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SUMMARY

With the improvement of the computational performances, simple nonlinear finite

element analysis can be performed in a relatively short time. However, considering

strongly non-linear models, the achievement of converged results may require many

hours. The actual challenge resides in obtaining a reliable result in a reasonable

time of calculation. The present work considers the simulation of crack propagations

in multilayer electronic systems, such as System in Package (SIP) devices. It puts

forward the implementation of a nonlinear finite element solver, developed for the

MSc Software Marc/Mentat package software. This method is based on the energy

released during the propagation of the crack, what offers the advantage of being

directly linked to the failure process. In order to clearly understand the issues of

this problem, this report makes a brief description of the fracture mechanics and

reviews existing nonlinear finite element solvers, based on the arc-length method.

After explaining the principle of the energy release solver and the different issues due

to its implementation, its efficiency is compared to already implemented arc-length

solvers.
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CHAPTER I

INTRODUCTION

Nowadays, two main goals of micro-electronic companies can be clearly identified as

the miniaturization of the electronic devices and the increasing number of functionali-

ties. The combining of these two aims results in the emergence of systems in package,

also called SIP, which consist in any combination of integrated circuits of different

functionalities, incorporated into a single advanced package or module. In order to

achieve such a challenge, SIP microsystems contain stacked, multiple, thin layers,

manufactured using different materials, as illustrated in figure 1. Various circum-

stances, such as low velocity impacts, mechanical loading or temperature fluctuations

lead to high stresses at the interface between two layers. Due to that phenomenon,

these products are prone to interface failures, mainly in the form of delamination,

which is a precursor to a critical failure mechanism. This irreversible process leads to

reduction of stiffness and strength of laminates. It especially happens when consid-

ering composite materials, such as patterns of metal interconnects and mismatched

matrix materials which present an insufficient adhesion at the interface.

The important scale difference of the individual materials and components in

those devices makes them multiscale in nature, and the miniaturization makes struc-

tural dimensions pass from the macroscale to the nanoscale. That is a why this

thesis is an entire part of the European NanoInterface Project [19], which is sup-

ported by the European Framework Program 7 and coordinated by Philips Applied

Technologies, located in Eindhoven, Netherlands. The purpose of this project is to

develop multiscale design tools on the three levels: atomistic/nanoscale, mesoscale,
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Figure 1: Example of SIP [4]

and continuum/macroscale. So in this approach, models at atomic level are linked to

macroscopic models, represented by finite element analysis, as explained in [18].

Over the years, many finite element software packages have been developed, which

provides a way to predict the failure behavior of materials, in order to optimize the

structure of the devices. Considering structural analysis, they are mainly based on

energy principles such as the virtual work principle or the minimum potential energy

principle. In order to obtain ease and less computational cost, finite element methods

use linear assumptions, expressed principally in terms of smallness of certain quan-

tities in the formulation. These simplifications provide more tractable analysis of

structures and in many problems, linearity assumptions lead to substantial idealiza-

tion of the behavior of the system. In our considered case, energy-based linear elastic

fracture mechanics has been massively used for delamination modeling of composites

[10]. However, most physical processes contain complex interactions that are inher-

ently nonlinear to a certain extent.
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In the case of delamination of composite devices found in SIP, the presence of high

local stresses near the crack front causes inherently nonlinear constitutive properties,

which often cannot be solved by a linear finite element method. The nonlinear soft-

ware mainly used in this thesis is MARC, developed by MSc Software Corporation.

It is the first commercial nonlinear finite element analysis program, and was intro-

duced in 1972. Over the years different nonlinear solvers have been developed and

implemented, such as Newton-Raphson procedure, automatic load step enlargement

tool, line search algorithm or arc length algorithm. However, it is important to notice

that even these solvers can easily break down when dealing with highly localized de-

formations. The main focus of this research is to improve the ability of finite element

solvers to carry out such simulations, by developing a robust solver that is able to

follow snap-back/snap-through behavior very efficiently, and so trace the equilibrium

path properly. These snap-back/snap-through points, also known as limit points,

are typically encountered when dealing with numerical predictions of highly localized

deformations. This new solver [14] is a general arc-length method with a constraint

equation based on the maximum energy dissipation of the system. Its direct link to

the failure process should enable a stable convergence behavior.

3



CHAPTER II

FRACTURE MECHANICS

Fracture mechanics is an analysis dealing with the study of crack propagations in

materials. This process starts with the nucleation of a micro-separation, which fre-

quently occurs in multi-layered structures, in such a way that small cracks appear

at inhomogeneities, where the stresses are particularly high. This phenomenon is an

irreversible process, which reduces the strength and the stiffness of the material. If

the applied load is increased, then the crack runs quickly into the material until it

reaches a free edge or can no longer grow. This research considers a particular failure

phenomenon which refers to interfacial cracking, also called delamination. Fracture

mechanics provides two different criteria in order to determinate the crack propaga-

tion: the Griffith theory and the Irwin theory.

2.1 Griffith Approach

In 1920, Alan Arnold Griffith formulated the energetic approach about fracture prop-

agation in [1]. For linear elastic fracture mechanics, this Griffith’s energy balance is

based on the 1st law of thermodynamics, which expresses that energy can be trans-

formed but can neither be created nor destroyed. By considering a brittle body

containing an internal crack of length 2a subjected to an external applied load F at

the boundary, the crack propagation is stable if the strain energy released during the

propagation is absorbed by the increase in surface energy. So, the fracture mechanics

can be considered as an equilibrium problem. The expressions of the thermodynamic

4



equilibrium and the total system energy give the following system of equations :




∂UT
∂a

= 0

UT = UE + UCR −W
(1)

where UT is the total system energy, UE is the elastic strain energy, UCR is the

energy needed for the crack propagation and W is the work due to the external applied

load F. By substitution, the Griffith’s energy balance can be expressed as:

∂W

∂a
− ∂UE

∂a︸ ︷︷ ︸
Energy release rate: G

=
∂UCR
∂a︸ ︷︷ ︸

Fracture toughness : Gc

(2)

So, the crack grows if the energy release rateG is larger than the fracture toughness

Gc required to propagate the crack:

G ≥ Gc (3)

2.2 Irwin theory

In 1957, Irwin formulated a new method in [9] to calculate the stress field in the area

of the crack tip. This theory is based on the stress intensity factors (SIF) K, which

are used to predict the stress state. The magnitude of K is a function of the loading,

the geometry of the sample, the size and the location of the crack. The Irwin criterion

compares the stress intensity factor K to a critical value Kc, called the tenacity or

fracture toughness, which is a property of the material and defined for each fracture

mode. The criterion states that:




if K < Kc, there is no propagation of the crack.

if K ≥ Kc, the crack grows.
(4)

This method takes into account the fracture modes. Indeed, by considering only

plane crack propagations in their own plan, most general propagations can be reduced

to the superposition of the three fracture modes defined below. They constitute a

base for describing any fractures.
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Figure 3: The three fracture modes [23]

• Mode I corresponds to the opening mode. It is characterized by a stress per-

pendicular to the crack faces.

• Mode II corresponds to the shearing mode. It is characterized by a shear stress

perpendicular to the crack front.

• Mode III corresponds to the tearing mode. It is characterized by a shear stress

parallel to the crack front.

The energy release rate G can be easily related to the stress intensity factor, by

using the Young’s modulus and the Poisson’s ratio as shown below, for a mode I

crack: 



G =
K2

E
for plane stress problem.

