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SUMMARY

The development of low-frequency sonar systems, using for instance a network of

autonomous systems in unmanned vehicles, provides a practical means for bistatic

measurements (i.e. when the source and receiver are widely separated) allowing for

multiple viewpoints of the target of interest. Time-frequency analysis, in particular

Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the

echo spectrum to differentiate a man-made target (e.g. elastic spherical shell) from a

natural one of the similar shape (e.g. solid). A key energetic feature of fluid loaded

and thin spherical shell is the coincidence pattern, or mid-frequency enhancement

echoes (MFE), that result from antisymmetric Lamb-waves propagating around the

circumference of the shell. This thesis investigates numerically the bistatic variations

of the MFE (with respect to the monostatic configuration) using the Wigner-Ville

analysis. The observed time-frequency shifts of the MFE are modeled using a previ-

ously derived quantitative ray theory for spherical shell’s scattering [35]. Additionally,

the advantage of an optimal array beamformer, based on joint time delays and fre-

quency shifts (over a conventional time-delay beamformer) is illustrated for enhancing

the detection of the MFE recorded across a bistatic receiver array.
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CHAPTER I

INTRODUCTION

Detecting and classifying proud or buried objects in shallow water is a challenging

problem with high practical importance. Some applications for this problem include,

but are not limited to; mine countermeasures (MCM) harbor protection; pipeline

maintenance; buried waste retrieval as well as underwater archeology [2]. In the

context of low-frequency active sonar, a key interest for MCM applications is the

ability to distinguish acoustic echoes of man-made targets (e.g. elastic shell) from

ocean reverberation (e.g. due to bottom or volume scattering) and ambient noise,

especially in the presence of multipath [10]. In particular, time-frequency analysis

has been shown to be a relevant tool for the acoustic detection and classification of

elastic shells and propagation in dispersive media [5, 33, 30].

Furthermore, the development of MCM sonar systems, for instance using a net-

work of autonomous systems in unmanned vehicles, provides a practical means for

bistatic measurements (i.e. when the source and receiver are widely separated) al-

lowing for multiple viewpoints of the target of interest [10, 16]. Such systems can po-

tentially yield bistatic enhancement for detection and classification capabilities when

compared to traditional monostatic systems (i.e. where the source and receivers are

co-located or closely spaced) [10, 16]. Consequently, in order to design optimum

receiver and signal-processing algorithms for such bistatic sonar systems, it is then

fruitful to understand the spatial and temporal variations of the bistatic acoustic

scattering responses of elastic shells.

The physics of acoustic scattering from elastic shells with simple shapes, such

as spheres or infinite cylinders, has been extensively studied both theoretically and
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experimentally [14, 17, 22, 25]. The main motivation of those studies is to develop a

precise description of the mechanisms of echo formation, in order to accurately de-

scribe the physical features of acoustic scattering. In particular, a practical goal is

to identify acoustic features unique to elastic shells (i.e. man-made objects) and how

these acoustic features change with a particular source-target-receiver geometry in

order to ultimately use these acoustic features for classification purposes. As shown

schematically in Fig. 2, a fluid loaded thin spherical shell produces a specular or di-

rect reflection (similar to any acoustically reflective hard object of comparable shape)

as well as guided waves (or Lamb waves) circumnavigating the shell. Consequently,

for traditional monostatic systems, a key energetic feature of a spherical shell is the

mid-frequency enhancement echo (MFE)-also called the coincidence pattern- that is

created by the coherent addition of the first antisymmetric Lamb waves (A0 mode)

propagating clockwise and counterclockwise around the shell. This MFE yields en-

ergetic acoustic echoes radiating in the surrounding fluid and thus provides a unique

acoustic signature of fluid loaded spherical shells, as previously demonstrated theo-

retically and experimentally (e.g. See Fig. 9)[14, 22, 34].

For instance, the frequency band of the MFE and the temporal spacing between

successive circumnavigating Lamb waves allows an estimate of the radius of the spher-

ical shell [24] as well as the shell material properties [13, 31]. Most time-frequency

analysis of the MFE have focused on source-receiver configuration close to monostatic

(i.e., when source and receiver are co-located in azimuthal angle with respect to the

shell’s centroid) where the MFE is most energetic [8, 9, 13]. The MFE persists for

bistatic configurations and thus still carries information about the physical features

of the elastic shell (e.g. see Fig. 13). However, a practical challenge of utilizing the

bistatic measurement is the significantly reduced amplitude of the bistatic MFE com-

pared to monostatic measurements. This renders the MFE detection more difficult in

the presence of high clutter or ambient noise levels. Consequently, bistatic detection
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of the MFE would need to be enhanced, for instance by combining the signals mea-

sured on an array of receivers using array beamforming techniques [12]. The design of

an optimal beamformer for MCM applications should be determined by the specific

time-frequency coherence of the bistatic MFE echoes in order to allow for an optimal

coherent addition of these echoes across a bistatic aperture [26].

The main goal of this thesis is to investigate theoretically and numerically the

bistatic variations of the MFE for a thin spherical shell that is fluid loaded utiliz-

ing time-frequency analysis. This canonical target shape was selected as its acoustic

scattered field and echo generation mechanism is well documented and understood.

The acoustic scattered field is computed from a modal expansion whose coefficients

are determined by the shell’s physical properties and appropriate boundary condi-

tions at the fluid interface using the classical formulation of Goodman and Stern

[6]. Time-frequency analysis of the most energetic bistatic echoes, associated with

the circumnavigating anti-symmetric Lamb waves, is performed using the Smoothed

Pseudo Wigner-Ville transform.

The main contribution of this thesis is to quantify the dependence of the time-

frequency shifts of the MFE on the bistatic receiver angles and explain the observed

time-frequency shifts using a previously derived quantitative ray theory for scattering

by a spherical shell [35]. Additionally, an array beamformer based on joint time-

frequency shifts is demonstrated to outperform a conventional time-delay beamformer

for enhancing the bistatic detection of the MFE for spherical shells.

1.1 Background

1.1.1 Fluid Loading Effects on Plates/Shell

The basic physical principles that are involved in the formulation of the scattered field

from a spherical shell are similar to those found when investigating a fluid loaded

plate. In such an instance, there are a combination of flexural and compressional
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Figure 1: Illustration of the Symmetric and Anti-symmetric wave modes that occur
in a fluid loaded plate. The plate compression and expansion at each surface is shown
by arrows. This depiction is taken from Fig. 8-15 in “Ultrasonic Waves in Solid
Media”[18]

waves formed, which can be separated into Anti-symmetric and Symmetric modes.

The zero order Antisymmetric mode (A0) and Symmetric mode (S0) exist over the

entire frequency range and typically carry more energy then higher order modes.

These two types of modes in a plate are depicted in Fig. 1. The solutions for

these modes are well understood and the vibrational behavior of a flat plate can be

calculated using the Rayleigh-Lamb equations [1]. In particular, the interaction of

the flexural and compressional waves can create a phenomenon called a leaky Lamb

mode, which radiates energy from the plate into the surrounding fluid medium. These

are the modes of interest for MCM purposes, due to the energy being ‘leaked’ into

the outer fluid medium. Additionally this physical behavior can now be extended to

a thin shell in which the plate is simply wrapped up into a sphere. Thus the behavior
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is no longer the true definition of a Lamb mode (since it is no longer occurring on

an infinite flat plate), and is why the literature sometimes refers to these waves as

Lamb-type modes.

1.1.2 Literature Review

The examination of the mid-frequency enhancement feature has been extensively

studied in articles covering a variety of spherical and cylindrical shells[8, 9, 13, 14,

17, 22, 25, 34]. Both theoretical and experimental analyses of fluid loaded shells were

reported. Many papers on this topic can be traced back to the closed form solution

model presented by Goodman and Stern. The canonical form of this solution and

extensive literature published for a spherical shell makes this shape an obvious choice

for theoretical analysis of the MFE using time frequency analysis [6]. Further work

was done by Felsen and Ho, in which exact and approximate formulations of fully

three-dimensional model of the scattered field from a spherical shell surface were

presented [4, 7].

One interesting phenomenon which occurs within the shell was presented by Sam-

melmann et al. in which the dispersion curve of the lowest anti-symmetric mode

was shown to bifurcate into two waves; a shell-borne and a fluid-borne wave, which

interact to create the MFE echo [19]. These two lowest order anti-symmetric modes

are commonly noted by the positive and negative indices, A0− and A0+ , which is used

to indicated there opposite nature.

Additionally, papers written by Talmant, Zhang, and Marston [14, 22, 34] covered

a variety of experiments, and ray modeling techniques to better understand the MFE

phenomenon with respect to differing types of excitation. These ray techniques will be

addressed further in the following chapter. Recently the MFE was studied in a paper

by Li [11] in which it was shown that the repetition and frequency of the MFE could

be used to estimate the radius and thickness of a shell for classification purposes.
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Though these articles investigate the formation mechanism of the MFE, none ex-

pand on the MFE features measured in a bistatic setup. Instead, previous literature

primarily focused on the backscatter (monostatic) direction, which is the most en-

ergetic direction for this feature due to the symmetry of the sphere and coherent

addition of clockwise and counter-clockwise circumnavigating waves. The bistatic

behavior is mentioned briefly in papers by Marston, Sun, and Zhang [14, 15, 21, 34],

but little attention is given to the time-frequency content of the MFE.

1.2 Motivation and Goals

As previously mentioned the motivation of this work is to be able to utilize unique

acoustic features of a man-made object in order to detect and classify the object based

on its structural response to acoustic excitation. The MFE is an obvious choice due

to its characteristics and highly energetic signal for spherical and cylindrical shells.

These shapes are used as a first order approximate model for mines and thus the

obvious appeal for MCM applications. Additionally the motivation of this work is to

lay groundwork and gain better understanding on the optimal way to process acoustic

echoes collected in a bistatic source and receiver setup. This motivation for optimal

processing of bistatic data comes from the advance and greater use of autonomous

underwater vehicles (AUVs). The deployment of multiple AUVs into an area allows

the collection of several bistatic viewpoints of the area. The practical problem is how

to process this bistatic data. The traditional thought is to use a moving source and

receiver as a synthetic array, in which one can create a virtual array along the AUV

path and use optimal array processing techniques to image an area, and or locate

targets (e.g. as used in Synthetic Aperture Sonar). This type of target searching

method with multiple AUVs allows greater area coverage when compared to a single

vessel as a source with a towed array. Each pulse from the source can now be collected

on multiple receivers at different viewpoints simultaneously. Additionally by taking
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advantage of synthetic aperture processing, the method does not require deployment

of physically large arrays.

