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Chapter 1

Background

1.1 Introduction

Throughout the history of aircraft, control has always been a topic of interest.

No matter how impressive the aircraft lift to drag ratio, efficiency, or payload, it

all means little if the aircraft is not easily controllable. Traditionally, mechanical

flight control systems were used to control the deflection of control surfaces. A

combination of cables, pulleys, and pushrods were, and sometimes still are, used to

control the ailerons, elevator, and rudder on a fixed wing aircraft, and the swashplate

on rotorcraft. This is as pure, and simple, as controlling an aircraft can be. The

pilot is in direct control over the control surfaces of the vehicle.

When piloting an aircraft with a pure mechanical flight control system, the pi-

lot must generate the necessary force to deflect the control surfaces, even under high

aerodynamic loading. As the size and maneuverability requirements of these air-

craft increases, the pilot must apply increasing force to the flight controls in order to

overcome the inertial and aerodynamics forces on the flight control surfaces. Even-

tually, the force becomes too great for sufficient pilot controllability and mechanical

assistance is required.

A hydraulic control system, composed of pumps, valves, and actuators is a

system designed to decrease pilot workload, and is used on many of today’s larger

1



aircraft and rotorcraft. The pilot control inputs are converted to actuator displace-

ment either via mechanical linkages or, in more advanced aircraft, a fly-by-wire

system.

In systems such as these, actuators can be thought of as the fundamental link

between the pilot and the machine. Actuators are responsible for deflecting aircraft

control surfaces in response to pilot inputs. Because actuators play such an impor-

tant role in flight, it is important to have a better understanding of how different

hydraulic system design parameters influence the flight dynamics characteristics of

the aircraft.

With the responsibility of controlling the aircraft, actuators have to meet the

performance requirements of the aircraft to ensure pilot controllability. For example,

two very important flight dynamics and handling qualities criteria for rotorcraft that

are affected by actuator characteristics are its bandwidth and phase delay [3].

Both bandwidth and phase delay are derived from the frequency response of

the aircraft or rotorcraft. At frequencies below 1 Hz, flight dynamics are dominated

by fundamental rotorcraft flight mechanics, the flight control system, and pilot ac-

tively controlling the helicopter [4]. At higher frequencies, actuator dynamics, rigid

body elastic airframe modes, and rotor blade modes, all nonlinear, dominate the

dynamics at 2 Hz and above [5]. At these high frequencies, it is important to have a

robust, high fidelity simulation model, for a firm understanding of all the dynamic

interactions taking place.

Bandwidth is a quantity used to describe the pilot authority over an aircraft at

higher frequency [3]. This metric is broken down into the different axis, or channels,

2



the flight control system has authority over. The pitch, lateral, and heave channels

are analyzed individually and the bandwidth for each channel is determined. A

control system with high bandwidth design is able to respond to fast inputs by the

pilot. In general, a larger control system bandwidth is more desirable. If an aircraft

bandwidth is too small, the pilot will have difficulty performing maneuvers that

require precise, high frequency inputs. On the other hand, a high bandwidth design

requires faster and more powerful actuators, increasing complexity and cost.

Phase delay is a measure of the delay, or lag, between pilot input and aircraft

response. Just like bandwidth, phase delay is broken down into each channel for

analysis. Smaller phase delay is desired for improved control response. As phase

delay increases, aircraft response time to a given pilot input increases. If the phase

delay is too large, the aircraft response can become so delayed that the pilot has

difficulty controlling the aircraft and instabilities can occur.

One issue in flight dynamics, Pilot-Induced Oscillations (PIOs), have been the

source of many studies. PIOs, in the most simple definition, are inadvertent oscilla-

tions, sustained through the dynamic interaction between the pilot and the aircraft

or rotorcraft. Pilot adaptation, or adjustment to the vehicle’s dynamics, contributes

to this phenomena [6]. Nonlinearities in the control system, such as actuator rate

limiting, have been shown to place excessive demands on pilot adaptation. It has

been shown that the susceptibility of an aircraft to PIOs can be increased through

actuator rate limiting [7].

In flight dynamics, the process of system identification is designed to extract an

accurate model of aircraft input-to-output behavior. Up until the early 1990s, con-
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ventional time-domain techniques used for fixed-wing aircraft were typically used

for rotorcraft, although they are not well suited for this purpose [8, 9]. Rotor-

craft dynamics are inherently unstable, nonlinear, and strongly coupled, and mea-

surements are typically noisy, making system identification especially difficult [10].

The Multiple-Input, Multiple-Output (MIMO) response due to high correlation be-

tween controls makes isolating a single control channel for system identification even

harder. Additionally, rotorcraft have different flight modes including hover and for-

ward flight in which dynamics can be drastically different. During an actual flight

test, rotorcraft measurements are prone to contamination from mechanical vibration

making data excessively noisy. Now, powerful system identification tools, designed

with rotorcraft system identification in mind, are available to accurately extract

system models.

1.2 Actuators & Flight Dynamics

Typically in the flight dynamics community, actuators are simply modeled as

transfer functions, generally of second order. While this is a computationally efficient

way of modeling actuator dynamics, it masks the details required to understand the

role different actuator parameters play in the overall flight dynamics of an aircraft.

For example, the transfer function

θ1s
δlon

=
1

0.00114s2 + 0.0463s+ 1
(1.1)

is found in Ref. [1] and describes the swashplate angle response θ1s to a given

longitudinal stick displacement input δlon. While the equation is useful for most
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flight dynamics applications, it is not intuitive. What happens if the supply pressure

decreases or if the size of the actuator increases? These types of changes to the

hydraulic system can not be easily represented by the transfer function in Eq. (1.1)

and a new transfer function must be created for each specific application. The

transfer function essentially becomes a ’black box’ and hides the internal workings

of the actuator dynamics.

1.3 Modeling and Experimentation

Modern rotorcraft flight control systems try to achieve high bandwidth, low

time delay response characteristics for improved handing qualities. One of the issues

that requires special attention is the overall time delay associated with various com-

ponents. In particular, in a typical pitching maneuver, the primary flight servos can

account for 14% of the overall time delay compared to 30% in the rotor [11]. This

can leave very little room in the design for delays associated with the stabilization

loop without risking rotorcraft stability.

Chen and Hindson investigated the influence of rotor and other high-order

dynamics on rotorcraft control system performance. When investigating high band-

width, high gain controller implementation on a simplified coupled rotor-fuselage

CH47 rotorcraft model, delays such as those associated with actuators severely lim-

ited the usable values of the feedback gains and thus bandwidth of the control

system [12]. As the required bandwidth of flight control systems increases, so does

the importance of understanding the high frequency dynamics of rotorcraft systems.
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Ballin and Dalang-Secrétan have focused on high frequency, nonlinear rotor-

craft dynamics. In this report, a blade element simulation is compared against

frequency sweep flight test data to assess the dynamic fidelity of the UH-60 simula-

tion in hover and low-speed flight. In the analysis, no significant nonlinearities were

noted between the simulation and flight test, however it is noted that the frequency

sweeps used may not have the required input amplitudes to expose the rate limits

of the actuators [13].

Fletcher developed a linear state space model for UH-60 flight dynamics in

hover and forward flight. The model includes the fuselage rigid body degrees of

freedom, rotor flap and lag dynamics as well as engine and governor dynamics. The

model uses equivalent time delays on the control inputs to simulate the hydraulic

response of the actuators. This results in an accurate rotorcraft simulation over

typical handling qualities frequencies of interest, 0.3 to 20 rad/sec, but it does not

fully capture the influence of the actuator dynamics on the final model [14].

Mitchell and Sahasrabudhe investigated how to determine aircraft bandwidth

in the presence of system nonlinearities. They studied two aircraft models and

introduced two common sources of nonlinearity, actuator rate limiting and cockpit

control command shaping. The rate limit of the actuator controller was adjusted

from 157 deg/sec down to 10 deg/sec and the frequency response of the aircraft

was calculated. It was determined that the susceptibility of an airplane to PIOs

can be effectively determined from airplane’s pitch attitude bandwidth and phase

delay, however, these parameters can be difficult to determine in the presence of

nonlinearities [15].
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A sophisticated state-space nonlinear helicopter model, called HeliUM, is used

to model the advanced rotorcraft dynamics relevent for this actuator study. Origi-

nally specialized for the UH-60 Black Hawk, HeliUM is a derivation of the GenHel

flight dynamics simulation model [23]. The original rotor model was composed of

rigid blade flap and lag degrees of freedom. Torsional dynamics were modeled us-

ing a psuedo-modal approach and the fuselage was modeled as a rigid body with

aerodynamic coefficients of the fuselage and empennage provided by look-up tables

[24]. Ballin then improved upon the GenHel model and also implemented an engine

model [25]. Kim et al. improved the main rotor inflow model using the Pitt-Peters

dynamic inflow model and implemented a new trim procedure using the already

available first order state space equations of motion [26]. The rotor modeling was

then improved to include an aeroelastic rotor and the coupled rotor/fuselage foru-

mulation [27, 28]. Peters and He finite state wake [29] was then added by Turnour.

Currently there are several different upgrades and modifications ongoing to HeliUM,

including the addition of actuator dynamics presented in this report, keeping the

model as accurate and up-to-date as possible.

The need to understand high frequency rotorcraft dynamics exists. If the

design model has inaccuracies, especially at high frequency, the controller’s perfor-

mance degrades leading to reduced maneuverability, performance, and in the worst

case, instability. As the technical requirements of rotorcraft increase, it becomes in-

creasingly important to have an accurate actuator mathematical model for improved

rotorcraft flight dynamics modeling.
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1.4 Rotorcraft System Identification

In flight dynamics, the process of system identification is designed to extract an

accurate model of aircraft input-to-output behavior. Up until the early 1990s, con-

ventional time-domain techniques used for fixed-wing aircraft were typically used

for rotorcraft, although they are not well suited for this purpose [? 9]. Rotor-

craft dynamics are inherently unstable, nonlinear, and strongly coupled, and mea-

surements are typically noisy, making system identification especially difficult [10].

The Multiple-Input, Multiple-Output (MIMO) response due to high correlation be-

tween controls makes isolating a single control channel for system identification even

harder. Additionally, rotorcraft have different flight modes including hover and for-

ward flight in which dynamics can be drastically different. Finally, during an actual

flight test, rotorcraft measurements are prone to contamination from mechanical

vibration making data excessively noisy. Now, powerful system identification tools,

designed with rotorcraft system identification in mind, are available to accurately

extract system models.

1.5 Actuator Modeling and Experimentation

Hydraulic servo systems are well documented in literature. Nikiforuk et al.

present a detailed analysis of a two-state electrohydraulic flow-control valve [16].

Typically, the frequency response characteristics of the valve load, i.e. the actuator,

occur on a much smaller scale than that of the servo valve so the system dynamics

can be summarized by those of the load. On some occasions, the response charac-
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teristics of load reach high frequencies requiring a detailed valve mathematic model

[16]. Various effects including spool acceleration force, viscous friction forces, flow

reaction forces, leakage flow, and compressibility are documented. This model high-

lights the need for more detailed nonlinear valve models in order to more accurately

describe servo actuator dynamics.

Valve dynamics are only one portion of the overall hydraulic system. Van

Schothorst details a very detailed hydraulic servo system model for long stroke flight

simulator motion control. Limits on the performance of hydraulic systems become

apparent as performance demands of simulators increase [17]. Nonlinearities in the

valve, pipeline, and actuator dynamics are analyzed and a linear model is obtained,

describing the dynamic behavior of the hydraulic servo system. The modeling of the

transmission lines between the valve and actuator becomes important as the length

of the actuator stroke increases, as is the case with flight simulator motion control.

1.6 Summary

Many helicopter simulation models do not include hydraulic actuator dynam-

ics. When these are integrated, the model is typically limited to an input delay

or to a transfer function, usually of second order. This technique is sufficient for

most applications but as rotorcraft performance requirements increase, the need for

a more accurate actuator model may arise.

Actuator delay is especially important to understand. Instabilities in the pres-

ence of a high bandwidth controller can arise as the delay between the actuator and
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rotor response to pilot input increases. As controller design places more demand on

the hydraulic servo system, delays and discrepancies in the model used to design the

controller can lead to degraded performance. Typically, stability augmentation sys-

tem gains resulting from flight tests are often well below the originally designed and

predicted values [12]. With an improved nonlinear hydraulic servo system model

integrated into rotorcraft models, the coupled dynamics of actuator, rotorcraft, and

controller design can be better understood and higher performance systems can be

designed.

1.7 Objective of Present Work

The objectives of the present work are:

1. To describe the formulation of a state space, physics based, nonlinear hydraulic

servo actuator model.

2. To analyze key parameters in the hydraulic servo model and quantify their

effects on actuator time and frequency domain responses.

3. To integrate the hydraulic servo actuator model into a state space nonlinear

helicopter simulation model.

4. To quantify the effects of key hydraulic servo actuator design parameters on

rotorcraft flight dynamics quantities of interest such as bandwidth and phase

delay.
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The work presented in this thesis describes a hydraulic servo system con-

sisting of valve and actuator dynamics. An empirical second order model is used

to describe valve dynamics, and accounts for both internal friction and hysteresis.

Pressure dynamics in the actuator are calculated using the continuity equation in-

cluding the effects of fluid compressibility. Actuator dynamics are determined via

Newton’s second law and a force summation including chamber pressures, friction

on the piston, and external forcing. The model is integrated with HeliUM, a state

space nonlinear rotorcraft flight dynamics simulation model. A linearized dynamic

analysis of coupled actuator and rotorcraft dynamics are carried out with models

obtained using numerical linearization and frequency domain system identification.

Rotorcraft performance is quantified through the use of frequency response data

and handling qualities metrics. The effects of nonlinearities due to displacement

and rate saturation on the dynamics of the rotorcraft are also studied in detail.

1.8 Outline of Thesis

Chapter 2 discusses the development of the models of the hydraulic servo

system and of the helicopter, as well as the steps taken to integrate the two models.

Various issues associated with actuator saturation are also discussed. In Chapter 3,

results of the actuator study are presented. Time and frequency domain actuator

response data is presented for various actuator configurations. Frequency response

data for the integrated actuator rotorcraft dynamics study is presented in Chapter

4. Both numerical linearization and system identification are compared. Chapter 6
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presents the main conclusions of the study, as well as suggestions for future research.
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Chapter 2

Model Formulation

2.1 Overview

The hydraulic servo system can be seen as a complex balance of energy in the

form of fluid flow rate and pressure. At one end of the system, a hydraulic pump

supplies hydraulic fluid at a prescribed pressure to the valve where it is redirected

to a hydraulic actuator. Depending on the control input to the valve, the pressure

supplied by the pump is diverted to an actuator chamber and used to translate the

actuator piston fore and aft. This process of moving an actuator is well under-

stood and can be modeled using some basic principles and underlying assumptions.

Modeling the hydraulic servo system is the first step to a deeper understanding of

actuator dynamics and optimization.

2.2 Modeling

A hydraulic servo system consists of four main elements that combine to con-

vert hydraulic energy generated by the power source into useful mechanical work.

A hydraulic servo system consists of the following four elements:

• Power Supply

• Control Elements
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• Actuating Elements

• Miscellaneous Elements

Fig. 2.1: Diagram of a typical hydraulic servo system, from Ref. [2].

