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Abstract 
 

By 2050, the world’s population is expected to reach 9.7 billion, with over half living in 

urban settlements (United Nations, 2015). Planning and designing new urban 

developments and improving existing infrastructure will create or reshape urban 

landscapes and will carry significant implications for energy consumption, infrastructure 

costs, and the urban microclimate on a larger scale. Researchers and industry 

professionals must recognize how changes in land use affect the urban microclimate and, 

therefore, building energy consumption. Built environment and microclimate studies 

commonly involve modeling or experimenting with mass and energy exchanges between 

natural and the built environment. Current methods to quantify these exchanges include 

the isolated use of microclimate and building energy simulation tools. However, current 

urban planning and building design processes lack a holistic and seamless approach to 

quantifying all thermodynamic interactions between natural and built environments; nor 

is there a method for communicating and visualizing the simulated building energy data. 

This dissertation has developed a coupling method to quantify the effects of the urban 

microclimate on building energy consumption. The coupling method was tested on a  

medium-sized office building and applied to a design case, a redevelopment project in 

Pittsburgh, PA. Three distinct approaches were used. 

First, to develop the coupling method, a study was conducted to quantify the importance 

of accurate microclimate model initialization for achieving simulation results that 

represent measured data. This initialization study was conducted for 24 cases in the 

Pittsburgh climate. The initialization study developed a rule-based method for estimating 

the number of ENVI-met simulations needed to predict the microclimate for an annual 

period.  
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Second, a coupling method was developed to quantify these microclimate effects on 

building energy consumption. The Center for Sustainable Landscapes (CSL) building was 

used as a test-case for this coupling method to measure improvement in predicting 

building heating and cooling energy consumption. Results show that the coupling method, 

more than the TMY3 weather data used for energy simulations, can improve building 

energy consumption predictions for the winter and summer months.  

Third, to demonstrate industry implications, the coupling method was applied to a design 

case, the Lower Hill District Redevelopment, Pittsburgh, PA. Comparing the decoupled 

energy model and TMY3 weather data revealed a high degree of variation in the heating 

and cooling energy consumption. Overall results reinforced the hypothesis that building 

surface level coupling is not essential if the energy model accounts for the microclimate 

effects.  

A Design Decision Support (DDS) method was also developed as a tool for project 

stakeholders to communicate high-fidelity simulated energy data.  

Keywords: urban energy information modeling, urban microclimate, building energy 

simulation, building energy consumption, design decision support, urban planning, 

building design 
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Chapter 1: Introduction 
 

1.1. Background 

 

In today’s increasingly global and interconnected world, over half of the population 

(54%) now lives in urban areas, up from 30% in 1950. As reported by the United Nations, 

the coming decades will bring further profound changes to the size and the spatial 

distribution of the global population: in 2050, 66% of the world’s population is projected 

to be living in urban spaces. Rapid and unplanned urbanization has serious global impacts 

that are beginning to affect life on earth, such as climate change leading to higher 

temperatures; changing landscapes and wildlife habitat; rising sea levels; and increasing 

risks of storms, droughts, and floods. Impacts of urbanization on the global scale can be 

realized on city or neighborhood scale in the form of change in urban fabric. Buildings, 

roads and other infrastructure replace open land and vegetation. Such urban changes 

negatively affect the environment, mainly by releasing heat and producing pollutants, and 

modifying the atmosphere’s physical and chemical properties. The cumulative effect of 

these modifications in the urban fabric have amplified the development of urban 

microclimates giving rise to “urban heat islands” (UHI).  

UHIs are characterized by higher urban air temperatures than are found in suburban areas 

(Figure 1). Numerous factors influence UHIs, as follows (Oke, 1973): 

1. Urban street canyons induce radiation trapping. Longwave radiation loss toward 

the sky is reduced and multiple reflections of shortwave radiation decrease the 

effective albedo, thus increasing the solar irradiation trapping. 
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2. Thermal properties of the built environment (building façade, roads, pavements, 

vegetation) increase the storage of sensible heat in the fabric of a city. 

3. A decrease in vegetation reduces evapotranspiration from urban areas. 

4. Anthropogenic heat is released from various human activities (transportation, heat 

rejection from buildings, etc.). 

5. Increased longwave irradiation from the warm urban atmosphere causes an urban 

greenhouse gas effect. 

 

Figure 1. Profile of the urban heat island (UHI) phenomenon (Daniel, 2017) 

Because of the above-mentioned interactions between the natural and built environments, 

the microclimate of an area is almost instantly affected. For example, microclimate 

changes can be observed in air temperature, wind speed, and wind direction.  

Conversely, the microclimate of an area has implications for outdoor water use, air 

quality, and energy use in buildings, thus adversely affecting humans’ well-being. The 

extent of changes in the microclimate greatly depends on such factors as thermal and 

radiative properties of urban materials, building size and type, and the canyon geometry. 
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The thermodynamic heat fluxes generated from these interactions affect urban heat 

transfer and building energy consumption (Yaghoobian and Kleissi, 2012). 

According to Architecture 2030 (2017), buildings accounts for approximately 48% of the 

total energy consumption making them the largest energy consuming sector compared to 

industrial (24%) or transportation (28%). Therefore, assessing the effects of a changing 

urban microclimate on building energy consumption is a step toward improving energy 

predictions that can, in turn, drive energy-efficient design.  

1.2. Literature review 

 

For a better understanding of the effects of urban microclimate on building energy 

consumption and the existing methods for quantifying these effects, previous research 

studies are reviewed in the following four sections.  

1.2.1. Effects of the urban microclimate on building energy 

consumption 
 

UHIs, which are characterized by higher urban temperatures as compared to suburban 

areas, are a manifestation of the negative impact of urbanization. Several studies have 

been conducted in various countries to quantify the temperature differences between rural 

and urban locations. Many studies have observed that, as a consequence of this modified 

urban microclimate, buildings in urban areas consume more energy for cooling, though 

less energy for heating, compared to rural areas. Extensive research has been conducted 

since the late 1980s in countries with mild climates as well as those with heating and 

cooling-dominated climates—including Japan, Canada, Greece, UK, USA, Spain, Hong 

Kong, Sweden, and Singapore—to demonstrate the impact of urban microclimates on 

energy consumption. Results from a selection of these studies are summarized as follows:  
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1. In cooling-dominated climates, urban areas experienced cooling load increases 

and heating load decreases compared to suburban areas. Studies by Santamouris 

et al. (2001) and Santamouris (2014) in Athens, Greece showed an increase in 

cooling load and a decrease in heating load owing to higher temperatures in the 

urban centers. These studies were conducted on commercial office buildings using 

weather data from stations located in the urban, suburban, and green areas . 

Weather data from urban versus suburban areas showed that the cooling load for 

the former increased close to 200%, and the heating load reduced approximately 

30–50%. This phenomenon was attributed to high density surroundings, lack of 

green areas, industrial activity and high vehicle traffic compared to suburban 

areas. The studies also noted a reduction in natural ventilation potential in the 

urban centers caused by a decrease in wind velocity.  

Rong (2006) examined heating and cooling energy consumption for residential 

buildings in Texas. Results showed that compared to a suburban area, the cooling 

load increased by approximately 6%, and the heating load decreased by 16%. The 

study attributed this phenomenon to an increase of cooling degree hours and a 

decrease of heating degree hours. However, Rong also noted that on a global scale, 

total energy consumption of residential buildings increased only 1% in a cooling 

dominated climate.  A second study (Sun & Augenbroe, 2014) used a DOE 

reference commercial building type to demonstrate more specifically the impact 

of UHI on cooling and heating degree days. For Texas cities, such as Houston and 

El Paso, when buildings located in large city centers were compared to those in 

suburban areas, the analysis showed an increase in cooling degree days by ~1500 

degree days and a decrease in heating degree days by only ~100 degree days. This 
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change in degree days directly translates into an overall increase in cooling load 

and a slight decrease in heating load.   

2. In heating-dominated climates, buildings in urban areas experience a variable 

reduction in the heating energy consumption owing to the UHI effect . A study by 

Kolokotroni et al. (2012) in London, UK, evaluated the impact of UHI on the 

heating and cooling load for an office building located in the city center. The study 

observed a decrease in heating load and an increase in cooling load for a building 

located in the city center versus a suburban area. Furthermore, the heating load 

was predicted to decrease between 35% and 45%, and the cooling load to increase 

between 23% and 30% by 2050. This increase and decrease in the building loads 

was attributed to the increasing air temperatures caused by UHIs in the city 

centers.  

Within the US, Rong (2006) also documented the impact of UHI on a residential 

building in New York City. The study found an increase of nearly 220% per year 

in cooling energy consumption but only a 7% decrease per year in the heating 

energy consumption. This increase and decrease in cooling and heating energy 

consumption was attributed to an increasing UHI effect in the urban areas as 

compared to the rural areas. Additionally, the total energy consumption of a 

household in the state of New York decreased between 3% and 7%, again owing 

to the UHI effect. As documented by Santamouris (2014), similar UHI studies in 

heating-dominated climates in the US as those of Boston, MA, and Washington, 

DC, show similar trends. 
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Based on the above studies, the following can be concluded: 

1. Increases in urban density cause UHIs, which modify the microclimate and which 

are characterized by higher ambient air temperatures and changes in wind speed 

and wind direction, as compared to suburban areas. Such changes in the 

microclimate exacerbate buildings’ heating and cooling energy consumption.  

2. In cooling-dominated climates, the increase in cooling energy consumption 

because of the UHI effect is much higher than the corresponding decrease in 

heating energy consumption. Conversely, in heating dominated climates, a 

decrease in heating energy consumption is noted with only a slight increase in 

cooling energy consumption. These increases and decreases in cooling and heating 

energy consumption are attributed to higher ambient air temperatures. 

Such increases and decreases are also a function of design and operational 

characteristics, including the heating and cooling set point temperature, thermal 

zoning, zone ventilation rate, ventilation type, building insulation, and building 

infiltration rate. As outdoor ambient temperatures exceed the zone set point for most 

of the cooling period, the convective and radiative properties of the building envelope 

cause an increase in cooling energy consumption. In addition, as the zone ventilation 

rates increase, more energy is required to cool the outside air and meet the zone set 

point temperature. During the heating period, ambient air temperatures in urban areas 

are higher, resulting in the reduction of heating energy consumption.  
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Figure 2. Building energy flow paths (Clarke, 2001) 

To improve building energy consumption predictions during the design stage, the findings 

discussed above reinforce the need to quantify the thermodynamic interactions between 

the natural and built environments (Figure 2).  

Current urban planning and building design follow a somewhat linear process. Planning 

and design usually begin with a layout of the street grid, land use patterns, and building 

forms without accounting for resultant changes to the surrounding microclimate. 

Architects and system engineers then work on an individual building’s system with 

limited knowledge concerning the implications of the urban microclimate on the 

building’s energy consumption. Energy simulation engineers then predict the building’s 

energy consumption based on weather data recorded at a remote site, typically located 

near the closest airport, or else typical meteorological year (TMY3) data. TMY3s are data 
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sets that contain hourly values of solar radiation and meteorological elements for a 1-year 

period (NREL, 2017). Depending on data availability, the base periods for the TMY3 

algorithm span 1976–2005 and 1991-2005 (Wilcox & Marion, 2008). Thus, because 

TMY3s do not capture current microclimate conditions, they cannot be used to improve 

building energy consumption predictions.  

Besides a paucity of local site weather data, designers and energy engineers lack the 

methods, tools, and expert knowledge to account for the effect of the microclimate when 

predicting building energy consumption. Many current urban microclimate assessment 

tools have been developed by climatologists; thus, they focus more on atmospheric 

physics than on such urban design variables as vegetation, building form, materials, 

outdoor air temperature, or wind patterns.   Therefore, a more sophisticated approach is 

needed for quantifying the thermodynamic interactions between the urban microclimate 

and building systems. Section 1.2.2 provides a detailed review of the existing tools and 

coupling methods for predicting and quantifying the effects of urban microclimate on 

building energy consumption.   

1.2.2. Existing methods and tools 

 

Building energy simulation is widely used for the following: (1) predicting the operational 

energy use and its corresponding greenhouse gas emissions (2) predicting energy 

reductions that can be achieved through appropriate urban planning and architectural 

design by employing energy efficient design strategies over a given baseline. For both 

cases, it is very important to simulate energy predictions, keeping in mind the 

thermodynamic effects of urban microclimate on building energy consumption once the 

building is built (Sun and Augenbroe, 2014).  
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1.2.2.1. Existing urban microclimate models and tools 

Several models and tools can quantify UHI effects on urban microclimate on various 

scales. First, the urban mesoscale model is used at the city level (i.e., an area that is larger 

than a few hundred square meters). Second, the urban microscale model is employed with 

smaller neighborhoods 

The first category of atmospheric models is the urban mesoscale model, in which the 

buildings are represented as urban form and which does not provide detailed modeling of 

the building geometry. The urban fabric consists of such physical parameters as 

landscapes, city furniture and vegetation, and the atmosphere above the urban area. The 

existing urban mesoscale model in urban climatology that is widely used for weather 

prediction is the Town Energy Balance (TEB) model (Masson, 2000).  

The TEB model (Schoetter et al., 2015) uses as parameters the town-atmosphere dynamic 

and thermodynamic interactions. The city is represented as buildings that have the same 

height and width within the model mesh, the roof level being at the surface level of the 

atmospheric model. The buildings are modelled along identical roads, the lengths of 

which are greater than the widths. The other parameters that make up the city 

characteristics relate to roof, road, and building façade characteristics: albedo, emissivity, 

thickness, thermal conductivity and heat capacity. An average surface temperature is 

assumed for each of the three elements, roofs, roads and building facades. 

Although the TEB model is an advancement from previous mesoscale models, it has 

limitations for predicting a single building’s energy consumption. Masson (2000) 

identified the limitations of the TEB model as follows: 

1. A grid mesh size larger than a few hundred meters (city scale) is required to 

employ the TEB model. Therefore, city-scale climate prediction results cannot be 
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coupled with a microscale building energy model to improve the building energy 

consumption predictions.  

2. The TEB model offers a two-dimensional approximation of the 3D urban 

landscape. Although on a city scale the TEB model can predict atmospheric 

conditions accurately, because of the geometry approximation, larger domain size, 

and simplified thermal model, this model cannot be used to predict thermodynamic 

interactions on a building-by-building scale.  

3. The vegetation model is a simplified model and does not take into account foliage 

temperature, complex exchange processes (transpiration and thermal shielding) 

and 3D vegetation modeling.  

The second category of atmospheric models is the urban microclimate models. These 

models explicitly represent building geometry in varying degrees of detail. Examples of 

the existing tools used to calculate heat balance conditions are 3D-CAD and CitySim 

The 3D-CAD tool uses a geographic information system (GIS) to model the buildings, 

ground surfaces, and vegetation (Asawa et al., 2008) for predicting the surface 

temperature distribution of buildings and outdoor spaces. The 3D-CAD model is 

transformed into a 3D-mesh model for heat balance calculations, which consider direct 

and reflected solar radiations, sky solar radiation, long-wave radiation, and convective 

heat transfer flux. The algorithm also accounts for weather conditions (relative humidity, 

air temperature, cloud cover and wind velocity). Although the 3D-CAD tool considers the 

convective and radiative effects between natural and built environments, the tool is 

designed primarily to estimate the surface and mean radiant temperatures of outdoor 

spaces. As noted by the author, the tool is used primarily as a thermal design and  UHI 

prediction tool; hence, it does not incorporate the algorithms required for building energy 
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consumption predictions. Therefore, the tool currently cannot simulate a building energy 

model to estimate building energy consumption. 

CitySim (Robinson et al., 2009)—built on its predecessor, SUNTool—uses a Java-based 

GUI to simulate and optimize building-related flows. The modeling of the 3D building is 

simplified to the building form as opposed to floor- and zone-level details. The 

calculation models for radiation and convection are simplified. The HVAC model is based 

on the psychrometry of humid air, which is considered an ideal mixture of air and vapor. 

As noted by Darren (2011), CitySim does not support detailed mechanical system design 

and control. Owing to the limitations of the thermal and the mechanical system models, 

CitySIM is not recommended for detailed building energy modeling. Berthou et al. (2015) 

and Page et al. (2013) also noted that CitySIM is an urban planning tool for street to 

district level modeling and calculation of renewable energy generation versus detailed 

building-by-building energy modeling.  

1.2.2.2. Existing building energy simulation tools 

Several energy simulation tools have been documented by Crawley et al. (2008) and Lam 

(2012). These energy simulation tools include BLAST, BSim, DeST, DOE.2 1E, Ecotect, 

Energy Express, Energy-10, DesignBuilder, eQUEST and EnergyPlus. Ideally, designers 

expect to be able to use the same tool for early stage design and for advancing their model 

as the design develops through the construction, commissioning, and monitoring stages. 

Currently, based on research, EnergyPlus is considered the most robust and 

comprehensive simulation tool that can address detailed energy modeling and model 

calibration based on measured data and cost estimation. However, it has significant 

limitations with respect to quantifying the thermodynamic effects on building energy 

consumption, mainly because EnergyPlus can simulate only a single building for which 
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the surrounding elements are assumed as shading elements.  Therefore, during the 

simulation the energy model does not consider the various thermodynamic interactions 

between buildings, vegetation, and outside air. To quantify the effects of these 

thermodynamic interactions on building energy consumption, it is important to couple 

EnergyPlus with a microclimate simulation tool.  

1.2.2.3. Existing coupling methods to quantify urban microclimate effects on 

building energy consumption 

Several studies have been conducted in coupling the effects of the urban microclimate on 

building energy consumption to various degrees of resolution.  

At the mesoscale, Bueno et al. (2011) demonstrated a coupling scheme using TEB and 

EnergyPlus. Although EnergyPlus models can be very detailed, several limitations exist 

when coupling EnergyPlus with TEB. As discussed previously, the TEB model offers 

only a two-dimensional approximation of the urban canyon to represent urban 3D 

building geometry. In terms of radiation effects and surface temperature, TEB assumes 

average values for shortwave and longwave radiation on roofs, roads, and walls. These 

radiation effects and surface temperature calculations are performed on a district scale 

that measures up to a few hundred meters, not on individual façade or single building 

scale. The building energy model integrated in TEB is a one-node, single zone model. 

