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ABSTRACT 

 

Real options embedded in a project provide management with the flexibility to 

alter initial investment decisions, thus making them a practical tool for project planning 

and budgeting. Additional values are contributed to the underlying project due to the 

flexibilities that are provided by real options. 

This dissertation presents two models for pricing multiple exercisable American 

real options, one that employs the binomial tree method and the other one that employs 

the finite difference method. Different examples of multiple exercisable real options are 

discussed to demonstrate the two pricing models. Interactions between options and reality 

constraints are also considered. These two methods are compared with each other at the 

end. 

This dissertation also addresses the problem of tracking early exercise boundaries 

in pricing American-style real options. It is shown that both models provide effective 

numerical solutions to the free boundary problem. 
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1. INTRODUCTION 

 

One of the most frequently used techniques for the appraisal of capital investment 

projects is the traditional discounted cash flows approach. For instance, the net present 

value (NPV) of a potential investment is determined by discounting a time series of 

future cash flows by a discount rate. The standard NPV method assumes that forecasted 

cash flows are static and investment decisions cannot be changed once they are made. 

Such assumptions ultimately ignore the flexibility embedded in investment opportunities. 

In reality, however, management often has options to alter initial business decisions as 

more information about market conditions and future cash flows becomes available 

(Trigeorgis, 1996). Real options, which borrow the mathematical techniques from 

financial theories, were introduced to overcome the inflexibility of the NPV method and 

thus, offer a better alternative method for capital investment appraisal.  

 

 

 

1.1. FINANCIAL OPTIONS 

In finance, an option is a derivative which has become increasingly popular in the 

last 30 years. A derivative can be defined as a financial instrument whose value depends 

on (or derives from) the values of other underlying assets, for instance, a stock (Hull, 

2009). The assets underlying derivatives are usually tradable. A financial option is a 

contract that guarantees a future transaction of an asset between two parties for a 

specified price (i.e., the strike price or exercise price). There are two types of options. A 

call option gives the holder the right to buy an asset for the strike price on or before a 
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certain date, which is called the expiration date. A put option gives the holder the right to 

sell an asset for the strike price on or before a specified expiration date. Note that the 

buyer of the option gains the right to buy or sell the asset; however, on the other hand, the 

seller of the option has the obligation to fulfill the transaction. Options are categorized as 

European options if they can only be exercised on the expiration date; or as American 

options if they can be exercised at any time up to the expiration date.  An option that isn’t 

exercised by expiration becomes void. When an option is exercised, the payoff is then 

realized and its value equals the difference between the stock price and the strike price.  

There are six factors that affect the price of an option (Copeland and Antikarov, 

2001; Hull, 2009). 

• The current price of the underlying asset. The payoff of a call option is the 

amount by which the stock price exceeds the strike price, and vice versa for a put 

option. When the stock price increases, the call option becomes more valuable 

and the put option becomes less valuable. 

• The strike price. The value of a call option decreases as the strike price 

increases. The value of a put option increases as the strike price increases. 

• The time to expiration. Both American calls and American puts get more 

exercise opportunities open when they have a longer time to expiration. An 

American option with a longer life is usually more valuable than, or at least worth 

as much as, an option with a shorter life. Although, in the case of a dividend-

paying European call, the dividend will cause the decline in the stock price and 

thus make the option less valuable; generally speaking the values of European 

calls and puts increase as the time to expiration increases. 
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• The volatility of the underlying asset’s price. The volatility of a stock 

price is the standard deviation of the continuous compounding return of the stock 

in one year. It is a measure of the extent of future stock price movements. In other 

words, it is a measure of the risk associated with the stock price. As volatility 

increases, the chance that an option will be exercised increases. Therefore, both 

calls and puts become more valuable as volatility increases. 

• The risk-free interest rate. The expected return from the stock tends to 

increase as the risk-free interest rate increases. The value of a call option increases 

as the interest rate increases, and the value of a put option decreases as the interest 

rate increases. 

• The dividends. The stock price can be reduced by the dividends on the ex-

dividend date. Therefore the value of a call option is negatively impacted by the 

future dividends to be paid out during the life of the option, and the value of a put 

option is positively impacted by the anticipated future dividends. 

The six factors and their effects on the option values are summarized in Table 1.1. 

 

 

 

1.2. REAL OPTIONS 

Real options extend the principles of financial options to “access capital 

investment opportunities in real assets such as land, buildings, plants, and equipment” 

(Hull, 2009). By analogy, real options give management the right, but not the obligation, 

to undertake a certain business decision before or on a specified expiration date when 
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Table 1.1. Summary of the Effect on the Price of a Stock Option by Increasing One 
Variable while Keeping All Others Fixed 

 

Variables 
European 

call 

European 

put 

American 

call 

American 

put 

Current stock price + - + - 

Strike price - + - + 

Time to expiration ? ? + + 

Volatility + + + + 

Risk-free rate + - + - 

Amount of future dividends - + - + 

 

+ : indicates that an increase in the variable causes the option price to increase; 

-: indicates that an increase in the variable causes the option price to decrease; 

?: indicates that the relationship is uncertain. 

 

 

 

Source: Hull, J.C., Options, Futures, and Other Derivatives. New Jersey: Pearson 
Prentice Hall, (2009). pp. 202. 

 

 

 

favorable information for exercising the right arrives. The underlying assets of financial 

options are usually tradable securities, such as a stock, while the underlying of real 

options are tangible assets such as a project or an investment.  

The term “real options” was first coined by Steward Myers (1977). After the 

fundamental Black-Scholes model was developed by Fisher Black, Myron Scholes, and 

Robert Merton (1973) for valuing financial options, Myers pointed out the similarities 
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between financial options and real options and that the analytical techniques for financial 

options could be applied to real options (Zeng and Zhang, 2011). 

The valuation of real options is also known as real option analysis. Real option 

analysis has been an active area for academic research for the past two decades. 

Trigeorgis (1996), Copeland (2001), Dixit (1994), and Mun (2006) are among those who 

have published influential books and articles in this area.  

One of the most important characteristics of real option analysis is that it takes 

uncertainty into account, thus making it a practical tool for making decisions under 

uncertainty. The traditional capital budgeting techniques often treat an investment as a 

now-or-never decision, thus ruling out any possibility of future change in management. In 

practice, many investment decisions may be put off until more information about market 

conditions becomes available. This gives decision makers more flexibility when 

confronted with unexpected market developments. Real options provide a framework to 

analyze strategic capital investment by viewing management flexibility as valuable 

opportunities (Dixit and Pindyck, 1994).  

Many applications of this discipline in the business world include R&D (Lewis, 

2004), patent valuation (Macro, 2005), energy management (Tseng and Lin, 2007), and 

workforce management (Nembhard et al., 2005). 

Trieorgis (1996) classified real options into eight categories and gave definitions 

and examples of each in his book. The most commonly seen real options include:  

• The option to defer investment. A deferral option allows management to 

put off a decision for up to a certain time period. Management will only commit 

to the investment when the price of the underlying asset rises sufficiently; 
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otherwise, it will decline the project. Just before the end of the specified time 

period, the investment opportunity’s value will be ������ � �	
 ��, where � is the 

gross present value of the completed project’s expected operating cash flows and 

�	 is the exercise price that equals to the required cost. The option to defer is thus 

analogous to an American call option. Examples of deferral options can be found 

in resource extraction industries, farming, paper products, and real estate 

developments (Macdonald and Siegel, 1986; Paddock et al., 1988; Tourinho, 

Titman, 1985; Ingersoll and Ross, 1992). 

• The option to expand. Expansion options allow management to expand 

production scale by a certain percentage ��� when market conditions are in 

favor of an investment. An expansion option is similar to a call option to acquire 

an additional part ��� of the base project (�) by paying a follow-on cost (��). 

The value of the investment opportunity with the option to expand is therefore 

� ������� � �� 
 ��. For example, when an oil company purchases vacant 

undeveloped land or builds a small plant in a new geographic location in 

anticipation of the rise of oil price, it essentially installs an option for future 

growth to take advantage of a developing large market.  Examples of expansion 

options are popular in mining, facilities planning, and construction in cyclical 

industries, consumer goods, commercial real estate, fashion apparel, etc. 

(Trigeorgis and Mason, 1987; Pindyck, 1988; McDonald and Siegel, 1985; 

Brennan and Schwartz, 1985). 

• The option to contract. Contraction options allow management to contract 

production scale by a certain percentage when market conditions go against an 
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investment. If it turns out that the market goes weaker than expected, management 

can operate below capacity, or even reduce the scale of operations (by ��), 

thereby saving part of the planned investment cost (��). An option to contract is 

similar to a put option on part (��) of the base project (�), with exercise equal to 

the potential cost savings (��), giving ������� � ��
 ��. Contraction options, like 

expansion options, may be particularly valuable for new product introduction in 

uncertain markets.  

• The option to abandon for salvage value. When an investment suffers 

unfavorable market conditions or poor operation, it can be valuable to have an 

option to abandon the project permanently in exchange for its salvage value, so 

that management does not have to continue incurring the fixed costs. An 

abandonment option can be viewed as an American put option on the base project 

(�), with an exercise price equal to the salvage value (�), giving ������ � �
 ��. 
Examples of abandonment options can be found in capital-intensive industries 

such as airlines and railroads, in financial services, and in new-product 

introductions in uncertain markets (Myers and Majd, 1990).                                

Besides the four options described above, there are the time-to-build option, the 

option to switch use, the option to shut down and restart operations, and the corporate 

growth option. The descriptions of these options can also be found in Trigeorgis’ book. 

In practical situations, an investment opportunity may offer more than one option. 

A generic example might include a collection of real options that would offer 

management the flexibility to defer the project, abandon the project, contract or expand 

the operation scale, extend the life of the investment, or switch the use of the investment. 
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Such a generic project, with its multiple real options, could characterize many real life 

situations (Trigeorgis, 1996). See Figure 1.1.    

 

 

 

 

 

Figure 1.1. A Generic Project with Multiple Real Options 
 

 

 

Source: adapted from Trigeorgis, L., Real Options: Managerial Flexibility and Strategy 

in Resource Allocation, Cambridge: The MIT Press, (1996), pp. 9. 
 