The goal of this research is to study the MFE of a spherical shell, draw conclu-

sions about the usefulness of this acoustic feature for classification purposes and to

determine a method that may be used to enhance the signal of an MFE using bistatic

data. This particular problem of the MFE response with different source and receiver

locations may seem trivial on an axisymmetric object, however the wave interactions

of the antisymmetric lamb modes responsible for the MFE create a complex response.

It will be shown in this thesis, that this response changes in time and frequency, which

is a function of the angular separation of the source and receiver. Thus combining

receiver data from various bistatic angles requires more attention than is immediately

obvious. The outcome of this research would be to identify how the MFE varies with

source-receiver configuration. Consequently, one would gain the ability to predict

this bistatic MFE behavior in order to optimally process bistatic data to enhance the

MFE extraction from noisy recordings for classification purposes.

1.3 Thesis Organization

This thesis is divided into six chapters. Chapter II presents the methods including the

theoretical shell model used for computing the acoustic scattering from a spherical

shell along with the Wigner-Ville formulation used to analyze the time-frequency con-

tent of the bistatic MFE. Additionally, chapter II contains a physical interpretation

of the MFE using a quantitative ray interpretation to explain the observed time-

frequency shifts of the bistatic MFE arrival. Chapter III investigates the bistatic

evolution of the MFE arrival in the time and frequency domains. Chapter IV devel-

ops a generalized time-frequency beamformer formulation to coherently process MFE

echoes recorded along a bistatic sensor array, based on the previous findings. Finally,

chapter V summarizes the findings and conclusions drawn from this study.
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CHAPTER II

METHODS

2.1 Shell Model

The scattered field of a thin fluid-loaded elastic spherical shell is computed using

the classical theoretical formulation of Goodman and Stern[6] as described hereafter.

Assuming that an incident harmonic plane wave with amplitude P0 and frequency ω

impinges on a shell in a homogeneous free space medium with sound speed c0, the

harmonic scattered field, P (r, θ, t), recorded at a receiver may be decomposed into

a modal expansion. The inclination angle of the sphere is taken to be equal to zero

because it is not of particular concern in this study due to the azimuthal symmetry

of the sphere excited by a plane wave. Thus, the response calculations presented may

be applied for any selected inclination angle. The general equations and process for

this modal expansion will be reviewed here to set a basis for the research to follow.

This work summarizes the formula of the Goodman and Stern paper for a spherical

shell in free space[6].

In this approach, the displacement u is first expressed in terms of a scalar potential

φ and the vector potential ψ: u = ∇φ + ∇ × ψ [1]. Additionally the use of the

linearized Euler equation will allow the acoustic pressure to be determined from the

velocity via the displacement.

Using the decomposition of the displacement into scalar and vector quantities

allows the equation of motion to be easily satisfied by two separate wave equations

as follows.

(
1

C2
L

)(
∂2φ

∂t2
) = ∇2φ (1)
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(
1

C2
T

)(
∂2ψ

∂t2
) = −∇×∇× ψ (2)

Where CL = [(λ+ 2µ)/ρ](1/2) and CT = (µ/ρ)(1/2) are the longitudinal and trans-

verse wave speeds, respectively, given in terms of density ρ and Lamé’s constants λ

and µ. The problem can then be broken down further for each medium of interest

numbered as shown in Fig. 2. To simplify the representation the index, i will indi-

cate each of the three mediums. Now taking the wave-numbers, k to be the angular

frequency divided by the respective wave speed results in Eq. (3) and Eq. (4).

k2i,L ≡
ω2ρi

λi + 2µi
(3)

k2i,T ≡ ω2 ρi
µi

(4)

Then expressing each equation in terms spherical coordinates and assume a har-

monic time dependence of e−jωt before taking the time derivative, and substituting

the wave-numbers results in Eq. (5) and Eq. (6) for the potential functions.

(∇2 + k2i,L)φi = 0 (5)

1

r2
∂

∂r

(
r2
∂Ψi

∂r

)
+

1

r2
∂

∂θ

[
1

sin θ

∂

∂θ
sin θΨi

]
= −k2i,TΨi (6)

The modal form of the solutions, Ψi and φi, for these wave equations are the

typical Bessel functions jl and Legendre polynomials Pl that appear when solving

partial differential equations in spherical coordinates. Where l is the mode number,

and θ is the azimuthal angle on the shell, which is the only angle of importance in

the measurement due to the problem symmetry (see Fig. 2):

φi =
∞∑
l=0

Pl(cos θ)[Ailjl(ki,Lr) +Bi
lPl(ki,Lr)] (7)
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Ψi =
∞∑
l=0

∂

∂θ
Pl(cos θ)[Ci

l jl(ki,T r) +Di
lPl(ki,T r)] (8)

Finally, the appropriate boundary conditions must be applied to define the coeffi-

cient constants Ail, B
i
l , C

i
l , D

i
l . The boundary conditions for this problem are matching

displacements and normal stresses at the interfaces, and setting tangential stress to

be zero in the fluid domain, which allows one to obtain values for these coefficients. In

this study, the concern is only with the acoustic response in the outer fluid (i.e. only

the pressure field). Hence, the φ1 term is the only one of importance, and therefore

only the A1
l needs to be computed. This φ1 term can be written as:

φ1 =
∞∑
l=0

Pl(cos θ)A1
l hl(k1,Lr) (9)

Where hl is the Hankel function (Bessel function of the third kind). The scattered

field of a thin fluid-loaded elastic spherical shell can then be computed using the

modal expansion of scalar displacement in Eq. 9. Assuming that an incident harmonic

plane wave with amplitude P0 and frequency ω impinges on a shell then the harmonic

scattered field P (r, θ, t) [recorded at a receiver located in polar coordinates at (r, θ)

(see Fig. 2)] is decomposed into the modal expansion:

P (r, θ, t) = P0e
−iωt

∞∑
l=0

il(2l + 1)A1
l h

(1)
l (kr)Pl(cos θ) (10)

Therefore each modal contribution involves the Hankel function of the first kind

h
(1)
l (x), and Legendre polynomial, Pl(x), and k = ω/c0 is the acoustic wavenumber in

the outer medium. Furthermore, the modal coefficients A1
l are determined by the ap-

propriate boundaries conditions (i.e. continuity of constraints and displacements) at

the interfaces separating the outer (1), shell (2), and inner (3) mediums as numbered

in Fig. 2. Table 1 lists the selected physical properties for the numerical simulations

which are representative for the elastic shells and surrounding fluid media with no

attenuation for a 1.06m diameter hollow steel shell (thickness=26.5mm) immersed

10



Figure 2: Schematic and ray diagram for the acoustic scattering problem under
consideration. A plane-wave broadband pulse is incident from the left on a thin
empty spherical shell immersed in water. The time-domain far-field bistatic scattering
pressure is computed using a partial wave series (see Eq. 10). The ray diagram of
the scattered field is also displayed for the specular reflection (dash dot line), and
surface guided waves (dashed line) circumnavigating the shell and giving rise to the
mid-frequency enhancement echo. The acoustic wave couples into the shell’s wall at
angle α-measured from the normal direction to the shell’s wall - and radiates out
towards a bistatic receiver (located at a distance r and azimuth angle θ) at the same
angle α.

in water. These physical parameters were selected to be identical to those used by

Zhang et al. [34] in order to ease the subsequent analysis of the MFE mechanism.

Numerical simulations were conducted in the frequency band [1Hz-80kHz] and time-

series were generated using Fourier synthesis of the harmonic solution given by Eq.

(10). In particular, the modal sum was truncated arbitrarily at a mode index of

l = 100 based on convergence tests: the amplitude’s contribution of the higher-order

modes (l > 100) were found not to significantly contribute to the amplitude of the

synthesized broadband time-series.
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(a) (b)

Figure 3: Bistatic ray diagrams for the subsonic A0− wave in the vicinity of the coin-
cidence frequency for the (a) counter-clockwise or (b) clockwise propagating compo-
nents. Note the difference in arc path angles φcc and φc for respectively the counter-
clockwise or clockwise components (see Eq. (15-16)). The bistatic receiver is located
at a distance r and azimuth angle θ.

2.2 Quantitative ray theory for spherical shell

Extensive literature has been published on quantitative ray theory approximation for

scattered field from elastic targets of various shapes [14, 28]. Consequently, only a

short summary of the quantitative ray theory applied to a spherical shell is presented.

This approximate ray analysis provides a physical basis for an intuitive interpretation

of the different echoes (including the specular, A0− , A0+ , S0 arrivals) visible on the

simulated bistatic time-series (e.g. see Fig. 9 and Fig. 13). In general, the geometric

approach associates an individual ray component with each of the various specular

and guided surface wave components within the shell (shown qualitatively on Fig.

Table 1: Shell Model Parameter Details
Parameter Shell Outside Inside

Material 304 Stainless Steel Water Air
Density (ρ) 7570 kg/m3 1000 kg/m3 0.0013 kg/m3

Longitudinal 5675 m/s 1470 m/s 331 m/s
Wave Speed (CL)
Transverse 3141 m/s 0 m/s 0 m/s
Wave Speed (CT )
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2). This simple ray theory has been shown to be quantitatively accurate [14, 28]

and only needs a slight correction in the forward scatter direction (i.e. θ ≈ 0◦) to

account for forward diffraction effects around the shell [9]. The arrival time of each ray

component can be computed from a geometric calculation of its path length around

the shell and within the surrounding medium (shown in Fig. 3 for A0− clockwise and

counterclockwise paths).

Furthermore, the quantitative ray analysis presented hereafter will focus on the

most energetic MFE which correspond to the interference of the A0− and A0+ wave

components (as discussed in chapter 3.1). In particular, based on the matched bound-

ary conditions at the interface between the shell’s wall and the surrounding medium,

the angle of incidence α (with respect to the normal of the shell’s surface as shown in

Fig. 2) for the associated ray with either of the A0 wave components, A0− and A0+ ,

is determined by Eq. (11).

sin(α(fc)) =
C0

Cphase(fc)
(11)

Where fc is the frequency of the harmonic excitation, C0 is the sound speed of

the surrounding homogeneous liquid and Cphase(fc) is the frequency-dependent phase

velocity of either A0 wave component (see Fig. 4(a)). The dispersion curves for

the various waves, are determined from the same determinates used to calculate the

modal coefficients, A1
l , discussed in the previous section. Note that the angle, α, is

also the launch angle of the A0 ray radiating out while it circumnavigates the shell

(see Fig. 2). Based on the selected parameters for the elastic shell (see Table 1) it

can be noted that the phase velocities of the A0− and A0+ components approach the

value of the sound velocity of the surrounding fluid C0 = 1470m/s (see Fig. 2), near

the coincidence frequency (i.e. where the MFE occurs ka ≈ 46). Additionally the

group velocity curves of the A0− and A0+ components intersect (see Fig. 4(b)), which

indicates an efficient energy coupling and strong constructive interference of the A0−
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and A0+ components, as reported earlier [34].
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Figure 4: Evolution of (a) Phase velocities, (b) Group velocities and (c) Radiation
damping coefficients vs. normalized frequency ka for the antisymmetric guided wave
modes A0+ (dashed line) and A0− (solid line)-adapted from Fig. B1 in Zhang et
al.[34].

