: 1 7) ; 
minhum4=A (: 1 8) ; 
maxwind1=A(:I9); 
maxwind2=A(:I10); 
maxwind3=A(:I11); 
maxwind4=A (:I 12) ; 
meanwind1=A(:Il3); 
meanwind2=A(:Il4); 
meanwind3=A(: 1 15); 
meanwind4=A(: I 16); 
meanwind5=A(:I17); 
precip1=A (:I 18) ; 
precip2=A(: I 19); 
precip3=A(: 120); 
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precip4=A(:,21); 
precip5=A (: , 22) ; 
cloud1=A (:, 23) ; 
cloud2=A (:, 24) ; 
cloud3=A(:, 25); 
temp1cdd=A(: ,26); 
temp1hdd=A(:,27); 
temphddtom=A(:,28); 

for h=2:745 
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dad(h, :)=irreg+.96714*psi_final(h, :)+3.24391*dum_pk(h, :)+4.75425*dum_wkd 
(h, :)+.27157*temp1hdd(h, :)+.09662*temp1cdd(h, :)+.23298*minhum1(h, :)+.048 
99*minhum2(h, :)+.0721*minhum3(h, :)+.02834*minhum4(h, :)+.63719*maxwind1(h 
, :)+.27705*maxwind2(h, :)-.08672*maxwind3(h, :)+0.09610*maxwind4(h, :)-
0.37646*meanwind1(h, :)-.18672*meanwind2(h, :)+.21156*meanwind3(h, :)­
.18099*meanwind4(h, :)+.19371*meanwind5(h, :)-6.77317*precip1(h, :)-
2.11522*precip2(h, :)-2.4467B*precip3(h, :)+2.33523*precip4(h, :)-
1.71043*precip5(h, :)-.27438*cloud1(h, :)-.43525*cloud2(h, :)­
.21062*cloud3(h, :)+3.87488*seadum1(h, :)-
3.26998*seadum1(h, :)+.34917*temphddtom(h, :) ; 
h=h+1; 
end 
dad_sim(:, col)=dad; 
col=col+1; 
end; 

for avg=2:745 
dad_fin2(avg,1)=MEAN(dad_sim(avg, 1:1000)); 
avg=avg+1; 
end 

dad fin=dad fin2; 
[status, message]=xlswrite('C:\dad_simout' I dad_fin, 'JanDAD_output'); 



clear all; 
clc; 
for col=1:1000 

C.5. DA Price process 

[A,B]=xlsread{'C:\ DAPsimvar2007', 'dap'); 
a1=.3634; 
a2=.5087; 
a3=.006539; 
a4=.007028; 
a5=.0613; 
a6=-0.0361; 
a7=-.007017; 
arch0=0.006295; 
arch1=.7982; 
garch1=0.0382; 
h=zeros{8761,1); 
e=zeros{8761,1); 
epsilon=zeros{8761,1); 
P=A{: I 6) i 

dum_pk=A{:, 1); 
dum_wkd=A{:, 2); 
seadum1=A { : , 3) ; 
seadum2=A{:, 4); 
ld_fcst=A(:, 5); 
h0=randn{1); 
e0=randn{1); 
h{1,1)=h0; 
e{1,1)=e0; 

for i=2:745 
e{i,1)=randn(1); 

end 

h{i)=archO + arch1*e{i-1,1)*e{i-1,1)+garch1*h{i-1,1); 
epsilon(i,1)=sqrt{h{i,1))*e{i,1); 
i=i+1; 

ep=epsilon { : , 1) ; 

for t=25:770 
P(t, :)=a1*P{t-1,1)+a2*P(t-24,1)+a3*ld_fcst(t, :)+a4*dum_pk{t, :)+ 

aS*dum_wkd(t, :)+a6*seadum1(t, :)+a7*seadum2(t, :)+ ep{t, :) ; 
t=t+1; 

end 
P(:, col)=P; 
col=col+1; 
end; 

for avg=2:745 
dap_fin2{avg,1)=MEAN(P{avg, 1:1000)); 
avg=avg+1; 
end 

dap_fin=dap_fin2; 
P_n=exp{dap_fin (:,1)); 
[status, message]=xlswrite{'C:\dap_sim', P_n, 'DAprc_simuout'); 
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clear all; 
clc; 

for col=1:1000 

period=24; 
lamda=(2*3.14)/period; 
m=60.19; 
he1=48.53; 
mean=50.93; 
m_mean=m-mean; 
he1_mean=he1-mean; 
beta=he1_mean; 