 

 

1.3. OPTION PRICING  

The value of a real option lies in the managerial flexibility provided to the 

investor who holds the option. Unlike a financial option, which doesn’t affect the price of 
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the underlying security, real options contribute new values to a real asset when they are 

exercised.   

Similar to financial options, the valuation of real options often involves five 

primary variables: the value of the underlying risky asset (a project, or an investment 

opportunity), the exercise price (implementation cost), the time to expiration date, the 

risk-free rate of interest over the life of the option, and the volatility of future returns 

(Copeland and Antikarov, 2001; Lewis, 2004). 

The approaches developed for valuing financial options may be adapted to price 

real options where certain modifications are required to make them more plausible for 

real business practice. The most basic model for option pricing is the Black-Scholes-

Merton model.  Black and Scholes derived a differential equation that must be satisfied 

by the price of any derivative dependent on a non-dividend-paying stock. By constructing 

a risk neutral portfolio to replicate the returns of holding an option, Black and Scholes 

produced a closed-form solution for a European option’s theoretical price. Benaroch 

(1999) examined the validity and constraints of the Black-Scholes option pricing model 

in assessing information technology project investments. However, due to its assumptions 

of non-dividend paying, constant volatility and a constant interest rate, the 

implementation of the Black-Schole model is of limited use and only suitable for the case 

of European options. Generally speaking, closed form solutions, including modifications 

to the Black-Scholes model, are hard to find for American options. Nonetheless, the 

derivation of the Black-Scholes-Merton model is one of the most important 

breakthroughs for the existing financial market and provides foundations for other pricing 

techniques, such as the finite difference methods.  
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There have been some useful and practical numerical approaches developed for 

option pricing problems, including partial differential equation (PDE) methods, lattice 

methods (e.g., binomial trees, trinomial trees, etc.), and simulation process (e.g., Monte 

Carlo simulation). The binomial tree method is one technique that is most commonly 

used for pricing real options due to several advantages. First, it can be used to price 

American Options. Second, it is easy to implement without much advanced mathematical 

background. Third, it is able to handle more complicated situations where multiple 

options exist. Brandão et al. (2005) used dynamic programming to solve a binomial 

decision tree with risk-neutral probabilities that approximated the uncertainty associated 

with the changes in the value of a project over time. 

Finite difference methods for partial differential equations can formulate the value 

of a real option. Finite difference methods typically require mathematical sophistication 

and, thus, are not as straightforward as the binomial tree approach. However, they are 

often chosen for models and securities that are more complicated. The additional 

computational cost needed by the finite difference methods is mostly compensated for by 

the additional accuracy in the American option prices (Broadie and Detemple, 2004).  

Many research works have attempted to solve the evaluation problem involving a 

single real option. Berger et al. (1996), for example, used an empirical approach to price 

an abandonment option based on a firm’s stochastic liquidation value after controlling for 

the relation between the market value and the present value of expected cash flows. 

Luehrman (1998) applied a Black-Scholes option pricing table to value an expansion 

option as a European call by creating new metrics. Kellogg and Charnes (2000) used the 

decision tree method as well as the binomial lattice method to evaluate a biotechnology 
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company. In the real world, however, an investment opportunity often includes more than 

one option. In such cases, properly valuing multiple real options as a collection presents 

quite a challenge, due to the complexity of this problem. Chiara et al. (2007) studied the 

pricing of simple multiple exercisable real options that could only be exercised at discrete 

points over a predetermined time period. The value of the options satisfied a Bellman 

equation by dynamic programming arguments. The least-square Monte Carlo method was 

employed to approximate the option value. Leung and Sircar (2009) studied American 

option pricing with multiple exercises in an incomplete market. The value function 

(option price) was given recursively and the optimal exercise boundary was characterized 

via indifference prices for holding multiple options.  

 

 

 

1.4. CONTRIBUTIONS 

This dissertation provides two fast and accurate methods for pricing multiple 

exercisable American-type real options. The first one employs the binomial tree method 

and the other one employs the finite-difference method. Both methods are adaptable to 

different combinations of multiple options and, thus, can apply to various real life 

situations.  

This dissertation also addresses the problem of tracking early exercise boundaries 

in pricing American-style real options, which is not always covered by other option 

pricing models. The flexibility of both the binomial tree method and the finite-difference 

method makes it possible to examine for early exercise at every point in an option’s life. 
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It is shown that both methods provide effective numerical solutions to the free boundary 

problem. The free boundaries that result from the solution are crucial for decision 

support. 

The algorithms used in this dissertation are novel and provide important insights 

for project planning and budgeting. Industry is intrigued by option pricing, but is 

reluctant to incorporate it into its decision making. This study is to help bridge the gap 

between existing academic knowledge and industry practice. 
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2. PRICING MODEL WITH BINOMIAL TREES 

 

The objective of this study is to investigate the effectiveness of the binomial tree 

method in both valuing multiple options embedded in an investment opportunity and 

accounting for the interactions among them.  

The rest of this chapter is organized as follows. Section 2.1 briefly reviews the 

binomial tree methods with applications in financial options. Section 2.2 explains in 

detail the scheme of valuing multiple excisable real options with binomial trees. Section 

2.3 presents the results from the pricing model. Section 2.4 provides final conclusive 

remarks. 

 

 

 

2.1. BINOMIAL TREES 

One popular technique for pricing financial options is the binomial tree method 

developed by Cox, Ross, and Rubinstein (1979). The derivation of this method involves 

establishing a risk-free portfolio. This portfolio consists of both a long position (buy) in a 

number of shares of a stock and a short position (sell) in one call option on that stock. 

The stock price will either move up by a certain percentage or down by a certain 

percentage for a specified time period. The underlying assumption is that arbitrage 

opportunities do not exist for this portfolio, which guarantees that there will be only two 

possible outcomes and, therefore, rules out any uncertainty about the value of the 

portfolio at the end of the time period (Hull, 2009). The binomial tree method uses the 
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risk-neutral valuation, which means that the return of the portfolio equals the risk-free 

interest rate since it has no risk. This makes it possible to work out the cost of setting up 

the portfolio by discounting the value with the risk-free interest rate at the end of the time 

period. The option price can then be easily obtained. 

Binomial tree pricing models are widely used by practitioners in the option 

markets. The Black-Scholes model, though mathematically sophisticated, cannot handle 

options that are more complex than a non-dividend European option. The binomial tree 

method, on the contrary, is relatively simple, can be easily implemented and handles a 

variety of conditions, including American options and dividend paying options.  

According to Cox et al. (1979), because both the Binomial tree method and the 

Black-Scholes model use similar assumptions, as well as risk-neutral valuation, the 

former can work as a discrete time approximation for the continuous process underlying 

the latter. In a limiting case, for pricing a European option without dividends, the result 

from the binomial tree method converges to that from the Black-Schole model when the 

time steps increase.    

2.1.1. Geometric Brownian Motion. To understand the pricing of financial 

options, the behavior of underlying stocks needs to be investigated first. The assumption 

underlying the binomial tree valuation is that the stock price follows a random walk 

(Cootner, 1964). 

A stock market price is said to follow a stochastic process called geometric 

Brownian motion, a specific form of the generalized Wiener process.  

The following overview of stochastic processes can be found in Hull’s book 

(2009). 
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A variable x is said to follow a Wiener process if it has the following properties:  

• The change ∆x during a small period of time ∆t is 

 � � ����                                                        (2.1) 

 

where ϵ has a standard normal distribution ϕ(0,1). 

• The values of ∆x are independent for any two different intervals of time 

∆t. 

From the first property, it can be concluded that ∆x has a normal distribution with 

a mean of zero and a standard deviation of ����or a variance of ∆t.  

A generalized Wiener process for a variable z is defined as  

 

 �� � ��� � ��                                                  (2.2) 

 

where both m and n are constant, and x follows the basic Wiener process defined above. 

For a stochastic process, the change in the mean value per unit of time is called the drift 

rate, and the variance per unit of time is called the variance rate. From the first property 

of the basic Wiener process, dx has a drift rate of zero and a variance rate of 1.0. The 

generalized Wiener process has a drift rate of m and a variance rate of n2. 

The most widely used model for the price of a non-dividend-paying stock is 

known as the geometric Brownian motion, which has the form as  

 

�� �  ��� � !��                                                 (2.3) 
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or 

"#
# �  �� � !������������������������������������������������������������(2.4) 

   Because binomial trees are applied as a numerical method for modeling discreet 

variables, it is more appropriate to use the discrete-time version of the geometric 

Brownian motion  

 

 

�#$
#$ �  �� � !�%&                                                  (2.5) 

 

where 

 

��& � �&'�& � �& 
 

�%& ( %&'�& � %& 

 

For a small time interval ∆t, the variable ∆St is the change in the stock price St, 

and the variable ∆Bt follows a normal distribution with a mean of zero and a variance of 

∆t. The parameter µ is the expected rate of return of the stock and the parameter σ is the 

volatility of the stock price. 

2.1.2. One-Step Binomial Trees. Binomial trees are diagrams constructed to 

present different paths that the stock price might follow over the life of an option (Hull, 

2009).  

To construct a binomial tree, the life of an option is divided into a finite number 

of time steps of equal length. In each time step, there is a certain probability that the stock 
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price will move up by a certain percentage and a certain probability that it will move 

down by another percentage. The rest of this section demonstrates the computational 

scheme of binomial trees.  More details can be found in Hull (2009). 

A generalized one-step binomial tree is illustrated in Figure 2.1. Consider a risk-

free portfolio consisting of a long position in ∆ shares of a stock and a short position in 

one call option. At time 0, the present price of the stock is S0 and the present price of the 

option is f. The option has an expiration of time T. During the life of the option, the stock 

price can either move up from S0 to a higher level, S0u, where u > 1, or down from S0 to a 

lower level, S0d, where d < 1. The probability of an upward movement is q, and the 

probability of downward movement is 1-q. When the stock price reaches S0u, the payoff 

from the option is fu; when the stock price reaches S0d, the payoff from the option is fd. It 

is assumed that there are no arbitrage opportunities present in this situation.  

The number of time steps is denoted by n, and the length of the time interval for a 

one-step tree is calculated as  

 

�� ( )
* ( +                                                       (2.6) 

 

The parameters u and d can be chosen to match the volatility of the stock price σ. 

