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In this work, the system of equations for a large- scale long lived rotating layer of

fluid with the deformable upper free surface and non-deformable lower free surface

heated underneath has been reviewed and derived. The quasi-geostrophic approximation,

the beta effect and the method of multi-scale expansions have been employed to and as a

result, an equation governing the evolution of large-scale perturbations, has been derived.

The effect of each term present in the upper surface deformation equation has been

analyzed and the analytical solutions have been obtained by virtue of employing auxiliary

Riccati equation method. The soliton solutions obtained contributes to the sustenance of

the vortex structure of the long-lived rotating layer of fluid due to the existence of two

terms namely the nonlinear term or the so-called beta effect and the diffusion term

resulted from the presence ofheating energy from below.

The solution obtained, has been also applied to the case of long-lived vortex

structure of the Great red spot of Jupiter and the results for the large-scale perturbations

and averaged dominant terms of non-dimensional components of the velocity fields have

been presented. The results show the correlation between the heating of the fluid motion

from the lower layers, which is one of the fundamental features of the Great Red spot of

Jupiter, and the sustenance of the vortex structure.
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CHAPTER 1

INTRODUCTION

Analytical solutions for a rotating layer of fluid heated underneath is of great

interest. In the past six decades, there have been many studies devoted to the numerical

solutions for a rotating layer of fluid heated underneath. However, very few analytical

solutions for the above fundamental phenomenon can be found in the literature and very

important features of the above phenomenon such as the deformation of the upper surface

due to the onset of convection was not taken into account in the previous analytical

solutions.

The first analytical solutions for a rotating layer of fluid heated from below were

obtained by Chandrasekhar in 1953 [1]. He obtained the analytical solutions for three

cases of boundary conditions: both boundaries free, one boundary free and the other one

rigid, both boundaries rigid. In obtaining his solutions, nonlinear terms in the governing

equations were neglected (linear theory of stability). Also, the deformation of the upper

surface and the beta effect were neglected in his analytical solutions. He showed that the

Coriolis force or the angular velocity H has an inhibitive effect on the onset of

convection. In other words, an increase in the angular velocity results in the inhibition of

the onset of convection [1].
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Zhang and Roberts [2] developed the solution obtained by Chandrasekhar. They

employed asymptotic analysis and obtained asymptotic solutions for a rotating layer of

fluid heated from below. Also, the exact solutions constructed works well in the case that

the Prandtl number is sufficiently small. However, nonlinear terms were neglected in the

governing equations.

Petviashvili in 1980 [3] also obtained analytical solution for an inviscid layer of

fluid subject to the Coriolis force. His solution is the first soliton solution accounts for the

sustenance of the vortex structure of a rotating layer of fluid. In his governing equations

the effect of convection and viscosity has been disregarded [3-5]

Busse [6,7] has also made significant contributions to the solution of a rotating

layer of fluid heated from below, with application to planetary cases, both analytically

and numerically. The model that was used by him is known as the deep model

characterized by the Taylor-Proudman theorem. Linear analysis of the governing

equation associated with weakly nonlinear analysis was carried out by him.

Analytical solutions give us better understanding and help us to explain the

physics of the problem in a clear way. Therefore, we have been motivated to obtain

analytical solutions for a large-scale long-lived rotating layer of fluid heated underneath

with the deformable upper and non-deformable lower surfaces.

In deriving the system of governing equations, the Coriolis effect is considered

with the assumption that the rotation period of flow is long compared to the rotation

period of the overall system. Therefore, the quasi-geostrophic approximation has been

employed together with the Boussinesq approximation and the beta plane approximation



or the so-called beta effect. Heating of fluid from below, viscosity of fluid and the

deformation of the upper surface have been taken into account in deriving the system of

governing equations. However, the effect of the surface tension has been neglected at the

deformable upper boundary condition. We have employed the method of multi-scale

expansions in order to obtain the equation for the upper surface deformation. In order to

solve the equation for the upper surface deformation analytically, the auxiliary equation

method [8,9] along with the Riccati expansion method [10,11] have been used. The

soliton solutions of the equation for the upper surface deformation, account for the

sustenance of Rossby waves or vortices.

One of the applications of the mathematical model in our study is to model large-

scale and long-lived vortex structures in planetary atmospheres such as the mysterious

problem of long-lived vortex structures of the Great Red Spot of Jupiter which have been

observed for more than 300 years. It is proposed that the Great Red Spot of Jupiter is a

Rossby solitary vortex and retains its shape for a long time [12,13]. The other important

feature of the Great Red Spot of Jupiter is the heating of the atmosphere from the lower

layers [14,15], which has been taken into consideration in the mathematical model.



CHAPTER 2

MATHEMATICAL MODEL

In this chapter, we describe the mathematical model of a large-scale long-lived

rotating layer of fluid heated underneath. Therefore, we start with the basic assumptions

made in order to derive the governing equations and boundary conditions. Quasi-

geostrophic approximation and multi-scale expansion methods will be applied to the

governing equations and boundary conditions in order to derive simpler form of the

governing equations and boundary conditions. As a result, we will derive an equation

that governs the upper surface deformation.

2.1 Basic Assumptions

In our mathematical model, a single rotating layer of fluid, assumed to be

horizontally unbounded, is considered. The lower surface of fluid is supposed to be a

non-deformable stress-free isothermal plane. However, the upper surface is supposed to

be a deformable stress-free isothermal plane. Hence, there are no tangential stresses at the

lower and upper boundaries. The lower non-deformable surface implies that there is no

vertical velocity at the lower boundary. In contrast, the upper deformable surface implies

that the vertical fluid velocity at the upper boundary needs to be taken into consideration.

In other words, the convective motion deforms the upper surface. Thus, the vertical



displacement of the surface from its unperturbed position should be taken into account at

the upper boundary [14,15], whereas the deformation of the upper surface of fluid was

neglected in some publications [16-18].

We denote L, H and 0 as characteristic horizontal length scale, the vertical length

and the temperature difference between the lower and upper boundaries respectively as

shown in Fig. 2.1. In our model, the horizontal dimensions are assumed to be much more

than the vertical one. In other words, we assume that L »H.

T = T,

T = T
• x

Figure 2.1 The sketch of a single layer model heated underneath

The lower non-deformable stress-free surface is at a constant temperature Tb. The

deformable upper surface is assumed to be at a constant temperature Tu. Therefore,

0 = Tb —Tu by its definition. 8H is defined as the deviation of the upper surface from

the unperturbed state, ft is denoted the angular rotation velocity vector of the overall

system. As illustrated in Fig. 2.2, ft is of the form ft = ft sin 6 k + ft cos &j where 6 is

latitude, ft sin 6 and ft cos 6 are the vertical and horizontal components of the angular

rotation velocity vector ft respectively as shown in Fig. 2.2. Due to the assumption made,

which is L » H, we neglect the horizontal component of the angular rotation velocity



vector ft [19]. Therefore, the angular rotation velocity vector might be approximated to

the form of ft = ft sin 6 k. The thin shell of fluid shown in Fig. 2.2 has the local vertical

unit vector k and the velocity component in that direction is w. The northward velocity is

v and the eastward velocity (into the paper in Fig. 2.2) is u. Unit vectors eastward and

northward are defined i and j respectively. In our mathematical model, we consider the

Cartesian model of a rotating spherical thin fluid layer. It is noted that the lower and

upper surfaces of fluid in our model corresponds to the inner and outer surfaces of a

spherical thin fluid layer as shown in Fig. 2.2.

Figure 2.2 The thin shell of fluid and the local coordinate frame at latitude 6



By virtue of employing the Taylor series expansion at an arbitrary latitude far

from the equator 00 [20] and using the so-called p plane approximation in order to model

the flow on a sphere, we have:

ft sin Go
ft sin 0=ftsin0o +ftcos0o(0 - #o) 5—"(0 - #0) +- C2-1)

From the geometry shown in Fig. 2.2, y = ro(0 —0O) can be inferred and by

neglecting the last term in the above equation, Eq. (2.1) might be approximated to

ft sin 6 = ft sin 0o+yy, (2.2)

where ft = 2^^ and ^y « ft sin 0O.
r0 2

Eq. (2.2) might be written in form of

ft = ft sin 6 k = ft sin 60 (1 + py)k, (2.3)

where B= J° - and By « 1.
r 2nsin0o r,/

p is a constant parameter characterizing the beta effect or known as the latitudinal

variation of the local vertical component of the angular rotation velocity vector ft.

It is noted that either Eq. (2.2) or Eq. (2.3) is referred as the p plane

approximation [12,14,15,19,21] and is widely used in Geophysical Fluid Dynamics.

The other important assumption we made in our mathematical model is the time

scale of the rotation of flow is long compared to the rotation period of the frame from

which the flow is observed. This assumption implies that we should use a rapid-rotation



approximation in our model. That is the reason we employ the quasi-geostrophic

approximation and as a result, the term 2ft x V, which is denoted the Coriolis

acceleration term, becomes a dominant term in the Navier-Stokes equations and is

balanced by the pressure gradient force. The above assumption is widely used in study of

planetary large-scale Rossby vortices in giant planets. For instance, the characteristic

rotation period of JGRS vortex is about one week, whereas Jupiter rotation period is

about 10 hours [12]. Therefore, in our model we consider a case in which the Taylor

Number (Ta) is much larger than unity by virtue of assuming a rapid-rotation case. We

also use the Boussinesq approximation meaning that the density of fluid variations are

negligible except in the buoyancy term since the thickness of fluid layer in our model is

small compared to its horizontal lengths. Hence, we neglect the density variations across

the fluid layers.

The other important features of our model is the heating of fluid motion from

below. This fundamental feature leads to the existence of diffusion terms and as a result,

our system of equations is different from those ordinarily used in geophysical

hydrodynamics literature [19]. In the next section, we introduce the governing equations

of the fluid motion heated underneath given our assumptions.



2.2 Derivation of the Governing Equations

In this section, we derive the system of governing equations and boundary

conditions both in dimensional and non-dimensional forms given the assumptions made

in the previous section.

2.2.1 Dimensional Form

By applying the Boussinesq approximation, we formulate the system of equations

[22] governing the fluid motion heated underneath in the vector forms and then transform

it into scalar forms

W , VV P— + (V. V)V + 2/2 x V = + vAV + —g, (2.4)
dt Po Po

dT
— + v. VT = kAT , (2.5)
ot

p = PQ[l-cc(T-T0)], (2.6)

F.F=0, (2.7)

where T and P are defined as the fluid temperature and pressure respectively. T0 and p0

are a reference temperature and density respectively, v is the fluid kinematic viscosity, a

is defined as the thermal expansion coefficient of the fluid, g is the gravity acceleration

vector and k is denoted the fluid thermal diffusivity.

d2 d2 d2
A = V2 = •—— + —— + —r is referred to laplacian. The velocity vector is defined

ox1- oyz ozz

as V = (u, v, w) where u, v and w are the horizontal components and the vertical

component of the fluid motion respectively.