G =
K2

E
(1− ν2) for plane strain problem.

(5)

Within finite elements analysis, several methods have been developed to predict

the crack driving force. The most frequent used ones, which are explained below,

are the J-integral method, the Virtual Crack Closure Technique, also called VCCT

method and the cohesive zones model.
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2.3 J-integral method

In 1968, Rice developed in [12] the J-integral method which expresses the energy

release rate G in a material, in terms of field variables. The main idea is that the

J-integral is a path-independent contour integral around the crack, as long as it stays

within the part domain. It vanishes if it encloses no singularity. The J-integral is

defined as: ∫

C

(
Wn − σijnj

∂ui
∂x

)
dC (6)

where W is strain energy density, n is the unit outward vector normal to an

arbitrary contour C around the tip of the crack, σij are stresses, ui is the displacement.

The J-integral is represented in figure 4.

Figure 4: J-integral method

2.4 VCCT method

In 1977, Rybicki and Kanninen proposed in [7] the Virtual Crack Closure Technique,

also called VCCT. This method is based on the assumption that the energy released

during the crack extension is equal to the energy needed to close the crack and so it

can determine the energy release rate associated with the crack. Figure 5 shows the

evolution of the crack within the finite element model. The solver computes locally

the total energy release rate by using the nodal forces at the crack front and the nodal

displacements behind the crack front. This method is the most commonly employed

in fracture analysis, but it requires a remeshing if the calculation of the crack path

7



is needed, so it is not used in this thesis. All the calculations are explained in the

NASA report [20].

Figure 5: Opening of the crack for the VCCT method. Degrees of freedom at the

crack front are released and the corresponding forces and displacements are computed.

The both methods presented above have some limitations. First a remeshing is needed

each time the crack grows what generates extra time of calculation, second they are

able to simulate the propagation of an existing crack, but they cannot predict its

nucleation. The present research adopts another solution which does not encounter

the previous problems. This solution is the cohesive zone model developed by Xu and

Needleman [3, 21] and it is thoroughly developed in the section below.

2.5 Cohesive zone elements

In order to study the nucleation and the growth of interface delamination and brittle

cracking, the sample is modeled with cohesive zone elements using nonlinear relations

between only two parameters : the separation vector λ [m] of the two material faces

at the interface and the traction vector τ [N.m−2], as pointed out on the figure 7.

Accordingly, τ and λ have the same direction. These cohesive zone elements do

not correspond to any physical material, but describe the cohesive forces occurring

8
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when material elements are separated out. They especially depict the degradation

of the adhesion between the materials along the interface. Therefore, cohesive zone

elements are inserted at the interface, in between bulk elements, as shown on the

figure 6. When damages occur, the cohesive zone elements open in order to represent

the crack initiation or the crack propagation. During the opening, energy is dissipated

until complete loss of traction occurs. The active zone wherein the energy is dissipated

is called the process zone. However, according to the location of the cohesive zone

elements, the propagation of the crack is predetermined, because it necessarily occurs

along the cohesive zone. Nevertheless, the crack can propagate along any path where

the cohesive zone elements are placed.

Many traction-separation laws, which describe the failure behavior, have been

zone of influence
near crack tip

undeformed

lumping

deformed

Γ

Ωa

Ωb

n

s
t

xx xx

Figure 7: Parameters of the cohesive zone [3]
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Figure 8: Smith-Ferrante traction-separation law [3]

proposed in the literature [17]. In most two-dimensional engineering applications,

fracture energy is dissipated in both normal opening (mode I) and shearing (mode II)

during a mixed-mode delamination process, so tractions have a normal and a shear

component. Thus, the traction-separation laws depict the relations between both

components (indicated by the subscripts n and s) of the separation vector and the

traction vector, respectively defined by δ = δnn + δss and τ = τnn + τss. The effective

separation, defined in the equation (7), simplifies the formulation of a mixed-mode

cohesive law.

λ =
√
〈δn〉2 + β2δ2

s (7)

β = τs,max/τn,max is the ratio between the maximum shear traction and the maxi-

mum normal traction ; and the McCauley brackets means 〈δn〉 = 1
2
(δn+|δn|), it implies

that no negative separation component contributes to the effective separation. The

model is also described with contact algorithms which prevent negative values of τ

and λ. It means that penetration of the bulk materials is not possible.

The equation (8) presents the Smith-Ferrante exponential type of traction-separation

law. This model, represented on the figure 8, gives a smooth traction-separation curve

which is more stable than discontinuous laws, such as the bilinear one.

τ = τmax
λ

λc
exp

(
1− λ

λc

)
(8)

As clearly explained by Bas van Hal in [3], three constitutive parameters are

10



commonly used, in exponential traction-separation laws, to describe the traction-

separation law: the critical opening λc [m], the maximum traction τmax [N.m−2] and

the cohesive energy Gc [N.m−1]. These parameters are linked together by the relation

(9), so Gc is equal to the area below the curve τ -λ.

Gc =

∫ ∞

0

τ(λ) dλ = exp (1)τmaxλc (9)

The original law (8) can be rewritten in a damage mechanics formulation as in

the equation (10).

τ = Kv(1−D)λ (10)

Kv [N.m−3] is the virgin stiffness of the cohesive zone model, defined by the

relation (11). It corresponds to the initial undamaged cohesive zone and it has a

significant influence on the total elastic deformation.

Kv =
Gc

λ2
c

=
τmax exp (1)

λc
(11)

In equation (10), D is the damage variable given by the relation (12). It starts

from 0 for the undamaged case to end up with 1 after the crack propagation.

D = D(Q) = 1− exp

(−Q
λc

)
(12)

Q [m] is the separation history variable, which satisfies the following Kuhn-Tucker

conditions:

(Q− λ) ≥ 0, Q̇ ≥ 0, Q̇(Q− λ) = 0 (13)

These relations assure that the unloading does not follow the same path than the

loading but it follows the secant stiffness, as shown on the figure 8. That insures the

irreversible behavior of the specimen.

However, it is important to notice that, like all elements, the cohesive zone ele-

ments are size-dependent. When the mesh of the model is too coarse, some numerical

11



instabilities, such as oscillations in the equilibrium path, may happen. It can even

lead to a divergent result. A refinement of the mesh is the perfect solution to elim-

inate this problem, however most of the times it requires long computational time.

The arc-length control solver based on the released energy, presented in this report,

will end up with a better solution without refining the mesh. Indeed, this method

does not reduce the number of oscillations in the equilibrium path, but it deals with

them in order to prevent any numerical issue. At the end, the computational time is

greatly reduced.
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CHAPTER III

ARC-LENGTH METHOD

3.1 Introduction

The basic idea of finite element analysis is to follow the equilibrium path of a con-

sidered structure. Finite element methods are generally based on constant step time

solvers which are, depending of the used boundary conditions, either force (also called

load) controlled solvers or displacement controlled solvers. Those constant step solvers

can be coupled with a Newton-Raphson method in order to improve the computation

of the simulation.

