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SUMMARY 
 
 
 

Repair and remodeling of bone during healing and fusion require a combination of bone 

resorption and formation to successfully restore the bone to its previous strength.  The healing 

process is highly responsive to the mechanical conditions of the construct, where excessive 

loading can cause high strains that delay healing, but moderate loading can be beneficial.  

Maintaining compression at the site of fracture can benefit healing by maintaining bone 

congruency and increasing the stability of the bone-implant construct to prevent excessive 

shifting.  For these reasons, compressive mechanisms are employed in many orthopaedic 

devices, including both intramedullary (IM) nails and external fixators for ankle arthrodesis 

applications.  Tibiotalocalcaneal (TTC) arthrodesis is a salvage procedure that fuses both the 

ankle and the subtalar joints.  It has become the standard of care in ankle degeneration, which 

can be brought on by posttraumatic arthritis, failed total ankle arthroplasty, or diabetic conditions 

such as Charcot arthropathy.  While current devices are effective in many cases, TTC 

arthrodesis procedures still incur failure rates as high as 22%, where failure of the bones to 

successfully fuse can result in amputation.  Because bone healing relies upon bone resorption, 

the initial compression applied to the implanted constructs can be quickly lost, which may 

sacrifice the stability of the structure and delay or inhibit further healing. 

By employing a mechanism that can sustain compression during the bone healing 

process, it may be possible to increase the stability of the construct even during bone 

resorption, minimizing the failures that still occur.  The focus of this study was to determine the 

effects of compression on the mechanical stability of the implant-bone construct found in TTC 

arthrodesis.  A comparison was made between the torsional stability of two currently marketed 

intramedullary devices, as well as a prototype IM device comprised of a nickel titanium core, 

designed to hold constant compression for up to 9mm of resorption.  Additionally, the stability of 



x 
 

each construct over time was evaluated by correlating bone resorption to a loss in compressive 

force.   
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CHAPTER 1 

 INTRODUCTION 

1.1 Ankle Arthrodesis 

Tibiotalacalcaneal (TTC) arthrodesis is a salvage procedure that fuses both the ankle 

(the joint space connecting the tibia and talus) and the subtalar (between the talus and 

calcaneus) joints.  Figure 1 shows the bony anatomy of the ankle.  First described in 1882 by 

Eduard Albert, TTC arthrodesis has become a standard treatment for care in ankle 

degeneration [1].  Successful ankle fusion aims to relieve patients from painful ankle conditions 

that range from degenerative osteoarthritis, failed total ankle arthroplasty, posttraumatic injury, 

and diabetic conditions such as Charcot arthropathy [2-6].  Though the intent of the outcome is 

dependent upon the condition necessitating the procedure, TTC arthrodesis universally aims to 

achieve hindfoot alignment via union at the joints while avoiding potential complications [7].  

Because ankle arthrodesis is indicated by a number of conditions, the population of 

patients who undergo the procedure varies greatly.  Arthritis is one of the common indications 

for the procedure.  Unlike the hip or knee, which can be affected by primary osteoarthritis, the 

ankle joint is most commonly vulnerable to secondary, or posttraumatic, arthritis.  Seventy 

percent of ankle osteoarthritis is the result of an initial trauma [1, 6].  This serves to vary the 

patient profile as younger patients, who are typically not hindered by primary arthritis, can be 

subject to this procedure as a result of posttraumatic arthritis.  Diabetic conditions, such as 

Charcot neuropathy, however, indicate a slightly older population.  As such, published data from 

clinical ankle arthrodesis studies have an average age ranging from 40-60 years old, while the 

individual patient age ranges from 19 to 88 years [2-5, 8-10].  Similarly, there is no definite 

inclination toward a male or female population [2-3, 10] in ankle arthrodesis procedures.  

As a salvage procedure, ankle arthrodesis is typically only attempted after other non-

surgical options, such as ambulatory bracing, have been exhausted [4, 8].  Once surgical 
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intervention is deemed necessary, ankle arthrodesis is recognized as the most durable and 

widely accepted treatment for osteoarthritis of the ankle [11].  Other options include ankle joint 

replacement arthroplasty, ankle distraction arthroplasty or amputation [1].  Because ankle fusion 

is a last-ditch attempt at providing patients functional independence in light of their conditions, 

repeated failure of arthrodesis can lead to amputation.   

The array of conditions that lead to TTC arthrodesis as well as slight variations in ankle 

arthrodesis procedures (where different joints can be fused in the hindfoot) make it difficult to 

compile statistics as to the prevalence of this procedure.  In the absence of these, it can be 

difficult to find motivation in improving current technology.  In the case of ankle arthrodesis 

however, the motivation to ensure the highest possible success rate in ankle fusion is the desire 

to avoid the devastating results from failure of the procedure.  Each successful ankle fusion 

represents a patient who is spared amputation and the devastating effects it would cause to his 

daily life.  

 

Figure 1 (a). Anatomy of the bones of the foot [12]. 
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Figure 1 (b). Anatomy of the joints of the foot [12]. 

1.2 Bone Healing  

 The process by which bones fuse is thought to be similar to the process of healing in 

long bones [13].  Long bones can heal via primary or secondary healing.  In primary healing, the 

outer layer of bone--the cortex--from one side of the fracture or fusion site unites directly with 

the cortex of other side.  This only occurs in situations of extremely rigid fixation where the 

fracture is stable and interfragmentary strain is low.  Secondary healing occurs in situations of 

less rigid fixation and involves the classic stages of healing characterized by callus formation 

and ultimately, bony union.  Those classic healing stages can be broken down into three parts, 

including early inflammation, repair, and remodeling [14].  During inflammation, granulation 

tissue is formed and the groundwork is laid to promote later vascularization of the fusion space.  

In the repair stage, vascularization further progresses while a collagen matrix is laid down via 
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osteoid that is secreted and mineralized.  This results in a soft callus at the site of repair for 4-6 

weeks. If the soft callus has been sufficiently protected from motion for the duration of this 

period, it will ossify, thus bridging the gap between the bony ends with woven bone.  Finally, 

remodeling takes place in which the bone returns to its previous strength and adapts its shape 

to support the mechanical loads placed upon it.   

Bone remodeling relies on the different types of bone cells—osteocytes, osteoclasts, 

and osteoblasts--to work together as a basic multicellular unit (BMU) to resorb old and lay new 

bone.  Osteoclasts are responsible for the resorption of old bone. Derived from the same 

lineage as macrophages, osteoclasts first form a tight seal with the calcified matrix and then 

secret hydrolytic enzymes to break down the calcified matrix of bone.  Osteoblasts are 

responsible for new bone generation; they lay the extracellular matrix and regulate its 

mineralization.  Osteocytes are mature osteoblasts that have become embedded the bone 

mineral matrix.  Osteocytes are the most abundant cell in bone, and as such are thought to be 

sensitive to mechanical stimuli and able to communicate with and recruit other bone cells 

through the internal architecture of the bone [15].   