The values of u and d, as proposed by Cox, Ross, and Rubinstein (1979), are 

 

, � -.��&                                                        (2.7) 

 

and 
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� � -/.��&                                                       (2.8) 

 

 

 

0S

0S u

0S d

f

uf

df

q

1 q−

 

Figure 2.1.  A General One-Step Binomial Tree  

 

 

 

Source: Adapted from Hull, J.C., Options, Futures, and Other Derivatives. New Jersey: 
Pearson Prentice Hall, (2009). pp. 239. 
 

 

 

At the end of time T, the value of the portfolio when S0 reaches S0u is   

 

��0, � 12 , 
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and the portfolio value when S0 reaches S0d is  

 

��0� � 1" , 

 

respectively. 

Since the portfolio is riskless so the final value is the same for both outcomes, 

which means 

 

��0, � 12 � ��0� � 1" ���������������������������������������������������(2.9)�
�

or 

 

�� 34/35
#62/#6"                                                      (2.10) 

 

Delta is called the hedging ratio, which is the ratio between the change in the 

option value and the change in the stock price between nodes. 

The cost of setting up the portfolio is  

 

��0 � 1 . 
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Since the portfolio is risk-free and there is no arbitrage opportunity, the rate of 

return must equal the risk-free rate, which is denoted by r, and the present value of the 

portfolio is 

 

-/7)���0, � 12� . 
 

It follows that 

 

��0 � 1 � -/7)���0, � 12�                                       (2.11) 

 

which leads to  

 

1 � ��0�8 � ,-/7)� � -/7)12������������������������������������������(2.12) 

�
Substituting equation (2.10) for delta, equation (2.12) becomes 

 

1 � 34�	/9:;<"�
�2/"� � 35�9:;<2/	�

�2/"�                                       (2.13) 

 

which leads to 

 

1 � -/7)=34>9;</"?�2/"� � 35>2/9;<?
�2/"� @                                    (2.14) 
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If p is set as  

 

A � 9;�$/"
2/" ( 9;</"

2/"                                                (2.15) 

 

then equation (2.14) can be simplified as  

 

1 � -/7)=A12 � �8 � A�1"@                                        (2.16) 

 

Suppose the exercise price of a call option is K. If the stock price goes up to S0u, 

then the payoff of the call option, fu, is 

 

     12 � ������0, � B
 ��                                            (2.17) 

 

If the stock price moves down to S0d, then the payoff of a call option, fd, is 

 

1" � ������0� � B
 ��                                          (2.18) 

                                           

Substituting equation (2.16) with equations (2.17) and (2.18), the option value, f, 

at time 0 is discounted as  

 

1 � -/7)=�����0, � B
 �� A � �����0� � B
 �� �8 � A�@               (2.19) 
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According to Cox, Ross and Rubinstein (1979), the equation for the option price 

has several notable features. First, the probability of an upward movement, q, does not 

appear in the equation, which implies that, even if different investors have different 

subjective probabilities about an upward or downward movement in the stock, the stock 

price will come out the same. It is natural to assume that the price of a call option 

increases as the probability of an upward movement does. However, these two variables 

are irrelevant. The reason is that the stock price itself already incorporates the 

probabilities of up or down movements. As a result, one will only need to take the stock 

price into consideration when calculating the option value. The second notable feature is 

that the option price does not depend on investors’ risk preferences. It is not surprising 

that any individual prefers more wealth to less wealth and is willing to take riskless 

arbitrage opportunities to earn more profits. However, in this case, the underlying 

assumption is that arbitrage opportunities are eliminated for all investors. Therefore, the 

option pricing formula is obtained regardless of investors’ attitudes towards risk. Finally, 

the only random variable that the option price depends on is the price of the underlying 

stock. The value of an option is calculated in terms of S, u, d, and r. 

2.1.3. Two-Step Binomial Trees. The derivation of the option pricing formula 

can be extended to the valuation of an American call using a generalized two-step 

binomial tree. The evolution of the stock price is shown in Figure 2.2. 

The length of the time intervals for a two-step tree is 

 

�� ( )
* ( )

C                                                     (2.20) 
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Figure 2.2. A Two-Step Binomial Tree 
 

 

 

Source: Hull, J.C., Options, Futures, and Other Derivatives. New Jersey: Pearson 
Prentice Hall, (2009). pp. 245. 

 

 

 

For an American call option, the payoffs of the option at the final nodes, fuu, fud, 

and fdd, are calculated as follows 

      

122 � ������0,C � B
 ��                                         (2.21) 
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12" � ������0,� � B
 ��                                        (2.22) 

   

1"" � ������0�C � B
 ��                                        (2.23) 

 

The payoffs at the first time step, fu and fd, are 

 

12 � ����D-/7�&=A122 � �8 � A�12"@
 ��0, � B�E                      (2.24) 

 

and 

 

1" � ����D-/7�&=A12" � �8 � A�1""@
 ��0, � B�E                      (2.25) 

 

At time 0, the value of the American call option, f, is 

 

1 � ����D-/7�&=A12 � �8 � A�1"@
 ��0 � B�E                          (2.26) 

 

Substituting from equations (2.24) and (2.25) into equation (2.26) yields the value 

of the American call option 

 

1 � ����D-/C7�&=AC122 � FA�8 � A�12" � �8 � A�C1""@
 ��0 � B�E       (2.27) 

 

The n-step (n > 2) binomial tree will be constructed in a similar way, and will be 

studied in the following section. 
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2.2. PRICING MULTIPLE OPTIONS 

This section demonstrates the general framework for pricing multiple options 

using different combinations of real options. Because deferral option, expansion option, 

contraction option, and abandonment option are the most commonly seen real options, 

the combinations of two or more of these options can usually characterize many real life 

situations. An example consisting of an expansion option and a contraction option will be 

discussed in details, and the same procedure can be easily applied to similar multiple 

options. 

The first example is a multiple option consisting of an expansion option and a 

contraction option. Suppose management has the option to expand the scale of operation 

with an investment cost, KE, and the option to contract the scale of operation for a cost 

savings, KC, during the life of the project. Since the two options can be exercised at or 

before the end of the project, they both fall into the category of American option. The 

expansion option can be considered an American call, and the contraction option can be 

considered an American put. The payoff of the expansion is�G�& � B��', with aSt being 

the new production capacity after expansion. The payoff function for the contraction 

option is (KC – bSt)
+, with bSt being the new production capacity after contraction.  

A binomial tree consisting of n stages will be constructed for the purpose of 

calculation. At each node in a single stage, the combined value of the contraction option 

and the expansion option, fE&C, is calculated backward using the values from a later stage. 

The process will be repeated until the starting point is reached. If n is large enough, the 

exercise areas and the hold area can be determined. The computation process is illustrated 

in Figures 2.3, 2.4, and 2.5. 
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First, the life of the project is divided into n steps. The gross project value S00 

evolves over 5 years, as shown in Figure 2.3. The term Si,j denotes the project value at the 

jth node (j=0,1,…, i) at time i∆t (i=0,1,…,n), and it is calculated as S0u
id i-j (see note in 

Figure 2.3). 
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Figure 2.3. Lattice Evolution of the Price of Underlying Asset 
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Next, the valuation of the first option, the expansion option, is worked back 

through the binomial tree from the end to the beginning. Since this is an American 

option, each node needs to be examined to see if early exercise is optimal. The option 

value at final nodes, Cn,j, is the same for the American option as it is for the European 

option and,  thus, can be determined by the call payoff function as  

 

H*
I � �����G�*
I � B� 
 ��                                        (2.27) 

 

where a is the factor by which the production scale of the project is expanded with a cost 

KE. 

At earlier nodes, i.e., the nodes at time i∆t, the value of the option Ci,j is the 

greater of 

• the expected value at time (i+1)∆t discounted for a time period ∆t at rate 

r, which is given by equation (2.16), or 

• the payoff from early exercise. 

Thus Ci,j can be obtained as follows 

       

HJ
I � ����DG�J
I � B� 
 -/7�&KAHJ'	
I'	 � �8 � A�HJ'	
ILE                (2.28) 

 

Further, the option value at time 0, C00, is 

 

H00 � ����DG�00 � B� 
 -/7�&=AH		 � �8 � A�H	0@E                     (2.29) 
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Last, the multiple options of the expansion option and the contraction option need 

to be evaluated. The procedure is similar to that previously described for the expansion 

option. The option value at the final nodes is the greater of the payoffs of both options, 

calculated as follows  

       

1*
I � �����B� � M�*
I 
 H*
I�                                      (2.30) 

 

where b is the factor by which the production scale of the project is contracted for a cost 

savings of KC. 

For the nodes at time i∆t, the value of the option fi,j is the greatest of 

• the expected value at time (i+1)∆t discounted for a time period ∆t at rate 

r,  

• the payoff from exercising the expansion option, or 

• the payoff from exercising the contraction option. 

Thus, fi,j can be obtained by the following 

 

1J
I � �����N	�                                                 (2.31) 

 

where 

 

N	 � =	�C�O@ 
 

	 � B� � M�J
I 
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C � -/7�&=A1J'	
I'	 � �8 � A�1J'	
I@ 
 

O � HJ
I 
 

Finally, the value of the multiple options at time 0, f00, is the greatest of three 

values as in equation (2.32): 

 

100 � �����NC�                                                 (2.32) 

 

where 

 

NC � =P	�PC�PO@ 
 

P	 � B� � M�00 

 

PC � -/7�&=A1		 � �8 � A�1	0@ 
 

PO � H00 

 

The second example is the combination of an expansion option and an 

abandonment option. The abandonment option is the option to abandon the project for a 

salvage value, KA. The payoff function for the abandonment option is (KA – St)
+. The 
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valuation of the option combination is similar to that shown in Figure 2.5. The option 

value at the final nodes is the greater of the payoffs of both options as 

  

1*
I � �����BQ � �*
I 
 H*
I�                                      (2.33) 

 

The value of the combination option can be obtained by working through the 

binomial tree in the same manner as in the first example. 

The last example is the combination of a deferral option and an expansion option. 

When the market conditions for an investment opportunity are unclear, management 

would choose to defer the investment until the market conditions become more favorable. 