α

α

D

α

α

α

D

n

u
( )c

n-1
u

( )c

n

Du
(1)

du
(2)

n+1

n-1

load-increment
indication

fo
rc

e

displacement

load-controlled algorithm
cannot pass snap-through point

Figure 9: Snap-through presents in a force controlled solver [3]
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However, these solvers often break down when trying to achieve most of the non-

linear finite element analysis with highly localized deformations. Indeed, as clearly

shown on the figure 9, the force-controlled solver is not able to pass through snap-

throughs and the displacement-controlled one is not able to handle snap-backs. More-

over, as explained later on in chapter 4, nonlinear analysis often provides equilibrium

paths containing spurious oscillations. The easiest solution to deal with these limit

points is to refine the mesh, but it implies an increase in computational cost. The

second option consists in using other solvers, which are able to pass through limit

points. These are the considered arc-length methods, which can calculate negative

load factors.

3.2 Basics of the method

The equilibrium equation of a non-linear system, as explained in [8], can be written

as:

R(i)
n = fint(u

(i)
n )− α(i)

n f̄ (14)

where fint is the internal force vector, which is a nonlinear function of the solution

vector u ; f̄ is the external unit applied load vector and α is the scalar load factor,

the dot product of these two terms gives the external force vector fext. Finally, R is

the out-of-balance force vector, also called the residual vector. This equation is called

the residual force equation. Considering the non-linearity of this equation, the basic

idea is to follow the equilibrium path as the control and state parameters vary by

small steps.

The incrementation-iteration procedure, as shown on the figure 9, takes into

account these both two parameters. In each increment, when considering force-

controlled boundary conditions, the external load is increased in a stepwise incremen-

tal manner and so the corresponding equilibrium solution u is calculated iteratively,

14



by differentiating the equation (14) for each iteration:

r(i−1)
n = Kt(u

(i−1)
n )du(i)

n − f̄dα(i)
n (15)

Kt is the tangent stiffness matrix. This equation gives the following update iter-

ative solution du
(i)
n :

du(i)
n = Kt(u

(i−1)
n )

−1
r(i−1)
n + Kt(u

(i−1)
n )

−1
f̄dα(i)

n

= dû(i)
n + dū(i)

n dα
(i)
n

(16)

Different writings can be used to express these iterations, the displacement is

updated in the following way:




u
(c)
n+1 = u

(c)
n +Du

(j)
n+1

Du
(j)
n+1 =

j∑

p=0

du
(p)
n+1 = du

(0)
n+1 +

j∑

p=1

du
(p)
n+1

Du
(m)
n+1 = Du

(m−1)
n+1 + du

(m)
n+1

(17)

u
(c)
n is the total converged displacement at the start of the (n + 1)th increment,

Du
(j)
n+1 is the (n+ 1)th incremental step, du

(m)
n+1 is the mth iterative step of the (n+ 1)th

incremental step. In the summation notation, ’j’ represents the number of iterations

after the result converges, which means that the equilibrium is achieved. These

notations are clearly represented in the figure 10.

The arc-length method is an incremental-iterative procedure which treats the

applied load factor α as an additional variable. So, the load factor follows the same

scheme and with the same notations, it gives:




α
(c)
n+1 = α

(c)
n +Dα

(j)
n+1

Dα
(j)
n+1 =

j∑

p=0

dα
(p)
n+1 = dα

(0)
n+1 +

j∑

p=1

dα
(p)
n+1

Dα
(m)
n+1 = Dα

(m−1)
n+1 + dα

(m)
n+1

(18)

This load factor is governed by an extra constraint equation (19), which refers to

the arc-length of the equilibrium path. Thus, the new converged point is not only

15



α
(0)

n

u
( )c

n-1
u

( )c

n

Du
(1)

du
(2)

dα
(2)

α
(0)

n+1

α
(0)

n-1

fo
rc

e

displacement

cylindrical arc-length method
can pass snap-through point
and snap-back point

Figure 10: Arc-length method procedure for specific iteration [3]

dependent of a unique parameter, but it is a function of both displacement and load

factor. Finally, the constraint equation is an expression of the arc-length and can be

expressed as:

Du(i)
n

T
Du(i)

n +Dα(i)
n

2
Φ2f̄T f̄ −∆τ = 0 (19)

Φ is a scalar parameter that governs the relative contribution of the displacement

and load increment. It is equal to 0 for the commonly used ”cylindrical arc-length

method”. ∆τ represents the arc-length parameter for the current increment. The

following linearized version of the constraint equation 19, obtained by logarithmic

differentiation and named q, is used by the solver:

q(i−1)
n = 2Du(i−1)

n

T
du(i)

n + 2Dα(i−1)
n dα(i)

n Φ2f̄T f̄ (20)

Finally, by considering the (Z+1) unknowns, the Z equations obtained with the Z

degrees of freedom and the constraint equation, the following matrix system is formed
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from (16) and (20):



du

(i)
n

dα
(i)
n


 = −




Kt(u
(i−1)
n ) −f̄

2Du
(i−1)
n

T
2Dα

(i−1)
n Φ2f̄T f̄




−1 


r
(i−1)
n

q
(i−1)
n


 (21)

This method is called the global arc-length method due to the fact that it involves

the control of all the degrees of freedom.

3.3 Local arc-length method

Sometimes, to obtain a convergent solution - especially in the case of localized defor-

mations - the solver may require the control of a limited number of degrees of freedom.

However, this method requires an extra step in order to select the appropriate degrees

of freedom. Two different kinds of local arc-length method have to be distinguished

as explained in [15]:

• local subplane method: the number of degrees of freedom in the constraint

equation is confined, but the dominant degrees of freedom have to be selected

beforehand. The subplane is commonly associated with significant incremental

deformations present in the model.

• weighted subplane method: it uses a control function defined as a weighted

linear sum of all the degrees of freedom or of functions of the degrees of freedom

such as: strains or internal variables. The function is redefined at the beginning

of each increment.

The method used is this paper is a weighted subplane method, introduced by

Bas van Hal et al. [2]. Here, it is assumed that the damage D in the cohesive zone

elements controls the load. Indeed the control function κ is a weighted sum of the

damage values D in the Gauss points of all cohesive zone elements, as defined below:

κ =
∑

gp

WgpDgp (22)
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The relations between increment and iterative updates are similar to the ones

obtained in the global arc-length method:




Dκ(i+1)

n = Dκ(i)
n + dκ(i+1)

n

dκ(i)
n = dκ̂(i)

n + dκ̄(i)
n dα

(i)
n

(23)

This system of equations can be considered equivalent to the system (17), but

using the control function κ instead of the load factor. Then the solution procedure

is the same as previously explained, with the computation of a matrix system.

3.4 Energy release arc-length method

3.4.1 Theory

This method is a global arc-length method but the constraint equation is based on the

energy release rate during failure. It was introduced by Gutiérrez [14], in such a way

that the amount of dissipated energy in the deformation process is always a maximum

for a given displacement and load increment. The advantage of this method is due to

the released energy which is a global quantity and can thus even be used when the

failure process is unknown. Moreover, such a constraint is linked up to the failure

process, so a stable convergence behavior is obtained even for advanced stages of the

equilibrium path. However, when the damage is not evolving, the rate of dissipation

is equal to zero and so this method cannot be considered, so the solver has to switch

to another method.

The energy release rate G during failure can be written as:

G = P − V̇ (24)

where V̇ is the rate of the elastic potential energy and P is the exerted power.