The power supply is responsible for supplying hydraulic power to the system.

This power is in the form of a supply pressure created by a pump and is converted

to mechanical work by the actuating element. The control elements, in the form of

valves, are responsible for controlling the direction, amount, and pressure of fluid

flow to the actuator. The actuating elements are responsible for converting this

hydraulic energy into usable mechanical energy. Actuating elements can either have

linear output (cylinders, rams, jacks) or rotary output (rotary actuators, motors).

Details on the dynamics of each of these components can be found below.

2.2.1 Actuator Dynamics

The actuator is the end of the hydraulic servo system chain and is responsible

for the output of the entire system. After hydraulic pressure is produced by the

pump and controlled by the valve, the actuator harnesses this energy, in the form

of a pressure differential, and converts it to linear or rotary motion. On helicopters,
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a group of linear actuators, or hydraulic cylinders, are responsible for tilting the

swashplate, which changes azimuthal blade pitch.

Chamber A Chamber B 

PA 
PB 

QA QB 

x P 

Fext 

F f 

Fig. 2.2: Hydraulic actuator

A linear actuator, also known as a hydraulic cylinder, consists of a cylinder

with two chambers and a piston. In this model, the chambers will be called chamber

A and chamber B, shown schematically in Fig. 2.2. The differential pressure between

the two chambers creates a force imbalance, resulting in the movement of the piston.

This pressure differential is controlled independently by two pipelines connected to

the valve.

The actuator dynamics can be modeled quite easily by applying Newton’s

Second Law. The forces acting on the piston include the pressure differential between

chambers, friction, and external forcing on the piston rod such that

mtẍp = PAAA − PBAB − Ff − Fext (2.1)

where mt and ẍp are the total mass and acceleration of the piston. Chamber pres-

sures are represented by PA and PB while chamber areas are represented by AA and
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AB, Ff is the friction force generated from the actuator velocity, and Fext is the

external load applied to the end of the actuator rod.

In order for the actuator force to be applied, the actuators piston must run

through the center of one of the chambers as illustrated in Figure 2.2 at the beginning

of this chapter. To simplify calculations,

α =
AB
AA

where α is the ratio of the internal cross-section area of chamber B to that of chamber

A.

The area AA can now be represented by the more general Ap, piston area. We

can now simplify Eq. (2.1) to

mtẍp = (PA − αPB)Ap − Ff − Fext. (2.2)

The external force, Fext, allows this model to interact dynamically with its surround-

ing. When integrated with a helicopter simulation, this force will be derived from

blade forces and moments transferred through blade pitch links to the swashplate

and applied to each actuator.

The Stribeck friction curve [18]

Ff = σẋp + sign(ẋp)

[
Fc0 + Fs0 exp

(
−|ẋp|
cs

)]
(2.3)

is used to calculate the friction force Ff . The piston velocity is represented by

ẋp. The other parameters, σ, Fc0,Fs0, and cs are determined experimentally. The
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quantity sign(ẋp) is defined as,

sign(ẋp) =



1 if ẋp > 0

0 if ẋp = 0

−1 if ẋp < 0

(2.4)

Figure 2.3 shows an example friction curve for the parameters in Table 2.1. Note

that different parameters were used for positive piston velocity and negative piston

velocity.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−200

−100

0

100

200

Velocity [m/s]

F
f [

N
]

Fig. 2.3: Example of Stribeck friction curve

The total mass of the piston is given by

mt = mp +mA,fl +mB,fl

where mp is piston mass and mA,fl and mB,fl represent hydraulic fluid mass in

pipelines A and B, respectively.
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Friction Parameter ẋp > 0 ẋp < 0

σ [
Ns

m
] 220 180

Fc0 [N ] 50 50

Fs0 [N ] 30 20

cs [
m

s
] 0.015 0.005

Table 2.1: Friction parameters for Eq. (2.3) used in Fig. 2.3

Hydraulic fluid mass in pipeline A and B are calculated below by multiplying

hydraulic fluid density by the sum of pipeline and chamber volumes using [2]

mA,fl = ρ[Vpl,A + (xp,0 + xp)Ap] (2.5)

mB,fl = ρ[Vpl,B + (xp,0 − xp)αAp] (2.6)

where ρ is the density of the hydraulic fluid, Vpl,A and Vpl,B are the pipeline volumes

from the pump and reservoir to chambers A and B, respectively, xp,0 is the initial

piston position, and xp is the current piston position.

With Eq. (2.2), the dynamics of the piston can be modeled and understood.

The driving inputs to the actuator equation are the chamber pressures PA and PB

detailed below.

2.2.2 Pressure Dynamics

Pressure dynamics for each chamber in the actuator must be calculated inde-

pendently by applying the continuity equation. Pressure is a function of volumetric

flow rate, fluid leakage, and change in chamber volume. If a fluid, with some posi-
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tive flow rate Q, is forced into a constant volume, the pressure of that fluid changes.

Alternatively, if the fluid is forced into an expandable volume and held at a constant

pressure, that control volume will expand. To start analyzing pressure dynamics,

the continuity equation [2]

QA −QLi = V̇A +
VA

E ′(PA)
ṖA (2.7)

QB +QLi −QLe = V̇B +
VB

E ′(PB)
ṖB (2.8)

is applied. The terms QA and QB represent the volumetric flow rate of pipelines A

and B, QLi is the volumetric flow rate of internal leakage and QLe is the volumetric

flow rate of external leakage, VA and V̇A are the volume and rate of change of

volume of chamber A, while VB and V̇B are the volume and rate of change of volume

of chamber B, E ′ is the effective bulk modulus, ṖA is the rate of change of pressure

in chamber A, and ṖB is the rate of change of pressure in chamber B.

The flow QLi can be calculated using [2]

QLi = CLi(PB − PA)

i.e., it is a function of the pressure differential between chambers A and B with CLi

representing the internal leakage coefficient. External leakage, QLe, will be assumed

to be small, and will be neglected for the rest of this discussion.

Volumes for chambers A and B are calculated similarly to Eqs. (2.5) and (2.6),

and can be further simplified by assuming that the initial piston position, xp,0, is
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zero. The volumes are given by

VA = Vpl,A + (xp,0 + xp)Ap = Vpl,A + xpAp (2.9)

VB = Vpl,B + (xp,0 − xp)αAp = Vpl,B − xpαAp (2.10)

Taking the derivative of Eqs. (2.9) and (2.10) yields

V̇A = Apẋp (2.11)

V̇B = −αApẋp (2.12)

Equations (2.11) and (2.12) represent the rate of change of each chamber volume

respectively.

The effective bulk modulus, E ′(P ), is given by [19]

E ′(P ) = a1Emaxlog10

(
a2

P

Pmax
+ a3

)

This equation was derived empirically and is commonly used to calculate the effective

bulk modulus for hydraulic cylinders [2]. Parameters a1 = 0.5, a2 = 90, a3 = 3,

Emax = 18000 bar, and Pmax = 280 bar were determined empirically and account

for the effects of entrained air as well as mechanical compliance.

Equations (2.7) and (2.8) can be rearranged as

ṖA =
1

Ch,A
(QA − Apẋp +QLi) (2.13)

ṖB =
1

Ch,B
(QB + αApẋp −QLi) (2.14)

to solve for ṖA and ṖB directly. Hydraulic capacitances, Ch,A and Ch,B, are defined
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as

Ch,A =
VA

E ′(PA)
(2.15)

Ch,B =
VB

E ′(PB)
(2.16)

Equations 2.13 and 2.14 are two additional differential equations that will be in-

cluded in the final nonlinear state space actuator model.

2.2.3 Valve Dynamics

The valve is responsible for controlling the flow of hydraulic fluid to and from

the actuator. In this simulation, the valve has two ports for supply and tank pressure

and two ports leading to chambers A and B on the actuator. The valve spool,

running down the center of the valve, controls the connection and flow of hydraulic

fluid between each port, as shown in Fig. 2.4. The linear position of the valve

spool determines the hydraulic flow rates between the actuator chambers, pump,

and reservoir.

PS PS PT 

QA, PA QB, PB 

PS PS PT 

xv > 0 

xv < 0 

QA, PA QB, PB 

Fig. 2.4: Valve schematic

To solve for flow rates QA and QB, we must look at the dynamics of the valve.
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Typically, the orifice equation is used to describe fluid flows through orifices such as

those found in a valve. The flow rate through one orifice in the valve is given by [2]

Q = cvxvsign(P1 − P2)
√
|P1 − P2| (2.17)

where cv is the valve flow coefficient, xv is the valve spool position, and P1 and P2

are line pressures on each side of the orifice. This equation assumes the orifices are

round.

The valve flow coefficient is defined as [2]

cv = πdvαd

√
2

ρ
(2.18)

where dv is the valve spool diameter, αd is the valve discharge coefficient, and ρ is

the fluid density.

Using valve specifications, the discharge coefficient can be calculated using [2]

αd =
QN

A(xv,max)

√
∆PN
ρ

. (2.19)

In the above equation, QN represents the nominal flow rate of the valve, ∆PN is the

nominal pressure drop across the valve, and A(xv,max) is the maximum area of the

valve orifice.

The valve flow coefficient, cv, can also be calculated using valve manufacturer

specifications from the equation [2]

cv =
QN√
∆PN

2

1

xv,max
. (2.20)

Equation (2.17) takes into account both the magnitude and the direction of

the pressure difference between two fluid lines. This equation can be extended to

22



describe the behavior of a valve where positive movements of the valve spool, xv,

result in different equations than negative movements using

QA =


cv,1xvsign(Ps − PA)

√
|Ps − PA| if xv ≥ 0

cv,2xvsign(PA − PT )
√
|PA − PT | if xv < 0

(2.21)

where Ps is the supply pressure from the pump and PT is the reservoir pressure from

the tank.

Equation (2.21) describes the changes in pipeline A connections that occur

when the valve spool is moved from center. When a positive valve spool displacement

occurs, pipeline A, leading to chamber A, is connected to the supply pressure, Ps.

If the valve spool displacement is negative, pipeline A is connected to the reservoir,

or tank pressure, PT . Both equations vary linearly with valve displacement and can

be combined as follows.

QA = cv,1sg(xv)sign(Ps − PA)
√
|Ps − PA|

− cv,2sg(−xv)sign(PA − PT )
√
|PA − PT | (2.22)

QB = cv,3sg(−xv)sign(Ps − PB)
√
|Ps − PB|

− cv,4sg(xv)sign(PB − PT )
√
|PB − PT | (2.23)

These expressions combine the piecewise Eq. (2.21) into one equation using

sg(xv) defined as

sg(x) =


x if x ≥ 0

0 if x < 0.

(2.24)
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Modeling of valves, in particular the valve spool dynamics, is more complex

than both actuator and pressure dynamics. Valve dynamics are highly nonlinear

due to the effects of dead band, saturation, hysteresis, response sensitivity, reversal

error, repeatability, flow induced forces, and friction forces [2]. Valve manufacturers

release step response and frequency response of specific valves, which can be used to

develop simple model approximations of valves. For this simulation, a second order

approximation [2]

ẍ*v = ω2
v

(
u*v −

2Dv

ωv
ẋ*v − x*v − fhssign(ẋ*v)

)
(2.25)

was used. In Eq. (2.25), x*v, ẋ
*
v, and ẍ*v are normalized valve spool position, velocity,

and acceleration, respectively, ωv and Dv are the natural frequency and damping

coefficient of the valve, fhs is the valve hysteresis coefficient, and u*v is the normalized

valve input.

The normalized valve input, u*v, dictates the desired position of the valve spool,

from -1 to 1. The valve states are normalized using

x*v =
xv

xv,max
(2.26)

ẋ*v =
ẋv

xv,max
(2.27)

ẍ*v =
ẍv

xv,max
(2.28)

where xv,max is max valve spool displacement.

This second order differential equation describes normalized valve spool po-

sition, x*v, as a function of normalized valve input, u*v. This equation starts the

sequence of events eventually leading to actuator displacement. When the pilot
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moves the control stick, inputs will be sent to the valve ultimately leading to a

desired actuator displacement. With the hydraulic system basics modeled, we can

now begin to solve these equations to simulate various valve input-output responses.

2.3 Isolated Actuator Simulation

With the equations governing actuator, pressure, and valve dynamics laid out,

we can now solve for the time histories of these quantities.

2.3.1 Differential Equation Overview

Before solving the equations that describe the actuator dynamics, it is impor-

tant to point out the key assumptions used to simplify the model.

• Supply pressure, Ps, and tank pressure, PT are constant

• Flow through the valve is considered turbulent

• Leakage flow is laminar

• Pipeline dynamics are neglected

Equations (2.2), (2.13), (2.14), and (2.25) can all be converted to first order

implicit form. The implicit differential equations below are ready to be input into

the differential equation solver and used to model actuator dynamics.
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0 = ẋ1 − x2 (2.29)

0 = mtẋ2 − (x3 − αx4)Ap + Ff (x2) + Fext (2.30)

0 = VA(x1)ẋ3 − E ′(x3)[QA(x3, x5)− Apx2 +QLi(x3, x4)] (2.31)

0 = VB(x1)ẋ4 − E ′(x4)[QB(x4, x5) + αApx2 −QLi(x3, x4)] (2.32)

0 = ẋ5 − x6 (2.33)

0 = ẋ6 − ω2
v

[
u1 −

2Dv

ωv
x6 − x5 − fhssign(x5)

]
(2.34)

In the process of converting the equations, different properties have been con-

verted to numbered states as follows:

x1 ≡ xp piston position

x2 ≡ ẋp piston velocity

x3 ≡ PA chamber A pressure

x4 ≡ PB chamber B pressure

x5 ≡ x*v normalized valve spool position

x6 ≡ ẋ*v normalized valve spool velocity

u1 ≡ u*v normalized valve input

2.3.2 Actuator Control

The normalized valve input, u1, dictates the position of the valve spool, ulti-

mately determining the velocity of the actuator. When u1 = 1, the actuator will be
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moving full speed in the positive direction and when u1 = −1, the actuator will be

moving full speed in the negative direction. When the input u1 = 0, the actuator

remains at rest. In many applications where hydraulic control is used, including

aerospace, the operator is not interested in controlling the velocity of the actuator.

Instead, the operator is interested in the final displacement position of the actuator.

When piloting a rotorcraft, the pilot’s stick displacement corresponds to a

particular swashplate displacement. When the pilot holds the stick at a particular

position, unless there are separate flight control system inputs, the swashplate holds

in a particular position. Because of this behavior, it is important to add a controller

to the hydraulic system.

In this case, a proportional gain controller was implemented. This controller

simply calculates the error between desired and actual actuator position to determine

the magnitude of valve input required to reach the pilot’s desired actuator position.

Valve input can be calculated using

u1 = Kp(u1d − x1) (2.35)

where Kp is the proportional gain. This controller is kept as simple as possible to

minimize the effects on the dynamics of the hydraulic servo system.