Therefore, the energy model does not represent actual building construction in terms of 

various material layers and properties or individual thermal zones. Therefore, as noted by 

Schoetter et al. (2015), because the TEB model is not designed for simulations at the scale 

of one building to represent actual building design but rather a representative building 

model, it cannot improve building energy consumption predictions.  
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Peng and Elwan (2012) demonstrated a reduced-order coupling, using ENVI-met for 

microclimate simulations and Ecotect for energy simulations, in generating urban site -

specific weather files. Although the study accounted for the site-specific microclimate, 

the thermal model in Ecotect is a simplified CIBSE admittance method (Autodesk, 2016) 

for calculating the heating and cooling loads. In addition, Ecotect does not allow the 

definition of HVAC systems, a vital component in assessing building energy consumption 

and system efficiency. It should also be noted that Ecotect is now obsolete, so it could 

not be used to advance this research. 

Similarly, a second study conducted by Oxizidis et al. (2008) generated site-specific 

weather files that are used for EnergyPlus simulation. The study used the MM5 model 

(UCAR, 2016) to generate site-specific weather data for 12 typical days representing each 

month of the year. First, this is a reduced order coupling because the method does not  

account for the effects of urban microclimate on such individual factors as convective 

and radiative heat flux and infiltration. Second, MM5 is a mesoscale climate model that 

does not represent the urban microclimate for single building energy simulation. 

Therefore, this method cannot be used to improve building energy consumption 

predictions on a microscale (single building). 

More recently, studies conducted by Malys et al. (2015) and Bouyer et al. (2011) coupled 

SOLENE thermo-radiative models with CFD. The convective heat transfer coefficient 

was calculated using air temperature and mass rate of moisture. The thermal model was 

based a nodal network model, where each zone is assumed at a homogenous air 

temperature range. This means that each floor of the building was considered as one zone 

with the same indoor air temperature set-point. This single zone model does not 

accurately represent a building design with multiple thermal zones. In addition, long-
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wave radiation and infiltration, which affect building energy consumption, are not 

accounted for. Although the study used the effect of convective heat transfer coefficient 

for coupling, the method has not been evaluated with measured data.  

In contrast to the previous methods, Yang et al. (2012) demonstrated a one-way coupling 

between two sophisticated tools: the microclimate simulation tool ENVI-met v4.0 and the 

building energy simulation tool EnergyPlus v6. The method adopted for coupling 

overrides the convective heat transfer coefficient at every simulation time-step to 

calculate the zone energy balance through the energy balance for building outer surfaces. 

Owing to limitations in Energy Plus v6.0, the convective heat flux and long-wave 

radiation calculations did not consider the outside surface temperatures. This coupling 

model also excluded the implementation of infiltration in EnergyPlus, which has a big 

impact on building cooling energy consumption. In addition, this coupling model was 

built for a small hypothetical, test-case building in China. Hence, it does not represent a 

real-world building energy model with as-built design and construction details. 

Additionally, because of the hypothetical test case, the performance of the coupling 

method was not evaluated with measured building energy consumption.  

Summarizing all the above-mentioned methods and tools for coupling thermodynamic 

interactions with a building energy model, it can be concluded that the study by Yang et 

al. (2012) may be the most robust method. This is because the method uses two simulation 

tools, ENVI-met and EnergyPlus, which are capable of modeling and predicting 

microclimate and building energy with a high degree of accuracy and detail. However, 

this method still lacks the full implementation of all the variables that affect the accurate 

prediction of building energy consumption. Therefore, this thesis proposes to extend the 

coupling method demonstrated by Yang et al. (2012).  
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1.2.3. Review of quantitative methods for evaluating microclimate 

model performance 

 

The next step after developing the coupling platform is to test the accuracy of the 

microclimate simulated results with measurement data. Therefore, this section reviews 

variables and statistical metrics used by previous studies for a quantitative evaluation of 

the ENVI-met model performance.  

Studies by Yang et al. (2013) and Wang et al. (2016) evaluated the performance of the 

ENVI-met model by comparing air temperature, relative humidity, surface temperature , 

and mean radiant temperature with measurement data. Yang et al. (2013) used root mean 

square error (RMSE), square of correlation coefficients (R2), and index of agreement (d). 

This study showed that R2 for all comparison variables (i.e., air temperature, relative 

humidity, and surface temperature) ranged between 0.52 and 0.97. The study by Wang et 

al. (2016) used R2 to compare the simulated and measured air temperature. The 

comparison showed that R2 ranged between 0.60 and 0.83 for air temperature in the winter 

and summer months.  

Huttner (2012) evaluated ENVI-met model performance during its development from 

v3.0 to v4.0. The model had significant improvements in terms of modeling detailed 

building façade (i.e., 3-node to 7-node) and initializing the model boundary conditions 

(i.e., forcing air temperature and relative humidity). The statistical metric used to evaluate  

the performance of the ENVI-met v4.0 model is maximum deviation. The variables used 

to compare measured and simulated data were mean radiant temperature, air temperature, 

relative humidity, and wind speed. 
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Based on the above-mentioned studies, this thesis uses RMSE, correlation coefficient (R), 

and thermographic images as performance metrics to evaluate the ENVI-met 

microclimate model results. The variables used for this analysis are simulated air 

temperature, relative humidity, and building façade temperature.  

1.2.4. Communication and visualization methods for design decision 

support 

 

Once the coupling platform is implemented and its performance evaluated, it is essential 

to map this high-fidelity simulated energy data spatially and temporally. This information 

is particularly important for urban planners and building designers in terms of optimizing 

energy consumption through sustainable design strategies. However, communication of 

high-fidelity urban scale simulated data can be cumbersome and error prone.  Therefore, 

it is important to understand the availability of tools and methods for developing a design-

decision-support method for urban energy information modeling.  

First, the visualization applications available in the industry—Project Dasher (Autodesk 

Inc., 2017) and SimulationHub (CCTech, 2017) —were reviewed. Project Dasher is an 

ongoing research project from Autodesk (Figure 3).  

This is a BIM-based application that provides building owners with real-time building 

performance throughout the building life-cycle. The application uses building 

information modeling that acts as a visualization hub wherein collected data from various 

sources is aggregated and presented in 3D. This process helps to infer more complex 

causal relationships that pertain to building performance and the overall building 

operational requirements. Although the platform enables 3D visualization of real -time 

data, visualization of simulated data is not possible. It would be ideal if Project Dasher 
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could provide visualization of simulated data during design and construction, followed 

by real-time measured data during the operational phase. 

 

Figure 3. 3D visualization of real-time measured data using Project Dasher  

 (Autodesk, Inc., 2017) 

 

A second application, known as SimulationHub (Figure 4), is a cloud-based 3D CFD flow 

simulation app for designers that can be used across multiple platforms from mobile, 

tablet, and desktop devices (Center for Computational Technologies Private Limited, 

2017). The primary use of this tool is for CFD flow simulations, not only in buildings but 

also in mechanical devices. However, this tool is able to provide visualization only for 

the simulated data within the tool and not simulated data from external tools.  
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Figure 4. 3D CFD flow visualization in SimulationHub 

(CCTech, 2017) 

Second, in reviewing visualization platforms developed in the research field, Howard et 

al. (2012) demonstrated the visualization of New York City energy distribution using a 

2D energy map (Figure 5). OpenStreetMap was the platform used to map the energy data. 

Annual energy end-use consumption was calculated using multiple linear regression to 

obtain electricity and total fuel intensities. However, this energy data visualization is 

purely on a 2D block/parcel level and does not provide 3D simulated data integration . 

 

Figure 5. 2D energy map of block level energy consumption for New York 
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Padsala and Coors (2015) detailed SimStadt, a conceptual web-based, 3D city information 

model, using CityGML, a universally accepted, open, XML-based data model format for 

storing, representing, and sharing 3D urban models (Figure 6). The CityGML file was 

converted into an ArcGIS-compatible multipatch shapefile format for visualization.  

 

Figure 6. 3D City information model developed with ArcGIS Pro 

 

Figure 7. Autodesk BIM 360 Glue 3D visualization 
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Though ArcGIS was used in this study, the data visualized was only on a building scale 

as opposed to site level, block level, or floor level. The platform did not provide a scale-

based visualization for building energy end-use data. In addition, the visualization was 

on a desktop version of ArcGIS and not a sharable web-based visualization platform. 

More recently, Ramesh et al. (2013) demonstrated a conceptual visualization platform for 

communicating high-fidelity simulated building energy data using ArcGIS 10.0. That 

study showed data integration on a building scale; however, this is visualized on a desktop 

version of ArcGIS. The study went a step further by building a desktop application for 

visualizing block level, building level, land use level, and site level simulated energy data 

(Figure 7). Autodesk’s BIM 360 Glue viewer was used for visualizing the simulated 

energy data.  

However, again this study did not provide floor level and detailed land use level data. 

Another limitation is that this application is an executable file and not web-based. 

Therefore, it is impossible to share the visualization information to project stakeholders 

without the executable file installed.  

From the literature review, it can be concluded that there is no web-based design decision 

support platform to visualize 3D high-fidelity simulated energy data that can help 

designers, urban planners, and other project stakeholders. Hence, as a secondary 

contribution, this thesis proposes to develop a web-based visualization platform using 

ESRI’s ArcGIS Pro, Web Scene, and Story Map applications.  
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1.3. Summary of literature review and knowledge gap 

 

Table 1 shows several gaps that exist in the urban microclimate modeling and coupling 

the thermodynamic interactions with a building energy model to improve building energy 

consumption predictions.  

1. Coupling methods on the mesoscale and microscale are reviewed. The TEB model 

is more suited for a city scale microclimate modeling because the building model 

is a representative model and does not represent actual building design. In 

addition, thermal zoning, heat transfer calculations, and vegetation models are 

simplified. Therefore, it is recommended that the TEB model not be used to 

improve single building scale energy predictions. 

2. Among the microscale coupling methods discussed, ENVI-met and EnergyPlus 

coupling Yang et al. (2012) is considered as a detailed approach to quantify the 

effects of urban microclimate to improve building energy consumption 

predictions. However, limitations exist with this method in terms of quantifying 

the effects of outside air temperature, wind speed, longwave radiation and 

infiltration completely. Due to EnergyPlus limitations, Yang’s model did not 

account for building surface level outside air temperature and wind speed. These 

two variables significantly impact the calculation of radiation linear heat  transfer 

coefficient and infiltration.  

3. The coupling method by Yang, (2012) was implemented for a 24-hour period to 

estimate the cooling energy consumption. This is a very short time frame to 

evaluate the performance of the method to improve building energy consumption. 

Therefore, the method must be extended to various seasons and a longer duration 

to effectually understand the effects of the urban microclimate on building energy 
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consumption. Understanding the effects of the urban microclimate in the various 

seasons is important to estimate the variation in heating and cooling energy 

consumption.  

4. In addition, the coupling method was implemented on hypothetical building with 

perimeter and core thermal zoning. Hence the performance of the method has not 

been evaluated with measured data. The evaluation of the method with measured 

data is specifically important should the method be extended to designers and 

energy analysts when predicting building energy consumption. 

5. Methods and tools to communicate and visualize simulated energy data were 

reviewed. Industry tools and previous research studies have demonstrated the 

capabilities of desktop application for 2D and 3D data visualization. However, 

there is a lack of web-based 3D design decision support method to communicate 

high fidelity simulated data.  

Therefore, this thesis addresses the gaps in a sequential manner: (1) To automate the 

urban microclimate modeling (2) To couple the effects of microclimate on building 

energy consumption using a real-world case-study and its implementation on a design 

case (3) To visualize the simulated energy data using a Web Scene platform.  



 

 

 

Table 1. Summary of literature review and knowledge gap 



 

 

 

1.4. Hypotheses 

 

Based on the knowledge gaps, the hypothesis of this thesis is: 

• A coupled urban microclimate and building energy model can improve the 

prediction of building heating and cooling energy consumption. 

• The microclimate model must be correctly initialized to obtain results that are 

comparable to measured data. 

1.5. Objectives 

 

The proposed research on developing a coupling and visualization method to quantify the 

thermodynamic interactions between the natural environment and the built environment 

aims to: 

1. Conduct initialization analyses to achieve the ENVI-met microclimate simulation 

results that are comparable to measured data.  

2. Develop a method for coupling whole-building energy simulation program 

(EnergyPlus) with urban scale prognostic climate simulation program (ENVI-

met). 

3. Evaluate the performance of the coupling method by comparing the simulated and 

measured building heating and cooling energy consumption.  

4. Demonstrate how the coupling platform can be extended to a design case to 

improve building energy consumption predictions. 

5. Develop a design decision support method to communicate and visualize the high-

fidelity simulated energy consumption to assist designers, urban planners, 

mechanical engineers and other project stakeholders during the design phase.  
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1.6. Dissertation chapter overview 

 

The development of the above-mentioned thesis objectives and hypothesis testing results 

will be explained in detail in the following chapters.  

Chapter 2, Thesis method details the method used for every task proposed to achieve the 

coupling platform and implementation of the coupling platform on a design case. This 

section also provides a summary of the tools used to achieve the thesis objectives.  

Chapter 3, Urban microclimate model: Setup, simulation and comparison with measured 

data, explains the overall concept of accurate urban microclimate modeling using the 

Center for Sustainable Landscapes (CSL) case-study in three parts. The first part, 

describes process of automating the ENVI-met 3D model construction using ArcGIS 10.1 

for CSL. The second part demonstrates experimental setup in CSL and statistical analysis 

of the simulated and measured air temperature, relative humidity and façade temperature.  

The third part details the process ENVI-met model initialization and its importance to 

achieve microclimate simulation results that are comparable to measured data.   

Chapter 4, Implementation of coupling method to improve building energy consumption 

predictions, explains the development of the coupling platform. The first part describes 

the method to extract data from the ENVI-met microclimate model simulation. The 

extraction is required to accurately map the case-study building geometry between both 

simulation tools. The second part describes the coupling process for microclimate factors 

convection heat transfer coefficient, long-wave radiation, and infiltration. After the 

coupling process, comparative analysis of building energy consumption is discussed for 

six cases (summer, winter, swing seasons).  
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Chapter 5, Design case implementation of coupling method to improve building energy 

consumption predictions, describes the implementation of the coupling method on the 

Lower Hill District Redevelopment, Pittsburgh, PA. After the simulated microclimate 

data was extracted, the coupling method was implemented on a mixed-use building for 

the design case. Similar to the CSL case, comparative energy consumption analysis was 

conducted for the six climate conditions. After the analysis, the simulated energy data 

was mapped and visualized using ArcGIS Pro, Web Scene Viewer and Story Maps.  

Chapter 6, Conclusion, summarizes the research findings, and hypotheses testing results. 

Secondary contributions and industry applicability of the coupling method are also 

reported. Finally, potential future work and limitations are discussed in the last part of 

the chapter.  
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Chapter 2: Thesis Method 

 

2.1. Overview 

 

As established in Chapter 1, three significant gaps exist in quantifying the effects of the 

urban microclimate on building energy consumption, (1) automating the urban 

microclimate model generation, (2) coupling the effects of microclimate variables on 

building energy consumption using a real-world case study, and (3) visualizing this 

simulated building energy data.  

Chapter 2 describes the methods used to achieve the thesis objectives and hypotheses.  

Section 2.2 provides details on the tools used in this thesis. To validate the proposed 

hypotheses, Section 2.3 provides a detailed method: (1) To automate the urban 

microclimate model generation and simulation process (2) To couple this microclimate 

simulated effects with building energy simulation using a real-world case study located 

in Pittsburgh, PA, USA (3) To develop the visualization method for design decision 

support.  

2.2. Summary of tools used in the thesis study 

 

The thesis uses three tools to achieve the above stated objectives and hypotheses; ENVI-

met v4.0 Professional is used for simulating the microclimate, EnergyPlus v8.6 is used to 

perform the building energy simulation and Building Controls Virtual Test Bed (BCVTB) 

is used as the middleware coupling platform to exchange simulated data between ENVI-

met and EnergyPlus. 
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2.2.1. ENVI-met v4.0 (Microclimate simulation) 
 

ENVI-met is a prognostic three-dimensional climate model designed to simulate the 

surface-plant-air interactions in urban environment. ENVI-met is designed for 

microclimate simulations to analyze small-scale interactions between individual 

buildings, surfaces and vegetation (Figure 8). ENVI-met can simulate microscale models 

with a horizontal resolution from 0.5 m – 10 m with a time step of 1-5 seconds (ENVI-

met, 2017) 

In the current version of ENVI-met, it is possible to force the air temperature and relative 

humidity for the one-dimensional model which serve as lateral boundary conditions. This 

not only helps in increasing the stability of the 3D model, but also helps in achieving 

simulation results that are comparable to measured data.  

 

Figure 8. Thermodynamic interactions between the built and the natural 

environment (adapted from ENVI-MET, 2017) 
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The ENVI-met model consists of several sub-models (Figure 9) that interact with each 

other: 

• 1-D boundary model 

• 3-D atmospheric model 

• 3-D/1-D soil model 

The one-dimensional boundary model is used for the model initialization and as boundary 

conditions of the three-dimensional atmospheric model. The 1-D model is calculated from 

ground level (z=0) to H = 2500m above ground level.  

The main prognostic variables calculated by ENVI-met are: (1) Wind speed and wind 

direction (2) Air, soil and façade temperature (3) Air and soil humidity (4) Turbulence 

and (5) Radiative fluxes. Various sub-models that are described below are coupled with 

each other to calculate the above variables. 

 

Figure 9. ENVI-met sub-models (Bruse, 2004) 
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The sub-models are divided into: 

1. Atmospheric model 

The atmospheric model contains a full 3D computational fluid dynamics (CFD) model 

which solves the Reynolds-averaged non-hydrostatic Navier-Stokes equation for each 

grid in space and for every time step.  

The air temperature and specific humidity of the air are determined by different 

sources and sinks of sensible heat and vapor inside the model domain. The ground 

surface and vegetation act as a source or sink for both air temperature and humidity 

in the atmospheric model. Building façades and roofs mainly act as surfaces 

interchanging heat with the atmosphere, but can also act as humidity sources if the 

façade or rooftop has vegetation. 

Turbulence is calculated using the E-epsilon 1.5 order closure or k-epsilon model.  

Radiative flux is calculated by shading elements, reflections by different surfaces and 

building materials and the effect of vegetation.  

2. Soil model 

The surface temperature and the distribution of soil temperature is calculated for soils 

up to a depth of -4m.  

Simulating the water balance of a surface and the soil is crucial in urban 

microclimatology. While humid soils can act as cooling devices, dry soils are often 

hotter than asphalt.  