 Throughout the bone healing, fusion, and remodeling processes, the bone is responsive 

to hormonal, chemical, and mechanical signals.  First discovered by and widely recognized as 

Wolff’s law, the concept that functional changes in loading result in adaptive architectural and 

structural changes is particularly effective here.  Mechanical stimulus is recognized to promote 

osteogenesis on both a cellular and systemic level.  In vitro studies have demonstrated that 

application of strain, fluid shear stresses, or hydrodynamic loading are effective in directing cell 

differentiation or stimulating already differentiated cells to secrete specific matrix components 

[16].  Systemically, clinical studies that have monitored bone healing as a function of different 

mechanical stimuli demonstrate increased callus formation in the mechanically stimulated 

groups [17].  These clinical studies also made evident that high strains during early phases of 

healing can promote callus formation while the same high strains can be inhibitive in later 
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stages of remodeling.  Additionally, these studies have demonstrated that fracture healing is 

hampered by increased fracture gaps, where 2mm can circumvent healing [16-18]. 

1.3 Compression 

 Applying compressive force at the site of bone fracture or fusion to enhance bone 

healing logically follows many of the bone healing principles.  The application of compression 

increases the stability of the fracture, encouraging bone healing to take place.  Allowing for a 

joint connection with compression maintains joint congruency and the alignment that the 

surgeon has created during reduction [16].  Because fracture gaps of 2mm or greater are known 

to inhibit callus formation and subsequent fracture healing, compression helps to minimize 

rotational and axial motion, thus maintaining optimal positioning.  In addition to the mechanical 

stability compression can offer to the construct, the application of compression can be 

instrumental in supplying some level of mechanical stimulation to the fracture site, encouraging 

healing.   

 The potential benefits of employing compression in fracture fixation and particularly 

ankle arthrodesis devices have been recognized and put into effect.  Compression arthrodesis 

was first described by Charnley in 1951 [10]. Charnley described compression arthrodesis as 

achieving “direct union…between the living bones forming the joint surfaces without the 

intervention of an inert graft.” He went on to state that, “one of the effects of compression is to 

eliminate all shearing strains as well as preventing a gap between the cut bone surfaces [19].”  

Though Charnley addressed these concerns in 1951, current knowledge regarding bone healing 

and fusion remains consistent with his statements.  As such, surgical techniques and devices 

have evolved from Charnley’s first described method of external fixation that added 

compression via two parallel pins inserted laterally through the tibia, but continue to employ the 

compression that he advised [19].  These advanced techniques and devices have included 

pinning, plating, external fixation, and internal fixation via crossed cancellous screws or 

intramedullary nailing.  Among these, hip pinning is found to lose alignment and result in 
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malunion while plating is undesirable because it requires extensive soft tissue dissection [7].  

External fixation and internal fixation (via cancellous screws or intramedullary nailing) remain 

the most common methods to achieve arthrodesis today.  While the techniques differ, they 

universally aim to use compression at the fusion site to stimulate bony union and provide rigid 

fixation.  Both clinical and biomechanical studies have been undertaken to determine the 

effectiveness of different devices and whether one can be considered the superior means of 

fixation.   

1.4 Clinical Devices 

Multiple clinical and biomechanical studies have been focused on determining the best 

method of fixation.   Fixation methods are assessed based on critical factors in fixation, 

including the length of the non-weight bearing period after surgery, the time it takes to achieve 

bony union at the fusion site, the rate of nonunion, and the infection rate.  In general, the post-

surgical non-weight bearing period can last anywhere from 6-12  weeks, successful fusion 

typically occurs between 12 and 20 weeks, and nonunion rates occur in about 15% of cases 

studied. 

External fixation has evolved since Charnley first described it in his 1951 paper, but the 

basic principles remain fundamentally unchanged.  Charnley passed pins through distal and 

proximal portions of the fusion site and compressed them using externally located clamps.  The 

device he employed had good results, but poor rotational stability [10].  Improvements have 

been made through the use of triangular frames that offer multiplanar compression.  These 

devices offer the benefits of dynamic axial fixation that can be adjusted throughout the healing 

process [11]. Additionally, they have excellent bending, shear, and torsional stability which allow 

for early weight-bearing during the patient’s postoperative period.  The average time to fusion, 

however, has been found to be 25-28 weeks, which is longer than intramedullary methods [10, 

20].  Additional pitfalls of the external fixator are related to the fact that the compressive 

mechanism is achieved outside of the body.  This requires a bulky device to be worn for long 
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periods of time, which results in poor patient compliance [7, 11, 21].  The fact that the 

compression pins pass from the external environment through the leg also carries high risk of 

pin-tract infection, which is a problem in approximately 13% of cases [20].  Because of these 

shortcomings, external fixation is still a viable option for ankle arthrodesis procedures, but 

typically reserved for patients with extensive soft tissue injury or infection where internal devices 

would be inappropriate [21].  When used, current external fixators can have nonunion rates as 

high as 41% [20].   

Internal fixation methods commonly used today include cancellous screws that cross 

through the joints to be fused and locked intramedullary nails.  Configurations of 2 to 3 crossed 

cancellous screws are used in some arthrodesis procedures.  These configurations have been 

demonstrated to have slightly inferior contact area and bending and torsional stiffness than 

intramedullary nail configurations [7, 21].  Cancellous screws can have poor stability because of 

bone defects at the arthrodesis site and are often avoided in situations of poor bone quality 

because of inadequate stabilization [3].   

Intramedullary (IM) nailing was first described by J. Crawford Adams in 1948 as a 

secondary procedure after a failed attempt at fusion via fibular grafting [22].  At the time, the nail 

was used to supply rigid immobilization to the construct.  Intramedullary nails continue to be 

used because they can have shorter time to bone union (14 weeks), and because of the stability 

they can provide.  They have evolved since Adams first used them to offer more dynamic 

healing options.  First generation IM nails are static devices that allow for compression by 

having the surgeon hammer on a strike plate of the installation hardware and subsequently lock 

the nail in the compressed position.  Second generation nails offer a means of applying 

compression similar to that of external fixators, where pins are passed through the proximal tibia 

and used to compress the joints together.  Importantly, the compression pins are removed in 

these devices after the second set of screws lock the nail in the compressed position.  These 

nails also offer a slotted proximal locking hole which allows for dynamization of the construct.  
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Opting for the dynamic configuration, in which the static locking screw is removed in either the 

original or a subsequent procedure, allows for earlier weight-bearing and eliminates the stress 

shielding effects that can result from too-rigid devices. A third generation of IM nails have 

internal mechanisms for compression that offer a degree of dynamic movement equal to the 

length of the slot the locking screw is engaged in [23].   