Given the linear change in the fluid density with respect to the fluid temperature

shown in Eq. (2.6), we substitute it into Eq. (2.4). Therefore, Eq. (2.4) is of the form

dV , N Vp
— + (V. V)V + 2/2 x V = + vAV + g + ga(T - T0)k, (2.8)
at Po

where g is the magnitude of the gravity acceleration vector g and k is the local

vertical unit vector shown in Fig 2.2.

Given the assumptions made in the section 2.1, let us now formulate the boundary

conditions as follows:

at z = 0 : T -T0 = Tb , P = Pb > w = 0 and wzz = 0 (2.9)

d
atz = H + 6H: T-T0 = TU, p = pu , w = —(8H) and wzz = 0,(2.10)

dt

where r0 is a reference temperature, Tb and Tu are constant temperatures at the

lower and upper boundaries respectively, pb is an arbitrary constant pressure at the lower

boundary, pu is a constant pressure exerted on the upper free surface. By virtue of

neglecting surface tension at the upper boundary and assuming that above our single

layer fluid there is a gas with so small density, we may set pu = 0 at the upper boundary

condition. 6H is the deviation of the upper surface from the unperturbed state. wzz is set

to zero at the boundaries due to the assumption of stress-free boundary conditions.

Therefore, we neglect tangential stresses at the lower and upper surfaces. In other words,

it is assumed — = — = 0 at both boundaries. By differentiating the continuity equation,

namely, Eq.(2.7) with respect to the vertical coordinate z and using the aforementioned

assumption, we infer wzz = 0 at the lower and upper boundaries.

10



We now define p = ps + p', T - T0 = Ts + T' and V = Vs + V, where ps and Ts

are static pressure and temperature respectively. Vs is the fluid velocity vector when the

fluid is at rest and as a result, is equal to zero vector. V is denoted the convective

velocity vector of the fluid or the perturbed velocity vector and represents the perturbed

fluid motion, p' and T are deviations from linear hydrostatic pressure and temperature

respectively, p' and T'are also known as the perturbed pressure and temperature

respectively. In other words, p' and T' represent the perturbations [22]. It is obvious that

the stagnant fluid and its corresponding field (0, ps, Ts) must satisfy Eqs. (2.4) - (2.7) as

follows:

Vp
— = g + gaTsk, (2.11)
Po

ATS = 0 . (2.12)

The solutions to Eqs. (2.11) and (2.12) are as follows:

0
Ts = --z + Tb+T0, (2.13)

Ps = Pb~ Po9
0 ,

.a—zz-a(Tb + T0)z + z (2.14)

where 0 = Tb —Tu .

For details of obtaining the above solutions, see Appendix A. We could also write

the equation (2.13) in the following form:

VTs = -l1k, (2.15)

11



where L = — .
1 H

(V, p, T) must also satisfy Eqs. (2.4) and (2.5) as follows:

W , N V(ps + p')
— + (V. V)V + 2/2 x V= Kys + vAV + # + #a(7s + T)fc, (2.16)
or p0

-^—^+F. V(TS +T') =kA(Ts +T) . (2.17)

Substituting Eqs. (2.13) and (2.14) into the above equations we obtain the

following system of governing equations:

dV Vp'
— + (V.V)V+ 2/2 x V = — + vAV + gaT'k, (2.18)
dt po

dT'
— + F. FT' - l±w = kAV, (2.19)

17.F = 0. (2.20)

Note that w is the vertical component of the fluid velocity vector V and l± is a

constant defined by Eq. (2.15).

Let us now formulate the boundary conditions for the above system of equations

as follows:

at z = 0 : r = 0, p'z = 0, w = 0 and w2z = 0 (2.21)

Following Tikhomolov [14,15] and Gershuni [22] for the upper boundary

conditions, the assumption that the upper boundary condition remains at constant

12



temperature Tu and the expression obtained for Ts , we may form the following relation

for 7':

atz = H + 6H: T'+—1SH = 0 => T'=-SH. (2.22)
dz H

Given the assumption that pu —0 , we may also form the following relationship

for p'at the upper boundary:

atz = H + SH : p' = p0gSH. (2.23)

As shown in Eq. (2.10), vertical component of the fluid velocity, w at the upper

boundary is of the form

d
atz = H + SH : w = — (8H) and wzz = 0 (2.24)

dt

2.2.2 Non-dimensional Form

By introducing the following non-dimensional variables, the governing equations,

namely, Eqs. (2.18) - (2.20) and the boundary conditions, namely, Eqs. (2.21) - (2.24)

can be non-dimensionalized.

k k H2 SH p0VKV=V*-, w=w*-, t=t*—, h=—, P'=P*^r> T' =T*Q

x=x*H, y=y*H, P=̂ , Py =P*y*. v=-fj> A=W (2'25)

Substituting Eqs. (2.3) and the above non-dimensional variables into Eq. (2.18) -

(2.20), we obtain the non-dimensional form of the governingequationsas follows:

13



KdV* k, N ftsin0otf2
-^77 + - (V*. V)V* + 2 -— (1 + p*y*)k x V*
V Ot* V v

oa0//3
= -rp* + 4*r+- rfc, (2.26)

dT*
— + V*. V*T* - w* = A*T*, (2.27)

r.r = o. (2.28)

Using non-dimensional parameters, we could make Eqs. (2.26) - (2.28) simpler.

Given P=- , Tat = D= 2 sm °H and R= S2**L where Pis the Prandtl number,

Ta is the Taylor number, R is the Rayleigh number and D is defined as the square root of

the Taylornumber. Substituting these three independent non-dimensional parameters into

Eq. (2.26). Therefore, the non-dimensional system of governingequations is of the form

ldV* 1

~pJv +p(r" F*)r +D(1 +P*y^k x v* = ~v*p*+ A*v*+ Rrk' (2'29)

dT*
— + V*. V*T* - w* = AT, (2.30)

V*.V* = 0. (2.31)

For the sake of clarity, we henceforth omit the star on the non-dimensional

variables of Eqs. (2.29) - (2.31). Therefore, we have

1 dV 1 , x 1 1 RT
7DK+7D(V-V)V +(1 +MkXV = -DVp +DAV +Tk' (2"32)

dT
— + V.VT-w = AT, (2.33)

14



V.V = 0. (2.34)

By substituting the non-dimensional variables from equation (2.25) into the

boundary conditions and omitting the star on non-dimensional variables, we obtain the

non-dimensional form of the boundary conditions, namely, Eqs. (2.21) - (2.24) as

follows:

at z = 0 : 7 = 0, pz = 0, w = 0 and wzz = 0, (2.35)

dh
atz=l + h: T = h, p = qh, w= —- and wzz = 0, (2.36)

where h = — and q = -— .
H * VK

It is worth noting that h is assumed to be function of x, y and t and is assumed

h « 1. Let us now transform the above system of governing equations into the scalar

form. Hence, we have

1 du 1 , N Pr 1

J5Yt+TD{~UUx +vu^ +wu^~{1 +Py)v =~T+DAUl (2'37)

1 dv 1 , N Pv 1

JB^ +JD^UVx +VVy +WV^ +(1 +Py)u =~~D+DAV' (2l38)

1 dw 1 , . pz 1 /?7

PD^F +PD^ +^ +WW^ =-D+D2lW +^' (2"39)

— + u7^ + i;7y + wTz - w = AT, (2.40)

ux + vy + wz = 0. (2.41)

15



In the next step to solve the above system of governing equations, we employ the

quasi-geostrophic approximation.

2.3 Quasi-Geostrophic Approximation

In the quasi-geostrophic theory, three important assumptions are used, one of

which is the time scale of the motion of flow is long compared to the rotation period of

the frame from which the flow is observed. The second one is the frictional diffusion time

scale of the flow is long compared to the rotation period. The third one is the vertical

velocity of the fluid might be neglected [12,14,15,19].

As mentioned in the section (2.1), it is assumed that Ta » 1 in our model, given

1 r\ eifi A u2
Ta.2 = D and D = 2 -— = E_1, where E is a dimensionless number defined as the

V

Ekman number. Therefore, we conclude that D » 1 and E « 1.

It is noted that when the Ekman number is much less than unity, we could use the

quasi-geostrophic approximation in Eq. (2.29) or Eq. (2.32). Employing the quasi-

geostrophic approximation signifies that the Coriolis term (2/2 x V) is approximately

balanced by the pressure gradient [12,14,15,19]. In other words, by applying the quasi-

geostrophic approximation, we might neglect the unsteady, convective inertia and

diffusion terms in Eq. (2.32). Therefore, Eq. (2.32) is approximated to the form of

(1 +py)k xV= -pVP +QRTk> C2-42)

or:

16



1 1
-(1 + Py)vi + (1 + py)uj = - - Vp + - fl77c. (2.43)

By virtue of the assumption (By « 1, we have the following results:

1
w(0) = --py, (2.44)

vW=^px, (2.45)

where px = —, py = — , u^ and i^°) are the non-dimensional geostrophic horizontal

velocity components. It is noted that u^ and v^ are the dominant terms of u and v

respectively.

Similarly, w^ is defined as the non-dimensional geostrophic vertical velocity

component and is assumed to be zero according to the quasi-geostrophic approximation

explained above. Thus, it can be written

<°) = 0 . (2.46)w

The above approximations, namely, Eqs. (2.44) - (2.46) is known as the quasi-

geostrophic approximation [12,14,15,19]. Let us now simplify the system of governing

equations derived in the previous section, namely, Eqs. (2.37) - (2-41) by employing the

above quasi-geostrophic approximation. Therefore, the system of governing equations

could be approximated to the form of

wz-^A2pt-^Kp,A2p)-^ +̂ A22p +̂ A2pzz =0t (2.47)

pz = RT, (2.48)
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1
Tt +p(p, T)-w = A2T +Tzz , (2.49)

where J(f,g) =fx9y -fygx,A2=^ +^ and A22=-^- +^-+2
dx2 dy2 * dx4 dy4 dx2dy2 '

For details of the derivation for Eqs. (2.47) - (2.49), see Appendix B. The system

of Eqs. (2.47) - (2.49) is akin to the one obtained by Tikhomolov in his paper [14].

Boundary conditions for the above system of equations are of the form

atz = 0 : 7 = 0, pz = 0, w = 0 and wzz = 0, (2.50)

dh

dt
atz = 1 + h i T = h, p = qh, w = — = ht + uhx + vhy and wzz = 0. (2.51)

Approximating u and v by u(0) and v(0) respectively at the upper boundary,

yields

atz = l + h'- w = ht + u°hx + v°hy = ^+77 (—hyhx + hxhy) = ht. (2.52)

Therefore, the upper boundary condition (2.51) is of the form

at z = 1 + h '• T = h, p = qh, w = ht and wzz = 0. (2.53)

In order to solve the system of Eqs. (2.47) - (2.49) together with the boundary

conditions, namely, Eqs. (2.40) and (2.53), we employ the method of multi-scale

expansions which will be explained in details in the following section.