If the strike price is KD, then management will only invest when the underlying project 

value goes beyond the strike price. The payoff function for the deferral option is therefore 

(St - KD )+. The option value at the final nodes is the greater of the payoffs of both options 

as  

 

1*
I � ������*
I � BR 
 H*
I�                                       (2.34) 

 

 

 

2.3. RESULTS 

Experiments have been performed to test the effectiveness of binomial trees in 

evaluating different multiple options. Consider a 5-year long project that contains more 

than one option. The value of the base project is $400 million. The volatility of the 
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project return is assumed to be 35%. The risk-free rate for the next 5 years is assumed to 

be 7%. The rate of paid cash inflows is 2% of the project value. 

2.3.1. Expansion and Contraction. In the first example, the firm has an option to 

expand its scale of production by 20% (the parameter a), for a cost of $30 million (the 

strike price KE), and an option to contract the production scale by 25% (the parameter b), 

for a cost saving of $250 million (the strike price KC), at any time over the next 5 years. 

Therefore, this example consists of an American call and an American put. The 

expansion option can be exercised prior the contraction, and vice versa. The parameters 

are listed in Table 2.1. 

 

 

 

Table 2.1. Parameters for the Multiple Options of Expansion and Contraction 

Parameter Value 

KE 30 

KC 120 

a 20% 

b 25% 

 

 

 

The 10,000-steps binomial trees previously illustrated are used to calculate the 

prices of the options. The price of the expansion is $52.9585 million, the price of the 

contraction is $31.4210 million, and the price of the multiple options is $73.1619 million. 
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Clearly the price of the multiple options is greater than the price of either individual 

option; however, it is less than the sum of the two option prices.   

Sensitivity analysis is performed to examine the impact of the price of the 

underlying project on the prices of the options. The results are illustrated in Figures 2.6, 

2.7, 2.8, and 2.9. In Figure 2.6, it can be seen that the price of the expansion increases 

with the value of the base project. The higher the project value, the more likely the call is 

to be exercised and yield a higher payoff, and the more valuable the call becomes. The 

reverse is true for the contraction, as shown in Figure 2.7, as the contraction is treated as 

a put option. The put option behaves in the opposite direction as the call option does 

when the value of the underlying project changes. 

For a multiple options of one call and one put, such as the expansion and the 

contraction, the combined value decreases initially and then increases as the project value 

goes beyond a certain point. As in Figure 2.8, when the project value is smaller, the call 

is less likely to be exercised and, thus, is less valuable; therefore, the combined value 

depends primarily on the value of the put, which declines as the project value increases. 

When the project value becomes large enough, the put is no longer in favor and becomes 

worthless, the call then takes over and the combined value is heavily determined by its 

value, which increases as the project value increases. 

The sensitivity analysis is performed on the incremental value by the contraction 

which is considered as a second option in the project. Figure 2.9 shows a negative 

correlation between the additional value added by a put option and the value of the 

underlying project.  
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Figure 2.6.   Sensitivity Analysis of Impact of Project Value on Expansion 
 

 

 

 

 

Figure 2.7.  Sensitivity Analysis of Impact of Project Value on Contraction 
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Figure 2.8.  Sensitivity Analysis of Impact of Project Value on Multiple Options of 
Expansion and Contraction 

 

 

 

Figure 2.9.  Sensitivity Analysis of Impact of Project Value on Incremental Value by 
Contraction 
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The free boundaries for the expansion and the contraction options are identified in 

Figure 2.10. Free boundaries consist of the points where early exercise is optimal. The 

upper curve is the boundary for the expansion option and the lower curve is the boundary 

for the contraction option. These curves provide the information regarding the project 

value as well as the time left to expiration for optimal exercise of either of the two 

options. When the project value moves beyond the free boundary of the expansion, it is 

optimal to exercise that option.  The area above the free boundary of the expansion is the 

area in which to exercise the expansion option. When the project value moves below the 

free boundary of the contraction, it is optimal to exercise the contraction option.  The area 

below the free boundary of the contraction is the exercise area of the contraction. In 

addition, the region between the boundaries is identified as the “hold” area in which 

neither of the options is to be exercised.  

2.3.2. Expansion and Deferral. The second example is a combination of an 

option to expand the production scale by 50% (the parameter a) with a cost of $200 

million (KE) and an option to defer the project for up to 1 year with a strike price of $450 

million (KD). The parameters are listed in Table 2.2. 

This example consists of two American calls. First, consider a situation in which 

no order of exercise is specified and, therefore, the expansion option and the deferral 

option are treated as two individual, non-related options.  The expansion price is 

$71.5903 million, the deferral price is $43.6778 million, and the combined value of the 

multiple options is $80.078 million. 
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Figure 2.10.  Free Boundaries for Expansion and Contraction 
 

 

 

 

 

Table 2.2. Parameters for the Multiple Options of Expansion and Deferral 
 

Parameter Value 

KE 200 

KD 450 

a
 50% 
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Figures 2.11 and 2.12 illustrate that there is a positive correlation between the 

prices of the call options and the value of the base project. As a result, in Figure 2.13 the 

price of the multiple options is positively correlated to the project value as well. The free 

boundaries are tracked in Figure 2.14. Exercise areas for the expansion and the deferral 

are specified, as well as the hold area where neither option is to be exercised. 

 

 

 

 

Figure 2.11.  Sensitivity Analysis of Impact of Project Value on Expansion  
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Figure 2.12.  Sensitivity Analysis of Impact of Project Value on Individual Deferral 
 

 

 

 

Figure 2.13.  Sensitivity Analysis of Impact of Project Value on Multiple Options of 
Deferral and Expansion 
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Figure 2.14.  Free Boundaries for Expansion and Deferral 

 

 

 

It should be noted that the deferral option has a shorter expiration than the 

expansion option. Therefore, it is inappropriate to ignore the order of exercise due to the 

fact that the deferral option can only be exercised in the first year and before the exercise 

of the expansion option. Hence, the deferral option can be treated as a second option that 

allows management to defer the project that embeds the expansion option. In this case, 

the price of the deferral is calculated on a new project value which incorporates the price 

of the expansion instead of the base project value alone. The prices obtained for the 

expansion, the deferral, and the multiple options are $71.5903 million, $84.8873 million, 

and $104.99 million, respectively.  
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Sensitivity analysis is also performed to determine the impact of the project value 

on the value of the multiple options as well as on the incremental value by the additional 

option. Positive correlation is shown to exist between the option prices and the project 

value, as illustrated in Figure 2.15 and Figure 2.16. When the project value becomes 

larger, both calls are more likely to be exercised and, therefore, be worth more, and it 

makes a lot of sense that the combined value of two calls increases with the project value. 

The incremental value added by the deferral option to the project is also positively 

correlated with the project value, as depicted in Figure 2.17.  

 

 

 

 

Figure 2.15.  Sensitivity Analysis of Impact of Project Value on Deferral 
(Exercise Order Considered) 
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Figure 2.16.  Sensitivity Analysis of Impact of Project Value on Multiple Options of 
Deferral and Expansion (Exercise Order Considered) 

 

 

 

Figure 2.17.  Sensitivity Analysis of Impact of Project Value on Incremental Value by 
Deferral (Exercise Order Considered) 
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Free boundaries are tracked in Figure 2.18. The free boundary for the deferral 

option appears to be lower than the one that takes no order of exercise into consideration. 

The exercise area of the deferral is the area above the deferral option’s free boundary, and 

the exercise area of the expansion is the area above the expansion option’s free boundary. 

Clearly, it is only optimal to exercise the deferral in the first year, if either option is to be 

exercised at all.  

 

 

 

Free Boundary for 

Expansion

Free 

Boundary 

for 

Deferral
Hold

Expand

Deferral

 

Figure 2.18.  Free Boundaries for Deferral and Expansion 
(Exercise Order Considered) 
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2.3.3. Expansion and Abandonment. The third example includes an expansion 

option to expand the production scale by 50% (the parameter a), with a cost of $200 

million (the strike price KE), and an option to abandon the whole project for a salvage 

value of $450 million (the strike price KA). The parameters are listed in Table 2.3. 

 

 

 

Table 2.3. Parameters for the Multiple Options of Expansion and Deferral 
 

Parameter Value 

KE 200 

KD 450 

a
 50% 

 

 

 

This example consists of an American call and an American put. A constraint on 

the order of exercise is imposed on calculating the price of the multiple options due to the 

fact that the expansion option cannot be exercised after the project is abandoned.  

Figure 2.19 shows what the free boundaries look like when the order constraint is 

neglected.  It can be seen that the paths of the two free boundaries cross each other and 

that there is an overlap in the exercise areas of the expansion and the abandonment 

options, which means that both options are exercisable in the overlapping area. However, 

this is not plausible in the real world. The expansion must be void once the abandonment 

is exercised. In Figure 2.20 the free boundary for the expansion is eliminated after the
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Figure 2.19.  Free Boundaries for Expansion and Abandonment 

 

 

Free Boundary for 

Expansion

Free Boundary for 

Abandonment

Hold

 

Figure 2.20.  Free Boundaries for Expansion and Abandonment 
(Exercise Order Considered) 
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boundaries intersect. When calculating the price of the multiple options, the values at the 

nodes after the intersection are replaced by the values of the abandonment.  

The values for the expansion, the abandonment, and the multiple options are $160 

million, $79.6224 million, and $162.6823 million, respectively, without the order 

constraint. The price of the multiple options becomes $162.2486, when the order 

constraint is taken into consideration. When there is no exercise constraint imposed on 

the multiple options, the value tends to be higher since the options give the management 

more flexibility. 

The results from the sensitivity analysis are displayed in Figures 2.21, 2.22, and 

2.23. The value of abandonment is shown to have a negative correlation with the project 

value. The value of the multiple options at first decreases and then later increases as the 

project value increases. The incremental value by the abandonment is more prominent 

when the project value is smaller than $200 million, but becomes almost insignificant 

when the project value is greater than $400 million. This results from the fact that the 

abandonment option would be more likely to be exercised when the project value 

decreases.  

2.3.4. Numerical Results. Table 2.4 shows the value of each individual option 

without the presence of the other option. Note that Expansion 1 stands for the value of the 

expansion in the first example, Expansion 2 for the value in the second example, and 

Expansion 3 for the value in the third example.  