Clinical and laboratory results have led to the increased dependency on intramedullary 

nailing for ankle arthrodesis procedures. Further propelling this change is the ability to add 

dynamic locking to IM constructs, which has been shown to increase load sharing between the 

hardware and bone, thus decreasing the time to weight bearing.  A study of dynamically locked 

screws found that approximately 2.3mm of movement occurred due to impaction, indicating that 

dynamic healing was taking place over the course of fusion.  Additionally, they found that earlier 

weight bearing was possible (6 weeks) and time to fusion was generally shorter than other 

methods at 3.7 months [3].   

There is a good understanding of the components necessary to enable solid and rapid 

union—initial stability, compression, and load sharing to enable early weight bearing.  Mueckley 

recognized that compression mechanisms maintain an average of only 60% of the compression 

that is initially applied.  He was able to increase the average maintained compression in a study 

where he employed a device with an internal compression mechanism.  While this increased 

compression would benefit the stability of the construct initially, the in-vivo response to resorb 

bone before forming a new bony callous would result in decreased compression—and thus 

decreased stability—over time [21].  The addition of dynamic compression would allow not only 

impaction during bone resorption, but would maintain the compression that increases construct 

stability during bone resorption.  

Despite the incremental improvements made in the field with compression and dynamic 

locking, ankle arthrodesis still experiences failures as high as 22% [9].  These failures can lead 

to successive attempts at arthrodesis, which are more prone to failure because the bone has 
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been previously compromised, or ultimately even amputation.  The ability to maintain 

compression throughout the bone resorption that occurs in the bone fusion process would be 

beneficial for both the longevity of the device and the stability of fixation.  After compression is 

inevitably lost in normal devices during bone healing, the stability of the fusion site is dependent 

solely upon the hardware’s purchase in the bone and its ability to resist micro-motion.  In 

addition to a loss of stability, this places increased force on the hardware itself, which can result 

in hardware failure.  By maintaining compression across the site in the face of bone resorption, 

the bone is forced to bear some of the load, which stimulates bone healing while simultaneously 

protecting the hardware.   

1.5 NiTiNOL 

 Nitinol is a nickel titanium alloy with excellent corrosion resistance, wear characteristics, 

and biocompatibility, making it a popular material for use in medical applications.  Nitinol has the 

added benefit of both shape memory and pseudoelastic properties.  The shape memory effect 

refers to the ability of the material to recover an original shape after deformation at low 

temperatures.  Pseudoelasticity refers to the ability of the material to recover strain produced by 

a stress-induced phase transformation upon immediate unloading without a temperature 

increase [24].  When properly tailored, NiTi can exhibit these pseudoelastic properties which are 

characterized by stress-strain curve similar to the one demonstrated in Figure 2.  During 

loading, the material first goes through elastic deformation, then begins martensitic 

transformation  at point B, which it completes at point C.  After point C, the sample will continue 

to deform elastically until it reaches its yield point.  If the sample is unloaded before it yields, it 

will recover, reversing through the same phases, to nearly zero strain.   
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Figure 2. Typical NiTi load/unload curve in the pseudo-elastic regime. 

 

The pseudoelastic capabilities of NiTi make it an attractive option to work into 

orthopaedic devices as a compressive mechanism, much like third generation intramedullary 

nails for ankle arthrodesis employ internal screws.  The use of NiTi would provide the added 

benefit of sustained compression over the course of the dynamic bone healing process.  If the 

dynamic element is locked at 6% strain along the lower plateau (from D to E), it will supply 

constant compression at the fusion site in the face of bone resorption until the strain has been 

fully recovered.  The pseudoelasticity of NiTi makes it possible to maintain the dynamic 

compression that could service ankle arthrodesis devices by maintaining the structural rigidity of 

the complex during healing.  

Building on the principles that a dynamic healing environment will be serviced by the 

ability of a device to offer sustained compression, a prototype device for ankle arthrodesis was 

created.  It features a titanium nail embedded with a thin NiTi core that is stretched and locked 

at 6% strain during implantation.  Current devices offer surgeons the ability to tailor the amount 

of compression and decide whether axial movement will be accommodated for by locking the 

A 

B C 

D E 
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device dynamically.  This prototype—Dynanail— allows the surgeon to tailor the amount of 

initial compression and the level of resorption that will be accommodated for. If the surgeon 

chooses to allow for resorption, the NiTi core element will be stretched and released so that the 

load on the lower plateau is maintained.  The amount of resorption that can be accommodated 

for is adjustable by locking the element at various levels of strain along that lower plateau, but 

this does not affect the compressive force applied by the element. The level of compression and 

resorption are highly tunable as a combination of manual initial compression and compression 

via the NiTi core can be chosen.  There are three primary insertion scenarios, each of which 

provides a range of compression: 

1. Apply load from the NiTi element with additional manual compression. 

2. Apply load from the NiTi element without any additional manual compression. 

3.  Apply manual compression only (the nail will act as a second generation IM nail). 

1.6 Project Aims 

 The incorporation of compression into all market-leading ankle arthrodesis devices 

indicates that it is essential to a successful fusion.  A further look into the bone healing process 

suggests that this is the case both because of the mechanical stability compression provides as 

well as the mechanical stimulus it can generate by maintaining contact between the bone ends.  

While a study evaluating the effect of compression as mechanical stimulus and thus a promoter 

of bone healing would be extensive and reliant upon animal models, a study of the effects of 

compression on the mechanical stability of the construct can be assessed by laboratory model.  

This study aimed to: 

1. Develop a model to evaluate the mechanical stability of an ankle arthrodesis construct. 

2. Determine the effects of compression on the mechanical stability of the implant-bone 

construct in three IM nail devices. 

3. Evaluate stability of the construct over time by correlating bone resorption to loss in 

compression. 
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CHAPTER 2 

 EXPERIMENTAL METHODS 

2.1 Synthetic Polyurethane Model 

The impact of compression on torsional stability in tibiotalocalcaneal arthrodesis was 

assessed in three intramedullary ankle fusion devices.  Two of the three devices, Versanail 

(DePuy, Warsaw, IN) and Pantanail (Integra, Plainsboro, NJ), are commercially available 

products for tibiotalocalcaneal arthrodesis procedures.  The third device, Dynanail, is a 

prototype device that employs an internal nickel titanium compression mechanism.  

 Each device was tested in two scenarios—a simulation of bone resorption and a model 

of torsion where torque was applied via load at the end of a lever arm.  For each, the respective 

nails were implanted in synthetic polyurethane constructs and secured by a total of four screws-

-two screws engaged in the “calcaneus” and two screws located proximally in the “tibia.”  

