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Abstract

Biological tissues are very particular types of materials that have the ability to change

their structure, properties and chemistry in response to external cues. Contractile cells,

i.e. fibroblasts, are key players of tissue adaptivity as they are capable of reorganizing

their surrounding extra-cellular matrix (ECM) by contracting and generating mechanical

forces. This contractile behavior is attributed to the development of a stress-fiber (SF)

network within the cell’s cytoskeleton, a process that is known to be highly dependent of the

nature of the mechanical environment (such as ECM stiffness or the presence of stress and

strain). To describe these processes in a consistent manner, the present thesis introduces a

multiphasic formulation (fluid/solid/solute mixture) that accounts for four major elements of

cell contraction: cytoskeleton, cytosol, SF and actin monomers, as well as their interactions.

The model represents the cross-talks between mechanics and chemistry through various

means: (a) a mechano-sensitive formation and dissociation of an anisotropic SF network

described by mass exchange between actin monomer and polymers, (b) a bio-mechanical

model for SF contraction that captures the well-known length-tension and velocity-tension

relation for muscles cells and (c) a convection/diffusion description for the transport of fluid

and monomers within the cell. Numerical investigations show that the multiphasic model

is able to capture the dependency of cell contraction on the stiffness of the mechanical

environment and accurately describes the development of an oriented SF network observed

in contracting fibroblasts. From a numerical view-point, cell and substrate are discretized on

a single, regular finite element mesh, while the potentially complex cell geometry is defined in
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terms of a level-set function that is independent of discretization. Field discontinuities across

the cell membrane are then naturally enforced using enriched shape functions traditionally

used in the XFEM formulation. The resulting method provides a flexible platform that can

handle complex cell geometries, avoid expensive meshing techniques, and can potentially

be extended to study cell growth and migration on an elastic substrate. In addition, the

XFEM formalism facilitates the consideration of the cell’s cortical elasticity, a feature that

is known to be important during cell deformation. The proposed method is illustrated with

a few biologically relevant examples of cell-substrate interactions. Generally, the method is

able to capture some key phenomena observed in biological systems and displays numerical

versatility and accuracy at a moderate computational cost.

Recent research have shown that cell spreading is highly dependent on the contrac-

tile behavior of the cell and mechanical properties of the environment it is located in. The

dynamics of such process is critical for the development of tissue engineering strategy but

is also a key player in wound contraction, tissue maintenance and angiogenesis. To better

understand the underlying physics of such phenomena, this presentation describes a mathe-

matical formulation of cell spreading and contraction that couples the processes of stress fiber

formation, protrusion growth through actin polymerization at the cell edge and dynamics of

cross-membrane protein (integrins) enabling cell-substrate attachment. The model is based

on mixture model which accurately capture the interactions and mass exchange between

three constituents, namely, the cell’s cytoskeleton, actin monomers and stress fibers. On the

one hand, monomers are allowed to polymerize into stress fiber to generate contraction while

on the other hand, they may polymerize into an actin meshwork at the cell’s boundary to

push the membrane forward. In addition, a mechano-sensitive model of the diffusion and

attachment integrins to the substrate permit to quantify the physics of the above processes

in terms of substrate mechanical properties. A numerical solution of this moving boundary

problem is then derived using the extended finite element method, combined with a lev-

elset formulation. Consistent with experimental observations, our model is able to capture
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the dependency of cell spreading area and contraction on substrate stiffness and the cell’s

mechanical environment.
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Chapter 1

Introduction

Biological tissues are very particular types of materials that have the ability to change

their structure, properties and chemistry in response to external cues. This fast response

capability can be attributed to the out-of-equilibrium nature of the tissue structure, resulting

from a constant cross-talk between a population of cells and their surrounding extra-cellular

matrix (ECM). These interactions allow cells to sense stimuli conveyed by the ECM [95]

(such as force, deformation or flow) and the ECM to restructure due to the action of cells

(characterized by traction forces [149, 34] or enzyme degradation [166]). In this context,

a large number of studies have demonstrated that cell contraction and architecture were

strongly dependent on substrate stiffness [169, 139, 70, 98], giving mechanics a central role in

cell-substrate interactions. Experimental studies on contractile cells (such as myofibroblasts)

generally show that larger substrate stiffness results in higher cell stability that manifests

itself by large spreading areas and generation of significant traction forces. In addition, actin

staining procedures have shown that fibroblast contraction is associated with the formation

of highly aligned stress-fibers (SF) within the cell’s structure (cytoskeleton) that anchor

at the point of cell-substrate adhesion and often span the entire length of the cell. The

distribution and orientation of these fibers correlate very well with the presence of contractile

forces applied by cells to their underlying substrate. These phenomena clearly illustrate the

intricate interplay between mechano-sensing, force generation and cytoskeletal structure,

which is essential to tissue remodeling.
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Despite our more and more accurate understanding of the molecular mechanisms re-

sponsible for contraction, there are still many questions concerning the nature and mecha-

nisms of mechano-sensing and force generation [160]. To tackle these questions, it is necessary

to develop mathematical models that are capable of describing the cross-talk between cel-

lular mechanics and biochemistry in a quantitative fashion. From a modeling standpoint,

cell contractility has often been considered in terms of prestress or prestrain, either within

the context of fibrous networks [107] or continuum mechanics [110, 166]. While such sim-

plified models capture well the mechanical aspects of cell contraction, they are unable to

explain many features occurring from chemo-mechanical interaction at the molecular scale,

such as dependency of contractility on substrate stiffness and ligand density. More recent

studies by Desphandes et al. [37, 39] introduced a bio-mechanical model that is able to

describe cytoskeleton contraction by considering molecular mechanisms associated with SF

formation and focal adhesion assembly. This approach provides a promising means of cap-

turing the chemo-mechanics of cell contraction but it neglects the multiphasic aspect of the

cell’s body in which monomer transport, interstitial fluid (cytosol) pressure and mass ex-

change can take place. The inclusions of the above physics is critical to respect fundamental

physical principles such as mass conservation, but also in capturing key cellular phenomena

such as osmotic loading and transport phenomena. In continuum mechanics, these types of

phenomena have traditionally been described by the theory of porous media and mixtures

[12, 13, 155, 17, 127, 144, 166]; these formulations were very successful in describing phe-

nomena such as growth [86, 58], free swelling [144] and osmosis [66]. Applications to the cell

have thus far been limited to the flow-dependent mechanical response and swelling behavior

of chondrocytes in response to their osmotic environment [68].

Recent studies have highlighted the role of the cortical membrane on cell deformation.

This important component of the cell’s cytoskeleton can be described as a dense layer of actin

bundles beneath the surface membrane ([84, 142]) that acts as a protective layer against cell

damage. This thin actin layer is also known to play a large role during cell migration in three-
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dimensional environments by initiating bleb formation on the surface of cells ([154, 33, 52]).

A number of models have been proposed to better understand the behavior of the cortical

membrane and its role in cell morphology. Hansen et al. ([72, 73]) developed a numerical

network model to establish a connection between the elasticity of red blood cell membrane

and its random molecular structure. Other relevant studies include the work of Bar-zive ([3])

on the phenomenon of pearling caused by mechanical interactions between surface tension

and the elasticity of the actin cortex below the membrane ([77, 92]). In this approach, a

simple model based on a line tension approximation of cortical membrane elasticity provided

good prediction of cell shape in different environments. This was followed by the work of

Bischofs et. al. ([14]) in which the authors derived an analytical model based on Laplace’s

law to investigate the influence of the cortical membrane on the shape of contractile fibrob-

lasts attached to periodically distributed adhesion islands. By comparing their model with

experimental observations, they showed that the method could predict the magnitude of the

membrane curvature for cells of different sizes. While the aforementioned studies concen-

trated on the role of cortical membrane only, the properties of the (bulk) cytoskeleton are

also known to play a significant role on cell morphology. Accurate mechanical models of

cells should therefore consider the combined effects of bulk cytoskeleton and cortex elastic-

ity. However, from a computational viewpoint, the difference of length-scales between a cell

(50-500 microns) and its cortical membrane thickness (less than a micron) poses a challenge

that is inherent to most multiscale problems ([162]); providing an accurate description of

the cortical membrane on the length-scale of a single cell results in a very expensive nu-

merical problem and vice-versa. This may explain why existing models of cell deformation

have neither considered the cortical membrane nor have presented a coarse description of it

([158]).

During spreading, cell extends a branched network of actin filaments on the border of

cell called lamellipodia [30, 64, 115, 124]. Lamellipodia is typically 0.5 µm thick and 1-10

µm long from front to back [30]. Lamellipodia protrusion depends on actin polymerization
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that depends on signals received according to the cell’s environment mechanical properties

[31, 126]. The polymerization of actin fibers leads to the generation of physical force beneath

the plasma membrane that pushes it forward [32, 40, 115, 124]. Also, some research show that

in spreading/migrating cells, there are periodic contractions of lamellipodia that depend on

cell’s environment properties. The period of contraction depends on F-actin movement along

lamellipodia. They proved that cofilin decreases the period and shortens lamellipodia width

[63]. In contrast with the pushing force, the resistance of membrane as an elastic material,

and the instantly backward movement of the generated fiber network (called retrograde flow),

prevents cell spreading [159, 167, 177]. Retrograde flow may be the result of contractile force

that comes from myosin motors [137, 89]. At the end of spreading, cell optimizes its surface

by enhancing the adhesion to the substrate on the edges of the cell, and by the contraction

of polymerized stress fibers in the body of the cell.

Focal adhesions provide a mechanical attachment between cell membrane and substrate

(or extracellular matrix). These adhesion complexes are multi protein links generated as the

result of mechanosensing (feeling substrate mechanical properties by cell and responding

to them [15]). The cell part of focal adhesions (Fig. 6.2) includes on-membrane proteins

called integrins, and a submembrane plaque consists of a lot of proteins such as talin, α-

actinin, filamin, FA kinase, vinculin, paxillin, and tensin [36]. Some of these proteins provide

the mechanical requirements for the adhesion beneath the membrane, while some others

receive or send signals to form or dissociate the adhesion [36]. It has been observed in

previous research that the formation of FAs is a function of the traction generated in the

cell-substrate contact area, such that, the traction increases the concentration of adhesion

complexes [151, 123, 11, 182, 112, 111]. Also, it has been proved that the mentioned traction

changes by the shape of cell and the cytoskeleton’s structure [116, 20, 23]. On the substrate

side of focal adhesions, the mechanical properties of substrate and the density of ligands

are important factors determining the formation of FAs and their concentration [138, 99].

Previous observations proved that greater substrate stiffness and higher ligand concentration
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on its surface lead to increase in formation of FAs [129, 138].

Mechanical models of cells can generally be split in two categories: formulations based

on prestress fibrous network [107, 14] and those based on continuum mechanics [110, 166].

Due to their flexibility, continuum models are thus far been successful at capturing the

chemo-mechanical interactions responsible for the mechano-sensitivity of cells ([37, 39]). For

instance, mixture models have proved very efficient at accurately characterizing certain key

mechanisms of cell behavior, including transport, chemical reaction and mass exchange [165].

In addition, the role of the cortical membrane surrounding the cell, known to be a critical

player in cell deformation, has been the object of several modeling investigations. Models

based on fibrous network mechanics have been the first to provide compelling arguments

onto the role of membrane stiffness on cell curvature [14]. However, more recently, we have

shown that continuum models can naturally incorporate the effect of cortex stiffness with a

surface elasticity formulation based on the extended-finite element method [163]. The issue

of modeling mechanical interactions between cells and a substrate have mostly been achieved

by via cohesive laws in finite element models ([103, 125, 178, 176]).While successful at cap-

turing interesting behaviors such as debonding, this strategy generally suffers from the fact

that cell and substrate are defined on two distinct domains that typically exhibit complex

geometries and possibly evolve in time. In many cases, such methods consequently leads to

potential meshing issues and require a very fine discretization to reach accurate results. In

addition, these models are not able to consider chemo-mechanical interactions happen on

cell membrane and substrate surface to generate adhesion complexes. To fill this gap, the

authors of reference [36] presented a mechanism based on integrins chemo-mechanical free

energy equilibrium on cell membrane to describe what happens during integrin-ligand com-

plex formation. But their research does not consider the vital effect of pushing and resisting

forces during cell spreading as well as the effects of considering cell as a mixture. Further-

more, some models were presented to describe the rate of cell or fillopodia growth based on

the fact that polymerization of new actin filaments beneath the membrane is the fundamen-
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tal phenomenon leads to cell/fillopodia spreading [122, 93]. In another recent approach, the

authors of reference [83] integrated in their model the kinematics of fish epidermal keratocyte

growth and kinetics of the proteins that play important role in extension/detachment steps

of cell crawling/spreading. But membrane forces and chemo-mechanical interactions on cell

membrane between integrins cannot be captured in this model.

In this thesis, we fill the mentioned gaps above as it follows:

Chapter 2 proposes to consider the actin cortex as a two-dimensional membrane, of

negligible thickness, surrounding the cell. In this context, modeling cortical membrane me-

chanics can be cast within the framework of surface elasticity, originally introduced by Gurtin

and Murdoch in ([71]). Existing work on surface elasticity have traditionally concentrated

on surface effects in nanomaterials ([54, 181]) in the context of infinitesimal deformation.

However, because cell deformation can be quite significant in many applications, a contri-

bution of this chapter is to extend the surface elasticity formulation to the case of large

deformation and to investigate its predictive power on the influence of cortical membrane on

cell deformation. The equations of surface elasticity are therefore redefined in the general

case of large deformation, following an Eulerian approach. As such, we develop the equation

of equilibrium for the general case of a cell embedded in a matrix, for which the effect of

the cortical membrane is important. A numerical strategy, based on the extended finite

element method (XFEM) is then introduced in order to solve the system of coupled partial

differential equations. The presented method possesses the following advantages. First, the

presented framework uses Eulerian formulation that is suitable for large deformations of the

cell. Second, the geometry of the cell is entirely defined by level-set functions that are defined

independently from the finite element mesh. Simple, regular FEM meshes may thus be used

regardless of the geometric complexity of the cell. Third and finally, the different elastic

properties and constitutive response of cell cortex is described with a continuum description

that naturally fits into the XFEM methodology. Thus, no special treatment is necessary to

model jumps in stress, strain and displacement arising due to the cortical membrane.
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Chapter 3 discusses recent efforts [163, 161, 165] that have been undertaken to under-

stand certain aspects of tissue dynamics by integrating mechano-chemical interactions from

molecular to tissue scale via a hierarchical multiscale paradigm. We particularly concentrate

on explaining the mechanisms by which the mechanical environment (stiffness, attachment,

stress) of a tissue influences its structural evolution. Numerous experimental studies have

shown that at the tissue scale, remodeling is partially due to the generation of contractile

stresses by cells (such as myofibroblasts) on their surrounding fibrous matrix [174, 5, 76].

At the cellular scale, cell contractility is explained by mechano-sensitive molecular processes

which govern the formation of stress-fibers (SF), that are mechanically active components

of the cytoskeleton. While the above phenomena involve a variety of complicated signaling

pathways that are studied in details by the biology community, the objective of the present

study is to develop robust and flexible framework that can incorporate such biologically

relevant phenomena in the future. Thus, for the time being, we present an experimentally

and physically motivated empirical model, in which we show here that while occurring at

different time and length-scales, mechanisms at cellular and tissue levels can be integrated in

a single modeling framework, enabling us to obtain some useful insights. In particular, the

model suggests that feed-back mechanisms occur both at the molecular and cellular levels,

allowing tissues to timely react to any change in their mechanical environment.

Chapter 4 proposes to extend the range of applications of mixture models to describe

the coupled biochemical/mechanical processes responsible for cell contraction. The formula-

tion is based on a description of cells that incorporate four key components of contractility:

a passive solid cytoskeleton, an interstitial fluid representing the cytosol, an anisotropic net-

work of SF and a pool of globular actin monomers that freely diffuse in the cytosol. To

address the well known difficulties regarding to stress partitioning and boundary conditions

associated with classical theory of mixtures [128], we take the following approach. First, it

is assumed that the two solid constituents (passive cytoskeleton and SF) undergo the same

motion, which is consistent with the class of constrained mixture models introduced in [86].
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Second, we adopt key concepts of poromechanics[153] that consists of describing the motion

of a fluid constituents relative to solid constituent through diffusion-type relation (initially

originated by Fick and Darcy). In this context, the mixture problem is well-posed and pro-

vide a flexible and robust theoretical framework to study the interactions between mechanics

and chemistry (incorporating mass and energy exchange between constituents). The key fea-

tures of the proposed model are as follows: (a) The SF network is described in statistical

terms with a Von-Mises distribution whose characteristics (mean, deviation) evolve in time.

(b) The generation of contractile force by SF follows length-tension and velocity-tension

curves that are known to accurately capture the behavior of sarcomeric structures. (c) The

anisotropic formation and dissociation of the SF network depend on the level of contractile

stress in existing SF and (d) SF formation is limited by the diffusion and quantity of globular

actin monomers present in the cytoplasm. By capturing these important physics, we show

that the formulation is capable to reproducing the mechano-sensitivity of cell contraction

with respect to substrate stiffness as well as the general architecture of contractile cells.

Chapter 5 introduces a continuum formulation, combined with a numerical approach

based on the Extended Finite Element (XFEM) and the levelset methods to study the me-

chanical cross-talks between contractile cells (fibroblasts) and a two-dimensional deformable

substrate. The mechano-chemistry of cell contraction is described in terms of a constrained

mixture formulation that was recently developed by the authors [165] to capture the phe-

nomena of mechano-sensitive stress-fiber (SF) formation (and dissociation) and contraction.

In short, the model is based on the description of the contractile apparatus of cell in terms

of two solid constituents: the cytoskeleton and a population of contractile stress fibers as

well as two fluid constituents: the cytosol and soluble contractile units (that can polymerize

into stress fibers). The interactions between a cell and its substrate are possible through

localized adhesive regions, known as the focal adhesion. From a numerical view-point, the

complicated problem of the interactions between two domains (cell and substrate) of dif-

ferent geometry and constitution is greatly simplified by using the advantages of XFEM
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[43, 105, 9]. Without loss of generality, considering cell and substrate as by two-dimensional

domains satisfying plane-stress conditions, we introduce a single finite element mesh for both

domains. Cell geometry is then defined in terms of an analytical levelset function defining

the contour of cell boundary independently of discretization. Degrees of freedom pertaining

to cell are then only associated with nodes belonging to the interior of the domain defined

by the levelset, while discontinuities across the cell boundary are naturally represented by

enriching finite element shape function with discontinuous functions following the standard

XFEM equations. The key advantages of this contribution are then as follows:

• Complex cell geometries may naturally be handled independently of finite-element

discretization.

• Because cell and substrate domains are discretized with the same mesh, the numerical

treatment of cell-substrate cohesion is accurate and simple.

• The XFEM enrichment functions enable the incorporation of the stiffness of the

cortical membrane surrounding the cell; this feature is known to be critical to real-

istically capture cell morphology.

• The formulation is flexible and has the potential to be extended for describing cell

spreading and migration using level-set evolution equations.

Chapter 6 presents a single mathematical model for cell contraction and growth based

on chemical and mechanical interactions in cell such that it accounts for the effect of all

following phenomena:

(1) A mixture model for cell contractile behavior is developed based on the mass ex-

change and chemo-mechanical reactions between main constituents as well as G-actin

and cytosol flux in the cell. For this purpose, the equilibrium state corresponding to

free energy of G-actin and stress fiber controls polymerization and depolymerization
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of fibers in according to [56]. In addition, a similar strategy is followed to consider

mass exchange between G-actin and cytoskeleton as a fibrous network.

(2) Instead of modeling focal adhesions by elastic springs in predefined areas, our model

includes integrins in cell membrane and ligands on substrate to capture focal ad-

hesions (integrin-ligand complexes) formation during the process discussed above

[96].

(3) A growth model is presented to investigate the rate of cell spreading at the growing

border of cell as well as cell area at steady state. In the proposed model, cell grows

on its boundary by formation of new cytoskeleton based on the important criteria

mentioned in literature such as G-actin and cytoskeleton volume fraction at the cell’s

boundary, cell membrane forces, cell contractile behavior, substrate properties, and

focal adhesion formation.

(4) The existing numerical approaches (such as [103, 125, 178, 176]) use two different

mesh for cell and substrate, and connect them by contact meshes that are needed

to be very fine to provide enough accuracy in addition to all numerical issues ac-

companied with interactions between two different domains. Thus, we introduce a

numerical approach based on extended finite element (XFEM) and levelset method

[43, 105, 9], to provide the following features:

• The same mesh is used for cell and substrate to avoid the difficulties of dealing

with two different mesh interaction.

• Cell border is defined as the intersection of a 2D curve, called levelset function,

and cell 1D domain (Fig. 6.4a), as a result, we do not have to change the mesh

during cell evolution to define cell’s border.

• Cell surface tension is naturally taken into account using XFEM/levelset fea-

tures [163].



Chapter 2

An Eulerian/XFEM Formulation for the Large Deformation of Cortical Cell

Membrane

2.1 Abstract

Most animal cells are surrounded by a thin layer of actin meshwork below their mem-

brane, commonly known as the actin cortex (or cortical membrane). An increasing number

of studies have highlighted the role of this structure in many cell functions including contrac-

tion and locomotion but modeling has been limited by the fact that the membrane thickness

(about 1 µm) is usually much smaller than the typical size of a cell (10− 100µm). To over-

come theoretical and numerical issues resulting from this observation, the present chapter

introduces a continuum formulation, based on surface elasticity, that views the cortex as an

infinitely thin membrane that can resist tangential deformation. To accurately model the

large deformations of cells, equilibrium equations and constitutive relations are introduced

within the Eulerian viewpoint such that all quantities (stress, rate of deformation) lie in the

current configuration. A solution procedure is then introduced based on a coupled extended

finite element approach (XFEM) that enables a continuum solution to the boundary value

problem in which discontinuities in both strain and displacement (due to cortical elasticity)

are easily handled. We validate the approach by studying the effect of cortical elasticity on

the deformation of a cell adhering on a stiff substrate and undergoing internal contraction.

Results show very good prediction of the proposed method when compared with experimen-

tal observations and analytical solutions for simple cases. In particular, the model can be
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used to study how cell properties such as stiffness and contraction of both cytoskeleton and

cortical membrane lead to variations in cell’s surface curvature. These numerical results

show that the proposed method can be used to gain critical insights into how the cortical

membrane affects cell deformation and how it may be used to as a means to determine a

cell’s mechanical properties by measuring curvatures of its membrane.

2.2 Introduction

Functions and health of biological tissues such as skin, cartilage and cardiac tissues rely

on the interaction between population of cells (e.g. fibroblasts and chondrocytes) and their

surrounding fibrous extracellular matrix (ECM). These interactions strongly depend on many

internal characteristics, including ECM and cell properties, deformation and orientation, as

well as external factors such as the existence of external loads and their variation in time

([134]). Any change in cell behavior and morphology (due to disease, for instance), ECM

properties and structure (from aging or injuries) or external forces affect the mechanical

and chemical equilibrium of tissues. This may result in significant consequences, including

tissue remodeling and reorganization ([76]), change in cell phenotype, angiogenesis ([21])

or apoptosis ([169, 98]). Research advances will depend on our ability to characterize and

predict the very factors that determine cell shapes in various environments. In this quest, the

derivation of accurate mechanical models of cell deformation plays a key role. Traditionally,

research on cell mechanics has concentrated on the deformation of the cytoplasm (that

comprises the cytoskeleton and the cytosol) for which three main families of models have been

developed: structural models, polymer-based models and multiphasic models. Structural

models, such as the tensegrity model ([87, 88, 171, 141]) have been successful at relating the

general deformation of cells to the nature of their individual components, including actin

filaments and microtubules. In contrast, continuum models such as polymer-based theories

([100]) and biphasic mixtures ([67, 2]) provide a less precise but more flexible platform for

the description of a wider range of phenomena. For instance, polymer-based models are able
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to explain the inherent stress-stiffening of the cytoskeleton filament network measured in

experiments ([100]), while biphasic model are ideal to describe the flow-dependent behavior

of the cytoplasm ([2]).

In addition to the cytoplasm, recent studies have highlighted the role of the cortical

membrane on cell deformation. This important component of the cell’s cytoskeleton can

be described as a dense layer of actin bundles beneath the surface membrane ([84, 142])

that acts as a protective layer against cell damage. This thin actin layer is also known to

play a large role during cell migration in three-dimensional environments by initiating bleb

formation on the surface of cells ([154, 33, 52]). A number of models have been proposed

to better understand the behavior of the cortical membrane and its role in cell morphology.

Hansen et al. ([72, 73]) developed a numerical network model to establish a connection

between the elasticity of red blood cell membrane and its random molecular structure. Other

relevant studies include the work of Bar-zive ([3]) on the phenomenon of pearling caused

by mechanical interactions between surface tension and the elasticity of the actin cortex

below the membrane ([77, 92]). In this approach, a simple model based on a line tension

approximation of cortical membrane elasticity provided good prediction of cell shape in

different environments. This was followed by the work of Bischofs et. al. ([14]) in which the

authors derived an analytical model based on Laplace’s law to investigate the influence of the

cortical membrane on the shape of contractile fibroblasts attached to periodically distributed

adhesion islands. By comparing their model with experimental observations, they showed

that the method could predict the magnitude of the membrane curvature for cells of different

sizes. While the aforementioned studies concentrated on the role of cortical membrane only,

the properties of the (bulk) cytoskeleton are also known to play a significant role on cell

morphology. Accurate mechanical models of cells should therefore consider the combined

effects of bulk cytoskeleton and cortex elasticity. However, from a computational viewpoint,

the difference of length-scales between a cell (50-500 microns) and its cortical membrane

thickness (less than a micron) poses a challenge that is inherent to most multiscale problems
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([162]); providing an accurate description of the cortical membrane on the length-scale of a

single cell results in a very expensive numerical problem and vice-versa. This may explain

why existing models of cell deformation have neither considered the cortical membrane nor

have presented a coarse description of it ([158]).

To overcome this issue, the present study proposes to consider the actin cortex as

a two-dimensional membrane, of negligible thickness, surrounding the cell. In this context,

modeling cortical membrane mechanics can be cast within the framework of surface elasticity,

originally introduced by Gurtin and Murdoch in ([71]). Existing work on surface elasticity

have traditionally concentrated on surface effects in nanomaterials ([54, 181]) in the context

of infinitesimal deformation. However, because cell deformation can be quite significant in

many applications, a contribution of this chapter is to extend the surface elasticity formula-

tion to the case of large deformation and to investigate its predictive power on the influence

of cortical membrane on cell deformation. The equations of surface elasticity are therefore

redefined in the general case of large deformation, following an Eulerian approach. As such,

we develop the equation of equilibrium for the general case of a cell embedded in a matrix,

for which the effect of the cortical membrane is important. A numerical strategy, based on

the extended finite element method (XFEM) is then introduced in order to solve the sys-

tem of coupled partial differential equations. The presented method possesses the following

advantages. First, the presented framework uses Eulerian formulation that is suitable for

large deformations of the cell. Second, the geometry of the cell is entirely defined by level-

set functions that are defined independently from the finite element mesh. Simple, regular

FEM meshes may thus be used regardless of the geometric complexity of the cell. Third and

finally, the different elastic properties and constitutive response of cell cortex is described

with a continuum description that naturally fits into the XFEM methodology. Thus, no

special treatment is necessary to model jumps in stress, strain and displacement arising due

to the cortical membrane.