ENVI-met solves the soil hydraulic state of the soil based on Darcy’s law considering 

evaporation, water exchange inside the soil and water uptake by the plant roots.  

Water bodies are represented as a special soil type. The calculated processes inside 

the water include the transmission and absorption of shortwave radiation inside the 

water.  
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3. Vegetation model 

ENVI-met is able to model not only simple plants such as grass, but also complex 3D 

vegetation geometries like large trees. All plants are modeled as individual species 

with an integrated water balance control model and heat and water stress model.  

Vegetation interacts in various ways with the environment, such as heat and vapor 

exchange between plant leaves and the atmosphere. A complex raytracing algorithm 

is used to analyze the plant impacts of solar radiation and its impacts on longwave 

radiation exchange. 

4. Built environment and building system 

Modeling of the façade and roof can consist of up to three layers of materials.  

ENVI-met consists of a 7-node wall temperature calculation model to simulate the 

wall temperature between the envelope layers. The simulated wall temperature data 

can be achieved for every grid cell.  

 

2.2.2. EnergyPlus v8.5 (Building energy simulation) 
 

EnergyPlus is a whole building energy simulation program that engineers, architects, and 

researchers use to model both energy consumption – for heating, cooling, ventilation, 

lighting, and plug and process loads – and water use in buildings. Its development is 

funded by the U.S. Department of Energy Building Technologies Office.  
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Figure 10. EnergyPlus – Internal modeling elements (DOE) 

  

The main features of EnergyPlus (Figure 10) include (DOE): 

1. Integrated and simultaneous solution to achieve building response that is tightly 

coupled with the primary and secondary systems. 

2.  Heat balance calculation for assessing the building thermal loads. This calculation 

is conducted simultaneously for radiation and convection effects at both interior 

and exterior building surfaces during each time step. 

3. Transient heat conduction through building elements such as walls, windows, 

roofs, floors using conduction heat transfer algorithms. 

4. Combined heat and moisture transfer models that account for moisture absorption 

and desorption by integrating into conduction transfer model or through an 

effective penetration depth model (EMPD). 

5. Anisotropic sky model for improved calculation of diffuse solar radiation. 

6. Energy management systems that help in coupling data from external programs 

with EnergyPlus.  
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Therefore, given the robustness of the tool to calculate the various heat transfer 

interactions, this thesis uses EnergyPlus to couple the ENVI-met simulated microclimate 

data.  

2.2.3. Building Controls Virtual Test Bed (BCVTB)  
 

BCVTB is a modular, extensible and open-source software environment developed by 

U.S Lawrence Berkeley National Lab (LBNL). This platform allows users to couple 

different simulation programs for co-simulation of building systems.  In addition to 

interfacing with various simulation programs, BCVTB also supports real-time simulation 

through coupling simulators with hardware in the Building Automation system.  

BCVTB is based on an open-source Ptolemy II software environment which serves as a 

middleware between arbitrary number of simulation programs (Figure 11). Ptolemy II 

software has a graphical user interface for coupling simulation tools and control 

interfaces. A fixed synchronization of time step is assumed for the data exchange between 

the coupled simulation programs. Therefore, BCVTB offers a quasi-dynamic coupling 

platform. In this study, BCVTB is used to couple the simulated ENVI-met microclimate 

results with EnergyPlus.  
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Figure 11. The BCVTB co-simulation platform 

2.3. Method Description 

 

The thesis method is divided into three distinct approaches (Figure 12). Section 2.4.1 

describes the method employed to automate the generation and simulation of the urban 

microclimate. The section also discusses the process used to conduct a detailed 

comparison of the simulated and measured urban microclimate variables such as air 

temperature and relative humidity. Section 2.4.2 details the implementation of the 

coupling platform between ENVI-met v4.0 and EnergyPlus v8.6 using Building Controls 

Virtual Test Bed (BCVTB). The coupling platform is described in terms of (1) Convection 

and radiation heat fluxes as surface boundary conditions and (2) Heat and moisture 

transfer through infiltration. Section 2.4.3 details the process used to visualize the 

simulated data using the ArcGIS platform.



 

 

 

 

Figure 12. Overview of thesis method 



 

 

 

2.3.1. Automation and modeling of ENVI-met area input model 
 

The current process for developing an urban scale 3D model of the study domain in ENVI-

met requires manual tracing on a raster image to model buildings, vegetation and the site 

topography. This task is labor and time intensive which increases in complexity as the 

model resolution and the domain area increases. Therefore, this section details a method 

to automate the ENVI-met model generation process using LIDAR data and 3D analyst 

functions in ArcGIS (Figure 13).  

 

Figure 13. Workflow for automating ENVI-met model generation 

 

LiDAR (Light Detection And Ranging) laser scanners collect geographic point cloud data 

that is used to create 2D surfaces and 3D features. Geographic LiDAR data is commonly 

available as LAS (LiDAR Aerial Survey) files. The processed data from the laser scanners 

into LAS files have points that represent bare earth, vegetation, buildings, terrain, etc.  

For this research, the LAS dataset for the case-study domain is obtained from the 

Pennsylvania Department of Conservation and Natural resources (PA DCNR). The next 

step is to generate two surface models, a Digital Surface Model (DSM) and a Digital 

Terrain Model (DTM) using geoprocessing tools in ArcGIS Pro. The two surface models 
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are used to create a normalized, nDSM surface, which is the difference between the DSM 

and DTM surface models. Random points are then generated using a 2D layer of building 

footprints and the normalized surface model is applied to these points which will generate  

a height Z value for each random point. The highest point that is generated is the building 

height. The 3D analyst procedure is repeated to the DTM surface model to generate the 

domain topography. 

After the DTM and nDSM are created, these raster images are converted into ASCII files 

which converted into a .csv format that is directly used as Area Input File in ENVI-met 

to generate the topography and the buildings.  

2.3.2. ENVI-met microclimate model initialization 
 

After the generation of the ENVI-met area input model, a study is conducted to determine 

the accurate procedure to initialize the microclimate model. This analysis is required to 

help achieve results that comparable to measured data. Based on the literature review, 

past studies have investigated climate conditions which have a regular pattern as opposed 

to thesis case-study location, Pittsburgh, PA, USA. Pittsburgh, is known to have a wide 

range between the maximum and minimum conditions that can occur within a 72-hour 

period. This variation in climate conditions is especially true during the winter and swing 

seasons, given that Pittsburgh is a heating dominated climate.  

In addition, previous research on ENVI-met microclimate simulation focus on predicting 

only a few hours or at a maximum a 24-hour period. However, the objective of this 

initialization study is to be able to extend ENVI-met to predict the microclimate for a 72-

hour period. A rule-based method can be derived from this initialization study. The rule-
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based method can determine the number of microclimate simulations that would be 

required to predict the microclimate on an annual basis. 

The accurate initialization of the microclimate model is dependent on the 24-hour forcing 

of boundary conditions (air temperature and relative humidity) in the configuration file. 

For example, to predict a 24-hour period, the model is initialized by forcing boundary 

conditions that represent the desired timeframe. However, since this initialization is based 

on a 24-hour period in ENVI-met, to extend the microclimate prediction to a 48- or 72-

hour period, a method is required to determine this 24-hour forcing input (air temperature 

and relative humidity). 

In this thesis, the microclimate simulation is extended to predict a 72-hour period. 

Therefore, the method used in this thesis to determine forcing inputs is to derive an 

average of the 72-hour period as model boundary conditions. However, weather patterns 

are not consistent (daily minimum and maximum), especially during the winter and swing 

periods. Therefore, forcing using a 72-hour average air temperature and relative humidity 

may not provide microclimate predictions that are comparable to measured data. 

Therefore, as a first step, all cases are simulated using a 3-day average air temperature 

and relative humidity as the forcing inputs. A statistical comparison using relative error 

and RMSE are used to understand the variation between the simulated and measured data. 

Cases that have a relative error that is greater than 25% are then re-simulated using 1-day 

initialization and re-compared with measured data air temperature and relative humidity. 

The details of the ENVI-met model initialization inputs for the case-study are described 

in detailed in Chapter 3.   
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2.3.3. Coupling of urban microclimate model with building energy 

model 
 

After the accurate simulation of the ENVI-met microclimate model, the simulated data is 

coupled with the building energy model using BCVTB and EnergyPlus. The coupling 

involves two steps: (1) Data mapping platform using BCVTB to extract and process the 

ENVI-met simulated data which is used in the EnergyPlus model and (2) Developing the 

coupling platform in EnergyPlus using BCVTB as the middleware.  The following two 

sections provide details to achieve the above described steps.  

2.3.3.1. Data mapping for data exchange 

 

An essential first step is to map the ENVI-met simulated data to a format that can be used 

for coupling with EnergyPlus. In ENVI-met, the 3D model geometry is based on 

structured grids while in EnergyPlus building envelope elements are considered single 

entities. In ENVI-met, each of these surfaces is divided into grids based on the model 

resolution, which is 2m in the thesis case-study. Simulation data is recorded using the 

receptor function in every grid (every 2m) along the height of the building. Therefore, to 

map the simulated microclimate data from ENVI-met to EnergyPlus, each surface is 

treated as individual unit (e.g. each wall, roof is a separate unit) in both tools. The receptor 

function in ENVI-met is used to record the meteorological data along the building 

surfaces as shown in Figure 14. 

To determine the meteorological variables along every façade, every wall and roof entity 

is divided based on the thermal zoning of the EnergyPlus case-study model. Since the 

façade is divided into several sub-surfaces, the average value for the meteorological 

variables (air temperature, relative humidity and wind speed) is calculated from the 



 

40 

 

receptor output corresponding to each of the sub-surfaces. For example, from Figure 14, 

the south façade is divided into three sub-surfaces based on the EnergyPlus thermal 

zoning. Therefore, an average value is calculated for each of these sub-walls in BCVTB. 

This process is repeated for every façade and roof to derive the simulated air temperature 

and wind speed which is then used to couple with the EnergyPlus model. 

 

Figure 14. Layout of receptors for recording simulated data in ENVI-met 

 

2.3.3.2. Implementation of coupling platform 

After the ENVI-met simulated data was processed into a format that can be used in the 

EnergyPlus simulations, the next step was to implement the coupling platform. In 

EnergyPlus, the internal load for a zone is calculated using the following energy balance 

equation: 

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑙𝑜𝑎𝑑𝑠  = 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙ℎ𝑒𝑎𝑡𝑔𝑎𝑖𝑛𝑠 + 𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒ℎ𝑒𝑎𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑄𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + ∆𝐸𝑎𝑖𝑟         (1) 
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Where, 

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑙𝑜𝑎𝑑𝑠 - Building heating/cooling loads 

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙ℎ𝑒𝑎𝑡𝑔𝑎𝑖𝑛𝑠 – Building internal heat gain from people, equipment’s and lights 

𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒ℎ𝑒𝑎𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 – Convective heat transfer between zone interior surfaces 

𝑄𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 – Heat transfer due to infiltration with outdoor air  

∆𝐸𝑎𝑖𝑟 – Change of energy stored in the zone air 

From equation (1), convective heat flux and heat flux due to infiltration is caused by the 

interaction of the building outside surface with the surrounding urban microclimate. 

Therefore, it is essential to account for the actual outside surface microclimate conditions 

to improve building internal load calculation. For this, the heat balance calculation of the 

outside face of a building is given by: 

𝑞𝛼𝑠𝑜𝑙 + 𝑞𝐿𝑊𝑅 + 𝑞𝑐𝑜𝑛𝑣 − 𝑞𝑘𝑜 = 0                                                                             (2)  

Where, 

𝑞𝛼𝑠𝑜𝑙 - Absorbed direct and diffuse solar radiation heat flux 

𝑞𝐿𝑊𝑅 - Net longwave (thermal) radiation flux exchange with the air and surroundings 

𝑞𝑐𝑜𝑛𝑣 - Convective flux change with outside air 

𝑞𝑘𝑜 - Conduction heat flux (q/A) into the wall 

From equations (1) and (2), the coupling is executed in three steps based on the variables 

(Figure 15). First, the EnergyPlus weather file and absorbed direct and diffuse solar 

radiation fluxes; second, the convective heat transfer coefficient and the radiation linear 

heat transfer coefficient using the Surface Boundary Conditions object; and third, 

infiltration using Energy Management System (EMS) actuators and zone infiltration 

object in EnergyPlus. Figure 15 provides a detailed list of all the variables and the input 

source for the coupling platform.  
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Figure 15. Variables implemented and the input source in the coupling platform 

 

Figure 16 details the three steps required to implement the coupling variables as 

described in the following section. 

2.3.3.2a. Absorbed direct and diffuse solar radiation flux 

ENVI-met and EnergyPlus use Ray-tracing method for shadow calculations. However, 

there are differences in the physical models and the numerical schemes between both 

software. 

The numerical and physical differences are: 

1. In ENVI-met only one state is present in a grid cell at each model time step, i.e., 

sunlit or shaded; however, EnergyPlus calculates the incoming solar radiation 
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based on the sunlit area of the surface. Therefore, EnergyPlus provides a more 

realistic modeling approach for shadowing calculation.  

2. ENVI-met uses isotropic diffuse solar radiation model. EnergyPlus takes into 

account the anisotropic radiance distribution of the sky. This means, ENVI-met 

diffuse solar radiation calculation is independent of building orientation while 

EnergyPlus calculation change with building orientation and is therefore more 

accurate.  

3. For the calculation of solar reflection, ENVI-met assumes only diffuse reflection, 

but all three patterns of reflection (i.e. beam to beam, beam to diffuse and diffuse 

to diffuse) are accounted for by EnergyPlus. 

4. In ENVI-met, the albedo of various ground surface (asphalt, pavement, vegetation, 

and water) is defined by users. However, a homogenous ground surface with a 

given albedo is assumed in EnergyPlus.  

5. For shadowing effects from vegetation, ENVI-met considers vegetation as a turbid 

medium, and calculates the transmittance of vegetation as a function of the optical 

path of solar beam through leaves and leaf area index. However, EnergyPlus 

assumes vegetation as obstructions like other shadowing elements, with a constant 

or scheduled transmittance and at the same temperature as outside air temperature.  

From the above described differences between the two software, EnergyPlus calculations 

for diffuse solar radiation, solar reflection and shadowing are more accurate when 

compared to ENVI-met. However, calculations for ground reflectance is simplified in 

EnergyPlus. Therefore, the ground reflectance inputs are derived from ENVI-met 

simulations as an input into EnergyPlus.  



 

 

 

 

Figure 16. Method for coupling ENVI-met microclimate simulation data and EnergyPlus model 

 



 

 

 

2.3.3.2b. Surface boundary conditions 

After defining the absorbed shortwave direct and diffuse shortwave radiation in 

EnergyPlus, the next step is calculating the surface boundary conditions by coupling the 

ENVI-met simulated air temperature and wind speed and EnergyPlus calculated surface 

temperature. The variables that account for surface boundary conditions are convective 

heat transfer coefficient (CHTC) and the radiation linear heat transfer coefficient (hr). 

This is implemented in two stages. 

Stage 1 – Convective Heat Transfer Coefficient 

Heat transfer through surface convection is modeled in EnergyPlus using: 

𝑄𝑐 = ℎ𝑐 𝑒𝑥𝑡 − 𝐴 (𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑎𝑖𝑟)                                              (3) 

Where, 

𝑄𝑐  – Rate of exterior convective heat transfer 

ℎ𝑐 𝑒𝑥𝑡 – Exterior convection coefficient 

𝐴 – Surface area 

𝑇𝑠𝑢𝑟𝑓 – Surface temperature 

𝑇𝑎𝑖𝑟 – Outdoor air temperature 

Convective heat transfer coefficient is determined by empirical correlations. There are 

several correlations and significant differences between these correlations (Defraeye, 

2011). Many of these correlations available in EnergyPlus are based on wind speeds from 

the local weather station and only represent site level wind speeds. However, when using 

ENVI-met predicted wind speeds which introduces flow field around the building (CFD 

based on Reynold’s-Navier Stokes), the existing EnergyPlus correlations are not valid to 
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calculate CHTC. This is because ENVI-met simulations predict wind speeds for every 

building surface based on grid cells Therefore, to couple the wind speed for every building 

surface, a linear law based on ISO 6946 (6946) is proposed for calculating the CHTC: 

ℎ𝑐 𝑒𝑥𝑡 = 4 + 4𝑣                                                            (4) 

Where, 

ℎ𝑐 – Convective heat transfer coefficient 

𝑣 - wind speed front of the building surface  

Therefore, CHTC is calculated for every surface of the case-study building using equation 

(4). This calculated CHTC is overwritten using the Energy Management System (EMS) 

feature in EnergyPlus.  

The EMS feature in EnergyPlus provides a pathway to develop custom controls and 

modeling procedures for EnergyPlus models. A programming language called EnergyPlus 

Runtime Language (Erl) is used to describe the control algorithms. The ExternalInterface 

object allows coupling EnergyPlus to BCVTB at each zone time step. In this study, the 

object used in EnergyPlus is ExternalInterface:Actuator, where at each zone time step, 

the calculated CHTC value is received from BCVTB. The ExternalInterface:Actuator 

used to overwrite this CHTC value is “Exterior surface convection heat transfer 

coefficient”. Chapter 3 provides a detailed layout of the layout of the data communication 

between BCVTB and EnergyPlus to implement convective heat transfer coefficient.   

Stage 2 – Convective Heat Transfer Coefficient + Radiation linear heat transfer 

coefficient 

After the successful coupling of CHTC, the next step is to couple the radiation linear heat 

transfer coefficient (hr). When implementing hr using BCVTB, it was found that, the 
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External Interface data exchange between BCVTB and EnergyPlus has a limitation of 

1024 values at any given time. This is mainly due to complex nature of the case-study 

model, which leads to numerous wall and roof surfaces as detailed in Chapter 3. 

Therefore, an alternative approach was adopted for the implementation of coupling hc 

and hr to overcome this limitation.  