Synthetic polyurethane from Sawbones (Vashon, WA) has been used previously for 

biomechanical studies to simulate the properties of real bone while minimizing the variability that 

would inevitably be present in cadaver bone [21, 23].  In this study, 20pcf solid polyurethane 

foam was cut to 1.5” x 1.5” squares of varying lengths.  A 1” length piece was used to represent 

the talus, a 5” length was used to represent the calcaneus and a 7” length was used to 

represent the tibia.  Holes were drilled in the sawbone according to the recommendation made 

in the surgical techniques.  The devices were implanted in the sawbone using the 

recommended instrumentation sets as suggested in the surgical protocol.  The parameters used 

for each device implantation are noted in Table 1.   
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Table 1. Parameters of implantation for each device used. 

Parameter Versanail Pantanail Dynanail 

Nail Length 200 mm 180 mm 220 mm 

Nail Diameter 
(Proximal/Distal) 

10mm / 12mm 11 mm / 11mm 10mm/ 12mm 

Thru Hole 
Diameter 

(Proximal/Distal) 
10.5/12.5mm 11.5mm 10.5/12.5 mm 

Primary screw 
orientation 

Medial-lateral 
Posterior-
anterior 

Medial-lateral 

Screw diameter 
(Calcaneal/Tibial) 

5.5mm/4.5mm 5 mm/5mm 4.6 mm/4.6 mm 

 

2.2 Resorption Measurements 

Bone resorption was simulated in the manner previously described by Yakacki et al by 

inserting a set of parallel plates separated by adjustable screws in the sawbone-nail construct 

[23].  A donut load cell (Transducer Techniques) was used to measure the compressive load 

throughout the resorption process.  Both the resorption plate and load cell were placed around 

the nail and between the two sets of screws maintaining the compression within the construct.  

This configuration is shown in Figure 3. The compressive load was monitored as the screws 

were turned to reduce the distance between the plates.  The distance between the plates was 

uniformly decreased as a function of the screw pitch and confirmed with caliper measurements 

(Mitutoyo Digital Calipers). 
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The loading conditions for Versanail and Pantanail were straightforward, as all of the 

allowable compression was applied manually during implantation.  To assess resorption over 

the widest range possible, both Versanail and Pantanail were loaded to the maximum 

compressive force achievable before resorption measurements began.  Resorption was 

measured for four initial loading conditions of the Dynanail device based on the ability to apply 

compression with a  combination of manual force and the NiTi element.  The loading scenarios 

tested are outlined in Table 2.  A minimum of two samples were tested for each construct, and a 

third was tested in situations without good agreement between the first two samples.  The 

resulting curves from this process were able to relate the compressive load to a particular level 

of resorption for each of the three nails. 

 

Table 2. Loading scenarios for resorption testing in each device. 

Versanail Pantanail Dynanail 

 
 
 

Maximum 
Compression 

 
 
 

Maximum 
Compression 

NiTi: Active 

Manual Compression: Maximum 

NiTi: Active 

Manual Compression: 600N 

NiTi: Active 

Manual Compression: None 

NiTi: Not Active 

Manual Compression: Maximum 

Figure 3. Schematic of bone resorption model. 
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2.3 Torsional Stability 

Torsional stability was assessed by measuring compressive force versus extension with 

force application at the end of a lever arm that resulted in a moment about the nail.  In this 

construct, bone block was used to represent the tibia, talus, and calcaneus.  Additionally, the 

donut load cell was included to measure the compressive force within the construct prior to, 

during, and after testing.  Bending of the construct was minimized by fixing the bone block to the 

Instron base with the exception of one joint, where rotation of sawbone against sawbone took 

place under the applied load.  Load was applied at the end of a 90mm lever arm via the Instron 

Universal Tensile Testing machine.  The test setup is demonstrated in Figure 4, where the blue 

arrow indicates the application of load. The black arrows show where the sawbone blocks were 

fixed to the base.   

Each sample was loaded in compression at a rate of 0.5mm/second.  Extension was 

plotted versus the applied load for extension up to 25 mm and for the subsequent unloading, at 

the same rate, to 5 Newtons.    

 

 

Figure 4. Schematic of torsional stability model. 
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To evaluate the effect of compression on torsional stability, a variety of loading scenarios 

were tested for each nail.  Each nail was tested in maximum compression, under no 

compression, and in two intermediate loading scenarios which were dictated by the device and 

its limits.  The loading scenarios for each are outlined in Table 3. Each configuration was tested 

a minimum of three times, with a unique device implantation each time. 

 

Table 3. Loading scenarios for torsional stability testing in each device. 

Loading Scenario Versanail Pantanail Dynanail 

Maximum 
Compression 

Maximum 
Compression 

Maximum 
Compression 

NiTi: Active          
Manual Comp: Max 

Average: 316 N Average: 1048 N Average: 1294 N 

High Compression 
Target: 200 N Target: 750 N 

NiTi: Active        
Manual Comp: 600 N 

Average: 271 N Average: 735 N Average: 539 N 

Low Compression 
Target: 100 N Target: 350 N 

NiTi: Active       
Manual Comp: None 

Average: 109 N Average: 363 N Average: 475 N 

No Compression No Compression No Compression No Compression 
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CHAPTER 3 

 EXPERIMENTAL RESULTS 

3.1 Resorption Curves 

Figure 5 shows a representative resorption curve for the each three IM devices in their 

configurations of maximum compression, which are the most likely to be used in surgery.  The 

initial portion of the curve for all three devices is characterized by dramatic losses in load over 

small resorptive distances.  For Pantanail and Versanail, which employ only manual 

compression applied with the instrumentation at the time of loading, this trend continues until all 

compression is lost.  In these devices, that loss of compression occurs in only 0.5 to 1.5 mm of 

resorption.  The Dynanail device, however, reaches a plateau at the load level equal to that of 

the plateau in the NiTi unloading curve. Once this load is reached, it is maintained until the NiTi 

element is fully unloaded.  This orientation of the Dynanail device maintains compression over 

8mm of resorption.  These curves demonstrate that configurations with higher initial loads are 

able to maintain compression for slightly higher levels of resorption, but the addition of the 

pseudoelastic element dramatically increases the ability of the construct to maintain 

compression. 
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Figure 6 shows the resorption curves for the various loading configurations possible in 

the Dynanail device.  Depending on the method of implantation, the initial compressive values 

for Dynanail range from 334N when compression is added manually without activating the NiTi 

core at all to 1449N when the NiTi core is activated in conjunction with manual compression.  