Previous developments of the quantitative ray theory approximation can be used

to predict the amplitude variations of the A0− and A0+ components in the vicinity of

the MFE [34]. Again assuming that an incident harmonic plane wave with amplitude

P0 and frequency ω impinges on a shell in a homogeneous free space medium with

sound speed c0, the harmonic scattered field, P (r, φ, t), recorded at a range r is

expressed as a superposition of the various ray components.

P (r, φ, t) =
P0

r
ei(kr−wt)

∞∑
l

fl,m(φ) (12)

Where the angle (φ) parameterizes the angle of the arc path of each lth ray com-

ponent (see Fig. 3), having each a complex amplitude fl,m(φ) (commonly referred
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to as the form-function based on Partial Wave series expansion from elastic theory).

The second index m = 0, 1, 2... denotes the number of full circumnavigations of the

individual ray components around the spherical shell. In particular, the form func-

tion associated with the anti-symmetric A0 Lamb waves (i.e. either the A0+ or A0−

components) can be approximated by Eq. (13) [34].

fl,m(φ) = Ble
iηlβle

(−φβl−2πmβl) (13)

Where Bl is a complex coupling coefficient (whose exact expression differs for the A0+

or A0− component), ηl is a propagation related phase shift parameter and βl (Np/rad)

is the radiation damping parameter for the considered A0 waves. The values for these

coefficients are found from applying the Sommerfeld-Watson methodology to the exact

partial wave series [8]. Physically speaking, the parameter ηl determines the arrival

time of the A0 waves, and the parameter βl quantifies the ability of energy to radiate

from the A0 waves into the surrounding fluid while circumnavigating the spherical

shell. Fig. 4(c) displays the frequency dependence of the radiation damping modal

coefficients for the A0+ or A0− waves computed using the shell’s physical parameters

stated in Table 1 (the curves were adapted from a previous study by Zhang et al.

[34]). In the vicinity of the coincidence frequency (i.e. ka ≈ 46) the radiation damping

parameter of the A0− wave is significantly lower than the radiation damping parameter

of the A0+ wave. Consequently, this indicates that the A0− is radiating out most of

the energy associated with the MFE. Therefore, the theoretical variations of the form

function fl,m=0, predicted from Eq. (13), and the geometric path length of the ray

associated with the A0− wave will be used to quantify the observed time-frequency

shift of the bistatic MFE arrival as observed in Chapter III (see Fig. 14).
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2.3 Time-frequency analysis with the Smooth Pseudo Wigner-
Ville (SPWV) transform

As mentioned in the introduction, the main goal of this thesis is to analyze the

bistatic variations of the MFE for a fluid loaded thin spherical shell. Indeed, time-

frequency analysis has been shown to be a relevant tool for analyzing the acoustic

echoes of elastic shells for MCM purposes[5, 17, 32, 33, 30]. Traditionally, time

frequency analysis is carried out using the Short Time Fourier Transform (STFT),

or spectrogram, which is a linear time-frequency method. Nevertheless, the time-

frequency resolution of the STFT method is inherently limited by the time-frequency

uncertainty principle [20]: higher temporal resolution requires using a narrower time-

window, which in turn reduces the achievable frequency resolution (and vice-versa).

One potential improvement towards higher resolution in both time and frequency is

to utilize quadratic (i.e. higher-order) time-frequency transform or Cohen class time-

frequency representations such as the Wigner-Ville transform [3]. One remarkable

property of the Wigner-Ville transform is the ability to have unbiased measurement

of the group velocity of each echo component within a signal, while maintaining

marginal computation (i.e. the integrals along the time and frequency domains are

the powers of the signal in the respective domain) [32, 33]. Although the Wigner-Ville

transform can provide an optimal localization of broadband and transient signals in

the time-frequency plane, it is not readily used in practice as it generates interference

patterns between multiple components of the signal, which can complicate the analysis

of the results (see Fig. 5(b)). In this case, two simple linear chirps were superimposed

and analyzed to illustrate the benefits of the Wigner-Ville transform even in a simple

case.

For practical applications, it has been shown that a variant of the Wigner-Ville

transform the Smoothed Pseudo Wigner-Ville transformation (SPWV) can be used

to reduce these interference patterns, thus easing the physical identification of the
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Figure 5: Time-Frequency Representations of signal composed of two linear chirps
spanning respectively the frequency bands 5-15kHz and 15-25kHz: (a) is Short Time
Fourier Transform (b) Wigner-Ville distribution showing interference patterns be-
tween two signals (c) smoothed pseudo Wigner-Ville distribution. The SPWV distri-
bution shows better time and frequency localization then the spectrogram and with
reduced interference patterns inherent of the standard Wigner-Ville.

multicomponent signals in the time-frequency plane. More specifically, for a given

time-domain signal s(t), the SPWV is defined as:

Ws(τ, ν) =

∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(u− t)s(u+

τ

2
)s∗(u− τ

2
)du(e−j2πντ )dτ (14)

Where the functions h and g are used to smooth, respectively in the time domain or

frequency domain, the kernel of the Wigner-Ville transform s(u + τ
2
)s∗(u − τ

2
) (i.e.

the autocorrelation of the analyzed signal s(t)). Hence, contrary to the STFT, the
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SPWV transform allows relatively high temporal localization in addition to maintain-

ing frequency resolution. Then by selecting appropriate smoothing functions h and

g (e.g. using Hanning window of various lengths) one can minimize the artifacts of

interference patterns inherent to the Wigner-Ville transform [3]. The result is a bet-

ter time-frequency localization then STFT without the complications of interference

patterns inherent to standard Wigner-Ville transform (see Fig. 5).

2.3.1 Smoothing Window Selection

Stated previously, the benefit of using the SPWV analysis is the ability to select

the time and frequency smoothing windows separately. This does present additional

complexity in choosing the appropriate type and size of the window for optimal time

and frequency localization. In order to select the window size, further study was

conducted on a representative temporal response for a spherical shell computed from

Eq. (9). This was selected to investigate the appropriate amount of smoothing for

the best visualization of the time-frequency distribution of the echoes of a shell.
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Figure 6: Overlay of standard amplitude smoothing windows including Hanning,
Hamming, Blackman, Gauss, and Kaiser. Each window has length of 100 points, and
the defining parameters of the Gaussian window and the Kaiser window were selected
to be α = 0.005, and β = 3π respectively.

The initial step for selecting a window size was to choose the shape of smoothing

window. For this, five types of standard smoothing windows were overlaid to compare
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the shape of each windowing function (see Fig. 6). From this plot, it was decided

that the Hanning type of window was a good compromise between the sharpness of

the Kaiser window, and the broadness of the Hamming window.

Figure 7: SPWV with different Hanning window sizes with double (wide) and half
(narrow) the length of reference smoothing window (reference window sizes are 205
points in time and 171 points in frequency) (a) Narrow window in frequency domain
(b) Narrow window in Time domain (c) Broad window in frequency domain (d) Broad
window in time domain.

Once the type of window was selected, an empirical study was conducted to evalu-

ate the effect of broad vs. narrow smoothing windows in both time and frequency for

the given SPWV representation. These results are shown in Fig. 7. As shown, when

little smoothing is used, the results revert to a standard Wigner-Ville distribution

in which the interference patterns are prevalent. The goal of getting the smoothing

windows set at a desired width in time domain is a balance between suppressing the

interference patterns and retaining a good time-frequency localization of a signal. For

the given response of the shell, the time smoothing window was determined to be a

Hanning window of 0.2ms (205 points) and a frequency smoothing window was a Han-

ning window of 192Hz (171 points). This is not to say that these are the resolution
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limits (which are 0.0012ms and 210Hz), but rather the length of smoothing window.

The results of appropriately selected smoothing windows for the SPWV representa-

tion are shown in Fig. 8. Though this empirical method is not readily applied in the

field, one can select smoothing windows a priori that are appropriate for the targets,

and noise anticipated for a given environment.

Figure 8: SPWV representation of shell response with appropriate smoothing win-
dow size based on empirical study. The Hanning windows used for smoothing were a
time window of 0.2ms (205 points) in length and a frequency smoothing window of
192 Hz (171 points).
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CHAPTER III

MID-FREQUENCY ENHANCEMENT AND BISTATIC

EFFECTS

3.1 Mid-frequency Enhancement
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Figure 9: Impulse response of the spherical shell in the backscatter direction θ =
180◦ (computed from Eq. (10)) in the frequency band [1Hz-80kHz] using the physical
parameters listed in Table 1. The displayed values were normalized by the maximum
value of the specular echo. The three arrows indicate the specular echo -labeled (a)-
and the echoes of the circumnavigating surface guided waves associated with the first
symmetric modes (S0, -labeled (b)-) and first antisymmetric mode (A0, labeled (c))
which corresponds to the MFE. Subsequent arrivals correspond to surface guided
waves undergoing multiple revolutions around the spherical shell.

Utilizing the modal expansion approach to calculate the full field response from a

spherical shell allowed the pressure time series to be calculated for any given (r, θ).

Where θ is simply the angle between the direction of the incoming plane wave and

the receiver location. Fig. 9 displays the monostatic scattered field (i.e. as recorded

by a receiver located at an azimuth θ = 180◦ and distance r=10m) computed with

the acoustic model described in a previous section (see Fig. 2 and Eq. (10)) using

the physical parameters listed in Table 1. A series of narrowband energetic arrivals

are clearly visible following the first broadband specular arrival labeled (a) on Fig. 9.
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The following weak arrival, labeled (b) corresponds to the first symmetric mode of

the shell S0. This S0 arrival will not be the focus of this thesis as it does not radiate

sound efficiently from the shell (due to the mismatch of phase velocities between this

type of wave and the outer medium), and thus has limited interest for practical MCM

applications. On the other hand, the next energetic arrival corresponds to the lowest

anti-symmetric mode A0 circumnavigating the shell, labeled (c). The ensuing weaker

arrivals are replicas of this mode, which have made subsequent revolutions of the

shell. The first energetic return (occurring after only one revolution of the A0 mode

around the shell, see Fig. 2) is characteristic of the MFE [22, 14]. More specifically,

the MFE results from the constructive interference of two types of anti-symmetric

A0 waves, classically referred to as A0+ and A0− depending whether their energetic

contribution is mainly localized within the elastic shell (i.e. shell-borne) or within

the surrounding fluid (i.e. fluid-borne) at the shell’s surface [14]. These two A0 waves

have opposite nature and thus have different dispersion behavior as a result of this

bifurcation [19]. Due to the dispersive behavior, the constructive interference between

the A0− and A0+ only occurs within a narrow frequency band near the coincidence

frequency fc (giving raise to the MFE phenomenon). At the coincidence frequency

the strong coupling between the A0+ and A0− waves results in a high level of energy

radiating to the surrounding fluid[23].