From EnergyPlus, the variables that affect the calculation for radiation linear heat transfer 

coefficient is: 

                                                      ℎ𝑟,𝑎𝑖𝑟 =
𝜀𝜎𝐹𝑎𝑖𝑟 (𝑇𝑆𝑢𝑟𝑓𝑎𝑐𝑒

4 −𝑇𝑎𝑖𝑟)
4

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒− 𝑇𝑎𝑖𝑟

                                  (5) 

Where, 

ℎ𝑟,𝑎𝑖𝑟 – Radiation linear heat transfer coefficient 

𝜀 – long-wave emittance of the surface 

𝜎 – Stefan-Boltzmann constant 

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 – outside surface temperature 

𝑇𝑎𝑖𝑟 – outside air temperature 

The alternative approach uses the SurfaceProperty:OtherSideCoefficients object in 

EnergyPlus to calculate hc and hr. This was achieved by (1) coupling the ENVI-met 

simulated air temperature outside every building surface using the EMS actuator, 

“Outdoor Air Drybulb Temperature” in the ExternalInterface; (2) specifying Exterior 

Dry-Bulb Temperature Coefficient and Ground Surface Temperature Coefficient in the 

SurfaceProperty:OtherSideCoefficients object that sets the other side conditions for a 

surface. By setting the two coefficients, EnergyPlus calculates the Exterior Surface 

Temperature which is then to calculate hc and hr within EnergyPlus.  
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2.3.3.2c. Heat and moisture transfer through infiltration 

After the successful implementation of the surface boundary conditions, the next variable 

implemented in the coupling platform is infiltration. Infiltration in buildings is caused 

due to opening and closing of doors and windows, cracks through windows and small 

amounts through building elements. It is calculated in EnergyPlus using equation (5).  

𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑑𝑒𝑠𝑖𝑔𝑛 + 𝐹𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝐴 + 𝐵 |𝑇𝑧𝑜𝑛𝑒 − 𝑇𝑜𝑑𝑏| +  𝐶(𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑) +

 𝐷(𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑)2                                                                                                                       (5)                        

Where, 

𝐼𝑑𝑒𝑠𝑖𝑔𝑛 – User-defined design flow rate 

𝐹𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 – Infiltration schedule 

𝐴, 𝐵, 𝐶, 𝐷 – coefficients (typically 1,0,0,0) 

𝑇𝑧𝑜𝑛𝑒 – Indoor zone air temperature 

𝑇𝑜𝑑𝑏 – Outdoor dry-bulb temperature 

𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑 – wind speed around building surface 

From equation (5), we see that the meteorological conditions that impact infiltration are 

Exterior Dry Bulb Temperature and Wind Speed. From Section 2.3.3.b, Exterior Dry-

Bulb Temperature is implemented using the EMS actuator “Outdoor Air Drybulb 

Temperature”. Therefore, to couple wind speed, the EMS actuator used is “Outdoor Air 

Wind Speed”. By coupling the wind speed for every building surface, the infiltration 

calculation in EnergyPlus is taken into account. 

2.3.4. Visualizing simulated building energy data 
 

After implementing the coupling platform, the next step was to map and visualize the 

high-fidelity simulated energy data on a web-based platform. This visualization platform 

is important to effectively communicate the predicted high-fidelity energy data to project 
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stakeholders in an organized manner. The thesis used ESRI’s ArcGIS Pro, Web Scene 

and Story Map applications to develop the visualization platform for the Lower Hill 

District.  

1. Mapping CAD Data: To build the 3D model of the Lower Hill District and its 

surroundings, the CAD plan is developed based on the design guidelines obtained 

from the design team. Then, the CAD drawings are mapped with the topography 

base map and elevation layers. The elevation and basemap layers in a scene 

provide context and reference to the other operational building layers.  

2. Defining coordinate system:  When creating 3D Scene, it is important to define 

the horizontal and vertical coordinate systems. Horizontal coordinate systems 

locate data across the surface of the data, and vertical coordinate systems locate 

the relative height of the data. The selection of the coordinate system can have 

significant impact on the performance and results generated by a geoprocessing 

tool. The 3D building and floor features use projected coordinate system ‘NAD 

1983 StatePlane Pennsylvania South FIPS 3702 Feet’ and geographic coordinate 

system ‘GCS North American 1983.’ 

3. Converting features to 3D symbology: Next, geoprocessing tools are used to 

digitize and extrude the 2D CAD map to generate z-enabled 3D multipatch features 

of the buildings. The 2D polygon features are extruded vertically to create building 

blocks.  

A multipatch feature is a GIS object that stores a collection of patches to represent 

the boundary of a 3D object as a single row in a database. These patches store 

information such as texture, color, transparency and geometric information that 

represent the feature. The Z-values in the multipatch represent the shape and 

elevation of the feature. After the building multipatch features are created, 
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geoprocessing tools, extrude and split floors from the facility tool toolbox is 

executed to obtain floor level detail for every building.  

Geoprocessing is a framework and a set of tools for processing geographic and 

related data. These tools enable managing GIS data in an automated way. 

Geoprocessing tools have both inputs and outputs. The 3D multipatch features of 

the buildings and the floor heights are used as input parameters to generate floor 

level multipatch features.  

4. Organizing data: Next, the simulated energy data is added as attributes to the 

multipatch building features. The attribute table helps to map and visualize the 

simulated data for every building. The fields toolset in the Data management 

toolbox contains a set of tools to add and make edits to the fields for every building 

feature. The fields used to visualize the simulated energy data are energy use 

intensity (EUI), energy consumption, net building area, net conditioned and 

unconditioned building area and building height.  

5. Publish to ArcGIS Online: After mapping the simulated energy data for all the 

buildings, the multipatch features are converted into scene layer package. A 

package is a compressed file containing GIS data. A scene layer package contains 

a cache of multipatch building features that are published as a web scene layers to 

ArcGIS Online and Portal for ArcGIS with ArcGIS Data Store.  

6. Creating & sharing Web Scene and Story Map: After publishing the building 

multipatch features to ArcGIS Online, a Web Scene is created using ArcGIS Scene 

Viewer. The web scene layer is embedded into a Story Map, that is deployed as a 

visualization platform. To share the web scene layer, it is essential to obtain an 

organizational account with ArcGIS Data Store privileges and an active 3D scene. 

In addition to embedding the Web Scene, Story Map is a powerful open source 
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platform to create maps, add text, images and video content that can be shared 

publicly for visualization.  

This thesis aims to provide a seamless method to achieve the visualization platform. A 

synthesized description of the process is provided in Appendix B. 

2.4. Summary 

 

To summarize, this chapter has described the thesis method to (1) automate the urban 

microclimate model generation and simulation process using ArcGIS Pro (2) couple this 

microclimate simulated effects with building energy simulation using a real-world case 

study located in Pittsburgh, PA, USA using ENVI-met, EnergyPlus and BCVTB as the 

coupling platform and (3) develop the visualization platform for design decision support.  

The automation of the ENVI-met microclimate model is achieved using geoprocessing 

tools in ESRI’s ArcGIS Pro. Next, initialization study of the ENVI-met microclimate 

model is conducted for 24 climate conditions of Pittsburgh, PA. From the initialization 

analysis, 6 cases (summer, winter, swing) are selected to implement the coupling method. 

After the simulated data is mapped to the format that is acceptable by EnergyPlus, the 

coupling method is implemented in two stages using BCVTB and EnergyPlus. Finally, 

the simulated energy consumption data is visualized using ArcGIS PRO, Web Scene 

Viewer and Story Map applications.  
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Chapter 3: Urban Microclimate Modeling: setup, 

simulation and model performance 

 

3.1. Overview 

 

As described in Chapter 2, to couple the microclimate effects on building energy 

consumption, it is important to understand how to accurately model and simulate the 

microclimate using ENVI-met. Chapter 3 describes the model setup, simulation and 

comparison of simulated and measured data using the CSL case study. Section 3.2 

describes the case-study domain for the microclimate modeling and the coupling 

platform. Section 3.3 details the experimental setup to compare the simulated 

microclimate with measured data. Section 3.4 describes the automation and microclimate 

model setup for the case-study building. Section 3.5 provides a comparison and statistical 

analysis of the microclimate simulation results with the measured data in three steps: (1) 

analysis of air temperature and relative humidity with the CSL on-site weather station 

data, (2) analysis of simulated air temperature with measured experiment points , and (3) 

analysis of simulated and measured façade temperature. After the discussion of simulated 

and measured variables, Section 3.6 details the importance of accurate ENVI-met model 

initialization. In addition, this section describes a rule-based method to derive the number 

of simulations that is required to predict the microclimate on an annual basis.  

3.2. Case-study for urban microclimate modeling 

 

The case-study selected for the urban microclimate modeling and coupling of the 

thermodynamic interactions is a zero-energy, LEED Platinum certified medium-size 
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office building – Phipps Center for Sustainable Landscapes (CSL) in Pittsburgh, 

Pennsylvania, USA as shown in Figure 17. The building is a 2,263m2 education, research 

and administration facility. The case-study site is located in the city center; however, it 

is surrounded by vegetation and a lake. Therefore, the microclimate conditions are not 

strictly urban, but represent the urban conditions more closely when compared to rural 

conditions.  

 

Figure 17. As-built view of the Center for Sustainabale Landscapes  (Schrag, 2017) 

 

The CSL case-study was strategically selected keeping in mind three important criteria 

(Figure 18): 

1. The area has various land uses such as office building, naturally ventilated 

botanical garden (Phipps Conservatory), vegetated areas (Schenley Park) and a 

lake, northeast of the CSL building. Therefore, the ENVI-met model considers the 

effects of vegetation, water bodies and the built environment on the microclimate.  

2. The CSL building is adjacent to Carnegie Mellon University campus, which has a 

dense network of administrative, educational, resident halls and parking lots. This 

provides potential for expanding the study area to evaluate the influence of the 
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built environment on the urban microclimate and vice versa in terms of energy 

consumption.  

3. The CSL building has an on-site weather station, which helps in comparison of 

simulated data with actual on-site data rather than a local weather station near the 

airport (suburban). Weather station located by the airport record data that depict 

suburban microclimate conditions and do not represent the city microclimate 

conditions. Therefore, comparison with on-site weather data is especially required 

to validate the accuracy of the ENVI-met microclimate model. 

  

Figure 18. Location of the CSL Building 

4. The CSL building also has a calibrated EnergyPlus whole building energy model. 

This helps accurately estimate and compare the heating/cooling energy 

consumption of the simulated and measured data using the BCVTB coupling 

framework. 

(quoted from Ramesh and Lam, 2015) 
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Figure 19 shows the 2D and 3D microclimate model of the CSL building and its 

surroundings modeled in ENVI-met. The domain size of 150mx150m with a 2m model 

resolution was selected for the initialization and coupling study. 

 

Figure 19. ENVI-met microclimate model of the CSL building  

 

The domain size was strategically selected as 150mx150m to account for: (1) All the 

surrounding elements such as Phipps conservatory, other commercial and residential 

buildings, dense vegetation, the lake, and the site topography (2) Developing a high-

resolution microclimate model and (3) Availability of computational power to complete 

simulations within a reasonable time period.  

3.3. Experimental setup for simulated & measured data comparison 

 

To compare the accuracy of the simulated data, an experiment was conducted to measure 

the air and building façade temperatures. The air temperature was recorded at three points 

along the CSL south façade. The air temperature data was logged at a 10-min interval 

which was then averaged to compute the hourly air temperature. Figure 20 shows three 

measurement points (76, 78, 79) along the south façade. The sensors were setup at 2m 
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height above the ground. The south façade was selected because there were no entryway 

restrictions or blockage by adjacent buildings. The points were selected to be integrated 

with the existing infrastructure around the site vegetation. The comparison was conducted 

for a 3-day period each month between May – August 2016 (summer). The summer period 

was selected because the HOBO sensors deployed for this experiment was not 

recommended for use during the swing or winter conditions.  

 

Figure 20. ENVI-met model receptor points corresponding to the experiment setup 

 

Another variable that was used to compare the ENVI-met predicted data with the 

measured data was building façade temperature. Thermographic images were used to 

record spot measurements capturing the solar radiation effect on the building façade 

during the morning and the afternoon hours. The measurement was recorded on June 14 

at 10am (north, east) and 2pm (south, west) respectively.  
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Figure 21shows the equipment’s that was used to measure air temperature and the façade 

temperature. 

• HOBO Air/Water/Soil temperature sensor (TMC6/TMC20 – HD): The HOBO 

sensor was used to measure the air temperature. The temperature sensor has a 

measurement range of -40° to 100°C in air with an accuracy of ±0.25°C.  

• HOBO Data Logger (U12): The HOBO data logger is connected to the air 

temperature senor to record and store the hourly measured data.  

                      

Figure 21. Equipments used to measure air and façade temperature 

 

• The FLIR Thermal Imaging camera:  This camera was used to capture the 

building façade temperature. The simulated façade temperature is compared with 

measured thermographic images that are captured at a specific time on a specific 

day. 
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Figure 22. CSL experiment setup along the south façade  

 

Corresponding to the experimental setup, the ENVI-met model was able to simulate 

hourly air temperature representing the experiment location points (76, 78, 79) using the 

receptor function as shown in Figure 20.  

The ENVI-met simulated air temperature and relative humidity was also compared with 

the on-site weather station data (Point 39). It should also be noted that the weather station 

data has a very high degree of accuracy compared to the HOBO air temperature sensors. 

3.4. Urban microclimate model generation and initialization 

 

This section describes the process of creating and initializing an ENVI-met model of the 

CSL case-study site as described in Chapter 2 Section 2.3.1. Figure 23 shows the detailed 

method of creating the ENVI-met model using ArcGIS Pro.  

The first step to automate the ENVI-met model generation was obtaining LiDAR data of 

the CSL case-study site from the Pennsylvania Department of Conservation and Natural 

resources (PA DCNR). The next step was to generate the Digital Terrain Model (DTM) 

and Digital Surface Model (DSM) to derive the respective site elevation and building 

elevation using the 3D analyst function in ArcGIS. 
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Figure 23. Automation of ENVI-met microclimate model for CSL 

 

The Digital Elevation Model and the building model was then converted into ASCII .txt 

format which is directly used as input to the ENVI-met area input file to generate the CSL 

ENVI-met microclimate model.  

After successfully generating the ENVI-met model of CSL using ArcGIS, the next step 

was to conduct the microclimate model initialization study as described in Chapter 2 

section 2.3.2. As discussed in Chapter 2, Section 2.3.2, in order to compare the results of 

the ENVI-met simulation with weather station measured data, it is necessary to “force” 

the inflow boundary conditions of the model. The current version of ENVI-met allows 

the forcing of air temperature and relative humidity for a 24-hour period. This forcing 

function is extremely important to initialize the microclimate model  accurately. The 

forced 24-hour air temperature and RH serve as model inflow boundary conditions for 

the entire simulation period.  

For this thesis, two climate periods have been simulated for every month in order to 

represent the annual microclimate conditions. The two periods are selected based on the 

cloud cover to represent sunny and cloudy atmospheric conditions. Therefore, a total of 



 

60 

 

24 climate conditions are simulated to represent the annual microclimate of the CSL case-

study site. Each of the 24 cases are simulated for a 3-day (72 hour) period.  

Figure 24 provides details on the ENVI-met model input parameters and the input source 

that are required to initialize and run the microclimate simulation. 
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Figure 24. Flowchat indicating ENVI-met simulation input parameters and source 

(Ramesh and Lam 2015) 

1. Forcing meteorology inputs: By forcing air temperature and relative humidity for a 24-hour 

period, the tool allows the user to manually define the diurnal variations at the inflow boundary 

conditions.  

2. Wall/Roof properties: Specify wall and roof properties based on the construction layers and 

properties of the individual construction layers. ENVI-met v4.0 is capable of modelling 

construction materials for up to three layers from the outside to the inside of the wall/roof.  

3. Receptors: Selected points inside the model, which provide results on the state of the atmosphere, 

the surface and the soil at each of these selected points.  
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From the figure, it can be seen that the model input can be described as macro level inputs 

and micro level inputs. At the macro level, the inputs correspond to the meteorological 

variables that impact the domain microclimate. These macro level input variables include 

air temperature, relative humidity, wind conditions and soil temperature and wetness. The 

macro level meteorological inputs are derived from the CSL on-site weather station and 

uses the ENVI-met default algorithms. At the micro level, the model inputs correspond 

to the CSL site area input file. The area inputs mainly describe the model resolution, 

global reference for sun angle estimation during simulation, and the CSL domain features 

such as built environment geometry, vegetation and ground surfaces.  

Table 2. ENVI-met model configuration and area file input parameters  

(e.g. for June 2-4) 

Model input parameter Input 

3-D Model Settings 

Domain size 150m x 150x 30m 

Grid size 2m x 2m x 2m 

Location 40.44° N, -79.98° W 

Reference time zone UTC -5:00 

Meteorology: Basic Settings 

Wind speed measured in 10m 

height  
0.97 m/s 

Wind direction 27.47 degree 

Roughness length at measurement 

site 
0.1 

Initial temperature of atmosphere  
Calculated by ENVI-met when forcing is 

used 

Specific humidity at model top  11.4 g/kg 

Meteorology: Simple Forcing 

Temperature (°C) 
Measured air temperature for 24-hour 

period 

Relative humidity (%) Measured RH for 24-hour period 

Soil and plants 

Upper, middle and deep soil layer 
Soil wetness: 50%; Initial 

Temperature:297K 
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The complexity of the area input file also determines the computational resources 

required to complete a 72-hour simulation. For example, for a domain size of 150m X 

150m and 2m model resolution, the computational time is approximately 7-10 days which 

reduces when the model resolution is reduced to 3m or 5m. However, reducing the model 

resolution also compromises the accuracy of the simulated ta and hence this thesis uses a 

model resolution of 2m.  

Table 2 shows an example of the meteorological and area file inputs for the simulation 

period June 2 – 4, 2016 that were required to initialize and simulate the ENVI-met model.  

3.5. Comparison of simulated data to measured data 

 

This section provides a detailed statistical discussion of how the simulated data compares 

to measured data. As previously discussed, 24 cases were simulated to represent the 

annual climate conditions of Pittsburgh, PA. This analysis of simulated data and measured 

data was conducted in three steps. First, the simulated air temperature and relative 

humidity was compared with the measured on-site weather station data (Section 3.5.1). 

The location of the on-site weather station was recorded as Point 39 using the receptor 

function in the ENVI-met model. Second, the simulated air temperature is compared to 

the measured air temperature recorded by the experimental setup (Section 3.3) along the 

south and west façade (Section 3.5.2). The points used for comparison are Point (76, 78, 

79) on the south façade and Point (80, 81) on the west façade as highlighted Figure 18. 

Third, the simulated façade temperature is compared to measured thermographic images 

for June 14 at 10am and 2pm (Section 3.5.3). The metrics used for comparison for the 

first and second steps are root mean square error (RMSE) and correlation coefficient (R). 