C.6. Simulating RT Load Process 

alpha=sqrt((m_mean)A2- (he1_mean)A2); 
damping_factor=.87442; 
rho= damping_factor; 
sigma_v=sqrt(1.88735); 
A=[cos(lamda) sin(lamda); -sin(lamda) cos(lamda)]; 

for t=2:745 
v(t, :)=normrnd(O,sigma_v); 
v_star(t, :)=normrnd(O,sigma_v); 
psi(1,1)=alpha; 
psi_star(1,1)=beta; 
psi(t, :)= psi(t-l)*cos(lamda)*rho+ psi_star(t-l)*sin(lamda) * 

rho+v ( t, : ) ; 
psi_star(t, :)=-psi(t-1)*sin(lamda)*rho+ cos(lamda)*psi_star(t-1) * 

rho+v_star(t, :) ; 
t=1+1; 

end 

psi_final=psi; 
irreg=.000000122741; 
[A,B,C]=xlsread('C:\RTLoadsim', '2007', 'a1:q8761'); 
dum_pk=A(:, 1); 
dum wkd=A(:, 2); 
seadum1=A ( : , 3) ; 
seadum2=A (:, 4) ; 
minhuml=A ( : , 5) ; 
minhum2=A (:I 6) ; 
minhum3=A (:, 7) ; 
maxwind1=A(:,8); 
maxwind2=A(:,9); 
meanwind1=A(:,10); 
precip1=A(:,l1); 
precip2=A (:, 12) ; 
cloud1=A (: 1 13); 
cloud2=A(: ,14); 
cloud3=A(: 1 15); 
temp1cdd=A(: 1 16); 
templhdd=A(:,17); 
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for h=2:745 
rt 1 ( 1 , : ) =58 . 0 4 9 ; 
rtl(h, :)=irreg+.87442*psi_final(h, :)+.84847*rtl(h-

l, :)+1.28357*dum_pk(h, :)+.53386*dum_wkd(h, :)+.60800*seaduml(h, :)-
0.63207*seadum2(h, :)+0.09347*templhdd(h, :)+.01704*temp1cdd(h, :)+.04013*m 
inhuml(h, :)+.00614*minhum2(h, :)+.01334*minhum3(h, :)+.08731*maxwindl(h, :) 
+.04618*maxwind2(h, :)-.04290*meanwindl(h, :)-1.20852*precip1(h, :)­
.3318l*precip2(h, :)-.06358*cloudl(h, :)-.07139*cloud2(h, :)­
.02395*cloud3(h, :) ; 

h=h+l; 
end 

rtl sim(:, col)=rtl; 
col=col+l; 
end; 

for avg=2:745 
rtl_fin2(avg,1)=MEAN(rtl_sim(avg, 1:1000)); 
avg=avg+l; 
end 

rtl fin=dad fin2; 
rtl;ad final=rtl fin; 
[status, messagel=xlswrite('C:\rtl_simout', rtload_final, 'rtl simnout'); 



clear all; 
clc; 

for col=1:1000 

C.7. Simulating RT Price Process 

[A,B]=xlsread('C:\dummy_sim', '2007-2'); 
dum _pk=A ( : , 3) ; 
dum_wkd=A (:, 4) ; 
seadum1=A ( : , 5) ; 
seadum2=A (: , 6) ; 
ld_fcst=A(:, 7); 
scdimp=A(:, 8); 
mstrun=A(:, 9); 
emgncy=A (:, 10) ; 
h=zeros(8762,1); 
e=zeros(8762,1); 
epsilon=zeros(8762,1); 
lnP=zeros(8762,1); 
h0=randn{1); 
e0=randn(1); 
h(1,1)=h0; 
e(1,1)=e0; 

for i=2:745 
e(i,1)=randn(1); 

end 

h(i)=0.0703 + 0.1662*e(i-1,1)*e(i-1,1)+0.333*h(i-1,1); 
epsilon(i,1)=sqrt(h(i,l))*e(i,1); 
i=i+1; 

ep=epsilon(:,1); 
lnP(1,1)=2.897016; 

for t=2:745 
lnP(t, :)=.6043*lnP(t-1,1)+0.0180*ld_fcst(t, :)+0.0918*dum_pk(t, :)-

0.0426*dum_wkd(t, :)-.1398*seadum1(t, :)-0.0534*seadum2(t, :)+ 
ep(t, :)+0.005440*mstrun(t, :)+0.0190*emgncy(t, :)-0.0262*scdimp(t, :) ; 

t=t+1; 
end 

P(:, col)=lnP; 
col=col+1; 
end; 

for avg=2:745 
rtp_fin2(avg,1)=MEAN(P(avg, 1:1000)); 
avg=avg+1; 
end 

rtp_fin=rtp_fin2; 
RTP n=exp(rtp fin(:,1)); 
[status, message]=xlswrite('C:\ rtp_sim' I RTP_n, 'RTP_simuout'); 
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