2.4 Method of Multi-Scale Expansions

Following Tikhomolov [15] and Newell & Whitehead [23], we seek the

asymptotic expansions for the dynamic fields such as p, w and T in Eqs. (2.47) - (2.49)

and the boundary conditions, namely, Eqs. (2.50) and (2.53). Therefore, we define the

slow coordinates and time such as X, Y and t and expand the above dynamic fields as a

powerseries in £ where £ is a small parameter and e2 « R —Rcr where Rcr is the critical

Rayleigh number and will be defined later [15], [23]. In other words, the above dynamic

fields will be represented as a function of both the slow variables and regular variables.

Hence, we begin with the definition of the slow variables as follows:

X = ex, Y = ey, t= elt, (2.54)

where £ is a small parameter and e « 1. Note that the vertical coordinate z

remains as before. By virtue of the transformation (2.54), the operators in Eqs (2.47) -

(2.49) might be changed to the form of [15], [23]

Odd d d d d d 2 d
~dx^dx +£dX ' dy^dy +£dY ' di^di+£ dr'

( d2 d2 \ .
A^A*+2i^+wY)+£A2x'

d4 d4 \ f d4 d4 \ / d4 d4 \
' dx^dX +Jym) +6£l [dx2dX2 +dy2dY2) +̂ \dx~dX* +~fyd¥*)

a4 d4 \ 2( d4 d4 d4
dxdy2dX +dx2dydY) +2£ \dy2dX2 +4dxdydXdY +dx2dY2

J d4 d4 \ ,
+ 4*3 a..av2av + a^avai/2 + £AA2X2, (2.55)\dydX2dY dxdXdY2) 2X '
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d2 d2 d2 d2 7 d4 d4 d4where A2= — +— 4„ ___ +_, a2 = — + — +2^-2 and

2 d4 d4 d4^2x = Tw + ^i + 2 2 2. For details ofthe above derivation see Appendix C.

Before we expand the dynamic fields as a function of the slow variables and

regular variables, we would like to make some assumptions in order to simplify the rest

of our derivation. Starting with the deformation of the upper surface h(x,y, t), we follow

Tikhomolov [15] and assume that the deformation of the upper surface is very small and

is in the order of e2. We also assume that the leading order of the deformation is only

dependent of the slow variables {X,Y,r). Therefore, h(x,y, t) might be written in form

of

h(x,y,i) = s2[Hw(X,Y,t) +eW^ +e2<K^ +•••], (2.56)

where the deformation K ^ is independent of x, y and t while all other terms on the

right hand side of Eq. (2.56) might be function of x, y and t as well as X, Y and t.

Following the upper boundary condition (2.53) in which T = h, we assume the

following form for T:

T= e2[dw(X, Y.z.x) + £tf(1) + e2d& + •••], (2.57)

where d^ is independent of x, y and t while all other terms on the right hand side of Eq.

(2.57) are function of x, y and t as well as X, Y, z and t.

Given the upper boundary condition (2.53) in which w = ht and the

transformation —-» —+ e2 —, the appropriate form for w is assumed to be
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w= s4[w^\x,Y,z,t) + sW^ + e2W& + ...], (2.58)

where Ww is independent ofx, y and t while all other terms on the right hand

side of Eq. (2.58) might be function of x, y and t as well as X, Y, z and t.

It is worth noting that the above expression for w is in agreement with the

assumption we made in the quasi-geostrophic approximation in the previous section

which was w(0) = 0. The appropriate expression for p isassumed tobe ofthe form

p = p(°\X,Y,T) + epW + £2p(2) + £3P(3) + - i (2.59)

where p(0) is independent ofx, y , z and t while all other terms on the right hand side of

Eq. (2.59) might be function of x, y, z and t as well as X, Y and t.

The appropriate expansion expression for /? is assumed to be of the form [15]:

j? = £3(^+^W + -), (2.60)

The appropriate expansion expression for R is assumed to be of the form [15, 23]:

R = Rcr + 0(e2), or R = Rcr + £2R2, (2.61)

where Rcr is the critical Rayleigh number or the minimum value of the Rayleigh number

for the onset of convection and defined as follows:

2

(n2\3 4 4
as D^> oo Rcr « 3I—J £>3 = 8.6956D3, (2.62)

whereD = 2^^
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It is worth noting that the above asymptotic expression for Rcr was obtained by

Chandrasekhar [1]. He determined the above expression by the linear stability analysis of

the system of governing equations for a rotating layer of fluid heated from below with

free boundary conditions. It is noted that the above expression for Rcr should be used in

the cases in which the value of D is sufficiently large. Therefore, it is in agreement with

our assumption, which is D » 1. Although, the deformation of the upper surface and the

beta effect were neglected in his derivation, we can still use it for the expansion of the

Rayleigh number in Eq. (2.61) since Rcr by its definition is the minimum value of the

Rayleigh number for the onset of convection and as a result, the deformation due to

convection can be disregarded. For details of the derivation for the above asymptotic

expression, see his paper [1].

It is evident that from Eq. (2.62) and based on the definition of the Rayleigh

number, a corresponding q, where q = , for Rcr can be defined in form of

Rcr 8.695603
asD->co qcr=„__, (2.63)

where 0 = Tb —Tu and a is defined as the thermal expansion coefficient of the fluid.

Employing the transformations (2.54) and (2.55), we substitute the Eqs. (2.56) -

(2.61) into the system of Eqs. (2.47) - (2.49) and the boundary conditions (2.50) and

(2.53). Therefore, we obtain
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1

+j^^xPzz^ =0, at the fourth order or e4 (2.64)

pz(2) = Rcrd^, at the second order or s2 (2.65)

#zz 0) = 0, at the second order or e2 (2.66)

where]x(f, g) =fxgY - fYgx , A2X =^- +^- and 42X2=^- +^ +2
dx2 dy2 ZA ax4 ay4 dx23Y2'

The boundary conditions of the above system of equations are as follows:

at z = 0 : i9(0) = 0, pzC°) = 0, M/(0) = 0 and Wzz(0) = 0, (2.67)

atz = 1 + £2JfCo) . 0(o) = H(o)ip(o) = ^(o)f^(o) = ^(o) and ^(o) = ^(2 68)

q Lj3
where n is a constant, approximated to 77 « e2q , and q = .

VK

It is worth noting that Eq. (2.64) has been derived at the fourth order of e. Also

Eqs. (2.65) and (2.66) have been derived at the second order off.

For details of the derivation for Eqs. (2.64) - (2.66), see Appendix D. Eq. (2.66)

together with tf^o) = 0 and d^ = W^o) at me i0Wer and upper boundaries respectively

result in

tf(0) = zKw . (2.69)
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Substituting the above equation into Eq. (2.65) and differentiating both sides of

the equation with respect to z yields

pzzW = RcrM(°\ (2.70)

We now substitute pzz(2) from the above equation into Eq. (2.64). Therefore, it

yields

1 1 n (0) 1

^(0) - jD-2*2*Prm ~pp7*(p<0).4„pW) - boo2L- +5^»2PW

+^-p =°- (2-71)

Note that p(0) is independent of the coordinate z. By virtue of Integrating the

above equation along the coordinate z, from z = 0 to z = 1 + £2?f(°), an(j taking into

account the boundary conditions (2.67) and (2.68), we derive

(0) 77(l + £2^(°)) f0, n2(l + e2H^) , rirt*V() - v PD2—'-fan™-' y p[)3 LJX(X«>\A2XKW)

-*%(1+e2K™)^ +̂ tff^l^jfOO
/?cr(l+£2^(0))2l2^(0)+^n ^ ^ 2* =0, (2.72)

gu3

where 77 is a constant, approximated to 77 « £ q , and q = -—.

Eq. (2.72) is the equation which governs the deformation of the upper surface. In

order to simplify it, we should pay our attention to the assumption we made which is

e « 1. This assumption leads us to neglect the term £2H^ in the above equation since
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£2jf(o) ~ /i « i This is areasonable conclusion; However, we are inclined to keep this

term in the B term. The reason that makes us to keep e2<K(0) in the 5(0) term, is the

existence of£(0) parameter which has sufficiently large value according to the equation

(2.60). Therefore, Eq. (2.72) simplifies to

(0) n2r (<ir(Q) A„.<u>(&)\ or (0)2£**? - ig.wy1).^,^
PD2 pD3 " -iv- - y D

r)A2X2H(0) RcrA2XH(0)
+"LJP +"2-p =0- (2-73)

where Jf™ *£/l , B™ *£/?,.?* e2q, q== £. , /x(/,5) =/x5k - fYgx,

a2 a2 2 _ o4 a4 , 0 a4
"a*2 + a7^ andZ12^ -^F + iF + zaFaT^-

For the sake of clarity, we henceforth omit the (0) on the variables of the above

equation. Therefore, Eq. (2.73) might be written in the form of

V "2Jx(H,A2XH) By 2Bn n 2
Mr - -£ftiA2x'HT —z ~DKX ~£ -qHHx +-jylA2X H

D

+-£A2XH =0. (2.74)

Eq. (2.14), which governs the upper surface deformation, is akin to the equation

obtained by Tikhomolov in his paper [14].

It is worth pointing out that the nonlinear term J-CtKx plays an important role in

Eq. (2.74). As shown in the next section, by assuming the solution of Eq. (2.74),

K (X,Y,t), in the form of K ( f) where f = X + Y —Xx , the Jacobian term, namely,

Jx(.H>A2XH) vanishes. Therefore, the only nonlinear term remains, will be the term
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£2-jljW{x or equivalently the term £2—KK^. The presence of this term in the above

equation will result in the existence of soliton solution for Eq. (2.74). This term is also

important since it is the only term in the equation which accounts for the cyclone-

anticyclone asymmetry [12] in Eq. (2.74). We keep in mind that the presence of the term

s2^-KKx in Eq. (2.74) emerges from keeping the term e2K(0) in the £(0) term in Eq.

(2.72) due to the large value of theparameter B. Given the relation 5 Co) ~ # we cou\^

conclude the /? effect is the main reason for the existence of the nonlinear term, namely,

the term £2—<K'KX in Eq. (2.74) and as a result of presence of this term in the above

equation, the soliton solution is obtainable. In other words, the /? effect, namely, the

consideration of the sphericity of the rotating layer of fluid, is mainly accountable to the

existence of the soliton solution. However, one might ask what if the p effect is neglected

in the derivation of our governing equation. Nezlin in his book [12], raised this question

and discussed about it. In that case, we should have kept the term e2<K^ in the Jacobian

term of Eq. (2.72). However, it is a far small term in the Jacobian term. As a result, the

term £ K — , namely, the cubic nonlinearity term accounts for the cyclone-

anticyclone asymmetry. However, the method to obtain a soliton solution, makes the

Jacobian term vanish as discussed above. Therefore, the analytical approach presented in

the next section does not cover the case in which the /? effect disregarded.