This third step also uses spot measurements from the thermographic images to gain a 

more accurate representation of the façade temperature.  
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3.5.1. Analysis of air temperature and relative humidity 
 

As described above, the first step was to conduct a statistical analysis of the simulated 

and measured air temperature and relative humidity. The measured data was obtained 

from the on-site CSL weather station which is indicated as Point 39 (Figure 20). Table 3 

tabulates the statistical comparison (RMSE and R) for air temperature and relative 

humidity for the 24 cases. 

Table 3. Statistical comparison of simulated and weather station measured air 

temperature and relative humidity 

Simulation Period 

(2016) 

Weather Station (Point 39) 

RMSE R 

Air 

temperature 

(°C) 

Relative 

humidity  

(%) 

Air 

temperature 

(°C) 

Relative 

humidity  

(%) 

January 5 - 7 5.05 12.62 0.61 0.84 

January 20 - 22 1.54 4.76 0.89 0.93 

February 15- 17 1.98 11.46 0.45 0.12 

February 20- 22  

(3-day average) 
4.73 10.07 0.55 0.79 

February 20- 22  

(1-day) 
1.56 6.61 0.97 0.91 

March 8 - 10 3.55 17.58 0.65 0.40 

March 22 - 24 5.75 15.8 0.91 0.91 

April 13 - 15 

(3-day average) 
4.05 7.10 0.82 0.93 

April 13 - 15 

(1-day) 
2.13 4.83 0.97 0.96 

May 9 -11 2.91 14.16 0.71 0.61 

May 23 - 25 3.01 13.06 0.91 0.90 

June 12-14 3.34 8.57 0.67 0.84 

June 2 - 4 1.91 9.99 0.92 0.77 

July 19 - 21 2.76 13.26 0.85 0.66 

July 2 - 4 1.58 14.22 0.93 0.63 

August 22-24 5.41 8.30 0.91 0.95 

August 15 - 17 1.91 9.99 0.78 0.68 

September 20 - 22 2.08 8.77 0.97 0.96 
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September 28 - 30 2.59 15.40 0.71 0.47 

October 4 - 6 2.03 7.65 0.94 0.95 

October 7 - 9 1.53 10.59 0.94 0.78 

November 12 - 14 2.05 7.90 0.98 0.96 

November 18 - 20 6.93 11.47 0.30 0.51 

December 1 - 3 1.04 11.35 0.50 0.46 

December 19 - 21 3.23 7.14 0.57 0.71 

 

The comparison of the simulated and measured data of the 24 cases is discussed below in 

terms of RMSE and correlation coefficient (R) for the summer, winter and swing seasons.  

The simulations were conducted for 2016. The analyses are divided based on the 

following seasons: November – early March is considered winter, late May – August is 

summer, late March – early May and September - October are considered swing seasons. 

From the statistical analysis in Table 3, the following observations can be made: 

1. Results show for the winter months (November – February), when the measured 

air temperature pattern is not regular in terms of the daily minimum and maximum, 

the model should be initialized with 1-day data and simulated for every 24-hour 

period. By initializing the model with a 3-day average data, the RMSE for air 

temperature and relative humidity is higher than the summer months. This is 

especially true for November and December 2016 when the daily difference 

between the minimum and maximum air temperature is greater than 15C for 

Pittsburgh. Hence, the ENVI-met model is unable to simulate with accuracy, this 

broad range which is again validated by the correlation coefficient R. For example, 

looking at the statistical analysis for February 20 – 22, it is seen that when the 

ENVI-met model is initialized using the 3-day average data, the RMSE for air 

temperature and relative humidity is higher (4.73C and 10.07%) as compared to 

when the model is initialized with 1-day data. This variation is also evident when 



 

66 

 

comparing the correlation coefficient for air temperature and relative humidity 

(0.55 and 0.79) which is much lower than when the model is initialized with 1-day 

data (0.97 and 0.91). Therefore, results show for the winter months, when the 

measured air temperature pattern is not regular in terms of the daily minimum and 

maximum, the model should be initialized with 1-day data and simulated for every 

24-hour period. 

2. Results show for the summer months (May – August), the model is able to predict 

the air temperature and relative humidity with a high degree of accuracy using a 

3-day average initialization. When the model is initialized with 3-day average 

data, the RMSE for air temperature and relative humidity is between 4°C - 5°C 

and 8% - 13% respectively. It should also be noted that since the difference 

between the maximum and minimum air temperature is less than 10°C, the 

simulation period has a relatively regular pattern. This is also evident from 

comparing the correlation coefficient, which in most cases are higher than 0.85 for 

air temperature. Therefore, the ENVI-met model can predict the air temperature 

and relative humidity with a high degree of accuracy using a 3-day average 

initialization during the summer months.   

3. Results show for the swing months (late March – early May and September - 

October), the accuracy of the simulated data depends on the pattern of the air 

temperature and relative humidity used to initialize the model. For example, 

results for April 13 – 15 show that using a 3-day average has a higher RMSE and 

lower correlation coefficient than initializing the model with 1-day data. This 

variation is because the daily minimum and maximum air temperatures vary during 

the simulation period. However, for October 4 – 6, results show that by initializing 

the model with 3-day average data, the model can predict the air temperature and 
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relative humidity with a high degree of accuracy in terms of RMSE and correlation 

coefficient. Therefore, it can be concluded that for the swing months the ENVI-

met model initialization depends on the pattern of measured data in terms of 

variations in the minimum and maximum air temperature.  

3.5.2. Statistical analysis of simulated with experiment measured air 

temperature 
 

As a second step to evaluate the accuracy of the ENVI-met model prediction, the 

simulated air temperature is compared with the measured data from the experiment points 

(76, 78, 79).  

Table 4. Statistical comparison of simulated and experiment measured air 

temperature 

Simulation 

Period 

(2016) 

Point 76 Point 78 Point 79 

Air temperature (°C) 

RMSE 

(°C) 
R 

RMSE 

(°C) 
R 

RMSE 

(°C) 
R 

May 23 - 25 3.93 0.92 3.59 0.92 3.64 0.92 

June 2 - 4 2.17 0.87 2.20 0.88 2.39 0.86 

June 17 - 19 3.45 0.90 2.98 0.90 3.51 0.87 

July 2 - 4 1.76 0.93 1.73 0.93 1.84 0.93 

July 19 - 21 3.55 0.91 3.21 0.85 3.11 0.91 

August 15 - 17 2.19 0.68 1.42 0.63 2.23 0.68 

August 22-24 7.53 0.67 2.53 0.90 3.13 0.92 

 

Similar to the previous discussion, results show for the summer months the ENVI-met 

model is able to predict the air temperature for all the experiment points with a high 

degree of accuracy. From Table 4, August 15 – 17, it is seen that though the RMSE for 

the three points are low, the correlation coefficient is also low. This is due to the sudden 

increase in air temperature on day 2 of the simulation period which is discussed in detail 
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in Section 3.6. Also, for August 22 – 24, it is seen that Point 76 has a high RMSE (7.53°C) 

and a low R coefficient (0.67). It was observed that the HOBO sensor at this point started 

failing and the recorded data at this point did not accurately represent the air temperature.  

3.6. Analysis of ENVI-met model initialization 

 

Based on initial analysis of the 24 simulation cases detailed in Table 3, six cases were 

selected to study the simulation results of the 3-day average and the 1-day forcing to 

initialize the model inflow boundary conditions. These six cases are analyzed more deeply 

to assess the importance of accurate ENVI-met model initialization. The six cases are 

representative of winter (January and February), summer (June and August) and swing 

(April and October) climate conditions in Pittsburgh, PA.  

Figure 25 shows the comparison of simulated and measured air temperature and relative 

humidity for January 20 – 22, characterized as a winter condition in Pittsburgh, PA. 

 

Figure 25. Comparison of simulated and measured data for January 20 - 22 
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The measured forcing input (air temperature and relative humidity) does not have a 

regular pattern. Therefore, the ENVI-met model is initialized by a 1-day measured air 

temperature and relative humidity. This initialization process was repeated using the 

measured data for day 2 and day 3. The following observations can be made from the 

simulation results: 

1. Although there is a temperature difference of ~3C at the start of the simulation, 

the model is able predict the 3-day pattern to a fair degree of accuracy. The RMSE 

for air temperature is 1.54C for the simulation period (Table 3). The correlation 

between the measured and simulated air temperature is 0.89 which means there is 

a high degree of correlation between the predicted and measured air temperature. 

Therefore, results show that although the difference between predicted and 

measured minimum temperature is approximately 2C, the model is still able to 

predict the other hours with a high degree of accuracy.  

2. Comparing the simulated and measured relative humidity (RH), results suggest 

that the model is able to predict the pattern to a high degree of accuracy with a 

correlation of 0.93 and an RMSE of 4.76%.  
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Figure 26. Comparison of simulated and measured data for February 20 – 22  

 

Figure 26 and Figure 27 shows a comparison of simulated and measured air temperature 

and relative humidity for February 20 – 22 using 3-day average and 1-day forcing for 

model initialization. The following observations and conclusions can be made: 

1. Figure 26, which uses 3-day average as the forcing conditions, indicates that 

maximum and minimum air temperature varies to a great extent between day 1 and 

day 2 & 3. The measured maximum on day 1 is 20.4C, whereas the maximum on 

day 2 & 3 are 13.8C and 10.7C respectively. The same pattern occurs for relative 

humidity, where day 1 is lower (maximum of 52.9%) when compared to day 2 & 

3 (maximum of 64.6%). The correlation between simulated and measured air 

temperature is 0.55 and relative humidity is 0.78, which is low due to the 3-day 

average model initialization. Therefore, initializing the model with the 3-day 

averaged air temperature and relative humidity does not accurately represent the 
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measured data. Hence the model is unable to accurately predict the 3 days that is 

comparable to measured data.   

2. Figure 27 shows that by simulating the same model with forcing 1-day air 

temperature and relative humidity, the model prediction is comparable to the 

measured data with a RMSE of 1.56C for air temperature and 6.61% for relative 

humidity. The correlation between simulated and measured air temperature is 0.97 

and relative humidity is 0.91. Therefore, when the initialization pattern in terms 

of minimum and maximum air temperature is not consistent for the simulation 

period, results show the ENVI-met model should be initialized for every 24 hours 

of the simulation period using the forcing function in ENVI-met. 

 

Figure 27. Comparison of simulated and measured data for February 20 – 22  

 

Figure 28 and Figure 29 shows a comparison of simulated and measured air temperature 

and relative humidity for April  13 - 15 using 3 – day average and 1 - day forcing for 
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model initialization. This period is considered as swing season in Pittsburgh, PA. The 

following observations and conclusions can be made: 

1. Figure 28, which uses a 3-day average initialization does not accurately represent 

the measured air temperature and relative humidity. The maximum air temperature 

varies between day 1, 2 and 3 with a difference of 2C - 4C. This is also evident 

during the start of the simulation were the difference between measured and 

simulated air temperature is approximately 6C. Therefore, when using the 3-day 

average for initialization, the model is unable to predict the air temperature  and 

relative humidity with accuracy.  

2. Figure 29, shows that using 1-day initialization, the model is able to predict the 

air temperature and relative humidity that is comparable to the measured data from 

the start of the simulation. The RMSE is 2.13C and 4.8% for air temperature and 

relative humidity respectively.  Therefore, as highlighted in the previous 

discussion, when the initialization pattern in terms of minimum and maximum air 

temperature is not consistent for the simulation period, results show the ENVI-met 

model should be initialized for every 24 hours of the simulation period.  
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Figure 28. Comparison of simulated and measured data for April 13 - 15  

 

Figure 29. Comparison of simulated and measured data for April 13 - 15  
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Figure 30 shows the comparison of simulated and measured air temperature using 3-day 

average initialization for June 2 – 4. The following observations can be made: 

1. It can be seen that the measured air temperature has a regular pattern in terms of 

the maximum and minimum which varies between 28C  - 30C for the simulation 

period. Therefore, by initializing the model with a 3-day average, the model is able 

to predict the air temperature with RMSE 1.91C and relative humidity of 9.99%. 

The correlation for air temperature is 0.92 which shows a high degree of agreement 

with the measured data. The correlation for relative humidity is 0.77, which is 

mainly attributed to Day 2 when the pattern is not similar to day 1 and day 3.  

 

Figure 30. Comparison of simulated and measured data for June 2 - 4  

 

Figure 31 shows the comparison of simulated and measured air temperature and relative 

humidity using 3-day average initialization for August 15 - 17.  
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It is observed that the measured air temperature and relative humidity have a steady 

pattern throughout the 3-day simulation period. The daily variation between the 

maximum and minimum air temperature and relative humidity is approximately 6C, 

which is low when compared to winter and swing seasons where the variation is 

between 10C - 15C . 

 

Figure 31. Comparison of simulated and measured data for August 15 -17  

 

Due to this regular air temperature pattern in the summer months, the RMSE and 

correlation coefficient for air temperature and relative humidity are 1.91C and 9.99% 

and 0.78 and 0.68 respectively. The correlation coefficient for this summer case is lower 

than the other cases because of the sudden increase and decrease in air tempearure and 

relative humidity that is observed on day 2. This is attributed to the actual change in the 

climate condition or a misrecording by the sensor during this specific period.   
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Figure 32. Comparison of simulated and measured data for October 4 - 6  

 

Figure 32 shows the comparison of simulated and measured air temperature and relative 

humidity using 3-day average initialization for October 4 – 6. The following observations 

can be made: 

1. The measured air temperature and relative humidity has a regular pattern through 

the 3 day simulation period with a maximum of 23C - 25C and minimum of 10C 

- 12C. Therefore, by initializing the model using the average of these 3 days, the 

model is able to predict the air temperature with an RMSE of 2.03C and relative 

humidity with an RMSE of 7.65%. The correlation between simulated and 

measured air temperature and relative humidity is 0.94 and 0.95 respectively. This 

shows that there is a high degree of correlation between the simulated and 

measured by initializing the model using a 3-day average.  
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Therefore, it can be concluded that for climate conditions when the minimum and 

maximum air temperature variations are not above 10C - 15C, the ENVI-met model is 

able to accurately predict the air temperature and relative humidity. However, when these 

minimum and maximum variaitons exceed 15C, a 1-day initialization and simulation is 

recommended to achieve simulated data comparable to measured data. It should also be 

noted that, there can exist climate conditions with very high variability in the daily 

minimim and maximum as well as between the consecutive days air temperatures. Such 

days are extremely difficult to predict and cannot be simulated with accuracy. These 

variations can most often occur in a heating dominated climate such as Pittsburgh, PA 

during the winter and swing seasons. However, the number of such days are negligible 

when compared to an annual simulation. The above conditions can be translated into rules 

to derive the number of ENVI-met simulations that would be required to simulate the 

microclimate for an annual period.  

3.6.1. Method to derive number of ENVI-met simulations for an annual 

period 
 

Based on the analysis in Section 3.6 above, the two rules have been established to derive 

the number of ENVI-met simulations. 

1. Rule 1: If difference between maximum and minimum air temperature ≤ 15C, 

then rule 2.  

2. Rule 2: If difference between daily hourly temperature  ≤ 15C, then 

Simulation uses 3-day average initialization, else 

Simulation uses 1-day initialization.  

First, Rule 1 is used to eliminate the days that cannot be simulated to achieve the required 

degree of accuracy. Second, Rule 2 is used to provide the number of simulations that is 
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required to be conducted using a 3-day average and a 1-day initialization. Therefore, by 

this method, it is possible to derive the total number of ENVI-met simulations required 

to cover an annual period. 

As an example, the above described rules was implemented to calculate the number of 

ENVI-met simulations that would be required to predict the microclimate for an annual 

period using 2016 air temperature data for Pittsburgh. Results show that: 96 simulations 

with 3-day average initialization and 38 simulations with 1-day initialization would be 

required to simulate the annual microclimate. Since Pittsburgh microclimate has seasons 

where it is hard to predict the microclimate, the results also show that the microclimate 

cannot be predicted with high degree of accuracy for 40 days of the year.  

3.6.2. Analysis of simulated and measured façade temperature 
 

Sections 3.5.1 and 3.5.2 provide a detailed statistical analysis of the air temperature and 

relative humidity by comparing the air temperature and relative humidity with the weather 

station and the five experimental setup points. This constitutes for first two steps in the 

comparative analysis of the simulated and measured data. This section provides analysis 

of the simulated and measured façade temperature which is the third step for comparing 

the accuracy of the ENVI-met prediction. This analysis is especially important to 

determine the ENVI-met model accuracy using the 7-node calculation to estimate the 

façade temperature. Results show that the ENVI-met model is able to predict the façade 

temperature with a high degree of accuracy by implementing the 7-node modeling 

function. Given that the CSL model is a high-resolution model (2m), the maximum 

variation between the measured and simulated façade temperature is 7.8%, which means 

that the ENVI-met model is able to simulate façade temperature that closely represent 

measured thermographic data. 
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According to (Huttner, 2012), to calculate the outside and inside façade temperature and 

the indoor air temperature, the façade layer uses seven calculation nodes as shown in 

Figure 33. This allows for the construction of up to three building material layers which 

can vary in width and material properties. Every material can have its own physical 

properties (absorption, transmission, refection, emissivity, specific heat capacity, thermal 

conductivity and density). As shown in Figure 33, the red dots symbolize the different 

nodes, located at the center and lateral borders of each material (Simon).  

 

Figure 33. Schematic layout of 7-node wall and roof construction in ENVI-met 

(Simon, 2016) 

Based on this detailed façade modeling feature in ENVI-met, the 7-node criteria is used 

for the CSL case-study building. The material properties for the ENVI-met model are 

obtained from the EnergyPlus model. To evaluate the accuracy of this 7-node façade and 

roof modeling in ENVI-met, it is important to compare the predicted and measured façade 

temperatures. 

The measurement was conducted using a thermographic camera on June 14, 2016. Two 

time periods, 10:00am and 2:00pm were selected to cover the morning and afternoon 

periods on a sunny day. Based on the building orientation and sun direction, the measured 

thermographic images were compared with simulated north and east façade at 10:00am 
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and the south and west façade at 2:00pm. Tables 5 & 6 show the comparison with the 

thermographic images for three selected spots, façade maximum and façade average 

temperature for the north and south facades. The table comparison for the west and east 

facades is documented in Appendix A.  