Looking at a more complete picture of the shell response requires the use of time-

frequency analysis. Fig. 10 shows the time response, the frequency response and the

SPWV representation of the signal. First note is that the MFE (located at 7.25ms

and 20 KHz) is the most energetic feature in the time frequency plane. From this

figure, it is clear that the MFE, occurs at a narrow frequency range, when compared

to that of the specular (first arrival). Additionally by only analyzing the frequency

response (upper-left of Fig. 10) it can be seen that resonance occurs at the frequencies

of the MFE. Analyzing the MFE in the time-frequency domain results in localization
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Figure 10: Time-Frequency Representation showing the Fourier representation of
the signal in the upper left corner, the time domain response of the signal in the lower
right, and the SPWV Time-Frequency representation in the upper right.

information in both time and frequency and is necessary to understand the MFE

behavior in the bistatic configurations.

Previous studies for monostatic configurations have shown that the frequency con-

tent and repetition rate of these A0 arrivals (see Fig. 9) contain important information

about the shell’s geometry (e.g. shell’s radius and thickness) and physical properties

(e.g. compressional and shear wave velocities in the shell) [13, 24, 11, 31]. It is

important to note that the amplitude of the subsequent A0 arrivals are proportion-

ally reduced by the cumulated radiation damping effects after multiple revolutions

around the shell. Hence, these later arrivals are likely to be even more difficult to

detect in the presence of high ambient noise or clutter levels. Consequently, the first

and most energetic Lamb-wave echo is the most attractive feature for target detection

or classification.
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3.2 Effect of Environment and Shell Parameters on MFE

Previous work has determined that the center time-frequency peak of the MFE is

dependent on the physical properties of the shell; there are additional aspects that

affect the time-frequency signature of a given shell [11, 15, 24].

To illustrate the influence of the shell parameters, as well as the outer environ-

mental parameters on the time-frequency content of the MFE, a series of numerical

experiments where conducted. To do so the shell’s thickness, shell material, and outer

medium sound speed were changed to draw basic conclusions about the influence dif-

ferent parameters.

(a) (b)

Figure 11: SPWV representations of the first MFE echo for a spherical shell with
two different material types (a) a Steel Shell and (b) same parameters as (a) but with
shell made of Titanium.

The result of changing shell material can be seen on close inspection of the MFE

in time-frequency plane (see Fig. 11). The center frequency of the MFE remains

constant; however, the response in the time-frequency plane changes in shape. Each

combination of density, longitudinal and transverse wave speed for a given material

results in a unique MFE time-frequency pattern. A change in shell diameter is shown

in the difference of arrival time as well as a lower center frequency of the MFE in the

reference shell with radius, a=0.53m Fig. 12(a) versus a shell with radius a=0.61m

Fig. 12(b). Additionally these experiments further verified that the MFE only occurs
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in thin shells. At an outer to inner radius ratio of 0.9, the MFE becomes difficult

to detect and with lower ratios (thicker shells) the MFE does not appear to exist.

This is as expected due to the nature of Lamb modes whose velocities depend on the

relationship between wavelength and plate thickness.

Figure 12: SPWV time-frequency effects on MFE with changing parameters. (a)
Reference shell using parameters listed in Table 1. (b) Same as (a) with radius of
0.61m, which lowers the center frequency and increases time between echo repetitions.
(c) Same as (a) with a shell surrounded by gravel, which increases the radiated energy
from S0 wave. The parameters used for gravel are C = 1800m/s, Ct = 716m/s,
ρ = 2000kg/m3.

Furthermore, the outer medium effect on the MFE was studied in order to de-

termine the MFE behavior with a change in the type of fluid loading around the

shell (see Fig. 12(c)). This can be an important aspect in MCM since objects lying

on the bottom of the ocean can become submerged in the sediment. Therefore, the

outer medium may change and thus the time-frequency response will differ. Different

wave speeds within sediments such as clay or silt not only impact the time-frequency

behavior of the MFE but can also increase the energy radiated from of the S0 waves

(due to the change in sound speed and ability for coupling into shear waves) as is
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shown in Fig. 12. This increase in radiated energy of the S0 mode can have a negative

impact on the isolation of the MFE echo.

3.3 Time-frequency analysis of the bistatic evolution of spher-
ical shell’s scattered field
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Figure 13: Evolution of the envelope (in logarithmic scale) of the bistatic impulse
response of the spherical shell (computed with Eq. (10) using the model parameters
listed in Table 1) vs. bistatic angle, θ. The amplitudes were normalized with respect
to the maximum values of the scattered field in the monostatic (or backscatter) di-
rection θ = 180◦. The first curved arrival corresponds to the specular echo. The two
branches of the subsequent X-shaped pattern correspond respectively to the counter-
clockwise (“cc” symbol) and clockwise (“c” symbol) propagating components of the
A0 mode. Note that the arrival-times of these two components differ for bistatic re-
ceivers (see Fig. 5), except for the monostatic direction θ = 180◦ their path around
the spherical shell become symmetric with equal lengths.

The behavior of the MFE as a function of time, frequency, and receiver angle is

the important aspect to understand in order to process bistatic data efficiently. To

determine this behavior in time and angle a traditional plot for radar analysis of a

signal was created. As stated previously due to being azimuthally symmetric this

problem becomes two dimensional in spherical coordinates (r, θ) and therefore the
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focus will be on describing the behavior in relation to the dimensions of importance

[4].

Fig. 13 displays the evolution of the envelope of the simulated bistatic responses

of the elastic shell, computed using Eq. (10) and the model parameters listed in Table

1, for a full 360◦ revolution of receiver angle θ. Note, that the values displayed for

θ = 180◦ correspond to the envelope of the monostatic time series shown in Fig. 9.

The first wavefront visible on this time vs. angle representation, with nearly constant

amplitude over all receiver angles, corresponds to the broadband specular reflection

of the shell recorded in free space. The two branches of the following “X-shaped”

pattern (between 6.5ms ≤ t ≤ 8.5ms), labeled “c” and “cc” on Fig. 13, correspond,

respectively, to the interference of the circumnavigating A0+ and A0− waves (MFE,

see chapter 3.1) radiating sound around shell while propagating, respectively, in the

clockwise and counter-clockwise directions. This difference in arrival time between

the clockwise and counter-clockwise interference patterns can be simply explained

from a geometric ray analysis, as presented in chapter 3.4 (see Fig. 3). Furthermore,

as expected, these clockwise and counter-clockwise interference patterns intersect in

the monostatic direction θ = 180◦ as they both have the same path length around the

shell before reaching the receiver. Consequently, the MFE pattern is most energetic in

the monostatic configuration where all four A0 wave components (i.e. both clockwise

and counter-clockwise circumnavigating A0+ and A0− waves) interfere constructively.

As shown quantitatively on Fig. 13, the energetic MFE pattern begins to split

into two branches as the receiver moves away from the monostatic configuration

(θ = 180◦), and the MFE amplitude rapidly decays[9]. Consequently, for practical

MCM applications in noisy environments, bistatic measurements of the MFE would

likely need to be combined coherently, using some type of array processing, in or-

der to enhance the bistatic detectability of the MFE pattern. However, a coherent

combination of these bistatic A0 wave echoes using standard time-delay beamforming
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Figure 14: Smoothed Pseudo-Wigner Ville representation (in logarithmic scale) of
the impulse response of the spherical shell for three representative receiver’s azimuth
angles (a) monostatic direction θ = 180◦, or bistatic directions (b) θ = 135◦ and
(c) θ = 90◦. The energetic MFE echo (due to the interference of the clockwise
and counterclockwise propagating A0 wave) in the monostatic direction is visible at
time t = 7.66ms (dashed vertical line) and a normalized frequency ka = 46 (dashed
horizontal line). The bistatic configurations illustrate the progressive splitting of the
MFE echo into two distinct clockwise and counterclockwise arrivals (see Fig. 3), as
well as their relative time-frequency shift with respect to the monostatic echo. For
each angle the magnitude were normalized by the maximum displayed value.

(i.e. after compensating for their relative time shift), would not be optimal if the

frequency content of the MFE vary with bistatic each receiver angle θ. To test this

hypothesis, the SPWV transform, as described in chapter IV (see Eq. (14)), is used

hereafter to investigate the time-frequency analysis of the bistatic MFE pattern.

Fig. 14 depicts the SPWV of the time-series computed for three different bistatic

angles spaced apart by 45◦ (θ = 180◦, 135◦, 90◦). The selected smoothing functions for

the SPWV analysis were Hanning windows yielding a time and frequency resolution

of 2µs and 205Hz (see Eq. (2)). As predicted, the SPWV associated with angles

θ = 135◦ and θ = 90◦ illustrates the splitting of the energetic main MFE pattern’s

arrival (as shown for θ = 180◦, see Fig. 14(a)) into two weaker distinct arrivals with

the left (respectively right) pattern corresponding to counter-clockwise (respectively
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clockwise) interference pattern, as labeled on Fig. 14(b-c). Less intuitively, this time-

frequency analysis reveals also that the counter-clockwise (respectively clockwise)

MFE pattern also exhibits an upward (downward) frequency shift (of respectively

+1.8ka or −1.1ka for θ = 135◦) when compared to the monostatic MFE pattern.

A physical interpretation of this time-frequency shift will be presented in the next

section using a quantitative ray analysis for spherical shell scattering. Furthermore,

as discussed in chapter IV, a generalized time-frequency beamformer can be developed

to compensate for the observed time-frequency shifts of the bistatic MFE as revealed

by the SPWV analysis. Indeed, similar time-frequency beamformers have previously

been developed in order to compensate for wideband Doppler effects when tracking

a moving source[27].

3.4 Physical interpretation of the time-frequency evolution
of the bistatic MFE pattern from quantitative ray the-
ory

To provide a more intuitive understanding of the behavior of the MFE in various

source and receiver orientations, the use of an approximate ray theory will be used.

The ray theory presented in chapter 2 will be used to understand the expected time

and frequency behavior of the MFE, and therefore allow time and frequency compen-

sation to be made when combining the MFE measured at various bistatic angles.

In the vicinity of the coincidence frequency, the phase velocity of the A0− becomes

close to the value of the sound velocity of the surrounding fluid C0 (see Fig. 4(a)).