The other important term in Eq. (2.74) is the diffusion term, namely, the term

R R~yA2XK. As shown in the next section, in the absence of the term -^A2X'K, given the

presence of all other terms in Eq. (2.74), there is no soliton solution for Eq. (2.74). Note
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thatthe existence of convection or equivalently thepresence of heating from below in our

model yields the presence ofthe term -£A2XH. By virtue ofthe existence ofthis term,

the dissipative losses in the vortex structure can be compensated, and as a result, the

presence of -^-A2XK gives rise to the sustenance of the long-lived large-scale vortex

structure [14]. Therefore, we conclude that in the absence of the effect of convection

there is no soliton solution for Eq. (2.74).

In the following chapter, we present the analytical solution for the upper surface

deformation equation, namely, Eq. (2.74).
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CHAPTER 3

ANALYTICAL SOLUTIONS

In recent years, a vast variety of analytical methods has been used and developed

in order to construct exact solutions for nonlinear partial differential equations. These

techniques are such as Riccati expansion method [10], tanh method, extended tanh

method, sine cosine method, auxiliary equation method [8,9], F-expansion method,

Jacobi elliptic method, Exp-function method and so on.

In order to solve Eq. (2.74) analytically, we employ the so-called auxiliary

equation method [8,9] with consideration of the Riccati equation as the auxiliary equation

[10,11]. The auxiliary equation method is a straightforward technique proposed to solve

nonlinear partial equations. [8,9,11].

3.1 Auxiliary Riccati Equation Method

First, auxiliary Riccati equation method [11] is described briefly and then the

method is applied Eq. (2.74), and consequently the solutions will be obtained.

Suppose a nonlinear partial differential equation is of the form:

P(J{, J{T ,J~CX,Hx, J-CTT,3~CXX,3~Cyy •••) = 0, (3.1)
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where K assumed to be dependent on variables X, Yand t and is expressed in the form

ofH(X,Y,r).

In order to solve Eq. (3.1), variable transformation in the following form is

suggested:

H(X, Y, t) = Htf), !;=X + Y-\t, (3.2)

where X is the wave speed.

By using the above transformation, which is so-called travelling wave

transformation, Eq. (3.1) will be changed to an ordinary differential equation in the

following form:

Q(H,M',H",H"',...) = 0. (3.3)

The solution of Eq. (3.3), which is so-called travelling wave solution, is assumed

to be of the form

n

i=0

where the positive integer n can be determined by balancing the highest order derivative

terms and the highest order nonlinear terms in the above equation, dt are unknown

constant coefficients will be determined later and F(£) satisfying the following auxiliary

Riccati equation:

F'(0 = qo + F2(0, (3.5)
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where q0 is a real constant coefficient and F' = —

The general solution of Eq. (3.5) is of the form [12]

TO = Lm y .,, ^ w/ien(70<0, (3.6)

1
F(0= -t. w/ienq0 = 0, (3.7)

1^2 (f) = -V^o cotQq0D,

We now return to Eq. (2.74) and apply the auxiliary Riccati equation method.

3.2 Applying Auxiliary Riccati Equation Method

For the sake of simplicity, we rearrange Eq. (2.74) in the form of

KT - aA2XWr - eJx(H,A2XH) - bHx - £2bKHx + PaA2X2K + cA2XK = 0 (3.9)

where a = —- , b = —- , c =-^ , e = -jr: , n * e q, q = -— and P is the Prandtl
PD2 D D2 PD3 ' ~i> ~i VK

number. Note that it is assumed all a, b, c, e and P take positive values in the above

equation.

We seek to transform Eq. (3.9) into an ordinary differential equation. Therefore,

we employ variable changing proposed by Eq. (3.2) and as a result, Eq. (3.9) transforms

into the following equation:

(-X - b)W + 2aX<H'" - £2bHH' + APaH"" + 2cH" = 0 , (3.10)
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where W =SL, H" =£g, W" =^ and «"'" =^

Note that by virtue of the transformation presented in Eq. (3.2), the Jacobian term

has vanished in Eq. (3.10). For details of the derivation for Eq. (3.10), see Appendix E.

Integrating Eq. (3.10). with respect to f results in

„ 'K2
{-X - b)K + 2aX'H" -£2b — + 4PaW" + 2cK' = A, (3.11)

where A is a constant of integration.

In order to determine the constant A, we make the following assumption:

as f -> oo : ft -> 0 , K' -» 0, X" -» 0 and W" -> 0. (3.12)

By virtue of the above assumption, Eq. (3.11) is of the form

„ K2
(-A - b)K + 2a/OT" - £2b—- + 4PaK"f + 2cH' = 0 . (3.13)

According to the auxiliary Riccati equation method explained above, it is assumed

that the solution of Eq. (3.13) is of the form

71= 3

K(0 =£ dtFKO =d0 +d.FiO +d2F2(0 +d3F3(0 . (3-14)
;=o

where d0 ,d1, d2 and d3 are unknown constant coefficients and will be determined later.

The positive integer n in Eq. (3.14) was determined by balancing the highest

order derivative terms and the highest order nonlinear terms in Eq. (3.13) as follows

[8,10]:
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0

0
drK

drtK

= n + r

H>
afrJ

= sn + r

0
d3K

df3

0[H2] = 2n

= n + 3
n + 3 = 2n =>n = 3 (3.15)

GivenEq. (3.14), we obtain the following expression for K2:

W2 = d02 + 2d0d±F + {d2 + 2d0d2)F2 + (2d0d3 + 2d1d2)F3 + [d2 + 2d1d3)F4

+ 2d2d3F5 + d32F6. (3.16)

We now differentiate both sides of Eq. (3.14) with respect to f and use the Riccati

equation, namely, Eq. (3.5). Therefore, we obtain the following expressions for J-C':

K' = d^Q + 2d2q0F + (d± + 3d3q0)F2 + 2d2F3 + 3d3F' (3.17)

In the same fashion, we obtain the following expression for H" and 0-C'

H" = 2d2q02 + (2d±q0 + 6d3q02)F + Sd2q0F2 + (2d1 + 18d3<70)F3 + bd2F4

+ 12d3F5, (3.18)

X'" = 2d1q02 + 6d3q03 + 16d2q02^ + (8di<7o + 60d3q02)F2 + 40d2q0F3

+ (6di + 114d3c70)F4 + 24d2F5 + 60d3F6. (3.19)

Substituting H, K\ X", H"' and X2 from Eqs. (3.14), (3.16), (3.18), (3.19) and

(3.16) respectively into Eq. (3.13), and setting each coefficient of Fl (0 < i < 6) to zero,

yields seven equations as follows:

(-A - b)d0 4- 4aXd2q02 -^2d02 +SPad^o2 +24Pad3q03 +2cd1q0 =0, (3.20)

(-A - b)d± + 2aX(2d1q0 + 6d3q02) - b£2d0d1 + 64Pad2q02 + 4cd2q0 = 0, (3.21)
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b 2
(-X - b)d2 + 16aXd2q0 ~-£2{dx + 2d0d2) + 4Pa(8d1g0 + 60d3q02) + 2c(d1

+ 3d3q0) = 0, (3.22)

(-A - b)d3 4- 2aA(2dx + 18d3g0) - b£2(d0d3 + d±d2) + 160Pad2q0 + 4cd2

= 0, (3.23)

12aAd2 --£2(d22 + 2did3) + 4Pa(6d1 + 114d3q0) + 6cd3 = 0, (3.24)

24aAd3 - b£2d2d3 + 96Pad2 = 0, (3.25)

b o 2--£2d3 + 240Pad3 = 0 . (3.26)

We solve the above set of equations with the aid of Maple 15. Consequently, 10

sets of solutions have been obtained. In order to see all 10 sets of solutions see the

Appendix F. It is worth noting that our interest is only in those sets of solutions in which

q0 < 0. Strictly speaking, we seek hyperbolic travelling solutions since only those

solutions are considered soliton solutions. As indicated in Eq. (3.6), the hyperbolic

function solutions exist when q0 < 0. Therefore, the sets of solutions in which q0 > 0

have been disregarded. Additionally, we also seek those sets of solutions for the above

system of equations that do not contradict the assumption made in Eq. (3.12). Therefore,

we present here the sets of solutions that satisfy both q0 < 0 and the assumption

indicated in Eq. (3.12). The only set of solutions for the above system of equations that

satisfies the two aforementioned requirements is the fifth set of solutions. The fifth set of

3c
solutions with the assumption that — < 1 , after some algebraic manipulations is as

follows:
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15c 2c c 120 , a
do = "IT "5" ' dx = -60 — , d2 = TZ^2?ac > d3 = 480P — ,

£2b JPa £2b £2b £2b

Qo =
8Pa

\2Pc
, X= -4 I , ab2

a

(3c \2=32Pc(—-lj . (3.27)

3c 3/?Note that the assumption — < 1 or equivalently —y < p is a reasonable

assumption due to the definition of Pcr in the equation (3.59). Note that it is assumed

D » 1.

Given Eqs. (3.6), (3.14) and the above set of solutions, the solutions for K are of

the form

, % 15c 2c 15c 2c / / cjf(f) = +__ + tanhl ^
vw £2bJPa £2bJPa W8Pas

or:

15c 2c / r"c~ V

£2bJPa \\8Pas/

15c 2c ( \ c
£2b APa

15c |2c 15c |2c / j~c~ \ 15c 2c
It^ + ^tt- Iz^cothl /•=-=—f I —tt l^^cothWtf) = + £2bJPa £2bJPa 8PcT/ £2bJPa

15c 2c / rc~ x

SPa

(3.28)

SPa

(3.29)

For the sake of brevity, we henceforth stick with the solution (3.28). Given the

travelling wave transformation defined in Eq. (3.2), the value for X and the
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constraint ab2 = 32Pc I 1J obtained in the fifth set of solutions, the solution (3.28)

is of the form

1 15c 1 15c / rc~ 2Pc

1 15c / [~c~ \2Pc
tanhl i-^*x+Y+4 ' T

{>-**)

tmh{-^(x+Y+4i^T4(P-|c)

3c
As mentioned above it is assumed that — < 1 . Let us now plug the values of a,

b and c, defined in Eq. (3.9), in Eq. (3.30) and the constraint ab2 = 32Pc (— —lj .

Therefore, the solution (3.30) and the constraint are of the form

1 15rtrr 1 15/vrr / \rirr I l^^rr

K J s22(2PD2-3Rcr) e22(2PD2-3Rcr) I J 877 '

tanh Mjf +y+4pfee22(2PD2-3Rcr) \ J 877

tanh\ feu +y+4pp:T [3.3:
£2 2(2PD2 - 3Rcr)

with the constraint 5772 =4yj2Rcr D(p - ^fj.
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It is worth noting that the above solution satisfies the assumption made in Eq.