In physical applications, a linear variable differential transformer, or LVDT, is

used to determine an actuator position [20]. This reading can be sent to a valve with

an integrated controller that determines the required valve spool input to achieve

the desired actuator displacement. The controller described in Equation 2.35 is

behaving as the valve model’s integrated controller.
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2.3.3 Flow Smoothing

When integrating the equations of motion of the actuator, the ODE solver

can run into numerical difficulties due to discontinuities in some equations. The

equations for flow rate, Eqs. (2.22) and (2.23), both contain discontinuities in their

derivative. As valve position moves from positive to negative, the slope of the flow

rate vs. valve position curve jumps at x*v = 0, as illustrated in Figs. 2.5 and 2.6.
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Fig. 2.5: Example of flow rate Q as a function of normalized valve position

This sharp change in slope leads to problems with convergence. To solve

this problem, the flow rate was approximated by a continuous spline between the

constant slopes of the flow rate while maintaining flow rate equal to zero at zero

normalized valve position, e.g., QA = 0 at x*v = 0.

To create the spline, a third order polynomial

Q̃′ = Ax+Bx2 + C (2.36)

was fit between two points, a distance ±∆x from the origin of the flow rate slope.

28



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

Normalized Valve Position

R
a

te
 o

f 
C

h
a

n
g
e 

o
f 

F
lo

w
 R

a
te

 [
m

3
/s

2
]

Fig. 2.6: Slope of flow rate Q′ as a function of normalized valve position

Larger values of ∆x create smoother splines but increase the relative error between

the actual and approximated rate of change of flow rate. The constraints

Q̃′(0) =
Q′(∆x) +Q′(−∆x)

2
(2.37)

Q̃′′(∆x) = 0 (2.38)

Q̃′′(−∆x) = 0 (2.39)

Q̃′(∆x) = Q′(∆x) (2.40)

Q̃′(−∆x) = Q′(−∆x) (2.41)

were used to determine A, B, and C, where Q̃′ is the approximate rate of change of

flow rate, and Q̃′′ is the approximate derivative.

Solving Eq. (2.36) using constraint Eqs. (2.37) through (2.41) yields the fol-

lowing equations:
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If x*
v > 0

A = −2B∆x (2.42)

B =
C −Q′(∆x)

∆x2
(2.43)

C =
Q′(∆x)−Q′(−∆x)

2
(2.44)

If x*
v < 0

A = 2B∆x (2.45)

B =
C −Q′(−∆x)

∆x2
(2.46)

C =
Q′(∆x)−Q′(−∆x)

2
(2.47)

The coefficients are different depending on the sign of x*v since the slope of the flow

rate, Q′(±∆x) changes for positive and negative values of ∆x.

The value of Q′ can be obtained by taking the derivative of Eqs. (2.22) and

(2.23) with respect to x*v. Doing so eliminates the sg(xv) and sg(−xv) function. In

order to preserve the sign change associated with sg(−xv) that is lost when taking

the derivative, Equations 2.50 and 2.51 have each had their signs reversed.

If x*
v > 0

Q′A = cv,1sign(Ps − PA)
√
|Ps − PA| (2.48)

Q′B = cv,4sign(PB − PT )
√
|PB − PT | (2.49)

If x*
v < 0

Q′A = cv,2sign(PA − PT )
√
|PA − PT | (2.50)

Q′B = cv,3sign(Ps − PB)
√
|Ps − PB| (2.51)
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Now, these equations can be substituted back into Eq. (2.36) to solve for Q̃′.

Q̃′ = Ax+Bx2 + C (2.52)

And flow rates QA and QB can be estimated by multiplying the estimated slope by

normalized valve position.

Q̃A = Q̃′Ax
*
v (2.53)

Q̃B = Q̃′Bx
*
v (2.54)

These approximations are used for −∆x ≤ x*v ≤ ∆x, otherwise Eqs. (2.22) and

(2.23) are used. The smoothed approximations are compared to the original in

Figs. 2.7 and 2.8.
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Fig. 2.7: Example plot of flow rate with and without smoothing as a function of

normalized valve position.

In these plots, ∆x = 0.5 to emphasize the smoothing and during simulation,

∆x is typically much smaller. While the changes to Fig. 2.7 are subtle, the much
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Fig. 2.8: Example of slope of flow rate with and without smoothing as a function of

valve position.

more noticeable changes to Fig. 2.8 have large impacts on the convergence of the

ODE solver used. It is also important to note that Fig. 2.7 is provided for illustration

purposes only, and it is not a direct integration of Fig. 2.8.

This same method used above to smooth out Eq. (2.4). The sign(x) function

is also discontinuous and may pose numerical problems for calculating friction and

hysteresis in Eqs. (2.3) and (2.25). Figure 2.9 shows this function smoothed for a

value of ∆x = 0.2.

The value of ∆x chosen for smoothing is very important. In general, choosing

a large ∆x increases the speed and computational efficiency of the ODE solver, but

can generate significant model inaccuracies. It is important to choose the smallest

∆x such that the ODE solver converges easily, and these artificial inaccuracies are

minimized.
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Fig. 2.9: Sign function with and without smoothing.

2.3.4 Constraining Actuator Motion

When modeling the actuator, special care has to be taken to assure the stroke

of the actuator is contained within physical limits. To properly model actuator

limits, a flag with five different operating values has been defined and integrated

into the model. Note that when discussing forcing, positive forcing is defined as a

net force in the positive xp direction and negative forcing is defined as a net force

in the negative xp direction.

Flag = 0, Normal Operation: In this mode, the actuator is operating between its

limits and the code checks to see if the actuator has reached minimum or

maximum stroke by monitoring xp

Flag = 1, Fully Extended and Positive Forcing: In this mode, shown in Fig. 2.11,

the actuator is fully extended and the net force is trying to extend it further.
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F
net

 

or 

Fig. 2.10: Normal operation, Flag = 0.

The actuator position and velocity are held fixed with algebraic constraints

since the actuator is fully extended and the net force is holding it in this

position.

F
net

 

Fig. 2.11: Actuator fully extended and with positive forcing; Flag = 1.

Flag = 2, Fully Retracted and Negative Forcing: In this mode, shown in Fig. 2.12,

the actuator is fully retracted and the net force is trying to retract it further.

The actuator position and velocity fixed with algebraic constraints since the

actuator is fully retracted and the net force is holding it in this position.

F
net

 

Fig. 2.12: Actuator fully retracted and with negative forcing; Flag = 2.
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Flag = 3, Fully Extended and Negative Forcing: In this case, the actuator is fully

extended but the net force is trying to retract it. Position and velocity initial

conditions are set before resetting the differential equation solver. This mode

is set when the actuator is previously in flag 1 and the net force changes

negative, or when the actuator’s momentum carries it into the fully extended

stop despite negative acceleration.

F
net

 

Fig. 2.13: Actuator fully extended and with negative forcing; Flag = 3.

Flag = 4, Fully Retracted and Positive Forcing: The actuator is fully retracted but

the net force is trying to extend it. This mode sets position and velocity initial

conditions before resetting the differential equation solver. This model is set

when the actuator is previously in flag 2 and the net force changes positive, or

when the actuator’s momentum carries it into the fully retracted stop despite

positive acceleration.

F
net

 

Fig. 2.14: Actuator fully retracted and with positive forcing; Flag = 4
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The flow chart in Fig. 2.15 shows the logic followed by the ODE solver in

dealing with actuator limits. Depending on the value of the actuator flag, the

integration of the ODE solver is stopped, composition of the ODE system is changed,

the system is reinitialized, and the integration is restarted (and continued until the

next change of the value of the flag). The mode changes are implemented by taking

advantage of a feature of the DAE solver DASKR used in the present study. In

DASKR, it is possible to define ”constraints equations” which are expressions that

are monitored for zero crossings [21, 22]. When a constraint equation crosses zero,

either from positive to negative, or negative to positive, the solver stops and the

mode can be changed. Equations (2.55) through (2.60) describe the constraint

equations used during each operational flag.

If Flag = 0,

R1 = x1,max − x1 (2.55)

R2 = x1 − x1,min (2.56)

If Flag = 1,

R1 = Ftotal (2.57)

If Flag = 2,

R1 = Ftotal (2.58)

If Flag = 3 or 4,

R1 = Ftotal (2.59)

R2 = x1 (2.60)
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Fig. 2.15: Constraint logic flow chart.

In these equations, x1,max and x1min are the maximum and minimum piston dis-

placements, respectively. The net force on the actuator, Ftotal, is equal to the right

hand side of Eq. (2.2).

Ftotal = (PA − αPB)Ap − Ff − Fext (2.61)

This is the same equation used to determine force direction when the actuator hits

a stop.

If the force direction is in the same direction as the constraint, e.g., positive

forcing against the upper constraint, the piston position and velocity are held con-
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stant with algebraic equations instead of differential equations. The equations for

these two situations are:

If Flag = 1

0 = x1 − x1,max (2.62)

0 = x2 (2.63)

If Flag = 2

0 = x1 − x1,min (2.64)

0 = x2 (2.65)

When the actuator is being forced while fully extended (Flag = 1) the alge-

braic equations, Eqs. (2.62) and (2.63) replace the ODEs, Eqs. (2.29) and (2.30),

respectively. When the actuator is being forced while fully retracted (Flag = 2) the

algebraic equations, Eqs. (2.64) and (2.65) replace the ODEs, Eqs. (2.29) and (2.30),

respectively. It is important to note that these equations do not introduce any new

physics, and simply force x1 and x2 to be constant. Meanwhile, all the pressure and

valve dynamics are calculated as normal.

If the force direction is in the opposite direction as the constraint, e.g., negative

forcing against the upper constraint, the piston position and velocity are set as initial

conditions after a constraint equation has been triggered. For example, consider a

heavy actuator extending quickly. Just before the actuator is fully extended, the

net force becomes negative. With a net force opposite the direction of travel, the
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actuator begins to decelerate but before it loses all its speed it reaches full extension.

This example is one reason for having Flag = 3 and Flag = 4. When the actuator

reaches this constraint, none of the differential equations change since the actuator

is not being held into place by net force such as when Flag = 1 or Flag = 2. Rather,

the actuator position and velocity are set as initial conditions and the differential

equation solver is restarted.

If Flag = 3,

x1 = x1,max (2.66)

x2 = 0 (2.67)

If Flag = 4,

x1 = x1,min (2.68)

x2 = 0 (2.69)

Actuator limits were reconstructed from UH-60 limits described in References

[1, 23]. To determine actuator travel limits, xmax for each actuator, the trimmed

value was calculated and compared to the upper and lower limits provided in Ref.

[1].

Upper and lower bounds δu and δl for swashplate lateral and longitudinal cyclic
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Swashplate Angle Trim Angle [deg] Upper Limit [deg] Lower Limit [deg]

Lateral Cyclic (θ1,c) 1.27 8.0 -8.0

Longitudinal Cyclic (θ1,s) -1.74 16.3 -12.5

Table 2.2: Trimmed swashplate angles in hover compared to swashplate limits from

Ref. [1]

were determined using

δθ1,c,u = θ1,c,upper − θ1,c,trim (2.70)

δθ1,c,l = θ1,c,trim − θ1,c,lower (2.71)

δθ1,s,u = θ1,s,upper − θ1,s,trim (2.72)

δθ1,s,l = θ1,s,trim − θ1,s,lower (2.73)

to calculate the distance in degrees from trimmed flight to the actuator limits. Table

2.3 shows the values of δ for lateral and longitudinal upper and lower limits.

Swashplate Angle δθu [deg] δθl [deg]

Lateral Cyclic (θ1,c) 6.73 9.27

Longitudinal Cyclic (θ1,s) 18.04 10.76

Table 2.3: Distance to swashplate limits for swashplate in trimmed hover

A representative δ = 12◦ was chosen for the upper and lower limits of each

actuator, combining the effects of both cyclic and collective. An actuator under

the effects of cyclic and collective must extend, or retract, for both control inputs.

More information can be found in Section 2.4.3 where the conversion from actuator
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displacement to swashplate angle is discussed. The physical limits of for actuator i

are calculated using this representative δ using

xi,max = xi,trim + κ

(
πδ

180

)
(2.74)

xi,min = xi,trim − κ
(
πδ

180

)
(2.75)

where κ is the conversion factor between swashplate angle and actuator displace-

ment, discussed in Section 2.4.3.

As a note, the present study is not trying to reproduce the specific actuator

dynamics of the UH-60. However, representative data on the UH-60 swashplate

limits is readily available and therefore it is used to create reasonable swashplate

limits for this simulation.

2.3.5 Differential & Algebraic Equation Solver Optimization

The methods described in Section 2.3.4 which combine algebraic equations

with differential equations, can increase computation time drastically, and may not

be the most efficient. This is the case with the actuator dynamics, where computa-

tion times increased when the the algebraic equations were substituted for differen-

tial equations when the actuator was being forced against a stop.

In Section 2.3.4, when Flag = 1 or Flag = 2, (actuator fully extended or fully

retracted, and fluid pressure holding it against the stop) the first two differential

equations, Eqs. (2.29) and (2.30), were removed and replaced by algebraic equations,

in order to hold the actuator position to fully extended or fully retracted, and

velocity was set equal to zero. Instead of wasting unnecessary computation time

41



integrating the algebraic equations into the math, the original differential equations

can be replaced by temporary, easy to solve differential equations, since the states

corresponding to actuator position and actuator velocity are known.

In this situation, the algebraic equations presented in Eqs. (2.62) through

(2.65) are replaced by the easily solvable, dummy, differential equations below.

If Flag = 1 or 2

0 = ẋ1 − x2 (2.76)

0 = ẋ2 − x1 − x2 (2.77)

Ideally any easily solvable differential equation can be used. In addition, initial

conditions for the states described in these dummy differential equations are reset

to zero for a consistent, easily solvable set of equations.

If Flag = 1 or 2

x1 = 0 (2.78)

ẋ1 = 0 (2.79)

x2 = 0 (2.80)

ẋ2 = 0 (2.81)

Now that the necessary states have been reset to zero in order to solve an easy

set of temporary differential equations, it is important to adjust any equations in

our actuator model that rely on the states x1, x2, or their derivatives since these

states are now all temporary. These necessary adjustments are described below.
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Equation (2.35), which controls valve input must be adjusted depending on the

actuator’s flag by replacing the time dependent piston position x1, with its constant

maximum value, x1,max, or minimum value, x1,min respectively:

If Flag = 1

u1 = Kp(u1d − x1,max) (2.82)

If Flag = 2

u1 = Kp(u1d − x1,min) (2.83)

Next, the Eqs. (2.9) and (2.10), used for calculating chamber volumes must

be modified in a similar way (recall that xp ≡ x1).

If Flag = 1

VA = Vpl,A + (xp,0 + x1,max)Ap (2.84)

VB = Vpl,B + (xp,0 − x1,max)αAp (2.85)

If Flag = 2

VA = Vpl,A + (xp,0 + x1,min)Ap (2.86)

VB = Vpl,B + (xp,0 − x1,min)αAp (2.87)

Since the actuator is held at a constant position and velocity is zero, the

friction force Ff , from Eq. (2.3), can be set to zero, i.e.