Consequently, the angle of incidence becomes α ≈ π/2 based on Eq. (11), which

simplifies the computation of the path length of the A0− wave propagating around

the shell (see Fig. 3). For a bistatic receiver, the arc path angles φc and φcc of

respectively the clockwise (see Fig. 3(a)) and the counter-clockwise (see Fig. 3(b))

propagating A0− waves differ such that:
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φcc(θ) =
π

2
+ θ − cos−1

(a
r

)
(15)

φc(θ) =
5π

2
− θ − cos−1

(a
r

)
(16)

Where θ is the bistatic receiver angle, a is the shell’s outer radius and r is the distance

between the sphere’s centroid and the receiver distance (r). Note that φc = φcc only

when θ = π (i.e. for a monostatic configuration)
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Figure 15: Variations of the arrival time of the MFE echo vs. bistatic receiver angle
θ (see geometry in Fig. 3) with respect to the monostatic arrival time of the MFE
(i.e. θ = 180◦). The triangle and circle symbols indicate the measured arrival times
for respectively the clockwise and counter-clockwise A0− waves, as measured using
the local maxima in the time-frequency plane of the smoothed pseudo Wigner-Ville
representation of the bistatic scattered field (see Fig. 14). For comparison, the solid
and dashed lines correspond to the arrival-times predicted from the ray synthesis for
the same clockwise and counter-clockwise A0− waves.

Overall, the difference in path length between the clockwise and the counter-

clockwise propagating A0− waves determines the apparent time-frequency shift of

the bistatic MFE arrival as measured by the SPWV analysis (see Fig. 14). More

specifically, the local maximum of the SPWV amplitude in the time-frequency plane
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indicates the arrival time of the propagating energy of the A0− wave packet, and is

thus determined by the value of the group velocity, Cgroup(ka = 46), A0− wave in the

vicinity of the coincidence frequency (ka=46 see Fig. 4(b))[29]. Hence for a bistatic

angle θ the variations of the arrival-time for the clockwise and the counter-clockwise

propagating A0− waves (with respect to the arrival times in the monostatic configu-

ration i.e. θ = π) can be simply predicted from the ray analysis. This is done using

the following expressions (π − θ)a/Cgroup(ka = 46) and −(π − θ)a/Cgroup(ka = 46)

(for 90◦ ≤ θ ≤ 180◦). Fig. 15 shows a good agreement between these linear predic-

tions of the time-shift of the MFE arrival from the ray analysis (plain and dashed

lines) and the measured values from the SPWV analysis (dotted lines) for bistatic

angles varying between θ = 90◦ ≤ θ ≤ 180◦. The slight discrepancy visible around

90◦ between the measured and predicted arrival times for the counter-clockwise wave

(dashed line) likely result from error in arrival-time selection from the SPWV due to

interferences occurring between the S0 arrival and the A0− arrival.
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Figure 16: Ray models of the amplitudes of the earliest counter-clockwise A0− wave
arrival (based on the form function, fl,m given by Eq. (13) for m = 0) in the vicinity
of the coincidence frequency for same three bistatic receiver angles θ shown in Fig.
14. Note the maximum of the amplitude’s enhancement in the mid-frequency region
progressively increases from ka ≈ 46 at θ = 180◦ to ka ≈ 49 at θ = 90◦.

The quantitative ray analysis can also be used to predict the apparent frequency

shift of the bistatic MFE arrival (see Fig. 14). More specifically, as the bistatic angle
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θ varies away from π, the arc path angles φc and φcc (see Eq. (15-16)) of respectively

the clockwise and the counter-clockwise propagating A0− waves vary as stated ear-

lier (see Fig. 3). Consequently, for a given bistatic angle θ, the MFE occurs at the

normalized frequency ka which maximizes the form function associated with the ray

corresponding to the first A0− arrival, i.e. |fl=A0− ,m=0(φ)| = |Blβl(ka)e(−φ(θ)βl(ka))|,

for φ = φcc or φ = φc (see Eq. (15-16)). Hence the frequency dependence of the radi-

ation damping parameter βl(ka) (see Fig. 4(c)) ultimately determines the apparent

frequency shift of the bistatic MFE arrival. As an illustration of this phenomenon,

Fig. 16 displays the evolution of magnitude of the form function |fl=A0− ,m=0(φ)|

for the counter-clockwise propagating A0− wave for the same three bistatic angles

(θ = 180◦, 135◦, 90◦) used for the SPWV calculations shown in Fig. 14.

As the bistatic angle θ decreases from θ = 180◦ to θ = 90◦, it can be observed

that the maximum of the form function shifts upward towards higher normalized

frequency values from ka = 46 to ka = 49 (i.e. in the vicinity of the coincidence

frequency) for the counter-clockwise propagating A0− wave. A similar analysis can be

conducted to quantify the downward frequency shift of the clockwise propagating A0−

wave. Overall, Fig. 17 shows a good agreement between the bistatic frequency shifts

predicted by this quantitative ray analysis and the frequency-shifts values measured

from the SPWV analysis (dot symbols) of the computer time-series. There is however

a slight bias between the predicted frequency and the measured frequency, which is

caused by the difference in measuring the peak of the signal amplitude versus the peak

of the energy envelope. Furthermore, the spread of the frequency-shift measurements

falls within the measurement error of the SPWV analysis, which is determined by

the frequency resolution of the smoothing kernel (indicated by the vertical error bar

displayed on Fig. 17). This measurement error can potentially be mitigated by

reducing the frequency smoothing of the SPWV. However doing so could increase the

interference pattern artifacts of the Wigner-Ville analysis, which would in turn bias
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Figure 17: Variations of the normalized center frequency of the MFE echo (i.e.
coincidence frequency) vs. bistatic receiver angle θ (see geometry in Fig. 1) with
respect to the monostatic arrival time of the MFE (i.e. θ = 180◦). The triangle
and circle symbols indicate the center frequencies for respectively the clockwise and
counter-clockwise A0 arrival as measured from the local maxima in the time-frequency
plane of the smoothed pseudo Wigner-Ville (SPWV) representation of the bistatic
scattered field (see Fig. 3). The vertical error bar depicts the measurement resolution
along the frequency axis on the SPWV representation, which accounts for most of the
spread in the measured values. For comparison, the solid and dashed lines correspond
to the center frequency of MFE echo predicted from the theoretical ray amplitude
variations as shown on Fig. 16.

the estimation of the SPWV maxima in the time-frequency plane [3].
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CHAPTER IV

APPLICATION TO TIME-FREQUENCY

BEAMFORMING

The time vs. angle representation displayed in Fig. 13 shows that the MFE persists

for bistatic source-receiver configurations, and thus still carries information about

the physical features of the elastic shell. However, the bistatic amplitude of the A0

wave arrival is significantly reduced compared to the monostatic configuration. Con-

sequently, bistatic detection of thin spherical shells could potentially be challenging in

the presence of high clutter or high ambient noise levels. Therefore, bistatic detection

of the MFE would need to be enhanced for practical implementations, by coherently

combining the signals measured on an array of receivers using beamforming tech-

niques [26]. To do so, it is necessary to use a generalized time-frequency beamformer

to account for the time-frequency shifts occurring between the various bistatic A0

wave echoes recorded on an array of sensors surrounding the spherical shell. This

generalized time-frequency beamformer can be implemented using a similar formal-

ism developed when compensating for wideband Doppler effects when tracking a fast

moving acoustic source based on companded (or time-scaled) replica of the Doppler-

free source signal [27]. The term “companded” is a portmanteau of compressed and

expanded. It is assumed hereafter that the bistatic A0− arrival recorded at a bistatic

angle θj is centered at time tj and frequency fj in the time-frequency plane. Addition-

ally, the scattered time-domain signal recorded by the jth receiver located at a bistatic

angle θj is noted Pj(t) (j = 1..N). A generalized time-frequency beamformer B(t;N)

can then be defined by combining companded versions of the N receiver signals Pj(t)

34



such that:

B(t;N) =
N∑
j=0

Pj(γj(t+ τj)) (17)

where the parameter τj = tj − t1 is selected to compensate the apparent bistatic

time-shift (e.g. see Fig. 7) of the A0− wave, defined here with respect to the bistatic

arrival time of the A0− wave recorded on the first receiver. Similarly, the companding

(or time-scaling) parameter γj = 1 + (fj − f1)/f1 is selected to compensate for the

apparent bistatic frequency-shift the A0− wave (e.g. see Fig. 9). The values of the

parameters τj and γj can be estimated based on predictions from the quantitative

ray analysis (as described in chapter 3.4) or by directly measuring the time-frequency

shifts of the bistatic A0− arrival from SPWV analysis (as described in chapter 3.3),

the later being the selected approach hereafter. It can be noted that when γj = 1 (i.e.

in the absence of frequency-shift), the expression of the generalized time-frequency

beamformer shown in Eq. (17) reduces to the expression of the conventional time-

delay beamformer [26, 27].

As an illustration of the proposed array beamforming methodology, the upper

panel of Fig. 18(a) displays the A0− arrivals recorded by five bistatic sensors uniformly

distributed in azimuth around the spherical shell between 100◦ ≤ θ ≤ 140◦. The

analysis window was limited to the first A0− echo. These A0− arrivals were simply

time-aligned with respect to the counter-clockwise MFE arrival for the first receiver

(j=1, θ1 = 100◦). It can be noted that the shape of the waveforms remain slightly

different due to the bistatic frequency-shift of the A0− wave (see chapter 3.3 and 3.4).

Additionally, the maximum amplitude of each receiver signal Pj(t) was normalized to

unity, to account for the bistatic amplitude variations of the A0− arrival (see Fig. 3)

so that each receiver had an equal contribution to the beamforming summation in Eq.

(17). These five time-aligned and normalized waveforms were then simply summed to

generate the output of the conventional time-delay beamformer (i.e. using Eq. (17)

with N=5 and γj = 1), as shown on the lower panel of Fig. 18(a). The maximum of

35



140deg

130deg

120deg

110deg

100deg

7 7.5 8 8.5 9 9.5 10
−5

0

5

Time (ms)

B
(t

,N
=

5)

(a)

140deg

130deg

120deg

110deg

100deg

7 7.5 8 8.5 9 9.5 10
−5

0

5

Time (ms)

B
(t

,N
=

5)

(b)

Figure 18: (a) Upper Panel: Stacked representation of the time-aligned arrivals
of counter-clockwise propagating A0− waves (see Fig. 13) recorded at five different
bistatic angles. The relative bistatic time-shifts, with respect to first bistatic angle
θ1 = 100◦ were obtained from the SPWV analysis (see Fig. 15). Lower Panel: Co-
herent addition of the five time-shifted waveforms using a conventional time-delay
beamformer (computed by when setting the companding parameter as γj = 1- see
Eq. (17)). (b) Upper Panel: same as (a), but each waveform was also companded to
account for the apparent frequency shift of the bistatic counter-clockwise propagat-
ing A0− arrival-with respect to the first bistatic angle θ = 100◦- based on the mea-
sured frequency-shifts values from the SPWV analysis (see Fig. 17). Lower Panel:
Coherent addition of the five time-frequency shifted waveforms using a generalized
time-frequency beamformer (see Eq. (17)). Note that each bistatic waveform, in both
upper panels, was normalized to its maximum value, such that one would expect a
maximum beamformer output of 5 when an optimal coherent addition is achieved.