The chapter is organized as follows. In the next section, a description of the cell’s
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deformation is provided, and relevant kinematic variables are introduced. Section 3 then

concentrates on deriving the governing equations of surface elasticity and introduces a set of

simple elastic constitutive relations for the cytoskeleton and cortical membrane. Numerical

considerations are subsequently discussed in section 4 with the description of an updated

Lagrangian XFEM/level-set formulation that is used to investigate the effect of cortex elas-

ticity on the deformation of a contractile cell (section 5). A summary of the method and

concluding remarks are finally provided in section 6.

2.3 Kinematics

The first step in deriving the surface elasticity formulation for large deformation is to

define consistent measures of deformation. While the Lagrangian formalism can be used to

define total strain measures, many of the complexities associated with mapping mathematical

quantities from one material configuration to another can be avoided by using an Eulerian

approach. This section therefore introduces a rate form of material motion and deformation,

consistent with the Eulerian framework.

2.3.1 Generalities

Let us consider a two-dimensional domain Ω in the x-y plane representing a cell Ωc and

its surrounding matrix (Ωm) such that Ω = Ωc

⋃
Ωm (Fig. 2.1). The interface between the

two domains (representing the cell/matrix interface) is denoted as Γ. In order to introduce

the kinematics in the context of large deformations, let us first consider the above domain

in two different configurations as shown in the figure. At an initial time t = t0, we represent

the medium in the so-called reference configuration (in which the domain and its boundary

are represented by Ω0 and Γ0, respectively) such that the coordinate of a material point P

in a Cartesian coordinate system (x, y) is given by X = {X, Y }. A current configuration

(in which the domain and its boundary are represented by Ω and Γ, respectively) is then

introduced at an arbitrary time t such that the coordinate of the material point P is now
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Figure 2.1: Initial and current configuration of cell in a two-dimensional plane x-y.

given by x = χ(X, t), where χ is assumed to be a smooth function of time and space, except

on Γ. Adopting an Eulerian approach, the bulk deformation of the cell and the matrix can

be related to the velocity v(x, t) of materials point at any time such that:

v(x, t) =
Du

Dt
where u = x−X (2.1)

where u is the displacement and D/Dt denotes the material time derivative that evaluates

the variation of a field (u in the above equation), following a particle P in its motion.

2.3.2 Deformation measures

In order to accurately describe the deformation of a cell and its surrounding thin cortical

membrane, the present work introduces three strain measures that are associated with (a)

the deformation of the cell body, (b) the decohesion between the cell and the surrounding

matrix and (c ) the deformation of the cortical membrane. Following the Eulerian framework,

a description of the bulk deformation and rotation of the cell is provided by the rate of

deformation tensor D(x, t) and the spin W(x, t) as follows:

D =
1

2

(
∇v + (∇v)T

)
and W =

1

2

(
∇v − (∇v)T

)
(2.2)

where ∇ represents the gradient operator with respect to x and the superscript T is used

for the transpose operation. In addition, the present approach allows for a discontinuous
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velocity field across the cell/matrix interface Γ. As such, a measure of cell/matrix decohesion

can simply be introduced through the discontinuity (or jump) [v](x, t) in velocity as follows:

[v](x, t) = v+(x, t)− v−(x, t) (2.3)

where x belongs to Γ and v+(x) and v−(x) denote velocities on different sides of the interface.

Finally, assuming a thin cortical membrane compared to the size of the cell, its deformation

may be defined by invoking the concept of surface strain, originally introduced in ([71]). For

this, we introduce a tangential projection operator (in the current configuration) on the cell

boundary at point x as follows:

P = I− n⊗ n (2.4)

where I is the second-order identity tensor while n = n(x, t) is the normal vector to the cell

surface in the current configuration. With this definition, the components of the projection

of a vector a and a tensor A on a surface of normal n are given by:

as = P · a and As = P ·A ·P (2.5)

This geometrical preliminary may now be applied to the definition of the rate of deformation

Ds of the cortical membrane as the tangential projection of the bulk rate of deformation D

onto the cell surface:

Ds = P ·D ·P (2.6)

Note that the tensor Ds keeps the same dimension as D but represents a deformation in

space (tangential space) whose dimension is smaller than the original space Ω.

2.3.3 Evolution equation of the cortical membrane orientation

In general, the cell and matrix geometries are defined in the initial configuration. This

means that while the normal vector n0 and projection operator P0 = I−n0⊗n0 are entirely

known, their counterparts n and P in the current configuration need to be determined. Using
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the fact that:

n = Q · n0 and P = Q ·P0 ·QT (2.7)

where Q is the orthonormal transformation (rotation) that maps normal vector from the

initial to current configuration. Using the fact that W = Q̇QT , one can show that:

ṅ = W · n and Ṗ = WP + PWT (2.8)

where a superimposed dot denotes the material time derivative. Equation (2.8) may thus be

integrated in time in order to determine n and P and compute the rate of surface deformation

Ds appearing in (2.6).

Figure 2.2: The general outline of a cell along with the surrounding matrix and boundary
conditions.

2.4 Governing equations and constitutive relations

This section concentrates on deriving the equations governing the mechanical equilib-

rium of a cell undergoing a combination of deformations as introduced above. The equilib-

rium equations are derived from the energetic considerations while simple elastic relations

are given to describe the cell response.

2.4.1 Principle of virtual power and governing equations

Considering a first order continuum theory in quasi-static conditions (the kinetic energy

of the system is negligible in comparison with deformation and external energies), one can
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introduce a virtual internal power δPint associated with the medium contained in Ω as follows:

δPint =

∫
Ω

(T−T0) : δD dΩ +

∫
Γ

(Ts −T0
s) : δDs dΓ +

∫
Γ

Td · [δv] dΓ (2.9)

where “:” is the double tensor contraction and δD, δDs and [δv] are small virtual varia-

tions of bulk deformation, surface deformation and decohesion around the equilibrium state,

respectively. The quantities T, Ts and Td are then defined as power conjugates to the

aforementioned deformations and are recognized as the conventional Cauchy stress, surface

Cauchy stress and cohesive force, respectively. Furthermore, we also introduced T0 and T0
s

as the contractile stresses in the bulk and interface, respectively.

Before we write the form of the virtual external power, we make the assumption that

the cell is entirely contained in the domain Ω such that its boundary Γ does not intersect

with the domain boundary ∂Ω. This assumption simplifies our analysis as there are no

boundary conditions applied on the cell membrane Γ. Further, the domain boundary ∂Ω is

decomposed in two parts according to the nature of the boundary conditions. Introducing

as ∂Ωu the section of the domain boundary on which a fixed velocity v̄ is applied and as ∂Ωt

the section of the boundary subjected to a surface traction t̄, the entire boundary can be

reconstructed as ∂Ω = ∂Ωu ∪ ∂Ωt. The external virtual power δPext finally takes the form:

δPext =

∫
Ω

ρ b · δv dΩ +

∫
∂Ωt

t̄ · δv d∂Ω (2.10)

where ρ is the mass density and b is a body force per unit mass. We also note that the virtual

field δv must vanish on the boundary ∂Ωu as required by variational principles. Mechanical

equilibrium of the cell and its surrounding matrix is then satisfied upon minimialization of

the total potential energy of the system. In other words, the virtual power:

δPint − δPext (2.11)

vanishes for any virtual velocity field in Ω and on Γ. We next use equation (2.11) to derive the

governing equations (strong form) driving the motion of the cell and its cortical membrane.
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First integrating (2.9) by parts and using the divergence theorem, we can rewrite the virtual

internal power as:

δPint = −
∫

Ω

(
∇ · T̃

)
· δv dΩ−

∫
Γ

[(
T̃ · n

)
· δv
]
dΓ

−
∫

Γ

∇s · T̃s · δvsdΓ +

∫
Γ

Td · [δv] dΓ +

∫
∂Ωt

(
T̃ · n

)
· δvd∂Ω (2.12)

where n is the normal unit vector to the surfaces Γ and ∂Ω, T̃ = T−T0 and T̃s = Ts−T0
s.

Furthermore, we introduced the notation ∇s · T̃s to represent the surface divergence of the

surface stress T̃s. At this point, it is necessary to introduce the average operator 〈〉 that

computes the average of an arbitrary field f on the interface Γ. We write:

〈f〉 =
1

2

(
f+ + f−

)
(2.13)

where f+ and f− denote the value of f on opposite sides of the interface. Referring to the

work of ([71]), we can now use the following equalities:[
(T̃ · n) · δv

]
=

[
T̃ · n

]
· 〈δv〉+ 〈T̃ · n〉 · [δv] (2.14)

∇sT̃s · δvs = ∇sT̃s · 〈δv〉 (2.15)

together with (2.12) and (2.11), to obtain a useful form of the principle of virtual power. For

any virtual fields δv, [δu] and 〈δu〉, we have:

−
∫

Ω

(
∇ · T̃ + ρb

)
· δv dΩ−

∫
Γ

([
T̃ · n

]
+∇sT̃s

)
· 〈δv〉 dΓ

−
∫

Γ

(
〈T̃ · n〉 −Td

)
· [δv] dΓ +

∫
∂Ωt

(
T̃ · n− t̄

)
· δv d∂Ω = 0 (2.16)

This implies that each integrand appearing in the above expression must vanish for any

material point in Ω, Γ and ∂Ωt. This leads to a system of three coupled differential equations

for stresses as follows:

∇ · T̃ + ρb = 0 in Ω (2.17)[
T̃ · n

]
+∇sT̃s = 0 on Γ (2.18)

〈T̃ · n〉 −Td = 0 on Γ (2.19)
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subjected to boundary conditions 
T̃ · n = t̄ on ∂Ωt

v = v̄ on ∂Ωv

(2.20)

Equations (2.17), (2.18) and (2.19) represent the bulk equilibrium, the balance of forces in

the cortical membrane and the balance of cohesive forces between a cell and the extracellular

matrix, respectively.

2.4.2 Constitutive relation

For the sake of simplicity, we now introduce a set of simple elastic constitutive relations

for the cytoskeleton and the cortical membrane. While the present analysis is general enough

to consider more realistic nonlinear material responses, the present work concentrates on

linear elastic relations between stress and strain. The Eulerian framework described here

requires that constitutive relations are given in a rate form, i.e., it is written in terms of a

material time derivative of the Cauchy stress and rates of deformation. However, to ensure

that elastic energy is conserved during deformation, it is important to describe the elastic

response of the cytoskeleton in terms of a hyper-elastic potential Ψ that is a function of

the deformation gradient F = ∇Xx where ∇X is the gradient operator in the reference

configuration. A common model used for isotropic elastic materials is provided by the Neo-

Hookean model, for which the strain energy function Ψ is expressed in terms of the Lame

constants λ and µ as follows:

ρ0Ψ =
1

2
λ (lnJ)2 − µ lnJ +

1

2
µ (I1 − 3) (2.21)

where ρ0 is the mass density of the cytoplasm in the reference configuration and the strain

invariants I1 and J are given by I1 = trace
(
FTF

)
and J = det (F). Following [10], it can

be shown that the above model implies that an objective stress rate TσJ (more specifically

the Jaumann rate) can be written in terms of the rate of deformation D introduced in (2.2)
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as follows:

TσJ = C
σJ

: D (2.22)

where the components of the fourth order elastic matrix CσJ take the form

CσJ
ijkl = 2 (µ− λ lnJ) δikδjl + λ δijδkl (2.23)

In the above equation, δ is the Dirac-delta function. Let us now introduce the elastic

response of the cortical membrane. Concentrating on plane stress problems, the membrane

surrounding the cell may be viewed as a one-dimensional cable undergoing axial deformation

ε. As a result, the cortical stiffness may be defined in terms of a scalar quantity, denoted as

Ks such that the rate of elastic energy P s corresponding to an axial strain rate ε̇ is written:

P s =
1

2
Ks ε̇

2 =
1

2
Ks Ds : Ds (2.24)

where we used the fact that Ds : Ds = ε̇2. An objective rate of surface stress Ts,σJ may thus

be defined as the derivative of P s with respect to the rate of deformation Ds as:

Ts,σJ =
∂2Ψs

∂Ds ∂Ds

: Ds = Ss : Ds (2.25)

where the components Ss,ijkl of the cortical membrane elastic tensor are written in terms of

the cortex stiffness Ks as follows:

Ss,ijkl = Ks δik δjl. (2.26)

Finally, the present study concentrates on the case of “free cells” that are not interacting

with an extracellular matrix. The surrounding matrix material is therefore not considered,

and thus, no cohesive forces are present. This means that Td = 0 throughout this study. To

complete the form of the constitutive framework, it is now of interest to relate the material

time derivative of stresses (that is not an objective measure) to the Jaumann stress rate

introduced above. Following [10], we write:

Ṫ =
DT

Dt
= TσJ + W ·T + T ·WT (2.27)
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where W is the spin tensor defined in (2.2). It can be shown that the above equation is true

for both bulk and surface stress and thus can be used to compute rates of Ts, T0
s and T0

appearing in this study.

2.5 Numerical solution: an XFEM strategy

This section provides a numerical strategy to solve governing equations (2.17),(2.18)

and (2.19), together with constitutive relations (2.25) and (4.52). A particularity of these

equations is that they give rise to discontinuities in strain rate and velocities across the cell’s

interface, a feature that cannot be naturally handled with linear finite elements. The XFEM

formalism ([43, 9]) is therefore utilized to overcome this issue.

2.5.1 Extended finite element method (XFEM)

The XFEM equations are developed within the so-called updated Lagrangian method

(for more information on this method, the reader is referred to [10]), by using the final weak

form derived in (2.16). The solution of these equations typically gives rise to discontinuities

across the interface Γ. Indeed, the existence of surface tension is associated to a jump in strain

across the interface (commonly called weak discontinuity) while the existence of a decohesion

(through the cohesive law) leads to a jump in displacement across Γ (commonly called strong

discontinuity). Many numerical techniques, such as the finite element method, are developed

for continuous fields and therefore fail to describe such discontinuities. To address this issue,

the XFEM was first introduced to incorporate a jump in displacement occurring as a result

of a propagating crack in a continuous medium ([43], [79]). A key feature of this method

is that the description of the discontinuity is independent of spatial discretization. Thus,

Belytschko et al. used XFEM in ([9]) and ([7]) to define solids by implicit surfaces and

also to model dislocations and interfaces. The method was further improved to model weak

discontinuities, such as described in ([105]). This method provides a natural platform on

which (2.16) can be solved with great flexibility and minimal computation cost. In the
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present formulation, the domain Ω is first subdivided into four-node quadrilateral elements

in which an approximation ṽ(x) of the velocity field is sought. To account for the existence

of continuous, strong, and weak discontinuous fields within an element, ṽ(x) is written as

the sum of three terms that are parametrized by v, v̄ and ¯̄v as follows:

ṽe(x) =
n∑
I=1

NI(x)vI +
m∑
J=1

NJ(x)(H(x)−H(xJ))v̄J +
m∑
J=1

NJ(x)χJ(x)¯̄vJ (2.28)

where

NI(x) =

NI(x) 0

0 NI(x)

 (2.29)

The functions NI(x) are finite element shape functions associated with node I,NJ(x) are the

shape functions associated with the nodes of an element that has been cut by the interface

(see Fig. 2.3), and n is the total number of nodes per element, while m is the number of en-

riched nodes (m ≤ n). Furthermore, the quantities H(x) and χ(x) are enrichment functions

with the required discontinuities (Heaviside function and ridge function, respectively ([105],

[106])). Referring to Fig. 2.3c and 2.3d, the Heaviside function introduces a jump in velocity

(strong discontinuity), in contrast, a ridge function causes a jump in the spatial derivative of

the velocity (weak discontinuity) across the interface. In one-dimension, the Heaviside and

ridge function take the form:

H(φ) =


1 φ > 0

0 φ < 0

and χj(x) = |φ(x)| − |φ(xj)| (2.30)

To define the geometry of a cell in the reference configuration (defined by Ω0 and Γ0), we

introduce a level-set function φ(X) such that the interface (or cell boundary) is defined as

the intersection of a level-set surface with a cutting plane, as depicted in Fig. 2.3b. With

this description, the sign of φ is opposite in two sides of the discontinuity. An attractive

feature of using level-sets is that the initial unit normal vector n0 to the interface (Fig. 2.1)
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Figure 2.3: a) enriched nodes and completely enriched elements for a closed interface. b)
level-set function and cutting plane to define a circular cell in a square domain. c) a typical
Heaviside (step) function to define strong discontinuity. d) a typical ridge function to define
weak discontinuity.

is determined by the material gradient ∇X of the function φ(X) with respect to X as follows:

n0(x) =
∇Xφ(x)

||∇Xφ(x)||
(2.31)

Using this definition and evolution equations (2.8), the projection operator P in the current

configuration may be obtained by time integration.

2.5.2 Linearized XFEM equations

To derive a finite element form of the governing equation, we first associate each node

of an element with velocity degrees of freedom ve that comprise contributions from three

terms introduced in (2.28):

ve =

[
v v̄ ¯̄v

]T
(2.32)

Note that the full set of degrees of freedom only appear when an element intersects with the

cell boundary. Using the XFEM approximation (2.28), the rates of deformation {De} and

{De
s} within an element are written in Voigt notation as:

{De} =


De

11

De
22

2De
12

 = B · ve and {De
s} =


De
s11

De
s22

2De
s12

 = Mp · {De} (2.33)
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where the B matrix relates nodal velocities and rate of deformation and takes the form:

B =

[
B1 B2 ... Bn+m

]
and BI =


∂N̄I(x)
∂x1

0

0 ∂N̄I(x)
∂x2

∂N̄I(x)
∂x2

∂N̄I(x)
∂x1

 (2.34)

while the matrix Mp represents the tangential projection (in Voigt notation) of the bulk

quantity D to obtain the rate of surface deformation Ds as shown in (2.6). It can be shown

([181]) that Mp is written:

Mp =


P 2

11 P 2
12 P11P12

P 2
12 P 2

22 P22P12

2P11P12 2P22P12 P 2
12 + P11P22

 (2.35)

where Pij are the components of the projection tensor P introduced in (2.4). To obtain

a discretized weak form of the governing equation, let us first consider the virtual powers

considered in (2.9) and (2.10) and decompose the integration over the entire domain Ω into a

sum of integration over element domains Ωe. Further using the XFEM interpolation (2.33),

one can show that numerical approximations δP̃int and δP̃ext of virtual powers (2.9) and

(2.10) are written:

δP̃int =
∑
e

{∫
Ωe
{δDe}T · {T} dΩ +

∫
Γ

{δDe
s}T · {Ts} dΓ

−
∫

Ωe

{δDe}T · {T0} dΩ−
∫

Γe

{δDe
s}T · {T0

s} dΓe

}
δP̃ext =

∑
e

{∫
Ωe

ρ δ(ve)T · b dΩ +

∫
∂Ωte

δ(ve)T · t̄ d∂Ωte

}
(2.36)

where stress measures are written in Voigt notation in the form {T} =

[
T11 T22 T12

]T
.

Moreover, because we assumed that there is no cohesion between cell and its surrounding

matrix, the above equation is true for a vanishing cohesive term Td = 0. To derive a

numerical solution of the nonlinear governing equations, it is now necessary to linearize the

above expressions. For this, we linearize stresses following {T} = {T} + {Ṫ}δt, where δt
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is a small time increment. Following expressions (2.27) for the material time derivative of

Cauchy stresses, the spin dependence of the objective stress rate take the form:

{W ·T + T ·WT} = TvW = Tv
(
G · ḋe

)
(2.37)

where Tv =

[
2T12 −2T12 T22 − T11

]T
and:

G =

[
G1 G2 ... Gm+n

]
and GI = 0.5

[
∂N̄I(x)
∂x2

− ∂N̄I(x)
∂x1

]
(2.38)

Equation (2.37) can also be written for surface and contractile stresses Ts, T0 and T0
s,

respectively. Finallly using constitutive relations (4.52) and (2.25), linearized versions of the

virtual powers read:

δP̃int =
∑
e

(∫
Ωe

(B · δve)T ({T}+ {C} · (B · ve) · δt+ Tv(G · ve) · δt) dΩe

+

∫
Γe

(Mp ·B · δve)T ({Ts}+ {Cs} · (Mp ·B · ve) · δt+ Tv
s(G · ve) · δt) dΓe

−
∫

Ωe
(B · δve)T · ({T0}+ {T0}σJ · δt+ T0,v(G · ve) · δt) dΩe

−
∫

Γe
(Mp ·B · δve)T · ({T0

s}+ {T0
s}σJ · δt+ T0,v

s (G · ve) · δt) dΓe
)

(2.39)

δP̃ext =
∑
e

(∫
Ωe
ρ (N · δve)T · b dΩe +

∫
∂Ωet

(N · δve)T · t̄ d∂Ωe
t

)
(2.40)

In the above equation, the second order matrices {C} and {Cs} are the cytoskeleton and

cortical membrane elastic matrices in Voigt notation, respectively (note that we deleted the

superscript “σJ” and “e” to lighten the expression). In addition, the relationship between

the stiffness matrix {Cs} of cortical membrane and its elasticity matrix {S}s was taken as:

{Cs} = MT
p {S}s Mp (2.41)
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where Mp is defined in (2.35). After factorizing and simplifying the above expressions, one

can derive a more convenient form of the virtual powers as:

δP̃int =
∑
e

δveT
(∫

Ωe
BT ({T}+ {C} · (B · δve) + Tv(G · δve)) dΩe

+

∫
Γe

BT ·Mp
T ({Ts}+ {Cs} · (Mp ·B · δve) + Tv

s(G · δve)) dΓe

−
∫

Ωe
BT · ({T0}+ {δT0}+ T0,v(G · δve)) dΩe

−
∫

Γe
BT ·Mp

T · ({T0
s}+ {δT0

s}+ T0,v
s (G · δve)) dΓe

)
(2.42)

δP̃ext =
∑
e

δveT

(∫
Ωe
ρ NT · b dΩe +

∫
∂Ωet

NT · t̄ d∂Ωe
t

)
(2.43)

Finally using the principal of virtual power (2.11) and substituting the approximations of

the virtual powers (2.42) and (2.43), we obtain the following finite element equation:

∑
e

(Ke
int) · δd =

∑
e

(Fe
ext − Fe

int) (2.44)

where Ke
int denotes the internal stiffness of element e and takes the form:

Ke
int =

∫
Ωe

BT · {C} ·B + BT ·Tv ·G dΩe

+

∫
Γe

BT ·MT
p · {Cs} ·Mp ·B + BT ·MT

p ·Tv
s ·G dΓe

−
∫

Ωe
BT ·T0,v ·G dΩe −

∫
Γe

BT ·MT
p ·T0,v

s ·G dΓe (2.45)

while the internal and external forces associated with element e are written as:

Fe
int =

∫
Ωe

BT · {T} dΩe +

∫
Γe

BT ·MT
p · {Ts} dΓe

−
∫

Ωe
BT · {T0} dΩe −

∫
Γe

BT ·Mp
T · {T0

s} dΓe (2.46)

Fe
ext =

∫
Ωe
ρ NT · b dΩe +

∫
∂Ωet

NT · t̄ d∂Ωe
t (2.47)

The quantities are then numerically evaluated using Gaussian quadrature for which four

integration points are considered in normal and partially enriched elements. However, inte-

gration in fully enriched elements is carried out by subdividing elements into sub-triangles
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following [44] and integration on the cell surface follows from the assumption that the inter-

face is straight within an element (this only requires two integration points on the interface).

The reader is referred to [54] for a more complete description of the integration scheme used

in this study. The finite element equation (2.44) has been implemented in a Fortran com-

puter program following the flowchart presented in Fig. 2.4. To summarize, a solution d of

the nodal displacements is obtained as a function of time by computing a solution of (2.44)

at different time increments ∆t and proceeding to time integration of various quantities such

as velocities and the projection operator. At each time increment, the determination of in-

cremental displacements ∆d follows from an iterative Newton-Raphson procedure such that

∆d =
∑

nitr δd, where the vector δd denotes the nodal displacements of each iteration and

nitr stands for the number of nonlinear iterations. After each iteration, stresses, coordinates

and normal vectors are updated using general evolution equations (2.27) and (2.8). Finally,

the total nodal displacements are calculated by d =
∑

ninc ∆d, where ninc stands for the

number of increments.

A significant advantage in using the above formulation is that the complex shapes

of cells (Fig. 2.2) are described with a level-set function independently of finite-element

discretization. Issues related with meshing complex shapes (in two and three-dimensions)

are therefore totally alleviated. Another important remark is that while, in general, cell

motion depends on the deformation of the external matrix due to cell-matrix cohesion, the

lack of a cohesive stress Td precludes these interactions. As a result, cell and matrix may

be considered as two independent bodies undergoing independent deformations. Since the

two bodies are originally defined as connected domains on a single finite element mesh, the

capability of XFEM to describe discontinuities in velocities between the two domains is

critical.
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2.6 Numerical investigation of the role of the cortical membrane on cell

deformation

The objective of this section is to validate the model and provide a general analysis

of the role of the cortical membrane on cell deformation using the proposed model. For the

sake of simplicity, the study concentrates on an initially square cell whose displacements are

constrained at its four corner in order to mimic adhesion to a stiff substrate (Fig. 2.5a).

Furthermore, the cell is described by material properties shown in table 2.1 and following

[37], the cytoskeleton is subjected to an isotropic contractile stress T0 = T 0I generated by

randomly oriented stress fibers in the cytoskeleton. On the computational side, the domain Ω

was discretrized into a 19∗19 regular finite element square mesh, of total size 50µm. The cell

domain Ωc was defined by a level-set function representing a square domain spanning about

15 elements, for which the four corner elements were subjected to a constrained displacement.

We have shown that this choice of discretization gave a good combination of efficiency and

convergence.

Table 2.1: Physical constants used in simulations

Constant Value Reference

E 77 Pa ([37])
ν 0.3 ([37])
Ks 0.1 N/m
T 0
s 0 N/m
T 0 45 Pa ([37])

2.6.1 Effect of cortical stiffness on cell deformation

The first example consists in investigating the general effect of the cortical membrane

on cell deformation. The deformed configuration of the cell is then studied in two cases:

(a) no cortical stiffness and (b) the cortical stiffness is given by Ks = 0.1 N/m. As shown

in Fig. 2.5, the presence of a cortical membrane (when Ks = 0.1 N/m) results in the
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homogenization of surface strains and surface curvatures. This is not surprising as cortical

stiffness acts against surface deformation. A consequence of this is that the cell boundary is

characterized by a circular shape between two adhesion regions, a result that is confirmed by

the experimental work of Bischofs et al. ([14]) on fibroblasts (Fig. 2.5b). Furthermore, upon

observing the stress distribution in the cytoskeleton in Fig. 2.5, one sees that a cell without

cortical membrane is subjected to a large stress concentration near its corner while internal

stresses are more uniform when cortical stiffness increases. This suggests a possible role

of the cortical membrane in protecting the cell against large stresses and possible damage,

especially in adhesion regions that are prone to undergo large variations of both surface and

bulk deformation.

2.6.2 Relationship between cortical stiffness and membrane curvature

Let us now investigate how membrane curvature varies in terms of cortical stiffness Ks

and contractile stress T 0. In particular, it is of interest to compare the numerical solution

derived in this chapter to the analytical solution of a cable, attached at its two ends and

subjected to a distributed external force T 0 acting perpendicular to the cable’s direction (Fig.