(3.12). In order to obtain the expression for h(x,y, t), we infer the relation h(x,y, t) «

£2<K{X, F,t) from Eq. (2.56). Given the transformation defined in the Eq. (2.54) and the

relationship B « —/? obtained from Eq. (2.60), the solution (3.31) and the constraint are

approximated to

15/\CT- 15/\cr / l^cr I lifterKx. y, t) =2(2pp2 _3Rcr) +2{2pD2 _3flcr) tanh —«lx +y+4Pe — t

LDKcr I \"cr I . „ l^^cr
tanh —— £ x + y + 4Pf 1

2(2PD2 - 3Rcr) \ 1Btj \ J J 77

lbi\/-T- _ I \tirr I I^^CV
tanh\ -^-£\x + y + 4Pe ——t\\, (3.32)

2(2PD2 - 3Pcr) I/817 \ ' J 77

— t 1 / 3R \ i 0H3with the constraint ^772 = 4£3>/2Pcr D(P y), where 77 « £2q and q = — .

Let us now substitute 77 with £2q thus, £ vanishes from the above solution and the

constraint. Therefore, the solution (3.32) is of the form
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15Pcr 15Pcr , / Rcr 2Rcr
Kx'y't) =2(2PD>-3Rcr) +2(2PD*-ZRcr)tanh[ sf *+?+4P "f«

15fi- tanfc M,+y+4P^£
2{2PD2-3Rcr) \ 8q

\.ot\Cr I \**cr I l^'^cv
____tan* _ , + y + 4P —t , (3.33)

with the constraint Pq* =4y/2Rcr d(p-^7) , where q=^ and Pcr «
4

8.6956D3 as D -> 00

The above solution with the constraint is one of the soliton solutions for Eq.

(2.74). One ofan important coefficients in the above solution, /—, namely, the so-called

pumping rate, arising from the existence of convection, to replenish the dissipative losses

in the long-lived large-scale vortex structure [14]. The presence of the constraint in the

above solution can be interpreted in a way that the balance between the dissipative losses

and the heating energy from which the deformation of the upper free surface arises,

requires the coefficient of terms in Eq. (2.74) meets the above constraint in order to have

the above solition solution to account for the sustenance of the vortex structure. It is

worth noting that the existence of the constraint is a feature inherent in Eq. (2.74) and

cannot be avoided.

In our model, it is assumed that D » 1. Also, one can see the above solution

PD2 R
works well if — » 1 or —-5- « 1 . For sufficiently large values of D, Rcr might be

Rcr PD
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4-

substituted with the asymptotic expression from Eq. (2.62), namely, Rcr « 8.6956£>3 .

PD2
Given D » 1 , we notice that the relationship — » 1 is reallysatisfied.

Per

One also can see from the constraint that if /? = 0, the constraint will not be

satisfied anymore due to the assumption -^ « 1 . Therefore, as discussed in the

previous chapter, in the case p = 0, there is no solution for Eq. (2.74).

4

Byvirtue of substituting Rcr with the expression 8.695603 for sufficiently large

value of Z), the solution (4.33) and the constraint are approximated to

15 15 / 2 1/ 21h(x,y,t)= 2 + 2 tanh\ 1.04257D3 -[ x+y + 16.6811P03 \-t
0.46PD3-6 0.46PD3-6 \ <q\ \N

—2 tanh\ 1.04257D3 (-( %+y+16.6811PD3 \-t
0.46PDI - 6

2

-2 tanh[ 1.04257D3 (-( x+y-I- 16.6811PD3 |-t ] ) , (3.34)
0.46PD3 - 6

with the constraint /?«2 =16.6811 Di(p - 13.0434D~3") , where q= — , D=

2nsin^! p =v p=_Po!L_ and ft = 2£cos^o
v k 'r 2/2 sin 0O r0

It is worth mentioning that the solution (3.34) and the constraint are valid for

3

sufficiently large values of D. It can be inferred from the solution (3.34) that if P2D >

6245 the solution (3.34) yields h « 0.1. As discussed above, we should keep in mind

that the solution (3.34) works well for sufficiently large values of D. However, it can be
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also seen from the solution (3.34) that if D -* oo the perturbation approaches to zero and

there is no soliton solution for Eq. (2.74), which is expectable since the larger the value

of D, the greater the value of Rcr, and as a result, the onset of convection will be

precluded as D -> oo. Therefore, the deformation of the upper surface due to convection,

will be obviated in the case D -» oo. The assumption D -> oo can be as a result of an

increase in the angular velocity H. Therefore, it can be also inferred that an increase in H

gives rise to the inhibition of the onset of convection discussed by Chandrasekhar in his

paper [1].

As discussed in chapter 2, the existence of convection in our model yields the

presence of the diffusion term -^A2XH in Eq. (2.74). Therefore, we can see as D -* oo,

the diffusion term -r^A2XK, can be neglected in Eq. (2.74), which means there is no

source of energy to compensate the dissipative losses in the vortex structure. Therefore,

in the absence of the diffusion term -sjA2X'K, the solution (3.34) for the deformation of

the upper free surface does not work as a soliton solution for Eq. (2.74) and the constraint

also is not met since the constraint is a balance needed between heating energy and

dissipative losses in order to have the above soliton solution. In the next section, we use

the Jovian data as an example and present the results based on the solution (3.34) and the

constraint.

39



CHAPTER 4

RESULTS

The sustenance of vortex structures in the Jupiter is a puzzling phenomenon. It is

proposed that the Great Red Spot of Jupiter is a Rossby solitary vortex [12,13]. The

hyperbolic traveling solution, which is a soliton solution obtained in the previous chapter,

can be applied to the case of the Great Red Spot of Jupiter. Therefore, in this chapter, we

employ the Jovian parameters as an example case for our solution, namely, the solution

(3.34). The following Joviandata is used for the rest of calculation [14,15,24,25]:

o cm2 1
v * 108 ,/c<v=»l<P, a « 0.01 - , 0 * 10K

s K

a ra-d
n » 1.76 x 10-4 , d0 « 22 => 2/2 sin 00 * 1.32 x 10-4 ,

r0 « 69911/cm « 6.9911 x 109cm =» £0 * 4.67 x 10-14 cm"1^"1 (4.1)

Note that 0O « 22 is the latitude at which the Great Red Spot of Jupiter exists and

v is the effective turbulent viscosity for the Jovian atmosphere.

As explained in chapter 3, In order to obtain acceptable results from the solution

(3.34), the constraint flq* =16.6811 Dz(p - 13.0434D~l) has to be satisfied.

Additionally D has to adopt sufficiently large value. Therefore, we need to determine the
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depth of our model, namely, //, in a way that meets the foregoing requirements. Given

the above Jovian data, it can be inferred that // * 3 x 105 m or // « 300km. This value

4

for H yields D » 1200 and also meets the constraints if P * 10, and q ~ qcr ~ ~—"—•

Therefore, for the rest of our calculation, P and H are set to 5 and 3 x 105m

respectively. It is worth noting that different models adopt different depth for the Great

red spot of Jupiter. In some shallow water models, the thickness has been set to be about

25 km [12] and in some other models it is on the order of several hundred kilometers

[24]. In fact, the depth of the rotating fluid layer fluctuates. It is important that the value

determined for H is much less than the horizontal dimensions of the Great red spot of

Jupiter. As a result, the vortex is still considered in the Rossby regime [12] and the quasi-

geostrophic approximation used in the section (2.3) is valid.

Substituting the Jovian data in the solution (3.34), the perturbation h(x,y, t) is of

the form

h(x,y,t) = 0.0595 + 0.0595 tan/i(0.1118(x+ y+ 8.94434t))

-0.0595 tanh(0.1118(x +y+8.9443t))2

-0.0595 tan/i(0.1118(x +y+8.9443t))3. (4.2)

The horizontal size of the Great Red Spot of Jupiter, which is known as

12000/an x 25000/cm [12], needs to be transformed to the non-dimensional size

according to Eq. (2.25). Therefore, —20 < x < 20 and —41.6 < y < 41.6. In the same

fashion, according to Eq. (2.25), it can be obtained that t = 1 corresponds to 1.43 year.
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As illustrated in the following figures the perturbation h decays when t = 10. In

other words, after about 14 years the perturbation decays.

(a) (b)

Figure 4.1 The time evolution of the perturbation h = (x,y)

As the figures 5.1, 5.2 and 5.3 illustrate, the period of time needs to decay the

perturbation h(x,y) is much less than the period of time over which the vortex structure

of the Great Red Spot of Jupiter has existed. The discrepancy between the time period

obtained and the age of the Great Red Spot of Jupiter might be due to neglect of the

effects of zonal flows on the Jovian vortex structures in our model since it has been

proposed that the zonal flows might also give rise to the uniqueness and localization of

the long-lived vortex structure of the Great Red Spot of Jupiter [12,14].
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(0) jfM where v = e2 X«»*>±h, X= ex, Y= sy, ±^±+e± and
£z dx dx dX

a a a

-—> —+ £—, we inferthe following equations for u(0), i;(0) and w(0):

u(°) = -^,«-r
D

Py
£ dp (o)

D dY D Q dY

q dh

D dy '

w(°) = o

£ dpw £3 dHw q dh
D dX ~D q dX ~D ~dx '

(4.3)

(4.4)

(4.5)

It is already discussed that in order to meet the constraint in the case of the Great

Red Spot of Jupiter, q ~ qcr ~ ~^z—• Therefore, q needs to be substituted with qcr in
aO

Eqs. (4.3) and (4.4). The results are as follows:

-10

(a)

Figure 4.4 The time evolutionof the non-dimensional mean u^°\ (a) the 3D u(0) at t = 0,
(b) a cut at x = 0.
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-10

(a)

Figure 4.5 The time evolutionof the non-dimensional mean u(0), (a) the 3D u(0) at t = 1,
(b) a cut at x = 0.

-10

(a)

Figure 4.6 The time evolution of the non-dimensional mean u^°\ (a) the 3Du(0) at t = 2,
(b) a cut at * = 0.

v/m t=3
10-\

-15

(a)

Figure 4.7 The timeevolution of the non-dimensional mean u(0), (a) the 3Du(0) at t = 3,
(b) a cut at * = 0.
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(a)

Figure 4.8 The decaying of the non-dimensional mean u(0), (a) the 3D u(0) at t = 8,
(b) a cut at x = 0.

(a)

U(0)

0.1

0.05

0

-0.05-

t=10
t 1 r

J I L0.1
-40 -20 0 20 40

y

(b)

Figure 4.9 The decayingof the non-dimensional mean u^°\ (a) the 3D u^ at t = 10,
(b) a cut at * = 0.
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(b)

Figure 4.10 The time evolutionof the non-dimensional mean v(0), (a) the 3D i?(0) at t = 0,
(b) a cut at x = 0.

(b)

Figure 4.11 The time evolution of the non-dimensional mean v^°\ (a) the 3Di/°) at t = 1,
(b) a cut at x = 0.