This power, due to the external applied load is expressed as:

P = αf̄T u̇ (25)

18



The expression of the elastic potential energy depends on the constitutive behavior

of the material. In our considered case of a geometrically linear model in presence of

damage, the stored elastic potential energy can be stated as:

V =
1

2

∫
εTσdΩ =

1

2
uT
∫

BTσdΩ =
1

2
uT fint =

1

2
αuT f̄ (26)

By differentiating this equation with respect to time, the rate of the elastic po-

tential energy is easily calculated:

V̇ =
1

2
αu̇T f̄ +

1

2
α̇uT f̄ (27)

By substituting equations (25) and (27) into (24), the amount of energy dissipated

from the system is:

G =
1

2
(αu̇T − α̇uT )̄f (28)

Finally, by applying an Euler-forward integration scheme in the particular form

of the parametrization and by considering the arc-length path parameter ∆τ , which

corresponds to the amount of energy dissipated in one increment, the new energy

release constraint equation is given by:

1

2
(α(0)

n Du(i)
n

T −Dα(i)
n u(0)

n

T
)̄f −∆τ = 0 (29)

A geometrical interpretation of the method is presented in figure (11) , where the

shaded area corresponds to the released energy during a dissipative increment.

The augmented system of equations can be solved with the following matrix ex-

pression, in an iterative manner by using a Newton-Raphson approach:



du

(i)
n

dα
(i)
n


 = −




Kt(u
(i−1)
n ) −f̄

1
2
α

(0)
n f̄T −1

2
u

(0)
n

T
f̄




−1 


r
(i−1)
n

q
(i−1)
n


 (30)

The loss of the band structure of the matrix can be compensated with the use of

the Sherman-Morrison formula as explained in [11] and in appendix D, in order to
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Figure 11: Geometrical interpretation of the energy release method

obtain the solution system:


du

(i)
n

dα
(i)
n


 =



dû

(i)
n

q
(i−1)
n


− 1

gTdū
(i)
n + w




dū
(i)
n (gTdû

(i)
n + q

(i−1)
n )

gTdû
(i)
n + (1 + gTdū

(i)
n + w)q

(i−1)
n


 (31)

with the following variables:





g =
1

2
αc(n−1)f̄

w = −1

2
uc(n−1)

T f̄

(32)

The variables uc(n−1) and αc(n−1) are respectively equal to the variables u0
(n) and

α0
(n).

3.4.2 Implementation

The main relations which have to be implemented, are introduced in the above pre-

sentation of the method. The flowchart of the appendix B gives the global solution

procedure, in a typical finite element code. The implementation part of this project

considers more particularly the ’matrix solution’ procedure. The flowchart of this

procedure is given in figure 12.
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The system (31) corresponds to the matrix representation of a set of two equations,

which can be simplified as shown on the system below. Finally, the easiest way to

calculate the new iterative step is given below:





dα(i)
n = −gTdû

(i)
n + q

(i−1)
n

gTdū
(i)
n + w

du(i)
n = dû(i)

n + dα(i)
n dū

(i)
n

(33)

The second equation of the system is dependent on the first one. Performing (33)

requires the value of both incremental displacement due to the residual dû
(i)
n and

incremental displacement due to the external forces dū
(i)
n . These values are already

calculated in an earlier step, so the value of the incremental load factor dα
(i)
n is easily

performed. Once this value is obtained, it is substituted in the calculation of the

incremental displacement du
(i)
n . It can be noticed that the second equation of the

above system (33) is the same as the one used previously in (16), for the ’default’

arc-length method, which is already available in Marc. This is an important point

because this part of the Marc solver can be conserved and only the one with the

calculation of the iterative load factor has to be rewritten.

3.4.3 Estimation of the arc-length

The step-size estimation is a key parameter in the success of any non-linear method.

So, in order to calculate the complete equilibrium path in as few steps as possible, the

arc-length parameter ∆τ needs to be readjusted at the beginning of each increment.

The aim of this adjustment is to obtain a number of iterations equal to the optimal

value kopt given by Riks [6], which is usually considered to be 5 in these kind of

computations. Several adjustment formula have been proposed in the literature. The

one provided here is the following :

∆τn+1 = ∆τn

(
1

2

)p
(34)
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Figure 12: Flowchart of the energy release procedure.
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with:

p =
kn − kopt

4
(35)

The relation (34) clearly shows that the new arc-length parameter is based on

its previous value and on the number of iterations required in the previous step,

represented by kn.

3.4.4 Switch

This energy release solver can only be used when a certain quantity of energy is

dissipated in a single load step. However, in most of the cases, a non-dissipative part

exists in the equilibrium path. For instance, in both used benchmarks, the initial

deformation of the beam is only elastic, which means that no energy is released, the

fracture arrives later in the simulation. In order to pass through these non-dissipative

parts, other constraint equations can be used. Since this study is especially about

the highly localized deformations, which generally result in snap-backs, Crisfield’s

method appears to be a logical alternative. When the fracture starts and enough

energy is dissipated, the solver switches from Crisfield’s method to the energy release

one. As shown in [5], several switching criteria can be selected, the one used in this

paper takes into account the amount of energy dissipated in Crisfield’s method. When

it exceeds a predefined value, chosen by the user, the solver switches to the energy

release method. A reverse switch is also configured when the ratio ∆τ
‖∆α‖ is smaller

than the predefined value.

3.4.5 Differences between displacement and force prescribed boundary
conditions

In order to depict the effect of the external environment on the model, the user has

to specify boundary conditions in order to correctly constrain the model. Different

kinds of boundary conditions exist to represent most of the physical phenomenon,

such as mechanical, thermal and electromagnetic. In our considered case, mechanical
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Table 1: Stored variables in Marc, used by the energy release solver

Variable Physical meaning Marc variable

dα
(i)
n new iterative load factor xlam

dû
(i)
n iterative displacement due to the external force tx3 d

dū
(i)
n iterative displacement due to the residual dsx d

α
(c)
n−1 load factor at the end of the previous increment autacc

u
(c)
n−1 displacement at the end of the previous increment dsxts d
f̄ external unit force pload d

boundary conditions will be prescribed, however several kinds of boundary conditions

can be selected, such as displacement, acceleration point load, edge load and face load.

In the two benchmarks presented in the next chapter, the boundary conditions are

prescribed directly on the nodes by using displacement boundary conditions and/or

force boundary conditions.

3.4.5.1 Force prescribed boundary conditions

When the model is prescribed with force boundary conditions, the solver automati-

cally scales the total external force fext in such a way that:

fext = αf̄ (36)

This expression of the external force is exactly the same as the one used by the

solver, as explained in (14). So, the application of these boundary conditions into the

solver is straightforward. If we now consider the new update values, the system to

solve is the system (33) with the variables of (32).

The difficulty of implementing the new energy release arc-length method is prin-

cipally based on the access to the needed data. For proper implementation, the

variables required from the software Marc are given in the Table 1.

The calculation of the constraint equation based on the energy release rate q
(i−1)
n

requires to take into account the predictor step differently than the other iteration
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Table 2: Calculated variables by the energy release solver

Variable Physical meaning Marc variable

α
(0)
n load factor at the end of the previous increment autacc

Du
(i)
n actual incremental displacement dynd d

predictor of the incremental displacement dsx2 d

Dα
(i)
n actual incremental load factor curper

predictor of the incremental load factor curprs

u
(0)
n displacement at the end of the previous increment dsxts d

∆τ arc-length parameter arclen

steps, according to the logarithmic differentiation of the equation (29):

q(i−1)
n =

1

2
(α(0)

n du(i)
n

T − dα(i)
n u(0)

n

T
)̄f (37)

The variables used in the calculation of the constraint equation are given in the

Table 2.