If Flag = 1 or 2

Ff = 0 (2.88)
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Finally, when saving the states from the differential equation solver at each

time step, it is important to ignore the temporary states and save the known, actual

states

If Flag = 1

x1 = x1,max (2.89)

ẋ1 = 0 (2.90)

x2 = 0 (2.91)

ẋ2 = 0 (2.92)

If Flag = 2

x1 = x1,min (2.93)

ẋ1 = 0 (2.94)

x2 = 0 (2.95)

ẋ2 = 0 (2.96)

When leaving Flag = 1 and Flag = 2, it is important to remember to reset the

initial conditions for the states x1 and x2 as well as their derivatives before restarting

the solver.
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If leaving Flag = 1 and entering Flag = 3

x1 = x1,max (2.97)

ẋ1 = 0 (2.98)

x2 = 0 (2.99)

ẋ2 = 0 (2.100)

If leaving Flag = 2 and entering Flag = 4

x1 = x1,min (2.101)

ẋ1 = 0 (2.102)

x2 = 0 (2.103)

ẋ2 = 0 (2.104)

Replacing algebraic equations with ”temporary” differential equations is a

good way to avoid the additional computational time and effort associated with

solving a DAE system. There is, however, another strategy that can reduce compu-

tational effort. Using the method above, when an actuator hits the stop, the ODEs

Eqs. (2.31) through (2.34) are active, and continue to be integrated. In reality, the

ODEs that describe actuator chamber pressures, Eqs. (2.31) and (2.32), give a con-

stant pressure solution when the actuator is operating under Flag = 1 or Flag =

2.

When the actuator is forced up against a stop, it is unnecessary to calculate

the pressure dynamics until the valve approaches the neutral position, preempting
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a pressure change between each actuator chamber and the supply pressure and

reservoir pressure as seen in Figs. 2.16 and 2.17.

Figure 2.18, shows some of the same quantities as Figs. 2.16 and 2.17, on

an expanded time scale during the transition of valve position from positive to

negative. The actuator chamber pressure and chamber flow rates do not move until

the valve crosses the neutral position. In this case, the ODEs describing chamber

pressures, Eqs. (2.31 and (2.32) can be replaced with algebraic equations similar to

the method for actuator position and velocity used in Section 2.3.4. For improved

efficiency, the ODEs describing chamber pressures can be replaced by temporary

differential equations using the same method described previously in this section.

For the best increase in efficiency, and avoid any trouble with the inclusion of

algebraic equations, the temporary differential equation method is used. When the

actuator first enters operation under Flag = 1 or Flag = 2, the pressures PA = x3

and PB = x4 are held constant at supply and tank pressure, and Eqs. (2.31) and

(2.32) are replaced by the temporary, dummy differential equations below.

If Flag = 1 or 2

0 = ẋ3 − x4 (2.105)

0 = ẋ4 − x3 − x4 (2.106)

These equations have no physical meaning and are simply used to keep the number

of differential equations constant while the differential equation solver integrates.

Just like above, initial conditions for the states x3 and x4 are set to zero to ensure

a consistent, easily solvable set of equations.
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Fig. 2.16: Example plot of actuator position, velocity, and normalized valve spool

when the upper position limit is reached.

If Flag = 1 or 2

x3 = 0 (2.107)

ẋ3 = 0 (2.108)

x4 = 0 (2.109)

ẋ4 = 0 (2.110)47
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Fig. 2.17: Example plot of actuator chamber pressures and flow rates when the

upper position limit is reached.

Since states x3 and x4 are now temporary and have no physical meaning, any equa-

tions that depend on actuator pressure dynamics must be modified. Equations (2.7)

and (2.8) describing chamber flow rates, are modified by replacing

If Flag = 1

QA = 0 (2.111)

QB = 0 (2.112)

QLi = CLi(PT − Ps) (2.113)
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Fig. 2.18: Zoomed plot of normalized valve spool position and actuator chamber

pressures and flow rates when the upper position limit is reached (same as in Figs.

2.16 and 2.17 but with an expanded time scale).

If Flag = 2

QA = 0 (2.114)

QB = 0 (2.115)

QLi = CLi(Ps − PT ) (2.116)
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Additionally, the effective bulk moduli used in Eqs. (2.15) and (2.16) must

be calculated using supply pressure, Ps, or tank pressure, PT , depending on the

actuator position.

If Flag = 1

Ch,A =
VA

E ′(Ps)
(2.117)

Ch,B =
VB

E ′(PT )
(2.118)

If Flag = 2

Ch,A =
VA

E ′(PT )
(2.119)

Ch,B =
VB

E ′(Ps)
(2.120)

While operating with the pressure dynamics off, it is important to ignore the

values of the temporary states and save the values of the actual, known states

If Flag = 1

x3 = Ps (2.121)

ẋ3 = 0 (2.122)

x4 = PT (2.123)

ẋ4 = 0 (2.124)
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If Flag = 2

x3 = PT (2.125)

ẋ3 = 0 (2.126)

x4 = Ps (2.127)

ẋ4 = 0 (2.128)

While the actuator is operating at constant pressure under Flag = 1 or Flag =

2, additional constraint equations can be added to tell the system when to reinstate

full pressure dynamics. A pressure change is imminent when the valve spool nears

the neutral position. Once the valve spool cross the neutral position, the supply

and reservoir pressure lines connect to different chambers and the pressure dynamics

resume an important role in determining actuator position, making it important to

turn the pressure dynamic ODEs back on.

In addition to Eq. (2.57) when Flag = 1 and Eq. (2.58) when Flag = 2, the

equations

If Flag = 1

R2 = x5 − 0.001 (2.129)

If Flag = 2

R2 = x5 + 0.001 (2.130)

are added to tell the ODE solver when to reactivate the pressure dynamics that were

temporarily shut off. For example, if the actuator is in the fully extended position

and the pressure dynamics are turned off, when the valve position, x5, crosses 0.001,
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the differential equation solver will stop the integration with the pressure dynamics

ODEs removes, and restart it with those ODEs reinserted. The value of 0.001 was

chosen to turn the pressure dynamics back on just before the valve spool crosses

the neutral position. If the pressure dynamics are turned back on too early then

efficiency is lost.

Similarly, if the actuator is in the fully retracted position and the pressure

dynamics ODEs are removed, the solver will stop when the valve position crosses

-0.001. This assures that the pressure dynamics are on and ready before the valve

spool crosses the neutral position and pressure dynamics begin to react.

When reintroducing the pressure dynamics ODEs in the model, it is important

to remove all the temporary state values used in the dummy ODEs, and replace those

state with their actual value. If Flag = 1, the chamber A pressure, x3, is set back

to Ps and chamber B pressure, x4, is set back to PT . These values are dependent on

which flag the actuator is operating under and will reverse if the Flag = 2 as seen

below.

If Flag = 1

x3 = Ps (2.131)

ẋ3 = 0 (2.132)

x4 = PT (2.133)

ẋ4 = 0 (2.134)
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If Flag = 2

x3 = PT (2.135)

ẋ3 = 0 (2.136)

x4 = Ps (2.137)

ẋ4 = 0 (2.138)

With these algorithmic modifications in place, calculation time is decreased

substantially without sacrificing model accuracy.

2.3.6 Model Summary

Figure 2.19 shows an updated flow chart detailing the logic used during the

time integration process.

The ODEs that make up the actuator model for each of the five operating

conditions are summarized below:

If Flag = 0 or Flag = 3, or Flag = 4,

0 = ẋ1 − x2

0 = mtẋ2 − (x3 − αx4)Ap + Ff (x2) + Fext

0 = VA(x1)ẋ3 − E ′(x3)[QA(x3, x5)− Apx2 +QLi(x3, x4)]

0 = VB(x1)ẋ4 − E ′(x4)[QB(x4, x5) + αApx2 −QLi(x3, x4)]

0 = ẋ5 − x6

0 = ẋ6 − ω2
v

[
u1 −

2Dv

ωv
x6 − x5 − fhssign(x5)

]
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Fig. 2.19: Optimized constraint logic flow chart

If Flag = 1 or Flag = 2 and press dynamics on,

0 = ẋ1 − x2 (dummy ODE)

0 = ẋ2 − x1 − x2 (dummy ODE)

0 = VA(x1)ẋ3 − E ′(x3)[QA(x3, x5)− Apx2 +QLi(x3, x4)]

0 = VB(x1)ẋ4 − E ′(x4)[QB(x4, x5) + αApx2 −QLi(x3, x4)]

0 = ẋ5 − x6

0 = ẋ6 − ω2
v

[
u1 −

2Dv

ωv
x6 − x5 − fhssign(x5)

]
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If Flag = 1 or Flag = 2 and press dynamics off,

0 = ẋ1 − x2 (dummy ODE)

0 = ẋ2 − x1 − x2 (dummy ODE)

0 = ẋ3 − x4 (dummy ODE)

0 = ẋ4 − x3 − x4 (dummy ODE)

0 = ẋ5 − x6

0 = ẋ6 − ω2
v

[
u1 −

2Dv

ωv
x6 − x5 − fhssign(x5)

]

2.4 Simulation Model

2.4.1 Helicopter Model

The helicopter simulation model used in this study is composed of a coupled

set of nonlinear ordinary differential equations [30]. Four rotor blades are modeled

using beam finite elements and include coupled torsion and flap-lag bending degrees

of freedom. A finite state Peters inflow model that permits both radial and higher

harmonic azimuthal variations of the rotor inflow is used. Aerodynamic, structural,

and inertial forces and moments are calculated at specific points internal to each

finite element. A modal reduction is used to reduce the number of degrees of freedom.

The aerodynamic and inertial blade pitching moment are used to calculate forces

on each pitch link, which are then transferred to the swashplate supported by three

independent actuator models.

There are many different assumptions made in the formulation of the mathe-
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matical model under which HeliUM operates [30]. These assumptions include:

1. No sweep, droop, or torque offsets are included in the undeformed blade.

2. External wind velocity is zero.

3. The airframe is modeled as a rigid body with a constant mass and a uniform

mass distribution; the x-z plane is a plane of symmetry.

4. Wind tunnel tests without the main rotor are used to derive fuselage and

tail surface aerodynamics. Look-up tables are used to calculate aerodynamic

coefficients as functions of angle of attack and sideslip. Stall, compressibility,

and unsteady aerodynamic effects are neglected for the fuselage and tail.

5. Inboard of the flap and lag hinges, the blade is assumed rigid in flap, lag, and

torsion.

6. Flap, lag, and pitch hinges are coincident

7. Blade cross sections are symmetric with respect to the major principal axes

8. Blade center of gravity, aerodynamic center, and elastic axis are not necessarily

coincident.

9. Blade chord, twist, stiffness and mass properties, and cross-sectional offsets

are defined at discrete spanwise locations and vary linearly in between.

10. An isotropic, linearly elastic material is used to model the blade.

56



11. Blade cross-section remains perpendicular to the elastic axis during deforma-

tions (Bernoulli-Euler beam theory). The effects of shear deformation are

neglected.

12. The blade undergoes moderate deflections implying small strains and finite

rotations.

13. Aerodynamic forces and moments on the blade section are based on the airflow

velocity at the elastic axis of the blade.

14. All blades are assumed uniform.

15. Blades rotate at a constant angular speed, Ω. Engine and engine control

systems are neglected.

16. Tail rotor collective control is attached rigidly to the pilot controls.

HeliUM models the main rotor blades individually in the rotating frame. This

allows for superior flexibility when modeling individual blades, including analysis of

rotor systems with dissimilar blades. For the purposes of this study, the main rotor

blades are assumed symmetric.

The main rotor blades are modeled as flexible beams undergoing coupled flap,

lag, torsion and axial motion. The nonlinear, coupled, partial differential equations

with period coefficients are transformed into a system of nonlinear, coupled, ordinary

differential equations using finite element discretization based on Galerkin’s method

of weighted residuals. A total of 15 nodal degrees of freedom are tracked per blade.

These include flap and lag bending displacements and slopes at the ends of the
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element, for 8 total degrees of freedom, torsional rotations at the ends and mid-point

of each element, and axial displacements at four equally spaced nodes between the

end points of the element. To reduce the number of degrees of freedom, a modal

coordinate transformation is used. This has the effect of reducing the number of

equations required to describe the dynamics of each rotor blade. Coupled, rotating

blade mode shapes are used resulting in a system of nonlinear, coupled, second order

ordinary differential equations with time-varying coefficients.

For the simulation, HeliUM was configured to represent a mid-size utility he-

licopter with a single, four-bladed main rotor. Rotorcraft model and environment

parameters are listed in Table 2.4.

Parameter Value

Altitude 3777 [ft]

Ambient Pressure 14.696 [psi]

Ambient Temp. 58.44 [F ]

Helicopter Weight 15324 [lbs]

Ixx 4659.00 [Slugs− ft2]

Ixy 1882.00 [Slugs− ft2]

Iyy 38512.00 [Slugs− ft2]

Izz 36796.00 [Slugs− ft2]

Table 2.4: HeliUM model and environment parameters used for actuator study
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2.4.2 Coupling of Actuator Model and Helicopter Model

The ODEs that make up the actuator model have been summarized in Section

2.3.6. The key is to use program the current simulation stick inputs as reference

swashplate angle inputs to the actuator model and use the actual actuator positions

to calculate the actual swashplate angle. A typical time step calculation in HeliUM

during a time integration routine works in the following steps:

1. Calculate swashplate angles based on stick inputs

2. Calculate rotorcraft ODE residuals

3. Iterate state approximations and repeat until convergence on solution for a

given time step

4. Repeat until final time is reached

When implementing actuator dynamics, the swashplate angles calculated based

on stick inputs are passed to the actuator model where they are decomposed into

individual actuator reference inputs. These actuator reference inputs are desired

actuator displacements to achieve the reference swashplate angle. With reference

displacements, the actuator valve inputs are calculated and used to calculate actu-

ator residuals. Next, the actual actuator displacements are converted to swashplate

angles and sent back into HeliUM where they are used for the rest of the residual

calculations. The steps are outlined below with new steps in bold.

1. Calculate swashplate angles based on stick inputs (these will be used as refer-

ence inputs to the actuator model)
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2. Calculate actual swashplate angles based on actual actuator states

3. Calculate helicopter residuals (now including actuator residuals)

4. Iterate state approximations and repeat until convergence on solution for a

given time step

5. Repeat until final time is reached

Because HeliUM is designed around implicit differential equations and the

calculation of residuals, it is simple to add the 18 equations used to describe the

dynamics of three actuators used to calculate swashplate angle. By simply rerouting

the pilot’s input to the actuator inputs, and rerouting the actuator displacements

to swashplate angles, the hydraulic system can be easily modeled without major

changes to the rotorcraft simulation.

2.4.3 Trim

Trimming in HeliUM is a process designed to achieve period blade response

such that the helicopter maintains equilibrium in space. Helium calculates the forces

and moments generated by the rotor which should be equal and opposite to those

generated by other parts of the helicopter. This is the first step and is required

before beginning either linearization or time integration. Before performing any

other analysis, it is important to make sure the rotorcraft has successfully trimmed.

The coupling of the actuators with the rest of the helicopter model is based

on the assumption that the actuator affects the blades dynamics by changing their
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root pitch angle through the swashplate. Conversely, the blades affect the actuator

dynamics by changing the force acting on the actuators. These forces are transmitted

by the pitch links to the swashplate, and from here to the actuators.

When adding the actuator dynamics to the trim process, trim unknowns, which

can be thought of as the simulation’s initial conditions, all states, including the new

actuator states. To simplify this conversion, the actuators states are assumed fixed

through the entire revolution of the rotor when trimmed. Using this assumption, we

know ẋp = 0 and ẍp = 0, that is, the actuators have zero velocity and acceleration.