.

this conventional time-delay beamformer signal is only 1.63 (i.e. < 5) which indicates

that the five received signals were not coherently added in an optimal fashion. On

the other hand, the upper panel in Fig. 18(b) displays the A0− arrival for the same

five receivers, but after applying both time shift and frequency shift corrections to

each waveform based on the measured values from respectively Fig. 15 and Fig. 17

for the counter-clockwise A0− echo. The lower panel of Fig. 18(b) shows that the

maximum of the generalized time-frequency beamformer, computed using Eq. (17),

is equal to 4.98 and thus close to the optimal value of 5. Hence, this value indicates

that the five received signals were indeed added coherently in a near optimal fashion

using the generalized time-frequency beamformer (see Eq. (17)).

36



Figure 19: Schematic of the bistatic receivers layout around the spherical shell used
for the numerical simulations (see Fig. 20). Each receiver array is centered on the
monostatic direction-θ = 180◦-and is composed of an odd number N of receivers
which are uniformly spaced in azimuth angle at 1◦ apart.

The influence of the receiver arrays aperture (i.e. the number N of bistatic re-

ceivers) on the performance of the generalized time-frequency beamformer (see Eq.

(17)) is investigated next. Fig. 19 displays the layout of the bistatic receivers around

the spherical shell which are centered on the monostatic direction θ = 180◦. These re-

ceivers are uniformly spaced in azimuth angle at 1◦ apart which implies a relative shift

of the center frequency of the counter-clockwise A0− echo of approximately 250Hz

between two consecutive receivers based on the results displayed in Fig. 9. Fig.

20 displays the variations of the maximum value of the generalized time-frequency

beamformer B(t;N) (dot symbols) for an increasing number of receivers N (i.e. corre-

sponding to an increasing azimuthal aperture of the receiver array). Similarly, to the

results shown in Fig. 18(b), each counter-clockwise A0− arrival was also companded

to account for the apparent frequency shift between bistatic receivers. As expected,

the maximum value of the generalized time-frequency beamformer B(t;N) linearly

increases with the number of receivers (up to N = 19 here), thus indicating that all

counter-clockwise A0− arrivals were indeed coherently process across the array aper-

ture. For comparison the maximum value of the conventional time-delay beamformer
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Figure 20: Evolution of the maximum value of the array beamformer B(t;N) (see
Eq. (17)) for increasing number of receiver N (equivalent here to an increasing
angular aperture of the receiver array see Fig. 19). Asterisk and dot symbols mark
respectively the values obtained the conventional time-delay beamformer formulation
(i.e. when the companding (or time-scaling) parameter is set to γj = 1) or the
generalized time-frequency beamformer formulation. The linear dependency of the
number of N of receiver (dashed line) is also added for comparison and corresponds
to the optimal achievable value of the array beamformer output B(t;N) when the
arrivals of counter-clockwise propagating A0− waves recorded by the N receivers add
in phase coherently.

(star symbols) are also displayed on Fig. 20. It can be observed that those values

start to significantly deviate from the optimal linear increase beyond N = 5 receivers.

These numerical results thus confirm that conventional time-delay beamformer would

not be an optimal way to coherently processed MFE arrivals recorded across a bistatic

aperture.
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CHAPTER V

CONCLUSIONS

The bistatic acoustic scattering of a fluid-loaded spherical elastic shell was investi-

gated both numerically, using a partial wave series expansion, and theoretically using

a quantitative ray analysis. This study focused on the most energetic bistatic echoes

(also referred to as mid-frequency enhancement echo, or MFE) which are associated

with the circumnavigating first antisymmetric guided wave (primarily its A0− modal

component). In particular, the time-frequency analysis of the MFE was conducted

using the Wigner-Ville transform.

The following three conclusions can be drawn from this investigation. First, as

revealed from the Wigner-Ville analysis, the bistatic MFE echoes exhibit a time-shift

and frequency-shift, as well as a decrease in amplitude, with respect to the monostatic

receiver configuration. Second, a simple quantitative ray theory can be used to predict

these observed time-frequency shifts of the MFE arrival, which primarily results from

the combined effect of 1) the bistatic variations of the path length around the spherical

shell of the clockwise or counter-clockwise circumnavigating A0− waves, and 2) the

frequency dependence of the radiation damping parameter for the A0− wave. Finally,

from an operational point of view, a generalized time-frequency beamformer can be

used for coherently processing the bistatic MFE echoes recorded along a distributed

receiver array around the spherical shell. This generalized time-frequency beamformer

uses companded replica of the bistatic MFE echoes to account for the relative time-

frequency shift of the MFE arrival between receivers.

Overall, the results of this study demonstrated that time-frequency variations of

the bistatic echoes associated with the structural response of elastic spherical shell
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could be predicted. Additionally, due to the apparent bistatic time-frequency shifts of

these MFE echoes, optimal coherent processing of those weak MFE echoes cannot be

achieved by conventional array processing techniques simply relying on variants of the

time-delay beamformer algorithm. In particular, these results imply that conventional

Synthetic Aperture Sonar (SAS) algorithms may not yield optimal imaging results for

the detection and classification of the MFE echoes of spherical elastic shells insonified

by low-frequency bistatic sonar systems. Similar conclusions may be applicable to

elastic shells with other canonical shapes supporting propagating guided waves (such

as finite cylinders). Further joint theoretical and numerical analysis, as well as at-sea

experiments, are required to understand the mechanisms of bistatic echo formation

for elastic shells and the time-frequency coherence of structure-borne acoustic echoes.

Such studies should provide valuable insights to guide the design of optimal receiver

architecture for low-frequency bistatic sonar systems (e.g. using distributed sensor

networks) and SAS imaging algorithms.
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APPENDIX A

MATLAB CODE

% Acoustic Scattering by a Spherical Shell

global file

%file =['nswc1.txt'];

%file =['exp1.txt'];

%file =['goats98 shell.txt'];

file =['marston shell.txt'];

clc;

disp(['Experiment File: ',file]);

readfile; %Read Parameters file.

sweep theta=[90:1:270];

sweep dist=[10];

%%

%----------- First and Second Lame Coefficient ----------------%

% Observation medium ("OUTSIDE")

mu1 = rho1*ct1ˆ2;

lamda1 = rho1*cl1ˆ2-2*mu1;

% SHELL

mu2 = rho2*ct2ˆ2;

lamda2 = rho2*cl2ˆ2-2*mu2;

%-----------------------------------------------------------------------%

jkr=[];ykr=[];

%phi1=[];

reduced freq=[];

ent=0;
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cnt freq=0;

for f=fmin:df:fmax

%clc;disp(['Estimated % Completed: ',num2str(f/fmax*100,3),' %']);

cnt freq=cnt freq+1;

omega = 2*pi*f; % pulsation

K = omega/cl1; %WAVENUMBER in SURROUNDING medium.vecteur

% d'onde dans le milieu d'bservation

Kl = omega/cl2; %Longitudinal WAVENUMBER in the shell

Kt = omega/ct2; %Transverse WAVENUMBER in the shell

X = K*a; %Reduced frequency. Surrounding medium,

Xl = Kl*a; %Longitudinal Reduced frequency. Shell.

Xt = Kt*a; %Transverse Reduced frequency. Shell.

Y = omega/cl3*b; % WAVENUMBER MEDIUM (III) INSIDE the shell

Yl = Kl*b;

Yt = Kt*b;

reduced freq=[reduced freq X];

ord = (0:1:nb mode)';

% Bessel Function. Also First and Second derivative :

[jX,yX,jpX,ypX,jsX,ysX ] = bes prim sec hs(ord,X) ;

[jXl,yXl,jpXl,ypXl,jsXl,ysXl ]= bes prim sec hs(ord,Xl);

[jXt,yXt,jpXt,ypXt,jsXt,ysXt ]= bes prim sec hs(ord,Xt);

[jY,yY,jpY,ypY,jsY,ysY ] = bes prim sec hs(ord,Y) ;

[jYl,yYl,jpYl,ypYl,jsYl,ysYl ]= bes prim sec hs(ord,Yl);

[jYt,yYt,jpYt,ypYt,jsYt,ysYt ]= bes prim sec hs(ord,Yt);

cnt r=0;

for dist r=sweep dist

cnt r=cnt r+1;

[jkr(:,cnt freq,cnt r),ykr(:,cnt freq,cnt r),...

jpkr,ypkr,jskr,yskr ]= bes prim sec hs(ord,(K*dist r)) ;
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end

% Hankel Functions.

h1X = jX + i*yX ;

h1pX = jpX + i*ypX ;

h1sx = jsX + i*ysX ;

%----------------DETERMINANT PARAMETES------------------------------------

a11 = rho1/rho2*h1X;

a12 = (lamda2*jXl-2*mu2*jsXl)/(lamda2+2*mu2) ;

a13 = -2*ord.*(ord+1).*(Xt*jpXt-jXt)/Xtˆ2;

a14 = (lamda2*yXl-2*mu2*ysXl)/(lamda2+2*mu2);

a15 = -2*ord.*(ord+1).*(Xt*ypXt-yXt)/Xtˆ2;

%a16 =0;

a21 = X*h1pX;

a22 = Xl*jpXl;

a23 = ord.*(ord+1).*jXt;

a24 = Xl*ypXl;

a25 = ord.*(ord+1).*yXt;

%a26 = 0;

%a31 = 0;

a32 = 2*(Xl*jpXl-jXl);

a33 = (ord+2).*(ord-1).*jXt+Xtˆ2*jsXt;

a34 = 2*(Xl*ypXl-yXl);

a35 =(ord+2).*(ord-1).*yXt+Xtˆ2*ysXt;

a36 =zeros(nb mode,1);

%a41 = 0;

43



a42 = (lamda2*jYl-2*mu2*jsYl)/(lamda2+2*mu2);

a43 = -2*ord.*(ord+1).*(Yt*jpYt-jYt)/Ytˆ2;

a44 = (lamda2*yYl-2*mu2*ysYl)/(lamda2+2*mu2);

a45 = -2*ord.*(ord+1).*(Yt*ypYt-yYt)/Ytˆ2;

a46 = jY*rho3/rho2;

%a51 =0;

a52 = Yl*jpYl;

a53 = ord.*(ord+1).*jYt;

a54 = Yl*ypYl;

a55 = ord.*(ord+1).*yYt;

a56 = Y*jpY;

%a61 =0;

a62 = 2*(Yl*jpYl-jYl);

a63 = (ord+2).*(ord-1).*jYt+Ytˆ2*jsYt;

a64 = 2*(Yl*ypYl-yYl);

a65 = (ord+2).*(ord-1).*yYt+Ytˆ2*ysYt;

%a66 = 0;

a1 =jX*rho1/rho2;

a2 =X*jpX;

%%Expression of the scalar potential (phi1) associated with the scattered

%%pressure field by the spherical shell.