2.6b). If we consider the external force as the cytoskeleton’s contractile stress, this problem

provides a benchmark with which to compare our numerical solution, when cytoskeleton

elasticity becomes negligible compared to cortical stiffness. Considering that the spanning

distance, d, does not change during deformation and that the cortex has constant curvature

with line tension Ts and stiffness Ks, one can show that the radius of curvature, R, of the

membrane is ([14]):

R =
Ts
T 0

=
Ks

T 0

(
L− αd
αd

)
(2.48)

where L = 2R arcsin(d/2R) and αd are the current and reference length of the arc, re-

spectively. Rearranging the equations finally leads to the following relationship between the
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cortex curvature κ, the cortical stiffness Ks and the contractile stress T 0:

1

κd
=

Ks

T 0 d

(
2

ακd
arcsin

(
κd

2

)
− 1

)
(2.49)

To compare analytical and numerical prediction, we then studied the relationship between

the non-dimensional surface curvature κd and the ratio Ks/T 0d of cortical stiffness and con-

tractile stress as depicted in Fig. 2.7. Results show a net decrease of membrane curvature

with increasing cortical stiffness, with noticeable differences between the analytical and nu-

merical predictions for small values of Ks/T 0d. These trends may be explained as follows.

For large values of Ks/T 0d, the stiffness of the cortical membrane is significantly higher

than the stiffness of the bulk cytoskeleton, and the assumptions of the analytical model

are acceptable. As a consequence, numerical and analytical prediction coincide. However,

for small values of Ks/T 0d, the effect of the bulk cytoskeleton has a large influence on cell

deformation, a feature that is not predicted by the analytical model. In this case, bulk

stiffness provides a resistance to membrane curvature by limiting the deformation of the

internal cytoskeleton. These results show significantly smaller surface curvature than that

of analytical prediction. These results are important for two reasons: (a) they validate the

proposed numerical method to study the effect of the membrane cortex on cell deformation

in the region of large cortical stiffness and (b) they extend the range of prediction provided

by the analytical solution by incorporating the role of cytoskeleton elasticity on membrane

curvature.

2.6.3 Relative influence of cytoskeleton and cortical membrane on cell con-

traction

Next, we propose to investigate the effects of three intrinsic cell properties (cytoskele-

ton’s Young’s modulus E, cytoskeleton’s Poisson’s ratio ν and cortical tension T 0
s ) on the

curvature of the cortical membrane. Such knowledge is potentially relevant in understanding

how cells can modify their shape by adjusting the properties of their cytoskeleton.
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2.6.3.1 Young’s modulus

In this example, the Eulerian XFEM formulation is used to assess the effect of the

cytoskeleton’s Young’s modulus on the cell membrane curvature after deformation. For this

we considered a cell whose properties are given in table 2.1 and for which the Young’s modulus

is varied from 77 to 150 Pa. Results are summarized in Fig. 2.8. The results show how an

increase in cytoskeleton’s Young’s modulus tends to decrease membrane curvature. This

effect is particularly noticeable for small values of cortical stiffness. These results therefore

emphasize the fact that the role of the cortical membrane on cell’s deformation is increasingly

important, and cannot be neglected, as cytoskeleton stiffness decreases.

2.6.3.2 Poisson’s ratio

Another material parameter of interest is the Poisson’s ratio of the cytoskeleton. The

next investigation therefore consisted in varying the value of ν from 0 to 0.5 (for which the

cytoskeleton becomes an incompressible material), while keeping the other material param-

eters constant and equal to those presented in table 2.1. Fig. 2.9 shows the changes of the

normalized cortex curvature as a function of the non-dimensional parameter Ks/T
0 d for

values of Poisson’s ratios. General trends show that increasing the Poisson’s ratio results in

increasing the resistance of the cytoskeleton and therefore, decreasing membrane curvatures.

Moreover, it is observed that for high Poisson’s ratio (close to 0.5), the curvature becomes

independent of the surface stiffness for small values of the cortical stiffness. This may be

explained by the fact that for high Poisson’s ratios, the cytoskeleton becomes nearly incom-

pressible and shear deformation is favored over volume changes. Cytoskeleton stress is thus

modified near the membrane, limiting the magnitude of tangential stretch and homogenizing

membrane curvature, even for relatively low membrane stiffness. Furthermore, it is inter-

esting to note that even for an incompressible cytoskeleton (ν ≈ 0.5), we observe a change

in cell area. In fact, our results show that due to the plane stress assumptions, an increase
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in the cell’s thickness is possible (with increasing out-of-plane deformation) such that the

global volume of the cell is preserved.

2.6.3.3 Cortical contraction

In addition to cytoskeletal contraction T 0, contractile cells may change their shape by

applying a cortical tension T 0
s . This process is thought to be at the origin of cell blebbing

([154]). The last example therefore investigates how the application of surface tension T 0
s

triggers changes in cell deformation, as shown in Fig. 2.10.

Results indicate that the application of surface tension tends to decrease surface curva-

ture, and that this effect is increasingly pronounced as surface stiffness decreases. In the case

of high surface stiffness, surface tension has a small effect on cortical deformation and thus

becomes negligible on the general deformation of the cell. These trends can be explained by

viewing the tensed cortical membrane as a cable that is straightened by applying an axial

force on its two ends. In a similar way, surface tension works to make the cortical membrane

return to its original straight line, providing an efficient way for the cell to control its shape

through active cortical contraction.

2.7 Summary and conclusions

In summary, this chapter presented a new theoretical/computational framework to

model the large deformation of cells, accounting for the effect of a stiff surrounding cortical

membrane. Under the assumption of a very small cortical thickness, the equations of surface

elasticity, originally developed for free surface stresses in solids, were developed in the case

of large deformations following the Eulerian description. A numerical formulation, based on

the XFEM/level-set method was then introduced and utilized to study the effect of cortical

elasticity on the deformation of a contractile cell. The contributions and advantages of the

proposed method can be summarized as follows:
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• The geometry of the cell is entirely represented by level-set functions that are defined

independently from the finite element mesh. Simple, regular FEM meshes may thus

be used regardless of the geometric complexity of the cell.

• Discontinuities in velocities and deformations resulting from the governing equations

are naturally taken into account within the XFEM methodology.

• The model provides an efficient and flexible way to incorporate the contribution of

cortical membrane in cell mechanics. In particular, it can easily be extended to

incorporate more sophisticated descriptions of the cell’s cytoskeleton and its cortical

membrane.

Our analysis on the effects of the cortical membrane on cell deformation generally showed

that by adding stiffness to the cell’s surface, the presence of the cortex induced homogeneous

membrane strains and curvature. While this aspect had been shown with a simple analy-

sis considering a cable deforming under the action of an external perpendicular force, the

model neglected the effects of cytoskeletal elasticity on surface deformation. Because it is

able to incorporate the effect of both cytoskeleton and cortical membrane deformation, the

proposed framework could overcome these limitations and accurately capture the distinct

role of surface and bulk elasticity in cell deformation. Results showed that while the analyt-

ical solution provides a good approximation of membrane curvature when the cytoskeleton

is much softer than the cortical membrane, it greatly overestimated its value for low values

of cortical stiffness. The numerical method was then used to investigate the variation of cell

deformation for various cytoskeleton elastic parameters as well as cortical tension and elas-

ticity. This technique may therefore prove very useful in the determination of cell properties

through the analysis of its shape. Besides this, the proposed framework establishes a fast

and efficient method that can accurately account for cortical elasticity in future research on

cell contraction, migration and cell-matrix interactions.
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Figure 2.4: The updated Lagrangian algorithm used in the nonlinear solution of the XFEM
equations to determine cell deformation.
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Figure 2.5: (a) Initial configuration and (b) Deformed configuration of a cell on adhesion
islands ([14]). (c) deformed configurations of a square cell without and (d) with cortical
membrane.

Figure 2.6: The models used in the analytical and numerical solutions. a) The deformed
configuration of the cell to be modeled, b) the analytical model and c) the numerical model.
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Figure 2.7: Effect of normalized cortex’s stiffness on normalized membrane curvature pre-
dicted by the numerical (XFEM) and theoretical solutions.

Figure 2.8: Effect of the cytoskeleton’s Young’s modulus on the normalized curvature of the
cortical membrane.
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Figure 2.9: Effect of cytoskeleton’s Poisson’s ratio on the normalized curvature of cortical
membrane.

Figure 2.10: Effect of cortical contraction (surface tension) on the normalized curvature of
the cortical membrane.



Chapter 3

Bridging the Scales to Explore Cellular Adaptation and Remodeling

3.1 Abstract

This short chapter presents a multiscale framework to better understand the mechanisms of

biological tissue evolution from molecular to tissue scale. For this, a bottom-up strategy is

proposed in which mechano-sensitive molecular processes, the evolution of cell architecture

and contraction as well as the interaction between cells and the extra-cellular matrix can be

integrated in a single framework. Preliminary studies based on this approach suggest that

mechano-sensitive feed-back mechanisms at several length-scales may be a key element to

understand tissue adaptivity to this mechanical environment.

3.2 Introduction

One of the fundamental research questions in mechano-biology is to seek the main

processes and mechanisms by which biological tissues are able to adaptively change their

properties and structure in response to external stimuli. Any knowledge gained along this

direction has the potential to shine a light on important phenomena such as morphogenesis

[76], remodeling and growth [131], wound healing [102], but also the dynamics of cancer

evolution [118, 101, 21]. Past research has shown that the responsive behavior of living

tissue results from constant interactions between populations of cells and their surrounding

extracellular matrix (ECM). In short, these interactions enable cells to sense stimuli conveyed

by the ECM [95] (such as force, deformation or flow) and respond accordingly by changing
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the structure of the ECM [149, 34].

Figure 3.1: Multiscale decomposition of important biological processes responsible for tissue
remodeling.

The complex dynamics of such interactions is found to rely on mechanical forces acting

on a hierarchy of length and time scales: molecular, cellular and tissue (Fig. 3.1); this

has traditionally hindered the development of quantitative and predictive models. However,

recent advances in computational science and multiscale modeling suggest a possible new

route to help better understand tissue dynamics.

The present chapter discusses recent efforts [163, 161, 165] that have been undertaken to

understand certain aspects of tissue dynamics by integrating mechano-chemical interactions

from molecular to tissue scale via a hierarchical multiscale paradigm. We particularly concen-

trate on explaining the mechanisms by which the mechanical environment (stiffness, attach-

ment, stress) of a tissue influences its structural evolution. Numerous experimental studies

have shown that at the tissue scale, remodeling is partially due to the generation of contrac-

tile stresses by cells (such as myofibroblasts) on their surrounding fibrous matrix [174, 5, 76].

At the cellular scale, cell contractility is explained by mechano-sensitive molecular processes

which govern the formation of stress-fibers (SF), that are mechanically active components

of the cytoskeleton. While the above phenomena involve a variety of complicated signaling

pathways that are studied in details by the biology community, the objective of the present
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study is to develop robust and flexible framework that can incorporate such biologically

relevant phenomena in the future. Thus, for the time being, we present an experimentally

and physically motivated empirical model, in which we show here that while occurring at

different time and length-scales, mechanisms at cellular and tissue levels can be integrated in

a single modeling framework, enabling us to obtain some useful insights. In particular, the

model suggests that feed-back mechanisms occur both at the molecular and cellular levels,

allowing tissues to timely react to any change in their mechanical environment.

Figure 3.2: Molecular mechanisms of SF formation and contraction. The feedback mecha-
nism between the two phenomena constitutes the basis of the proposed model.

3.3 From molecular sensing to cell organization

Let us first discuss how information from the molecular scale may be used to describe

the structural organization and contraction at the cellular level. The capacity of a contractile

cell to spread, deform and generate tensional forces is principally due to the existence of a

network of SF. Studies have shown that SF organization and contractility were strongly

influenced by the nature of the cell’s mechanical environment (such as stiffness, deformation

or loading frequency [41]). For instance, it was shown that SF tend to align in directions of

maximum effective stiffness and stretch (for static loading). From a modeling standpoint,
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it is known that the above phenomena are the result of non-equilibrium processes that

involve mass/energy exchanges within the cell and across its membrane. For instance, SF

formation arises from mass exchange with actin and myosin monomers while contraction

would not be possible without the supply of energy in the form of ATP. Such interactions

between constituents (fluid, solid, molecules) have been very well described in the context

of the mixture theory [143]. This class of mathematical models is based on a continuous

description of the behavior and interactions of various constituents in order to represent

deformation, relative motion and mass exchange while verifying the fundamental principles

of continuum mechanics (mass, momentum and energy balance). Furthermore, since this

class of models allows for mass and energy exchange across the cell, it can potentially be

extended for describing the non-equilibrium thermodynamics of (open) cellular systems. In

this context, it has been proposed by the authors to view contractile cells as a mixture of three

principal constituents: (a) a solid cytoskeleton made of a mechanically passive component

(microtubules and intermediate filaments), (b) anisotropic active SF network and (c) a fluid

phase that consists of water in which a pool of dissolved monomers can assemble into SF

under certain conditions. The mechanisms of conversion of monomers into SF together

with the contraction of existing SF are precisely what drives cellular force generation and

organization.Experimental studies suggest that while different cell types exhibit differences

in their dynamics and strength of contraction, they show strong similarities regarding the

fundamental contraction mechanisms. In that respect, a realistic model for cell contractility

can be built on two key hypotheses:

(1) SF formation is promoted by the existence of a state of mechanical tension. One

of the main mechanisms that drive the reorientation of stress fibers is the strong

dependency of the polymerisation process on the contractile stress of the SF. Exper-

iments have shown that the process of SF polymerization starts with the activation

of the RhoA enzyme [25] and its downstream effector ROCK that induces myosin
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light chain phosphorylation; this in turn enables their assembly in filaments as well

as their interaction with actin. Once formed into filaments, SF are stabilized when

subjected to a state of tension. This phenomenon may be explained as follows; from

a thermodynamical point of view the evolution of a SF occurs in a manner such that

its total free energy decreases. When in tension, the incorporation of new contractile

units in a filament results in relaxing the strain energy of SF and thus decreasing its

free energy [135] (Fig.3.2a,b). In other words, upon nucleation, SF formation and

stabilization are therefore thermodynamically favored mechanisms when tension is

present; this ultimately leads to an overall higher density of SF in cells.

(2) SF contraction decreases with rate of SF shortening. The contractile behavior of SF

is explained by their sarcomeric structure (Fig. 3.2c) in which actin-myosin cross-

bridge dynamics occurs in a similar fashion as that observed in muscles. From a

molecular viewpoint, force is generated from myosin heads stepping on actin fila-

ment by binding to it, pulling and detaching (Fig. 3.2d). An increased rate of SF

shortening is associated with a rise in the rate of myosin detachment, and conse-

quently in a drop of the total number of myosin heads bound to the actin filament.

Since the force applied by myosin on the actin filament is proportional to the number

of bound myosin heads, the resulting force decreases with rate of shortening. This

behavior is often described in terms of the tension-velocity relation [80], showing a

hyperbolic decline in SF contractility with rate of shortening (Fig. 3.2e).

Altogether, the above hypotheses are the basis of feed-back mechanisms cells may use to

sense and react to their mechanical environment. Thus, upon initial SF formation, maximal

SF contraction occurs in directions that offer the most resistance to shortening (hypothesis

2). In turn, SF contraction induces a state of tension that promotes the formation of more

SF (hypothesis 1), until the stock of actin and myosin monomers is depleted. This explains

the fact that SF tend to align in directions of maximum stiffness. In addition, the model
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Figure 3.3: (a) Prediction of SF distribution on stiff substrate, (b) observation from [18, 117,
61, 19] and (c) resulting substrate deviatoric stress (model prediction). (d) Cell architecture
and force generation in terms of substrate stiffness (model predictions).

predicts that the characteristic time of cell contraction arises from two processes: the rate

of SF assembly and the dynamics of cross-bridge attachment and detachment. The cell-

specific contribution of each mechanism may be determined by further experimental studies.

To evaluate model prediction in various situations, finite element simulations were used

to predict SF distribution in a square cell attached at its corner (Fig. 3.3). Consistent

with experimental observations, SF generally tend to align in diagonal directions, where

shortening is most resisted while cell contraction is found to increase in a nonlinear fashion

with substrate stiffness. It is important to note that the simulations presented in this study

are non-dimensional, i.e, the magnitude of the contractile forces and dynamics of contraction

are measured relatively to the typical force in a single SF (during isometric deformation)

and rate constants describing the Hill model and SF formation. In other words, cell-specific

behavior may be obtained by using biologically relevant molecular models for SF formation

and contraction. The information gained at the cellular scale may then be upscaled to the

tissue level by considering a representative tissue volume whose behavior relies on cell-ECM

interactions.
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3.4 From cell contraction to tissue deformation

Cells and their surrounding ECM form a very intricate dynamical system, whose in-

teractions entirely determine the fate of living tissues. As discussed above, cells can feel

the mechanical properties of their environment, and respond by changing their structure,

applying traction or reorienting in specific directions [74, 15, 60]. In turn, the surrounding

ECM actively changes structure under cellular forces; this ultimately leads to large scale

tissue remodeling [74]. Studies have shown that few important factors drive the remodeling

process. First, ECM properties and anisotropy dictate the orientation and spreading of cells.

In general, cells tend to align in the direction of maximum stiffness [120], in the direction

of ECM fibers [173, 46] and in the direction of the tensile strain [78, 47]. Second, the effect

of mechanical constraints on tissue structure is known to be important; for instance, many

studies have shown that cell orientation and gel morphology was strongly affected by the

nature of boundary conditions imposed to cell-populated gels [4, 15, 6]. Third and finally,

cell-cell communication through ECM deformation is likely to be an important factor of re-

modeling. In other words, by contracting and deforming the ECM, a cell sends a mechanical

signal to its neighbors, resulting in stronger tissue contraction [75, 85, 27]. The dramatic

effect of this collaborative behavior can be readily observed during the large compaction of

cell-populated gels once a critical density is reached [48].

From a modeling viewpoint, bridging cell-scale to tissue-scale can be accomplished by com-

putational homogenization, a method that consists in extracting macroscopic information

(such as tissue deformation) by performing spatial and temporal averages of the local inter-

actions between cells and their surrounding matrix. Concentrating on contractile cells on

elastic substrate and assuming a spatially periodic cell distribution, a representative material

volume may be built (Fig. 3.3c) consisting of a single cell adhering to an elastic substrate

through pre-existing focal adhesion complex. Coupling this strategy with the cellular model

(previous section) enables further investigations onto the mechanism of cell-ECM interac-
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tions. It is important to note that by considering a substrate whose behavior is time

independent (as it is purely elastic), the time scale at the tissue level is entirely driven by

the cell dynamics. However, in more realistic situations, i.e. the ECM is visco-elastic, the

characteristic time scale of tissue remodeling is the result of interactions between the time

dependence of both cell and ECM. Here, we illustrate the method by assessing the influ-

ence of substrate stiffness and anisotropy on the cell architecture and the development of

contractile stresses at the tissue level. In particular, while the temporal aspect is certainly

important, we focus here on the state of cells and matrix once they reached chemical and

mechanical equilibrium (steady state). Cells in an isotropic environment have been shown

to take a stellate morphology and increase their contraction and stress-fiber network with

substrate stiffness. These observations can qualitatively be reproduced by considering an

isotropic square cell on an elastic substrate for which the elastic is varied. As large substrate

stiffness provides more resistance to cell contraction, SF density and cell contraction increase

significantly with substrate stiffness, resulting in a rise in substrate deformation. This seems

to indicate that a very small window of substrate stiffness exists such that cells can deform

the substrate: for low stiffness, cells do not contract while for high stiffness, the substrate is

too stiff to deform.

The evolution of cell morphology, including spreading area, alignement and polarization ,

is also known to be strongly dependent on substrate properties. Cells typically polarize

and align their SF in direction of maximum effective substrate stiffness [15]. To better

understand this behavior, we first considered a strongly anisotropic elastic substrate whose

stiffness differs by a ratio of 100 between two perpendicular directions. Simulations show

that cells interacting with this substrate exhibit a SF network that is totally aligned with

the direction of maximum stiffness, which subsequently induce more substrate strain in this

particular direction (Fig. 3.4a). This cell architecture suggests that cell morphology may

develop in direction of maximum stiffness as observed experimentally. To further understand
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the development of anisotropy, we then considered the reciprocal situation of an isotropic

substrate and an anisotropic cell morphology (Fig. 3.4b), in which adhesions are located at

the cell’s corners. In this case, the model shows that the cell realigns its SF along its principal

axis, regardless of substrate isotropy; this consequently induces substrate deformation along

the long axis of the cell. This has consequences in more biologically relevant settings where

the ECM is made of a fibrous network (collagen and elastin) whose fibers tend to align in the

direction of stretch. In this situation, the model suggests that elongated cells apply traction

forces that tend to align fibers (and thus increase ECM stiffness) along their long axis. In

other words, the models clearly suggests that the evolution of the ECM (or substrate) and

cells are completely dependent on one-another and may not be considered separately. ECM

properties and deformation are influenced by cells and vice-versa; this creates a series of

cross-talks that feedback onto themselves to drive macroscopic tissue evolution.

Figure 3.4: a) Predicted substrate stress (deviatoric) and SF distribution when the substrate
stiffness in the horizontal direction is 100 times that in the vertical direction. (b) Predicted
substrate stress (deviatoric) and SF distribution for an elogated cell on an isotropic substrate.
A comparison with experimental observation of SF distribution as reported in [18, 117, 61, 19]

is also shown.

3.5 Conclusion

Biological tissue remodeling and evolution depend on a variety of processes that oc-

cur at very different length and time scales and strongly interact with one-another. Con-

sequently, accurate mathematical models must not only accurately describe phenomena at
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each scale but integrate them into a single multiscale framework. This chapter proposes such

a strategy by considering three distinct length-scales that are essential to tissue dynamics,

namely, molecular, cellular and tissue scales. In particular, we discussed how relevant molec-

ular mechanisms of mechano-transduction can be considered to describe the evolution of

cell architecture and contraction in terms of their mechanical environment. Furthermore,

using homogenization techniques, we investigated how certain aspects of the interactions

between cells and an elastic substrate may lead to global tissue reorganization and deforma-

tion. In particular, the model suggests that feed-back mechanisms at several scales may be a

contributing factor to the quick and adaptive response of a tissue to its mechanical environ-

ment. To conclude, while our knowledge of molecular and cellular mechanisms is currently

skyrocketing due to more and more powerful experimental techniques , the need of multiscale

modeling in biology has never been greater in order to interpret how molecular, cellular and

tissue phenomena are linked. Upon maturation, it is anticipated that the predictive power

of these types of models will lie in (a) providing refined interpretations of the macroscopic

behavior of cells in different situations in terms of the key molecular phenomena and their

interactions and (b) virtually predict changes in cell behavior with respect to modifications

in their environment or composition. This aspect will particularly be critical in developing

cures for a variety of diseases.



Chapter 4

A Constrained Mixture Approach to Mechano-Sensing and Force Generation in

Contractile Cells

4.1 Abstract

Biological tissues are very particular types of materials that have the ability to change

their structure, properties and chemistry in response to external cues. Contractile cells,

i.e. fibroblasts, are key players of tissue adaptivity as they are capable of reorganizing

their surrounding extra-cellular matrix (ECM) by contracting and generating mechanical

forces. This contractile behavior is attributed to the development of a stress-fiber (SF)

network within the cell’s cytoskeleton, a process that is known to be highly dependent of the

nature of the mechanical environment (such as ECM stiffness or the presence of stress and

strain). To describe these processes in a consistent manner, the present chapter introduces a

mutiphasic formulation (fluid/solid/solute mixture) that accounts for four major elements of

cell contraction: cytoskeleton, cytosol, SF and actin monomers, as well as their interactions.

The model represents the cross-talks between mechanics and chemistry through various

means: (a) a mechano-sensitive formation and dissociation of an anisotropic SF network

described by mass exchange between actin monomer and polymers, (b) a bio-mechanical

model for SF contraction that captures the well-known length-tension and velocity-tension

relation for muscles cells and (c) a convection/diffusion description for the transport of fluid

and monomers within the cell. Numerical investigations show that the multiphasic model

is able to capture the dependency of cell contraction on the stiffness of the mechanical
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environment and accurately describes the development of an oriented SF network observed

in contracting fibroblasts.

4.2 Introduction

Biological tissues are very particular types of materials that have the ability to change

their structure, properties and chemistry in response to external cues. This fast response

capability can be attributed to the out-of-equilibrium nature of the tissue structure, resulting

from a constant cross-talk between a population of cells and their surrounding extra-cellular

matrix (ECM). These interactions allow cells to sense stimuli conveyed by the ECM [95]

(such as force, deformation or flow) and the ECM to restructure due to the action of cells

(characterized by traction forces [149, 34] or enzyme degradation [166]). In this context,

a large number of studies have demonstrated that cell contraction and architecture were

strongly dependent on substrate stiffness [169, 139, 70, 98], giving mechanics a central role in

cell-substrate interactions. Experimental studies on contractile cells (such as myofibroblasts)

generally show that larger substrate stiffness results in higher cell stability that manifests

itself by large spreading areas and generation of significant traction forces. In addition, actin

staining procedures have shown that fibroblast contraction is associated with the formation

of highly aligned stress-fibers (SF) within the cell’s structure (cytoskeleton) that anchor

at the point of cell-substrate adhesion and often span the entire length of the cell. The

distribution and orientation of these fibers correlate very well with the presence of contractile

forces applied by cells to their underlying substrate. These phenomena clearly illustrate the

intricate interplay between mechano-sensing, force generation and cytoskeletal structure,

which is essential to tissue remodeling.

Despite our more and more accurate understanding of the molecular mechanisms re-

sponsible for contraction, there are still many questions concerning the nature and mecha-

nisms of mechano-sensing and force generation [160]. To tackle these questions, it is necessary
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to develop mathematical models that are capable of describing the cross-talk between cel-

lular mechanics and biochemistry in a quantitative fashion. From a modeling standpoint,

cell contractility has often been considered in terms of prestress or prestrain, either within

the context of fibrous networks [107] or continuum mechanics [110, 166]. While such sim-

plified models capture well the mechanical aspects of cell contraction, they are unable to

explain many features occurring from chemo-mechanical interaction at the molecular scale,

such as dependency of contractility on substrate stiffness and ligand density. More recent

studies by Desphandes et al. [37, 39] introduced a bio-mechanical model that is able to

describe cytoskeleton contraction by considering molecular mechanisms associated with SF

formation and focal adhesion assembly. This approach provides a promising means of cap-

turing the chemo-mechanics of cell contraction but it neglects the multiphasic aspect of the

cell’s body in which monomer transport, interstitial fluid (cytosol) pressure and mass ex-

change can take place. The inclusions of the above physics is critical to respect fundamental

physical principles such as mass conservation, but also in capturing key cellular phenomena

such as osmotic loading and transport phenomena. In continuum mechanics, these types of

phenomena have traditionally been described by the theory of porous media and mixtures

[12, 13, 155, 17, 127, 144, 166]; these formulations were very successful in describing phe-

nomena such as growth [86, 58], free swelling [144] and osmosis [66]. Applications to the cell

have thus far been limited to the flow-dependent mechanical response and swelling behavior

of chondrocytes in response to their osmotic environment [68].