Table 2.5 shows values of different multiple exercisable options. Clearly, the 

value of a multiple exercisable option is smaller than the sum of two individual option 

values, confirming the general rule that values of options present in combination
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Figure 2.21.  Sensitivity Analysis of Impact of Project Value on Abandonment 
(Exercise Order Considered) 

 

 

 

Figure 2.22.  Sensitivity Analysis of Impact of Project Value on Multiple Options of  
Expansion and Abandonment (Exercise Order Considered) 
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Figure 2.23.  Sensitivity Analysis of Impact of Project Value on Incremental Value by 
Abandonment (Exercise Order Considered) 

 

 

 

are not additive due to the interaction among options. For instance, the sum of the 

expansion option and the contraction option is 84.3795; however, the combination of 

these two options is only worth of 73.1619.  

The incremental value in Table 2.6 is the difference between the values of the 

multiple exercisable options and the value of the expansion option, and it represents the 

value contributed to the project by the additional option. The incremental value 

contributed by the second option is smaller than the option price itself. It can be seen that 

the contract option is worth 31.421, but the value contributed by this option to the project 

is only 20.2034. 
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Table 2.4. Values of Individual Options 
 

Option Value (in million $): 

Expansion1 (E1) 52.9585 

Expansion2 (E2) 71.5903 

Expansion3 (E3) 160 

Contraction (C) 31.421 

Deferral (D) 43.6778 

Deferral (D)* 84.8873 

Abandonment(A) 79.6224 

 

Deferral (D): the value of the deferral option without interaction 
Deferral (D)*: the value of the deferral option with interaction 

 

 

Table 2.5. Values of Multiple Options 
 

Values of Multiple Options (in million $): 

E1&C 73.1619 

E2&D 80.078 

E2&D* 104.99 

E3&A 162.6823 

E3&A* 162.2486 

 

E2&D: the value of the multiple options of expansion and deferral without interaction 
E2&D*: the value of the multiple options of expansion and deferral with interaction 
E3&A: the value of the multiple options of expansion and abandonment without interaction 
E3&A*: the value of the multiple options of expansion and abandonment with interaction 
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Table 2.6. Incremental Values of Additional Options 
 

Incremental Values of Additional Options (in million $): 

Contraction (C) 20.2034 

Deferral (D) 8.4877 

Deferral (D)* 33.3997 

Abandonment (A) 2.6823 

Abandonment (A)* 2.2486 

 

Deferral (D): the incremental value by the deferral option without interaction 
Deferral (D)*: the incremental value by the deferral option with interaction 
Abandonment (A): the incremental value by the abandonment option without interaction 
Abandonment (A)*: the incremental value by the abandonment option with interaction 

 

 

 

2.4. CONCLUSIONS  

This study provides a general framework for the valuation of multiple exercisable 

real options using the binomial tree method to overcome the inflexibility of the more 

traditionally used discounted cash flow method, thus providing a better alternative for 

capital budgeting and project planning. Three different combinations of the expansion 

option, the contraction option, the abandonment option, and the deferral option are used 

to investigate and determine the effectiveness of the binomial tree method in pricing 

multiple options as well as accounting for interactions among them. 

The results of these experiments show that the binomial tree model for pricing 

financial options is also applicable to pricing real options. The advantage of this approach 
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is that it is not only effective for pricing a single option, but it is also promising for 

pricing multiple exercisable options. Therefore, the binomial tree method is capable of 

handling different combinations of real options in business practice. 
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3.  PRICING MODEL WITH FINITE DIFFERENCE METHOD 

  

3.1. INTRODUCTION 

This chapter provides a general framework for pricing multiple exercisable 

American-style real options by obtaining numerical solutions to partial differential 

equations (PDEs) with finite difference methods. Two examples of multiple options, one 

consisting of an expansion option and a contraction option, the other consisting of an 

expansion option and an abandonment option, are discussed in this chapter.  

The rest of this chapter is organized as follows. Section 3.1 gives the derivation of 

the Balck-Scholes differential equation for option price and a brief overview about finite 

difference methods. In Section 3.2, the Black–Scholes equations for a call option and a 

put option are transformed and then discretized using finite-difference grids. The explicit 

finite difference method is applied to evaluate two combinations of multiple options in 

Section 3.3. Numerical results are presented in Section 3.4 and some conclusions are 

drawn in Section 3.5. 

3.1.1. Black-Sholes-Merton Differential Equation. The famous Black-Scholes-

Merton model is the building block of the (real) option pricing Theory. The following is 

to give an overview on the derivation of the Black-Scholes-Merton differential equation, 

which can be found in Hull (2009). 

It is stated in Section 2 that a stock price is assumed to follow a stochastic path 

called geometric Brownian motion, the continuous form of which is  
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�� �  ��� � !��                                                (3.1) 

 

with a drift rate of   and a variance rate of !C. The term x is a Brownian motion. 

Since the price of a stock option is a function of the stock price and time, the 

behavior of the functions of stochastic variables should be investigated first. An 

important result in this area is known as Itô’s lemma, which was discovered by Kiyosi Itô 

in 1951. 

Suppose a variable y follows the Itô process 

 

�P � G�P
 ���� � M�P
 ����                                        (3.2) 

 

where a and b are functions of y and t, and z follows the Wiener process described in 

Section 2. The variable y then has a drift rate of a and a variance rate of b2
. According to 

Itô’s lemma, a function F of y and t follows the process 

 

�S � �TUTV G � TU
T& � 	

C
TWU
TVW MC��� � TU

TV M��                             (3.3) 

 

where z is the same Wiener process as in equation (3.2). Therefore the function F also 

follows an Itô process which has a drift rate of  

 

TU
TV G � TU

T& � 	
C
TWU
TVW MC , 
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and a variance rate of  

 

MC�TUTV�C . 

 

Suppose that f is the price of a call option. Hence from equation (3.1) and Itô’s 

lemma, 

 

�1 � �T3T#  � � T3
T& � 	

C
TW3
T#W !C�C��� � T3

T# !��                         (3.4) 

 

The discrete version of equation (3.1) and (3.4) are 

 

�� �  ��� � !��                                              (3.5) 

 

and 

 

X1 � �T3T#  � � T3
T& � 	

C
TW3
T#W !C�C�X� � T3

T# !�X                         (3.6) 

 

where X� and X1 are the changes in S and f during a small time interval X�. To eliminate 

the term X�in equation (3.5) and (3.6), a portfolio which consists of a long position in 

Y1 Y�Z  share of stocks and a short position in one call option is established. Define [ as 

the value of the portfolio, then 

[ � T3
T# � � 1                                                   (3.7) 
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If X[ is the change in the portfolio value during the small time interval�X�, it 

follows 

 

X[ � T3
T# X� � X1                                                (3.8) 

 

Substituting equation (3.5) and equation (3.6) into equation (3.8) gives 

 

X[ � ��T3T& � 	
C
TW3
T#W !C�C��X�                                       (3.9) 

 

Hence the Wiener process X is removed and the portfolio must be riskless during 

X�. The underlying no-arbitrage assumption implies that the portfolio earns the same rate 

of return as other short-term risk-free securities. It follows that 

 

X[ � \[�X�                                                     (3.10) 

 

where r is the risk-free interest rate. Substituting equation (3.10) with equation (3.7) and 

(3.9) yields 

 

�]T3T& � 	
C
TW3
T#W !C�C^ X� � \(

T3
T# � � 1��X�                             (3.11) 

 

And it follows that 

T3
T& � T3

T# \� � 	
C
TW3
T#W !C�C � \1                                       (3.12) 
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3.1.2. Finite Difference Methods. The price of a derivative can be evaluated with 

finite difference methods by solving the differential equation that the derivative satisfies. 

The differential equation is converted into a set of difference equations which are to be 

solved iteratively (Hull, 2009). 

Finite difference method is a classical, straightforward way to numerically solve 

partial differential equations. The finite difference approach was first proposed for option 

pricing by Brennan and Schwartz (1977, 1978). It works in a manner similar to the lattice 

methods, and the trinomial tree method which, in particular, can be viewed as an explicit 

finite difference method. However, the lattice methods do not require the spatial or side 

boundary conditions that the finite difference methods do. A major advantage of the finite 

difference approach for option pricing is that an abundance of existing theory, algorithms, 

and numerical software is available for solving the problem. Another advantage is that 

the generality of finite difference methods makes it possible to extend beyond the 

constant coefficients of the Black-Scholes-Merton model. Finite difference methods are 

capable of handling processes with time-varying coefficients, Itô processes that are more 

general, jump and SV models, single and multifactor interest rate models, etc. (Broadie 

and Detemple, 2004)   

The following explains the calculation schemes of the finite difference methods. 

More detailed description can be found in Wilmott et al. (1995) 

First, the PDE to be solved is discretized and reduced to a set of finite difference 

equations subject to appropriate boundary conditions. Next, the continuous domain of the 

state variables is transformed by a grid of discrete points, as illustrated in Figure 3.1. 

Both the x-axis and the τ-axis are divided into equally spaced time steps by a distance of 
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x∆ and τ∆ , respectively, thus dividing the plane into a grid where the nodes are denoted 

by ( ,  )i x j τ∆ ∆ . Boundary conditions need to be specified for the grid in order to solve the 

finite difference equations. Finally, the value for each node at each time step is calculated 

using either a forward- or a backward- difference approximation. 

 

 

 

i xδ

x

τ

jδτ

0,1,2,...,

0,1,2,...,
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Figure 3.1.  Finite-Difference Grid 
 

 

 

3.1.2.1 Finite difference approximation. The basic idea of finite difference 

methods is to replace the partial derivatives in partial differential equations by 

approximation, based on the Taylor series expansions of functions near the point or 

points of interest. The partial derivative _` _aZ   may be defined as the limiting difference  
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Tb
Tc �
 d� � ef�gch0 b�i
c'gc�/b�i
c�

gc                                     (3.13) 

 

Considering jd as being really small but nonzero, equation (3.13) can be 

approximated to be 

 

( , ) ( , )
( )

v v x v x
O

τ τ τ
τ

τ τ

∂ + ∆ −
≈ + ∆

∂ ∆
                                       (3.14) 

 

This is called a finite-difference approximation of Yk YdZ  because it involves 

small differences of the dependent variablek. In particular, it is a forward difference 

approximation since the differencing is in the forward d direction.  