3.4.5.2 Displacement prescribed boundary conditions

When considering displacement prescribed boundary conditions, the solver calculates

the nodal displacement of the model. However, some displacements are already pre-

scribed, the displacement vector has to be decomposed according to :

u = Cuf + up (38)

where uf and up are respectively the free and the prescribed displacement and C

is the constraint matrix whose size depends on the number of prescribed degrees of

freedom. In most of the software package, the constraint matrix is directly calculated.

This is what happens in MSc Software Marc, so we do not really need to take into

consideration the constraint matrix.

As for prescribed displacement boundary conditions, the solver automatically

scales the prescribed boundary conditions, so in case of displacement prescribed

boundary conditions, we end up with the following equation about the prescribed
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displacement, which is written in terms of a unit prescribed displacement ūp times a

displacement factor γ:

up = γūp (39)

In order to calculate the different needed expressions given in the table 2, the

external force is required. But, no external force fext is applied, so it is expressed as

the product of the stiffness matrix and the displacement, and we come up with:

Ku = fext (40)

Then, from here we can calculate the energy release rate, such that:

q(i−1)
n =

1

2
K(u(i−1)

n )ū(α(0)
n du(i)

n − dα(i)
n u(0)

n ) (41)

Finally, by considering system (33), the solution is easily achieved, however two

more variables need to be adapted according to:





g =
1

2
α(0)
n K(u(i−1)

n )ū

w =
1

2
u(0)
n

T
K(u(i−1)

n )ū
(42)

This method has been implemented into Mentat, however some troubles are en-

countered to obtain the current stiffness matrix. A common block has been created

for this purpose which basically works, but the values are not updated. Right now, the

help of MSc Software is required. The implementation is, however, straightforward.
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MATHEMATIC EXPRESSION OF THE CONSTRAINT EQUATION

Method Constraint equation Matrix system New iterative values

Newton-Raphson Du
(i)
n = constant > 0 du

(i)
n = −Kt(u

(i−1)
n )

−1
r

(i−1)
n

{
dα

(i)
n = 0

du
(i)
n = dû

(i)
n

Crisfield AL Du
(i)
n

T
Du

(i)
n − ∆τ = 0

[
du

(i)
n

dα
(i)
n

]
= −

[
Kt(u

(i−1)
n ) −f̄

2Du
(i−1)
n

T
0

]−1 [
r

(i−1)
n

q
(i−1)
n

] 



a1dα
(i)
n

2
+ a2dα

(i)
n

2
+ a3 = 0

a1, a2, a3 = f(dû
(i)
n , dû

(i)
n ,∆τ)

u
(i)
n = dû

(i)
n + dα

(i)
n dū

(i)
n

Local AL Dκ
(i)
n

T
Dκ

(i)
n − ∆τ = 0

with κ =
∑

gpWgpDgp

{
dα

(i)
n = −Dκ(i−1)

n −dκ̂(i)n +∆τ

dκ̄
(i)
n

du
(i)
n = dû

(i)
n + dα

(i)
n dū

(i)
n

Energy Release AL
1
2
(α

(0)
n Du

(i)
n

T −
Dα

(i)
n u

(0)
n

T
)̄f − ∆τ = 0

[
du

(i)
n

dα
(i)
n

]
= −

[
Kt(u

(i−1)
n ) −f̄

1
2
α

(0)
n f̄T −1

2
u

(0)
n

T
f̄

]−1 [
r

(i−1)
n

q
(i−1)
n

] {
dα

(i)
n = gT dû

(i)
n −q(i−1)

n

gT dū
(i)
n −w

du
(i)
n = dû

(i)
n + dα

(i)
n dū

(i)
n

GEOMETRIC REPRESENTATION OF THE CONSTRAINT EQUATION
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Graphic
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Encountered
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• Not able to pass through limit points.
• Not able to treat brittle failure.

• Difficulties in choosing the good dα
(i)
n .

• Unloading happens under strong localizations.

Local arc-length Energy Release arc-length

Graphic
representation

The graphic representation is the same as for the Crisfield
arc-length method. The method is similar, only the weights

put on the degrees of freedom is different.

Encountered
problems

• No problem : accurate results.
• The time of calculation is quite long.

• No problem : accurate results.
• The time of calculation is shorter.

Figure 13: Comparison of the different arc-length methods
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CHAPTER IV

BENCHMARKS

4.1 Double Cantilever Beam benchmark (DCB)

4.1.1 Description of the benchmark

The double cantilever beam (DCB) test is an often used two-dimensional benchmark

test for cohesive zone elements. This model, presented in the figure 14, consists of

two strips of length L = 100 mm, width W = 30 mm and height H = 3 mm, glued

together with cohesive zone elements which are placed at the interface. An initial

crack of length a0 is inserted at one end of the interface. During the test, analyzed

under plane strain conditions, the two parts of the beam are separated by pulling

apart in mode I. Indeed, the two end points of the beam are given a displacement in

opposite y- directions up to u = 15 mm, while the other end of the sample is fixed in x-

and y- direction. In this benchmark, in order to change the brittleness of the cohesive

zone, the critical opening is decreased while keeping the cohesive energy Gc constant.

The brittleness of the interface is a relative notion, which can be defined as the ratio

between the size of the mesh and the size of the critical opening. When the critical

opening decreases, the interface becomes more brittle, which is in accordance with the

reality, however this also implies some calculation difficulties ; that is why this test

considers different critical openings. The beam is meshed with 8 x 25 elements along

the initial crack and 8 x 150 elements along the rest of the beam. These elements are

plane strain linear quadrilateral ones. Figure 14 presents the geometry and the mesh

of the benchmark, the parameters are given in the Table 3. The analytical result is

introduced in appendix C.
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Figure 14: Mesh and boundary conditions applied on the DCB benchmark

4.1.2 Results

For this benchmark, relevant solvers are able to achieve calculation which gives re-

sults close to the analytical solution, presented in appendix C. In order to observe

such results, three different pre-implemented solvers are tested, with a convergence

tolerance of 10−3 and an initial fraction of 0.01.

4.1.2.1 The Newton-Raphson method (see figure 15)

This procedure is a constant time step method, which is configured for 1000 incre-

ments in this work. The test considers displacement controlled boundary conditions,

so this procedure is equivalent to a displacement controlled method. However, a stan-

dard displacement controlled procedure with an iterative Newton-Raphson solution

fails to converge in the case of snap-back. These ones are in fact artifacts of discretiza-

tion due to the failure of a cohesive zone element and lead to numerical issues. So,

Table 3: DCB benchmark parameters

Young’s modulus E [GPa] 130
Poisson’s ratio ν 0.3

Cohesive energy Gc [N/mm] 0.36
Shear/Normal ratio β 1

Critical opening 1 (δc1) 0.1
Critical opening 2 (δc2) 0.01
Critical opening 3 (δc3) 0.001
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Figure 15: Force-displacement curves for the DCB benchmark - 3 different critical
opening values - Newton-Raphson method

achieving the calculation for δc=0.001mm seems to be impossible and the calculation

even fails in a early stage for the brittle material. This method is not adapted to

brittle interfaces.

4.1.2.2 The global arc-length method (see figure 16)

It is a frequently used method in non-linear mechanical engineering. In this procedure,

global means that all degrees of freedom have the same weight in the load control.