The present chapter proposes to extend the range of applications of mixture models

to describe the coupled biochemical/mechanical processes responsible for cell contraction.

The formulation is based on a description of cells that incorporate four key components of

contractility: a passive solid cytoskeleton, an interstitial fluid representing the cytosol, an

anisotropic network of SF and a pool of globular actin monomers that freely diffuse in the

cytosol. To address the well known difficulties regarding to stress partitioning and boundary
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conditions associated with classical theory of mixtures [128], we take the following approach.

First, it is assumed that the two solid constituents (passive cytoskeleton and SF) undergo the

same motion, which is consistent with the class of constrained mixture models introduced

in [86]. Second, we adopt key concepts of poromechanics[153] that consists of describing the

motion of a fluid constituents relative to solid constituent through diffusion-type relation

(initially originated by Fick and Darcy). In this context, the mixture problem is well-posed

and provide a flexible and robust theoretical framework to study the interactions between

mechanics and chemistry (incorporating mass and energy exchange between constituents).

The key features of the proposed model are as follows: (a) The SF network is described

in statistical terms with a Von-Mises distribution whose characteristics (mean, deviation)

evolve in time. (b) The generation of contractile force by SF follows length-tension and

velocity-tension curves that are known to accurately capture the behavior of sarcomeric

structures. (c) The anisotropic formation and dissociation of the SF network depend on the

level of contractile stress in existing SF and (d) SF formation is limited by the diffusion and

quantity of globular actin monomers present in the cytoplasm. By capturing these important

physics, we show that the formulation is capable to reproducing the mechano-sensitivity of

cell contraction with respect to substrate stiffness as well as the general architecture of

contractile cells.

The chapter is organized as follows. In the next section, we provide the basis for

the continuum description of the cell’s body that contains both kinematics and structural

components. Section 3 then concentrates on the conservation and exchange of mass occurring

within the cell during contraction while mechanical equilibrium, SF contractility and cell

elasticity are discussed in section 4. Results and predictions of the proposed model are then

described in section 5 in which several problems are considered together with comparisons

with experimental studies. A general discussion of the model, potential improvements and

concluding remarks are finally provided in section 6.
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4.3 Constrained mixture description of cells

4.3.1 Continuum assumptions and kinematics

From a material’s view point, a cell can be considered as a complex composite struc-

ture, composed of a large variety of interacting constituents, which may be solid (such as

microtubules, actin filaments, intermediate filaments), fluid (the cytosol) or dissolved species

(such as ions, monomers, diverse proteins). Under the assumptions that the characteristic

length-scale associated with each constituent is small compared to its size, a cell can be

viewed as a multiphasic continuum that can be very well described within the framework

of mixture theory. Since the objective of the present chapter is to characterize the chemo-

mechanical processes responsible for cell sensing and contraction, we propose to consider

four constituents that are critical components of the contractile apparatus of a cell: (a)

porous and passive cytoskeleton, made of a network of incompressible filaments and referred

with the superscript s (as in solid), (b) an incompressible fluid representing the cytosol,

referred with the superscript f (as in fluid), (c) dissolved globular actin monomers, referred

by the superscript m (as in monomer) and (d) a network of contractile SF referred by the

superscript p (as in polymer). The latter is the active constituent of the cytoskeleton. An

illustration of this decomposition is given in Fig. 4.1. It should be noted that the notion

of incompressibility is to be understood within the context of ”homogenized equivalent con-

stituents”, this enables us to avoid complications associated with incompressible constituents

in their natural state as described in [127]. The reasons for choosing these four constituents

lie in the nature of chemo-mechanical processes responsible for contractility; SF (from actin

monomers) are critical elements of contraction and the presence of the cytoskeleton must be

included to assess cell deformation. In addition, the existence of the cytosol is essential for

monomer transport and its mechanical function in resisting the cell’s internal pressure.

Considering a planar cell (under plane stress conditions) as a closed domain Ω0 de-

limited by a boundary Γ0 in its initial configuration, one may locate a material point P by
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Figure 4.1: Illustration of the continuum formulation of the cell [117], decomposed into the
cytoplasm and the cortical membrane. In the cytoplasm, a material point is seen as a mixture
of four constituents, namely the passive cytoskeletal network, the contractile SF, the cytosol
and dissolved G-actin monomers.

its position vector X in a Cartesian coordinate vector Xi, i = 1, 2. Upon deformation, at

any time t, a material point associated with each constituent (represented by superscript

α = s, f,m, p) occupies a position xα defined by a continuous and differentiable function χα

as:

xα = χα (X, t) . (4.1)

The material derivative Dα/Dt following the motion of constituent α can then be introduced

such that the velocity vα of each constituent is given as:

vα =
Dαxα

Dt
. (4.2)

Following these definitions, the relationship between spatial and material time derivatives

for a continuous and differentiable function A(x, t) reads:

DαA

Dt
=
∂A

∂t
+∇A · vα (4.3)

where ∇ is the spatial gradient operator. In this chapter, a Lagrangian viewpoint is adopted

for the solid deformation while an Eulerian description is adopted for fluid flow and monomer

transport. In other words, the solid skeleton is considered as a reference frame in which we

compute motion and velocities. In this frame, we introduce relative velocities ṽα as:

ṽα = vα − v (4.4)
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where v = vs. We now make a fundamental assumption regarding material motion. As

noted by Humphrey and Rajagopal in their treatise on growth [86], there are many difficulties

associated with the definition of mixture motion, as well as the partial stresses arising from

different solid constituents. These issues result from the fact that based on the knowledge of

mixture velocity, there exist a variety of ways to find the individual velocities of constituents.

To circumvent this problem, we assume here that all solid constituents located at the same

material point at time t follow the same motion. In other words, we assume that SF velocity

is equal to the passive cytoskeleton velocity, or equivalently:

ṽp = 0 (4.5)

This assumption enforces a constraint to the model as discussed in [86], which motivates our

appellation “constraint mixture model”. Futhermore since cell deformation is measured by

the deformation of the passive cytoskeleton, it can be measured with the Green-Lagrange

strain in the passive cytoskeleton:

E =
1

2

(
FT · F− I

)
, F = Fs =

∂x

∂X
(4.6)

where F is the deformation gradient, I is the identity tensor and x = xs. Finally, in order to

follow the changes in cell constitution in time, we define the volume fraction φα, associated

with each constituent representing the relative quantity of each constituent at a continuum

point.

φα(x, t) =
V α

V
(4.7)

where V α is unit volume of constituent α contained in a unit volume V of mixture at a

material point x in the current configuration. Assuming that the cell is saturated with the

four constituents, volume fractions satisfy the following relationship:

4∑
α=1

φα = φs + φf + φm + φp = 1 (4.8)
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at all times. A consequence of the above equation is that while the volume fraction of each

constituent may change during cell deformation due to volume changes or mass exchange,

their sum remains constant.

4.3.2 Anisotropic SF distribution

A particularity of the cell’s internal structure is the presence of an evolving, strongly-

oriented network of SF. For such anisotropic fibrous network, the volume fraction φp(x) does

not provide sufficient information and the description needs to be enriched to account for

the angular distribution of fibers. Concentrating on the case of a two-dimensional planar

fibrous assembly in the neighborhood of a continuum point, the direction of an individual

SF is designated by the angle θ measured between the fiber axis and the direction given by

the base vector x1. Based on this, a volume fraction φpθ can be introduced as the ratio of

the volume of fibers oriented in the θ-direction and the total volume. This gives rise to a

distribution function φpθ representing the variation in fiber density with direction, as shown

in Fig. 4.2a. In this chapter, we propose to describe this distribution by the π-periodic

Von-Mises distribution function (which may be though of as a periodic version of the normal

distribution) defined as [59]:

φpθ (θ) = φp
(
exp [b cos (2θ − 2θ0)]

I0 (b)

)
(4.9)

where I0 (b) is the Bessel’s function of the first kind of order zero defined as:

I0 (b) =
1

π

∫ π

0

exp (b cosθ)) dθ. (4.10)

The Von-Mises distribution is represented in Fig. 4.2b when the largest fiber density is along

the θ0-direction. On the figure, it can clearly be seen that the parameter b in (A.1) captures

the degree of anisotropy. In particular, when increasing b from 0 to ∞, the SF orientation

varies from a totally isotropic distribution to a strongly oriented distribution in the direction

θ = θ0. To further simplify the formulation, the fiber distribution can be represented at a
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Figure 4.2: Illustration of SF volume fraction at a continuum point and its representation
with a Von-Mises distribution function.

continuum point by a structure tensor Φp, a concept that was originally used to represent

the evolution of the anisotropic structure of soft biological tissues during large deformations

and remodeling [104, 59]. In a nutshell, this tensor is related to the fiber distribution φpθ

through a directional averaging operation 〈〈•〉〉 as follows:

Φp = 〈〈φpθ〉〉 where 〈〈•〉〉 =
1

π

∫ π/2

−π/2
• Mθ dθ (4.11)

where the matrix Mθ is related to fiber direction vector a = [cos θ sin θ]T by:

Mθ = a⊗ a =

 cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

 . (4.12)

From this definition, one can show that the structure tensor Φp is symmetric and is related

to the total volume fraction φp of SF appearing in (4.8) by:

φp = 〈φpθ〉 = tr(Φp) where 〈•〉 =
1

π

∫ π/2

−π/2
• dθ. (4.13)

Here, we introduced the averaging operation 〈•〉 that relates the total volume fraction of SF

to the volume fraction in specific directions. It is particularly useful to realize that, for a

two-dimensional distribution, the symmetry of Φp implies that it can be represented in terms

of three independent variables {φp, η, θ0}, where η refers to the degree of anisotropy and θ0
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shows the principal direction of SF. In this context, the structure tensor may be constructed

in the form:

Φp = φp [ηI + (1− 2η)Mθ0 ] . (4.14)

where I is the identity tensor and the matrix Mθ0 was defined in (4.11). It can be seen that if

η = 0, all fibers are aligned in the same direction (defined by angle θ0), whereas as η → 1/2,

the distribution becomes isotropic. Because of their similar physical interpretation, it is

possible to find a relationship between parameters b (appearing in the Von-Mises distribution)

and η by substituting (A.1) into (4.14). One can show that:

η =
1

π

∫ π/2

−π/2

exp [b cos (2θ)] sin2θ

I0 (b)
dθ. (4.15)

This integral may be computed numerically to determine the b/η curve as shown in Fig.

4.3b. This ensures that there is a one-to-one mapping between the structure tensor shown

in (4.14) and the Von-Mises distribution (A.1).

Figure 4.3: Relationship between parameters b and η.

4.4 Mass transport and mass exchange

Cell contractility relies on the mass exchange through the polymerization of G-actin

monomers into actin filaments that are a key structural component of SF. These reactions

are possible through the transport of G-actin monomers to the site of reaction, a process
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that depends on the combination of cytosol flow and G-actin diffusion [49]. The present

section discusses the mathematical description of these phenomena.

4.4.1 Mass balance of individual constituents

To accurately describe mass transport and mass transfer, it is essential to ensure that

mass is conserved throughout the process of cell contraction. In this context, let us introduce

an effective density that represents the mass of the αth constituent per unit volume of mixture

as follows:

ρα = φαραr α = s, f,m (4.16)

ραθ = φαθ ρ
α
r α = p (4.17)

where ραr is the real density of constituent α. A particularity of the present approach is the

description of the anisotropic SF distribution through the direction dependent mass density

ρpθ. As we will see below, this definition is an important feature of the model as it enables

a natural description of the evolution of SF evolution through the mass balance equation.

Thus, in the presence of mass exchange between constituents, the conservation of mass for

each constituent is written in terms of mass source (or sink) term ραrΓα that represents the

rate of added mass to the α − th component per current volume. In the particular case of

incompressible constituents (i.e., the real densities ραr are constant in time and space), we

can write:

ραr
∂φα

∂t
+ ραr∇ · (φαvα) = ραrΓα α = s, f,m (4.18)

ραr
∂φαθ
∂t

+ ραr∇ · (φαθvα) = ραrΓαθ α = p (4.19)

where the second equation represents the evolution of SF density in certain direction (denoted

as θ). In particular, the quantity Γαθ denotes the rate of SF polymerization (if positive) or

depolymerization (if negative). Writing the above equations with respect to the cytoskeleton
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motion, we obtain:

Dφα

Dt
+ φα∇ · v +∇ · (φαṽα) = Γα α = s, f,m (4.20)

Dφαθ
Dt

+ φαθ∇ · v +∇ · (φαθ ṽα) = Γαθ α = p (4.21)

where we used the material time derivative D/Dt = Dα/Dt with respect to the cytoskeleton

following (4.3). Following the directional averaging operation defined in the previous section

and applying it to each term in (4.21), the balance of mass for SF can be written in the

following tensorial form

DΦp

Dt
+ Φp∇ · v = Γp where Γp = 〈〈Γpθ〉〉 (4.22)

and we used the fact that ṽp = 0. The tensor Γp can be interpreted as the anisotropic rate

of mass creation of SF per unit volume at time t. Similarly to the structure tensor Φp, the

maximum and minimum rates of F-actin formation are the largest and smallest eigenvalues

of Γp, while their directions are given by the eigenvectors of Γp. To describe the transport

of cytosol and G-actin monomers, one can also introduce the flux:

Jα = φαṽα α = f,m (4.23)

such that the final system of equations describing the mass balance of solid (cytoskeleton),

fluid (cytosol), G-actin monomers and SF, respectively reads:

Dφs

Dt
+ φs∇ · v = 0 (4.24)

Dφf

Dt
+∇ · Jf + φf∇ · v = 0 (4.25)

Dφm

Dt
+∇ · Jm + φm∇ · v = Γm (4.26)

DΦp

Dt
+ Φp∇ · v = Γp. (4.27)

It is also important to mention that the total mass balance of SF (averaged over all directions)

is found by considering the trace of (4.27), i.e.

Dφp

Dt
+ φp∇ · v = Γp. (4.28)
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4.4.2 Mass balance of the mixture

The mass conservation of the mixture is typically determined by adding the various

contributions from each constituent. Summing equations (4.24), (4.25), (4.26) and (4.28),

we obtain:

∇ · Jf +∇ · Jm +∇ · v = Γm + Γp. (4.29)

Assuming that no mass is added to the cell during the contraction process, the total mass

creation (or loss) for the mixture should vanish. This enables us to write the following

relation: ∑
α

ραrΓα = ρprΓ
p + ρmr Γm = 0. (4.30)

Assuming that the real densities of actin are the same in its monomer and polymer form

(ρmr = ρpr), the mass equation for the mixture finally becomes:

∇ · Jf +∇ · Jm +∇ · v = 0. (4.31)

4.4.3 Mass transport through the cytoskeleton

Mass transport within the cytoplasm is an important player in both the passive me-

chanical response of cells and the dynamics of cell contraction. For instance, mechanical

testing procedures, such as micropipette aspiration, clearly exhibit a time-dependency that

is usually attributed to a combination of the intrinsic visco-elasticity of the cytoskeleton

and the flow driven deformation of the cytoplasm. In terms of cell morphology, it is likely

that cytosol flow governs the number and size of cell protrusions. Indeed, Weiss [172], in

his analysis on the shape of mesemchymal cells, explained the development of cell exten-

sions (or filopodia) in terms of competitive mechanisms based on the amount of cytosol each

protrusion could intake. Complex interactions may exist between the transport and fluid

and that of dissolved species, which may result in a quite complex problem. However, it is

important to make a few simplifying assumptions for the sake of clarity. The present analysis
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is then based on the following points. First, assuming that the concentration of G-actin in

the cytosol is small, it is reasonable to say that actin monomers transport does not affect

the interstitial flow of cytosol. In other words, cytosol flow can be expressed only in terms

of a differential of pressure though Darcy’s law as follows:

Jf = −K

µ
· ∇p (4.32)

where K is the permeability tensor that depends on the porosity and anisotropy of the

cytoskeleton and µ is the dynamic viscosity of the cytosol. Further assuming that the

anisotropy of SF does not affect the permeability (this assumption can be relaxed in a

future study), an isotropic permeability κ is considered such that K = κI, where I is the

identity tensor. In addition, the transport of G-actin monomers is assumed to arise from

two mechanisms: (a) convection with the cytosol and (b) diffusion through the cytosol with

a diffusion coefficient D. One can therefore write:

Jm = −φ
m

φf
κ

µ
∇p− φfD∇

(
φm

φf

)
. (4.33)

This above relationship implicitly assumes that there are no interactions between G-actin

monomers and the cytoskeleton, an assumption that is reasonable with the small relative

size of G-actin monomers compared to cytoskeleton mesh-size. Equation (4.33) shows that

the diffusion constant D has a role in controlling the rate of cell contractility by providing

more or less resistance to the flux of monomers towards the site of SF polymerization.

4.4.4 Mass exchange and SF formation

Actin polymerization and SF formation are anisotropic processes that strongly depend

on the level of contractile stress in existing SF. The rate of SF polymerization Γθ is therefore

derived based on the following assumptions: (a) the chemical reaction between G-actin and

F-actin is described by a first-order kinetic equation and (b) the rate of SF formation is

affected by the magnitude of contractile stress T pθ in direction θ. The latter statement is
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the main assumption of this chapter and will be shown to be responsible for the mechano-

sensitivity of cell contraction. The rate equation describing the chemical equilibrium of SF

is then written in terms of rates of formation kf and dissociation kd of F-actin as:

Γpθ =
Ma

ρa
(
kfcm − kdcpθ

)
where kf = kf (T pθ ) (4.34)

where Ma and ρa are the molar mass and real density of actin, assumed to be the same in

its polymer (p) and monomer (m) configuration. Furthermore, the concentrations cpθ and cm

are related to the respective volume fractions of SF and G-actin monomers by:

cpθ =
ρa

Ma
φpθ and cm =

ρa

Ma

φm

φf + φm
≈ ρa

Ma

φm

φf
. (4.35)

Note that the concentration of F-actin is taken as the number of moles per unit volume of

mixture while the concentration of G-actin is the number of moles of G-actin per unit volume

of cytosol-G actin mixture. To characterize the rise in SF polymerization with contractile

stress T pθ , we introduce a linear approximation of the function kf (T pθ ) appearing in (4.34)

as:

kf (T pθ ) = kf0 + kf1T
p
θ (4.36)

where the constant kf0 denotes the rate of F-actin formation in absence of contractile stress

and kf1 > 0 measures the increase in polymerization rate with contraction T pθ . Combining

the definition of the SF production tensor (4.22) with equations (4.34) and (4.36), and using

(4.35), it is possible to derive the following expression for Γp:

Γp = 〈〈Γpθ〉〉 =

(
1

2
kf0 I− kf1 Tp

)
φm

φf
− kd0Φp (4.37)

where the contractile stress Tp from SF is defined as the directional average of the contrac-

tions stress T pθ from individual SF as:

Tp = 〈〈T pθ 〉〉. (4.38)

Equation (4.37) is a critical component of the proposed model as it describes the evolution

of SF concentration and distribution in the cell in terms of the level of contractile stress.
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Indeed, combining (4.37) and (4.27), the following evolution equation is obtained for Φp

DΦp

Dt
=

(
1

2
kf0 I + kf1 Tp

)
φm

φf︸ ︷︷ ︸
force dependent formation

− kd0Φ
p︸ ︷︷ ︸

dissociation

− Φp∇ · v︸ ︷︷ ︸
volume change

. (4.39)

This expression clearly shows that SF formation in various directions depends on the avail-

ability of actin monomers (through φm), the concentration of existing SF (through Φp) and

the level of contractile force (through Tp). Finally, the last terms in (4.39) characterizes

the change in fiber concentration with volumetric deformation of the cell (through the term

∇ · v).

4.5 Force generation and mechanical equilibrium

The generation of active forces by SF plays a significant role in the process of mechano-

sensing and cell deformation. Indeed, mechanical force and resulting deformation play two

major roles in cell contraction. First, as seen in (4.39), mechanical stress induces SF for-

mation, which directly affects the magnitude of contraction. Second, because SF possess a

sarcomeric structure similar to that found in myofibrils of muscle cells, contractile forces are

very likely to be highly dependent on the strain-rate and current length of SF, as predicted

by cross-bridge dynamics models [22]. To incorporate these mechanisms into the proposed

model, this section concentrates on key mechanical aspects of the problem by (a) writing

the force equilibrium between the four constituents present in the cell and (b) introducing

constitutive relations for SF contraction and cytoskeleton deformation.

4.5.1 Mechanical equilibrium of the cell

Let us first consider the mechanical equilibrium of the cell by writing the balance of

momentum associated with each constituent. Introducing Tα as the partial Cauchy stress

associated with constituent α, the momentum balance for each constituent can be written

[29] :

ρα
Dαvα

Dt
= ∇ ·Tα + ραb + fα (4.40)
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where b is the external force per unit mass of constituent α and fα represents forces (per unit

volume) acting on constituent α due to its interactions with other constituents. Assuming

that at the mixture level, the net force resulting from interactions between constituent must

vanish, the following equality must hold:

4∑
α=1

fα = 0. (4.41)

Furthermore, due to the slow time scales associated with cell motion, inertial forces on each

constituent may be neglected; this implies that the left hand term in (4.40) can be neglected.

The equilibrium of the mutiphasic mixture can then be obtained by adding the contributions

(4.40) from each constituent; this yields the following form:

∇ ·T + ρb = 0 (4.42)

where the total Cauchy stress T contains a contribution from each constituent (Fig. 4.4):

T =
4∑

α=1

Tα = Ts + Tf + Tm + Tp. (4.43)

Here, Ts may be interpreted as the passive stress arising from cyoskeleton deformation, Tp

is the contractile stress exerted by SF and Tf results from the pressurization of the cytosol

such that

Tf = −φfpI (4.44)

where p is the cytosol pressure. In this study, the partial pressure Tm due to the presence of

G-actin monomers is neglected because of the low concentration of G-actin monomomers in

the cytosol. It is also important to mention that since each constituent verifies the balance

of angular momentum, partial stresses Tα (and therefore T) are symmetric tensors.

4.5.2 Active contraction of SF

Let us discuss the contractile stress Tp originating from the tension developed in SF through

acto-myosin interactions. Noting that there are strong similarities between the sarcomeric
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Figure 4.4: Decomposition of the Cauchy stress.

structure of SF and that of myofibriles (in myocytes), one may borrow the extensive body of

knowledge on the mechanics of cross-bridge models describing acto-myosing contraction in

muscle cells. Considering a one-dimensional SF undergoing contraction, the developed force

T is known to be dependent of two quantities: the change of fiber length (the relationship is

known as the length-tension relationship [22]) and the rate of change of fiber length (known as

the velocity-tension relation [81]). In this work, we introduce a model describing the uniaxial

contractile stress T p in fibers in terms of their normal strain ε (measuring the change in fiber

length) and strain-rate ε̇ (measuring the rate of fiber shortening during contraction). In

general, the tension T p can be written in the form:

T p

T̄
= T ? (ε, ε̇) (4.45)

where T̄ is the isometric contraction associated with a single SF in its original length (ε = 0)

and a vanishing strain rate (ε̇ = 0). In other words, the function T ? verifies the equal-

ity T ? (0, 0) = 1. The derivation of function T ? is now presented based on conventional

knowledge of sarcomere contraction.

Length-tension relation. The length-tension relation describes a drop in active acto-

myosin contraction T as the length of sarcomere deviates from its original value. Consistent

with prediction from the sliding filament theory, sarcomeres exert the highest contractile

stress T when ε = 0 (or ` = `0) and this force decreases in a nonlinear fashion as the strain

deviates from 0, either in a positive or negative manner.

Remark: Note that because SF form at different times, they are usually characterized by
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Figure 4.5: Active and passive response of a SF . The uniaxial contractile stress is T p and
the normal strain ε is a function of the ratio of the final fiber length ` and initial fiber length
`0.

different natural configurations (or stress-free state) [109]. Since the change of length of

a single SF is measured with respect to its natural configuration, the tension T ? cannot

generally be measured in terms of ε. In the present approach, it is assumed that SF formation

occurs in a way such that their natural configuration is the same at that of the cytoskeleton

and thus the strain ε is a good measure of change in length. While this assumption has been

applied as a mean to simplify the proposed model, it can be relaxed in future studies by

computing the stress from new SF in terms of a time integral as suggested by Humphrey

and Rajagopal in [86]

Furthermore, when stretched, SF develop a passive stress that acts in a similar way cables

resist tension. However, because resistance in compression is negligible as fibers become

slack, the passive behavior of SF is described as follows: (a) for negative strains, passive

stress is zero and (b) for tensile strain, SF exhibit a strain hardening response. The active

and passive response of SF is summarized in Fig. 4.5. Considering the case of isometric

tension (ε̇ = 0), the change of tensile stress in a SF is written:

T ? (ε, 0) = f(ε) where f(ε) =

 e
−
(
ε
ε0

)2

if ε < 0

e
−
(
ε
ε0

)2

+
(
ε
ε1

)2

if ε ≥ 0
(4.46)

where the constant ε0 describes how quickly contraction decreases as strain deviates from
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zero and ε1 characterizes the passive strain hardening of SF. Note that the above function

is such that f(0) = 1, in order to satisfy the fact that T ? (0, 0) = 1. Fig. 4.6a shows the

relationship between T ? and scaled strain ε/ε0 considered in the proposed model (in the case

of isometric tension).

Figure 4.6: (a) Strain-tension relationship f(ε) and (b) strain-rate tension relationship g(ε̇)
are used in the study to capture the length and velocity-tension relation, respectively, observed
in muscle cells.

Velocity-tension relation. The rate at which a fiber shortens is also known to affect the

magnitude of the contractile force. Typically, contraction declines in a hyperbolic fashion

as the rate of shortening increases (ε̇ < 0) and ultimately vanishes for very high rates of

shortening [81]. However, as a sarcomere lengthens (ε̇ > 0), it is found that contraction

increases and reaches a value well above the isometric tension for high values of positive

strain rate. To characterize this behavior, we introduce a function g that describes the

change in contraction T with strain rate in the particular case of a vanishing strain ε (i.e.,

the fiber length is the initial length `0)

T ? (0, ε̇) = g(ε̇) = 1 +
ε̇/ε̇0√

(ε̇/ε̇0)2 + 1
. (4.47)

As seen in Fig. 4.6b, function g is antisymmetric and verifies the following criteria: (a)

g → 0 as ε → −∞, (b) g → 2 as ε → +∞ and (c) g(0) = 1. In other words, the

maximum contractile stress that can be developed by the fiber is twice the isometric tension
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T̄ . Literature on muscle mechanics [22] has shown that in reality, the force-velocity curve

is not exactly antisymmetric but this aspect does not affect the main concepts presented in

this chapter.

Uni-directional model of fiber contraction. While the above models are proposed at

constant strain rate or constant strain, respectively, in general, fiber contraction is affected

by both fiber strain and its rate simultaneously. Assuming that the effects of strain and

strain rate on fiber tension are completely independent, it is possible to derive a general

model that defines T ? as the product of functions f and g defined in (4.46) and (4.47). This

yields:

T ? (ε, ε̇) = f(ε)g(ε̇) =


(

1 + ε̇/ε̇0√
(ε̇/ε̇0)2+1

)
e
−
(
ε
ε0

)2

if ε < 0(
1 + ε̇/ε̇0√

(ε̇/ε̇0)2+1

)(
e
−
(
ε
ε0

)2

+
(
ε
ε1

)2
)

if ε ≥ 0
. (4.48)

We give a three-dimensional representation of contraction in terms of ε and ε̇ in Fig. 4.7.