Al1=[];

%Pl theta=genpol(nb mode,cos(theta rd))';%%Create Legendre Polynomial

for l=1:nb mode+1

if l==1

dl=[ a11(l) a12(l) a14(l) 0 ; ...

a21(l) a22(l) a24(l) 0 ; ...

0 a42(l) a44(l) a46(l) ; ...
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0 a52(l) a54(l) a56(l)];

else

dl= [ a11(l) a12(l) a13(l) a14(l) a15(l) 0 ; ...

a21(l) a22(l) a23(l) a24(l) a25(l) 0 ; ...

0 a32(l) a33(l) a34(l) a35(l) 0 ; ...

0 a42(l) a43(l) a44(l) a45(l) a46(l); ...

0 a52(l) a53(l) a54(l) a55(l) a56(l); ...

0 a62(l) a63(l) a64(l) a65(l) 0 ];

end

aux=dl;

aux(1,1)=a1(l);

aux(2,1)=a2(l);

dl1=aux;

Al1=[Al1;(- iˆl*(2*l+1)*det(dl1)/det(dl))];

end

Al2(:,cnt freq)=Al1;

end

Pole=sum(Al1);

%

clear Al1 dl1 aux dl a2 a1 a65 a64 a63 a62 a56 a55 a54 a53 a52 a46 a45 a44 a43 a42 a36 a35 a34...

a33 a32 a25 a25 a24 a23 a22 a21 a15 a14 a13 a12 a11 h1sx h1X jX yX jpX ypX jsX ysX jXl yXl jpXl ypXl jsXl...

ysXl jXt yXt jpXt ypXt jsXt ysXt jY yY jpY ypY jsY ysY jYl yYl jpYl ypYl jsYl ysYl jYt yYt jpYt ypYt jsYt...

ysYt jpkr ypkr jskr yskr frequency dist theta K Kl Kt X Xl Xt Y Yl Yt...

alpha0 rd b cl1 cl2 cl3 ct1 ct2 ct3 ent f h1pX l lamda1 lamda2 mu1 mu2 omega ord percentage...

reduced freq rho1 rho2 rho3 s z;

phi all=zeros(length(sweep theta),(fmax/df),length(sweep dist));

cnt theta=0;

%phi1=zeros(1,cnt freq);

for theta=sweep theta
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cnt theta=cnt theta + 1;

theta rd=theta*pi/180;

Pl theta=genpol(nb mode,cos(theta rd))';%%Create Legendre Polynomial

for dist=1:cnt r

for frequency=1:cnt freq

phi1l=nansum(Pl theta.*Al2(:,frequency).*(jkr(:,frequency,dist)+...

i*ykr(:,frequency,dist))); % Modal Summation

phi1 modes=(Pl theta.*Al2(:,frequency).*(jkr(:,frequency,dist)+...

i*ykr(:,frequency,dist)));

%phi1(1,frequency)=phi1l;

phi all(cnt theta,frequency,dist)=phi1l;

phi all modes(:,cnt theta,frequency,dist)=phi1 modes;

end

end

end

clear jkr ykr Al2

phi all(:,1)=0;

clc;disp(['!!!Done!!!']);

% TEMPOREL PROCESS WV marston

% TEMPOREL PROCESS WV

%%%

% f1=1;

% f2=800000;

% df=200;

f1=1;

f2=100000;

df=20;

Fs=df;
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Fe=round(f2*10.5/Fs)*Fs;

Ts=1/Fe;N=1/Fs/Ts;T=N*Ts;

freq=[0:N-1]/N/Ts;

Ifreq=find(freq≥f1 & freq≤f2+df/10);

%%%%For Filtering

Fmin=0;

Fmax=f2/2;

%Fmin=1e3;

%Fmax=800e3;

Ifilter=find(freq(Ifreq)≥Fmin & freq(Ifreq)≤Fmax);

time=[0:N-1]*Ts;

c0=1500;zTARG=100;L=200;

for i=1:length(phi all(:,1))

phi1=phi all(i,:);

phi1(1)=0;

Kij=zeros(size(freq));

Kij(Ifreq(Ifilter))=conj(phi1(Ifilter)).*hanning(length(Ifreq(Ifilter))).';

%FP(:,jj).*Prod.*hanning(length(Ifreq));

P=real(ifft(Kij));

%freq int1=[Fmin Fmax]; [BB1,AA1]=butter(4,[freq int1]/Fe*2);

%Pfil=filtfilt(BB1,AA1,P);

%%%%%%%%%%%

%find(isnan(phi1)==1)

% figure(2);clf;%hold on

% %subplot(2,1,1)

% plot(time,P)

% title(['Receiver Angle ',int2str(sweep theta(i)),' '])

% axis tight
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% drawnow

% pause(.05)

Irec=find(time>0.019&time≤0.029);

% Irec=find(time≥5e-3&time≤3e-2);

Pall(:,i)=P(Irec);%.*hanning(length(P(Irec))).';

% subplot(2,1,1);plot(time,P);

% subplot(2,1,2);plot(time(Irec),Pall(:,i));

% drawnow

% pause(.25)

IDX=find(abs(Pall(:,i))==max(abs(Pall(:,i))));

%P spec(:,i)=Pall(:,i)*0;

%P spec([IDX-50:IDX+50],i)=Pall([IDX-50:IDX+50],i);

end

clear IDX

% for i=1:length(P spec(1,:))

% [res,lags]=xcorr(P spec(:,find(sweep theta==180)),P spec(:,i),'coeff'

%);

% IDX=lags(find(res==max(res)));

% Pall sft(:,i)=circshift(Pall(:,i),IDX);

% end

% Pall old=Pall;

% Pall=Pall sft;

% clear Pall sft IDX res lags

% noise=wgn(length(Pall(:,1)),1,-90);

% for i=1:length(Pall(1,:))

% Pall(:,i)=awgn(Pall(:,i),-5,'measured');

% end

%%2D plot

%MM=max(max(Pall));

%figure(1);clf;hold on

%imagesc(time(Irec),sweep theta,20*log10(abs(Pall)'/MM))

%caxis([-60 0]);colorbar;
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if 1==0

%% WV ANALYSIS

%%%%ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

%%%%ˆˆˆˆˆˆˆˆˆ

%%%%%%%TIME-FREQUENCY ANALYSIS

%%%%%%%%%%%%%%%%%Time Frequency analysis;

addpath('C:\Program Files\MATLAB\R2007a\toolbox\tftb-0.1\mfiles')

%%%%%%%%%%%%For Time Frequ Analysis

%%Select one angle

for Iang=1:length(sweep theta)

%pause

%Iang=find(sweep theta==0);

%%Downsample to reduce the number of time samples to minimum necessary;

RATE=3;%round(Fe/Fmax/4);

FeNEW=Fe/RATE;

TsNEW=1/FeNEW;

DATA=decimate(Pall(:,Iang),RATE);%.*hanning(length(Pall(:,Iang))/RATE+1);

Nnew=length(DATA);

timeNEW=[0:Nnew-1]*TsNEW; % redefine time axis

Istart=min(find(DATA≥(max(DATA))))-50; %[500:830]; %%Select a time-window

timeNEW=timeNEW-timeNEW(Istart);

% Istart=min(find(timeNEW≥0)); %[500:830]; %%Select a time -window

Npts=2ˆ10;

IcentTF=[1:Npts]+Istart;

if max(IcentTF)>length(timeNEW);IcentTF=1:length(timeNEW);end

%IcentTF=[500:1000];

freq int1=[Fmin,Fmax];

%%Make it even number-> remove last point;

if (mod(length(IcentTF),2)>0);IcentTF(end)=[];end;

TcentTF=timeNEW(IcentTF);

LENGTH1=length(TcentTF)/2;
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Nc TF=length(TcentTF);

freqC TF=[0:Nc TF-1]/Nc TF/TsNEW;

CC=DATA(IcentTF);%.*hanning(length(IcentTF));

%WV Analysis Function

g=tftb window(odd(LENGTH1/50),'hamming');%Time smoothing window

h=tftb window(odd(LENGTH1/1),'hamming');%Frequency smoothing window

[Wig,Tc1,F1] =tfrspwv(CC+sqrt(-1)*hilbert(CC),[1:length(TcentTF)...

],LENGTH1,g,h);

Wig=((Wig.'));%%each column is a frequency

Fc1=[0:LENGTH1-1]/length(TcentTF)/TsNEW;

If1=find(Fc1≥freq int1(1) & Fc1≤freq int1(2) );

Fc2=Fc1;If2=If1;

MMamp(Iang)=max(max(abs(Wig)));

%WIG all(:,:,Iang)=Wig(:,If1);

%Plot Time Response

% figure(Iang);clf

% plot(timeNEW,DATA);axis([1.5e-4 TcentTF(end) min(DATA) max(DATA)]);

% Scale=50; %%in DB

if 1==1 %Plot WV

figure(3);clf;%hold on

%subplot(2,2,2);

axes('Position',[0.2908 0.5838 0.6757 0.3405]);

pcolor(TcentTF,Fc1(If1),20*log10(abs(Wig(:,If1).')/MMamp(Iang)));

xlabel('Time','FontSize',20);ylabel('Frequency','FontSize',20);

shading interp

caxis([00 60]+10*log10(MMamp(Iang)));

colorbar([0.1535 0.105 0.0357 0.3425])

% xlim(0.1/2*[-1 1])

ylim(freq int1)

hold off

axis tight
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title(['Smooth-Pseudo Wigner Ville : ',num2str(sweep theta(Iang)),'deg'])

% track(Iang,:)=ginput(1);

%Temporal Response

%subplot(2,2,4);

axes('Position',[0.2919 0.11 0.6746 0.3399]);

plot(timeNEW,DATA);

axis([TcentTF(1) TcentTF(end) min(DATA)/2 max(DATA)/2]);