The initial loss of load in the maximum compression scenario follows the same trajectory as the 

sample loaded without NiTi activation.  This indicates that until the compressive force is reduced 

to the level sustained by the NiTi itself, compression is lost in the same manner as other non-

dynamic nails.   
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Once the load equilibrates with the load sustained by the NiTi core, however, the curve 

plateaus, as seen in the case where only the dynamic element is loaded.  The three 

configurations including NiTi activation demonstrate that the NiTi element maintains 

compression at a consistent load, but only once any additional compression has been lost. Also 

shown is a situation where only manual compression is employed for Dynanail.  The resorption 

curve follows a similar trajectory to the Pantanail and Dynanail devices. It loses compression 

rapidly and reaches zero compression when only 1mm has been resorbed.  When manual 

compression only is applied, all three of the nails lose 50% of their initial compression over only 

0.3mm of resorption.  The various loading scenarios for Dynanail are able to maintain 
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compression over a range of 1 to 8mm of resorption, where higher load levels in conjunction 

with the activation of the NiTi core maintain compression over the greatest resorptive distances. 

3.2 Torsional Stability Curves 

 Figures 7, 8, and 9 show the torsional stability curves of Dynanail, Pantanail, and 

Versanail at different levels of initial compression.  Each figure shows the average of all of the 

samples tested at the specified level of compression.  In these cases, the individual resorption 

curves at each load level demonstrated consistency.  The curves were normalized to zero and 

averaged, and the values of compression shown on the curve represent the average 

compression of each sample tested in that loading configuration.  No data is shown in Figure 8 

for the case of no load in the Pantanail device because there was high variability in the samples 

and an average value was not representative of the overall data. 
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Each figure demonstrates a definite trend towards increased torsional stability at higher 

compressive loads. Each of the curves is characterized by a relatively steep initial slope, 

demonstrating high torsional stiffness. This slope is interrupted by a break followed by a 

significantly decreased slope for the duration of the test. For each device, both the initial slope 

and the slope after the break have similar values regardless of the initial compressive load of 

the construct.  This suggests that these values are a function of the test construct, nail 

geometry, or of the implantation parameters specific to that device, such as the size or 

orientation of the locking screws.  While the slopes that define the curves are relatively uniform 

for each nail, the point at which the initial slope breaks varies significantly with the load level.  

The point where this break occurs is the only significant difference between the curves, 

indicating that it is related to compression.   
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 There was high consistency among the curves at a given load level in the majority of 

configurations tested.  Though the actual compressive force varied with each implantation, the 

averages shown here are representative of all of the individual curves.  This was not the case 

for the Pantanail device under no load, where the three curves failed to follow a similar 

trajectory.  The data for the three curves of the Pantanail device under no compression is shown 

in Figure 10.  These curves, though they vary, demonstrate the same thing as the average 

curves for the no load configurations in Dynanail and Versanail—in configurations with nominal 

or no compression, the torsional stability of the constructs are sacrificed.  Figures 11 and 12 

show the three curves for Dynanail and Versanail under no load, included for comparison.  
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Figure 10. Torsional stability curves for each Pantanail sample tested at no load. 
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A comparison of the torsional stability between the nails shows that Dynanail offers the 

greatest stability, while Pantanail offers higher torsional stability than Versanail.  In each of its 

loading configurations, Versanail reaches the break point before 5 Newton-meters of torque is 

applied to the construct.  Under little force, the high displacements of this construct indicate that 

is far less stable than the other two constructs. Pantanail and Dynanail have configurations that 

allow them to exceed 10 Newton-meters of torque before reaching their break.  The ability to 

maintain high levels of stiffness with the application of increasing amounts of torque 

demonstrates that they are more stable constructs.   

While it is apparent here that there are differences in the torsional stability of the 

devices, it is unclear from these curves whether it can be attributed to torsional stability 

differences in the device or if it is due primarily to the capacity of each device to maintain 

compressive force within the construct.  Each device was tested in four configurations, but those 
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configurations were determined by the limits of the device and its instrumentation to apply and 

hold compression.  The maximum compression achieved in each device for all samples tested 

is shown in Figure 13, where the error bars represent a 95% confidence interval.  There is 

significant difference between the compression held in each of the three devices.  Thus, it is 

likely that the most stable constructs result primarily from the higher compressive force.   

   

 

 

 

A comparison of each device loaded at nearly equal loads is shown in Figure 14.  This 

comparison shows that the nails behave similarly if the device is used to apply the same 

compression across the fusion site.  The initial slope of the curve is similar between the three 

devices, suggesting that the factors dictating initial construct stiffness are either a function of the 

test setup or are similar between the nails.  Most importantly, the curves break at approximately 

the same point in this figure.  This indicates that if compression is held constant, there is no 

significant difference between the nails. A comparison of the nails tested under no load, as 
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shown in Figures 10, 11, and 12 also indicate that the torsional stability of the nails themselves, 

independent of compression, do not greatly vary.  Thus, by first demonstrating that the capacity 

of the nails to maintain compression significantly differs, and then comparing the nails in two 

identical loading scenarios (no load and under the same load), it is evident that the compressive 

force the nail applies is driving the differences in torsional stability.  It follows that the ability of 

Dynanail to exhibit increased stability is primarily a function of its capacity to generate and 

maintain higher compressive loads within the construct. 
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CHAPTER 4 

 DISCUSSION 

4.1 Relationship Between Compression and Torsional Stability 

There is a clear relationship between the compressive force delivered by an IM nail and 

the torsional stability of the entire implant-bone construct.  By breaking the torsional stability 

curves down into components and relating them directly to the compression of that sample, the 

effect of compression was further defined.  Important aspects of the stability curve were deemed 

to be the initial slope, or stiffness, the displacement at the break point of the initial slope, the 

load at the break point, load at 8mm displacement (5° angular displacement), and load at 25mm 

(15.5° angular displacement).  These points are delineated in Figure 15 below.  For all samples 

tested, the values of these parts of the curve were extracted and correlated to the compression 

in the construct for that particular sample.  
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The correlation between the initial slope and the compressive load, shown in Figure 16, 

is positive, but not highly linear.  The torsional stability curves themselves indicated that the 

initial slope was largely consistent, both within devices and among different devices.  This figure 

highlights that while the gross variability of the initial slope is minor, the differences that do exist 

cannot be directly related to the increased compression in the construct.   
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Further, if the points with compressive values below 150 Newtons are eliminated, it is evident 

that the initial slope of each device, independent of compression, falls into a tight window. This 

is highlighted in Figure 17.  The initial slope of Versanail ranges between 11 N/mm and 23 

N/mm.  Pantanail has a range between 21 and 37 N/mm while Dynanail ranges from 21 to 35 

N/mm.  This data reinforces the fact that the initial slope of the torsional stability curve is most 

likely related to factors inherent to the construct.  The addition of compression may play a role in 

altering the initial torsional stiffness, but the slightly positive correlation is not strong enough to 

suggest that compression alone dictates the initial slope of the curve. 

 

40

30

20

10

0

In
it
ia

l 
S

lo
p

e
 (

N
 /

 m
m

)

16001400120010008006004002000

Compressive Load (N)

Figure 16.  Correlation between the initial slope of the torsional stability curves and compressive load for 
◊ Pantanail   o Versanail   X Dynanail. 