Figure 4.7: Three-dimensional representation of the cell contraction T ? as a function of SF
strain ε/ε0 and strain rate ε̇/ε̇0.

Contraction of the SF network. The above model is able to characterizes the contraction

of a single SF but does not describe the contraction of an anisotropic network. This issue

can be addressed by relating the contraction of a single SF to the contractile stress tensor

Tp, as follows. First, we write that the uniaxial contractile stress T pθ in a specific direction
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θ in terms of the volume fraction of SF and the stress T = T̄ T ? in each individual fiber as:

T pθ = φθT̄ T
?. (4.49)

Second, the stress tensor Tp is derived from the averaging equation defined in (4.38): Tp =

〈〈T pθ 〉〉. Referring to the definition of the averaging operation (4.12), the stress Tp can then

be found in terms of the Green-Lagrange strain tensor E and its material time derivative Ė

by computing the integral:

Tp
(
E, Ė

)
=

T̄

π

∫ π/2

−π/2
φpθ T

? (εθ, ε̇θ) Mθ dθ (4.50)

where εθ = E : Mθ and ε̇θ = Ė : Mθ.

Here, we used the fact that the tensile strain (and its rate) in a certain direction can be

found through a double tensor contraction “ : ” with the matrix Mθ. The above integral can

be determined computationally using the Von-Mises distribution and the state of strain and

strain rate at a material point. Relation (4.50) therefore clearly establishes a link between

contractile stress, fiber distribution and the underlying molecular mechanisms of the cross-

bridge dynamics.

4.5.3 Cytoskeleton elasticity

According to the velocity-tension relation, it is clear that contractility is promoted by

a scenario in which the rate of SF shortening is limited. There are two elements that con-

tribute to the resistance of contractile deformation: the passive cytoskeleton and the under-

lying substrate (through cell-matrix attachments provided by focal adhesions). The passive

cytoskeleton consists of a filamentous network that can resist actin contraction through the

mechanical balance between compressive elements (microtubules), tensile elements (actin

and intermediate filaments) and cytosol pressure. These contributions should be accounted

for in the description of the cytoskeleton stress Ts through the constitutive relation. Ac-

cording to the effective stress principle [29], this stress is decomposed into pressure and an
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effective stress Ts
e carried by the dry cytoskeleton as follows:

Ts = −φspI + Ts
e (E) . (4.51)

Assuming an isotropic passive cytoskeleton, the effective stress can be related to deformation

E through an isotropic, linear elastic relation. More complex behavior of the cytoskeleton

(including its known nonlinear visco-elastic response) may be added to the present model in

future studies. Concentrating on a simple hypo-elastic constitutive behavior, an objective

rate of the effective stress TσJ
e is written

TσJ
e = C

σJ

: D (4.52)

where the rate of deformation is given by D = F−T · Ė · F−1, F is the deformation gradient

and a superposed dot refers to the material time derivative with respect to cytoskeleton

motion. For isotropic flimentous network, the fourth-order elastic matrix CσJ is written in

terms of the Lame constants λ and µ as:

CσJ
ijkl = 2 (µ− λ lnJ) δikδjl + λ δijδkl. (4.53)

where δ is the Kronecker delta. The above matrix can be rewritten in terms of the Young’s

modulus E = µ(3λ + 2µ)/(λ + µ) that can generally be measured from mechanical testing

of cell deformation. It is also important to mention that while the material response of the

cytoskeleton is based on linear assumptions, the relation between force and displacement is

nonlinear due to geometrical effects associated with finite deformation.

4.6 Model prediction

In this section, we propose to use the multi-physics model to investigate the behavior

of cells and their interaction with an external mechanical environment (or support). We

are particularly interested in understanding how cell contraction and force generation is

affected by the stiffness of the support as predicted by experiments. For this, we consider
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two situations: (a) the case of homogeneous contraction of a square cell and (b) the case of

a square cell supported by elastic springs at its four corners.

4.6.1 Non-dimensionalization and solution strategy

Before assessing the physical behavior of the system, we recognize that the above model

possesses a certain number of parameters, whose respective role in the cell’s behavior may

be challenging to assess. To simplify the approach, one can scale these parameters with

respect to characteristic time, dimension and force that are inherent to cellular systems.

Let t0 = 1/ε̇0, `0 and T0 = T̄ be the scales of time, length and force, respectively. The

non-dimensional variables (denoted with the superscript “?”) are then defined as:

t? =
t

t0
= ε̇0t x? =

x

`0

Tα? =
Tα

T0

=
Tα

T̄
(4.54)

v? =
v

ε̇0`0

Ė? =
Ė

ε̇0
p? =

p

T̄
Jα? =

Jα

ε̇0`0

. (4.55)

In addition, the non-dimensional material parameters (diffusion coefficient, permeability,

cytosol viscosity, stiffness and rate constants) are given by:

D? =
D

ε̇0`2
0

κ? =
κ

`2
0

µ? =
ε̇0
T̄
µ C? =

C

T̄
(4.56)

kd? =
kd

ε̇0
kf?0 =

kf0
ε̇0

kd?1 =
T̄

ε̇0
kd1 . (4.57)

The physical state of a material point in the cell is determined by the four following fields:

the non-dimensional velocity v?, cytosol pressure p?, fraction of G-actin monomers φm? and

SF structure tensor Φp?. These fields are solutions of the system of coupled non-dimensional

partial differential equations derived in this chapter that consists of (a) momentum balance
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(4.40), (b) mixture mass balance (4.31), (c) cytosol mass balance (4.25) and (d) mass balance

of SF (4.27) as follows:

∇? · (Ts? + Tp? − p?I) = 0 (4.58)

Dφf?

Dt?
− κ?

µ?
∇?2p? + φf?∇? · v? = 0 (4.59)

−κ
?

µ?
[
(1 + cm)∇?2p? +∇?cm · ∇?p?

]
−D?∇? ·

(
φf?∇cm

)
+∇? · v? = 0 (4.60)

DΦp?

Dt?
−
(

1

2
kf?0 I + kf?1 Tp?

)
φm

φf
+
(
kd?0 +∇? · v?

)
Φp? = 0 (4.61)

where the constitutive relation for cytosol and monomer transport were used and φm =

Ma

ρa
φfcm. Boundary conditions must be applied in order to describe the applied traction te

on the cell boundary (written in terms of the total stress T) and ensure that there is no flux

of cytosol and actin monomers across the cell membrane Γ:

T · n = te, Jf · n = 0, Jm · n = 0 (4.62)

where n denotes the outward unit vector to Γ. These equations can be solved using a nonlin-

ear implicit finite element formulation, the details of which will be introduced in a companion

chapter [54]. Finally, simulation results shown in the next section were obtained using the

parameters shown in Table 4.1. Regarding model constants, the isometric contractile force

and cross-sectional area of SF are estimated to be around 600pN [156] and 0.03µm2 [175, 94],

respectively. The isometric stress(T̄ ) can therefore be calculated to be on the order 20000Pa

(which is the value chosen in our simulations).

4.6.2 Homogeneous cell contraction

In vivo, most contractile cells adopt a polarized elongated morphology, characterized

with strongly oriented SF (aligned along the principal direction of the cell) that drive the

direction of contraction. The first example concentrates on such an elongated cell that

deforms uniaxially and homogeneously in a constrained environment for which the details
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Definition Symbol Value unit Reference
Cytosol volume fraction φc 70 % [2]
Cytoskeleton volume fraction φs 25 % n/a
F+G actin volume fraction φm + φp 5 % n/a

Rate of SF formation kf0 0.0001 sec−1 [130]

Mechano-sensitive rate of SF formation kf1 0.05 sec−1 [130]
Rate of SF dissociation kd0 0.1 sec−1 [130]
Cytoskeleton permeability κ/µ 1 · 10−15 m4/N · sec [69]
G-actin diffusion constant D 1 · 10−5 m2/sec [130]
Young’s modulus E 70 Pa [37]
Poisson’s ratio ν 0.3 [37]
fiber maximum tensile stress T̄ 20000 Pa [175, 94, 156]
model constant ε̇0 0.01 sec−1 [37]
model constant ε 0.1 [22]
F/G molar mass ratio Mp/Mm 100 n/a
F/G true density ratio ρpR/ρ

m
R 1 n/a

Table 4.1: Parameters used in the simulations.

of the geometry and constraints are shown in Fig. 4.8. In this problem, cell-substrate

adhesion are modeled as rigid connections between the cell and a set of linear elastic springs

that characterize the stiffness of the underlying substrate. Because of its one-dimensional

feature, this problem is used as a benchmark to assess how the proposed formulation captures

cell contraction and quantify the influence of various model parameters.

The first analysis aims at evaluating the effect of the stiffness of the cell support (represented

by the nondimensional parameter K? = K/
(
T̄ `0

)
) on cell contraction. Fig. 4.9 shows the

time evolution of cell deformation, contractile stress and fiber anisotropy for various values

of K? ranging from 0 to very large values. Generally, these results show that from its

original state (no contraction and no SF), a cell tends to develop a SF network and generate

increasing contractile force in time, until it reaches a steady state. Furthermore, one can see

that there is a clear relationship between cell contractility (represented by stress component

T p11), SF anisotropy (Φp
11) and substrate stiffness K?. For large spring stiffness, the cell

can only undergo very small strains (and strain rates), which results in a quasi-constant
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Figure 4.8: (a) The geometry of the cell and boundary conditions. The cell of length `0 =
40µm is free to contract in the vertical direction but is constrained in the horizontal direction
by linear springs of stiffness K. b) Generated SF at steady state.

SF contraction as described by the length-tension and velocity-tension relationships. This

large contraction, in turn, triggers the formation of additional fibers that contribute to a

rise in contraction. Steady state is finally reached when the majority of G-actin monomers

are consumed by the G-actin/SF reaction. On the contrary, a soft mechanical environment

(K? → 0) results in large contractile strains and a decrease in both fiber formation and

contractile stress. Moreover, the distribution of SF (represented by Φp
11) varies from a

totally isotropic network (Φp
11/φ

p = 0.5) to an extremely horizontally oriented network

(Φp
11/φ

p → 1) as spring stiffness increases. This clearly shows how SF align in the directions

of maximum stiffness.

The next analysis concentrates on assessing the role of mechano-sensitivity of SF for-

mation (represented by the rate constant kf1 introduced in (4.36)) on cell contractility for a

constant spring stiffness K? = 0.01. Since increasing kf1 promotes SF formation in direction

of maximum contraction, it is associated with a rise in fiber formation, contractile stress

and deformation along the horizontal direction. We also note that when kf?1 vanishes, SF

formation is insensitive to contraction, which results in a totally isotropic fiber distribution

(Φp
11/φ

p = 0.5) and a very low contraction (which arise from the rate of fiber formation kf0 ).

This clearly shows that kf1 is a critical parameter in capturing the mechano-sensitivity of cell

contraction.

To better understand the main trends exhibited by the model, the last analysis focuses on
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Figure 4.9: Time evolution of cell deformation, contractile stress and SF anisotropy for
different values of support stiffness K?.

assessing the steady-state value of strain, contractile stress and fiber distribution variation

with spring stiffness and rate constant kf?1 . The results displayed in Fig. 4.11 can be

summarized as follows:

• Cell contraction increases with substrate stiffness in a nonlinear fashion until it

reaches a maximum value. This value is determined by the initial quantity of actin

monomers that can polymerize into SF.

• The intensity of cell contraction and deformation is determined by the mechano-

dependent rate of fiber formation kf?1 and the isometric stress T̄ in each SF.

• SF distribution becomes increasingly anisotropic with a rise in spring stiffness and

mechano-dependent rate of fiber formation kf?1 . This is explained by the fact that

new fibers are formed in the directions of maximum contractile stress, which in turn

increases the contraction in this particular direction. This feed-back mechanism is

key to understand cell contraction.

4.6.3 Contraction of a square cell attached at its corners

The next example concerns the contraction of a square fibroblast that is constrained

at its corners by elastic supports (Fig. 4.12) characterized by a non-dimensional stiffness
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Figure 4.10: Time evolution of cell deformation, contractile stress and SF anisotropy for
different values of mechano-sensitivity coefficient kf1 .

K? = K/
(
T̄ `0

)
. This situation has been previously studied both experimentally by Tan

and coworkers [150] as well as Bischofs et al. [16] and theoretically by Deshpande et. al.

[37, 38]. This example is particularly interesting since it involves heterogeneous cell defor-

mation and the development of a spatially varying SF network. Further, due to the simple

geometry and experimental reproducibility, this problem can be used as a benchmark to

assess model prediction in terms of contraction, SF distribution and characteristic time-

scales. The solution is obtained using a mixed-finite element procedure [1] for which nine

node elements are used to describe solid velocity fields while four nodes are used to repre-

sent pressure and actin monomer concentration. Large deformations are handled with an

updated Lagrangian formulation, that consists of updating the reference configuration of the

cell at each time step, therefore facilitating the treatment of the mapping between different

material configurations [8]. Finally, time integration is performed with an implicit Backward

Euler integration scheme, coupled with a Newton procedure to obtain a solution at each time

step. The presented results are obtained after discretizing the cell domain into nine-node

elements as shown in Fig. 4.12. Element size was chosen to give satisfactory convergence

while minimizing the computational cost. More details on this procedure are given in a

companion paper [54].

Starting from out-of-equilibrium initial conditions (φp = 0 at t = 0), the solution shows that
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Figure 4.11: Effect of support stiffness on steady state cell deformation, contractile stress
and SF anisotropy for different values of mechano-sensitivity coefficient kf?1 .

cell contraction originally occurs at fast rates that tends to decay in time in order to reach a

steady-state solution for which contraction is maximum. This choice initial condition (out-of

equilibrium) is critical to observe cell contraction as it triggered the original SF formation,

responsible for the beginning of the positive feedback loop described above. Indeed, no

contraction is observed if the initial conditions satisfy both mechanical and chemical equi-

librium. However, real cells are known to constantly be out-of-equilibrium, and a change

in chemical equilibrium may be enough to start the positive feedback loop observed in the

model. Our results suggests that support stiffness has a significant effect on SF formation

and distribution. To illustrate this, Fig. 4.12 shows the steady-state cell deformation and the

associated SF network for three characteristic support stiffness: K? = 5 ·10−6, K? = 5 ·10−4,

and K? = 0.15. These results indicate that as K? increases, the following observations can

be made:

• SF concentration increases and their orientation is more and more pronounced along

directions of maximum stiffness. Indeed, as substrate stiffness increases, boundary

conditions on the cell range from an isotonic situation (the cell can deform under the

load) to an isometric situation (the cell deformation is prescribed by its support).

The velocity-tension relation indicates that the isometric situation results in the
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development of strong contractile stresses, which then promote the polymerization

of SF (through the mechano-sensitive rate of formation). On the contrary, isotonic

situation (especially at small stiffness) decreases contraction and consequently, SF

formation.

• Cell morphology tends to become more “stellate” with increasing membrane curva-

ture between attachments. In this context, we note that experimental observation of

cell morphology exhibits a uniform curvature [16], a feature that is not predicted by

the results shown in Fig. 4.12. This discrepancy can be attributed to the fact that

surface elasticity of the cortical membrane has been neglected in the present model.

However, we show in another study [166] that including the effects of membrane elas-

ticity result in uniform surface strains and curvature, consistent with experimental

observations.

• Contractile forces applied to the external supports rise in a nonlinear fashion (Fig.

4.13) until they reach a maximum value (that can be shown to be determined by

the initial amount of G-actin in the cell and the dissociation rate constant kd). This

result may be compared with experimental observations by Ghibaudo et al. [62]

of the dependency of cell contractility on support stiffness using micro-patterned

substrates (micro-pillars). While quantitative comparison cannot be established here

due to differences in cell size and morphology, the results show that the model

captures both the order of magnitude of contractile forces as well as the trends in

substrate stiffness-cell contraction relationships.

An important consequence of the observed behavior is that the mechanical work performed

by the cell is optimized for a specific range of substrate stiffness. To illustrate this, we

computed the average work W done by the cell as:

W = 4Fδ (4.63)
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where F and δ are the average force and displacement of focal adhesion, respectively. The

number 4 arises due to the fact that the square cell has four focal adhesions. Numerically

computing W in terms of spring stiffness clearly shows that an optimum stiffness for our

system is located around 1nN/µm ≤ K ≤ 10nN/µm as show in Fig. 4.14, a results that

qualitatively correlates well with experimental studies on cardiac cell contractions [51]. This

behavior may be explained by the fact that at low substrate stiffness, very little force is

generated by cells (F ≈ 0) and thus no work is performed while at high stiffness, cell

cannot generate substrate deformation (δ = 0) which also implies a vanishing work. The

intermediate substrate stiffness which optimizes both force and displacement is most of the

time preferable for certain cell phenotypes. Understanding such processes is critical for the

design optimized artificial gels for tissue engineering [51].

4.6.4 Effect of cell morphology on cell SF structure

Recent experiments on contractile cells (such as cardiomyocyte) have shown that a strong

correlation exists between cell shape and structure [18, 117], indicating that cell function, and

in particular contractility, is strongly affected by geometrical factors. This section consists

of assessing the prediction of the proposed model in that respect. For this, as a mean

of comparison with experimental tests [18, 117, 61, 19], we consider three different cells

(Fig. 4.15) each characterized by their own morphology (square, rectangular and triangular

shapes) and focal adhesions distribution. In particular, we assume here that a cell adheres to

a rigid substrate at specific locations (cell corners), which results in constraining the motion

of material points on adhesion islands, represented by black dots in Fig. 4.15a. Initial and

boundary conditions are similar to those applied in the previous example.

As depicted in Figs. 4.15 the proposed model is able to capture the general SF organization

observed in experiments for various cell morphology ([18, 117, 61, 19]). Both Figures 4.15b

and 4.15c show that SF are mostly generated in directions that are restricted in terms of
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elongation, i.e. lines between the adhesion islands. As discussed in the previous section, this

is explained by the fact that the rate of cytoskeleton’s contraction along these directions is

very small (close to zero) and thus promotes contractility and SF generation. Overall, these

results indicate that interactions between SF formation and mechanics, as described by the

proposed model, are sufficient to accurately reproduce key features of cell organization and

force generation observed in experiments.

4.7 Concluding remarks

To summarize, this chapter presents a mixture framework that aims at describing the

processes by which contractile cells are able to sense their mechanical environment (through

stiffness) and react by adjusting the amount of contractile force they generate. By describing

the cell’s body as a mixture of four critical contractile elements, the proposed model is able to

accurately capture the interplay between both mechanical and chemical mechanisms taking

place in cells. The key features of the approach are:

• SF contraction is described by the velocity-tension and length-tension relationships

arising from cross-bridge dynamics

• SF formation arises from mass exchange with dispersed globular actin monomers

and is assumed to depend on the tension in existing SF. This aspect is the main

assumption of the model regarding the mechano-sensitivity of contraction. Cytosol

and globular actin transport is described by conventional diffusion-convection type

laws

• Cell contraction is described in terms of both passive elasticity of the cytoskeleton

and active contractile stress from a statistical distribution of SF.

The model exhibits a positive feedback mechanism resulting between mechanical-

chemical interplay between constituents. Contractile stress (that depends on strain-rate
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through the tension velocity relationship) promotes SF formation and SF formation results

in increasing contraction. This loop eventually ends when the stock of available globular actin

for SF formation is depleted. The solution to the model shows that this chemo-mechanical

cross-talk could be responsible for the sensitivity of cell contraction on substrate stiffness.

In other words, the proposed model may be used as a first step to characterize the interac-

tions between a contractile cell and its environment, which is an important feature of the

processes of tissue remodeling, would healing and morphogenesis. In addition, the present

study has shown how multiscale principles [164](homogenization) and multiphasic mixture

concepts can be extended to investigate the active behavior of cells. This approach is very

promising as various physical processes including chemistry, mechanics and transport and

their interactions can be described in a consistent framework that satisfy basic conservation

principles (balance of mass, momentum and energy).
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Figure 4.12: SF volume fraction φp and distribution at steady-state for three values of support
stiffness (ranging from very low to very high). The principal direction of SF are indicated by
lines and the parameter η refers to the degree of anisotropy (η = 0.5 for an isotropic network
and η = 0 for an unidirectional fiber direction). The polar fiber distribution (φpθ(θ)) is also
shown for 5 characteristic points in the cell.
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Figure 4.13: Steady-state contractile force F at focal adhesions as a function of support
stiffness K? as predicted with the proposed model. The steady-state morphology and corre-
sponding SF distribution are are shown for characteristic values of K?. For comparison,
experimental results from Ghibaudo et al. [62] on the variation contractile forces in terms of
pillar stiffness (spring constant) are also reported.

Figure 4.14: Mechanical work of the cell in terms of substrate stiffness : Qualitative compar-
ison of model prediction and experiments on cardiomyocytes [51]
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Figure 4.15: Effect of cell morphology on SF distribution. (a) Definition of focal adhesion
complexes, boundary conditions and finite-element discretization (`0 = 40µm). (b) Computed
SF orientation and density for three different shapes and (c) comparison with experimental
observations of fibril distribution in cardiomyocytes by Parker and co-workers [18, 117, 61,
19]



Chapter 5

An XFEM-based numerical strategy to model mechanical interactions between

biological cells and a deformable substrate

5.1 Abstract

Contractile cells are known to constantly probe and respond to their mechanical envi-

ronment through mechano-sensing. While the very mechanisms responsible for this behavior

are still obscure, it is now clear that cells make full use of cross-talks between mechanics,

chemistry and transport in order to organize their structure and generate forces. To inves-

tigate these processes, it is important to derive mathematical and numerical models that

can accurately capture the interactions between cells and an underlying deformable sub-

strate. The present chapter therefore introduces a computational framework, based on the

extended finite element (XFEM) and the level-set method to model the evolution of two-

dimensional (plane-stress) cells lying on an elastic substrate whose properties can be varied.

Cells are modeled with a continuum mixture approach previously developed by the authors

to describe key phenomena of cell-sensing, such as stress-fiber formation, mechano-sensitive

contraction and molecular transport while cell-substrate adhesion is formulated with a linear

elastic cohesive model. From a numerical view-point, cell and substrate are discretized on a

single, regular finite element mesh, while the potentially complex cell geometry is defined in

terms of a level-set function that is independent of discretization. Field discontinuities across

the cell membrane are then naturally enforced using enriched shape functions traditionally

used in the XFEM formulation. The resulting method provides a flexible platform that can
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handle complex cell geometries, avoid expensive meshing techniques, and can potentially

be extended to study cell growth and migration on an elastic substrate. In addition, the

XFEM formalism facilitates the consideration of the cell’s cortical elasticity, a feature that

is known to be important during cell deformation. The proposed method is illustrated with

a few biologically relevant examples of cell-substrate interactions. Generally, the method is

able to capture some key phenomena observed in biological systems and displays numerical

versatility and accuracy at a moderate computational cost.

5.2 Introduction

Tissue structure and dynamics are the result of intense mechanical cross-talks between

contractile cells and their surrounding matrix but the underlying mechanisms of such interac-

tions are not understood yet. This has hindered critical research advances to translate tissue

engineering to a wide varieties of tissues, in which tissue development depends on mechanical

forces, extra-cellular matrix (ECM) properties and initial specimen geometry [4]. Number of

studies [55, 148, 114] have shown that the contractility of cells was responsible for the large

deformations observed in artificial tissues soon after cell encapsulation. It was further found

that these deformations were associated with significant changes in cells morphology and

ECM structure and were strongly dependent on the mechanical environment of the tissue

(such as tissue stiffness, stress and deformation). This behavior is readily observed during the

alignment of cells and collagen fibers in directions of maximum tensile stresses [170, 65, 26]

and maximum effective stiffness. A key to understand these phenomena resides in our ability

to characterize how cells interact with their environment, and especially how they are able

to sense their mechanical surrounding and react by producing contractile forces. Recent

advances in cell mechanics, combined with latest developments in computational mechanics

may provide critical tools to study cell-matrix interactions. The objective of this chapter is

therefore to propose a numerical approach that can naturally describe how cells of arbitrary

morphologies can sense the mechanical properties of their environment, and respond to it
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applying mechanical forces.

Mechanical models of cells can generally be split in two categories: formulations based

on prestress fibrous network [107, 14] and those based on continuum mechanics [110, 166].

Due to their flexibility, continuum models are thus far been successful at capturing the

chemo-mechanical interactions responsible for the mechano-sensitivity of cells ([37, 39]). For

instance, mixture models have proved very efficient at accurately characterizing certain key

mechanisms of cell behavior, including transport, chemical reaction and mass exchange [165].

In addition, the role of the cortical membrane surrounding the cell, known to be a critical

player in cell deformation, has been the object of several modeling investigations. Models

based on fibrous network mechanics have been the first to provide compelling arguments

onto the role of membrane stiffness on cell curvature [14]. However, more recently, we have

shown that continuum models can naturally incorporate the effect of cortex stiffness with

a surface elasticity formulation based on the extended-finite element method [163]. The

issue of modeling mechanical interactions between cells and a substrate have mostly been

achieved by via cohesive laws in finite element models. ([103, 125, 178, 176]).While successful

at capturing interesting behaviors such as debonding, this strategy generally suffers from the

fact that cell and substrate are defined on two distinct domains that typically exhibit complex

geometries and possibly evolve in time. In many cases, such methods consequently leads to

potential meshing issues and require a very fine discretization to reach accurate results.

To fill the gap, the present chapter introduces a continuum formulation, combined

with a numerical approach based on the Extended Finite Element (XFEM) and the levelset

methods to study the mechanical cross-talks between contractile cells (fibroblasts) and a two-

dimensional deformable substrate. The mechano-chemistry of cell contraction is described in

terms of a constrained mixture formulation that was recently developed by the authors [165]

to capture the phenomena of mechano-sensitive stress-fiber (SF) formation (and dissociation)

and contraction. In short, the model is based on the description of the contractile apparatus
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of cell in terms of two solid constituents: the cytoskeleton and a population of contractile

stress fibers as well as two fluid constituents: the cytosol and soluble contractile units (that

can polymerize into stress fibers). The interactions between a cell and its substrate are

possible through localized adhesive regions, known as the focal adhesion. From a numerical

view-point, the complicated problem of the interactions between two domains (cell and

substrate) of different geometry and constitution is greatly simplified by using the advantages

of XFEM [43, 105, 9]. Without loss of generality, considering cell and substrate as by two-

dimensional domains satisfying plane-stress conditions, we introduce a single finite element

mesh for both domains. Cell geometry is then defined in terms of an analytical levelset

function defining the contour of cell boundary independently of discretization. Degrees of

freedom pertaining to cell are then only associated with nodes belonging to the interior of the

domain defined by the levelset, while discontinuities across the cell boundary are naturally

represented by enriching finite element shape function with discontinuous functions following

the standard XFEM equations. The key advantages of this contribution are then as follows:

• Complex cell geometries may naturally be handled independently of finite-element

discretization.

• Because cell and substrate domains are discretized with the same mesh, the numerical

treatment of cell-substrate cohesion is accurate and simple.