If the actuators are stationary, we know the valve must be closed and not moving.

This means x*v = ẋ*v = 0. Additionally, the pressures in each chamber of the actuator

are constant, that is, ṖA = ṖB = 0.

State Actuator 1 Actuator 2 Actuator 3

xp x1 x7 x13

ẋp x2 x8 x14

PA x3 x9 x15

PB x4 x10 x16

x*v x5 x11 x17

ẋ*v x6 x12 x18

u̇*v u1 u2 u3

Table 2.5: States and inputs for the three swashplate actuators

The only nonzero states that need to be recalculated at trim are the actuator

position xp = x1 and actuator chamber pressures PA = x3 and PB = x4.
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When trimmed, the actuators will extend such that the desired swashplate

angle is achieved. The required extension will depend on where each actuator is

located. In the present study, actuators 1, 2, and 3, are located at ψ = 0, ψ = 90,

and ψ = 270 degrees, respectively, as shown schematically in Fig. 2.20.

To achieve a positive roll response (right side down) for a positive lateral

cyclic stick input, the swashplate must tilt right. To tilt the swashplate to the right,

actuator 2, located at ψ = 90, must be lowered, and actuator 3, located at ψ = 270,

must be raised using

x7 = −κ7,sθ1s (2.139)

x13 = κ13,sθ1s. (2.140)

In the equation above, κ7,s and κ13,s are conversion factors between swashplate

angle and actuator displacement. Specifically, it converts lateral cyclic to actuator

2 and 3 displacement respectively. This is largely depended on the geometry of the

pitch link and is discussed in more detail below.

To tilt the tip path plane aft in the presence of positive longitudinal cyclic,

actuator 1 must be lowered using

x1 = −κ1,cθ1c. (2.141)

Collective, θcol, increases each blade’s pitch an equal amount and is not de-

pendent on the blade’s azimuth. As such, applying positive collective requires each

actuator to rise an equal amount.
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x1 = κ1,colθcol (2.142)

x7 = κ7,colθcol (2.143)

x13 = κ13,colθcol (2.144)

Typically during flight, the pilot is required to apply more than one input

at a time. During the simulation, in the presence of more than one input, the

required actuator displacements are added together. The final equations for actuator

displacement are

x1 = κ1,colθcol − κ1,cθ1c (2.145)

x7 = κ7,colθcol + κ7,sθ1s (2.146)

x13 = κ13,colθcol − κ13,sθ1s. (2.147)

The swashplate angle to actuator displacement conversion factor, κ, is used

to dictate how much the actuator must move for a unit displacement in swash-

plate angle. In this report, all factors κ are equal but they can each be adjusted

independently. Currently swashplate angles are calculated in radians and actuator

displacements are calculated in meters so the units for κ are m/rad.

Now that trimmed actuator displacements x1, x7, and x13 are calculated, pres-

sure states x3, x4, x9, x10, x15 and x16 must be calculated. These states are byprod-

ucts of the actuator’s position as well as external forces so they are calculated after

the trim process rather than during the trim process.
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Part of the trim process in HeliUM involves calculating blade aerodynamic

forces and moments as well as inertial forces and moments. The external forces

used for calculating chamber pressures for each actuator are associated with the

aerodynamic and inertial blade pitching moments, which result in a net force on the

pitch link via the pitch horn, and are is then summed at the swashplate.

x 

y = 90° !  

= 0° !  

= 180° !  

= 270° !  

Rotorcraft Forward  

Pitch Link

Fig. 2.20: Rotorcraft swashplate angles and axes

To calculate the net force on the swashplate, the aerodynamic and inertial

pitching moments of each blade and are summed together.
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Mi = Mix,aero +Mix,inertial
(2.148)

whereMix,aero andMix,inertial
are the blade aerodynamic and inertial pitching moment

respectively. The total moment is then divided by the pitch horn length, lph, to yield

the total force on pitch link i

Fi =
Mi

lph
. (2.149)

With the total force on each pitch link, force and moment equilibrium can be

enforced using

∑
Fz = 0 (2.150)∑
Mx = 0 (2.151)∑
My = 0. (2.152)

(2.153)

The unknown actuator forces, Fact,k, can be summed with the known pitch link

forces using

0 =
na∑
k=1

Fact,k +

nb∑
i=1

Fi (2.154)

which can be expanded to form

0 = Fact,1 + Fact,2 + Fact,3 + F1 + F2 + F3 + F4 (2.155)

for a simulation with three actuators and four blades.
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For the moment equilibrium, consider the rotorcraft shaft x and y axis. The

x axis extends along the longitudinal direction of the rotorcraft with positive x

pointing in the ψ = 0◦ direction. The y axis extends along the lateral direction of

the rotorcraft with positive y pointing in the ψ = 90◦

First, the two-dimensional moment along the x axis generated by blade i at

azimuthal position ψ can be described by

Mx,i(ψ) = −rsp sin(ψ)Fi (2.156)

where rsp is the swashplate radius from the shaft to the pitch link. A blade ψ = 0◦

or ψ = 180◦, exerts no moment about the x axis. A force in the downward direction

at ψ = 90◦ creates a negative moment about the x axis and a force in the downward

direction at ψ = 270◦ creates a positive moment about the x axis as described by

Eq. (2.156).

The actuators supporting these forces generated by the blade moments are

calculated the same as Eq. (2.156) however the sign of the equation is reversed since

the actuators are applying force in the opposite direction. Moments due to the

actuators are calculated using

Mx,act2 = ract sin(90◦)F2 = ractFact,2 (2.157)

Mx,act3 = ract sin(270◦)F3 = −ractFact,3 (2.158)

where ract is the radius from the shaft axis to the actuator The final moment equation

about the x axis is

ractFact,2 − ractFact,3 +

nb∑
i=1

−rspsin(ψ)Fi. (2.159)
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The equation for moment equilibrium about the y axis can be derived the

same way resulting in

− ractFact,1 +

nb∑
i=1

rspcos(ψ)Fi. (2.160)

Equations (2.155), (2.159), and (2.160) can be simultaneously solved to derive the

actuator forces Fact,1, Fact,2, and Fact,3.

In a trimmed actuator with no external forces present, the chamber pressures

will be equal. This equalized pressure, Peq is the average between supply pressure,

Ps, and tank pressure, PT .

Peq =
Ps + PT

2
(2.161)

The equalized pressure can be thought of as an equilibrium and external forcing

on actuator k creates a pressure differential between chambers A and B. If Fact,k is

positive, the pressure in chamber A will increase. The force Fact,k must be divided

by chamber A area AA and added to the equalized pressure for chamber A. If Fact,k is

negative, the pressure in chamber B will increase. The force Fact,k must be divided

by chamber B area AB and added to the equalized pressure for chamber B. The
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trimmed actuator pressures for each actuator can be calculated using

x3 = Peq +
Fact,1
AA

(2.162)

x4 = Peq −
Fact,1
AB

(2.163)

x9 = Peq +
Fact,2
AA

(2.164)

x10 = Peq −
Fact,2
AB

(2.165)

x15 = Peq +
Fact,3
AA

(2.166)

x16 = Peq −
Fact,3
AB

(2.167)

Which can be simplified to

x3 = Peq +
Fact,1
Ap

(2.168)

x4 = Peq −
Fact,1
αAp

(2.169)

x9 = Peq +
Fact,2
Ap

(2.170)

x10 = Peq −
Fact,2
αAp

(2.171)

x15 = Peq +
Fact,3
Ap

(2.172)

x16 = Peq −
Fact,3
αAp

(2.173)

using α, the ratio of internal cross-section areas.

The derivation for the blade aerodynamic and inertial moments in HeliUM is

described in detail in Reference [30]. A brief overview is included here for conve-

nience.

Two-dimensional quasi-stead aerodynamics [31] is used for aerodynamic blade

section force and moment calculations. Blade lift, L, and pitching moment, M , is
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described by

L = LQ +
1

2
aρ(bR)2V0α̇ (2.174)

M = LQxA −
1

2
aρV0α̇(bR− xA)(bR)2 (2.175)

where lift-curve slope a, a function of the angle of attack and mach number, is

obtained from look-up tables, ρ is the air density, b is the non-dimensional semi-

chord length, R is the blade radius, α is the total pitch angle of the blade section, V0

is the freestream velocity as seen by the blade element, xA is the blade cross-sectional

aerodynamic center offset from the elastic axis, and α̇ is the rate of change of the

total blade pitch angle. Acceleration terms ḧ and α̈ are neglected for simplification.

Freestream velocity V0 and LQ, the quasi-steady lift, can be calculated using

V0 =
√
U2

P + U2
T + U2

R (2.176)

LQ =
1

2
ρV 2

0c

[
CL +

aα̇

V0

( c
2
− xA

)]
(2.177)

where c is the local blade chord.

Chord c can be substituted for the semi-chord b in Equation 2.174 giving

L = LQ +
1

8
aρAV0c

2α̇ (2.178)

The aerodynamic drag can be calculated using

D = CD
1

2
ρAV

2
0c (2.179)

where CD is the steady drag coefficient determined from look-up tables.

Now that the section lift and drag have been calculated, they must be trans-
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formed to the local blade sectional aerodynamics coordinate system.

fp =
1

V0

[
L

UT
cos(γI)

+DUp

]
(2.180)

ft =
1

V0
[DUT − LUP cos(γI)] (2.181)

fR =
1

V0

[
DUR − L

UP cos(γI)UR
UT

]
(2.182)

The aerodynamic force component fp points along the ep axis, fT points along the

eR axis, and fR along the eP axis. The eT axis points aft, in the blade lag direction,

ep points outboard, along the tangent to the elastic axis, and eR is normal to the

eT − eP plane and is defined as positive up.

The total pitching moment can be described as the sum of three terms

M = MS +MQ +Mα̇ (2.183)

where MS is the result of the pitching moment coefficient CM , MQ is the component

from Equation 2.175 resulting from the quasi-steady lift, and Mα̇ is the component

from Equation 2.175 representing the non-circulatory pitch damping contribution.

The components can be calculated as follows:

MS =
1

2
CMρV

2
0c

2 (2.184)

MQ = fp
Lq
L
xAcos(θG) + fT

LQ
L
xAsin(θG) (2.185)

Mα̇ = −1

8
aρV0c

2α̇
( c

2
− xA

)
(2.186)

where θG is the geometric pitch angle of the blade and the ratio
LQ

L
is required

to scale the force components fp and fT which contain total lift and not just the

quasi-steady lift component required.
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Now the distributed aerodynamic loads are transformed into the undeformed

preconed blade coordinate system for use in the swashplate equations above. The

distributed aerodynamic moments are

qA = −Mcosζcosβêx −Msinζcosβêy −Msinβêz (2.187)

= qAxêx + qAyêy + qAz êz (2.188)

where

Mix,aero = qAx (2.189)

for use in Equation 2.148.

Calculation of the distributed inertia moment acting on the blade are given

by the equation

qI = −
∫
A

ρ
[
(y0ê

’
x + z0ê

’
y)× (aP + gkI)

]
dA (2.190)

= qIxêx + qIyêy + qIz êz (2.191)

where ρ is the density of the blade, y0 and z0 are the coordinates of the mass point

on the blade cross section A, and gkI is the contribution due to gravity. For equation

2.148, it can be shown that

Mix,inertial
= qIx. (2.192)

For more information on the derivation of qIx please refer to Reference [30].
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Chapter 3

Analysis of Actuator Dynamics

3.1 Overview

With the hydraulic model in place, detailed analysis of the effects of hydraulic

parameters on actuator performance can be examined. The analysis is based on

the actuator equations of motions described in Eqs. (2.29) through (2.34), from

which a time history of the actuator response to an arbitrary input over time can

be calculated. The key parameters used in the simulation are those listed in Table

3.1 unless otherwise noted. For the results of this section, the actuator is given

a step input corresponding to 1◦ of swashplate displacement. The swashplate is

initially trimmed at zero degrees displacement and the actuator displacement is

trimmed at zero piston displacement from its reference position. At t = 0 seconds,

the simulation begins and remains in a trimmed state until t = 0.1 seconds when the

hydraulic system is given an input corresponding to one degree of positive collective.

During this simulation the swashplate is assumed to have zero mass. The states and

key parameters of actuator 1 are recorded during the integration and compiled in

the results below.

It should be noted that since collective pitch is being applied, all three actua-

tors will exhibit the exact same behavior and only the time history of one actuator

needs to be represented. In other simulations, such as the entire helicopter dynam-
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ics model coupled with the actuator model, the actuators will each receive unique

inputs based on the trim condition and prescribed inputs.

Parameter Value

Ps 200 [bar]

Pt 0 [bar]

Cv 3.0x10−6

Cli 0

VplA,B
0.01 [m3]

Ap 0.01 [m2]

α 1

Mp 6.6 [kg]

ρ 890 [ kg
m3 ]

Table 3.1: Actuator configuration for study of supply pressure changes

3.2 Results

The step input was applied to the swashplate as 1◦ reference collective. This

input is then converted to reference actuator positions through Eqs. (2.145) through

(2.147). These reference actuator displacements are used to solve for reference valve

spool inputs, u*i, for actuator i, via Eq. (2.35) where uid is the desired piston position

of actuator i.
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3.2.1 Supply Pressure

The first set of actuator results involves changing the supply pressure, Ps

supplied by the pump. Table 3.2 shows the range of pressures used in the study.

Figure 3.1 shows the swashplate step response, actuator velocity, and flow rates

for the five lowest supply pressures of the table. As supply pressure increases, the

influence of supply pressure on the step response decreases. The largest influence

of supply pressure is evident when comparing the two smallest supply pressures

Ps = 1 [bar] and Ps = 5 [bar]. This small change in supply pressure decreases the

settling time significantly. The peak velocity of the actuator essentially doubles from

this small change.

Category Supply Pressure [bar]

Low pressure 1, 5, 15, 30, 50

High pressure 75. 125, 200, 300

Table 3.2: Supply pressures, Ps, used in study

The chamber flow rates shown are for chambers A and B. As supply pressure

increases, the chamber A flow rate curve color changes from green to red. The

chamber B flow rate curve changes from green to blue. Chamber B flow rate is

negative indicating flow is traveling out of the chamber.

Figure 3.2 shows the step response for actuators at much higher pressures.

Unlike Fig. 3.1, the step response of the actuator-swashplate system does not change

significantly with large changes in supply pressure.
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Fig. 3.1: Swashplate step response for unit degree step input at low supply pressures

Supply pressure’s main influence is on the equations for flow rate, Eqs. (2.22)
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Fig. 3.2: Swashplate step response for unit degree step input at high supply pressures

and (2.23):

QA = cv,1sg(xv)sign(Ps − PA)
√
|Ps − PA|

− cv,2sg(−xv)sign(PA − PT )
√
|PA − PT | (2.22) repeated
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Using actuator chamber A as an example, the chamber flow rate is a function of√
|Ps − PA| for a positive valve displacement. As pressure increases, flow rate in-

creases by the square root of supply pressure. In order to double the flow rate, assum-

ing all other parameters are held constant, the supply pressure must be quadrupled.