The result for the more brittle material points out that this procedure does not always

converge, especially in the case of sharp artificial limit points, which are the result of

a too coarse mesh. As a result, for the more brittle material, this method wants to

follow the unloading path and needs also many iterations. Although the convergence

behavior is better than with the Newton-Raphson method, the global method is also

not capable to handle strong localized deformations.
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Figure 16: Force-displacement curves for the DCB benchmark - 3 different brittle-
nesses - Global arc-length method

4.1.2.3 The local arc-length method (see figure 17)

This solver is a weighted subplane control [15], which uses a function defined as

a weighted sum of the degrees of freedom. This method is more robust than the

previous one, because only the relevant degrees of freedom are taken into account.

So, the convergence of the result is improved and the solver can easily perform the

more brittle case, while the more ductile interface tests are solved faster, as shown

in Table 4. However, for the delamination regime, moderate oscillations with the

critical opening δC = 0.001 mm appear. These fluctuations are due to a too coarse

mesh, which leads to numerical issues. Each oscillation is the result of the failure of

a cohesive zone element. These are artifacts of the discretization, but this solver is

able to follow sharp snap-backs, contrary to the two previous ones. A refinement of

the mesh is a solution in order to make the fluctuation disappear, as shown on the

figure 18. However, the time of calculation increases in a drastically way. It can be
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Figure 17: Force-displacement curves for the DCB benchmark - 3 different brittle-
nesses - Local arc-length method

concluded that the local arc-length solved is well-suited to capture strongly localized

deformations.
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Figure 18: Force-displacement curves for the DCB benchmark - 3 different meshes -
Local Arc-Length method
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Table 4: Performances of the different solvers for the DCB benchmark

Solver δc Increments Time
Newton-Raphson 0.1 1000 453
Newton-Raphson 0.01 1000 1285
Newton-Raphson 0.001 - -
Global arc-length 0.1 662 256
Global arc-length 0.01 1443 2544
Global arc-length 0.001 446 10713
Local arc-length 0.1 203 66
Local arc-length 0.01 205 152
Local arc-length 0.001 541 576

4.1.2.4 Energy release method

The only difference between the benchmarks below and the one from the previous

part 4.1 is the boundary conditions. Indeed, due to the current implementation, a

force prescribed boundary condition replaces the displacement one. In order to obtain

an evaluation of the performance of the solver and to appraise the results achieved

by the energy based equations, the DBC benchmark has first been tested on another

software package, called Dawn and co-developed by J.J.C. Remmers from the TU/e

(Eindhoven University of Technology). The obtained results were convincing, so the

decision to adapt this solver on the MSc Software package has been done.

In figure 19, the curves point out that the quality of the resolution is exactly

the same: same global equilibrium path, some oscillations on the delamination part.

However, the time of computation is smaller for the energy release method. Since

the previous part 4.1 shows that the local arc-length method is the more effective, all

energy release method results are compared with the local arc-length method ones.

The number of iterations and the times of computation are given in the table 5.

The number of increments is around 2 times lower when considering the energy release

arc-length method. This is due to the fact that each incremental step is optimized,

with a well evaluated predictor. The difference in CPU time is even more impressive.
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Figure 19: Force-displacement curves for the DCB benchmark - Comparison ER
method vs LAL method - Mesh 1 - Critical opening of 0.001 mm

The explication is related to the number of iterative steps. This one is close to the

optimized value (5 iterations) in the case of the energy release method, whereas it

oscillates with the local arc-length method. At the end, the total number of iterations

is heavily reduced, which means that the total number of calculation is reduced too,

so is the time of calculation .

4.1.3 Finer meshes

The result obtained for the more brittle material, δc = 0.001 mm, can be smoothed

with a finer mesh. The figure 18 points out that fluctuations are really artifacts of

calculation. The mesh 2 (mesh 3) corresponds to a mesh 2 times (respectively, 4

times) finer than the mesh 1 which is the one used in the previous section. The

improvement is obvious, but the time of calculation increases significantly, with more
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than 3 hours of calculation for mesh 3.

4.2 Perforated Double Cantilever Beam benchmark (PDCB)

4.2.1 Description of the benchmark

The perforated double cantilever beam (PDCB) test is an interesting benchmark test

for cohesive zone elements, in presence of real snap-backs. It is inspired by the paper

from Verhoosel et al [5]. This specimen consists of a beam of length L = 2.0625

mm, width W = 1 mm and height H = 1 mm, regularly perforated by holes with a

diameter of 0.2 mm and spaced from 0.375 mm. This test, also analyzed under plane

strain conditions, consists in pulling apart the two parts of the beam. Indeed, the

two end points of the beam are prescribed a displacement in opposite y- direction up

to u = 0.06 mm, while the other end of the sample is fixed in x- and y- direction.

The cohesive zone elements are placed in the middle of the beam, on the line where

the centers of holes are located. In this benchmark, the parameters of the cohesive

zone are kept constant, while the Young’s modulus of the linear elastic material of the

beam is changed, in order to modify the severity of the snap-backs in the equilibrium

path. The beam is meshed with 218 x 64 elements which are plane strain linear

quadrilateral elements. The critical opening of the interface imposes such a fine

mesh. The benchmark and the mesh are shown in figure 20 and the parameters are

Table 5: ER method vs LAL method. Performances for the DCB benchmark

Solver Mesh δc Increments Time
Energy Release AL 1 0.01 102 62

Local AL 1 0.01 205 152
Energy Release AL 2 0.01 106 242

Local AL 2 0.01 324 1013
Energy Release AL 1 0.001 379 275

Local AL 1 0.001 541 576
Energy Release AL 2 0.001 392 1090

Local AL 2 0.001 437 2265
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Figure 20: Mesh and boundary conditions applied on the PDCB benchmark

given in Table 6.

4.2.2 Results

This benchmark is used in order to analyze how the solver can pass through the snap-

back points, so the Newton-Raphson method is not applicable for this case. In order

to perform the calculation, both global and local arc-length methods will be used:

4.2.2.1 The global arc-length method

Figures 21 are illustrative of the limitation of the global arc-length method. Indeed,

this solver is not able to pass through severe snap-backs, even with this relatively

fine mesh. The main problem of the solver is that it may not distinguish the elastic

unloading path from the dissipative one and so the equilibrium path follows only

Table 6: PDCB benchmark parameters

Young’s modulus E1 [MPa] 500
Young’s modulus E2 [MPa] 100

Poisson’s ratio ν 0.3
Cohesive energy Gc [N/mm] 2.5× 10−3

Maximum traction tmax [N/mm2] 1
Shear/Normal ratio β 1
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Table 7: Performances of the different solvers for the PDCB benchmark

Solver E [MPa] Increments Time
Global AL 500 873 2527
Local AL 500 433 879

Energy Release AL 500 493 720
Global AL 100 - -
Local AL 100 508 6019

Energy Release AL 100 589 1064

the elastic solution, what is not physical. This phenomenon is more pronounced

in the case of the brittle material (Figure 21 - right), where many unloading paths

are present. This problem is due to the high localization of the deformations, which

involves that some local degrees of freedom dominate the overall mechanical behavior.

However, the global arc-length method uses all the degrees of freedom what generates

an unstable numerical result.

4.2.2.2 The local arc-length method

This solver also takes into account all the degrees of freedom, however they are

weighted in order to give more importance to the relevant ones, in such a way that the

damage in the cohesive zone elements is used as weighting factor. The enhancement

of the method is obvious, this solver can follow perfectly the equilibrium path, even

for the brittle material. However, the table 7 points out that the time of calculation

significantly increases in that case. The quality of the mesh can not be made coarser,

otherwise the solver is not able to achieve correctly the calculation.