• The XFEM enrichment functions enable the incorporation of the stiffness of the

cortical membrane surrounding the cell; this feature is known to be critical to real-

istically capture cell morphology.

• The formulation is flexible and has the potential to be extended for describing cell

spreading and migration using level-set evolution equations.

The organization of the chapter is as follows. In the next section, we give a summary

of the constrained mixture model to characterize cell contraction; we particularly concen-
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trate on providing the main equations (conservation of mass and momentum) as well as a

set of biologically relevant assumptions to build realistic constitutive relations. In section

3, the problem of the interaction between a cell and a deformable substrate is investigated.

Governing equations are derived both in their strong and weak form; which enable a smooth

transition to the finite-element formulation presented in section 4. Section 4 then discusses

the XFEM-levelset approach to obtain a solution of the cell-substrate interactions, leading to

the final form of implicit, time-dependent finite-element equations. The method is then illus-

trated in section 5 by presenting several experimentally motivated example of cell-substrate

interactions with comparison to observations. The chapter finishes with a brief summary

and concluding remarks.

5.3 A constrained mixture model of contractile cells

5.3.1 Continuum description of cell’s structure

The mechano-sensing capability of cell is closely related to their contractile abilities.

The latter has mainly been explained in terms of the formation of a well differentiated

network of stress fibers (SFs), that are capable of generating forces through acto-myosin

interactions [28, 35, 165]. The main processes behind cell contraction can generally be

decomposed as follows: first, the assembly of SF from dissolved contractile units and second,

the contractile capacity of SFs. On the one hand, SF assembly and dissociation are known to

be very sensitive to mechanical stimuli; mechanical force stabilize existing SFs and promote

the assembly of new ones [35]. On the other hand, the contractile capacity of SFs is regulated

by cross-bridge dynamics, that is known to be very sensitive to strain and strain rate. The

evolution of SF therefore depends on the ability of cells to sense and transmit mechanical

force from the substrate through so-called focal adhesion complexes (Fig. 5.6)[168]. These

complexes provide a physical attachment between SFs and substrate anchoring molecules

(ligands) through cross-membrane proteins (integrins) and may be thought of as cohesion
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islands of finite size between cell and substrate [108, 24]. At last, the internal structure of

fibroblasts possesses sub-membraneous mechanical reinforcement, known as the cortex, that

is found in the form of a thin layer of actin fibers oriented in parallel with the membrane

[97, 90, 157, 14]. This component is known to have a significant effect on the cell’s morphology

and deformation by providing a non-negligible tangential stiffness to the cell membrane [163].

Figure 5.1: A typical cell on a substrate: the definition of domains and boundaries, and
cell’s main constituents.

From a modeling perspective, cell and substrate can be defined by two physical do-

mains Ωc and Ωs in their current configuration, whose boundaries are denoted by Γc and

Γs, respectively (Fig. 5.1). While the substrate is modeled as a purely elastic medium, a

contractile cells is viewed as a constrained mixture made of four constituents [165] (Fig. 5.1):

two solid constituents: a passive cytoskeleton (mostly made of microtubules and intermedi-

ate filaments) and a highly anisotropic SF network, and two fluid components: the cytosol

and a population of dissolved contractile units. Measuring material motion with respect to

the passive cytoskeleton, for which a point in the original configuration is denoted by X, a

description of the mixture at any time t can be given in terms of respective volume fraction

φα of the diverse constituent α at material point X such that:

4∑
α=1

φα(X, t) = 1 (5.1)
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where α = s, f,m, p for passive cytoskeleton, cytosol, dissolved contractile units and SFs,

respectively. When plated on elastic substrates, fibroblasts usually evolve quickly in a con-

figuration in which their thickness is significantly smaller than other dimensions, which

motivates our study within the context of two-dimensional plane-stress assumptions. This

generally simplifies the analysis as SF directions only occupy the two-dimensional space and

can be described in terms of one orientation angle. At any point within the cell, the SF

network may then be defined in terms of the so-called structure tensor Φp given by [165]:

Φp(X, t) = φp [ηI + (1− 2η) Mθ0 ] , Mθ0 =

 cos2θ0 cosθ0sinθ0

cosθ0sinθ0 sin2θ0

 , (5.2)

providing a description of the anisotropic network in terms of its volume fraction φp, degree

of anisotropy η, and principal orientation θ0.

5.3.2 Balance of mass and SF evolution

Let us first describe the mass balance of each constituent in a cell during the process of

contraction. Using the material time derivative (following the solid constituent), the general

form of mass balance equation for constituent α can be written as [165]:

Dφf

Dt
+ φf∇ · v +∇ · Jf = 0 (5.3)

Dφm

Dt
+ φm∇ · v +∇ · Jm = Πm (5.4)

where the solid velocity v, the relative cytosol flux Jf and the flux Jm of unassembled

contractile units (measured with respect to solid motion) are defined as:

v =
∂x(X, t)

∂t
, Jf = φf

(
vf − v

)
and Jm = φm (vm − v) (5.5)

The term Γm describes the rate of consumption (or production) of unassembled contractile

units during their assembly into SFs. The mass and orientation of SFs therefore increases

(or decreases) during time due to this chemical reaction. To describe this process, one may
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investigate the balance of mass of SFs in specific directions. We showed in [165] that this

translate into a tensorial equation of the form:

DΦp

Dt
+ Φp∇ · v = Πp (5.6)

where Πp is a second order tensor that represents the directional rate of SF polymerization

(or degradation). Importantly, it is assumed that once created, SF become part of the solid

cytoskeleton and thus follows the same motion as the passive cytoskeleton. In other words,

the velocity vp of the SF network is equal to the velocity v defined in (5.5). Finally, it is

critical to specify that no mass can be created or consumed at the level of the entire mixture.

This means that the change in mass of unassembled contractile units must be equal to the

opposite of the change of mass of SFs at any location and time. This condition is written:

trace (Πp) + Πm = 0 (5.7)

5.3.3 Balance of momentum

Let us now turn to the governing equation describing the equilibrium of forces within

a cell (Fig. 5.2). For this, it is of interest to define the mixture Cauchy stress tensor T

Figure 5.2: Equilibrium of forces in the body and boundary of a cell.

representing the infinitesimal force per unit current area. Using the effective stress principle,

the mixture stress may be decomposed into contribution from each constituent as follows:

T = Tc + Tp − pI (5.8)
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where Tc is the partial stress in the passive cytoskeleton, Tp is the stress that originates

from the presence of SFs and p is the fluid pressure. Note that the contribution from the

pressure of dissolved contractile proteins has been neglected due to its relatively low volume

fraction. Considering the balance of momentum for the mixture, the following form can be

derived:

∇ ·T + b = 0 in Ωc (5.9)

representing the balance of force within the cell domain. Note that dynamical effects (through

the inertial term) were neglected due to the slow processes into consideration. Finally, we

note that invoking the balance of angular momentum, it can be shown that stresses Tc, Tp

and T are represented symmetric tensors. Let us now investigate the effect of the cortical

membrane stiffness on the equilibrium of force within the cell. Considering a small cortical

thickness relative to the cell size, it is possible to represent force in the cortex in terms of

a surface stress Tσ that has unit of a force per unit length. As discussed in [163] and [14],

one can show that the equilibrium between bulk stress T and membrane tensile stress Tσ is

given by

∇σ ·Tσ −T · n = 0 on Γc (5.10)

where ∇σ · Tσ denotes the surface divergence of the cortical stress and n is the outward

normal vector to the cell’s boundary Γc. A strong analogy may be drown between the above

equation and the Young-Laplace equation describing the effect of surface tension on the

pressure in a fluid bubble. An increase in surface stress Tσ as well as membrane curvature

(captured in the surface divergence operator) results in an increasing bulk stress in a direction

normal to the membrane.

5.3.4 Fluid flux and cytoskeleton elasticity

Let us now discuss the constitutive relations describing cytosol and unassembled con-

tractile units transport within the cell, as well as the passive elasticity of the passive cy-
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toskeleton and its surrounding cortical membrane. The constitutive relation defining SF

formation and contraction is left for the next section. The motion of the fluid phase are

determined based on the two following assumptions. First, it is assumed that dissolved pro-

teins are highly diluted and do not affect the motion of the cytosol. This means that one

can describe cytosol motion uniquely in terms of the pressure gradient through Darcy’s law

as:

Jf = −κ
µ
∇p. (5.11)

Here κ denotes the isotropic permeability of the cytoskeleton and µ is the viscosity of the

cytosol. Note that due to the appearance of SF, the permeability may become anisotropic

in time. This effect is not accounted in the present study. In addition, we assume that the

motion of dissolved proteins is driven by two forces: (a) the drag force of the cytosol and (b)

the diffusive forces through the cytosol. One can therefore show that the flux Jm of proteins

contains a convection and diffusion term as follows:

Jm = −φ
m

φf
κ

µ
∇p− φfD ∇

(
φm

φf

)
(5.12)

where D is the diffusion coefficient of dissolved proteins in the cytosol.

To characterize the elasticity of the passive cytoskeleton, a hypo-elastic constitutive

relation was adopted. Introducing the rate of deformation D(X, t) of the solid constituent

(Fig. 5.3), an objective rate of Cauchy stress can be determined as:

T∇J = C∇J : D where D =
1

2

(
∂v

∂x
+
∂v

∂x

T)
(5.13)

Assuming isotropic elasticity, the stiffness matrix C∇J was expressed in terms of Lame

constants λ and µ such that its components are given by C∇Jijkl = 2µδikδjl + λδijδkl. While

the nonlinear material behavior of the passive cytoskeleton is not considered in the present

formulation, nonlinear effects arising from finite deformation and rotation are still accounted

for through the objective Jaumann rate of the Cauchy stress defined by:

T∇J =
DT

Dt
−W ·T−T ·WT (5.14)
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Figure 5.3: Initial and current configurations of cell and substrate domains.

where W denotes the spin tensor. For consistency, a similar hypo-elastic relation is also

adopted to describe the effect of the cortical membrane. Thus, the Jaumann rate of the

stress tensor Tσ is written in terms of the tangential velocity gradient on the cell boundary

Γc as:

TσJ
σ = Cσ : Dσ where Dσ = P ·D ·P (5.15)

Here the tangential projection operator is given by P = I − n ⊗ n. Note that for two-

dimensional plane stress problems, the cortical membrane is represented by a line whose

axial stiffness is given in terms of a single parameter Eσ. In this context, the components of

the fourth order cortical elasticity tensor Cσ is simply given by:

Cσ,ijkl = Eσδikδjl (5.16)

5.3.5 Mechano-sensitive SF formation and contraction

We now concentrate on the constitutive relation describing the active behavior of con-

tractile cells, comprised of two distinct mechanisms: SF formation (or dissociation) and

SF contraction. As mentioned previously, these processes are highly mechano-sensitive and

the model should reflect such observations. Our formulation therefore builds upon the two

following ideas (Fig. 5.4):
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Figure 5.4: Feedback mechanism between SF formation and contraction

• SF formation in a specific direction is promoted by the existence of a contractile

stress in that particular direction. This assumptions is supported by a variety of

experimental observations such as [35, 94, 140, 28, 119, 14, 57]. To capture this

feature, we write the rate of SF formation Πp in term of a first order kinetic equation

whose rate of formation is stress dependent:

Πp =

(
1

2
kf0 I + kf1 Tp

)
φm

φf︸ ︷︷ ︸
contraction dependent formation

− kd0Φ
p︸ ︷︷ ︸

Dissociation

(5.17)

Here kf0 and kd0 are the tension independent rate of formation and dissociation while

kf1 characterize the sensitivity of formation to the level of contraction, represented

by the tensor Tp. Note that the above equation is tensorial and is therefore capable

of capturing direction dependent SF formation and dissociation.

• SF contraction is dependent on the unidirectional strain and strain rate of SFs.

This behavior is a well known consequence of cross-bridge dynamics between thin

and thick filaments at the molecular scale [22, 81]. In short, the model predicts

a drop in contraction when the rate of shortening is negative and an increase in

contraction with SF lengthening (Fig 5.4); this behavior is known as the tension-

velocity relationship ([81]) and is represented by the normalized function g of strain
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rate ε̇ as follows (Fig. 5.5):

g(ε̇) = 1 +
ε̇/ε̇0√

(ε̇/ε̇0)2 + 1
(5.18)

In addition, the contraction magnitude is known to be optimal when SF are in

their original (strain free) configuration. However, as they shorten or lengthen,

their contractile capacity decreases to eventually vanish. This behavior, known as

the length-tension relationship ([22]), is captured with by introducing the following

function of uniaxial strain ε (Fig. 5.5):

f (ε) = exp

(
− ε

ε0

)2

+H(ε)

(
ε

ε1

)2

(5.19)

where H is the Heaviside function that is such that H = 0 when ε < 0 and H = 1

when ε ≥ 0. In the above equation, the first term captures the length-tension

relation while the second term describes the nonlinear, strain hardening passive

elastic response of SF when stretched. This term is important in capturing the

increase in cell stiffness as more SF are assembled. The stress tensor arising from

SF may then be determined by taking a directional average of their contribution in

each direction. Assuming that the normalized uniaxial stress in a specific direction

is given by the product of function g and f , weighted by their volume fraction φp,

the stress Tp is defined by:

Tp =
T̄

π

∫ π/2

−π/2
φp(θ)f (ε) g (ε̇)

 cos2θ cosθsinθ

cosθsinθ sin2θ

 dθ (5.20)

where ε is related to the Green- Lagrange strain tensor E by ε = E11cos
2(θ) +

E22sin
2(θ) + 2E12sin(θ)cos(θ) and the quantity T̄ denotes the typical magnitude

of SF isometric contraction in fibroblasts. Note that the value of φp for different

directions is determined from the knowledge of the structure’s tensor Φp as described

in Appendix A.
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Figure 5.5: Tension of a single stress fiber as a function of strain and rate of strain.

A particularity of the above model of cell contraction is that it generates a positive

feed-back mechanism between fiber contraction and formation in direction in which fiber

shortening is mostly resisted. For instance, when cells adhere to a stiff substrate, their

contraction only generates little deformation, which according to the tension-velocity curve,

enables SF to keep a level of isometric contraction. The presence of such a contraction

consequently promotes more SF formation in this particular direction as described by the

mechano-sensitive formation model of (5.17). Inversly, a cell adhering to a soft substrate

generates a significant amount of negative strains as a result of contraction. This results

in switching the strain rate to the left on the tension-velocity curve of Fig. 5.5, and thus

decreasing the magnitude of SF contraction. Ultimately, this is translated into a drop in the

rate of fiber formation and a loss of SF density.

5.4 Governing equations for the cell-substrate interaction problem

We now turn to the formulation of the interactions between cells and their mechanical

environment. We particularly concentrate on the problem of cells lying on a two-dimensional

elastic substrate, a situation that often arises both in-vivo and in experiments.
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5.4.1 Substrate elasticity

The mechanical behavior of the substrate is known to be an important factor driving

cell morphology, contraction and structure [90, 179, 50, 42, 168]. While this behavior can be

extremely complex, involving nonlinear elasticity, viscous effects and inelasticity, the present

work concentrates on the case of a simple linear isotropic elastic material with varying

stiffness. Describing substrate deformation in terms of a displacement field us, one can

introduce a rate of deformation and an objective rate for the substrate Cauchy stress Ts in

a similar form as that shown in (5.13). In other words, substrate elasticity is described in

terms of two paramters (λs, µs), or equivalently by the set (Es, νs) denoting the Young’s

modulus and Poisson’s ratio. It is finally straightforward to show that substrate equilibrium

is written in terms of the divergence of the Cauchy stress as:

∇ ·Ts + bs = 0 (5.21)

where bs represents the body force vector in the substrate. In the following analysis, we

assume that the substrate consists of a very thin layer that can be modeled in plane-stress

conditions. While this situation may not acurately represent actual experimental conditions,

the assumption is not expected to affect the main trends exhibited by cell in terms of different

substrate elasticity.

5.4.2 Adhesion complexes

Cell-substrate adhesion is provided by the attachment between trans-membrane molecules

(known as integrins) and molecular complex (the ligands) laying on the surface of the sub-

strate (Fig. 5.6). Integrins easily diffuse through the cell membrane [36] in order to attach

to free ligands on the substrate. It is thus realistic to assume that the magnitude of the

adhesive force ta per unit area is directly related to the density ηl of ligands on the substrate

by:

ta = ηlfa (5.22)
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Figure 5.6: The general details of adhesion complexes between cell and substrate combined
of integrins and ligands; together with the boundary conditions applied to cell and substrate.

where ηl denotes the number of ligands per unit substrate area and fa is the force in a single

ligand-integrin complex. Further assuming that the mechanical behavior of ligand-integrin

complex is represented by a linear force-separation relation with stiffness Kli, the continuum

traction force (per unit area) is given by:

ta = Ka (uc − us) where Ka = ηlKli (5.23)

where the term uc − us represents the separation between cell membrane and substrate

surface. The above equation clearly states the stiffness of the adhesion stiffness increases

linearly with ligand density. It also shows that if no ligand are present ηl = 0, no cell-

substrate adhesion is possible (ta = 0).

5.4.3 Summary of the governing equations under plane stress conditions:

Strong form

Considering that the cell and substrate lie in the x-y plane of the (x,y,z)-coordinate

system, plane stress conditions imply that stress components associated with the z-direction

vanish. In addition, adhesion forces ta acting on the bottom cell surface and the top substrate

surface are represented by vectors in the x-y plane and are equivalent to ”body forces” acting
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in cell and substrate with equal magnitude but opposite directions. In other words, the body

forces b and bs appearing in (5.9) and (5.21) are replaced by adhesive forces such that the

mechanical equilibrium for cell and substrate is written:

∇ ·Ts + ta = 0 in Ωs us = u∗ on Γs (5.24)

∇ ·T− ta = 0 in Ωc T · n = ∇σ ·Tσ on Γc (5.25)

Note that the elastic constitutive relations are affected by the plane-stress conditions. For

clarity, a detailed description of these equations is left in Appendix B. In addition, one can

show that mass conservation equation ((5.3),(5.4)) in the cell domain Ωc under plane stress

conditions take the following form:

α ∇ · v + β ṗ+∇ · Jf +∇ · Jm = 0 in Ωc Jm · n = 0 on Γc (5.26)

Dφf

Dt
+ αφf ∇ · v + βφf ṗ+∇ · Jf = 0 in Ωc Jf · n = 0 on Γc (5.27)

where coefficients α and β depend on Poisson’s ratio ν and Young’s modulus E of the cell’s

cytoskeleton as follows (Appendix B):

α =
1− 2ν

1− ν
and β =

(1 + ν) (1− 2ν)

E (1− ν)

Similarly, the SF evolution equation (5.6) becomes:

DΦp

Dt
+ Φp α ∇ · v + Φp β ṗ = Πp in Ωc (5.28)

In the end, the five equations (5.24), (5.25), (5.26), (5.27) and (5.28) subjected to the

given boundary conditions can be solved to determine five unknowns that consist of (a) the

displacement field us(X, t) in the substrate domain Ωs, (b) the displacement field u(X, t)

in the cell domain Ωc, (c) the cytosol volume fraction φf (X, t) in Ωc, (d) the monomer

volume fraction φm(X, t) in Ωc and finally (e) the structure tensor Φp(X, t) describing the

SF distribution in Ωc.
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5.4.4 Summary of the governing equations: Weak form

The above coupled differential equations constitute a highly non-linear system whose

solution lays in the three-dimensional space (x, y, t). A numerical strategy, based on the finite

element method is therefore necessary to obtain a solution in the most general case. Such a

formulation require that governing equations are rewritten in an integral form (or weak form)

as described in this section. For this, we introduce arbitrary admissible weighting functions

denoted by scalars functions θ and λ, vector functions ω and ωs, and a second order tensor

function Λ. Multiplying each governing equation (5.24), (5.25), (5.26), (5.27) and (5.28) with

a corresponding weight function and integrating over their associated domain, we obtain five

scalar equations as follows:∫
Ωs
ωs · (∇ ·Ts + ta) dΩs = 0 (5.29)∫

Ωc
ω · [∇ · (Tc + Tp − pI)− ta] dΩc = 0 (5.30)∫

Ωc
θ
[
α ∇ · v + β ṗ+∇ · Jf +∇ · Jm

]
dΩc = 0 (5.31)∫

Ωc
λ

[
Dφf

Dt
+ φf α ∇ · v + φf β ṗ+∇ · Jf

]
dΩc = 0 (5.32)∫

Ωc
Λ :

[
DΦp

Dt
+ Φp α ∇ · v + Φp β ṗ−Πp

]
dΩc = 0 (5.33)
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Integrating by part and applying the divergence theorem, the weak form may be rewritten

in the more convenient form:∫
Ωs
∇ωs : Ts dΩs −

∫
Ωc
ωs · ta dΩc = 0 (5.34)∫

Ωc
∇ω : (Tc + Tp − pI) dΩc +

∫
Ωc
ω · ta dΩc +

∫
Γc

(P · ∇ω ·P) : Tσ dΓc = 0(5.35)∫
Ωc
θ ( α ∇ · v + β ṗ) dΩc +

∫
Ωc
∇θ · κ

µ
∇p dΩc +∫

Ωc
∇θ ·

(
φm

φf
κ

µ
∇p+D ∇φm − φm

φf
D ∇φf

)
dΩc = 0 (5.36)∫

Ωc
λφ̇f dΩc +

∫
Ωc
λφf ( α ∇ · v + β ṗ) dΩc +

∫
Ωc
∇λ · κ

µ
∇p dΩc = 0 (5.37)∫

Ωc
Λ : Φ̇p dΩc +

∫
Ωc

Λ : Φp ( α ∇ · v + β ṗ) dΩc −∫
Ωc

Λ :

[
Mp

Mm

(
1

2
kf0 I + kf1 Tp

)
φm

φf
− kd0Φp

]
dΩc = 0 (5.38)

The above system of equation is then linearized in order to obtain a numerical solution using

the modified Newton-Raphson iterative method. In a nutshell, a function f is linearized

about its current value according to f = f̃ + δf where f̃ is the value of f obtained in

last increment, and δf defines the partial change in f during the current time increment.

The solution may then be obtained with an incremental methods whose details are given in

Appendix C.

5.5 Levelset- XFEM formulation

5.5.1 Numerical strategy for cell-substrate interactions

From a numerical viewpoint, the cell-substrate interaction under plane stress assump-

tions involves two superposed domains Ωs and Ωc, of arbitrary shapes, on which different,

but interacting fields must be computed (Fig. 5.1). To solve such a problem, two strategies

may be adopted. The first would consist in introducing different discretizations for each

domain, on which solutions would be computed separately but can interact through a nu-

merical treatment of the interactions at cell-substrate adhesions. This option is limited by
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the following drawbacks:

(1) Because different meshes are used for each domain, the integration of cell-substrate

cohesive forces is evaluated differently on each domain. This may lead to numerical

issues regarding convergence and accuracy.

(2) The integration of cell surface tension cannot be naturally accounted for.

(3) While not considered in this particular work, problems on cellular mechanics typi-

cally involve cell growth and spreading. In this context, a discretization that follows

cell shape implies that cell growth is associated with remeshing techniques, known

to be computationally intensive and gruesome.

Figure 5.7: (a) Example of levelset function used to describe cell geometry, (b) Heavy side
and (c) Ridge functions used to enrich the finite element interpolation. (d) Degrees of
freedom associated with nodes in and outside of the cell. The enriched nodes are shown with
blue squares.

For this reason, this chapter introduces a different formulation that only requires a

single discretization, used for both cell and substrate. In this approach, while the substrate

domain Ωs is entirely contained in the computational domain, the cell domain Ωc is defined

in terms of a level-set function that defines the arbitrary contour of the cell. Referring to

Fig. 5.7a, the levelset function φ(X) is a function of space (in the undeformed configuration)
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that is represented by a two-dimensional surface in a three-dimensional space. The two-

dimensional morphology of the cell is then defined as the intersection of this surface with

the x-y plane of the cell (Fig. 5.7a). The function φ is chosen such that its sign is opposite

in two sides of the cell boundary, which enables a clear definition concerning the location of

material point P located at X with respect to the cell domain:

if φ(X) > 0, P ∈ Ωc (5.39)

if φ(X) = 0, P ∈ Γc (5.40)

if φ(X) < 0, P /∈ Ωc (5.41)

In addition, the levelset function enables the definition of the unit vector n0 that is normal

to the cell boundary Γc in its original configuration:

n0(X) =
∇Xφ(X)

||∇Xφ(X)||
(5.42)

where ∇X denotes the gradient with respect to the initial coordinate X and || · || denotes the

L2 norm. This strategy enables us to define arbitrary cell morphologies, independently from

finite-element discretization. Furthermore, node located outside of the cell domain are only

associated with substrate displacement us while nodes that are located in Ωc are associated

with degrees of freedom related to both substrate (us) and cell (u, p, φm, Φp). As discussed

in the next section, this approach, when combined with the extended finite element method,

has various advantages:

(1) Since the same numerical domain is used for both cell and substrate, there are

no issues related to interaction terms (through cohesive forces) between the two

domains.

(2) The integration of cell surface tension will naturally accounted for as demonstrated

in [54, 166].

(3) The problem of cell growth and spreading can naturally be incorporated in the

formulation by using level-set evolution equations [93, 136, 146, 147].
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5.5.2 Multifield Extended Finite-Element formulation

The main issue with the aforementioned method is that continuum fields associated

with the cell domain are typically discontinuous across the cell boundary Γc. For instance, a

continuum field f associated with the cell domain (that can be u, p, φm or Φp) is typically non-

zero in Ωc but vanishes outside Ωc, therefore creating a jump in f across Γc. This generally

pauses a problem with the standard finite-element method as shape functions are continuous

within an element and yet, Γc exists within element domains (Fig. 5.7d). To circumvent

this obstacle, the proposed approach uses the XFEM methodology [43, 79] for its strength

in describing various types of discontinuities within element domains [105, 9, 7, 181, 54]. In

this context (Fig. 5.7d), the elements cut by the levelset, and their nodes, are considered

as enriched elements/nodes. To introduce discontinuities in a continuum field f (denoted

as strong discontinuity) and its gradient (denoted as weak discontinuity) across the cell

boundary, fictitious degrees of freedom f̄ and ¯̄f are added to the enriched nodes such that

a numerical approximation f̃ of the function f can be introduced using conventional finite

element shape functions as follows:

f̃(x) =
n∑
I=1

NI(x)fI +
m∑
J=1

NJ(x)(H(x)−H(xJ))f̄J +
m∑
J=1

NJ(x) (χ(x)− χ(xJ)) ¯̄fJ (5.43)

where NI(x) are shape functions associated with node I. The matrix NI has the form:

NI(x) =

NI(x) 0

0 NI(x)

 (5.44)

In (5.43), NJ(x) are ordinary shape functions of the enriched nodes, i.e. the nodes of the

elements cut by levelset function while n and m give the total number of nodes and the

number of enriched nodes per element, respectively. In addition, the Heaviside and ridge

functions, denoted as H(x) and χ(x) take the form:

H(X) =


1 φ(X) > 0

0 φ(X) < 0

and χ(X) = |φ(X)| (5.45)
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The function H(x) is used to introduce a jump in the fields u̇c, ṗ, φ̇m and Φ̇p across the

cell’s membrane, whereas the ridge function is used to define discontinuities in their spatial

derivative [105, 106]. A one-dimensional representation of the Heaviside and ridge function

is provided in Fig. 5.7b and 5.7c

5.5.3 Discretization and time integration

The linearized finite element equation is obtained by substituting the XFEM approxi-

mation (5.43) corresponding to each continuum field us,u, p, φm, and Φp into the linearized

weak form equations (5.34-5.38). Note that the enrichement functions are only used for ele-

ments that are cut by the cell’s interface Γc. In these elements, while all fields are enriched

with a strong discontinuity, only the cell’s displacement field u is enriched with the Ridge

function (weak discontinuity). Indeed, the weakly discontinuous displacement field is only

important to capture the jump in strain between the cell and its surrounding due to surface

tension [163]. Furthermore, a mixed-element formulation is adopted, based on quadratic

bilinear, four point, Lagrange interpolation functions to approximate cytosol pressure p, G-

actin monomer volume fraction φm, F-actin SF volume fraction Φp and nine point, Lagrange

interpolation functions to approximate the displacement field u. The nodal values of the

continuum fields in element e are then given by a vector Ue as follows:

Ue
I =

[
us,eI ueI peI φm,eI Φp,e

I

]T
(5.46)

where I denotes the nodes number in the local element numbering scheme. In other words,

I = 1, ..., 4 for four-node elements and I = 1, ..., 9 for nine-node elements. Finite element

approximation in an element is then expressed in terms of these nodal values by (5.43).