 



 

 

 

Table 5. Comparison of simulated and measured north façade temperature 

June 14, 2016 – 10:00am (North façade) 

   

Surface Temperature Measurement 

spot 
Thermographic image - Measured (°C) ENVI-met Simulated (°C) 

Spot 1 33.23 30.17 

Spot 2 32.54 31.56 

Spot 3 33.53 30.61 

Area Maximum  35.42 32.49 - 35.65 

Area average 32.71 30.11 - 32.49 

S1

S2

S3
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Table 6. Comparison of simulated and measured south façade temperature 

June 14, 2016 – 2:00pm (South façade) 

   

Surface Temperature Measurement spot Thermographic image - Measured (°C) ENVI-met Simulated (°C) 

Spot 1 43.50 40.20 

Spot 2 42.54 40.91 

Spot 3 41.06 41.14 

Area Maximum  43.73 41.67 - 45.31 

Area average 40.65 38.03 - 41.67 

 



 

 

 

Table 5 & 6 compares the simulated and measured data for the north and south façade at 

10:00am and 2:00pm respectively. Results show that the variation in simulated and spot 

measured façade temperature can be attributed to the sun angle rotation and the 

percentage of glazing on the building versus the ENVI-met model. ENVI-met calculates 

the sun angle based on the latitude, longitude and the time zone and this can have a slight 

variation when compared to actual sun position. It should also be noted that the ENVI-

met model is grid based with a model resolution of 2m. Therefore, when comparing spot 

façade temperatures, the model represents the temperature for entire grid which can cause 

slight inaccuracies.  

From Table 5, it is seen that three measurement spots are selected on the thermographic 

image to conduct the comparison with the simulated data. Comparing spot 1, 2 and 3, it 

is observed that the difference between measured and simulated façade temperature is 

3.03°C, 0.94°C, and 2.89°C respectively. It is also observed that though the spot 

measurements have a maximum variation of 3.03°C, the area maximum and average fall 

in between the ENVI-met simulated range and closely match the simulated data.  

Similarly, Table 6 compares the simulated and measured data for the south façade at 

2:00pm where three measurement spots are selected on the thermographic image to 

conduct the comparison. Comparing spot 1, 2 and 3, it is observed that the difference 

between measured and simulated façade temperature is 3.3°C, 1.6°C, and 0.14°C 

respectively. It is also observed that though the spot measurements have a maximum 

variation of 3.3°C, the area maximum and average fall in between the ENVI-met 

simulated range and very closely match the simulated data. Similar pattern is observed 

for the east and west facades (Appendix A).  
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Therefore, as highlighted previously, results show that the ENVI-met model is able to 

predict the façade temperature with a high degree of accuracy by implementing the 7-

node modeling function.  

3.7. Summary 

 

This chapter describes the ENVI-met model automation, setup and initilization process 

for the CSL case-study. The ENVI-met 3D model can be seemlessly created using ArcGIS 

3D analyst functions. From the simulations for the 24 cases that represent the annual 

climate condition of Pittsburgh, three types of analysis were conducted to compare the 

accuracy of the simulated and measured data as well as to emphasize the importance of 

accurate model initialization.  

From the initialization analysis, results show for the winter months (November – 

February), when the measured air temperature pattern is not regular in terms of the daily 

minimum and maximum, the model should be initialized with 1-day data and simulated 

for every 24-hour period. By initializing the model with a 3-day average data, the RMSE 

for air temperature and relative humidity is higher than the summer months. For the 

summer months (May – August), the model is able to predict the air temperature and 

relative humidity with a high degree of accuracy using a 3-day average initialization. This 

is because of the regular air temperature and relative humidity that is used to initialize 

the ENVI-met model. For the swing months (late March – early May and September - 

October), the accuracy of the simulated data depends on the pattern of the air temperature 

and relative humidity used to initialize the model. Results also show that by using ENVI-
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met 7-node feature to accurately define the building envelope properties, the model is 

able to predict the façade temperature with a high degree of accuracy.  

Therefore, after accurately conducting the ENVI-met simulations, the next step is to 

couple these results with the CSL EnergyPlus model to analyze the effect of microclimate 

on building energy consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

86 

 

Chapter 4: Implementation of coupling method to 

improve building energy consumption predictions 

 

4.1. Overview 

 

After the microclimate simulations were conducted and the model initialization analyses 

made as described in Chapter 3, the simulated data was coupled with the building energy 

simulation tool, EnergyPlus, using BCVTB as the coupling platform. As described in 

Chapter 3, six simulation cases—representing winter, summer, and the swing seasons—

were selected to demonstrate the effects on building energy consumption of coupling the 

thermodynamic interactions between natural and built environments. This chapter 

describes the coupling of the urban microclimate with the building energy simulation tool. 

Section 4.1 describes the data mapping and exchange between ENVI-met and EnergyPlus. 

Section 4.4 details the coupling of surface boundary conditions and infi ltration, and 

Sections 4.5 and 4.6 provide analyses of the impact of TMY3 weather data versus 

simulated weather data on the façade temperature and building energy consumption .  

4.2. Building energy model description 

 

As a first step to coupling the microclimate simulated results with a building energy 

model, it is important to create an energy model that closely represents the as-built 

building. This research uses the energy model of the CSL case-study adapted from Zhao 

(2015). This detailed energy model was converted using DesignBuilder to the more recent 

EnergyPlus v8.5. During this conversion, care was taken to maintain the building’s 

geometry because the building form and thermal zoning can modify the outside 
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microclimate conditions (i.e., wind speed, wind direction and air temperature). Therefore, 

the building form is an important factor in quantifying the effects of microclimate on 

energy consumption.  

The main elements of an energy model that affect building energy consumption are the 

construction materials (building envelope), operational schedule, and mechanical system.  

 

Figure 34. DesignBuilder model of the CSL building 

 

The EnergyPlus model represents the as-built building in terms of building construction 

materials and operational schedules (Zhao, 2015). However, the HVAC system in the 

EnergyPlus model is a variable air volume (VAV) with reheat system (boiler and chiller), 

whereas the HVAC system of the CSL building is a central air handling unit (AHU) with 

a ground source heat pump (GSHP) and energy recovery ventilator (ERV). The under-

floor air distribution (UFAD) system is used for the open-style offices, conference rooms, 
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and other regularly occupied spaces. A ceiling-based air distribution system is used for 

other spaces, such as restrooms, service areas, and mechanical and storage areas. Despite 

this variation between the EnergyPlus modeled HVAC and the as-built HVAC, 

comparable measured data was obtained, as detailed in Section 4.6. Figures 34 and 35 

show the EnergyPlus model of the CSL building.  

 

Figure 35. First floor plan of the CSL building 

The energy model used in this thesis is based on the construction drawings for the building 

envelope. The HVAC system is a ASHRAE baseline system, which is a VAV with reheat, 

and it does not represent the as-built water source heat pump system. However, necessary 

steps have been taken to accurately calculate the measured cooling and heating energy 
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consumption from the as-built mechanical system through data mining as described in 

Chapter 4. This is essential to compare the coupled model energy consumption correctly.  

4.3. Data mapping and exchange between ENVI-met and EnergyPlus 

 

After the setup of the EnergyPlus model, the next step was to process the ENVI-met 

microclimate simulation results to match the EnergyPlus format accurately. As discussed 

in Chapter 2, Section 2.3.3.1, in ENVI-met, the 3D model geometry is based on structured 

grids while in the EnergyPlus building envelope, elements are considered single entities. 

In ENVI-met, each of these surfaces is divided into grids based on the model resolution, 

which is 2m for the CSL case-study building. Simulation data is recorded using the 

receptor function in every grid (every 2m) along the height of the building. Therefore, to 

transfer the simulated microclimate data from ENVI-met to EnergyPlus, each surface is 

treated as an individual unit (e.g., each wall and roof is a separate  unit) in both tools, as 

shown in Figure 36. 

BCVTB is used to process and calculate the air temperature and wind speed data for every 

surface based on the receptor information. Figure 34 shows how the data was extracted 

and mapped using BCVTB. As seen in the figure, the extraction process was based on the 

model parameters, wall and roof extraction, and the EnergyPlus processed output.  

The model parameters (Figure 37) show that the simulation period is 3 days where ENVI-

met simulated data is processed for the full building height (Bg). The number of surfaces 

in the CSL EnergyPlus model for which ENVI-met simulated data is mapped, is 302 (Nr). 

It should be noted that the Nr value for a 2-story office building is high owing to the 

detailed nature of the EnergyPlus model. The number of receptors required to map the 
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ENVI-met simulated data for the CSL building façade is 37 (Wr), as seen in Figure 36. 

From Figure 36, it can be seen that the data for each façade is mapped based on the 

EnergyPlus thermal zones (wall 1, wall 2, wall 3, etc).  Figure 37 shows that the wall 

extractor is mapped for every wall and split based on the floor to generate the wind speed 

and air temperature. The same process was repeated for the roof extractors at the roof 

height to generate the output. 

 

Figure 36. Layout of receptors for recording simulated data in ENVI-met for the 

CSL case-study 

 



 

 

 

 

Figure 37. BCVTB module for data extraction and mapping



 

 

 

4.4. Implementation of coupling platform 

After successfully processing the ENVI-met simulated air temperature and wind speed 

into the EnergyPlus format for all 302 building surfaces, the next step was to implement 

the coupling method described in Chapter 2, Section 2.3.3.2. According to Section 

2.3.3.2a, the absorbed direct and diffuse solar flux was accounted for by modeling the 

surrounding building in EnergyPlus (shadow calculations). The input for ground 

reflectance in EnergyPlus was modified using the EnergyPlus object 

“Site:GroundReflectance” for every simulation period based on the ENVI-met simulation 

results.  

The next step was to couple the effects of surface boundary conditions as described in 

Section 2.3.3.2b, shown in Figure 38. Stage 1 implementation was the convective heat 

transfer coefficient (hc), which was calculated based on equation (4). As shown in Figure 

35, hc was calculated and overwritten in EnergyPlus using the Energy Management 

System (EMS) actuator “Exterior Surface Convective Heat Transfer Coefficient.” Stage 

2 implementation consisted of adding the effects of the radiation linear heat transfer 

coefficient. However, as described in Chapter 2, the EMS External Interface data 

exchange between BCVTB and EnergyPlus has a limitation of 1024 values at any given 

time. Therefore, according to the method described in Section 2.3.3.2b, Stage 2 involves 

implementation and direct computation of hc and hr in EnergyPlus by overwriting the air 

temperature and wind speed using the EMS actuator, “Outdoor Air Drybulb 

Temperature.” 

After coupling the surface boundary conditions, the next step was to couple the effects of 

infiltration. Following equation (5) in Section 2.3.3.2c, the effects of outdoor dry-bulb 

temperature and wind speed were coupled using the EMS actuator “Outdoor Air Wind 

Speed.”



 

 

 

 

Figure 38. BCVTB coupling module for convective and radiative fluxes for the CSL case-study 



 

 

 

The impact of coupling the ENVI-met simulated data with the CSL EnergyPlus model is 

analyzed and discussed using two variables: (1) the CSL façade temperature and (2) 

heating and cooling energy consumption. Section 4.5 discusses the effect of coupling 

microclimate data on façade temperature and Section 4.6 discusses the effect of coupling 

microclimate data on the CSL heating and cooling energy consumption.  

Façade temperature comparison is conducted for a summer and winter case simulation 

using typical metrological year (TMY3) weather data and simulated weather data. As 

previously described, TMY3 weather file represents climate conditions from previous 

years (1991–2005) rather than current or recent weather conditions, for which the air 

temperatures and wind speed are approximately 10°C and 7–10m/s higher than the 

measured data for 2016, respectively. 

4.5. Effects of coupling microclimate data on façade temperature 

 

Figures 39–42 show the variations in façade temperature during the summer when a 

TMY3 weather file was used versus a simulated microclimate weather file.  

 

Figure 39. Comparison of north façade temperature in the summer 
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Figure 40. Comparison of east façade temperature in the summer 

 

 

Figure 41. Comparison of south façade temperature in the summer 
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Figure 42. Comparison of west façade temperature in the summer 

The comparison includes the first-floor wall and window and the second-floor wall and 

window.  

Overall, the comparisons show that TMY3 weather data does not accurately predict the 

façade temperatures in the summer. Results show that the highest temperature variations 

occur on the north and south façades, with variances of approximately 12C–15C for any 

given time of day during the 3-day simulation period. These variations are present in both 

walls and windows.  

The east façade has the next highest variation of approximately 10C, especially on days 

2 and 3 of the simulation period. The west façade showed a variation of approximately 

5C–8C for the simulation period. These variations are attributed to the different weather 

conditions defined in the TMY3 weather file as opposed to the simulated file (which 

represents the actual weather). It was observed that the air temperature during this period 

was approximately 20C higher than that recorded in the TMY3 file. In addition, the wind 
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speed in the TMY3 data is much higher than in the simulated data (approximately 0 - 

1m/s). It should also be noted that the north and south façades have the highest variation 

because they have the longest period of sun exposure and cover a larger surface area of 

the building envelope. Hence, during a sunny, clear day in summer, as represented by day 

1 (owing to peak façade temperature), these facades are exposed to a high degree of solar 

radiation. Therefore, it is evident that using TMY3 weather data does not accurately 

represent the current weather conditions for obtaining realistic simulation results.  

 

Figure 43. Comparison of north façade temperature in the winter 
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Figure 44. Comparison of south façade temperature in the winter 

 

Figure 45. Comparison of east façade temperature in the winter 
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Figure 46. Comparison of west façade temperature in the winter 

Figures 43–46 show the variations in façade temperatures during the winter from an 

energy model simulation that uses a TMY3 weather file versus simulated weather data. 

As with the summer conditions, the comparison includes the first-floor wall and window 

and the second-floor wall and window. Overall, comparison for the winter show a 

minimal variation in façade temperature when using a TMY3 weather file versus 

simulated weather data. This minimal variation is attributed to the cloudy sky which 

reduces solar radiation impact on the facades. Solar radiation has a direct impact on the 

façade’s solar heat gain and energy consumption. For the simulated winter period, the 

impact of reduced solar radiation is observed on the heating energy consumption as noted 

in the following section.  

Results show that in the winter, minimal variation exists in the façade temperature 

whether one uses TMY3 weather data or simulated weather data. On the north and south 

façades, which have the highest duration and surface area for solar exposure, it was 

observed that for both walls and windows, the pattern of the façade temperature has less 
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variation. Similar observations can be made with the east and west façades. In addition, 

the highest variation of approximately 2C–3C occurs between the first- and second-

floor walls of the east facade. Here, the temperature of the first-floor walls is lower than 

for the second floor, a difference that may be attributed to the effect of the water pond 

adjacent to the east façade. Additionally, for all facades, wall temperatures are observed 

to be approximately 2C lower than the window glazing temperatures. Based on these 

observations, it can be concluded that the façade temperature is not greatly affected 

during the winter season when simulating using either TMY3 or predicted weather file. 

However, it should be noted that though the weather file does not demonstrate a 

significant impact on the façade temperature during the winter, it does affect the energy 

consumption prediction as discussed in Section 4.6. 

In addition, analyzing the façade temperature in summer and winter can be extremely 

important in understanding the behavior of building materials (heat gain and thermal 

resistance) for conducting thermal comfort studies. Facades are one of the most 

significant contributors to the building energy consumption and the comfort parameters 

in any building. Optimal façade design is essential to understand: orientation, geometry 

and massing of the building to respond to solar position; shading devices  and natural 

ventilation potential to control cooling energy consumption, improved thermal comfort 

and air quality; lighting controls for artificial lighting and daylighting strategies; and 

exterior wall insulation to optimize heating and cooling energy consumption. Therefore, 

understanding the seasonal variation in façade temperature when simulating with TMY3 

and simulated weather data is essential.  
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4.6. Effects of coupling microclimate on building energy consumption 

 

After successfully coupling the surface boundary conditions and the infiltration, it is 

necessary to compare the effects of these thermodynamic interactions on building energy 

consumption. This section uses three steps to provide a comparative analysis of the effects 

of the thermodynamic interactions between the built and the natural environment on 

building energy consumption: (1) changing the weather file to measured and simulated 

data, (2) incorporating the effects of surface boundary conditions (convective and 

radiative heat flux), and (3) incorporating the effects of building infiltration.  

The energy consumption of steps 1, 2 and 3 is also compared with the measured energy 

consumption of the CSL building. As mentioned in the CSL case-study description of the 

HVAC system, a water-source heat pump (WSHP) supplies the heating and cooling. 

However, the EnergyPlus model has a VAV system. Therefore, it is important first to 

estimate and convert the CSL measured heating and cooling energy consumption so that 

it is comparable to the EnergyPlus simulated energy consumption. 

CSL sub-meters the electrical consumption for its Berner AHU units, which include 

supply fan, exhaust fan, heat recovery wheel motor, and the water source heat pump unit. 

Through data mining, it was possible to disaggregate and estimate the energy 

consumption for the WSHP, which generates heating/cooling to the building. After the 

compressor energy consumption was derived, an estimation of the overall COP of 3.2–

3.5 for the WSHP (without the water pump) was used (Brandi) to estimate the heating 

and cooling use. This estimated heating and cooling use was then compared to the VAV 

system boiler and chiller energy consumption.  
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The following points summarizes the constraints during the microclimate modeling, 

energy modeling and data acquisition phase of the CSL case study: 

1. HVAC system: As described above, the modelled HAVC system in EnergyPlus is 

a simplified VAV system and does not represent actual building HVAC system 

which is a WSHP. Therefore, an alternative approach has been taken to calculate 

the measured heating and cooling energy consumption as described above.  

2. Simulation period: The simulation period (3-day) for every season has been 

selected based on the regularity of the air temperature and relative humidity 

pattern. Therefore, this 72-hour period should not be assumed as a representative 

pattern for the entire season. Rather, the simulation results show that the coupled 

model successfully predicts the microclimate and the heating/cooling energy 

consumption for this 3-day period.  

3. CSL building surroundings: For the ENVI-met microclimate modeling, the 

surrounding vegetation and building construction has been modelled to closely 

represent the existing conditions. However, due to ENVI-met limitations due to 

grid-based modeling and specifying building constructions layers (three layers 

maximum), it is possible that the ENVI-met model does not represent the exact 

physical site and building conditions which can impact thermodynamic 

interactions between the natural and the built environment.  