%Frequency Response

%subplot(2,2,1);

axes('Position',[0.1047 0.584 0.09198 0.338]);

plot(abs(fft(CC)),freqC TF);

set(gca,'XDir','reverse');

xlim([0 max(abs(fft(CC)))]);ylim(freq int1);

ANI(Iang)=getframe(gcf);

% %Save Plots

% direct = cd;

% cd ..;cd iterations;

% saveas(figure(3),[num2str(sweep theta(Iang)),'deg sphr','.fig'])

% cd(direct)

end

end

end

% %% Plot Combination of all Angles

% for idx=1:length(WIG all(1,1,:))

% WIG all(:,:,idx)=WIG all(:,:,idx)/max(max(WIG all(:,:,idx)));

% end

% wig sum=sum(WIG all(:,:,[30:180]),3);

% figure

% wig log=20*log10((wig sum.')/max(max(wig sum)));

% pcolor(TcentTF,Fc1(If1),real(wig log));

% shading interp

% caxis([-70 0]);colorbar
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% ylim(freq int1)

% axis tight

%% Plot Angle vs Time (Sinogram)

% figure

% pcolor(sweep theta',time(Irec),20*log10(abs(Pall./max(max(Pall)))));

% shading interp

% caxis([-70 0])

%% Animation

% figure

% axes('Position',[0 0 1 1])

% movie(ANI,2,8)%playback 2 times at 8 frames/sec

%movie2avi(ANI,'test3.avi','fps',20,'compression', 'Cinepak')

%fichier env = input('Enter Filename for Parameters ? ','s');

global file

fid = fopen( file, 'r' );

for l=1:3 fgetl(fid); end

s = fscanf(fid,'%f',19);

%les indices 1, 2 et 3 signifient :

% 1 : milieu exterieur (ou milieu d'observation).

% 2 : la coque.

% 3 : le milieu interieur la coque.

cl1 = s(1);

ct1 = s(2);

rho1 = s(3);

cl2 = s(4);

ct2 = s(5);

rho2 = s(6);

cl3 = s(7);
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ct3 = s(8);

rho3 = s(9);

a = s(10);% Rayon extrieur de la sphre

rap = s(11);% Rapport des rayons

nb mode = s(12);% Nombre de modes

alpha0 = s(13);% Angle d'incidence(en deg) (dans le cas d'une coque

% cylindrique.

theta = s(14);% Angle de reception(en deg)

r = s(15);% distance de reception (en m) partir de la cible

z = s(16);% elevation du recepteur par rapport l'axe

% de l'incidence

% normale(uniquement dans le cas d'une coque

% cylindrique).

% Paramtres frquentiels

fmin = s(17); % Frquence min

fmax = s(18); % Frquence max

df = s(19); % Pas d'chantillonnage

% Calcul intermediaire

b=rap*a;

theta rd=pi*theta/180;

alpha0 rd = pi*alpha0/180;

% Affichage

info milieu=['Outisde Medium Parameters : [ rho=' num2str(rho1) ', cl=' num2str(cl1) ', ct=' num2str(ct1) ']'];

disp(info milieu);

info materiau=['Shell Material Parameters : [ rho=' num2str(rho2) ', cl=' num2str(cl2) ', ct=' num2str(ct2) ']'];

disp(info materiau);

info milint =['Inside Medium parameters : [ rho=' num2str(rho3) ', cl=' num2str(cl3) ', ct=' num2str(ct3) ']'];

disp(info milint);
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% spherical Functions of Bessel + derived first + derived seconds.

%

%

% Definition:

% the spherical functions of Bessel of 1st and 2nd species of order m,

% noted respectively j m and y m, are the particular solutions of

% the diffentielle equation of Bessel written in spherical co-ordinates:

%

% f' ' + (2/z)*f' (z) + (1 m(m+1)/zˆ2)*f = 0; F = f(z), Z = alpha*r.

%

% syntax of the function: [ J, y, jp, YP, js, ys ] = bes prim sec hs(M, x)

%

% M: a vector (column preferably) containing the orders

% whole sussecssifs ' m i' of the spherical functions of Bessel.

% X: a scalar % J: vector column containing the functions of Bessel of 1ere

% species of orders ' m i' as in point X, j m i(x).

% y: vector column containing the values of the functions of

% Bessel spherical of 2nd species of orders ' m i' at the point

% X, y m i(x). % jp: vector column containing the values of derived from

% spherical functions of Bessel of 1ere species of orders ' m i' to

% not X, I m i(x).

% YP: vector column containing the values of derived from

% spherical functions of Bessel of 2nd species of orders ' m i' to

% not X, y' m i(x). % js: vector column containing the values of derived

% seconds from the functions of Bessel of 1ere species of orders

% ' m i' as in point X, I ' m i(x).

% ys: vector column containing the values of derived

% seconds from the functions of Bessel of 2nd species of orders

% ' m i' as in point X, y' ' m i(x).

function [j,y,jp,yp,js,ys]= bes prim sec hs(M,x)

[m,n]=size(M);
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if n > 1 & m > 1

disp('Error, M must be a vector column');

end

if n > 1 | m == 1,

M=M';

end

ord=[M ; max(M)+1];

long=length(ord);

% Formulas binding the spherical functions of Bessel to the functions of

% Bessel normals (valid for the functions of 1st species like

% for the functions of 2nd species): % j m(z) = sqrt(pi/(2z))*J (m+1/2)(z)

% j(en miniscule): spherical function of Bessel

% J(en capital letter): normal function of Bessel

j temporaire=sqrt(pi/(2*x))*besselj((ord+0.5), x);

y temporaire=sqrt(pi/(2*x))*bessely((ord+0.5), x);

j=j temporaire(1:long-1);

y=y temporaire(1:long-1);

% Relation of recurrence for the derivative 1st:

% z*j' m(z) = m*j m(z)-z*j (m+1)(z)

% This formula is valid also for y m(z).

aux1=ord(1:long-1)./x;

jp=aux1.*j-j temporaire(2:long);

yp=aux1.*y-y temporaire(2:long);

% Relation of recurrence for the derivative second:

% zˆ2*j' ' m(z) = (m(m+1)-zˆ2)*j m(z)-2*z*j' m(z)

% This formula is valid also for y m(z).

aux=((M.*(M+1))./x.ˆ2)-1;
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js=-(2*jp./x)+aux.*j;

ys=-(2*yp./x)+aux.*y;

% Fonctions de Bessel sphriques + d riv es premires + d riv es secondes.

%

% Definition:

% Les fonctions de Bessel sphriques de 1ere et 2eme espce d'ordre m,

% notes respectivement j m et y m, sont les solutions particulires de

% l'quation diffentielle de Bessel crite en coordonnes sphriques:

%

% f''+ (2/z)*f'(z) + (1- m(m+1)/zˆ2)*f = 0 ; f = f(z), z = alpha*r.

%

% syntaxe de la fonction: [j,y,jp,yp,js,ys]= bes prim sec hs(M,x)

%

% M : un vecteur (colonne de pr f rence) contenant les ordres

% entiers sussecssifs 'm i' des fonctions de Bessel sphriques.

% x : un scalaire.

% j : vecteur colonne contenant les fonctions de Bessel de 1ere

% espce d'ordres 'm i' au point x, j m i(x).

% y : vecteur colonne contenant les valeurs des fonctions de

% Bessel sphriques de 2eme espce d'ordres 'm i' au point

% x,y m i(x).

% jp : vecteur colonne contenant les valeurs des d riv es des

% fonctions de Bessel sphriques de 1ere espce d'ordres 'm i' au

% point x, j' m i(x).

% yp : vecteur colonne contenant les valeurs des d riv es des

% fonctions de Bessel sphriques de 2eme espce d'ordres 'm i' au

% point x, y' m i(x).

% js : vecteur colonne contenant les valeurs des d riv es

% secondes des fonctions de Bessel de 1ere espce d'ordres

% 'm i' au point x, j'' m i(x).
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% ys : vecteur colonne contenant les valeurs des d riv es

% secondes des fonctions de Bessel de 2eme espce d'ordres

% 'm i' au point x, y'' m i(x).

function [j,y,jp,yp,js,ys]= bes prim sec hs(M,x)

[m,n]=size(M);

if n > 1 & m > 1

disp('Erreur,M doit tre un vecteur colonne.');

end

if n > 1 | m == 1,

M=M';

end

ord=[M ; max(M)+1];

long=length(ord);

% Formules liant les fonctions de Bessel sphriques aux fonctions de

% Bessel normales (valables pour les fonctions de 1ere espces comme

% pour les fonctions de 2eme espce):

% j m(z)= sqrt(pi/(2z))*J (m+1/2)(z)

% j(en miniscule): fonction de Bessel sphrique

% J(en majuscule): fonction de Bessel normale

j temporaire=sqrt(pi/(2*x))*besselj((ord+0.5),x);

y temporaire=sqrt(pi/(2*x))*bessely((ord+0.5),x);

j=j temporaire(1:long-1);

y=y temporaire(1:long-1);

% Relation de rcurrence pour la d riv e 1ere:

% z*j' m(z) = m*j m(z)-z*j (m+1)(z)
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% Cette formule est valable aussi pour y m(z).

aux1=ord(1:long-1)./x;

jp=aux1.*j-j temporaire(2:long);

yp=aux1.*y-y temporaire(2:long);

% Relation de rcurrence pour la d riv e seconde:

% zˆ2*j'' m(z) = (m(m+1)-zˆ2)*j m(z)-2*z*j' m(z)

% Cette formule est valable aussi pour y m(z).

aux=((M.*(M+1))./x.ˆ2)-1;

js=-(2*jp./x)+aux.*j;

ys=-(2*yp./x)+aux.*y;

% Polynome de legendre de degre zero d'ordre deg.

%

% Le but de ce programme est de calculer les polynomes de Legendre.

%

% P[n+1](z)=1/(n+1)*((2n+1)*z*P[n](z)-n*P[n-1](z)

% deg et x sont des scalaires .

% p un vecteur de dim deg+1

function [p] = genpol(deg,x)

%on initialise la relation de recurrence avec P[0]=p(1)

p(1) = 1;

%Si le degre du polynome est superieur 0, on calcule P[1]=p(2)

if deg > 0,

p(2) = x;
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%Si le degre est superieur 2, on peut commencer la rcurrence.

if deg ≥ 2,

for l = 3:deg+1

p(l) = ((2*l-3)*x*p(l-1)-(l-2)*p(l-2))/(l-1);

end

end

end
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APPENDIX B

MODAL EXPANSION COEFFICIENTS
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Figure 21: Modal Expansion coefficients taken from Eq.(6a) and Eq. (6b) in Good-
man and Stern [6].
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Figure 22: Additional details of Modal Expansion coefficients taken from Eq.(6a)
and Eq. (6b) in Goodman and Stern [6].
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