After substitution of the above approximation into the weak form equations, integration

is performed numerically by using a nine-point quadrature rule for conventional elements

while considering the following treatment for enriched elements. Since enriched element are

cut into two domains by interface Γc a number of sub-triangles can be constructed on each
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side of the interface. Element integration is thus decomposed into integration on each of

these sub-triangles by using a thirteen points gauss rule for maximum accuracy. In addition,

numerical integration along the cell’s surface Γc is done using a one-dimensional three points

Gauss rule. For more details of using sub-triangles and integration on surface, the reader is

referred to [44, 54]. After a long but straightforward calculations for which the details are

given in Appendix D, we find that final XFEM equation takes the following form:

C · U̇ + K · δU + F = 0 (5.47)

where U denote the global displacement vector. Indeed, the global force vector, as well as

the tangent and damping matrices, are assembled from their element counterparts as:

F = A nel
e=1F

e K = A nel
e=1K

e and C = A nel
e=1C

e. (5.48)

Here, A , e and nel denote the assembly operation, element number, and the number of

elements; while the element force vector, damping and stiffness matrices are given by:

F =



Fus

Fu

Ff

Fm

Fp


; C =



0 0 0 0 0

0 Cuu 0 0 0

0 Cfu Cff 0 0

0 Cmu Cmf Cmm Cmp

0 Cpu Cpf 0 Cpp


; K =



Kss Ksu 0 0 0

Kus Kuu Kuf 0 Kup

0 Kfu Kff Kfm Kfp

0 0 Kmf 0 0

0 Kpu Kpf Kpm Kpp


(5.49)

A precise form of the components appearing in above equations are given in Appendix E.

Equation (5.47) is solved using a nonlinear, updated Lagrangian formulation [10] following

the algorithm presented in Fig 5.8. Furthermore, time integration is performed using a

backwards Euler integration scheme that approximates a field at a given time step based on

the approximate derivative at the next time step. This is written as follows:

δU = δU̇ ·∆t (5.50)
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where ∆t denote the time increment. Due to the inherent nonlinearity of the contraction

problem, the solution for U̇(t + ∆t) is solved for iteratively at time increment t+ ∆t. The

value U̇i(t+ ∆t) at the ith iteration is calculated by:

U̇i(t+ ∆t) = U̇i−1(t+ ∆t) + δU̇i (5.51)

substituting equations (5.50) and (5.51) into equation (5.47), the iterative rate vector δU̇i

is computed as:

(
Ci−1
t+∆t + ∆t.Ki−1

t+∆t

)
.δU̇i = −

(
Fi−1
t+∆t + Ci−1

t+∆t · U̇
i−1
t+∆t

)
≡ Hi−1

t+∆t (5.52)

where the notation H is used for residual vector. Iterations are then repeated until the norm

of the partial rate vector |δUi| < tol where tol is a small tolerance.

Figure 5.8: The nonlinear updated Lagrangian algorithm used to solve Eq. (5.52).

5.6 Numerical investigation of cell contraction on elastic substrates

The proposed numerical approach is now assessed in several ways. First, we consider

the case of an originally square-shaped cell, attached to its underlying substrate through
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focal adhesion at its corners. The numerical behavior of the system, as well as convergence

studies are presented. We then build upon this analysis to investigate the contractile behavior

and structural evolution of cells sitting on substrate with varying elasticity and compare

our predictions to experimental observations. Furthermore, taking advantage of the levelset

formulation, we investigate the effect of cell morphology on its structural organization as well

as on the deformation of the substrate. Finally, we assess the role of the cortical membrane

stiffness on SF formation and substrate stresses. The presented simulations are obtained by

using a set of physiologically relevant parameters that are characteristic of fibroblasts (Table

5.1).

Definition Symbol Value unit Reference
Cytosol volume fraction φc 70 % [2]

Cytoskeleton volume fraction φs 25 % n/a
F+G actin volume fraction φm + φp 5 % n/a

Rate of SF formation kf0 0.0001 sec−1 [130]

Mechano-sensitive rate of SF formation kf1 0.05 sec−1 [130]
Rate of SF dissociation kd0 0.1 sec−1 [130]

Cytoskeleton permeability κ/µ 1 · 10−15 m4/N · sec [69]
G-actin diffusion constant D 1 · 10−5 m2/sec [130]

Young’s modulus E 70 Pa [37]
Poisson’s ratio ν 0.3 [37]

Fiber maximum tensile stress T̄ 20000 Pa [175, 94, 156]
Reference strain rate (Eq. (5.18)) ε̇0 0.01 sec−1 [37]

Reference active strain (Eq. (5.19)) ε0 0.1 [22]
Reference passive strain (Eq. (5.19)) ε1 0.15 [22]

F/G molar mass ratio Mp/Mm 100 n/a
F/G true density ratio ρpR/ρ

m
R 1 n/a

Integrin density ηl 1000 m−2 n/a
Single adhesion complex stiffness Kli 107 N/m n/a

Table 5.1: Parameters used in the simulations.
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5.6.1 Convergence analysis

In this section, we propose to assess the convergence of the solution method by con-

sidering the particular problem of the evolution of a square cell interacting with an elastic

substrate through adhesion regions located near its four corners (Fig. 5.11a). For all analy-

ses, the Young’s modulus of the substrate is chosen to be Es = 100 Pa and initial conditions

are such that no SFs are present in the cell at time t = 0 (i.e., actin is present in its monomer

form only). Convergence is then evaluated at steady state (when both chemical and mechan-

ical equilibrium are reached) with respect to mesh size and Newton iteration number at fixed

time steps.

Convergence with respect to mesh size is first evaluated by studying the change in the

magnitude of a relevant global quantity G with increasing element number. Here, we choose

G as the average SF volume fraction at steady state:

G =
1

Ac0

∫
Ωc
trace(Φp

(
X, tf )

)
dΩc, (5.53)

where Ac0 and tf are initial cell’s area and the time at which the system has reached its steady

state solution, respectively. Furthermore, we introduce Gk as the value of G numerically

obtained k × k square finite elements. As expected, the quantity Gk converges to a fixed

point G = 0.415% as k increases (Fig. 5.9). The rate of convergence can be assessed by

considering the formula:

|Gk −G| ≤ Ck−q (5.54)

where C is chosen a constant value, and q is a positive integer that gives the rate of conver-

gence with respect to spatial discretization. Fig. 5.9b shows that for any element number,

the numerical error E = |Gk −G| remains below the curve represented by Ck−q with q = 2

(quadratic convergence). In view of this result, the simulations presented in the remainder

of the chapter are based on a mesh of 20× 20 elements (in the cell domain); this choice gave

us an optimal combination of accuracy and numerical efficiency. We also investigated the
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convergence of the presented numerical scheme in term of iteration number by plotting the

norm of the residual vector Hi (defined in Eq. (5.52)) in terms of the iteration number i for

fixed term increment. As depicted in Fig. 5.10, we observed a linear convergence rate, i.e.

the rate of convergence µ = 0.615 < 1 is obtained using equation

lim
i→∞

|Hi|
|Hi−1|q

= µ (5.55)

for q = 1 (linear convergence) [132].

5.6.2 Effect of cell morphology on SF development

As noted above, one main advantage of using the XFEM- levelset method relies in that

cell geometry can be defined independently from discretization. In this example, we take

advantage of this capability to investigate the SF evolution in four cells, characterized by

different geometries (square, rectangle, triangle, and diamond) and substrate adhesion (Fig.

5.11a-d) on an elastic substrate whose elastic modulus is 100Pa. While initial conditions

are similar as in the previous section, we applied periodic boundary conditions on the sub-

strate domain in order to simulate an infinitely large domain with a periodic cell’s structure.

Figs. 5.11(e-h) show the first stress invariant in the substrates due to cell contraction at

steady state. These results clearly show that compressive state of stress beneath the cell

and the tensile stress between cells (neighboring cells are represented by periodic boundary

conditions). The importance of this formulation is clear as it is able to represent the inter-

actions between cells of arbitrary shapes (information that can be obtained from imaging)

and elastic substrates. Furthermore, SF distribution at steady state was obtained for each

cell morphology (Fig. 5.11l-n) and compared with experimental observations for similar

conditions (Fig. 5.11i-k) ([18, 117, 61, 19]). Here, our result show that SF are preferably

generated in directions of maximum apparent stiffness, corresponding to lines connecting

adhesion islands. This can be explained as follows. In directions of maximum stiffness, the
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constraints on tensile deformation result in a decreased strain rate, which, according to the

Hill model, results in optimal contraction (Fig. 5.5). Since SF formation increases with con-

traction (Eq. (5.17)), this explains the high density of SFs along direction of high apparent

stiffness. This type of simulations is critical to interpret a variety of experimental procedures

that can measure mechanical forces and deformation with arrays of micropillars or elastic

gels in which fluorescent beads are embedded [51, 94, 145].

5.6.3 Effect of substrate’s stiffness on cell contraction and deformation

Experimental studies have shown that cell contractility and SF structure are strongly

influenced by the stiffness of the underlying matrix. Here, we propose to assess how the

proposed model captures these effects and compare model predictions with experimental

studies of fibroblasts contracting on micro-pillars. For this we consider the square cell shown

in Fig. 5.11a adhering to a substrate of varying stiffness through focal adhesions located

at its corners. Similarly to previous examples, initial conditions are such that no SFs are

present at t = 0 and the substrate is subjected to periodic boundary conditions. To assess

the magnitude of cell contraction, we computed the normalized average tensile force in focal

adhesions F/(T̄ d2) when the steady state was reached (Here d is the typical dimension of

the cell). This quantity was computed for values of normalized substrate’s stiffness Es/Ec

ranging from 0 to 300 which led to the nonlinear contraction-stiffness relationship depicted

in Fig. 5.12. The result of Fig. 5.12 can generally be explained by the fact that increasing

substrate stiffness tends to decrease the strain rates undergone by SF and thus increase

contraction (according to Hill’s model). This increased contraction subsequently promotes

more SF formation, which leads to a rise in SF density and contractility. The time evolution

of contraction is also shown in the box of Fig. 5.12 in terms of the normalized time t? = tε̇0 for

the case Es = 1000 Pa. A relevant question in biology is to understand how the mechanical

work performed by cells is affected by the stiffness of the substrate they lie on. Here, we

assess the average mechanical work of a cell as W = Fd where F is the average force it
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applies to its focal adhesion and d is the resulting average displacement. Fig. 5.13 shows

the changes of work W as the relative substrate’s stiffness varies from 0 to 1000. The

figure clearly displays that no work is done for small and large values of substrate stiffness;

indeed small stiffness results in no contraction (Fig. 5.12) while large stiffness precludes

substrate deformation. A consequence is that there exists an optimal substrate stiffness for

which the work done by cells is maximum (with our parameters, this optimum occurs in

the range of 10Ec < Es < 50Ec), a phenomenon that has been observed experimentally for

cardiomyocytes by Engler et al. [51]. This result therefore illustrate why such simulation

can be essential for the choice of artificial gels with optimal mechanical properties in the

context of tissue engineering.

5.6.4 Effect of cortical stiffness on cell contractility

In the last example, we propose to investigate the influence of cortical stiffness on the

evolution of SF and cell contractility [14, 163]. We concentrated on the particular case of a

square cell lying on substrate whose stiffness is Es = 1000Ec. The geometry and numerical

discretization for this problem are displayed in the previous example. The normalized cortex

stiffness Ks/(T̄ d) is then varied from 0 to 1000 and the steady-state SF distribution is

evaluated for various cases.

As discussed in [14] and [163], the existence of a stiff cortical layer around a cell

tends to homogenize membrane curvature.This effect is nicely captured by the graph of

Fig. 5.14 that shows the decreasing average cortex curvature (κ · d) with increasing cortical

stiffness. The effect of cortical stiffness on SF generation was also significant. Indeed,

Fig. 5.14 shows that SF tend to increasingly align in parallel with the cortex as cortical

stiffness increases. The reason is clear: increasing cortical stiffness results in rising stiffness

in directions that are tangential to the cell membrane. As the model predicts SF formation in

directions of maximum stiffness, more SF are generated near and in parallel to the membrane.

These results have been confirmed by previous study ([15]) showing that the existence of a
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constrained boundary leads to generation of SF along the boundary.

5.7 Summary and Concluding remarks

In summary, this chapter presented a numerical approach to study the behavior of con-

tractile cells and their interactions with a two-dimensional elastic substrate. The continuum

model of cell contraction is based on a constrained mixture formulation [165] that describes

the contractile apparatus of cells in terms of four major constituents, namely cytoskeleton,

cytosol, G-actin monomers and F-actin (or SF) polymers. This framework enables us to

characterize important processes of cell contraction such as SF formation (mass exchange

between actin monomers and SF), actin diffusion and convection as well as the evolution

of a anisotropic contractile network in time. Biologically, the model rests on two key as-

sumptions: (a) SF contraction increases with decreasing strain rate (Hill’s model) and (b)

SF formation is promoted by contraction. The interactions of cells with their underlying

substrate were then considered through focal adhesions, modeled here by an elastic cohesive

law between the two continua.

The main contribution of this work was the introduction of an XFEM/level set method to

accurately and efficiently model the interactions between cells of arbitrary shapes and an

underlying deformable substrate. The key feature of the proposed method are as follows:

• Despite being represented by two distinct domains, cell and substrate are discretized

by a single, regular finite-element mesh. The (possibly complex) cell geometry is then

defined in terms of an analytical function (the level-set function) that is independent

of discretization. This feature has the merit of greatly simplifying the numerical is-

sues associated with meshing complex geometries and handling interactions between

bodies discretized by distinct meshes.

• The stiffness of the thin cortical layer surrounding cells can naturally be accounted

for by incorporating surface elasticity on the cell boundary. This feature is possible
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by enriching the XFEM shape functions with weak discontinuity functions, that

enable a jump in stress across the cell membrane.

• Since cell geometry is independent of discretization, the method can be extended to

describe cell growth, migration and spreading without resorting to remeshing tech-

niques, known to be computationally expensive. Instead, more efficient techniques

involving level-set evolution equations can be invoked. This will be the object of

future studies.

The performance of the method was then assessed by considering biologically relevant prob-

lems of cell-substrate interactions. Generally, our results showed that the proposed numerical

method, together with the constrained mixture formulation, led to realistic behaviors that

correlated very well with experimental observations. The coupling of XFEM and the levelset

method therefore provides a promising route to study a variety of biological problems in-

volving cell-substrate interactions, such as morphogenesis, tissue engineering, cell spreading

and migration as well as wound contraction.
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Figure 5.9: a) Discretization convergence of the numerical solution to estimate average SF
volume fraction in cell by changing mesh size. b) Proof of quadratic convergence of the
discretization according to Eq. 5.54.

Figure 5.10: Linear convergence of the nonlinear solution method



120

Figure 5.11: a-d) Initial configurations of cells with different shapes on substrate. The di-
mensions of the adhesion island are 1.5µm×1.5µm for all cases. e-h) Deformed configuration
of the cells together with the first invariant of the stress in the substrate. i-k) Experimental
results of SF formation in myocites ([18, 117, 61, 19]). l-n) Deformed configuration cells with
different shapes together with their stress fiber orientation in steady state to be compared
with the experiments depicted in parts i-k.
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Figure 5.12: Changes of the normalized force applied to the substrate by the cell in an
adhesion island as a function of normalized substrate’s stiffness and normalized time, together
with the volume fraction and orientation of SFs generated in the cell.

Figure 5.13: The changes of the work done by focal adhesion force on the cell with substrate’s
stiffness; and the substrate’s first invariant of stress tensor I1 for different substrates young’s
modulus: a) Es = 1 Pa, b) Es = 1000 Pa, c) Es = 20000 Pa.
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Figure 5.14: The effect of cortex stiffness on its curvature and SFs formation. a) Eσ = 0,
b)Eσ = 100N/m.



Chapter 6

A mathematical model to characterize the chemical mechanical interactions in

cells and their effect on spreading and contraction

6.1 Abstract

Recent research have shown that cell spreading is highly dependent on the contrac-

tile behavior of the cell and mechanical properties of the environment it is located in. The

dynamics of such process is critical for the development of tissue engineering strategy but

is also a key player in wound contraction, tissue maintenance and angiogenesis. To better

understand the underlying physics of such phenomena, this presentation describes a mathe-

matical formulation of cell spreading and contraction that couples the processes of stress fiber

formation, protrusion growth through actin polymerization at the cell edge and dynamics of

cross-membrane protein (integrins) enabling cell-substrate attachment. The model is based

on mixture model which accurately capture the interactions and mass exchange between

three constituents, namely, the cell’s cytoskeleton, actin monomers and stress fibers. On the

one hand, monomers are allowed to polymerize into stress fiber to generate contraction while

on the other hand, they may polymerize into an actin meshwork at the cell’s boundary to

push the membrane forward. In addition, a mechano-sensitive model of the diffusion and

attachment integrins to the substrate permit to quantify the physics of the above processes

in terms of substrate mechanical properties. A numerical solution of this moving boundary

problem is then derived using the extended finite element method, combined with a lev-

elset formulation. Consistent with experimental observations, our model is able to capture
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the dependency of cell spreading area and contraction on substrate stiffness and the cell’s

mechanical environment.

6.2 Introduction

The contractile behavior of cell and cell spreading depend highly on the chemo-mechanical

properties of cell constituents [55, 148, 114], focal adhesion complexes [96, 36], and substrate

they adhere to [180, 121, 65, 26]. Different range of substrate stiffness or ligand (adhe-

sion proteins on substrate surface) concentration leads to different stress fiber concentra-

tion/orientation in cell [170], as well as different cell area after spreading [129, 138]. The

better understanding of the process during which cell spreading and contraction happens

helps us to find out more details about what happens in natural phenomena such as wound

contraction, tissue maintenance and angiogenesis [4, 15, 133].

During spreading, cell extends a branched network of actin filaments on the border of

cell called lamellipodia [30, 64, 115, 124]. Lamellipodia is typically 0.5 µm thick and 1-10

µm long from front to back [30]. Lamellipodia protrusion depends on actin polymerization

that depends on signals received according to the cell’s environment mechanical properties

[31, 126]. The polymerization of actin fibers leads to the generation of physical force beneath

the plasma membrane that pushes it forward [32, 40, 115, 124]. Also, some research show that

in spreading/migrating cells, there are periodic contractions of lamellipodia that depend on

cell’s environment properties. The period of contraction depends on F-actin movement along

lamellipodia. They proved that cofilin decreases the period and shortens lamellipodia width

[63]. In contrast with the pushing force, the resistance of membrane as an elastic material,

and the instantly backward movement of the generated fiber network (called retrograde flow),

prevents cell spreading [159, 167, 177]. Retrograde flow may be the result of contractile force

that comes from myosin motors [137, 89]. At the end of spreading, cell optimizes its surface

by enhancing the adhesion to the substrate on the edges of the cell, and by the contraction

of polymerized stress fibers in the body of the cell.
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Focal adhesions provide a mechanical attachment between cell membrane and substrate

(or extracellular matrix). These adhesion complexes are multi protein links generated as the

result of mechanosensing (feeling substrate mechanical properties by cell and responding

to them [15]). The cell part of focal adhesions (Fig. 6.2) includes on-membrane proteins

called integrins, and a submembrane plaque consists of a lot of proteins such as talin, α-

actinin, filamin, FA kinase, vinculin, paxillin, and tensin [36]. Some of these proteins provide

the mechanical requirements for the adhesion beneath the membrane, while some others

receive or send signals to form or dissociate the adhesion [36]. It has been observed in

previous research that the formation of FAs is a function of the traction generated in the

cell-substrate contact area, such that, the traction increases the concentration of adhesion

complexes [151, 123, 11, 182, 112, 111]. Also, it has been proved that the mentioned traction

changes by the shape of cell and the cytoskeleton’s structure [116, 20, 23]. On the substrate

side of focal adhesions, the mechanical properties of substrate and the density of ligands

are important factors determining the formation of FAs and their concentration [138, 99].

Previous observations proved that greater substrate stiffness and higher ligand concentration

on its surface lead to increase in formation of FAs [129, 138].

As we discussed above, both cell growth and focal adhesion formation depend strongly

on contractile behavior of the cell, thus stress fibers play the most important role in con-

tractile behavior of the cell [55, 148, 114]. These fibers are the result of grouping filament

bundles that are generated by G-actin monomer polymerization. Under specific situations,

stress fibers may depolymerize to convert back to G-actin monomers [165]. Polymerization

and depolymerization of G-actins and stress fibers, as well as stress fiber orientation, depend

on the mechanical properties of the environment they are located in [180, 121, 65, 26]. For

example, more stress fibers are formed on stiff substrates because of the higher force gener-

ated in focal adhesion complexes in this case. They also orient parallel to free boundaries

and perpendicular to constraint boundaries of cell or substrate (if the cell is close enough to

substrate boundary) [55, 148].
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There are some mechanical models for cell contraction/spreading in two forms of fibrous

network models [107, 14] and continuum models [110, 166]. Fibrous network models were

the first models that studied the effect of cortical membrane tension on cell deformation

[14]. On the other hand, continuum models seem much better because of their flexibility

in considering the role of chemo-mechanical reactions in the process of cell contraction [37,

39]. Some of the continuum models are based on mixture theory to take into account

the interactions between several cell constituents such as G-actin and stress fibers mass

exchange, and G-actin flux in the cell [165]. Furthermore, because of the importance of

focal adhesions in the process of cell contraction and spreading, a lot of research has been

done on defining and modeling cohesive laws between cell and substrate surfaces in finite

element frameworks [103, 125, 178, 176]. These models are not able to consider chemo-

mechanical interactions happen on cell membrane and substrate surface to generate adhesion

complexes. To fill this gap, the authors of reference [36] presented a mechanism based

on integrins chemo-mechanical free energy equilibrium on cell membrane to describe what

happens during integrin-ligand complex formation. But their research does not consider

the vital effect of pushing and resisting forces during cell spreading as well as the effects

of considering cell as a mixture. Furthermore, some models were presented to describe the

rate of cell or fillopodia growth based on the fact that polymerization of new actin filaments

beneath the membrane is the fundamental phenomenon leads to cell/fillopodia spreading

[122, 93]. In another recent approach, the authors of reference [83] integrated in their model

the kinematics of fish epidermal keratocyte growth and kinetics of the proteins that play

important role in extension/detachment steps of cell crawling/spreading. But membrane

forces and chemo-mechanical interactions on cell membrane between integrins cannot be

captured in this model.

To fill the gaps mentioned above, in this chapter we present a single mathematical

model for cell contraction and growth based on chemical and mechanical interactions in cell

such that it accounts for the effect of all following phenomena:
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(1) A mixture model for cell contractile behavior is developed based on the mass ex-

change and chemo-mechanical reactions between main constituents as well as G-actin

and cytosol flux in the cell. For this purpose, the equilibrium state corresponding to

free energy of G-actin and stress fiber controls polymerization and depolymerization

of fibers in according to [56]. In addition, a similar strategy is followed to consider

mass exchange between G-actin and cytoskeleton as a fibrous network.

(2) Instead of modeling focal adhesions by elastic springs in predefined areas, our model

includes integrins in cell membrane and ligands on substrate to capture focal ad-

hesions (integrin-ligand complexes) formation during the process discussed above

[96].

(3) A growth model is presented to investigate the rate of cell spreading at the growing

border of cell as well as cell area at steady state. In the proposed model, cell grows

on its boundary by formation of new cytoskeleton based on the important criteria

mentioned in literature such as G-actin and cytoskeleton volume fraction at the cell’s

boundary, cell membrane forces, cell contractile behavior, substrate properties, and

focal adhesion formation.

(4) The existing numerical approaches (such as [103, 125, 178, 176]) use two different

mesh for cell and substrate, and connect them by contact meshes that are needed

to be very fine to provide enough accuracy in addition to all numerical issues ac-

companied with interactions between two different domains. Thus, we introduce a

numerical approach based on extended finite element (XFEM) and levelset method

[43, 105, 9], to provide the following features:

• The same mesh is used for cell and substrate to avoid the difficulties of dealing

with two different mesh interaction.

• Cell border is defined as the intersection of a 2D curve, called levelset function,



128

and cell 1D domain (Fig. 6.4a), as a result, we do not have to change the mesh

during cell evolution to define cell’s border.

• Cell surface tension is naturally taken into account using XFEM/levelset fea-

tures [163].

The outlook of the proposed work is as follows: first we present the mathematical

details for our model of contractile behavior of the cell, cell spreading, and integrin-ligand

focal adhesion formation on an elastic substrate in plane stress axisymmetric condition. This

section ends with a summary of force, mass, and chemo-mechanical equations corresponding

to cell-substrate interactions via focal adhesion during cell contraction and spreading. Then,

a numerical method based on XFEM/levelset is introduced to solve the governed nonlinear

equations during time. This section is followed by several numerical simulations to verify the

agreement of the proposed framework with experiments done previously by other researchers.

Finally the chapter finishes by presenting a summary of results and concluding remarks.

6.3 Mathematical model of cell contraction/growth

Contractile behavior of cell together with focal adhesion formation play important

role in cell spreading . Although a lot of materials and factors affect cell contraction and

spreading, in this chapter we simplify the cell by limiting its constituents to only important

ones, while trying to mimic contraction and spreading of cell on elastic substrate. In the

proposed framework, both cell and substrate behavior is approached under plane stress and

axisymmetric conditions (for simplicity, while it does not affect the results). In this approach,

as explained in details in [165, 53], the constituents of cell’s body include: cytoskeleton (the

major solid phase formed of a randomly oriented fibrous network), cytosol (fluid phase),

stress fibers (contractile constituents), and G-actin monomers (monomers of stress fibers and

cytoskeleton that exchange mass with them under specific circumstances) (Fig. 6.1). Stress

fibers are the result of grouping filaments which are the result of G-actin polymerization



129

in locations and directions of cell body with constraints against displacement [165]. Stress

fibers are part of cell’s body solid phase and can not move relatively to cytoskeleton. On

the other hand, G-actin monomers can flux with/through the fluid phase, cytosol.