The following charts show the comparison of the heating and cooling energy consumption 

for the six simulation cases (winter, summer, and swing seasons) using TMY3 and 

measured/simulated weather data. As noted previously, the TMY3 weather file represents 

climate conditions from previous years (1991–2005) rather than current or recent weather 
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conditions, for which the air temperatures and wind speed are approximately 10°C and 

7–10m/s higher than the 2016 measured data, respectively. These are the three take-aways 

Figures 47 and 48 compare the coupled effects of the urban microclimate on building 

energy consumption using TMY3 and simulated weather data for January 20–22 and 

February 20–22 respectively. Since these periods are considered winter, the heating 

energy consumption is compared based on the various stages of coupling the microclimate 

effects. 

From the comparative analysis, it was found that the simulated ENVI-met–EnergyPlus 

coupled model for CSL is able to predict the heating energy consumption with an 

accuracy of 14%–20% of the measured consumption. Additionally, it was found that the 

predicted heating and cooling energy consumption are in very close agreement when 

comparing the simulation results that use ENVI-met simulated weather file with the CSL 

measured weather file. Lastly, similar to the previous discussion in Section 4.5, the TMY3 

weather file does not represent the current microclimate conditions accurately enough to 

predict the energy consumption.  

For winter, Figure 47 shows an increase in heating energy consumption by approximately 

63% and 54% for the TMY3 weather file versus measured/simulated weather data. For 

February 20–22, Figure 48 shows a decrease of 42% to 53% in heating energy 

consumption. These increases/decreases are attributed to the high degree of variation in 

the climate variables (air temperature, relative humidity, wind speed) in a TMY3 weather 

file and measured/simulated weather file. For January, measured/simulated air 

temperature was colder—and for February, warmer—when compared to TMY3 air 

temperature.   
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Figure 47. Comparison of building energy consumption in the winter 

 

 

Figure 48. Comparison of building energy consumption in the winter 
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Figures 47 and 48 also show that convective and radiative heat flux and infiltration affect 

building energy consumption minimally if the energy model already uses the simulated 

weather file. This minimal effect is because the simulated weather file already considers 

the effect of wind speed, air temperature, and surface temperature, which are the primary 

factors that affect surface boundary conditions and infiltration. It should also be noted 

that this increase in energy consumption is for a 3-day period. Therefore, predictions of 

energy consumption for a heating-dominated climate can be exponentially high.  

Figures 47 and 48 further show that the coupled EnergyPlus model is able to predict 

heating energy consumption with an accuracy of 14–20% of the measured heating energy 

consumption. Therefore, it can be concluded that using current microclimate conditions 

results in estimating the heating energy consumption with a high degree of accuracy . 
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Figures 49 and 50 compare the coupled effects of the urban microclimate on cooling 

energy consumption using TMY3 and measured/simulated weather data for June 2–4 and 

August 15–17, respectively.  

 

Figure 49. Comparison of building energy consumption in the summer 

Overall results for the summer period indicate a greater increase in cooling energy 

consumption during peak summer (August) than during the start of summer (June) when 

comparing simulations using TMY3 weather and measured/simulated weather. For this 

summer period, coupling surface boundary conditions and infiltration has a minimal 

increase on cooling energy consumption (4%–8%) if the simulations take the 

microclimate effects into account. Additionally, it was observed that the ENVI-met–

EnergyPlus coupled model is able to predict the cooling energy consumption with an 

accuracy of 10%–14%.  

For June 2–4, the start of the summer period, there is minimal increase in cooling energy 

consumption when using a TMY3 weather file versus measured/simulated data (8%–9%). 
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A similar trend is observed for August 15–17 where the increase in cooling energy 

consumption is higher (approximately 28%) than in June owing to peak summer 

conditions (i.e., heat and humidity).  

 

Figure 50. Comparison of building energy consumption in the summer 

A temperature difference of approximately 10°C–12°C for the simulation period in June 

and August was noted when the TMY3 and measured/simulated air temperature were 

compared. However, in June, only a minimal increase in the cooling energy consumption 

was observed. This minimal increase in cooling energy consumption in June may be 

attributed to various factors, such as the urban form, vegetation, radiative effects, and 

relatively lower air temperatures and humidity than in peak summer conditions. The 

location of the CSL building is not considered an urban setting, although the building is 

in the city. The building is surrounded by dense vegetation in summer. In addition, a 

water body on the east side of the building helps cool the surrounding environment.  The 

combined effect of the vegetation and the water body helps to reduce the heat trapping 
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that would otherwise occur in a dense urban environment. However, the increase in 

cooling energy consumption in August (Figure 50) is observed to be higher than in June. 

This is because August is considered peak summer condition, when the relative humidity 

is much higher than in June. The relative humidity for this simulation period is between 

80% and 90% whereas it is 40–50% in June. Therefore, more energy is required to 

dehumidify and cool the air before the air is circulated within the building. Similar to the 

winter results, the TMY3 weather data here do not accurately represent the current 

microclimate conditions, especially during peak summer conditions. Figures 49 and 50 

further show that the coupled EnergyPlus model is able to predict the cooling energy 

consumption with an accuracy of 10–14% of the measured cooling energy consumption.  

 

Figure 51. Comparison of building energy consumption in a swing period 

Figures 51 and 52 compare the coupled effects of the urban microclimate on the heating 

and cooling energy consumption using TMY3 and measured/simulated weather data for 

April 13–15 and October 4–6, respectively. It should be noted that swing seasons are 

harder to predict because of the high variability in the daily and hourly climate conditions. 
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Results show that similar to winter and summer conditions, the EnergyPlus model either  

over or under predicts the heating/cooling energy consumption if TMY3 weather data are 

used.  

 

Figure 52. Comparison of building energy consumption in a swing period 

 

Figure 51 shows that for April, heating energy consumption decreases by 6%–8% when 

simulating the energy model using TMY3 and measured/simulated weather data . In 

addition, if the EnergyPlus model takes the simulated microclimate into account, the 

effect of surface boundary conditions and infiltration on heating energy consumption is 

observed to be minimal (1%–3%). Figure 52 for October, which shows both heating and 

cooling energy consumption, demonstrates a minimal increase in cooling energy 

consumption (< 1%) but a significant decrease in heating energy consumption (52%–

56%). This significant decrease may be attributed to the warmer air temperatures during 

October 2016 versus October 1999 (TMY3). Results also show that coupling the effects 
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of convective/radiative heat flux and infiltration with the energy model has a minimal 

effect on building energy consumption if the energy model already uses the simula ted 

weather file.  

The variations in the microclimate and their effects on building heating and cooling 

energy consumption are higher during a swing season, especially in Pittsburgh, PA. This 

may be attributed to several factors, such as the wind speed and direction, vegetation, and 

extreme ranges in air temperature and humidity. These extreme conditions also vary every 

year, hence making microclimate predictions more difficult. However, these periods 

occur for only approximately 3–4 months in a year.  

Table 7. Percentage difference in heating/cooling energy consumption using TMY3, 

measured and simulated weather data 

Comparison 

criteria/ 

Simulation 

period 

Jan 20-22 

(winter) 
Heating 

Feb 20-22 

(winter) 
Heating 

Jun 2-4 

(summer) 
Cooling 

Aug 15-17 

(summer) 
Cooling 

Apr 13-15 

(swing) 
Heating 

Oct 4-6  

(swing) 
Cooling/ Heating 

% difference 

a with b 62.89  46.07  8.88  28.40  8.15  0.81 52.79 

a with c 54.63  52.55  8.08  27.83  6.06  0.38 56.42 

b with d 5.52  3.29   3.59  3.42  2.87  2.1 9.91 

c with e 5.48  2.82  3.50  3.21  3.02  2.03 9.30 

b with f 5.46  7.29  3.59  7.99  1.06  6.26 19.90 

c with g 5.42  7.32  3.51  7.86  1.02  6.14 20.19 

 

As has been discussed, Table 6 provides a focused snapshot of the comparative analysis 

of the percent increase and decrease when comparing the predicted heating and cooling 

energy consumption by using, (a) TMY3 weather file, (b) CSL weather station measured 

weather data and, (c) ENVI-met simulated weather data. The table also compares the 

percent difference in the heating and cooling energy consumption when using measured 

and simulated weather files when coupling the effects of surface boundary conditions and 

infiltration for the six cases.  
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4.8. Summary 

 

This chapter describes the coupling of ENVI-met simulated data with the CSL EnergyPlus 

model to calculate the surface boundary conditions (convective and radiative heat fluxes) 

and infiltration. After the coupling process, a comparative analysis was conducted in three 

steps to determine the effects of these thermodynamic interactions on building energy 

consumption (Section 4.6). A comparative analysis was also carried out to discuss the 

effects of TMY3 weather data and simulated weather data on building façade temperature 

(Section 4.5). 

Results indicate that TMY3 weather data does not accurately represent the current 

weather conditions to provide realistic predictions of the façade temperature and the 

inaccuracy is more evident in summer than in winter. For summer, the results show that 

the highest temperature variation occurs on the north and south façades as compared to 

the east and west facades with approximately 12C–15C variation for any given time of 

the day during the 3-day simulation period. The air temperature during this period showed 

an increase of approximately 20C in comparison to the TMY3 file which directly affects 

the façade temperature. In addition, the wind speed in the TMY3 data is much higher than 

in the simulated. As discussed in Section 4.6, although not a high degree of variation in 

façade temperature was observed for the winter, it does affect the heating energy 

consumption. 

Section 4.6 compares the heating and cooling energy consumption for summer, winter , 

and swing seasons. For winter, the heating consumption varied according to the outside 

air temperature when measured/simulated data were used in comparison to TMY3 

weather data. Additionally, it was found that the ENVI-met–EnergyPlus coupled model 
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for CSL is able to predict the heating energy consumption with an accuracy of 14%–20% 

of the measured consumption. For summer, the results indicate a higher increase in 

cooling energy consumption during peak summer (August) than during the start of 

summer (June) when comparing TMY3 weather simulations and measured/simulated 

weather. In addition, the coupled effects of surface boundary conditions and infiltration 

minimally increase cooling energy consumption (4%–8%) if the simulation weather file 

takes microclimate effects into account. Additionally, the ENVI-met–EnergyPlus coupled 

model was able to predict the cooling energy consumption with an accuracy of 10%–14%. 

For the swing season, results show that, similar to winter and summer conditions, with 

the TMY3 weather data, the EnergyPlus model either over or under predicts the 

heating/cooling energy consumption. It should also be noted that heating and cooling 

energy consumption is harder to predict during the swing season.  
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Chapter 5: Design case implementation of the coupling 

method to improve building energy consumption 

predictions 

 

5.1. Overview 

 

Chapter 4 demonstrated that using a TMY3 weather file to predict building energy 

consumption may not provide results that represent current microclimate conditions. 

Therefore, it is important to understand the impact of coupling urban microclimate effects 

for a design case during the conceptual design stage. This chapter details the coupling of 

surface boundary conditions and infiltration on a design case located in downtown 

Pittsburgh, PA. Section 5.2 describes the design case; Section 5.3 provides details on the 

setup of the ENVI-met microclimate model and the EnergyPlus model; and Section 5.4 

compares energy consumption between the coupled and decoupled models. As described 

in the previous chapter, the simulation was conducted for the same six cases representing 

the winter, summer, and swing-season conditions.  

5.2. Design case – Lower Hill District mixed-use redevelopment 

 

The coupling method described in Chapter 2 was implemented on a 28-acre mixed-use 

redevelopment site (Lower Hill District Redevelopment) that is located in downtown 

Pittsburgh, PA, USA. This redevelopment plan proposes a mix of residential, commercial, 

and community buildings with open spaces. As shown in Figure 53, the plan consists of 

36 buildings of varying land uses, such as residential (multi-family/townhouses), 

commercial, retail, hotel, and community spaces.  
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Figure 53. Lower Hill District study area (design case) 

Figure 53 shows the study area for this thesis, which was selected with an eye toward not 

compromising the model resolution and having a domain size that would include the 

surroundings, as well as the computational resources available to conduct the 

microclimate simulations. The coupling method was implemented on Building G1, which 

has retail on the first floor and multi-family dwellings for the upper floors.  

5.3. ENVI-met microclimate model and EnergyPlus model description 

 

As described in Chapter 2, Section 2.3.1, and Chapter 3, Section 3.4, the first step to 

conducting an ENVI-met simulation is to generate the microclimate model from ArcGIS. 

LiDAR data was obtained for the Lower Hill District from the Pennsylvania Department 

of Conservation and Natural Resources (PA DCNR). The next step was to generate the 

Digital Terrain Model (DTM) and Digital Surface Model (DSM) to derive the respective 

site elevation and building elevation using the 3D analyst function in ArcGIS. The Digital 
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Elevation Model and the building model was then converted into ASCII text format, 

which is used directly as input to the ENVI-met area input file to generate the ENVI-met 

microclimate model (Figure 54). 

 

Figure 54. Automation of ENVI-met microclimate model for the Lower Hill 

District 

 

Figure 55 shows the ENVI-met model domain for the Lower Hill District design case that 

is used to conduct the microclimate simulations. The domain size is 150mx150m with a 

3m grid resolution.  

The energy model is developed from the SketchUp models provided by Urban Design 

Associates (UDA). Other model details provided by UDA are site zoning, building 

geometries, building areas for each residential unit, offices and retail spaces , and the 

number of residential units and building heights. The EnergyPlus model was created 

based on ASHRAE 90.1 2010 “Energy Standard for Buildings except Low-Rise 

Residential Buildings” and the Department of Energy (DOE) Reference Models for New 

Construction. Figure 56 shows the layout and floor plan of Building G1 (DesignBuilder 

model), which is used for the coupling energy analysis.  



 

116 

 

 

Figure 55. ENVI-met model domain for the Lower Hill District design case 

    

Figure 56. DesignBuilding (EnergyPlus) model of Building G1 

5.4. Analysis of Building Energy consumption 

 

After a successful coupling of the surface boundary conditions and the infiltration, the 

next step is to conduct a comparative analysis on the effects of these thermodynamic 

interactions on building energy consumption. The following charts show a comparison of 

the heating and cooling energy consumption, using both TMY3 and measured/simulated 
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weather data. The measured weather data used for the comparison is from the CSL on-

site weather station data because the Lower Hill District is a design case that does not 

have an on-site weather station. Therefore, CSL being the closest weather station to the 

Lower Hill District site, it better represents the annual microclimate and thus was used 

for the comparative analysis. Similar to the CSL case study, this section provides a 

comparative analysis of the effects of the thermodynamic interactions on the built 

environment and hence on building energy consumption for six cases (winter, summer, 

swing seasons) in three steps: (1) changing the weather file to measured and simulated 

data, (2) incorporating the effects of surface boundary condition (convective and radiative 

heat flux), and (3) incorporating the effects of building infiltration.  

Figures 57–62 compare the heating and cooling energy consumption using TMY3 and 

measured/simulated weather data. The charts also provide a comparative analysis of the 

percentage increase/decrease in energy consumption when simply incorporating the 

microclimate simulated weather data versus the coupling parameters. 

 

Figure 57. Comparison of building energy consumption in the winter 
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Figures 57 and 58 compare the coupled effects of the urban microclimate on heating 

energy consumption using TMY3 and measured/simulated weather data for January 20–

22 and February 20–22, respectively. Figures 57 and 58 show an increase of 20%–25% 

and a decrease of 81%–85% when using TMY3 weather versus measured/simulated 

weather data to predict the heating energy consumption. Similar to the discussion in 

Section 4.6 for the CSL case study, this increase/decrease in heating energy consumption 

may be attributed to the high degree of variation in the climate variables (air temperature, 

relative humidity, wind speed) in a TMY3 weather file versus a measured/simulated 

weather file. For January, the measured/simulated air temperature was colder—and for 

February, warmer—when compared to TMY3 air temperature.   

 

Figure 58. Comparison of building energy consumption in the winter 

In addition, Figures 57 and 58 show that convective and radiative heat flux and infiltration 

have a minimal effect on building energy consumption if the energy model already uses 

a simulated weather file. The effect is minimal because the simulated weather file already 

allows for wind speed and air temperature, which in turn affect the surface temperature 
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used to calculate the convective and radiative fluxes. Similar to the CSL case study, 

because of outdoor air temperature variation, increases and decreases in heating energy 

consumption are not captured by using TMY3 weather data for energy simulation.  

 

Figure 59. Comparison of building energy consumption in a swing period 

Figures 59 and 60 compare the coupled effects of the urban microclimate on building 

energy consumption for April 13–15 and October 4–6, respectively, which are considered 

swing season dates in Pittsburgh. Results show that April and October swing seasons 

differ in terms of heating and cooling energy consumption. Overall results indicate that 

using TMY3 weather data either overestimates heating energy consumption or 

underestimates cooling energy consumption for the swing seasons. 

Figure 59 shows a decrease of 18%–42% in heating energy consumption. Figure 60 shows 

an increase of 33%–52% in cooling energy consumption when using TMY3 data versus 

measured/simulated. This increase/decrease in heating energy consumption, especially 

using simulated weather data. can be attributed to the urban surroundings, which cause 
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different wind speeds and higher air temperatures compared to the location of the CSL 

building.  

 

Figure 60. Comparison of building energy consumption in a swing period 

 

For October, when using simulated weather data, predictions show that there is no heating 

energy consumption when compared to the use of TMY3 weather data. Another important 

observation is the presence and impact of vegetation on cooling energy consumption. The 

coupled model shows a decrease of 13% when compared to the decoupled model with on-

site vegetation. Therefore, it is evident that vegetation helps in cooling the urban 

environment, thereby reducing cooling energy consumption. This result again emphasizes 

the importance of accounting for local and current climate conditions versus using TMY3 

weather for energy simulation.  
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Figure 61. Comparison of building energy consumption in the summer 

 

Figures 61 and 62 compare the coupled effects of the urban microclimate on the cooling 

energy consumption for June 2–4 and August 15–17, dates that occur in summer periods 

in Pittsburgh. Similar to previous comparisons, the results show that if TMY3 weather 

data is used, the model is unable to predict accurately the cooling energy consumption.  

Figures 61 and 62 show an increase of approximately 110% and 175% when using TMY3 

as compared to measured/simulated weather data. Note that the increase in cooling energy 

consumption is much higher for the Hill District as compared to the CSL case. The reason 

is that the Hill District site is surrounded by dense buildings and does not have any 

vegetation or water body to cool the outside air temperature. Owing to the dense network 

of buildings surrounding the Lower Hill District, radiation from the building surfaces  and 
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other hard surfaces (i.e., asphalt, paving, concrete) increases the air temperature, thus also 

increasing cooling energy consumption in summer.  