This agrees with the simulation findings in which small pressure changes at low

supply pressures had a much greater impact on the step response of the swashplate.
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Fig. 3.3: Rise time (blue) and settling time (green) for swashplate step response

over a range of supply pressures

Figure 3.3 shows the rise time and settling time of the swashplate step response

as a function of supply pressure. Rise time is defined as the time it takes the

swashplate to move between 10% and 90% displacement, or from 0.1◦ to 0.9◦. In

the present study, settling time is defined as the time it takes the swashplate to

achieve and maintain at most a ±2% error between desired and actual displacement,
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Fig. 3.4: Rise time (blue) and settling time (green) for swashplate step response

over a range of supply pressures on a log-log scale

meaning remain between 0.98◦ and 1.02◦. The exponential response of the rise and

settling time can be seen in Fig. 3.4. The slope, −0.5, shows an inverse square root

relationship between supply pressure and rise and settling time. To decrease rise

time by a factor of two, the supply pressure must be quadrupled.

3.2.2 Valve Pressure Drop

The next parameter studied is pressure drop, Pv. Pressure drop is defined as

supply pressure minus return pressure, minus load pressure, that is

Pv = Ps − PT − Pl (3.1)
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where load pressure Pl is calculated from the external force on the actuator piston

using

Pl =
Fext
Ap

(3.2)

To perform this sweep, return pressure was increased to reduce the valve pressure

drop. Table 3.3 lists the pressure drops used during this study.

Category Pressure Drop [bar]

Low drops 1, 5, 15, 25, 50

High drops 75. 100, 150, 175, 195

Table 3.3: Valve pressure drops, Pv, used in study.

Figure 3.5 shows the swashplate step response for low valve pressure drops.

Situations such as these occur when there is a large external force on the actuator,

or when the difference between supply pressure Ps and return pressure PT is small.

The results are similar to changes in the supply pressure above. Like in the supply

pressure study above, the focus will be on Eqs. (2.22) and (2.23).

When there is a large external force on the actuator, extra pressure is being

applied to the actuator chambers. This phenomena is discussed in Section 2.4.3,

when discussing the effects of external forcing on actuator trim pressures. First,

assume the actuator is at rest and no external forces are applied, then chamber

pressures A and B will equalize to Peq. Now, while still at rest, apply a large

external force. This causes the pressure in chamber A to increase, as described by
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Fig. 3.5: Swashplate step response for unit degree step input at low pressure drops

Eq. (2.168) and the pressure in chamber B to decrease, as described by Eq. (2.169):

x3 = Peq +
Fact,1
Ap

(2.168) repeated

x4 = Peq −
Fact,1
αAp

(2.169) repeated

These pressures, PA and PB can be found using the equations for flow rates, Eqs. (2.22)

and (2.23). For a positive valve displacement, as external force increases, PA in-
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Fig. 3.6: Swashplate step response for unit degree step input at high pressure drops

creases, thus the
√
|Ps − PA| term in Eq. (2.22) decreases and PB decreases, thus

the
√
|PB − PT | term in Eq. (2.23) decreases.

Raising PT has the same effect. As PT increases, equalized chamber pressures
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Fig. 3.7: Rise time (blue) and settling time (green) for swashplate step response

over a range of pressure drops on a log-log scale

PA and PB increase. This reduces the
√
|Ps − PA| term found in Eq. (2.22), and

ultimately decreases flow rate to and from the actuator.

The effects of larger values of valve pressure drop can be seen in Fig. 3.6. As

valve pressure drop increases, small changes in Pv have little to no effect on the step

response. Figure 3.7 shows the rise and settling time for different valve pressure

drops. The inverse-square root relationship between valve pressure drop and rise

and settling time can be seen.

3.2.3 Valve Flow Coefficient

Valve flow coefficient has a very prominent effect on the swashplate step re-

sponse. Valve flow coefficient, a function of valve geometry, can be calculated using
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Eq. (2.18). The valve flow coefficient can be found in the flow equations, Eqs. (2.22)

and (2.23).

Category Flow coefficients (x10−7)

Low coefficients 1, 2.5, 5, 7.5, 10

High coefficients 10, 25, 40, 50

Table 3.4: Valve flow coefficients, cv, used in study

The parameters affecting the valve flow coefficient are valve spool diameter,

dv, valve discharge coefficient, αd, and fluid density ρ. As the valve spool diameter

increases, more fluid can travel through the valve per unit time and cv increases. As

the fluid density increases, viscous and inertial effects of the fluid reduce the flow

rate through the valve and cv decreases. The valve discharge coefficient summarizes

the effects of the dynamic interaction between the valve spool and the orifice, as

the discharge coefficient decreases, so does the flow coefficient. Table 3.4 shows the

different values of cv used for this study. During this simulation, all four valve flow

coefficients were modified.

Figures 3.8 and 3.9 show the swashplate step response for low and high valve

flow coefficients, respectively. The coefficient Cv linearly scales the maximum flow

rate as can be seen by Fig. 3.10. As valve flow coefficient increases, so does the

maximum flow rate.
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Fig. 3.8: Swashplate step response for unit degree step input for low valve flow

coefficients
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Fig. 3.9: Swashplate step response for unit degree step input for high valve flow

coefficients

3.2.4 Piston Area

The internal actuator cross sectional area, on which the working fluid acts, is

defined by the actuator piston area, Ap. Table 3.5 lists the actuator piston areas
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Fig. 3.10: Rise time (blue) and settling time (green) for swashplate step response

over a range of valve flow coefficients

examined.

Category Piston Area [m2]

Piston Area 0.05, 0.04, 0.03, 0.02, 0.01

Table 3.5: Piston areas, Ap, used in study

Equations (2.9) and (2.10), used to calculate total volume of actuator cham-

bers A and B, both contain Ap. As piston area increases, the effects of piston dis-

placement, xp on the chamber volumes are increased. Equations (2.31) and (2.32)

describe the rate of change of pressure in chambers A and B respectively.

0 = VA(x1)ẋ3 − E ′(x3)[QA(x3, x5)− Apx2 +QLi(x3, x4)] (2.31) repeated

0 = VB(x1)ẋ4 − E ′(x4)[QB(x4, x5) + αApx2 −QLi(x3, x4)] (2.32) repeated
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Fig. 3.11: Swashplate step response for unit degree step input over a range of actu-

ator piston areas

As chamber volume increases, pressure change is damped. As actuator piston area

increases, actuator chamber pressure changes decrease, effectively damping actuator
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Fig. 3.12: Rise time (blue) and settling time (green) for swashplate step response

over a range of actuator piston areas

Figure 3.11 shows the step response of chamber flow rate QA and QB (bottom

plot), actuator rate ẋp (middle plot), and swashplate angle (top plot), over a range of

piston areas. All configurations share approximately the same maximum chamber

flow rate, however the configurations with larger actuator piston area have more

volume to fill, and thus require a higher flow rate over a longer period of time. The

factor limiting actuator displacement is the amount of fluid needed to expand the

actuator chamber volume.

Figure 3.12 shows the relationship between actuator piston area and rise and

settling time. This relationship is linear (note that this figure is not on a log-log
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scale like Figs. 3.4 and 3.7).

3.2.5 Actuator Test Cases

With a basic understanding of how different key actuator parameters affect

actuator step response, four actuators will be described here that will be referred to

throughout the rest of the thesis.

The first actuator is a primary servo actuator transfer function and can be

considered representative of the primary servo actuator of the UH-60.

θ1s
δlon

=
1

0.00114s2 + 0.0463s+ 1
(3.3)

This actuator configuration will be referred to as the ”UH-60 actuator” model, and

is completely defined by its transfer function. Its detailed geometry and mechanical

properties are considered proprietary, and therefore are not available. The sec-

ond actuator, referred to as the ”baseline” actuator, is designed to reproduce the

step response of the UH-60 actuator. The third actuator model, referred to as the

”sluggish” actuator, is configured to be a slow actuator, experiencing heavy rate

saturation. Both the supply pressure and valve flow coefficient have been reduced

while simultaneously increasing the piston area. The fourth actuator is configured

to have a quick step response. This actuator will be called the ”agile” model. Supply

pressure and valve flow coefficient were increated and piston area decreased. Design

parameters used for the these actuators can be found in table 3.7.

Figure 3.13 shows the step response for each actuator for a unit degree swash-

plate displacement. Table 3.8 show the rise time and settling time for the three
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Actuator Parameter Baseline Sluggish Agile

Supply Pressure, Ps [bar] 200 150 300

Return Pressure, PT [bar] 1 1 1

Valve Flow Coefficient, Cv 3x10−6 2x10−6 6x10−6

Internal Leakage Coefficient, Cli 0 0 0

Pipeline A/B Volume, VpvA,B
[m3] 0.01 0.01 0.01

Piston Area, Ap [m2] 0.01 0.015 0.01

Chamber Area Ratio, α 1 1 1

Piston Mass, Mp 6.6 6.6 6.6

Fluid Density, ρ 890 890 890

Table 3.6: Model parameters for baseline, sluggish, and agile actuator models

Actuator Parameter Baseline Sluggish Agile

Supply Pressure, Ps [bar] 200 150 300

Valve Flow Coefficient, Cv 3x10−6 2x10−6 6x10−6

Piston Area, Ap [m2] 0.01 0.015 0.01

Table 3.7: Model parameters for baseline, sluggish, and agile actuator models

actuator models. The δ values represent the difference, in milliseconds, of the slug-

gish and agile actuator model’s rise and settling times to the baseline actuator

model. The sluggish actuator takes a little over 400 milliseconds longer to settle,

compared to the baseline model, whereas the agile actuator settles in a little over

100 milliseconds faster than the baseline model.
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Fig. 3.13: Swashplate step response for unit degree step input for UH-60, baseline,

sluggish, and agile actuator models

Actuator Config. Rise Time [ms] δrt [ms] Settling Time [ms] δst [ms]

Sluggish 339.3 239.4 614.7 431.2

Baseline 99.9 183.5

Agile 34.8 -65.1 65.3 -118.2

Table 3.8: Step response rise time and settling time for baseline, sluggish, and agile

actuator models

Figures 3.14 and 3.15 show the actuator rate and chamber A flow rate time

histories for each of the actuator step response simulations. Table 3.9 lists the

maximum actuator rate and max chamber flow rate corresponding to the unit degree

swashplate step response. The actuators themselves have vastly different velocities
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Fig. 3.14: Swashplate rates for unit degree step input for baseline, sluggish, and

agile actuator models

but because the actuator, and swashplate, displacement is so short, these velocities

manifest themselves as millisecond delays in the swashplate step response.

Actuator Config. Max Rate [deg/sec] Max Flow Rate [l/min]

Sluggish 6.15 47.29

Baseline 19.28 94.59

Agile 42.26 214.00

Table 3.9: Step response max swashplate rate and max flow rate for baseline, slug-

gish, and agile actuator models
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Fig. 3.15: Chamber A flow rate for unit degree step input for baseline, sluggish, and

agile actuator models
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Chapter 4

Rotorcraft-Actuator Linearized Model

4.1 Overview

The equations of motion describing the rotorcraft dynamics used in the present

study are all written as first-order ordinary differential equations. Because of this,

it is easy to perform a numerical linearization based on a first-order Taylor series

expansion of the nonlinear system about a trimmed equilibrium position. Creating

the small-perturbation linearized model is an efficient way to extract a state-space

model of the rotorcraft.

4.2 Linearization Methodology

In the present study, the rotorcraft equations are written in the form

f(ẏ,y,u; t) = 0 (4.1)

In trim, using the subscript ( )0 to denote a trim condition, the equations become

f(ẏ0,y0,u0; t) = 0 (4.2)
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Using a Taylor series expansion about Equation 4.2, Equation 4.1 can be rewritten

as

0 = f(ẏ0,y0,u0; t) +
∂f

∂ẏ

∣∣∣∣
trim

∆ẏ +
∂f

∂y

∣∣∣∣
trim

∆y +
∂f

∂u

∣∣∣∣
trim

∆u

+O
(
‖∆ẏ‖2, ‖∆y‖2‖∆u‖2

)
(4.3)

where

∆ẏ ≡ ẏ − ẏ0 (4.4)

∆y ≡ y − y0 (4.5)

∆u ≡ u− u0 (4.6)

By assuming small perturbations, the higher order terms can be neglected and the

resulting linearized model

0 =
∂f

∂ẏ

∣∣∣∣
trim

∆ẏ +
∂f

∂y

∣∣∣∣
trim

∆y +
∂f

∂u

∣∣∣∣
trim

∆u (4.7)

is used to describe small perturbation motion about trim. The partial derivatives

taken about trim can be renamed as described below.

∂f

∂ẏ

∣∣∣∣
trim

≡ [E(t)] (4.8)

∂f

∂y

∣∣∣∣
trim

≡ [F (t)] (4.9)

∂f

∂u

∣∣∣∣
trim

≡ [G(t)] (4.10)

Equation 4.7 can be rearranged to form

[E(t)]∆ẏ = −[F (t)]∆y − [G(t)]∆u (4.11)
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and

∆ẏ = −[E(t)]−1[F (t)]∆y − [E(t)]−1[G(t)]∆u (4.12)

where

[A(t)] = [E(t)]−1[F (t)] (4.13)

[B(t)] = [E(t)]−1[G(t)] (4.14)

[A(t)] and [B(t)] are the linearized state space matrices used for linearization

analysis.

[E(t)], [F (t)], and [G(t)] are calculated using

[E(t)] =

[
∂f

∂ẏ

]
trim

=

[
∂f

∂ẏ1

∂f

∂ẏ2
· · · ∂f

∂ẏk
· · · ∂f

∂ẏn

]
trim

(4.15)

[F (t)] =

[
∂f

∂y

]
trim

=

[
∂f

∂y1

∂f

∂y2
· · · ∂f

∂yk
· · · ∂f

∂yn

]
trim

(4.16)

[G(t)] =

[
∂f

∂u

]
trim

=

[
∂f

∂u1

∂f

∂u2
· · · ∂f

∂uk
· · · ∂f

∂um

]
trim

(4.17)

for n states and m controls.

Central differencing is used to numerically calculate column k for each matrix

using

{
∂f

∂ẏk

}
trim

≈ f(ẏ0 + ∆ẏk,y0,u0; t)− f(ẏ0 −∆ẏk,y0,u0; t)

2∆ẏk
(4.18){

∂f

∂yk

}
trim

≈ f(ẏ0,y0 + ∆yk,u0; t)− f(ẏ0,y0 −∆yk,u0; t)

2∆yk
(4.19){

∂f

∂uk

}
trim

≈ f(ẏ0,y0,u0 + ∆uk; t)− f(ẏ0,y0,u0 −∆uk; t)

2∆uk
(4.20)
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where

∆ẏk =

[
0 0 · · · ∆ẏk · · · 0

]T
(4.21)

∆yk =

[
0 0 · · · ∆yk · · · 0

]T
(4.22)

∆uk =

[
0 0 · · · ∆uk · · · 0

]T
(4.23)

{ẋH} = [AH ] {xH}+ [BH ] {δ} (4.24)
ẋH

ẋA

 =

AHH AHA

AAH AAA



xH

xA

+

BH

AH

 {δ} (4.25)

{ẋA} = [AA] {xA}+ [BA] {δ} (4.26)

Three different linearized models were computed. The first model, Case A,

does not include actuator dynamics. Equation (4.24) shows the state space repre-

sentation of this model. In the next model, Case B, the actuator dynamics are fully

coupled with the rest of the rotorcraft dynamics. The state space representation for

Case B is found in Eq. (4.25). In the last model, Case C, linearized models of the

actuators and of the aircraft are extracted independently, and the transfer functions

are combined. This model uses state-space Eqs. (4.24) and (4.26). Figure 4.1 shows

an overview of each case (HeliUM is the name of the simulation used in the study).