 



30 
 

 

 

 
  
 
 Figure 18 and 19 show the relationship between the displacement and load at the break 

point of the curve, respectively.  These plots show a strong positive correlation between the 

compressive load and the point at which the stability curve breaks to a less steep slope.  

Because the initial slope was found to vary only slightly between devices and different 

compressive loads, it follows that both the load and displacement at the break are highly 

correlated to the initial compressive load.   

Further correlations were drawn between the load at 8 and 25 mm of extension and the 

initial compressive load of each sample.  The load at 8 mm, shown in Figure 20, demonstrates a 

strong positive correlation with the compressive load.  The load at 25 mm, however, has 

significantly more scatter, shown in Figure 21.  While there is a slightly positive trend, there is no 

strong indication that compression controls the load at 25 mm of the stability curve.  
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Figure 18.  Correlation between the displacement at the break point of the torsional stability curves and 
compressive load for  ◊ Pantanail   o Versanail   X Dynanail. 

 

Figure 19.  Correlation between the load at the break point of the torsional stability curves and compressive 
load for ◊ Pantanail   o Versanail   X Dynanail. 
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Figure 20.  Correlation between the load at 8mm (5°) displacement of the torsional stability curves and 

compressive load for:  ◊ Pantanail   o Versanail   X Dynanail. 

 

Figure 21.  Correlation between the load at 25mm (15.5°) displacement of the torsional stability curves and 

compressive load for:  ◊ Pantanail   o Versanail   X Dynanail. 
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The combination of these relationships provides insight into which aspects of the stability curve 

are affected by the application of compression. The coefficient of determination, R2, was 

calculated for each of these correlations, both for the individual nail and the data as a whole. 

Those values, shown in Table 4, confirm that the highest correlations are found between 

compression and the load and displacement at the break point as well as the load at 8mm.   

.   

Table 4. Strength of correlations (R
2
 value) between defined variables and construct compression.  

Variable Versanail Pantanail Dynanail Overall 

Load at 8mm Ext 0.4789 0.8327 0.9612 0.8837 

Load at 25mm Ext 0.0909 0.6145 0.7606 0.6301 

Initial Slope  0.5389 0.4677 0.6634 0.5464 

Break Point Ext 0.7893 0.7018 0.9297 0.8581 

Break Point Load 0.7988 0.8616 0.96 0.9207 

 

 

 The strongest correlations occur at and near the break point.  Because most nails with 

low compression break before 8mm and those with higher compression break near 8 mm, this 

point of the curve is also highly correlated to the initial compressive load.  The load at 25mm, 

however, is poorly correlated.  This suggests that, like the initial slope, the slope of the stability 

curve after the break point is not affected by the compression in the construct.  The variation 

seen in the slope of the curve after the break is high; some devices were characterized by a 

constant low slope while other had low slopes after the break that turned up at higher degrees 

of displacement.  Ultimately, once the static friction preventing the respective movement of the 

sawbone at the joint has been overcome, the stiffness of the construct isn’t well correlated to 

compression.  The point where the friction between the joint surfaces is broken, however, does 

appear to be a function of the compressive load.  At the point of the break, where the static 

friction is being overcome, the compressive force is the normal force between the sawbone 

surfaces.  As such, that compressive force dictates where the break point will be.  After static 
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friction has been overcome, the resulting movement is a function of both kinetic friction at the 

joint surfaces and locking screw interaction with the nails and bone. Factors potentially affecting 

the stability curve after the break point likely include the length, orientation, or geometry of the 

locking screws.   

Figure 22 summarizes the points of the curve analyzed, including those that were 

determined to be significantly impacted by compression as well as those that are most affected 

by other variables. 
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4.2 Construct Stability Over Simulated Resorption 

 The previous data establish the correlation between compression and torsional stability 

in a model of ankle arthrodesis.  In essence, the torsional stability of a device will depend on the 

limitations of that device to maintain compressive force.  At the time of implantation, the device 

with the highest level of compression will typically be the most stable. Figure 23 demonstrates 

the torsional stability of Dynanail, Pantanail, and Versanail upon implantation in their maximum 

load configurations.   

 

 
 

 

 
This level of torsional stability will only be maintained as long as that level of 

compression is maintained.  Because bone healing is known to cause bone resorption, the 

resorption model presented here provides a means of estimating what happens to the torsional 

stability of the construct over time. Table 5 presents the range of loads that were maintained by 
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the nails at various levels of resorption.  Linear interpolation was used to predict the loads when 

a measurement wasn’t taken at the specific resorption value noted. 

 

Table 5. Compressive load maintained at various levels of resorption. 

Resorption Versanail Pantanail Dynanail 

0.25 mm 107-117 N 439-691 N 1117-1230 N 

0.5 mm 2-13 N 16-367 N 787-1072 N 

1 mm 0 N 0-21 N 561- 757 N 

4 mm 0 N 0 N 217-258 N 

 

The loss of compression that occurs over 0.25mm of resorption varies significantly between the 

devices. Figure 24 illustrates these differences, where the bars represent the maximum load 

and the shaded portion of the maximum compression bar represents the average compression 

maintained by each device after 0.25mm of resorption.  Further losses in compression occur as 

the resorbed distance increases, but the most dramatic losses occur immediately, which is 

evident in this figure. 
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Figure 24. Amount of initial compression maintained by each device after 0.25 mm of resorption. 
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At each level of resorption— 0.25, 0.5, 1, and 4 mm—a torsional stability curve for each device 

is presented.  The particular curve chosen is based on the initial compression of the sample, 

where the compressive value either fits within or is near the load range specified in the table 

above.  Figure 25 illustrates the torsional stability of the three devices after 0.25mm of 

resorption has taken place.  

 

 

 

 

The graph demonstrates how significantly a small amount of resorption can affect the stability of 

the implant-bone construct.  The nominal load maintained by Versanail is ineffective in resisting 

torque.  Pantanail maintains a higher load and some stability of the construct, but Dynanail’s 

load reduced only slightly, making it by far the most stable construct at 0.25mm resorption.  
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Figure 25. Torsional stability curves of the three devices at loads representing the constructs after 

0.25mm of resorption. 
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Figures 26, 27, and 28 show the torsional stability curves representing loads at 0.5 mm, 1 mm, 

and 4mm of bone resorption, respectively.    
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Figure 26. Torsional stability curves of the three devices at loads representing the constructs after 0.5mm 

of resorption. 
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Figure 27. Torsional stability curves of the three devices at loads representing the constructs after 1mm 

of resorption. 

Figure 28. Torsional stability curves of the three devices at loads representing the constructs after 4mm 

of resorption. 