If the differencing is the backward�d direction, then the limiting difference may be 

defined as 

 

Tb
Tc �
 d� � ef�gch0 b�i
c�/b�i
c/gc�

gc                                     (3.15) 

 

which can be approximated to be 

 

( , ) ( , )
( )

v v x v x x
O x

x x

τ τ∂ − − ∆
≈ + ∆

∂ ∆
                                         (3.16) 

 

This is called a backward difference. Besides the forward and the backward 

differences, there is the third approximation—central differences. Define the limiting 

difference of Yk YdZ  to be  
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Tb
Tc �
 d� � ef�gch0 b�i
c'gc�/b�i
c/gc�

Cgc                                   (3.17) 

 

which gives rise to the approximation 

 

Tb
Tc �
 d� l b�i
c'gc�/b�i
c/gc�

Cgc � m��jd�C�                               (3.18) 

 

However, the central differences in the form (3.18) are never used in practice 

because they usually result in bad numerical schemes. Instead, the central differences of 

the form arise in the Crank-Nicolson (Crank and Nicolson, 1947) finite difference 

scheme 

Tb
Tc �
 d� l b�i
c'gcnC�/b�i
c/gcnC�

gc � m��jd�C�                            (3.19) 

 

When applied to partial differential equations, forward difference approximation 

leads to explicit finite difference scheme, and backward difference approximation leads 

to fully implicit finite difference scheme. The finite difference approximations for the 

partial derivative of Yk YZ  can be defined in exactly the same way as described above.  

For second partial derivatives, such as YCk YCZ , a symmetric central difference 

approximation can be defined as the forward difference of backward difference 

approximations to the first derivative or as the backward difference of forward difference 

approximations to the first derivative with the form 

 

TWb
TiW �
 d� l b�i'gi
c�/Cb�i
c�'b�i/gi
c�

�gi�W � m��j�C�                        (3.20) 
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The geometric interpretation of forward-, backward-, and central- differences is 

shown in Figure (3.2). 

 

 

 

τ τ δτ+τ δτ−

ν

 

 

Figure 3.2. Forward-, Backward-, and Central- Differences Approximations 

 

 

 

Source: Wilmott, P., Howison, S. and Dewynne, J., The Mathematics of Financial 

Derivatives. Cambridge University Press, (1995), pp. 137. 
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3.1.2.2 Explicit and implicit finite difference methods. The difference between 

the explicit and the implicit finite difference methods is as illustrated in Figure 3.3. 
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Figure 3.3. Explicit and Implicit Finite Difference Methods 

 

 

 

Source: adapted from Wilmott, P., Howison, S. and Dewynne, J., The Mathematics of 

Financial Derivatives. Cambridge University Press, (1995), pp. 141 and 145. 
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The explicit finite difference method uses a forward difference approximation for 

the term Yk YZ  and a symmetric central difference for the term YCk YCZ . In this scheme, 

the value of 1j

iv + depends only on the values of 
1

j

iv
+

, j

iv and 
1

j

iv
−

, which means that if all 

values of j

iv  are known at time step j, then 1j

iv + can be calculated explicitly.  

The fully implicit finite difference method, which is usually known as the implicit 

finite difference method, uses a forward difference approximation for the term Yk YZ  

and a symmetric central difference for the term YCk YCZ . In this scheme, the values of 

1

1

j

iv +

+
, 1j

iv + and 1

1

j

iv +

−
depend on the value of j

iv in an implicit manner. Therefore, the new 

values of j

iv cannot be separated out and calculated explicitly in terms of the old values. 

The problem of the evaluation of real options can be formulated using the explicit 

finite-difference approximation, as shown in Figure 3.4. The Black-Schole equation is 

first discretized to finite-difference equations, subject to appropriate boundary conditions. 

Then, a grid of the potential current and future prices of the underlying asset, S, is 

specified. The boundaries for the grid are the payoffs of the option at expiry and where S 

reaches its potential minimum or its potential maximum. At time-step j, if the value of the 

option f  is known for each node ( ,  )i S j t∆ ∆ , then f  at next time-step j+1 can be calculated 

explicitly. For instance, the value of 1j

if
+ , depends only on the values of 

1

j

if +
, j

if , and 
1

j

if − . 

 

 

 

3.2. OPTION PRICING WITH FINITE DIFFERENCE METHOD 

The following notation is used to formulate the models for pricing American-style 

real options. The derivation of the finite difference equations is based on the book by 
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Figure 3.4.  Explicit Finite-Difference Approximation for Real Options 

 

 

 

Willmott et al. (1995). However, modification in the finite difference approximation 

scheme is required to make it more proper in the case of American options. 

�     S: value of underlying asset. 

� r: risk-free interest rate. 

� σ: volatility of the return of underlying asset. 

� D0: dividend rate. 

� E: exercise price. 
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� t: a time in the life of option. Present=0, T=expiry. 

� C(S,t): price of a call option as a function of time and underlying asset. 

� P(S,t): price of a put option as a function of time and underlying asset. 

� a: percentage by which the product capacity is expanded 

� b: percentage by which the product capacity is contracted 

For a European call option, the Black-Schole equation is  

 

2
2 2

02

1
( ) 0

2

C C C
S r D S rC

t SS
σ

∂ ∂ ∂
+ + − − =

∂ ∂∂                                   (3.21) 

 

and the boundary conditions are  

 

(0, ) 0C t = , ( , ) ~C S t S  as S →∞ , and ( , ) max( ,0)C S T S E= −  

 

where C(S,t) is the option value at time t throughout the life of a call option.  

However, it is difficult to find closed-form solutions for the Black-Scholes 

equation, especially in the case of real options, as they are usually of American style. It is 

desirable to reduce terms in the Black-Scholes equation and then transform the B-S 

equation to a dimensionless diffusion equation, which can later be approximated by finite 

difference methods. 

Assuming r > D0 > 0, define x, d, and c as 

 

 � eo�� pZ �                                                    (3.22) 
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d � 	
C!C�+ � �)                                                 (3.23) 

and        

 ��
 d� � �/#'��#
&�
�                                               (3.24) 

 

It follows that 

 

xS Ee= , 21

2
t T τ σ= − , and ( , ) ( , )C S t S E Ec x τ= − +  

 

Taking the first partial derivative of C(S,t), with respect to S and t, respectively, 

yields 

 

T�
T& � � 	

C !Cp Tq
Tc                                                 (3.25) 

 

and 

 

T�
T# � 8 � �p �Z � TqTi                                               (3.26) 

 

Taking the second partial derivative of C(S,t) with respect to S, gives 

 

TW�
T#W � p�� 	

#W
Tq
Ti � 	

#W
TWq
TiW�                                          (3.27) 
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Substitute equations (3.25), (3.26), and (3.27) into the Black-Scholes equation 

(3.21) and rearrange the terms, and the result is 

 

Tq
Tc � TWq

TiW � r7/R6s
W.W

� 8t Tq
Ti � 7q

s
W.W

� �7/R6�9us
W.W

� 79u
s
W.W

� 7
s
W.W

                   (3.28) 

 

Let the two dimensionless parameters k and k’ be 

 

21

2
k r σ=                                                        (3.29) 

 

2

0

1
' ( )

2
k r D σ= −                                                   (3.30)                    

 

and define function f(x) as  

 

( ) ( ' ) xf x k k e k= − +                                                  (3.31)          

               

then the differential equation (3.28) can be simplified as 

 

Tq
Tc � TWq

TiW � �vw � 8� TqTi � v� � 1��                                 (3.32) 

 

for �x y  y x, d z �, with 
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��
 �� � ����8 � -i 
 �� � {8 � -i
  y ��
  | �}                          (3.33) 

 

An upwind scheme is applied to the approximation (see appendix), and the finite 

difference equation for a call option is 

 

1

1 1[ ( ' 1) ] [(1 ) ( ' 1) 2 ] ( )m m m m

n n n nc k c k k c c f x
x x

τ τ
α τ α α τ

+

+ −

∆ ∆
= + − + − ∆ − − − + + ∆

∆ ∆
     (3.34) 

 

where 

 

2( )x

τ
α

∆
=

∆
                                                       (3.35) 

 

The finite difference equation for an American put can also be derived in a similar 

manner. The Black-Scholes equation for a European put option is 

 

2
2 2

02

1
( ) 0

2

P P P
S r D S rP

t SS
σ

∂ ∂ ∂
+ + − − =

∂ ∂∂
                                   (3.36) 

 

with boundary conditions 

 

(0, ) 0P t = , ( , ) ~P S t E  as 0S → , and ( , ) max( ,0)P S T E S= −  
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Define x and d as in equation (3.22) and (3.23), and A�
 d� as 

 

A�
 d� � #/�'~�#
&�
�                                               (3.37) 

 

then the Black-Scholes equation (3.36) can be simplified as  

 

T�
Tc � TW�

TiW � �vw � 8� T�Ti � vA � 1��                                 (3.38)         
 

 

for �x y  y x, d z �, with 

 

A�
 �� � ����-i � 8
 �� � {-i � 8
  | ��
  y �}                          (3.39) 

 

and the terms k, k’, and f(x) are the same as in equations (3.29), (3.30), and (3.31). 

After the same transformation (as described above for a call option), the finite 

difference equation for a put option is  

 

1

1 1[(1 ) ( ' 1) 2 ] [ ( ' 1) ] ( )m m m m

n n n np p k k p k p f x
x x

τ τ
α τ α α τ

+

+ −

∆ ∆
= + − ∆ + − − + − − − ∆

∆ ∆
          (3.40) 

 

Early exercise needs to be taken into consideration in the case of American 

options. For an American call, early exercise is optimal when the following is satisfied 

C S E= −  , 
2

2 2

02

1
( ) 0

2

C C C
S r D S rC

t SS
σ

∂ ∂ ∂
+ + − − <

∂ ∂∂
. 



70 

 

And similarly, for an American put, early exercise is optimal when the following 

is satisfied 

P E S= −  , 
2

2 2

02

1
( ) 0

2

P P P
S r D S rP

t SS
σ

∂ ∂ ∂
+ + − − <

∂ ∂∂
. 