The AA and BA actuator state space matrices account for the 18 different

states of the actuators which must be converted to swashplate angles as the output.

The C matrix of the state space model converts key actuator states, in this case

actuator displacements, into swashplate angles. Equations 2.145, 2.146, and 2.147
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Fig. 4.1: Overview of linearized test cases

which are originally used to convert reference swashplate angles to desired actuator

displacements can be inverted to convert actual actuator displacements to actual

swashplate angles.

After inverting to solve for swashplate angles, the equations are as follows:

θ1c =
1

κ

[
−x1 +

x7
2

+
x13
2

]
(4.27)

θ1s =
1

κ

[x7
2
− x13

2

]
(4.28)

θ0 =
1

κ

[x7
2

+
x13
2

]
(4.29)

where x1, x7, and x13 represent displacements of actuators 1, 2, and 3, respectively.

These equations can then be put in matrix form.


θ1c

θ1s

θ0


=

1

κ


−1 0.5 0.5

0 0.5 −0.5

0 0.5 0.5




x1

x7

x13


(4.30)

This matrix can now be expanded to include states x1 through x18 resulting

in the state space CA matrix for the actuator linearization.

98




θ1c

θ1s

θ0


=

1

κ


−1 · · · 0.5 · · · 0.5 · · ·

0 · · · 0.5 · · · −0.5 · · ·

0 · · · 0.5 · · · 0.5 · · ·


︸ ︷︷ ︸

def
= [CA]



x1

...

x7

...

x13

...



(4.31)

In Equation 4.31 the dots in the CA matrix are zeros corresponding to the

unused states.

The linearized actuator model only has 3 inputs, θ1c, θ1s, and θ0. The actuator

model does not affect pedal inputs. We can pass this fourth input directly to an

output through the use of the DA matrix of the state space model. We add a 1 in

DA(4, 4) to pass through the fourth input directly to the fourth output.

[
D

]
=



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


(4.32)

Since we have passed through a fourth output, we must make a few changes

to both the BA and CA state space matrices. The BA matrix must have a fourth

column of zeros appended. This ensures the fourth pedal input has no influence on

the actuator states. Additionally, the CA matrix must have a fourth row appended

to ensure the states have no influence on the pedal output.

Now that the state space matrices have been extended to allow for four inputs
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Fig. 4.2: Inputs and outputs of linearized actuator and linearized helicopter dynam-

ics

and four outputs, the actual inputs and outputs must be compatible. As shown in

Figure 4.2 the inputs and outputs of the linearized actuator model and linearized

helicopter dynamics are different. In this case, the outputs from the linearized

actuator model cannot be sent directly to the inputs of the linearized helicopter

model. Additionally, in Case C, the inputs to the entire linearized system are

different than both Case A and Case B. Instead of stick displacements as inputs,

Case C uses swashplate angles as the input.

To remedy this situation, we need a transformation matrix to convert between

swashplate angles and stick displacements. On a helicopter, this is often known as

the ”mixer”. When the pilot adds collective or cyclic in the form of stick and pedal

displacement, the input goes through the mixer and the resulting output is a set of
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four swashplate angles, that is

θ1c

θ1s

θ0

θtr


=

[
Mixer

]


δlat

δlon

δcol

δped


(4.33)

In the present study, the mixer matrix is representative of the UH-60 pitch

control chain. Figure 4.3 shows the modified block diagram with the inclusion of

the mixer matrix to convert stick displacements to swashplate angles as well as the

inverse mixer matrix to convert swashplate angles to stick displacements.

[
Mixer

]
=



−1.6 0 0.256 0

0 2.83 −0.464 −1.6262

0 0 1.6 0

0 0 1.6 −5.539


(4.34)

Now the transfer functions can be compiled for comparison. Case A and B are

quite straightforward. The transfer functions can be computed as follows using the

state space matrices derived from the each linearization repectively.

G(s) = C(sI − A)−1B +D (4.35)

Using this equation twice for Case A and Case B results in transfer functions

GHeliUM(s) and GHeliUM+Actuators(s) respectively. These transfer functions will be

labeled GA and GB for simplicity.

For Case C, the transfer function for the individual actuator linearized model
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Fig. 4.3: Solution to input-output problem for test case C

must be computed. This transfer function GActuators(s) is calculated using the state

space matrices of the actuator model modified above and Equation 4.35.

Now we can order the transfer functions as shown in Figure 4.3. It’s important

to note, the ”mixer” described in this study pertains only to the matrix used to

convert stick displacements to swashplate angles.

GC(s) = GHeliUM [Mixer]−1GActuators[Mixer] (4.36)
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Now the three transfer functions, GA, GB and GC , are calculated, with uniform

inputs and outputs, for comparison.

To make sure the linearized models are accurate frequency responses from

the linearized Case B and Case C can be compared to one another. To do this

comparison, the longitudinal frequency response of a rotorcraft in hover will be

examined. The three actuator models discussed in Section 3.2.5 will be used.
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Fig. 4.4: Pitch rate response to longitudinal stick for rotorcraft in hover, using

baseline actuator model Case B and Case C

Figure 4.4 shows the longitudinal frequency response of the rotorcraft-actuator

baseline model. The blue line represents Case B, integrated rotorcraft and actuator
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dynamics. The black dotted line represents Case C, rotorcraft and actuator dynam-

ics linearized independently then combines using the methodology above. Good

agreement is shown between the two models, verifying the methodology above and

showing the integrated rotorcraft-hydraulic model is behaving appropriately.

Figure 4.5 shows the longitudinal frequency response of the rotorcraft-actuator

agile model. Again, good agreement is shown between Case B and Case C.
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Fig. 4.5: Pitch rate response to longitudinal stick for rotorcraft in hover, using agile

actuator model Case B and Case C

Figure 4.6 shows the longitudinal frequency response of the rotorcraft-actuator

sluggish model. The discrepancies between the actuators are much more apparent
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in this model. This is likely due to the approximations involved in linearizing the

actuator and rotorcraft system separately. Because good agreement is shown in

Figures 4.4 and 4.5, and poor but acceptable agreement is shown in Figure 4.6, the

linearized model is ready for further analysis.
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Fig. 4.6: Pitch rate response to longitudinal stick for rotorcraft in hover, using

sluggish actuator model Case B and Case C
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4.3 Results

4.3.1 Supply Pressure

The supply pressure was varied for the actuator model integrated with HeliUM.

The simulation was run and linearized state space matrices were extracted. Supply

pressures chosen for this study are listed in Table 4.1.

Parameter Value

Ps 50 [bar]

Ps 125 [bar]

Ps 200 [bar]

Ps 300 [bar]

Table 4.1: Supply pressures used in linearized actuator-rotorcraft study

Figure 4.7 shows the rotorcraft pitch rate response to longitudinal stick. De-

creasing the actuator supply pressure does not change the magnitude of the response

below 10 rad/s, and decreases it only slightly at higher frequencies. The effect on

phase is more significant.

The roll rate response to lateral cyclic, Fig. 4.8, and the heave response to

collective, Fig. 4.9, exhibit similar behavior. At frequencies above approximately 4

rad/s, all of the responses exhibit a decrease in phase with decreasing Ps. Similar

to the step response plots of Figs. 3.1 through 3.4, small changes in supply pressure

at high Ps do not have a significant impacts on the frequency response. This, again,

is due to the chamber flow rate increasing with the square root of supply pressure.
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Fig. 4.7: Pitch rate response to longitudinal stick in hover as a function of supply

pressure

Because of its effect on phase, supply pressure can affect handling qualities by

changing bandwidth and phase delay of the pitch and roll response. Figure 4.10,

taken from ADS-33 [3], summarizes the procedure by which bandwidth and phase

delay can be extracted from the frequency response.

To calculate bandwidth, ωBW , first the crossover frequency, ω180 must be cal-

culated. This corresponds to the frequency at which the phase delay is equal to

-180◦. At this frequency, the gain is determined. The frequency at which the gain

is 6dB higher than the gain at ω180 is known as the gain bandwidth ωWBgain
. The

phase bandwidth, ωBWphase
is the frequency at which the phase margin is +45◦, or

equivalently, the phase delay is equal to -135◦. The rotorcraft bandwidth is defined
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Fig. 4.8: Roll rate response to lateral stick in hover as a function of supply pressure
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Fig. 4.9: Heave response to collective stick in hover as a function of supply pressure
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as the smaller of either phase or gain bandwidth.

The phase delay, τp is determined by calculating the phase delay at the fre-

quency corresponding to 2 · ω180, and taking the additional phase delay ∆Φ2ω180

between ω180 and 2ω180. The phase delay is then converted to time by

τp =
∆Φ2ω180(

180
π

)
(2ω180)

(4.37)

The bandwidth and phase delay can be placed on specification charts to categorize

performance based on a level of 1 to 3, from best to worst.

ADS-33E-PRF
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dB

Phase delay:
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Rate response-types:
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Attitude Command/Attitude Hold Response-Types (ACAH):

Caution:
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super-precision tasks or aggressive 
pilot technique.
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GM = 6 dB
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Figure 6.  Definitions of bandwidth and phase delay

Fig. 4.10: Definitions of bandwidth and phase delay from Ref. [3]

Figure 4.11 shows the bandwidth and phase delay as a function of supply pres-

sure. The points are placed on the ADS-33 requirements for small-amplitude pitch

and roll attitudes, Paragraph 3.3.2.1, respectively [3]. In the pitch axis, as supply

pressure decreases, bandwidth does not change, but phase delay increases. In a typ-
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ical pitching maneuver, the rotor and rigid body inertia dominate the bandwidth

calculation. It is not until much higher frequencies that the effects of the actua-

tor add additional phase delay, which can be seen by the increasing phase delay as

supply pressure decreases.

In the roll axis, bandwidth decreases and phase delay increases. Because the

inertia about the roll axis, and thus delays associated with inertia, are much smaller,

the additional delay due to the hydraulic system are more prominent and manifest

themselves in both the bandwidth and phase delay.
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Fig. 4.11: Satisfaction of ADS-33 requirements for small-amplitude pitch and roll

attitude changes for target acquisition and tracking, Par. 3.3.2.1, as a function of

supply pressure.
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4.3.2 Valve Pressure Drop

The simulation is repeated for changes in valve pressure drop, Pv, listed in

Table 4.2. Pitch, roll, and vertical velocity frequency responses can be found in

Figs 4.12, 4.13, and 4.14, respectively.

Parameter Value

Pv 50 [bar]

Pv 100 [bar]

Pv 150 [bar]

Pv 199 [bar]

Table 4.2: Valve pressure drops used in the present study

In general, the dynamics behave similarly to those seen when adjusting supply

pressure. This is to be expected, after looking at the step response characteristics in

Chapter 3. This is because the flow rates QA and QB are functions of the chamber

pressure differential between both supply pressure Ps and tank pressure PT as found

in Eqs. (2.22) and (2.23). Figure 4.15 places bandwidth and phase delay on the ADS-

33 small-amplitude pitch and roll bandwidth handling qualities specification charts.

In the pitch axis, the bandwidth remains constant and phase delay increases as the

valve pressure drop decreases. This may be due to the inertial dynamics dominating

rotorcraft response during a pitching maneuver at low frequencies. However, as input

frequency increases, phase lag due to the actuators increases, raising the phase delay.

This effect increases as the valve pressure drop decreases.
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Fig. 4.12: Pitch rate response to longitudinal stick in hover as a function of valve

pressure drop

4.3.3 Valve Flow Coefficient

Figures 4.16 through 4.18 show the pitch, roll, and vertical velocity frequency

responses over a range of valve flow coefficients, cv, shown in Table 4.3. This range

was chosen to study the impact of rate saturation on rotorcraft dynamics.

As the valve flow coefficient decreases, the frequency response magnitude de-

creases and phase increases. This effect is amplified as the valve flow coefficient

increase is decreased. In the heave axis the response flattens entirely out for valve

flow coefficients cv = 5.0x10−7 and cv = 1.0x10−6.

Figure 4.19 shows the impact of the valve flow coefficient in terms of bandwidth

and phase delay. In the pitch axis, bandwidth remains nearly constant and phase
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Fig. 4.13: Roll rate response to lateral stick in hover as a function of valve pressure

drop

Parameter Value

cv 5.0x10−7

cv 1.0x10−6

cv 2.5x10−6

cv 5.0x10−6

Table 4.3: Valve flow coefficients used in linearized actuator-rotorcraft study

delay increases as valve flow coefficient decreases. The actuator is rate saturated

and the handling qualities level drops from 2 to 3. In the roll axis, this decrease in

cv drops the handling qualities rating from a level 1 well into the level 2 zone. This

is a very significant change in both axes and can be attributed to the reduction in
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Fig. 4.14: Heave response to collective stick in hover as a function of valve pressure

drop

valve flow efficiency, restricting the maximum flow rate of each actuator.

4.3.4 Piston Area

The final parameter analyzed is actuator piston area Ap. Table 4.4 details the

values of piston area used for in this simulation. The results can be seen in Figures

4.4 through 4.22. The ADS-33 handling qualities are plotted in Figure 4.23 and

show the piston area’s significant effect on handling qualities. In the pitch axis, the

phase delay increases as piston area increases. This is due to the increase in fluid

required to fill each chamber as well as an increase in the surface area the pressure

differential has available to generate a force. In the roll axis, bandwidth decreases
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Fig. 4.15: ADS-33 requirements for small-amplitude pitch and roll attitude changes

for target acquisition and tracking as a function of valve pressure drop

and the phase delay increases in response to an increasing piston area.

In Section 3.2.4 the swashplate step responses for increasing piston area are

relatively quick compared to equivalent step responses for decreasing valve flow

coefficient. Interestingly enough, the bandwidth and phase delay exhibit extremely

similar magnitudes despite the faster rise and settling time shown by increasing

actuator piston area. What the step response plots do not show, however, is the

response to an oscillatory input. In the case of increasing actuator piston area, the

step response appears quick and efficient but the volume of the actuator chamber

creates an inertia like effect reducing the actuator’s acceleration in the presence of

a high frequency input.
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Fig. 4.16: Pitch rate response to longitudinal stick in hover as a function of valve

flow coefficient

Parameter Value

Ap 0.05 [m2]

Ap 0.04 [m2]

Ap 0.03 [m2]

Ap 0.02 [m2]

Ap 0.01 [m2

Table 4.4: Piston areas used in linearized actuator-rotorcraft study

4.3.5 Actuator Test Cases

This section compares the frequency response for the four actuator types de-

fined in Section 3.2.5. The same linearization study was performed on the baseline,
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Fig. 4.17: Roll rate response to lateral stick in hover as a function of valve flow

coefficient

sluggish, agile, and UH-60 actuator models. The roll and pitch frequency response

data are shown in Figs. 4.24 and 4.25, respectively.

The agile actuator tracked the HeliUM model without actuators the closest.