40 
 

These curves provide insight into the substantial loss of stability that occurs in an ankle 

arthrodesis device over the course of bone healing.  At 0.5 mm of resorption, Versanail has lost 

virtually all compression and the compression maintained by Pantanail offers decreased 

stability, where only 2.5 Newton-meters of torque can be sustained before high levels of 

displacement occur.  By 1 mm of resorption, neither Pantanail nor Versanail are offering any 

stability to the construct in torsion.  Dynanail has lost some compression but is still able to 

withstand approximately 5 Newton-meters of torque before its break point.  By 4 mm of 

resorption, Dynanail has lost more compressive force, but still provides some stability to the 

construct.  

It is relevant to ask whether there is necessity for compression to be maintained over 

4mm of resorption.  In a study performed my Pelton of dynamically locking nails, the amount of 

movement of the dynamic screw in the locking slot was measured.  This movement was the 

result of bone resorption and impaction, as the dynamic mechanism allows for load sharing and 

earlier weight bearing.  The average movement of the nail was assessed to be 2.3 mm [3].  The 

same study made note of one patient in whom the impaction exceeded the 5 mm movement 

allowed by the dynamic locking slot.  In this scenario, the construct would be actively holding the 

ends of the bones apart; surgery was performed to remove the screw to allow the bone to fuse.  

This data both confirms that significant resorption does occur during the bone fusion process 

and highlights shortcomings of the currently available devices.  Not only is the dynamically 

locking feature limited to 5 mm of bone impaction or resorption, but the result of exceeding that 

pre-determined resorption level is a second surgery and screw removal. Once the dynamic 

locking screw is removed, the intramedullary device will offer no torsional stability.  Current 

devices rely on the increased strength of the developing callus to resist deformation, but the 

Dynanail device would provide added support to the construct throughout bone healing.  This 

additional stability, in conjunction with the maintenance of joint congruency, could be the 
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difference between successful bone fusion and repeated operations in the 22% of ankle 

arthrodesis procedures that fail.   
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CHAPTER 5 

 CONCLUSIONS 

 The data presented in this work suggest that it is possible to improve current ankle 

arthrodesis technology by incorporating a NiTi compressive element into the body of a 

traditional nail.    Decreased compression in the bone-implant construct was shown to affect the 

point at which the initial stiffness of the construct is lost under applied torque. The ability to 

sustain higher torques could potentially be the difference between interfragmentary micro-

motion, which is beneficial to bone healing, and macro-motion, which can increase the bone 

strains beyond the effective healing limits.  Under conditions of rigid immobilization, there might 

not be function in resisting torques that will never be applied to the construct.  Current devices, 

however, are promoting earlier weight bearing, making the ability of the construct to withstand 

the outside forces it’s subjected to important in enabling healing. 

By relating the known effect of resorption to a decrease in compressive load with the 

resorption model, this study demonstrated the effects of resorption on the torsional stability of a 

bone-implant construct.  The compression offered in current devices is applied at the time of 

implantation, but lost once any bone resorption takes place.  This effectively resulted in little to 

no torsional stability over time. Dynanail, however, demonstrated some torsional resistance 

even at 4 mm of resorption.  The ability of the construct to withstand torsional forces throughout 

healing is likely to enhance the bone remodeling process.  

This study demonstrates the effectiveness of compression in increasing torsional 

stability and the results of resorption on torsional stability of the construct.  The incorporation of 

a NiTi compressive element in the Dynanail device was able to provide sustained compression 

that increased the torsional stability of the construct over time. The use of such NiTi 

components could be beneficial in other applications, including hip fracture, humerus fracture, or 

other sites of arthrodesis.  
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APPENDIX A 

 NiTi APPLICATION IN HIP FRACTURE 

Hip fracture is a significant problem in the United States, with upwards of 250,000 

incidents occurring annually in patients over 65 years of age [25].  In 1990, there were an 

estimated 12.6 million hip fractures worldwide, 917,000, or 73% of which, belonged to females 

[26].  Women represent the vast majority of hip fracture cases, which are primarily incurred by a 

sideways fall onto the hip.  While elderly women are at the greatest risk of sustaining hip 

fracture, other risk factors include malnutrition, decreased physical activity, balance problems, 

and osteoporosis [27].  As the aging population continues to grow, worldwide projections for 

instances of hip fracture are expected to double to 2.6 million by year 2025.   

More alarming than the sheer magnitude of occurrence, however, is the poor prognosis 

that many patients face.  Mortality at one year has been reported to be 33% [28], where the 5-

year survival rate for hip fracture patients is only 41% [29].  Immediately after surgery, patients 

face hospitalization time that can average as many as 30 days [30].  After being released from 

the hospital, up to 42% of people who lived independently prior to their fracture are confined to a 

nursing home, where they may spend a full year or more [31].  As many of 17% of hip fracture 

patients spend the duration of their lives in a nursing home [32]. The extensive care required for 

these patients contributes to the extraordinary expense associated with hip fracture. Hip fracture 

costs have been estimated at $81,300 per patient, approximately half of which was related to 

nursing facility expenses [32].  The immense cost that this amounts to is most significant in 

comparison to other osteoporosis-related fractures.  Of all health care expenditures attributed to 

osteoporotic fractures, 63%, a total of $8.68 billion dollars, goes towards hip fractures alone 

[33].   

The overwhelming incidence and cost of hip fracture demand an equally large effort to 

treat the problem.  Most often, hip fractures are treated surgically, where the type of fixation is 



44 
 

dependent upon the location and type of fracture. Though many classification systems exist, hip 

fractures can typically first be divided into neck fracture, intertrochanteric fracture, and 

subtrochanteric fracture.  Femoral neck fractures are often treated with hip pinning, where the 

primary operative function is to maintain union among the fracture fragments and additional 

structural support of the construct isn’t necessary.  Hemi- or total arthroplasty can be done in 

cases of extreme osteoporosis or in revision surgery where the femoral head has been 

destructed by previous screws [34].  Intertrochanteric fractures, which account for 50% of all hip 

fractures, are more demanding to treat because they often rely on the lateral support a device 

can provide to offer a stable healing environment [35].   In these cases, hip screws—in a side 

plate or intramedullary nail configuration—are often employed.  In these devices, the hip is 

instrumented with a rigid intramedullary or side plate device which a large cancellous screw 

passes through, engaging the fragmented femoral head.  The screw acts to maintain union 

among the fracture fragments while the rod or sideplate provides the lateral and structural 

support necessary.   