4.2.2.3 Energy release method

The results of the energy release method appears one more time as a good improve-

ment of local arc-length method. Due to the force prescribed boundary conditions,
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Figure 21: Force-displacement curves for the PDCB benchmark - E=500 MPa (left)
- E=100 MPa (right)

one more snap-back is present as showed on the figure 22. Moreover, this snap-back

is the more severe encountered during the simulation, which is stopped by selecting

a maximum displacement value.
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Figure 22: Force-displacement curves for the PDCB benchmark - Comparison ER
method vs LAL method - E = 100 MPa
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As pointed out in the chart 7, the time of calculation are still better.
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CHAPTER V

CONCLUSION AND FUTURE WORK

The need of improvement of the ability of finite element solvers to predict highly lo-

calized deformations has motivated the implementation of this energy release solver,

which is able to deal with the consider problem. Although the previously implemented

LAL solver gives acceptable results as well, it appeared that this solver is more effi-

cient. Indeed, the improvement brought by the new energy release constraint equation

is obvious in terms of robustness and computational time. This constraint equation

derived from the first law of thermodynamics is so an efficient way to study the crack

propagation using cohesive zone elements. The programmed algorithm, for the soft-

ware package MSc Marc/Mentat, is able to switch from the standard global arc-length

method to the energy released one in order to achieve both the non-dissipative part

and the dissipative one of the equilibrium path. The great improvement comes from

the fact that the released energy is always an increasing variable during a failure pro-

cess. Thus, this solver is particularly able to deal with snap-back and snap-through

behaviors. The results provided in the two numerical examples presented in this study

by the double cantilever beam and the perforated cantilever beam, demonstrated the

efficiency of the method, which gives better results than the pre-implemented solvers

of the software package. The efficiency is clearly demonstrated in the case of a bound-

ary conditions expressed in terms of external forces.

The future steps of the work can be clearly defined and concerned mostly the im-

plementation of the solver using boundary conditions expressed in terms of displace-

ment. The first step is to obtain a correct expression of the stiffness matrix, because
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the matrix is currently not updated at every step. From that, using the presented

equations and variables in the part 3.4.5, the achievement of the method is straight-

forward. Once this implementation finished, the next step is to combine this solver

with the pre-implemented cohesive zone element provided by MSC.Marc/Mentat in-

stead of using user-defined cohesive zone elements. Since the displacement control

will be applied this step may be relatively easy. Finally, the displacement solver has

to be extended to 3D.
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APPENDIX A

TRACTION-SEPARATION LAWS

A.1 Xu & Needleman Traction Separation Law [24]

Xu and Needleman traction separation law is a model to study the void nucleation

at the interface of particle and matrix material, especially in brittle material and to

deal with the crack propagation along the interface of bimaterials.

This traction separation law is based on the potential function Φ which allows

normal and tangential decohesion:

Φ (∆) = Φn+Φnexp

(
−∆n

δn

){[
1− r +

∆n

δn

]
1− q
r − 1

−
[
q +

(
r − q
r − 1

)
∆n

δn

]
exp

(
−∆2

t

δ2
t

)}

(43)

with: 



q =
Φt

Φn

r =
∆∗n
δn





Φn = exp (1) τmaxδn

Φt =

√
exp (1)

2
σmaxδt

where Φn and Φt are respectively normal and tangential cohesive energy (Φn=Gc)

and ∆∗n is the value of ∆n after the complete shear separation. τmax and σmax are

normal and tangential cohesive strength and δn and δt are the critical openings.

The cohesive surface traction is given by :

T =
∂Φ

∂∆
(44)

So, by considering the equation (43), the traction separation law is given by:





Tn = −Φn

δn

{
exp

(
−∆2
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δ2
n
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) (45)
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Figure 23: Examples of different traction separation laws considering normal traction
(a) and shear traction (b) [13]

A.2 Other traction separations laws

Many other traction separation laws have been implemented : ’Barenblatt’ (1959),

’Tvergaard & Hutchinson’ (1992), ’Geubelle & Bayler’ (1997), ’Ortiz & Pandolfi’

(1999),... Regarding the considered problem, it may be useful to consider a specific

law. Many of them are presented and compared in different papers such as in [17]

and in [16], and are able to treat different problems : particle-matric decohesion,

solute segregation, decohesion of interface under hydrostatic tension, impact... Most

of them are based on exponential model. However, as shown in Figure 23, there are

also some non-smooth traction separation laws such as the trapezoidal one which is

adapted to deal with the crack propagation in elasto-plastic material, or the bi-linear

traction separation law which can treat the delamination engendered by low-velocity

impact.
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APPENDIX B

FLOW DIAGRAM OF THE SOLUTION PROCEDURE

Figure 24 shows the flow sequence of MSC.Marc for solving a nonlinear system
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Figure 24: Marc Flow Diagram [22]
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APPENDIX C

DCB BENCHMARK - ANALYTICAL SOLUTION

As explain in [21], the analytical solution can be found out. Figure 25 shows the

global response in terms of the reaction force versus the prescribed displacement.

The used parameters are the one expressed in the Table 3. This curve clearly points

out three different regimes:

• The initial bending : This regime is linear elastic, and is governed by the stiff-

ness of the two strips. The two parts of the beam bent over the initial crack.

The slope of the curve depends on the virgin stiffn The governing equation is :

F =
3EI

a3
0

u (46)

• The delamination : This regime corresponds to the debonding of the interface.

The cohesive zone elements are opening and so the stiffness decreases. As

shown on the governing equation (47), it is a hyperbolic response. This regime

links the cohesive energy released to the forces required for the delamination,

which decreases when the cohesive zone elements are opening. A high adhesive
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Figure 25: Analytical force-displacement curve for the DCB benchmark
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strength of the interface, which means a high value of Gc, results in higher

values of the reaction force F.

F =

√
(WGcEI)3/2

3EIu
(47)

• The final bending : The interface crack has almost reached the other end of the

beam and another linear regime is observed. This relation is the same than the

initial bending, however this time the measure of the opening is not a0, but the

total length of the beam L.

F =
3EI

L3
u (48)

The parameters used in the governing equations are the following :

• F : the reaction force of one strip of the beam

• E : the Young’s modulus of the beam

• I : the moment of inertia

• u : the prescribed displacement

• a0 : the length of the initial crack

• W : the thickness of the beam

• Gc : the fracture toughness
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APPENDIX D

SHERMAN-MORRISON FORMULA

In order to have an easier reading of the demonstration,

the indices have been neglected.

Let consider the augmented system of equilibrium equation which can be written as :

Ax = y (49)

with : A =




K −f̄

gT w








g =
1

2
αf̄

w = −1

2
uT f̄



du

dα




All these notations refer to the ones used in the equations of the part (3.4.1). In

order to solve the system (49), the inverse of Jacobian A is calculated by using the

Sherman-Morrison formula for a non-singular matrix, as shown just below:

(C + uvT )
−1

= C−1 − C−1uvTC−1

1− vTC−1u
(50)

.