This is to be expected as the agile actuator had the shortest rise and settling time

when analyzing the swashplate step response statistics. Despite the fact that the

actuator was relatively quick, the phase lagged behind that of the HeliUM model

above frequencies around 4 rad/s.

The baseline actuator model, configured to behave like the UH-60 transfer

function model did just that. Across nearly the entire frequency spectrum, the

baseline actuator and UH-60 model performed comparably.
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Fig. 4.18: Heave response to collective stick in hover as a function of valve flow

coefficient

The slowest actuator tested, the sluggish actuator, stood out from the rest.

Unlike the others, the sluggish actuator was unable to maintain a comparable mag-

nitude response above 3 rad/s. This means that as the helicopter pilot, or control

system, attempting to perform a maneuver requiring inputs around or above 0.5Hz

will experience sluggish controls and difficulty maneuvering the rotorcraft.

Figure 4.26 shows the handling qualities ratings for each of the models. In

the pitch axis, all models maintain the same bandwidth, and phase delay increases

as the actuator is saturated. Applying the UH-60 transfer function model to the

simulation increases the predicted phase delay by 77%. By applying the very fast,

agile actuator model to the simulation, predicted phase delay is increased 30% and
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Fig. 4.19: ADS-33 requirements for small-amplitude pitch and roll attitude changes

for target acquisition and tracking as a function of valve flow coefficient

by applying the sluggish actuator model to the simulation, predicted phase delay is

increased 229% in the pitch axis.

In the roll axis, both bandwidth decreases and phase delay increase as the

actuator models become saturated. Applying the UH-60 transfer function model to

the simulation, phase delay is doubled and bandwidth decreases by 13%. The agile

actuator model increases phase delay 44% and decreases bandwidth by 7%. The

sluggish model increases phase delay 227% and decreases bandwidth 37%.

These numbers are significant. Based on the linearize analysis of the actuator-

rotorcraft system, even a well behaved agile actuator is going to delays to the system.

These delays manifest primarily as phase lag in the frequency domain and can be

quantized as a decrease in bandwidth and increased phase delay.
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Fig. 4.20: Pitch rate response to longitudinal stick as a function of actuator piston

area
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Fig. 4.21: Roll rate response to lateral stick as a function of actuator piston area
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Fig. 4.22: Heave response to collective stick as a function of actuator piston area
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for target acquisition and tracking as a function of actuator piston area
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Fig. 4.24: Pitch rate response to longitudinal stick for baseline, sluggish, agile, and

UH-60 transfer function models
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Fig. 4.25: Roll rate response to lateral stick for baseline, sluggish, agile, and UH-60

transfer function models
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Chapter 5

Rotorcraft-Actuator Time History Model

5.1 Overview

The linearized model presented in Chapter 4 was obtained by numerical per-

turbation of the equations of motion about a trimmed equilibrium position. This

is a computationally efficient method of obtaining a linear state-space model of the

coupled actuator-rotorcraft dynamics, but it may not be accurate in the presence

of the nonlinearities causes by actuator saturation (both in displacement and rate).

Additionally, increasing nonlinearity increases the sensitivity of the linearized model

to the size of the numerical perturbations. With this in mind,the next step of the

present study is to extract a linearized model using frequency domain based sys-

tem identification. This model will be compared with that obtained from numerical

perturbations.

5.2 CIFER

CIFER, Comprehensive Identification from FrEquency Responses, is a power-

ful system identification tool. CIFER was designed for rotorcraft system identifica-

tion which is notoriously difficult. Rotorcraft are unstable, nonlinear aircraft with

multiple flight modes. Additionally, rotorcraft dynamics are highly cross correlated
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making isolation of particular single input single output much more difficult.

CIFER uses an advanced Fast Fourier Transform algorithm, the Chirp-Z trans-

form. The single input single output (SISO) frequency response for each input/output

pair is determined using a range of different window sizes. Large windows allow high

resolution in time, wide dynamic range, whereas small windows allow high resolution

in frequency. This is common tradeoff of using a Fourier Transform. CIFER uses a

weighted nonlinear least-squares procedure to achieve a composite conditioned fre-

quency response with good coherence and low random error of the entire frequency

range of interest. More information on CIFER can be found in Ref. [? ].

5.3 System Identification Methodology

An accurate system identification requires an input with good energy content

of the frequency range of interest. In order to achieve a wide dynamic range of

frequencies, a frequency sweep input is prescribed from 0.01Hz up to 60Hz. Stick

input δ for a given time was calculated using

δ(t) = Asin[ω(t)t] (5.1)

where

ω(t) =
t

T
(ωmax − ωmin) + ωmin (5.2)

with T being the total sweep duration. An example frequency sweep is plotted in

Figure 5.1

In addition to the frequency sweep on the main controls, low amplitude gaus-

sian noise was added to the other input channels. This gaussian noise, recommended
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Fig. 5.1: Sample frequency sweep input function

when using CIFER for a computer simulation, helps add random high frequency

content to the control signal for additional energy content. This noise is naturally

present in flight test data and must be artificially added to the simulated sweep.

For each actuator configuration, the time history must be calculated for each

set of dynamics of interest. A frequency sweep was performed for lateral and lon-

gitudinal dynamics for HeliUM with no actuator model and the baseline, sluggish,

and agile actuator model.

5.4 Results

First frequency response data derived from CIFER is compared to the fre-

quency response derived from the linearized model in Chapter 4. Figure 5.2 shows

the magnitude and phase of pitch rate response, q, to longitudinal stick, δlon. The

numerically linearized model and the identified model are similar. The coherence of

the identified model, plotted at the bottom of the figure, drops at frequencies below

1 rad/s and dips around 20 rad/sec. This drop at frequencies below 0.7 rad/s is
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caused by the frequency sweep length. This frequency response data was derived

from a chirp signal over 300 rotor revolutions adding up to around 70 seconds per

run. The dip around 20 rad/s is due to the coupled roll/rotor lag mode.
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Fig. 5.2: Pitch rate frequency response to longitudinal stick δlon with no actuator

dynamics model, for the numerically linearized model and the model identified using

CIFER

Another area of interest is the drop of coherence if Figure 5.7 below about

2 rad/s. This plot is the roll rate frequency response with the sluggish actuator
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Fig. 5.3: Roll rate frequency response to lateral stick δlat with no actuator dynamics

model, for the numerically linearized model and the model identified using CIFER

model. Part of this drop in coherence at low frequencies is due to the sample length

as discussed previously. Another reason may be due to the nonlinear nature of the

sluggish actuator at low frequencies. The agreement between the linearized and the

identified model is good.

The roll and pitch bandwidth and phase delay predicted by the two models

are compared in Fig. 5.10.

129



10
−1

10
0

10
1

10
2

−30

−20

−10

0

10

20

30

ω [rad/s]

M
a
g

n
it

u
d

e 
[d

B
]

Pitch Rate Response to Longitudinal Cyclic [Numerical Linearization vs CIFER System ID]

 

 

No Actuators (Num. Lin.)

No Actuators (CIFER)

Baseline (Num. Lin.)

Baseline (CIFER)

10
−1

10
0

10
1

10
2

−200

−150

−100

−50

0

ω [rad/s]

P
h

a
se

 [
d

eg
]

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

ω [rad/s]

C
o

h
er

en
ce

, 
γ

2

 

 

No Actuators (CIFER)

Baseline (CIFER)

Fig. 5.4: Pitch rate frequency response to longitudinal stick δlon with baseline actu-

ator dynamics model, for the numerically linearized model and the model identified

using CIFER

Predicted pitch bandwidth is slightly higher in the linearized model for no

actuator model and the baseline actuator model. Predicted phase delay, however,

lower in the linearized models as compared to the identified models. The difference

in phase delay for the HeliUM model is 0.022s. Additionally, linearized model un-

derestimates the baseline model phase delay by 0.018s, the sluggish model by 0.036s,
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Fig. 5.5: Roll rate frequency response to lateral stick δlat with baseline actuator

dynamics model, for the numerically linearized model and the model identified using

CIFER

and the agile model by 0.024s. In the right situation, these differences in phase delay

are enough to drive the predicted handling qualities rating from a level 2 to a level

3.

For roll, the phase delay, the equivalent between the linearized and CIFER

models however the bandwidth is overestimated by the linearized model. The band-

131



10
−1

10
0

10
1

10
2

−30

−20

−10

0

10

20

30

ω [rad/s]

M
a
g

n
it

u
d

e 
[d

B
]

Pitch Rate Response to Longitudinal Cyclic [Numerical Linearization vs CIFER System ID]

 

 

No Actuators (Num. Lin.)

No Actuators (CIFER)

Sluggish (Num. Lin.)

Sluggish (CIFER)

10
−1

10
0

10
1

10
2

−250

−200

−150

−100

−50

0

ω [rad/s]

P
h

a
se

 [
d

eg
]

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

ω [rad/s]

C
o

h
er

en
ce

, 
γ

2

 

 

No Actuators (CIFER)

Sluggish (CIFER)

Fig. 5.6: Pitch rate frequency response of HeliUM with sluggish actuator dynamics

model, for the numerically linearized model and the model identified using CIFER

width is overestimated by 0.40 rad/s for the HeliUM model, 0.68 rad/s for the base-

line model, 1.05 rad/s for the sluggish model, and 0.29 rad/s for the agile model.

The width of the level 2 handling qualities requirement is 1 rad/s. The sluggish ac-

tuator model shows a discrepancy over 1 rad/s meaning the accuracy of the model

can make the difference between an excellent performing rotorcraft and a poorly

performing rotorcraft.
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Fig. 5.7: Roll rate frequency response of HeliUM with sluggish actuator dynamics

model, for the numerically linearized model and the model identified using CIFER
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Fig. 5.8: Pitch rate frequency response of HeliUM with agile actuator model, for

the numerically linearized model and the model identified using CIFER
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Fig. 5.9: Roll rate frequency response of HeliUM with agile actuator model, for the

numerically linearized model and the model identified using CIFER
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Fig. 5.10: ADS-33 requirements for small-amplitude pitch and roll attitude changes

for target acquisition and tracking without actuators (black), baseline (blue), slug-

gish (red), and agile (green) models derived from numeric linearization (circles) and

CIFER (squares)
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Chapter 6

Concluding Remarks

6.1 Overview

Development of a high fidelity actuator model is necessary for accurate high

frequency modeling of rotorcraft. As rotorcraft performance requirements increase,

the demand for high bandwidth controllers to augment pilot operation of rotorcraft

becomes paramount. Actuators are a key component of the control system and

they exhibit nonlinearities at high frequency that can have a negative impact on

predicted versus actual rotorcraft performance.

First a nonlinear state space actuator model was developed. Six first-order

implicit differential equations were used to describe a single actuator. Three actua-

tors composed the simplified rotorcraft hydraulic system for a total of 18 first-order

differential equations. The actuators were integrated into the nonlinear state space

rotorcraft model, HeliUM, by intercepting pilot stick inputs and rerouting them to

the actuator dynamics. The actuator dynamics then fed back their positions to the

helicopter model for an accurate representation of the swashplate.

A parametric study was performed on the swashplate-actuator dynamics, first

ignoring the rotorcraft model. Step responses were generated for a variety of key

hydraulic parameters and their effects analyzed.

With knowledge of the essential actuator-swashplate interaction, the entire
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coupled actuator-rotorcraft system was used to investigate the effects of actuator

dynamics on a rotorcraft. A linearized model was derived using first-order Taylor

series expansion over a variety of key hydraulic parameters. The coupled actuator-

rotorcraft dynamics were analyzed in the frequency domain through the use of Bode

plots and key flight dynamics quantities such as bandwidth and phase delay.

Time integration over several hundred blade revolutions was performed for a

series of three hydraulic configurations, a baseline, a saturated actuator, and an un-

saturated actuator. The coupled system was subjected to frequency sweeps about

the longitudinal and lateral axis to extract a more accurate frequency response

representation encompassing all the nonlinear effects of both the actuator and the

rotorcraft. The software package CIFER was used to convert the time history fre-

quency sweep data into accurate frequency response data through the use of an

advanced Fourier algorithm.

The full nonlinear CIFER model was then compared to the first order Taylor

series linearized model derived previously. Observations are made regarding the

differences between the linearized and CIFER models for the three actuator models

and handling qualities parameters bandwidth and phase delay for the models is

discussed.

6.2 Conclusion of the Study

1. Hydraulic model parameters such as supply pressure, pressure drop, valve

coefficients, and actuator piston are all have a unique roll in the overall dy-
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namics of the hydraulic system. Actuator design must be carefully considered

to optimize these parameters for the coupled actuator-swashplate system.

2. An reasonably accurate linearized model of the actuator-rotorcraft system can

be constructed using a small perturbation first-order Taylor series method.

This model can be used to analyze key flight dynamics parameters such as

bandwidth and phase delay. The inclusion of actuator dynamics can have a

significant role on the predicted handling qualities of rotorcraft in hover.

3. The coupled actuator-rotorcraft linearized model can be validated using inde-

pendent linearization of actuator and rotorcraft dynamics.

4. Coupled actuator-rotorcraft time history frequency sweep data can be used

to reconstruct the lateral and longitudinal frequency response of rotorcraft

in hover. Actuator dynamics, including nonlinear rate saturation, play an

important role in rotorcraft frequency response.

5. The derived linearized model frequency response and time history frequency

response were cross-validated. Key differences in flight dynamics parameters

such and bandwidth and phase delay are noted between the models.

6.3 Remarks for Future Work

The findings presented in this paper only lay the framework for future work.

Rotorcraft fly many different flight conditions and the coupled actuator-rotorcraft

interaction can be of use. The actuator model presented here can be used and
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expanded for future work.

1. Forcing on the actuator plays a large role in the overall actuator dynamics

and can be seen in the analysis of valve pressure drop on rotorcraft dynam-

ics. When rotorcraft perform aggressive maneuvers, nonstandard loads can

be placed on the rotor and transferred to the swashplate. By simulating ro-

torcraft maneuvers with the coupled actuator-rotorcraft system, the effects of

time-varying loads can be analyzed.

2. The actuator model described uses specialized constraint equations to keep

actuator displacement within normal operating limits. Placing the actuator-

rotorcraft under certain conditions, can excite the dynamics associated with

the physical limits of the actuator. By simulating the coupled system dynamics

in this compromised position could yield valuable insight into the limits of the

flight envelope.

3. As more and more rotorcraft rely on hydraulic flight control systems, the

opportunity for failure increases. Various hydraulic system failures can be

analyzed and flight dynamics extracted. Failures such as a locked actuator, a

leaking pipeline, and air entrained in the hydraulic fluid can have disastrous

real world consequences and should be studied in further detail by simulation.

4. The model presented has simplifying assumptions and simulates a single stage

servo valve and actuator. A higher fidelity model including a multi-stage valve,

hydraulic pumps, and pipelines could serve as a useful tool going forth. The
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hydraulic systems on modern rotorcraft are highly complex, featuring trim ac-

tuators, stability augmentation actuators, boost actuators and complex swash-

plate arrangements can create quite a complex coupled system. Simulating

such dynamics could prove useful to optimizing such complex arrangements.

The research presented in this thesis provides merely a framework for the

understanding of the complex interactions between the coupled actuator-rotorcraft

dynamic system. Such a system can become infinitely complex leaving many avenues

for future research.
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