For the month of June, the coupled EnergyPlus model predicts a decrease of 

approximately 18% and 25% in the cooling energy consumption as compared to a 

decoupled model and in the presence of vegetation. However, for August, results show 

that the coupled model has an increase of approximately 3% without vegetation and a 

decrease of 1% with vegetation.  

 

Figure 62. Comparison of building energy consumption in the summer 

 

Although the effects of the coupled model and the vegetation have varying impacts on 

cooling energy consumption, the overall conclusion is that the use of TMY3 data 

underestimates the cooling energy consumption by more than 100%. This is especially 

important for a design case like the Lower Hill District when stake holders rely on energy 

simulations to estimate peak loads for HVAC system sizing and to evaluate the feasibility 
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of district systems and project phasing. Therefore, the design case reinforces the 

importance of coupling the effects of the urban microclimate when predicting building 

energy consumption.  

Table 8. Percentage difference in heating/cooling energy consumption using TMY3, 

measured and simulated weather file 

Comparison 

criteria/ 

Simulation 

period 

Jan 20-22 
(winter) 
Heating 

Feb 20-22 

(winter) 
Heating 

Jun 2-4 

(summer) 
Cooling 

Aug 15-17 

(summer) 
Cooling 

Apr 13-15 

(swing) 
Heating 

Oct 4-6 (swing) 
Cooling/ Heating 

% difference 

a with b 25.67 81.11 108.80 178.09 17.94  0.81 52.79 

a with c 19.70 84.63 113.81 173.69 41.87  0.38 56.42 

b with d 5.17 2.15  16.85 2.45 7.32  2.1 9.91 

c with e 1.73 5.07 18.62 2.97 0.15  2.03 9.30 

b with f 0.15 2.15 15.12 2.45 7.32  6.26 19.90 

c with g 1.86 5.07 18.62 2.97 0.16  6.14 20.19 

 

As has been discussed, Table 7 provides a focused snapshot of the comparative analysis 

of the percent increase and decrease when comparing the predicted heating and cooling 

energy consumption by using, (a) TMY3 weather file, (b) CSL weather station measured 

weather data and, (c) ENVI-met simulated weather data. The table also compares the 

percent difference in the heating and cooling energy consumption when using measured 

and simulated weather files when coupling the effects of surface boundary conditions and 

infiltration for the six cases.  
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5.5. Visualization Method (Design Decision Support)  

 

It is then important to communicate the energy consumption data as the results of such 

coupling to the project stakeholders, which include the design, mechanical, developer, 

and financial teams. As seen in the Lower Hill District case, this information is especially 

important during the design phase of a building or urban development to assist designers 

and engineers in selecting appropriate building materials, determining the size of the 

HVAC system, calculating energy use, estimating return on investment, and conducting 

the comparative estimates of MTCO2 (carbon dioxide) associated with district thermal 

and district tri-generation (heat, cool and electric power) versus stand-alone systems. In 

addition, energy consumption can assist with decisions about conducting parametric 

studies on the impact of microclimate on building energy consumption based on land use, 

vegetation, and building layout and orientation.  

By using ArcGIS Pro and Web GIS it is possible to visualize building level energy 

consumption that can be shared online with the project stakeholders. This simulated 

energy data can be visualized in a 3D environment that also provides a realistic 

conceptualization of the site and its surroundings. Visualizing on the web is important 

specifically because it streamlines the decision-making process for project stakeholders 

by providing accurate building specific data. It enables not only simulated building 

energy data visualization, but, also district level design decision. It also eliminates the 

need for project stakeholders to install the ArcGIS software on their computers.  



 

125 

 

 

Figure 63. Development of DDS method using ESRI’s Web Scene 

Figure 63 demonstrates the implementation of visualization in ArcGIS Pro using 3D 

analyst tools. As described in the figure, the 2D CAD plan of the Lower Hill District and 

its surroundings is digitized in ArcGIS. The digitized polygons are extruded using actual 

building heights. After the buildings are extruded, the simulated energy data is recorded 
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as feature attributes. The recorded attributes of the simulated energy data are then 

configured using the pop-up function which are then viewed by clicking each building 

feature. 

5.6. Importance of the Design Decision Support (DDS)  

 

Figures 64-68 demonstrate the visualization features of the ESRI Story map. Figures 64 

and 65 illustrates the simulated energy results that can be visualized as time based, 

building type based and scale based data. The time-based data provides annual and 

monthly natural gas and electricity consumption for every building on the site. The scale 

based output provides data from a macro level (site scale) to a micro level (building floor 

scale). The building level data provides details on the energy consumption and peak loads.  

Figure 66 provides details on the building construction materials used for performing the 

building energy simulations. This building materials information is especially important 

to an architect during the design stage. Figure 67 and 68 show the use of story map to 

identify land use zoning as well as annual daylight and shadow analysis. 

When dealing with urban scale projects, communicating simulated energy data for the 

various buildings can be a cumbersome and error prone process. Putting together all the 

simulated data in a structured database with graphical representation serves as the most 

effective method of communication. The design decision support tool is especially 

important to: 

1. Urban planners and architects: Site topography, land use patterns, building 

form, daylight and shadow analysis are crucial factors during the conceptual 

design stage. The DDS method helps visualize important urban design principles 

like adjacent neighborhoods and placement of buildings, pedestrian and vehicle 
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connectivity, and preserve and enhance view corridors into downtown. The 

method also assists architects to understand the building form and envelope 

performance. 

2. Mechanical engineers: The Story map helps effectively communicate all the 

urban level simulated data systematically. The method serves as an effective 

design decision support tool for assessing potential project impacts in terms of 

energy consumption. This method helps in analyzing the peak loads for heating 

and cooling on an urban scale and assessing the feasibility of district systems with 

respect to sizing and combined heat and power systems.  

3. Financial stakeholders: The method helps in analyzing potential neighborhood 

parties that may be interested in investing in the district systems to get an optimal 

load for the maximum benefits from the district system.  

 

 

 



 

 

 

 

Figure 64. Visualization of simulated energy consumption data using ArcGIS Pro and Web Scene 
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Figure 65. Visualization of annual and monthly energy consumption data from building level to floor level  
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Figure 66. ESRI’s Story map provides detail on the energy simulation input parameters 
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Figure 67. Story map provides details on the zoning criteria for the Lower Hill District 
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Figure 68. Story map provides daylight and shadow analysis for the Lower Hill District



 

 

 

5.6. Summary  

 

This chapter demonstrates the implementation of the coupling method on a design case 

to emphasize to the design industry the importance of taking into account  the urban 

microclimate effects when predicting building heating and cooling energy consumption. 

This industry applicability is discussed using the 28-acre Lower Hill District 

Redevelopment site, by implementing the coupling method on a mixed-use building.  

Results show for the winter period, due to the high degree of variation in the outdoor air 

temperature, there is an increase (20%-25%) and decrease (81%-85%) in the heating 

energy consumption which is not captured by using TMY3 weather data for energy 

simulation. For the summer and swing seasons, it was observed that the effects of the 

coupled model and the vegetation has a varied impact on the cooling energy consumption.  

However, the overall conclusion is that TMY3 weather data either over estimates or under 

estimates since the data is from 1999-2005 rather than more recent and site-specific 

weather data. This is especially important for a design case like the Lower Hill District 

when stake holders rely on energy simulations to accurately predict the peak loads for 

HVAC system sizing, evaluate the feasibility of district systems and project phasing. 

Therefore, the design case provides another reinforcement that it is important to couple 

the effects of the urban microclimate when predicting building energy consumption. It 

can also be concluded that detail surface level coupling is not required to accurately 

predict the energy consumption if the EnergyPlus weather file accounts for the ENVI-met 

simulations microclimate data for the weather parameters.  

The chapter also demonstrates ESRI’s Story Map as a powerful tool used for Design 

Decision Support for project stakeholders.  
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Chapter 6: Conclusion 
 

6.1. Summary of findings 

 

This dissertation has demonstrated a coupling method to quantify the effects of 

thermodynamic interactions between the natural and the built environment on building 

energy consumption. This coupling method had been implemented on a case-study and a 

comparative analysis was conducted to study the microclimate effects on façade 

temperature and building heating and cooling energy consumption. Next, to demonstrate 

the industry applicability, the coupling method was implemented on a mixed-use 

redevelopment project. A comparative analysis of the coupled energy model prediction 

was then conducted with ASRAE 90.1 2010 prediction of the building heating and cooling 

energy consumption. Finally, the simulated energy consumption is visualized using a Web 

GIS platform that serves as design-decision-support for project stake holders. 

6.1.1. Hypothesis testing results 
 

The hypotheses of this thesis were: 

• A coupled urban microclimate and building energy model can improve the 

prediction of building heating and cooling energy consumption. 

• The microclimate model must be correctly initialized to obtain results that are 

comparable to measured data. 

The hypotheses were tested throughout the various stages using the case-study building.  

Chapter 2 presented the overall thesis method for (1) automating the ENVI-met 

microclimate model, (2) coupling the microclimate model data with the EnergyPlus model 



 

135 

 

in terms of surface boundary conditions and infiltration and (3) visualizing the simulated 

energy data using Web Scene Viewer and Story Maps.  

Chapter 3 demonstrated the ENVI-met model automation, setup and initilization process 

for the CSL case-study. The ENVI-met 3D model can be seemlessly created using 

geoprocessing functions in ArcGIS Pro. From the initialization analysis conducted for 24 

cases , results show for the winter months (November-February), when the measured air 

temperature pattern is not regular in terms of the daily minimum and maximum, the model 

should be initialized with 1-day data and simulated for every 24-hour period. For the 

summer months (May-August), the model is able to predict the air temperature and 

relative humidity with a high degree of accuracy using a 3-day average initialization. For 

the swing months (late March-early May and September-October), the accuracy of the 

simulated data depends on the pattern of the air temperature and relative humidity used 

to initialize the model. Results also show that by using ENVI-met 7-node feature to 

accurately define the building envelope properties, the model is able to predict the façade 

temperature with a high degree of accuracy.  

Chapter 4 demonstrated the coupling of ENVI-met simulated data with the CSL 

EnergyPlus model to compare the effects of the microclimate on building heating and 

cooling energy consumption. The effects of the coupled model were compared using the 

CSL façade temperatures and the CSL heating and cooling energy consumption. Results 

showed using TMY3 weather data does not accurately predict façade temperature during 

the summer as compared to the winter period. Although, only minimal variation is 

observed in façade temperature for the winter season, it was found that using TMY3 does 

affect the prediction of heating energy consumption.  
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For the comparison of the heating and cooling energy consumption, results show that 

using TMY3 weather data can under predict or over predict for the winter, summer and 

swing seasons. This variation largely depends on the outdoor air temperature, wind speed 

and relative humidity. In addition, it can be concluded that detailed coupling of the 

surface boundary conditions and infiltrations is not required if the simulated microclimate 

is taken into account in the EnergyPlus weather file. Therefore, since a detailed surface 

level coupling is not necessary, the ENVI-met model resolution can be reduced because 

only one receptor point is required to generate the site-specific weather data. This 

reduction in the ENVI-met model resolution can greatly decrease the simulation time 

required to conduct the ENVI-met simulations.  

Chapter 5 shows the industry applicability of the coupling method on a design case using 

the Lower Hill District redevelopment site. Similar to the CSL case-study, results show 

that the accuracy of the building heating and cooling prediction depend to a great extent 

on the EnergyPlus weather data. Using a site-specific microclimate weather file provides 

more accurate predicts than TMY3 weather data. Additionally, the chapter also 

demonstrates the visualization of the simulated energy data on the Web Scene and Story 

Map platform. This communication method for urban scale simulated data provides a 

more structured and systematic way to organize and display the simulated data especially 

for large developments like the lower hill district. By using the structured database and 

sharing using Web GIS it is possible to reduce data management errors and serve as a 

powerful decision support tool for city planners, mechanical system designers and other 

project stakeholders.  
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6.2. Industry applicability 

 

This section describes the industry applicability of the proposed coupling method. Taking 

into account the effects of the changing microclimate is especially important for 

architects, landscape architects, mechanical engineers, urban planners and policy makers 

and investors and financial institutions.  

Architects and Landscape Architects: For architects, microclimate predictions (ENVI-

met simulations) is useful (1) to assess the behavior of façade and surface material 

selection; (2) to understand the spatial and temporal distribution of solar radiation and 

wind; (3) to study the impact of greening technologies (green roofs, green walls, 

vegetation areas); and (4) to understand the impact of the outside microclimate on the 

indoor air temperature.  

Mechanical engineers: For mechanical engineers, the coupling of the microclimate 

effects with the building energy model is extremely important to accurately estimate the 

building heating and cooling energy consumption and understand the peak consumption 

for a given building. This accurate estimation is important to size HVAC systems and 

assess the feasibility of district systems for large development projects like the Lower 

Hill District.   

Urban planners and policy makers: Urban areas are highly complex systems with 

numerous interactions between the natural and the built environment. Keeping in mind 

climate change and global warming on a larger scale, it is important for urban planners 

and policy makers to understand how this larger scale phenomena affects the wind pattern, 

local climate and air quality. For a design case like the Lower Hill District, it is especially 

important to understand the solar access, natural ventilation strategies, green spaces and 
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material selection. All these factors have a direct impact on the behavior of the building 

system and more specifically the HVAC system.  

Investors and financial institutions: Large-scale projects like the Lower Hill District, 

requires the attention of investors if the project is phased. The sizing of the mechanical 

system plays a vital role in the decision making for project phasing. In addition, a 

development that is designed keeping in mind global implications and minimizes the use 

of energy resources automatically attracts investors.  



 

 

 

 

Figure 69. Industry applicability to implement the coupling method during conceptual design



 

 

 

6.3. Limitations  

 

This section discusses the limitations of the method presented in this thesis.  The first two 

limitations relate to the adoption of the coupling method by the design industry. The third 

limitation relates to obstacles of implementing the coupling module. Figure 69 details 

time and computational resource that are required to implement the coupling on a design 

case/  

1. Simulation time and computational resources: The desktop configuration used 

for this thesis is an Intel Core i7, 64-bit operating system with a 16GB RAM. In 

order to complete one ENVI-met microclimate simulation for a 3-day period 

continuously, a high-resolution model incorporating all elements of the built 

environment (terrain, vegetation, surrounding buildings) takes approximately 8 – 

10 days on a fairly high configuration windows desktop. If the same model is 

simulated for every 24 hours individually it takes 2 – 3 days to complete the 

simulations running simultaneously. Even the 2 -3-day time resource is considered 

a long waiting period for the industry stakeholders in comparison to an EnergyPlus 

simulations which takes only a few hours to complete the energy simulation. 

Industry stakeholders expect results within minutes if not seconds. Therefore, this 

is one of the main challenges when advocating to the industry to implement the 

coupling of the microclimate with the EnergyPlus model for energy prediction. 

2. Expert knowledge: In depth knowledge of the usage of ENVI-met, BCVTB and 

EnergyPlus is required to implement this coupling method. Even if the coupling is 

implemented as direct coupling within EnergyPlus, knowledge of the EnergyPlus 

objects and input/output variables is extremely important to implement the 

coupling.  
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3. Software limitations: EnergyPlus Energy Management Actuators that are used to 

couple data from external sources have a limitation of 1024 values at a given 

simulation time. Therefore, for a building with many surfaces, it is not poss ible to 

directly couple ENVI-met simulated data with EnergyPlus without changing the 

number of values for data exchange within the EnergyPlus source code. However, 

modifying the EnergyPlus source code can be a cumbersome process and hence it 

is recommended to either simplify the EnergyPlus model (reduced number of 

surfaces) or couple the effects of the microclimate directly within EnergyPlus. 

6.4. Future work 

 

This dissertation has presented a method to couple the effects of the microclimate with 

the building energy simulation tool EnergyPlus to accurately predict the building heating 

and cooling energy consumption. However, in the future, the method and its robustness 

can be improved to overcome the limitations discussed above.  

1. Extended microclimate predictions for building controls and energy model 

calibration: The predicted microclimate parameters such as air temperature, 

relative humidity, global solar radiation, can be extended for an annual time 

period. This annual microclimate prediction can serve as inputs parameters for 

building control and building energy model calibration studies. 

2. To reduce the ENVI-met simulation time specially to extend the microclimate 

predictions for an annual period, the proposed rule-based method in Chapter 3 can 

be expanded to include more weather variables such as wind speed, relative 

humidity, wind direction, and direct and diffuse solar radiation. After expanding 

this rule-based method to estimate the number of microclimate simulations 

required for an annual period, representative days can be selected and simulated 
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to cover the entire year. Then, through data mining, a method can be derived that 

can use representative simulated days for annual microclimate predictions. 

Therefore, this data mining method can eliminate the time-consuming ENVI-met 

simulations but also achieve high-fidelity weather data that would be based on 

representative ENVI-met simulations.  

3. The ArcGIS and Web Scene visualization method can be extended to directly map 

EnergyPlus simulated results. EnergyPlus simulation provides hourly simulation 

results for every thermal zone. For engineers and designers, this is useful 

information to understand the building loads according to thermal zones. 

Therefore, by using python scripts and APIs in ArcGIS Pro, mapping and 

visualizing the high-fidelity simulated energy data is possible.  
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Appendices



 

 

 

Appendix A: Analysis of façade temperature for CSL case-study 
 

Comparison of simulated and measured east façade temperature 

June 14, 2016 – 10:00am (East façade) 

   

Surface Temperature Measurement spot FLIR Camera Measured (°C) ENVI-met Simulated (°C) 

Spot 1 43.2 44.67 

Spot 2 39.3 40.03 

Spot 3 40.4 42.5 

Area Maximum  45.1 43.50 – 46.26 

Area average 42.4 40.74 – 43.50 
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Comparison of simulated and measured west façade temperature 

June 14, 2016 – 2:00pm (West façade) 

  
 

Surface Temperature Measurement 

spot 
FLIR Camera Measured (°C) ENVI-met Simulated (°C) 

Spot 1 29.6 31.63 

Spot 2 29.2  31.35 

Spot 3 30.2 32.89 

Area Maximum  30.2 31.01 – 34.73 

Area average 29.5 31.73 – 33.2 



 

 

 

Appendix B: Synthesized workflow to implement visualization 

platform 
 

 