 

After the evolution lattice for option price is developed by finite-difference 

approximation, the goal is to obtain the free boundary for optimal early exercise. For 

instance, the call price m

nC can then be compared with the payoff function m

nS E− .  The free 

boundary is formed by the price of the underlying asset at different times that satisfies the 

equation m m

n nC S E= − . Similarly, the free boundary for a put option is formed by the price 

of the underlying asset at different times that satisfies the equation m m

n n
P E S= − . 

 

 

 

3.3. PRICING MULTIPLE REAL OPTIONS 

Two examples were established to demonstrate the real options pricing technique 

with the finite difference method. The first example consists of an expansion option and a 

contraction option, and the second example consists of an expansion option and an 

abandonment option where the expansion option will be void when the abandonment is 

exercised. 

The values of the parameters in the models are listed in Table 3.1. Note that Ee, 

Ec, and Ea are the strike prices of the expansion, the contraction, and the abandonment, 

respectively. All prices listed are in million dollar increments. The life of the underlying 
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project is 5 years. Notations (1)* and (2)* represent the expansion option in the first 

example and in the second example, respectively. 

In the first example, the production capacity of the underlying project can be 

expanded by a certain percentage (e.g., 20%) or contracted by a certain percentage (e.g., 

25%) at anytime during the five years of the project life. Therefore, the expansion is 

considered an American call option and the contraction is considered an American put 

option.  

 

 

 

Table 3.1. Values of the Parameters for the Multiple Options 
 

Parameter Value 

S 400 

r 0.07 

σ 0.35 

D0 0.02 

T 5 

Ee (1)* 30 

Ee (2)* 40 

Ec 120 

Ea 400 

a (1)* 20% 

a (2)* 50% 

b 25% 
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First, divide the (x, τ) plane into a grid. Then, by using the finite difference 

equations (3.34) and (3.40) derived above for the American call and put, the value at each 

grid nodes can be easily calculated. These values can later be converted back to option 

prices using the preset equations ( , ) ( , )C S t aS E Ec x τ= − + and ( , ) ( , )P S t E bS Ep x τ= − + . Note 

that the coefficients a and b are applied to the general forms of the preset equations above 

to make them more suitable for the case of real options. 

Each grid node should be examined if either option is exercised. If no option is 

exercised at one node, the value at that particular node, CV, is 

 

H�*�'	 � �� � �v� � 8� �c�i� H�*'	� � =8 � v�d� � �v� � 8� �c
�i � F�@H�*� � �H�*/	� � �d1��   (3.41)

 

 

or   

 

H�*�'	 � �H�*'	� � =�8 � v�d� � �v� � 8� �c
�i � F�@H�*� � �� � �v� � 8� �c�i� H�*/	� � �d1���   (3.42)

 

 

where f(x) and f(x)* are from the first option (call) and the second option (put), 

respectively. However, the results tend to converge better if the H�*�'	 takes the 

arithmetic average of the right-hand side of equation (3.41) and (3.42), hence 

 

H�*�'	 � �� � 	
C �v� � 8� �c

�i� H�*'	� � =�8 � v�d� � F�@H�*� � =� � 	
C �v� � 8� �c

�i@H�*/	� � 	
C�d=1�� � 1���@    (3.43)

 

 

Therefore, the combined value of the multiple options at each node is the greatest 

of the following values: 
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• the payoff from exercising the first option  

• the payoff from exercising the second option  

• the value determined by equation (3.43) 

The free boundaries are obtained by connecting the nodes where either option is 

exercised. When the free boundaries are tracked, the (S,t) plane is divided into three 

distinct regions: the exercise region for the expansion, the exercise region for the 

contraction, and the hold region where neither option is exercised.  

In the second case, the abandonment option, which is considered an American 

put, imposes a different challenge. The abandonment option ends the underlying project 

once it is exercised. Therefore, a constraint must be put on this problem in order that the 

expansion option cannot be exercised after the abandonment option is exercised. 

However, the abandonment option can be exercised after the expansion option. The free 

boundaries for the expansion option and the abandonment option will also divide the (S,t) 

plane into three distinct regions: the exercise regions for the expansion option, the 

exercise region for the abandonment option, and the hold region where neither option is 

exercised.  

 

 

 

3.4. RESULTS 

Results are presented in this section and are compared with those derived by the 

binomial tree method. Figure 3.5 illustrates the free boundaries of the multiple options of 

expansion and contraction. The boundary of the expansion descends over the time axis.
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Figure 3.5. The Free Boundaries of the Multiple Options of Expansion and Contraction 

 

 

 

 On the contrary, the boundary of the contraction ascends over the time axis. The two 

distinct exercise regions, one for each individual option, as well as the hold region, are 

also determined. Figure 3.6 illustrates the free boundaries of the multiple options of 

expansion and abandonment. The value of the multiple options must take into account the 

impact of the abandonment on the expansion. As a result, there will be no expansion 

option after the two free boundaries encounter each other. After intersection, the value of 

each node is replaced by the value of the abandonment option, and the free boundary of 

the expansion option is tracked based on the new values. For comparison purposes, 

Figure 3.7 illustrates the two distinct free boundaries of the expansion and the 

abandonment without considering the interaction between these two options. It can be 
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Figure 3.6. The Free Boundaries of the Multiple Options of Expansion and Abandonment 
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Figure 3.7. The Free Boundaries of the Expansion and the Abandonment without 
Interaction 
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seen in Figure 3.6 that the pattern of the free boundary for the expansion is notably 

altered under the impact of the abandonment. The free boundaries for the multiple 

options appear to be highly consistent with the ones tracked by the binomial tree method 

in Section 2. 

The values of both the individual options and the combined values of the multiple 

options are displayed in Table 3.2. For comparison, the values obtained by the binomial 

tree method are also listed. The value of the multiple options of expansion and 

abandonment, without considering the interactions between the options, is calculated to 

be $162.5748 million. This value is slightly greater than the value shown in the table, 

$161.8980 million. That is because, when the constraint that the expansion is void after 

the abandonment is exercised is neglected, the multiple options give management more 

flexibility. Thus the “face value” appears to be worth more. This scenario is, however, 

not practical in reality. 

The results show that both the binomial tree method and the finite difference 

method are effective in determining the value of multiple American options. The 

binomial tree method is easy to understand and simple to implement. However, the size 

of a tree can grow exponentially with the increase in time steps, making the computation 

time excessive. The finite difference method, on the other hand, requires rather 

sophisticated mathematical understandings. Nonetheless, this method is efficient and 

accurate, and able to handle more complex situations. 
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Table 3.2. Prices of the Individual Options and the Multiple Options  
 

 
PDE 

(50000×1000) 

Binomial   

(10000) 

Expansion (1) 52.9580 52.9585 

Expansion (2) 160 160 

Contraction 31.4338 31.4210 

Abandonment 79.6815 79.6224 

Expansion (1) & Contraction 73.1004 73.1619 

Expansion (1) & Abandonment 161.8980 162.2486 

 

 

 

3.5. CONCLUSIONS 

This chapter investigated the pricing of American-style multiple exercisable real 

options by obtaining numerical solutions to partial differential equations with the finite 

difference method. Detailed derivations from Black-Scholes equations to finite difference 

equations are provided in this chapter, and an upwind scheme is applied to evaluate two 

combinations of the multiple options. The model is demonstrated to be adaptable to 

different combinations of multiple options and, thus, can handle various real life 

situations. It also addressed the problems of possible early exercise and the tracking of 

free boundaries, which are not always covered by some other real options pricing models. 

When compared with the binomial tree method, this method is demonstrated to be 

fast and accurate. The problem tackled in this chapter is important for real life capital 

budgeting and project planning, and it also provides insights for business decision 

making. 
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4. CONCLUSIONS AND FUTURE WORK 

 

4.1. CONCLUSIONS 

This dissertation presents two numerical methods for pricing multiple exercisable 

American-style real options.  

The first method is the binomial tree method, which discretizes the stochastic 

process followed by the price of the underlying asset. Different examples of multiple 

options are used to demonstrate the calculation scheme of the binomial trees. Both the 

numerical solutions and the free boundaries for early exercise are obtained and then 

discussed with consideration of the interactions between the options as well as the reality 

constraints.   

The second method is the finite difference method, which discretizes the Black-

Scholes differential equation for option prices using finite difference grids. The numerical 

solutions and the free boundaries obtained by this model show higher order accuracy than 

those from the binomial tree model.  

It can be concluded that both methods are effective in pricing multiple options of 

American-style. These methods are therefore practical tools for project budgeting and 

planning. In addition, the free boundaries also provide much-needed information for 

business decision-making. 
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4.2. FUTURE WORK 

The complexity in pricing multiple options increases substantially when the 

number of options embedded in a project increases. Interactions among multiple options 

can be overwhelming. As a result, it can be very difficult to quantify and account for 

these interactions. However, future research can extend the models to address pricing 

problems with more than two options. 

Another potential topic for new research is to explore options with multiple 

underlying assets instead of only one. Variations of the finite difference method may be 

used for this problem. 
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APPENDIX 

 

The following scheme is used to approximate the diffusion equation (3.32). Using 

a forward difference for v τ∂ ∂ , a forward or a backward difference for v x∂ ∂ , and a 

symmetric central difference for 2 2v x∂ ∂ , we have 

 

1
( , ) ( , )

( ) ( )
m m

n nv vv v x v x
O O

τ τ τ
τ τ

τ τ τ

+
−∂ + ∆ −

≈ + ∆ = + ∆
∂ ∆ ∆

                          (A.1) 

 

1( , ) ( , )
( ) ( )

m m

n nv vv v x x v x
O x O x

x x x

τ τ
+
−∂ + ∆ −

≈ + ∆ = + ∆
∂ ∆ ∆

                           (A.2) 

 

or                1( , ) ( , )
( ) ( )

m m

n nv vv v x v x x
O x O x

x x x

τ τ
−

−∂ − −∆
≈ + ∆ = + ∆

∂ ∆ ∆
                          (A.3) 

 

2
2 21 1

2 2 2

2( , ) 2 ( , ) ( , )
(( ) ) (( ) )

( ) ( )

m m m

n n nv v vv v x x v x v x x
O x O x

x x x

τ τ τ
+ −
− +∂ + ∆ − + − ∆

≈ + ∆ = + ∆
∂ ∆ ∆

        (A.4) 

 

An upwind scheme is used to overcome the artificial oscillations (Seydel, 2006). 