This matrix A can be re-written as a sum of 4 matrices Ai, with i = 1..4:




K −f̄

gT w


 =




K 0

0 1


+




0 −f̄

0 0


+




0 0

gT −1


+




0 0

0 w


 (51)

In order to be able to use this expression in the Sherman Morrison formulation,

we have to decompose the third last matrices as a product of vectors. So we come up
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with:

A2 =




0 −f̄

0 0


 =



−f̄

0



[
0 1

]

A3 =




0 0

gT −1


 =




0

1



[
gT −1

]

A4 =




0 0

0 w


 =




0

w



[
0 1

]

(52)

We can now apply the Sherman Morrisson expression to the two first matrices,

such that:

A−1
12 = (A1 + A2)−1

=




K−1 K−1f̄

0 1




(53)

Let now add the matrix A3, such that:

A−1
123 = (A1 + A2 + A3)−1 = (A12 + A3)−1

=




K−1 0

0 1


− 1

gTKf̄




K−1f̄gTK−1 K−1f̄

gTK−1 1 + gTK−1f̄




(54)

The fourth matrix can now be add to obtain to complete inverse of A:

A−1 = (A1 + A2 + A3 + A4)−1 = (A123 + A4)−1

=




K−1 0

0 1


− 1

gTKf̄ − w




K−1f̄gTK−1 K−1f̄

gTK−1 1 + gTK−1f̄ − w




(55)

The multiplication of this system with the vector y of the matrix system (49) gives

the following result :


du

(n)
i

dα
(n)
i


 =



dû

q


− 1

gTdū + w




dū(gTdû + q)

gTdû + (1 + gTdū + w)q


 (56)

with the following variables: 



dû = Kt
−1r

dū = Kt
−1f̄

(57)
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APPENDIX E

NANOINTERFACE PROJECT

NanoInterface [19] is the acronym for ”Knowledge-based multi-scale modelling of

metal-oxidepolymer interface behaviour for micro- and nanoelectronics”. This re-

search project was initiated by Philips Applied Technologies, started on the 1st

September 2008 and will be active until the 31st August 2011.

The aim of the project is to enhance the performance of the microelectronics com-

ponents while improving the miniaturization. It is very useful for microelectronics

system, especially the so-called Systems-In-Package, in order to get ’zero-defect’ prod-

ucts. This initiative also includes the development of a multi-scale approach, from

the nanoscale to the macroscale.

This research will result in the development of a user-friendly software which

will incorporate chemical, physical and mechanical information for the different level

models.

Many different partners take an active part into this project, such as:

• Industrial Partners:

– Philips Applied Technologies

– NXP Semiconductors

• Research Partners:

– Fraunhofer IZM

– AMIC

• Education Partners:

– Georgia Institute of Technology Lorraine

– Delft University of Technology

49



REFERENCES

[1] A.A. Griffith, “The phenomena of rupture and flow in solids,” Philosophical
Transactions of the Royal Society of London,, vol. 221, p. 163198, 1921.

[2] B.A.E. van Hal, R.H.J. Peerlings, and M.G.D. Geers, “A local arc-length
control method for cohesive zone modelling,” Submitted to Computer Methods in
Applied Mechanics and Engineering, December 2006.

[3] B.A.E van Hal, R.H.J. Peerlings, M.G.D Geers, and O. van der Sluis,
“Cohesive zone modeling for structural integrity analysis of IC interconnects,”
Microelectronics Reliability, vol. 47, pp. 1251–1261, 2007.

[4] C. Fang, A. Le Corre, and D. Yon, “Copper electroplating into deep mi-
crovias for the sip application,” Microelectronic Engineering, vol. 88, pp. 749–753,
May 2011.

[5] C.V. Verhoosel, J.J.C. Remmers, and M.A. Gutiérrez, “A dissipation-
based arc-length method for robust simulation of brittle and ductile failure,”
International Journal for Numerical Methods in Engineering, vol. 77, no. 9,
pp. 1290–1321, 2008.

[6] E. Riks, “An incremental approach to the solution of snapping and buckling
problems,” International Journal of Solids and Structures, vol. 15, pp. 529–551,
1979.

[7] E.F. Rybicki and M.F. Kanninen, “A finite element calculation of stress
intensity factors by a modified crack closure integral,” Engineering Fracture Me-
chanics, vol. 9, no. 4, pp. 931–938, 1977.

[8] Felipp, C. A., “Chapter 3 : Residual force equations.” Nonlinear Finite Ele-
ment Methods (ASEN 6107) - Fall 2010 - Department of Aerospace Engineering
Sciences University of Colorado at Boulder, 2010.

[9] G. Irwin, “Analysis of stresses and strains near the end of a crack traversing a
plate,” Journal of Applied Mechanics, vol. 24, pp. 361–364, 1957.

[10] H. Sun, S. Rajendran and D. Q. Song, Finite Element Analysis on De-
lamination Fracture Toughness of Composite Specimens. Materials Technology
Application Centre Singapore Productivity and Standards Board 1, Science Park
Drive Singapore 118221.

[11] J. Remmers, Discontinuities in materials and structures, ch. Appendix C.1,
pp. 213–215. 2006.

50



[12] J.R. Rice, “A path independent integral and the approximate analysis of strain
concentration by notches and cracks,” Journal of Applied Mechanics, vol. 35,
pp. 379–386, 1968.

[13] M. Ridha, V.B.C. Tan and T.E. Tay, “Traction separation laws for progres-
sive failure of bonded scarf repair of composite panel,” Composite Structures,
vol. 93, p. 12391245, 2011.

[14] M.A. Gutiérrez, “Energy release control for numerical simulations of failure
in quasi-brittle solids,” Communications in Numerical Methods in Engineering,
vol. 20, pp. 19–29, 2003.

[15] M.G.D. Geers, “Enhanced solution control for physically and geometrically
non-linear problems. part 1 - the subplane control approach,” International Jour-
nal for Numerical Methods in Engineering, vol. 46, pp. 177–204, 1999.

[16] N. Chandra and C. Shet, “Analysis of energy balance when using cohesive
zone models to simulate fracture processes,” Journal of Engineering Materials
and Technology, vol. 124, pp. 440–451, October 2002.

[17] N. Chandra, H. Li, C. Shet, and H. Ghonem, “Some issues in the applica-
tion of cohesive zone models for metalceramic interfaces,” International Journal
of Solids and Structures, vol. 39, no. 10, pp. 2827–2855, 2002.

[18] Olaf van der Sluis, Sander P.M. Noijen, Peter H.M. Timmermans1,
and Jean-Baptiste Bouquet, “The influence of microscopic roughness on
macroscopic adhesion properties of polymer-metal interfaces,”

[19] Philips Applied Technologies, “Nanointerface project.” url-
http://www.nanointerface.eu/, October 2010.

[20] R. Krueger, “The virtual crack closure technique: History,approach and ap-
plications,” Tech. Rep. 2002-10, NASA, 2002.

[21] Rene Kregting, Coaches: R.H.J. Peerlings, O. van der Sluis,
M.G.D. Geers, “Cohesive zone models towards a robust implementation of
irreversible behaviour,” internal report, Eindhoven University of Technology,
February 2005.

[22] Software, M., MSC.Marc Volume A: Theory and User Information, 2004.

[23] Wikipedia, “Fracture.” urlhttp://en.wikipedia.org/wiki/Fracture, October
2010.

[24] X.-P. XU and A. NEEDLEMAN, “Numerical simulations of fast crack growth
in brittle solids,” Journal of the Mechanics and Physics of Solids, vol. 42,
pp. 1397–1434, September 1994.

51