(b)

Figure 4.12 Thetime evolution of the non-dimensional mean v^°\ (a) the 3Di/°) at t = 2,
(b) a cut at x = 0.
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(b)

Figure 4.13 The time evolution of the non-dimensional mean v(0), (a) the 3D v(0) at t = 3,
(b) a cut at x = 0.

yW t=S
I T 1

0

-0.2

-0.4

r

i i i

-40 -20 0 20 40

y

(b)

Figure 4.14 The decayingof the non-dimensional mean i?(0), (a) the 3D v(0) at t = 8,
(b) a cut at x = 0.

yW t=10
10-

0-

0.1

0.05

0

-0.05

-0.1

t=10

J I L

-40 -20 0 20 40

y

G>)

Figure 4.15 The decaying of the non-dimensional mean v^°\ (a) the 3D v^ at t = 10,
(b) a cut at x = 0.
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CHAPTER 5

DISCUSSIONS

We have derived an equation which governs the evolution of large-scale

perturbations in a large-scale long-lived rotating layer of fluid heated underneath. The

soliton solutions, namely, the hyperbolic travelling solutions have been obtained for the

deformation equation, one set of which is our interest and accounts for the sustenance of

Rossby vortex in our mathematical model. The effect of all terms in the deformation

equation, namely, Eq. (2.74) has been examined. There are two nonlinear terms including

the B term or £2 —KKX and the Jacobian term, namely, JX(JK, A2XK) in Eq. (2.74). By

virtue of the variable transformation employed, the Jacobian term has vanished.

Therefore, the only nonlinear term remains in the equation, is the term £2—KKX,

emerging from the existence of the so-called beta effect, namely, the consideration of the

sphericity of the rotating layer of fluid, in the system of governing equations. We have

shown that the nonlinear term £2 —HHX accounts for the existence of soliton solutions

for Eq. (2.74) and as a result, give rises to the sustenance of the vortex structure in our

model. The term £2 —HKX also accounts for the cyclone-anticyclone asymmetry in Eq.

(2.74).
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It can also be inferred from the solution (3.33) or (3.34) and the constraint, in the

case B or /? is set to zero, or in the absence of the nonlinear term £2—HHx in Eq.

(2.74), there is no soliton solution for Eq. (2.74).

In order to obtain soliton solutions in the absence of the nonlinear term

£2-^HHx, the term £2K - xpg32*—, namely, the cubic nonlinearity term would have

to be kept in the equation (2.72). However, the variable transformation employed, makes

the Jacobian term vanish and as a result, the cubic nonlinearity term disappears as well.

Therefore, the soliton solution obtained excludes the case in which the beta effect

disregarded. The effect of the cubic nonlinearity term in the absence of the beta effect can

be examined in future work by a different analytical method.

It has been shown that the existence of convection or heating energy from below

yields the presence of the diffusion term -^A2XH in Eq. (2.74). The diffusion term

-j^-A2XH replenishes the effect ofthe dissipative losses inherent in the long-lived large-

scale vortex structures. It can be inferred from the solution with the constraint obtained

D

that in absence of the diffusion term -£^A2X'K, given all other terms exist, there is no

soliton solution for Eq. (2.74) and as a result the deformation does not exist.

The diffusion term -r^A2X0-C, emerging from the existence of convection or

heating energy from below, contributes to the presence of an important coefficients in the

//?
solution, /—, namely, the so-called pumping rate for generation of a large-scale

disturbance to replenish the dissipative losses in the vortex structure [14]. In fact, the
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ft

diffusion term -^A2XH, contributes to the destabilization of Eq. (2.74) or the

deformation of the upper free surface and as a result, accounts for the sustenance of the

long-lived vortex structure. However, the other diffusion term in the equation (2.74),

namely, —A2XK and also the dispersive term, namely, ——A2XJ-Cr play a different role

and contribute to the stabilization of Eq. (2.74) and as a result, accounts for decaying of

the perturbation or deformation. Consequently, in order to have a soliton solution for Eq.

(2.74), which accounts for the sustenance of the vortex structure, as one can see from our

solution, It is required to maintain a balance between heating energy from below and the

dissipative losses. The foregoing balance yields the constraint obtained. In principle, the

constraint is an intrinsic feature of Eq. (2.74) and cannot be neglected.

ft

In conclusion, there are two terms, namely, the diffusion term -^-A2XK and the

nonlinear term £2-^-HHx in Eq. (2.74) that account for the sustenance of the vortex

structure and there are the other two terms, namely, the other diffusion term \A2X2tK

and the dispersive term j^A2XKT that account for the decaying of the vortex structure.

The solution with the constrained obtained works well for sufficiently large

values of D, where D is the reciprocal of the Ekman number E. However, one can see

from the solution that as D -> oo the perturbation approaches to zero and there is no

soliton solution for Eq. (2.74). In other words, the deformation of the upper surface due

to convection, will be precluded in the case D -* oo, which corresponds to the absence of

convection already discussed above. It can be also inferred from the solution that an
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increase in the angular velocity H gives rise to the inhibition of the onset of convection

discussed by Chandrasekhar in his paper [1].

Finally, it has been of our interest to apply the solution obtained to the case of the

long-lived large-scale vortex structure of the Great Red Spot of Jupiter. The results

obtained for deformation of the upper surface h(x,y) is close to the ID results obtained

numerically by Tikhomolv in his paper [14]. The only discrepancy is in amplitude of h

due to the use of different data for the non-dimensional parameters. By virtue of

obtaining h and the existence of the relationship between h and the averaged dominant

terms of non-dimensional components of the velocity fields, namely, u^°\ v^ andw^°\

The discrepancy between the time period obtained and the age of the Great Red

Spot of Jupiter might be explained due to the effects of the zonal flows on the Jovian

vortex structures, whose effects have not been taken into account in our model. It has

been proposed that the presence of zonal flows might have effects on the uniqueness and

localization of the vortex structure of the Great Red Spot of Jupiter [12,14]. It is obvious

that our model is not yet a complete model in order to fully describe the vortex structure

of the Great Red spot of Jupiter. However, our model and the solutions obtained are

capable of presenting the correlation between the heating of the fluid motion from the

lower layers, which is one of the fundamental features of the Great Red spot of Jupiter

[14], and the sustenance of the vortex structure.
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CHAPTER 6

CONCLUSION

The system of equations for a large- scale long lived rotating layer of fluid with

the deformable upper free surface and non-deformable lower free surface has been

reviewed and derived. The quasi-geostrophic approximation, the beta effect and the

method of multi-scale expansions have been employed to simplify the system of

equations and boundary conditions and as a result an equation governing the evolution of

large-scale perturbations, has been derived. The effect of each term present in the upper

surface deformation equation has been analyzed and the analytical solutions have

obtained by virtue of employing auxiliary Riccati equation method [11]. The soliton

solutions obtained for the deformation of upper surface, namely, h(x,y) contributes to

the sustenance of the vortex structure of the long-lived rotating layer of fluid due to the

existence of two terms namely the nonlinear term or the so-called beta effect and the

diffusion term resulted from the presence of heating energy from below.

The solution obtained, has been also applied to the case of long-lived vortex

structure of the Great red spot of Jupiter and the results for the large-scale perturbations

and averaged dominant terms of non-dimensional components of the velocity fields have

been presented.
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APPENDIX A

The Static Solutions for Governing Equations

Given Eqs. (2.4) - (2.8), we obtained Eqs. (2.11) and (2.12) as follows:

V-^ =g+gaTsk, (A.l)
HO

ATs = 0. (A.2)

By taking curl of both sides of Eq. (A.l) and using the relation that the curl of the

gradient is equal to zero we have

dTs dTs

In other words, Ts depends only on the vertical coordinate z. Given Eq. (A.2), we

conclude that Ts is of the form

Ts = -llZ + l2f (A 4)

where l± and l2 are constants and can be determined by applying the boundary conditions

(2.9) and (2.10) in the absence ofperturbations at the boundaries as follows:

atz = 0: Ts-T0 = Tb => l2 = Tb + T0, (A.S)

atz = H: TS-T0 = TU => i1=-L_"=- (A6)
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Assuming l± as a positive value implies that the fluids heated from below and

therefore, the static temperature at the lower boundary is higher than the one at the upper

boundary. Given Eqs. (A.4), (A.5) and (A.6), Ts is of the form

Ts = -jjZ + Tb + T0, (A.l)

where 0 = Tb —Tu

By substituting Ts from the equation (A.7) into the equation (A.l), we obtain

Po
= 9 a(--z+Tb +T^j-l\k. (A 8)

It can be inferred from the above equation that ps depends only the vertical

coordinate z. Therefore, Eq. (A.8) changes to the form of

1 dps

Po dz
= 9 a(--z +Tb+To}-l (A.9)

Integrating the above equation from 0 to z, given that at z = 0 : ps = pb , we

have

Ps = Pb~ Po9
0 7a—zz -a(Tb-rT0)z + z (A. 10)
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APPENDIX B

The Derivation of the Equations (2.47) - (2.49)

We substitute w in Eqs. (2.37) and (2.38) by w(0) from Eq. (3.43). Therefore, we

obtain

1 du 1 , v Pv 1

1 9v 1 , . ,, „ „ Tpy 1

a2 a2 a2

where ^ = 1 1
dx2 dy2 dz2

Taking derivative of Eqs. (B.l) and (B.2) with respect to y and x respectively,

and subtracting Eq. (B.l) from Eq. (B.2), we obtain

1 1—(vxt - uyt) +—[ux{yx - uy) +u{yx - uy)x +vy[yx - uy) +v(yx - uy)y
1

+ux +vy +Py(ux +vy) +pv =tjA(vx - uy) . (B. 3)

Given Eqs. (2.44) and (2.45), we conclude

1 1v<Mx - u<Vy =- (pxx +pyy) =qA2P, (B. 4)

u a d2 d2
where A2 = — + —

6 dx2 dy2
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Approximating vx —uy , u and v in Eq. (B.3) by v^x —u(0)y , u^ and v^

from Eqs. (B.4), (2.44) and (2.45) respectively, yields

1 . 1 [/ n^zP PyA2Px , P;APy
pD2 *rt pj) \} x yJ D D2 Q2 +(l +py)(ux +vy)+p^

Jl^WaP). (A 5)

By virtue of using the continuity equation (2.41) and the assumption (3y « 1 from

Eq. (2.3), Eq. (B.5) reduces to

Px

D D'

1 1j^(A2pt-wzA2p) +—
PXA2Py PyA2Px

D- D'
-wz + p^ = -^A(A2p). (B.6)

We now use the assumption that wzA2p « A2pt. Hence, Eq. (B.6) simplifies to

11 Px 1J^AiPt +jfi3-J(p,A2P)-wz+p— =-^A(A2p),

where J(f,g) = fxgy - fyg>

Eq. (B.7) might be written in the form of

1 1 , . „ Px 1 2 1Wz-pJpAlPt-pfisJ&AlPl-p-Q +-02*2 P+^2^2Pzz =0,

2 a4 a4 34
where 4? =^-r + ^-r + 2

2 a*4 ay4 a*2ay2

(B.l)

(B.8)

The Eq. (B.8) is exactly same as Eq. (2.47). Eq. (2.48) is easily derived from Eq.