When the term (k’-1) in equation (3.32) is less than zero, a forward difference is used to 

approximate v x∂ ∂ as in equation (A.2); otherwise a backward difference is used as in 

equation (A.3). 

Substitute equation (3.32) with equations (A.1), (A.2), (A.3) and (A.4), and, by 

omitting the terms of ( )O τ∆ , ( )O x∆ and 2( )O x∆ , we have a new difference equation. 
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Bvhju If k’-1 > 0,  

 

1

1 1 1

2

2
( ' 1) ( )

( )( )

m m m m m m m

mn n n n n n n

n

c c c c c c c
k kc f x

xxτ

+

+ − −
− − + −

= + − − +
∆ ∆∆

                       (A.5) 

 

which leads to 

 

1

1 1[(1 ) ( ' 1) 2 ] [ ( ' 1) ] ( )m m m m

n n n nc c k k c k c f x
x x

τ τ
α τ α α τ

+

+ −

∆ ∆
= + − ∆ + − − + − − + ∆

∆ ∆
            (A.6) 

 

If k’-1 < 0, 

 

1

1 1 1

2

2
( ' 1) ( )

( )( )

m m m m m m m

mn n n n n n n

n

c c c c c c c
k kc f x

xxτ

+

+ − +
− − + −

= + − − +
∆ ∆∆

                        (A.7) 

 

which leads to 

 

1

1 1[ ( ' 1) ] [(1 ) ( ' 1) 2 ] ( )m m m m

n n n nc k c k k c c f x
x x

τ τ
α τ α α τ

+

+ −

∆ ∆
= + − + − ∆ − − − + + ∆

∆ ∆
            (A.8) 

 

For a put option, if k’-1 > 0, the diffusion equation (3.38) is transformed into 

 

1

1 1 1

2

2
( ' 1) ( )

( )( )

m m m m m m m

mn n n n n n n

n

p p p p p p p
k kp f x

xxτ

+

+ − +
− − + −

= + − − −
∆ ∆∆

                     (A.9) 

 



82 

 

which gives 

 

1

1 1[ ( ' 1) ] [(1 ) ( ' 1) 2 ] ( )m m m m

n n n np k p k k p p f x
x x

τ τ
α τ α α τ

+

+ −

∆ ∆
= + − + − ∆ − − − + − ∆

∆ ∆
         (A.10) 

 

Or if k’-1 < 0,  

 

1

1 1 1

2

2
( ' 1) ( )

( )( )

m m m m m m m

mn n n n n n n

n

p p p p p p p
k kp f x

xxτ

+

+ − −
− − + −

= + − − −
∆ ∆∆

                   (A.11) 

 

which becomes 

 

1

1 1[(1 ) ( ' 1) 2 ] [ ( ' 1) ] ( )m m m m

n n n np p k k p k p f x
x x

τ τ
α τ α α τ

+

+ −

∆ ∆
= + − ∆ + − − + − − − ∆

∆ ∆
         (A.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

BIBLIOGRAPHY 

 

Benaroch, M. and Kauffman, R.J., A Case for Using Real Options Pricing Analysis to 
Evaluate Information Technology Project Investments. Information Systems Research, 
Vol. 10, No. 1, (1999), pp. 70-86. 

Berger, P.G., Ofek, E. and Swary, I. Investor Valuation of the Abandonment Option. 
Journal of Financial Economics, Vol. 42, No. 2, (1996), pp. 257-287.  

Black, F. and Scholes, M., The Pricing of Options on Corporate Liabilities. The Journal 

of Political Economy, Vol. 81, No. 3, (1973), pp. 637-659.  

Bodie, Z., Kane, A. and Marcus, A.J. Investment. New York: McGraw-Hill, (2004). 

Brandão, L.E., Dyer, J.S. and Hahn, W.J. Using Binomial Decision Trees to Solve Real-
Option Valuation Problems. Decision Analysis, Vol. 2, No. 2, (2005) , pp. 69–88. 

Brennan, M.J. and Schwartz, E.S., Finite Difference Methods and Jump Processes 
Arising in the Pricing of Contingent Claims: A Synthesis. Journal of Financial and 

Quantitative Analysis, XIII, 3, (1978), pp. 461-474.  

Brennan, M. J. and Schwarz, E. S., Evaluating Natural Resource Investments. Journal of 

Business, Vol. 58(2), (1985), pp. 135-158. 

Broadie, M. and Detemple, J.B., Option Pricing: Valuation Models and Applications. 
Management Science, Vol. 50, No. 9, (2004), pp. 1145-1177. 

Chiara, N., Garvin, M.J. and Vecer, J., Valuing Simple Multiple-Exercise Real Option in 
Infrastructure Projects. Journal of Infrastructure Systems, Vol.13(2), (2007) pp.97-104. 

Cooter, P., The Random Character of Stock Market Prices. Cambridge: The MIT Press 
(1964). 

Copeland, T.E. and Antikarov, V.  Real Options: A Practitioner's Guide. (2001) 

Cox, J.C., Ross, S.A. and Rubinstein, M.  Option Pricing: A Simplified Approach. 
Journal of Financial Economics, Vol.7, (1979) pp. 229-263. 



84 

 

Crank, J. and Nicolson, P., A Practical Method for Numerical Evaluation of Solutions of 
Partial Differential Equations of the Heat Conduction Type. Proc. Camb. Phil. 

Soc, 43 (1), (1947), pp. 50–67.  

Dixit, A.K. and Pindyck, R.S., Investment under Uncertainty. New Jersey: Princeton 
University Press (1994) 

Hull, J.C., Options, Futures, and Other Derivatives. New Jersey: Pearson Prentice Hall, 
(2005). 

Ingersoll, J. E. and Ross, S. A., Waiting to Invest: Investment and Uncertainty. The 

Journal of Business, Vol. 65 (1), (1992), pp. 1-29. 

Kellogg, D. and Charnes, J.M. Real-Options Valuation for a Biotechnology 
Company. Financial Analysts Journal, Vol. 56, No. 3, (2000), pp. 76-84. 

Leung, T. and Sircar, R., Exponential Hedging with Optimal Stopping and Application to 
ESO Valuation. SIAM Journal on Control and Optimization, Vol.48(3), (2009), pp. 1422-
1451. 

Lewis, N. A., Project Valuation for the Strategic Management of Research and 
Development. Ph.D. dissertation, Missouri University of Science & Technology, (2004). 

Luehrman, T.A., Investment Opportunities as Real Options: Getting Started on the 
Numbers. Harvard Business Review, Vol. 76, No. 4, (1998), pp. 51-67. 

Marco, A.C., The option value of patent litigation: Theory and evidence. Review of 

Financial Economics, vol. 14(3-4), (2005),  pp. 323-351. 

McDonald, R. and Siegel, D., The Value of Waiting to Invest. The Quarterly Journal of 

Economics, Vol. 101(4), (1986), pp. 707-728 

Merton, R. C. Theory of Rational Option Pricing. Bell Journal of Economics & 

Management, Vol. 4, No. 1, (1973), pp. 141-183. 

Mun, J., Real options analysis: tools and techniques for valuing strategic investments and 

decisions, John Wiley & Sons (2005). 

Myers, S. C. "Determinants of Corporate Borrowing," Journal of Financial Economics, 
Vol. 5. No. 2. 1977, pp. 147-175.  



85 

 

Nembhard, D.A., Nembhard, H.B. and Qin, R., A Real Options Model for Workforce 
Cross-Training. The Engineering Economist, Vol.50, No.2, (2005), pp. 95-116. 

Paddock, L. J., Siegel, D. R. and Smith, J. L., Option Valuation of Claims on Real 
Assets: The Case of Offshore Petroleum Leases. The Quarterly Journal of Economics, 
Vol. 103(3), (1988), pp. 479-508 

Pindyck, R. S., 1988. Irreversible Investment, Capacity Choice, and the Value of the 
Firm. American Economic Review, American Economic Association, Vol. 78(5), (1988), 
pp. 969-985. 

Schwartz, E.S., The Valuation of Warrants: Implementing a New Approach. Journal of 

Financial Economics, 4, (1977), pp. 79-93. 

Seydel, R., Tools for Computational Finance, Springer (2006). 

Smit, H.T.J. and Trigeorgis, L., Strategic investment: real options and games, Princeton 
University Press (2004).  

Timan, S., Urban Land Prices Under Uncertainty. American Economic Review, Vol. 75, 
No. 3, (1985), pp. 505-514. 

Tourinho, O.A.F., The Valuation of Reserves of Natural Resources: An Option Pricing 
Approach. Ph.D. Dissertation, University of California, Berkeley, Ph.D. Dissertation, 
(1979). 

Trigeorgis, L. and Mason, S. P., Valuing Managerial Flexibility. Midland Corporate 

Finance Jounal, Vol. 5, No.1, (1987), pp. 14-21. 

Trigeorgis, L., Real Options: Managerial Flexibility and Strategy in Resource Allocation, 
Cambridge: The MIT Press (1996). 

Tseng, C. and Lin, K. Y.,  A Framework Using Two-Factor Price Lattices for Generation 
Asset Valuation. Operations Research, Vol. 55, No. 2, (2007), pp. 234–251. 

Wilmott, P., Howison, S. and Dewynne, J., The Mathematics of Financial Derivatives. 
Cambridge University Press (1995).  

Zeng, S. and Zhang, S., Real Options Literature Review. iBussiness, Vol.3(1), (2011), pp. 
43-48. 



86 

 

VITA 

 

Yu Meng received her BA degree in International Finance from Chongqing 

University in China in 1999. She worked as a financial service representative in Industrial 

and Commercial Bank of China, Nanning, Guangxi from 1999 to 2001. She got her MS 

degree in Statistics from University of New Orleans in 2004. She started studying at 

Missouri University of Science and Technology, Rolla, MO in 2005. In the summer of 

2008 she worked as an intern at Caterpillar Inc., Peoria, IL. Her current degree is the 

Ph.D. in Engineering Management to be awarded in 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

 


	Scholars' Mine
	Summer 2012

	The pricing of multiple exercisable American-style real options
	Yu Meng
	Recommended Citation


	Microsoft Word - Dissertation_Yu Meng_format_v3.2