The side plate was developed in the 1950s as a means of advancing the nail-plate 

systems that were found, at the time, to have benefits over non-surgical treatment.  The failures 

of the nail-plate system, including protrusion of the nail into the hip joint, cutting upwards 

through the cancellous bone of the femoral neck, and bending and breaking at the angle, were 

largely attributed to the rigidity of the device [36].  Here, nail placement became a catch-22; if 

the screw wasn’t placed far enough into the femoral head to engage solid cortical bone, it would 

act as a hinge in the soft trabecular bone, allowing the screw to cut upwards.  But if the screw 

was placed far enough initially, the process of bone resorption during the dynamic bone healing 

process could drive the screw through the femoral neck and into the joint capsule.  The solution 

was to introduce a sliding capacity into the device—a side plate with was fixed to the lateral 

diaphysis with an angled barrel through with the cancellous screw was able to slide.   Sliding 

introduced a dynamic aspect to a still rigid structure, allowing the screw to engage the femoral 



45 
 

head without creating a distinct separation between fracture components during bone healing.  

Additionally, sliding allowed for impaction of fracture fragments which serves to stimulate callus 

formation, thereby accelerating bone healing [36].   

While sideplate devices have been successfully employed since their advent and are still 

considered a gold standard in hip fracture fixation, they can experience failure rates as high as 

23% [37].  They can fail via separation of components in a highly comminuted fracture or 

through a loss of sliding action that results in the same failures seen with rigid devices—cutout 

of the femoral head.  In the 1990s, the shortcomings of the sliding hip screw were addressed 

with a new device—the intramedullary nail.  The IM nail was meant to improve patient outcome 

by offering improved fixation biomechanics, a minimally invasive insertion, and shorter time to 

weight bearing, while maintaining the same sliding advantages of the side plate devices [38].  

Fracture biomechanics were expected to improve because the intramedullary placement of the 

load bearing mechanism allows the transmission of weight down the shaft of the femur, where 

the side plate devices sit laterally to the load line.  This medialization of the femoral component 

of the device would also decrease the lever arm of the bending force, hopefully leading to fewer 

device failures [39].   

Since both the intramedullary and side plate devices have been on the market, 

numerous biomechanical and clinical studies have attempted to determine which is the superior 

means of fixation.  While findings have varied significantly among different studies, the foreseen 

benefits of a semi-closed procedure in the intramedullary devices have been stymied by the fact 

that is a more technically demanding procedure with more challenging placement of the lag 

screw [40].  As such, the surgical time and blood loss are not consistently reduced with the use 

of an intramedullary device.  The difficulty in placing the lag screw in the IM nail’s closed 

procedure leads to a similar or increased occurrence of failure via lag screw cutout in IM nails 

over side plate devices [36].  Ultimately, findings have been unable to point to a clearly superior 

means of fixation [41], and the anticipated benefits of the IM device have not been fully realized.   
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While no conclusive studies have been able to indicate that intramedullary fixation is 

superior to side plate fixation, trends in device use indicate that the market is leaning more 

towards the use of intramedullary nails for hip fracture fixation [42].  This could be attributed to 

the ability to use IM devices more successfully in subtrochanteric and unstable fractures, where 

the intramedullary location of the femoral component allows for structural support the lateral 

side plate cannot offer [40].  Regardless of the reason, the continued and increased used of IM 

devices provides incentive to improve current devices.  In doing so, identifying and 

understanding the primary causes of failure is important.  

Intramedullary devices fail, primarily, in one of two ways.  The femoral shaft can fracture 

at the tip of the nail, where a stress concentration is introduced via the abrupt change in 

stiffness between the supported and non-supported femur.  These failures are specific to IM 

devices [43], and can occur in 8-17% of cases [43-45].  The most common form of failure, 

however, is cutout of the lag screw from the femoral head [45-47].  Cutout, which occurs when 

the lag screw migrates far enough in the femoral head to puncture the cortical layer superiorly 

and enter into joint capsule, has been identified as a cause of failure in 5-23% of cases [40, 43, 

47-48].  Many factors have been suggested to be significant in causing or preventing cutout, the 

most widely recognized of which include bone quality [49], lag screw placement (often noted as 

the tip-apex distance) [40, 45, 49-51], and anatomical reduction [45, 47].  Here, bone quality is 

an important issue as it relates directly to the fixation strength of the lag screw in the femoral 

head.  While important, it is patient-specific and independent of device design.  Similarly, many 

studies focus on the importance of achieving a tip-apex distance (placement within the femoral 

head) that is within 25mm of the apex of the femoral head (where 25mm is a summation of the 

lateral and frontal screw position).  It can be deduced, however, that this position is desirable 

primarily to ensure that the lag screw engages in the most dense bone possible without being 

placed though the cortical layer.  As such, position is important, but can be considered a 

function of bone quality.  Anatomical reduction, on the other hand, indicates that maintaining 
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alignment of fracture pieces is important.  Reduction is a surgeon-dependent practice that is, 

currently, not reliant upon device design.  Thus, while it would be difficult to directly affect 

reduction with a hip implant itself, it is conceivable that focusing attention on the intent of an 

anatomical reduction—to maintain proper alignment and union among fracture pieces, would be 

fortuitous for device design.  

Introducing a compressive element into the design of a hip screw device would 

potentially prevent cutout, benefit healing and ensure that fragments maintain contact through 

the course of patient recovery, including bone resorption.   

 A model of hip fracture was developed to determine if the sustained compression of a 

device employing a NiTi core could prevent cutout.  The generated model included synthetic 

polyurethane foam (Sawbones, Vashon, Wa) potted in steel cylinders and loaded at an 

anatomic angle. The goal was to generate cutout in the model and subsequently vary insertion 

characteristics known to affect cutout, such as proper reduction.  A prototype device 

incorporating a NiTi element would then be used to apply compression across the fracture site 

to determine if sustained compression would be effective in overcoming slightly non-anatomical 

reductions and preventing cutout of the screw.  

 The model, under conditions of poor reduction and no application of initial compression, 

was unable to generate cutout.  Since cutout has been consistently generated clinically under 

the same conditions, it follows that the model used wasn’t an adequate representation of the 

anatomical phenomenon.  There are many variables in the study that could have been altered to 

improve the outcome.  The testing material had a solid fiberglass outer layer to represent the 

cortical layer. While the cortex of the bone is stiffer than the trabecular bone, the stiffness of the 

cortex in the model masked any effects of the interaction of the softer trabecular bone between 

bone fragments. Effectively, any load transferred between the fragments in the fracture model 

was done through this fiberglass layer.  A different test material with cortical layer characteristics 

more similar to osteoporotic cortical layer may have yielded the desired effect of cutout. 
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Additionally, the construct was not tested in a hydraulic testing machine, which limited the cycle 

speed and number.  

 Ultimately, the model of cutout in the hip fracture area was deemed to have too many 

variables to effectively demonstrate the slight difference that sustained compression via NiTi 

would provide.  A simpler model of ankle arthrodesis was elected for to demonstrate the 

benefits of the incorporation of NiTi into traditional orthopaedic devices.  Further work in model 

development would need to be done before the hip application could be effectively tested in a 

laboratory setting.  
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