(2.43) by projecting Eq. (2.43) onto the z-axis. Therefore, we derive

Pz = RT. (B.9)
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It is worth noting that Eq. (B.9) is akin to the hydrostatic equation commonly used

in geophysical fluid dynamics [19].

In orderto derive Eq. (2.49), u and v in Eq. (2.40) are substituted by u(0) and 17(0)

from Eqs. (2.44) and (2.45) respectively. Hence, we obtain

dT 1, ,
fo+piPx Ty ~Py Tx) +wTz-w =AT. (B. 10)

We substitute w in the nonlinear term of the above equation by w^ from Eq.

(2.46). However, w in the linear term might be kept. Therefore, Eq. (B.10) is of the form

dT 1-^ +-J(p,T)-w = AT, (5.11)

or:

1
Tt +pip, T)-w = A2T +Tzz. (B. 12)
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APPENDIX C

The Derivation of the Equation (2.55)

Let us rewrite the transformation (2.54), proposed to define the slow variables, as

follows:

X = £x, Y = ey, r= £2t, (C.l)

or:

dX _ dY dr _ 2
dx ' dy ' dx

We now define an arbitrary function F, where F —F(x,ytt,X,Y,x).

Differentiating F with respect to x, y and t yields

dF _dF dXdF dF dF _/d d\
~dx~~dx+^x^X ~~dx +£~dX~ \dx +£dx)F' (C-3)

In the same way, we obtain

dF (d d\ ,„ ,_

dF (d 7d\ ^ r^

Let us differentiate both sides of Eq. (C.3) with respect to x. Therefore, Eq. yield
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d2F _ a /dF dF\_d2F dX d2F d2F dXd2F
l^~fa\fa +£dx)~l&2 + ~dx"dXdx'^£~dx~dX*^fadX2' (C-6)

or:

d2^_d2F_ d2F 2(^F__(d2 d2 2d2\
^~Ix^+2£dx^X +£ o^~\dx^ +2£^x~dX +£ dX*)F' (C'7)

In the same way, we obtain

d2F _(a2 d2 2d2\
W\P?+2£^ydy +£ dY^)F' (C-8)

The Eqs. (C.7) and (C.8) result in:

( d2 d2 \
A2F = A2F + 2£ —— + —— F+ £2A2XF, (C.9)\dxdX +dydYj F+

a2 a2 a2 a2
where A2 = —— + -—r and A2X = —-? + ——

z dx2 dy2 ZA dX2 dY2

Let us now differentiate both sides of Eq. (C.7) with respect to x. Therefore, Eq.

(C.7) yields

d3F d3F dX d3F d3F dX d3F , d3F 0dXd3F
= 1 h 2f \-2£ h £2 V £2 (C 10"!

dx3 dx3 dxdXdx2 dx2dX dxdX2dx dxdX2 dxdX3^' J

or:

d3F _d3F d3F 2 d3F 3d3F
~dx^~I^3 + 3£dxTdx + 3£ d^dx2 +£ dx3' (c"n)

or:
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d3F _ (d3 d3 2 d3 3 d3\
dx3 " [dx3 +3£ dx2dx +3£ dxlix2'+ £ ax3"; F' (c'12)

In the same way, we obtain

d3F (

dy3 \dy3 +3£ dy2dY +̂ dydY2 +£* dY3) F' (C"13)

By virtue of differentiating both sides of Eq. (C.l 1) with respect to x, we obtain

d4F d4F dX d4F d4F dX d4F , d4F ndX d4F
- + -t—zttz 5 + 3f - rrrr+ 3g-r—rrrr= o + 3f2 ^ „_.„ + 3£2-

dx4 dx4 dxdXdx3 dx3dX dxdX2dx2 dx2dX2 dx dX3dx

9 d4F dXd4F

or:

d4F d4F d4F m d4F „ 54F . a4F
+ ^17^+6^,^3^ + 4^-—+ £4—, (C.15)

a*4 a*4 d*3d* a*2ax2 a^ax3 ax4'

or:

a4F
+ 4f^^+6E^^—. + 4^——, + f4—- F. (C.16)

a*4 \a*4 dx3ax dx2dX2 dxdX3 dX4

In the same fashion, we obtain

d4F _ / a4 a4 2 a4 3 a4 4 a4 \
a7"w +4£a7aF +6f ay2ar2 +4£ a^aF3""^^ ay^)F' (C-17)

#4^

Given Eqs. (C.7) and (C.8), the term is of the form

d4F (d2 a2 , d2\( a2 a2 , a2\
a^2ay2 \ax2 a^ax dX2J\dy2 dydY dY2
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or:

d4F a4 a4 „ a4 a4
+ 2£ z — „.. + £2^^^TTT+ 2£ + 4£'dx2dy2 \dx2dy2 dx2dydY dx2dY dxdXdy2

+ £

axaxayar

+ 2f: + £
axaxav2 " " dx2dy2 ' "~ dx2dydY ' "* axw2,

Given Eqs. (C.l6), (C.l7) and (C.l8), we obtain the following equation:

a4 , a4
- + 2f3-

ASF = Al + £\dx3dX ' dy3dY
a4 a4 \

- + •= ^..l + 6f2
a4 a4

+
dx2dX2 dy2dY2

a4 a4

\dxdX3 dydY3) \dxdy2dX dx2dydY

F, (C. 19)

+ 2£' + 4-
a4 \

+ l + 4g3
dy2dX2 dxdydXdY dx2dY2

F,+ £4*2x2

+dydX2dY dxdXdY2J

(C.20)

a4 d4 , n d4 , J 2 a4 . a4 . „ a9 a4 a4 •a4
and^oy =:r-r + r-r+2where 21/ = — + — + 2

dx4 dy4 dx2dy2 ax4 av4 ax2av2
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APPENDIX D

The Derivation of the Equations (2.64) - (2.66)

Starting with Eq. (2.48) and rewriting it as follows:

Pz = RT. (D. 1)

We substitute Eqs. (2.57), (2.59) and (2.61), which are corresponding to the

temperature, pressure and the Rayleigh number expansions respectively, into the above

equation. Therefore, Eq. (D.l) is of the form

—(PC°) +epW +£2p& +e3p(3) +... ) =(^ +£2/?2)£2^(0) +£dHl) +£2^(2) +...)(/). 2)

where p(0) is of the form p(0) (X, V, t).

Eq. (D.2) results in

pz(0) = 0, at the leading orderor e° (D. 3)

pz(1) = 0, at thefirst order or £x (D. 4)

pz(2) = Rcrfi^ at the second order or £2 (D. 5)

pz(3) = flcrtf(1) at the third orderor £3 (D. 6)

pz(4) = Rcr-9{2) + /?2i9(0) at the fourth order or £4 (D. 1)
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Eq. (D.5) is exactly same as Eq. (2.65). Eq. (C.4) implies that p(1) is independent

of the vertical coordinate z and is of the form p(^(X,Y,x,y,T,t). For the sake of

simplicity, we now assume that p(1), same as p(0), is just dependent of the slow

variables. Therefore, p(1) might be in the form ofp^(X, Y, t) .

Also, from Eq. (2.57) it is assumed that d{Q) = d^(X,Y,z,T). Thus, it can be

inferred from Eq. (D.5) that p(2) is ofthe form p^2)(X, Y, z, t).

Given the upper boundary condition at which p = qh and T = h, let us substitute

the deformation, temperature and pressure expansions presented by Eqs. (2.56), (2.57)

and (2.59) respectively into the above boundary conditions. Therefore, it results in

atz = 1 4- £2KW: p^(X,Y,x) = nKw , i9(0) = Hw , (D.S)

atz= l-r£2Kw: p{1)(X,Y,T)=n^1\ i9(1) = K(1), (D.9)

atz = l + £2KW: p{2)(X, Y,z) = nM& , tf(2) = ?f(2), (D. 10)

where 77 is a constant, approximated to n « £2q , and q = -— .
VK

It might be inferred from Eqs. (D.8), (D.9) and (D.10) that i9(1) and i9(2) are just

functions of the slow variables same as -d^°\ Therefore, we can conclude from Eqs. (D.6)

and (D.7) that p(3)and p(4) are only dependent of the slow variables and might be

presented in the form of

p(3) =pW(X)Ytz,T) and p(4) = p{4)(X,Y,z,t) . (D.ll)
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Consequently, p is of the form

p = p(o) (xf Y, t) + £p(1) (X, V, t) + £2p(2) (X, V, z,t) + £3p(3) (X, Y, z,t)

+ £4P(4)(X,V,2,t) + -, (D.12)

Let us now rewrite Eq. (2.47) as follows:

wz-p^^2Pt-j^J(plA2p)-pf +-^A22p+^2A2pzz =0. (D.13)

Employing the transformations presented in Eq. (2.55), we substitute Eqs. (2.58),

(3.59) and (2.60), which are corresponding to the vertical velocity w, pressure and /?

expansions respectively, into Eq. (D.13). Therefore, each term in Eq.(D.13) is of the form

wz =—(£4Ww(XfY,ztz) + £5W(1) + £6WV> + •••), (D.14)

or:

wz = — W{0) (X, Y, z,t) at the fourth order or £4. (D. 15)
dz

It is noted that at the orders lower than the fourth order wz is set to zero.

Given the expansion (D.12) for p and the transformations presented in Eq. (2.55),

the term A2pt is of the form

A2Pt
( a2 a2 \

+ £p^(X,Y,T) + £2p{X)(X,Y,z,x) + £3p& + •••], (D. 16)

a2 a2 a2 a2
where A2 = tt + tt and A2X = —— + ——

1 dx2 dy2 lx dX2 dY2
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Eq. (D. 16) yields

7\ -a

A2pt = £4A2X —pW(X,Y,T) + £sA2X —p^(XlY,r) + .- ,

or:

A2Pt = £4A2XPt(0) (X> Y> t) at t/ie fourth order or £4.

u a d* d2 i a d2 d2
where 42 = tt + ^"T and ^2* = tt + t-7z ax2 ay2 ZA ax2 dY2

(D. 17)

(D. 18)

Given J(f,g) = 7x#y - ^^y and the expansion (D.12) for p, the term/(p,42p)

is of the form

J(p,A2p) =

+£242X J(A+e^) [p<«(X, K,t) +ep^Kx.Y.r) +-]

+ £2A 2X

a2 a2 a2 a2
where 42 = tt + t-t and A2X = —— + ——

z a*2 ay2 ZA ax2 av2

Eq. (D. 19) yields

+ £:

or:

J(p,A2p) = £4/x(p^°^2xP^) at f^e fourth orderor £4,
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whereJx(f,g) =fxgY - fYgx ,A2 =j^ +̂ mdA2X =̂ +̂

Given the transformations presented in Eq. (2.55) and the expansion (D.12) for

pressure, the term A22p is of the form

ayar3/ Vax3y2ax dx2dydYJ \dy2dx2 dxdydXdY dx2dY2J

^{^+̂ hr2)+^A^°KxJ,r) +sP^X,Y,r) +

e2p(2)(X,K,z,T) + £3p(3»+ •••], (D.22)

9 a4 a4 a4 9 a4 a4 a4where2l22=^ +^+2-f— and42/ =:A_ +A_ + 2
ax4 dy4 dx2dy2 ZA a*4 a/4 dX2dY2 '

Eq. (D.22) yields

A22p = £4Zl2X2p^(X,y,T) + £52l2/pWaK,T) + - , (D.23)

or:

A22p = £4A2X2pw(X,Y,r) at the fourth order or £4, (D.24)

2 a4 a4 a4 2 a4 a4 a4
where 42 = —— + --7 + 2 , 9^ , and A2X = •—• + -—• + 2 „ _„ 9

z a^4 ay4 a*2ay2 ZA ax4 ay4 ax2ar2

Given the transformations presented in Eq. (2.55) and the expansion (D.12) for p,

the term A2pzz is of the form

A2Pzz =

+ f2p(2)(Ar,V,z,T) + £3p^(X,Y,z,r) + £4pw(X,Y,z,T) + -].(D.25)
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Eq. (D.25) is simplified to

A2pzz = £4A2XpJ2\X,Y,z,T) + £sA2XpJ3\X,Y,z,T) + -.-, (D.26)

or:

A2Pzz ~ £4rA2Xpzz(2\X, Y, z,t) at the fourth order or£4, (D. 27)

a2 a2 a2 a2
where A2 = —— + —— and A2X = —-r 4- —

z a*2 ay2 ZA ax2 av2

Given the transformations presented in Eq. (2.55), the expansion (D.12) for p and

the expansion for /? from Eq. (2.60), the term fipx is of the form

fe =[£3(B^ +eflCD +...)] (_+£_j [p(o)(^y,T) +£pW0f,y,T) +•••] (D.28)

Eq. (D.28) yields

ppx = £4B^p/°\XtY,r) + £*[BWpx^(X,Y,T) + B^px^(X,Y,r)] + - . (D.29)

or:

Ppx = £4B^pxw(X, Y, t) at t/ie /ourt/i order or £4, (D. 30)

where px =£ and p*(0) =^- .

We now substitute Eqs. (D.15), (D.18), (D.21), (D.24), (D.27) and (D.30) into Eq.

(D.13). Therefore, Eq. (D.13) is of the form

W,(0) "p^W0) -—hV'UvcP™) ~B^+±A2XY»
1

+ •zr2A2Xpzz^ = 0, at the fourth order or £4 (D. 31)
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Eq. (D.31) is exactly same as Eq. (2.64). In order to derive the last governing

equation, Eq. (2.66), let us rewrite Eq. (2.49) as below:

Tt +J}J(P, T)-w =A2T +Tzz. (D. 32)

It is worth noting that from Eqs. (D.9) and (D.10) might be inferred

0(D =d^(X,Y,z,T) and tf(2) = i9(2)(X,V,z,t) . (D.33)

Inother words, i9(1) and i9(1) are only dependent of the slow variables. Given the

expansion equation for T, Eq. (2.57), it might be written in the form of

T= £2[d^(X, Y,z,t) + £d^(X,Y,z,x) + £2dW(X,Y,z,T) + •••], (D. 34)

Given the transformations presented in Eq. (2.55), We substitute T, p and w from

Eqs. (D.34), (D.12) and (2.58) respectively, into Eq. (D.32). Therefore, Eq. (D.32) is of

the form

Gt" +£2^) [^^Ot.Y.Z.T) +£3d^(X,Y,Z,T) +•••]
1 H+££c) bC0)<*y'T> +*V{1)(X,Y,t) -r ...] (±+«±) [£2^\X,Y,Z,T)dy

+ £3dM(X,Y,Z,T) + -]

-(^+^)[p(0)(*^)+^^
+ £3tiW(X,Y,Z,T) + -] -[e4W^(X,Y,z,t) + £5W™ + •••]

[£2^(X,Y,Z,T) + £3d^(X,Y,Z,T) + •••]

+(J^\ [e2d^(X,Y,z,T) +£3d^(X,Y,z,T) +."], (D.35)

( d2 d2 \ .
A2 +2£(i^+wv)+£A2X
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Eq. (D.35) yields

s2 i9zz(0)(X,Y,z,t) +-= 0, (D.36)

or:

$zz = 0 > at t/ie second order or £2 (D. 37)

Eqs. (D.31), (D.5) and (D.37) are exactly same as Eqs. (2.64), (2.65) and (2.66)

respectively.
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APPENDIX E

The Derivation of the Equation (3.10)

Let us rewrite Eq. (3.9) as follows:

Kx - aA2XHr - eJx(K,A2XK) - bKx - £2bKKx + PaA2X2K + cA2XK = 0, (E. 1)

where a=^2 , b=^ , c=^ , e=£3 , n*£2q, q=°£ ,Jx(f,g) =fxgY -
* A d2 a2 , . 2 a4 a4 „ a4fY9x, A2X = — + — zn&A2x =—- + — +2

dX2 dY2 ZA dX4 dY4 dX2dY2

Using the transformation (3.2) results in

dH af d'K

dH df _dM _
J<x-WdX~~df~K' (E'3)

dKx dKx df d(?T)
Wyy = = — = —• = *K" (E 4^xx dX df dX df ' ^mV

dCKxx) d(Kxx) dl d(H")

In the same fashion, the following relations could be easily derived.

If Of qj~ nrtnt or art nr _ nrit
MXXXX — St-XXYY — 'nYYYY ~ ** > Sly — JX , Myy ~ Jt ,

'Kyyx = —XK , KyyX = HXXy = <KXXX = Kyyy = H'" . (E. 6)
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Given the above relationships, A2XHJX(K,A2XK), A2X3iT and A2X2tK are of

the fom

A2xW = Hxx + Wyy —20i", (E. 1)

JX(H, A2XH) = HX(3-CXXy + Hyyy) ~ ^yO^XXX + ^YYx) = 0 > (E> 8)

Aix^t = Hxxt + ^yyx ——2XtK,"t (E. 9)

^2x H = Hxxxx + Hyyyy + ZHxxyy = 4W". (E.10)

Substituting Eqs. (E.2) - (E.10) into Eq. (E.l), yields

-XH' - a(-2XH'" )-bH' - £2bKK' + 4Pa'K"" 4- 2cH" = 0, (E. 11)

or:

(-X - b)H' + 2aXH'" - £2bWH' + 4PaK"" + 2cJi" = 0 . (E. 12)
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APPENDIX F

Ten Sets of Solutions for the System of Equations (3.20) - (3.26)

We solve the above system of equations with the aid of Maple 15. The obtained

10 sets of solutions are as follows:

The first set of solution:

1 . 180 c ad0 =--, dl =-——, d2 =0, d3 =480P^,

1 c „ 1800 c3
* =152J*' A=°' 1+^S9PaT2 = °- &*>

The above set of solutions is neglected since q0 > 0. Also, the last equation

cannot be satisfied given the assumption that a, b, c and P take only positive values.

The second set of solutions:

1 j 540 c a
d0 = --, d1 = -—— , d2 = 0, d3 = 480P—,

11 c „ 11(1800) c3
«• ="IMPS' X=°- 1~6859-pHP=a <">

In the above set of solutions, which is the steady state set of solutions, q0 < 0;

However, the above set of solutions does not satisfy the assumption made in Eq. (3.12).

In other words, the above set of solutions contradicts the following condition:

as f -> oo : K -» 0 . (F. 3)
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Therefore, the above steady state set of solutions is neglected.

The third set of solutions (with the assumption that - < 1):

7c 2c , c 120 . a

2Pc _ fc \2q*=Wa- A=-4J—' «*2-32Pc(?-l). (FA)

The above set of solutions is neglected since q0 > 0.

The fourth set of solutions:

15c 2c , c 120 . a
d0 = --rr — , di = 60^- , d2 = --T-y/2Pac , d3 = 4S0P£2bJPa ' 1 £2b' 2 £26 v^ ^ ' "3 -• ™v- f2fc ,

c „ 2Pc /c v-
qo =8Pa~' A="4JT' ^2 =32Pc(-+l) . (F.5)

The above set of solutions is neglected since q0 > 0

3c
The fifth set of solutions (with the assumption that — < 1):

15c 2c c 120 , a
do = -ST d" ' di = ~60^r:' d2 = —rrV2Pac , d3 = 480P— ,

e'bJPa £2b £2b £2b

c \2Pc (3c \2*—8?5' A=-4J—' «*2 =32Pc(--l). (F.6)
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The above set of solutions is a desirable set of solutions since q0 < 0 and it also

satisfies the condition stated in Eq. (F.3).

The sixth set of solutions:

, 3c 2c c 120 . ado=l2~b^K' dl ="60^' d2 =-—V2Pa-c, d3 =480P—,

c . 2Pc , /3cq° =-Wa- A=-4J—' ^2 =32Pc(-+l). (F.7)

The above set of solutions is neglected since it does not satisfy the condition

stated in Eq. (F.3).

5cThe seventh set of solutions (with the assumption that— < 1)
47P

105V47 c 2c 1^_^_ 360V47V2P^c"
0 472 £2b^Pa' 1~4l£2b' dl~ 47 T^lT '

d3=480p4r, q0 =
£2b ' ™ 376Pa '

12V47 2Pc _ 288 / 5c \2

The above set of solutions is neglected since it does not satisfy the condition

stated in Eq. (F.3).
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The eighth set of solutions:

15V47 c 2c 180 c 360V47V2Poc

°~ 472 e2bJPa' dl~~41~£~2b' dl~ 47 l2^'

d3 =480p4r, q0 =
£2b ' ™ 376Pa '

12V47 2Pc _ 288 / 5c

47 Jo 47 V47P

The above set of solutions is neglected since it does not satisfy the condition

stated in Eq. (F.3).

45c
The ninth set of solutions (with the assumption that < 1):

150V73 c 2c _300 c _480V73 V2Poc
d°~ 732 E^bJPa' dl~l3E^b' dl~^13 ^/T'

d3 =480p4r, q0 =
£2b ' ™ 584Pa '

16V73 2Pc , 512 / 45clbV/J UPc , bl^ / 4bc \

x=-—\—• ^--ttMsk?-1)- (F10)

The above set of solutions is neglected since it does not satisfy the condition

stated in Eq. (F.3).
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The tenth set of solutions:

30V73 c 2c 300 _c_ 480V73V2Poc"
0 732 £2b]pa' dl ~ 73 £2b ' dz ~~73 T?b~ '

d3 =480P-^r, q0 =
£2b ' ™ 584Pa '

16V73 2Pc _ 512 /45c

73"J—' a* "PC(584P^PC(58^+1)- <*n>

The above set of solutions is neglected since it does not satisfy the condition

stated in Eq. (F.3).
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