Figure 6.1: General configuration of an axisymmetric cell located on an elastic substrate,
and cell’s main constituents

Furthermore, all cell’s body constituents are confined with cell membrane that plays

two important roles in our model. First, because of its surface tension and elasticity, cell

membrane resists cell growth [122]. On the other hand, it contains important proteins

(known as integrins) in its cytoplasm playing basic role in focal adhesion complex formation

[96]. Integrins are found in two active (or straight, or high affinity) and inactive (or bent, or

low affinity) states as depicted in Fig. 6.2. While these two kinds of integrins can convert to

each other as the result of a chemical reaction, only high affinity integrins are able to bound

some proteins on substrate, called ligands, to form focal adhesion [96, 36]. As explained in

details in the following, there is close dependency between contractile behavior of cell and

formation of high-affinity integrins and focal adhesions. high-affinity integrins are attached

to cytoskeleton, and thus, cannot migrate in membrane. But low-affinity integrins are free

and migrate through the membrane cytoplasm fluid [36].

In the following parts of this section, the mathematical equations associated with mo-

mentum balance of cell mixture and substrate, mass balance of constituents, and equilibrium
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Figure 6.2: Integrin-ligand complexes: a) Ligands, low affinity integrins, and bound/unbound
high-affinity integrins, b) Integrin states, c) relative displacement between two sides of
integrin-ligand complex.

between the mass exchanging constituents are governed to finally, using the obtained equa-

tions, we can calculate the unknowns of our problem that are continuum fields substrate

radial displacement us, cytoskeleton radial displacement uc, cytosol pure pressure p (as-

sociated with its volume fraction φf ), cytoskeleton volume fraction φc, G-actin monomer

volume fraction φm, radial stress fiber volume fraction φSFr , circumferential stress fiber vol-

ume fraction φSFθ , low-affinity integrin concentration (number per unit membrane area) cL

and high-affinity integrin concentration (number per unit membrane area) cH . It is assumed

that the cell is saturated by its constituents such that φc + φf + φm + φSFr + φSFθ = 1. In

the proposed formulation, there are some changes/modifications compared to our previous

contractile model [165, 53]:

• Mass exchange is considered between cytoskeleton and G-actin monomer in addition

to stress fibers and G-actin monomer.

• The rate of polymerization/depolymerization of G-actin monomers, stress fibers, and

cytoskeleton is very fast in comparison with other time dependent procedures in the

cell such as G-actin migration. Consequently, instead of polymerization/depolimerization

rate equation, the balance of free energy of constituents at equilibrium is governed.

• In spite of previous work, focal adhesions are not considered as predefined areas of

springs, instead, formation of integrin-ligand adhesion complexes is proposed.
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6.3.1 Mass balance

As mentioned above, solid phases of cell body can exchange mass with G-actin monomers.

In addition G-actin monomers and low-affinity integrins are able to migrate in cytosol and

membrane fluid, respectively. High-affinity integrins can also exchange mass with low-affinity

integrins. During contraction, total mass of cell body and membrane constituents, including

cytoskeleton c, cytosol f , G-actin monomer m, radial stress fiber r, circumferential stress

fiber θ, low-affinity integrin L, and high-affinity integrin H, is conserved.

Cell body (G-actin monomers, stress fibers, and cytoskeleton)- Using material

time derivative of mass for each constituent(Dm
Dt

, time derivative of mass following the solid

phase), the general form of mass balance equation in the body of cell is written as bellow

for constituent α [165]:

Dρα

Dt
+∇ · (ραvα) = ραΠα in Ωc α = c, SF,m, f (6.1)

where ρα, vα, and ραΠα denote mass per total volume, velocity, and rate of mass formation

per total volume for each constituent α, respectively. Indeed, the operator ”∇·” is used to

show the divergence field. The above equation is written in terms of volume fraction φα of

constituent α by using equation ρα = φαραr where ραr is true density of constituent α that has

a constant value due to incompressibility assumption for all constituents. The final equation

takes the form:

Dφα

Dt
+∇ · (φαvα) =

ραΠα

ραr
in Ωc α = c, SF,m, f (6.2)

In the latter equation, whenever α = SF , total stress fiber volume fraction φSF is the

summation of radial and circumferential stress fiber volume fractions ([165]) such that: φSF =

φSFr +φSFθ . Assuming that stress fibers move with cytoskeleton, and only cytosol and G-actin
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monomer can migrate through the cell body, Eq. (6.2) splits to two different forms such that:

Dφα

Dt
+ φα∇ · vc +∇ · Jα =

ραΠα

ραr
in Ωc α = m, f (6.3)

Dφα

Dt
+ φα∇ · vc =

ραΠα

ραr
in Ωc α = c, SF (6.4)

where Jα = φα(vα − vc) denote the flux of constituent α = m, f .

No total mass is lost or generated during contraction, thus
∑
ραΠα = 0. Then assuming

ρcr = ρSFr = ρmr , and φc + φSF + φm + φf = 1, cytosol and mixture mass balance (the

summation of all constituents mass balance equations) are respectively written for plane

stress and axisymmetry (there is no displacement or change in any field along θ direction)

situation as:

φ̇f + αφf
(
∂vc

∂r
+
vc

r

)
+ βφf ṗ+

(
∂Jf

∂r
+
Jf

r

)
= 0 (6.5)

α

(
∂vc

∂r
+
vc

r

)
+ βṗ+

(
∂Jf

∂r
+
Jf

r

)
+

(
∂Jm

∂r
+
Jm

r

)
= 0 (6.6)

in above equation, the coefficients α and β are functions of νc and Ec, cytoskeleton’s Poisson’s

ratio and Young’s modulus, respectively, due to the effect of plane stress condition for cell

that means Tzz = p where T and zz denote cytoskeleton Cauchy stress and normal direction

to cell’s surface, respectively. For more details reader is referred to [53]. α and β take the

form:

α =
1− 2νc

1− νc
, β =

(1 + νc)(1− 2νc)

Ec(1− νc)
(6.7)

In addition, in Eqs. (6.5) and (6.6), φ̇f shows material time derivative of cytosol volume frac-

tion, and using the assumption of the cell’s body is saturated by the mentioned constituents

is written as:

φ̇f = − 1

1 + φmf

(
φf φ̇mf + φ̇c + φ̇p

)
(6.8)

where φmf = φm/φf . Also Jf and Jm denote cytosol and G-actin monomer flux, respectively,

such that [165]:

Jf = −κ
µ
∇p, Jm = −φmf

κ

µ
∇p− φfD ∇φmf (6.9)
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where κ, µ, and D denote solid phase permeability, cytosol viscosity, and G-actin diffusion

constant in cytosol, respectively.

Cell membrane (integrins)- Similarly to Eqs. (6.3) and (6.4), for low-affinity and

high-affinity integrins on cell membrane we can write the mass balance equations as:

DcL

Dt
+ cL∇ · vc +∇ · JL = cLΠL on Ωc (6.10)

DcH

Dt
+ cH∇ · vc = cHΠH on Ωc (6.11)

where cL and cH denote low affinity and high affinity integrin concentration (number per

membrane unit area), respectively. Also, cLΠL and cHΠH show the rate of low-affinity and

high-affinity integrins formation per unit membrane area, respectively. Thus, because no

integrin is added or lost during contraction of the cell to the total number of integrins, we

can write cLΠL + cHΠH = 0. As a result, for the mixture of low-affinity and High-affinity

integrins, mass balance equation takes the form:

D
(
cL + cH

)
Dt

+
(
cL + cH

)(∂vc
∂r

+
vc

r

)
+

(
∂JL

∂r
+
JL

r

)
= 0 on Ωc (6.12)

In above equation, it is assumed that high-affinity integrin is attached to the solid phase,

and thus, cannot migrate in membrane cytoplasm fluid [36], but low-affinity integrins can

migrate in membrane cytoplasm fluid such that their flux JL is computed by [96]:

JL = −m∇cL (6.13)

where m denote low-affinity integrin mobility coefficient.

6.3.2 Momentum balance of mixture

Cell/Substrate momentum balance equations: In this section we present equa-

tions regarding balance of forces in a cell and substrate. For this purpose, the components

of mixture Cauchy stress T is used such that Tr and Tθ denote radial and circumferen-

tial components, respectively. As a reminder, Cauchy stress denote infinitesimal force per



134

unit current area of mixture. Mixture Cauchy stress components are written in terms of

their constituents such that for both radial and circumferential components one can write

T = T c + T SF − p where p represents fluid pressure and T c and T SF denote the part of

mixture stress that come from cytoskeleton passive behavior and stress fiber passive and ac-

tive response, respectively. Then the balance of momentum for mixture under axisymmetric

conditions leads to the equation:

∂Tr
∂r

+
1

r
(Tr − Tθ) + br = 0 in Ωc (6.14)

(6.15)

where br represents radial body force of cell given by:

br = −t
i

h
(6.16)

In above equation, h denote the cell height and ti is the traction force applied to cell surface

coming from integrin-ligand adhesion complexes.

To consider the effect of surface tension and membrane elasticity on cell deformation,

we follow the surface theory presented in [71] and used in [163, 165, 54, 53]. According to

the mentioned references, the traction on cell surface is computed as a function of strain

dependent and constant surface tensions (Tσ and Tσ
0 , respectively) which have the unit of

force per unit length (or energy per unit surface area) by:

T · n = ∇σ · (Tσ + Tσ
0 ) on Γc (6.17)

where n and ∇σ denote out-normal unit vector for cell’s surface and surface divergence,

respectively. It can easily be shown that for axisymmetric situation, Eq. (6.17) takes the

form:

Tr = −1

a
(T σ + T σ0 ) on Γc (6.18)

where a is current cell radius.
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The balance of momentum equation for substrate Cauchy stress T s takes the same

form as mentioned for cell’s mixture such that:

∂T sr
∂r

+
1

rs
(T sr − T sθ )− br = 0 in Ωs (6.19)

(6.20)

Cell/Substrate body constitutive equations: To complete the momentum balance

equations, constitutive relations between different components of Cauchy stress (cytoskele-

ton, stress fiber, and substrate) and strain are needed. As mentioned previously, both cell

and substrate are considered in plane stress axisymmetric condition for simplicity, although

this assumption does not affect the results. Plane stress condition means that for both cell

and substrate total Cauchy stress is zero along the direction perpendicular to cell/substrate

plane. For the substrate it easily means T szz = 0, while for the cell because of its being

made of solid-fluid mixture, the plane stress condition leads to T czz − p = 0, where T c and p

denote cytoskeleton passive Cauchy stress and cytosol pressure, respectively. Finally, as it is

proved in details in [53], and by assuming linear elastic behavior for both cell and substrate

because of their small deformations (about one percent), the following constitutive equations

are obtained for cell and substrate:

T cr =
Ec

1− νc2
(εcr + νcεcθ) +

νc

1− νc
p, T sr =

Es

1− νs2
(εsr + νsεsθ) (6.21)

T cθ =
E

1− νc2
(νcεcr + εcθ) +

νc

1− νc
p, T sθ =

E

1− νs2
(νsεsr + εsθ) (6.22)

where E and ν are Young’s modulus and Poisson’s ratio, and the superscripts c and s

denote cytoskeleton and substrate, respectively. Also, in Eqs. (6.21) and (6.22), the small

deformation radial and circumferential strains, εr and εθ, respectively, are given for both

cell’s solid phase and substrate by following equations under axisymmetric conditions as a

function of their radial displacement u:

εr =
∂u

∂r
, εθ =

u

r
(6.23)



136

Stress fiber constitutive equation: Let us now talk about the part of Cauchy stress

in cell that comes from stress fibers. As discussed in details in [165], stress fiber stress comes

from its two different responses to its environment: passive and active. The passive response

is similar to any elastic material, and depends on stress fiber material properties and its

strain. While stress fiber active response is the result of its inherent contractile behavior

generated by acto-myosin motors [165]. In this chapter, we use the new modified definitions

for stress fiber contractile stress presented in [56] such that for any direction, including r

and θ, total stress fiber contractile stress T SF takes the form:

T SF = φSF (E1ε+ T ∗) (6.24)

where E1 and T ∗ denote stress fiber Young’s modulus and inherent contractile stress of one

stress fiber, respectively. In Eq. (6.24), the first term proposes passive response of stress

fibers, while the second term denote their active response.

Integrin-ligand adhesion constitutive equation: The traction on cell and sub-

strate surface ti, generated by integrin-ligand adhesion complexes, depends on the complex

stiffness λs (with unit of force per length) and relative cell-substrate deformation ∆i = uc−us

(Fig. 6.2b). In this view, the focal adhesion traction is computed such as a stretched spring

such that:

ti = cBHλs(u
c − us) (6.25)

where cBH denote integrin-ligand complex (or bound high-affinity integrin) concentration

with the unit of number per unit surface area. The concentration of focal adhesion complexes

and their relation with ligand and high-affinity integrins is discussed in details in next section.

Cell membrane constitutive equation: Because of its thin thickness in comparison

with the other cell and substrate dimensions, cell membrane is assumed to act such cable

that surrounds the cell in its border Γc (Fig. 6.1). Cell membrane is the only part in our
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model that undergoes large deformation during cell spreading. Cell’s area may end with an

area even more than three times the initial area [129, 138]. This change in area is the result

of growth (mass is generated during growth) not deformation, while membrane does not

grow in the proposed framework, but stretches during cell growth. Consequently, instead of

infinitesimal strain ε, Green strain Eσ is used for cell membrane such that [10]:

Eσ =
1

2

(
l2

l20
− 1

)
=

1

2

(
ac2

ac0
2 − 1

)
(6.26)

where l and ac denote current membrane length and cell radius, respectively; while the values

with subscript 0 represent initial values at time = 0. Then the constitutive relation between

membrane axial Green strain and its axial second Piola-Kirchhoff stress Sσ is given by [10]:

Sσ = kσEσ (6.27)

where kσ denotes membrane axial stiffness (force per unit length). Membrane stiffness is

obtained as the result of the derivative of its strain energy ψ with respect to its Green strain

Eσ such that [10]:

kσ =
∂ψ

∂Eσ
(6.28)

Then, membrane Cauchy stress T σ of membrane is computed by [10]:

T σ = SσF (6.29)

where F = ∂a/∂a0 denote deformation gradient of cell membrane.

6.3.3 Free energy and equilibrium state of constituents

6.3.3.1 Free energy

Integrins: The adhesion proteins on cell membrane, called integrins, are found in two

conditions (Fig 6.2b): bent and straight (or low affinity integrins and high affinity integrins,

respectively). Low affinity integrins do not have the ability to make adhesion complex. These



138

integrins can migrate on the cell membrane toward the area with more traction forces on the

cell surface. On the other side, high affinity integrins are activated integrins able to make

a bond with ligands on the substrate surface to generate an focal adhesion. These integrins

are mostly attached to cytoskeleton, and can not migrate on the cell membrane.

To find the chemical potential of low affinity integrins, it is assumed that they make

a dilute solution in the membrane fluid. As a result, their free energy (µL) is given as a

function of low affinity number per unit area (cL) by [36]:

µL = µL0 + kBT ln

(
cL

cI0

)
(6.30)

where µL0 and cI0 are low-affinity integrin’s free energy and concentration in standard condi-

tion, respectively. The free energy of unbound high-affinity integrins rises from their chemical

potential such that:

µUH = µH0 + kBT ln

(
cH

cI0

)
(6.31)

where µUH , µH0 and CUH are current and standard unbound high-affinity integrins free energy

and unbound high-affinity integrin concentration (number per unit area), respectively. For

bound integrins, their free energy includes mechanical energy of integrin-ligand complex in

addition to their chemical potential. In this case the free energy of bound high-affinity

integrins is written as [36]:

µBH = µH0 + kBT ln

(
cH

cI0

)
+ φ(∆i)− Fi∆i (6.32)

where µBH and cBH are current bound high-affinity integrins free energy and bound high-

affinity integrin (or integrin-ligand) concentration, respectively. The last two terms in equa-

tion (6.32) come from the stretching of the integrin-ligand bonds as a function of the bond’s

stretching ∆i = uc − us where uc and us are cell-side and substrate-side displacement of the

adhesion complex, respectively. φ(∆i) denote the stretch energy stored in integrin-ligand

complex, while Fi = ∂φ
∂∆i

is work conjugate force. In the case of a continuum model of
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integrins and ligands, the stretch energy is given by:

φ(∆i) =
1

2
λs∆

2
i (6.33)

Defining NUH and NBH as unbound and bound high-affinity integrin numbers, the total

number of high-affinity integrins NH is given by NH = NUH + NBH . As a result to-

tal high-affinity integrin free energy is computed as NHµH = NUHµUH + NBHµBH , or

µH = φUHµUH + φBHµBH where φUH and φBH denote unbound and bound integrin per-

cents, respectively, such that φH = φUH + φBH . Following [96] ligand-integrin complex con-

centration (or bound high-affinity integrin concentration cBH) at equilibrium is computed

by:

cBH =
clg

1 + clg
cH (6.34)

where clg denotes ligand concentration. Consequently, using Eqs (6.31) and (6.32), the free

energy of high-affinity integrins is written as:

µH = µ0 + kBT ln

(
cH

cI0

)
+

clg

1 + clg
[φ(∆i)− Fi∆i] (6.35)

where

µ0 = µH0 + kBT

[
clg

1 + clg
ln(clg)− ln(1 + clg)

]
(6.36)

Because of their straight shape, high affinity integrins are less stable than low infinity inte-

grins before being bond to ligands. It means that µH0 > µL0 . As a result, if the high-affinity

integrins are not bound to the integrins, they tend to convert to bent condition to reach

more stable condition. But when high-affinity integrins are attached to ligands, the stretch

of the integrin-ligand bond decreases the free energy µBH to stabilize the adhesion. When

equilibrium is reached, the free energy of low and high affinity integrins are equal (µH = µL).

This equilibrium is reached very fast compared to the other time dependent phenomena in

the cell such as G-actin monomers or low-affinity integrin migration.

G-actin-monomers: The potential of actin monomers µm at absolute temperature

T is given by only their chemical potential defined as a function of their volume fraction φmf
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by [56]:

µm = µm0 + kBT ln
(
φmf
)

(6.37)

where µm0 and kB denote actin monomer chemical potential at φmf = 1 and Boltzman

constant, respectively.

Stress Fibers: On the other hand, chemo-mechanical potential of stress fibers µSF

at temperature T comes from both chemical and mechanical potential stored in stress fibers

such that for any direction one can write [152, 56]:

µSF = µSF0 + kBT

(
ln
(
φSF

)
+ aµ

(
φSF

φSF∗

)5/4
)

+ ESF (6.38)

Also, the cytoskeleton overlap volume fraction φc∗ corresponds to the state in which cy-

toskeleton chains are congested in mixture.

where µSF0 , aµ and ESF denote stress fiber chemical potential at φSF = 1, a constant

independent of the number of monomers in a chain of cytoskeleton as a polymer, and the

mechanical potential energy of a single stress fiber, respectively. Also, stress fiber overlap

volume fraction φSF∗ corresponds to the state in which cytoskeleton chains are congested in

mixture. The potential ESF is given by:

ESF =
1

2
E1ε

2 − T ∗ε (6.39)

where E1, ε, and T ∗ denote stress fiber’s Young’s modulus, stress fiber’s axial strain, and

inherent tension of a single stress fiber, respectively. The first term in Eq. (6.39) gives the

elastic energy stored in a stress fiber, while the second term introduces the relaxation in a

stress fiber due to its inherent contraction. Eq. (6.39) explains the formation or dissociation

of stress fiber as a function of its mechanical properties and also its strain (which is the same

as cytoskeleton’s strain in the direction of stress fiber). We conclude from Eq. (6.39) that

if ε < 0, ESF is positive which leads to increase in stress fiber chemo-mechanical potential.

This causes the stress fiber to be unstable and depolymerize to actin monomer. On the other

hand, in the case of ε > 0, ESF is negative that leads to formation of stress fibers due to
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their low potential level and high stability. This happens up to the critical positive strain

εcr = 2T ∗

E1
where stress fiber cannot resist the tension, and so, depolymerizes.

Cytoskeleton: Cytoskeleton-cytosol mixture is considered as a semidilute solution

[152]. In according to blob model ([152]), chemical potential of cytoskeleton µc is approxi-

mated by the following equation valid from dilute to semidilute solutions:

µc = µc0 + kBT

(
ln (φc) + aµ

(
φc

φc∗

)5/4
)

(6.40)

where µc0 and aµ denote stress fiber chemical potential at reference state φc = 1 and a constant

independent of the number of monomers in a chain of cytoskeleton as a polymer. Also, the

cytoskeleton overlap volume fraction φc∗ corresponds to the state in which cytoskeleton

chains are congested in mixture.

The free energy of cytoskeleton in the growing boundary of the cell is a little different

from cell’s body due to the process of cell growth, in which actin monomers try to overcome

resisting forces and polymerize to form new network of fibers. The resisting forces come

from two sources. First, local bending of membrane (f l), generated as the result of new

actin monomer inserting between membrane and existing fiber (Fig. 6.3b); and second,

global membrane resistance (f g) due to its resistance against being stretched as an elastic

material. In contrast to the resisting forces, the pulling force coming from focal adhesion

complexes at the cell’s boundary helps the process of cell growth in the way explained in

the following. As a result, despite the cell’s body, the free energy of cytoskeleton in the

growing boundary of cell is not only included of its chemical potential, but also of the

mechanical energy of the mentioned forces. Fig. 6.3 shows that one cycle of actin monomer

polymerization includes two steps. During the first step, shown in Fig. 6.3b, membrane is

deformed locally such that a new actin monomer can be inserted between the tip of existing

filament and membrane. In this step, there are some forces that resist polymerization. One

of these forces comes from the bending resistance of the membrane (f l). As depicted in Fig.

6.3b, to insert a monomer to the end of a filament, the membrane needs to be bent such that
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Figure 6.3: A cycle of actin polymerization beneath the cell membrane: a) G-actin monomers
try to insert between the existing filament and cell membrane, b) Cell membrane is bent
such that one monomer is bound at the end of the existing filament, and c) Cell membrane
returns to its unbent configuration.

an additional space of δ (half monomer size) is provided for the monomer to be inserted.

Consequently, the corresponding work is f l · δ. The other resistance against actin insertion

comes from global membrane resistance (f g) due to its stretching. Since this force is applied

to the contact point of filament and membrane, the work needed to overcome the mentioned

resistance is calculated by f g · δ. On the other hand, there is a pulling force coming from

contractile behavior of stress fibers in the body of cell that helps monomer insertion. As Fig.

6.3b shows, this force helps providing enough space for insertion of a new monomer. As a

result, it helps the polymerization process by decreasing the system energy by fp · δ. As a

summary, in the step of membrane local deformation in order to insert a new actin monomer

between filament and membrane, the change in cytoskeleton-membrane energy is given by:

∆µcI = f l · δ + f g · δ − fp · δ (6.41)

To have complete a cycle of actin monomer polymerization, as depicted in Fig. 6.3c,

membrane should return to its unbent configuration. In this step the elastic energy stored

in membrane during first step as the result of its bending (f l · δ), is released. Also, the

pulling force fp helps the mentioned process; as a result the needed energy for detaching is

computed as −fp · δ. Consequently, the total change in system energy during the second
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step is given by:

∆µcII = −f l · δ − fp · δ (6.42)

Combining equations (6.41) and (6.42), the total change in cytoskeleton free energy to

complete a cycle of one actin monomer polymerization takes the form:

∆µctot = f g · δ − 2fp · δ (6.43)

Finally, total free energy of cytoskeleton on the growing boundary of the cell is computed

by adding the mechanical energy of Eq. (6.43) to the chemical potential of cytoskeleton

presented before such that:

µc = µc0 + kBT

(
ln (φc) + aµ

(
φc

φc∗

)5/4
)

+ f g · δ − 2fp · δ (6.44)

6.3.3.2 Equilibrium state

Three kind of mass exchange happens in a cell as the result of chemical reactions

(polymerization). The first kind of mass exchange happens on the cell’s membrane between

low affinity and high affinity integrins. Also, another kind of mass exchanges is the result

of polymerization of actin monomers that results in formation of stress fibers that are the

result of binding filament bundles. The reverse reaction (depolymerization of stress fibers)

leads to generation of actin monomers. In a similar approach as actin monomer and stress

fiber chemo-mechanical equilibrium, the chemo-mechanical equilibrium should be satisfied

between actin monomers and cytoskeleton because actin monomers are able to polymerize

to form cytoskeletal network, while on the other hand, cytoskeleton may depolymerize to

actin monomers.

It is assumed that all reactions (except actin monomer polymerization on the growing

surface of cell) are very fast compared to the other time consuming phenomena in the cell

such as actin monomer, L-integrin, and cytosol flux. As a result, only the equilibrium of

their chemo-mechanical potential is considered to be satisfied at each time at each point of

the cell’s body/surface.
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As a summary, at equilibrium state, the free energy of cell’s constituents must satisfy

the following equations:

High-affinity and low affinity integrins: µH = µL (6.45)

Stress fibers and G-actin monomers: µSF = µm (6.46)

Cytoskeleton and G-actin monomers: µc = µm (6.47)

On the cell’s growing boundary, the value of cytoskeleton and actin monomer free

energy provides information about growth to be favorable or unfavorable. if µc < µm, it

means that polymerization decreases the energy level of the system and it is favorable and

continues. In contrast, if µc > µm means polymerization is not favorable. Also, in the

case of µc = µm, the total monomer and filament concentration will not change during time

and system is in equilibrium. in this case, using equation (6.44), φmf,cr, the minimum actin

monomer concentration needed for polymerization, can be computed as:

φmf,cr = φc exp

(
−−∆µ0 − f g · δ + 2fp · δ

kBT
+ aµ

(
φc

φc∗

)5/4
)

(6.48)

where ∆µ0 = µc0−µm0 . Equation (6.48) shows that the actin monomer concentration needed

for polymerization increases exponentially by global membrane resistance force , f g, while it

decreases exponentially by the pulling force fp.

6.3.4 The rate of growth

As mentioned briefly, the rate of mass exchange between actin monomers and stress

fibers or cytoskeleton in the body of cell, and also mass exchange between low affinity and

high affinity integrins on the cell membrane are very fast in comparison with other time

dependent procedures in cell which are actin monomer, cytosol, and low affinity integrin

flux. Consequently, the mentioned rates are neglected in this chapter. In contrast, since

membrane resists polymerization of cytoskeleton in the growing surface of the cell, the rate

of polymerization in this part is not negligible. On the other hand, this rate gives information

about the velocity of growth of cell that is interested and important in studying cell spreading.
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The rate of polymerization, k, depends highly on the activating energy, needed to start

polymerization [93]. This activation energy Er depends on the factors resist or help poly-

merization during the first step (Fig. 6.3a,b). The resisting forces include global membrane

force and local membrane force needed for its local bending. On the other hand, the pulling

force fp and actin monomer concentration help polymerization. Thus, the total activating

energy is given by:

Er = f l · δ + f g · δ − fp · δ + ∆µ0 + kBT

(
ln (φc) + aµ

(
φc

φc∗

)5/4
)
− kBT ln(φmf ) (6.49)

Following [93] and according to the Arrhenius law, the rate of polymerization (monomer

per time) is computed by:

k = k0exp

(
− Er
kBT

)
(6.50)

Since at each polymerization cycle, filament size is increases by δ (Fig. 6.3), the rate of

filament (or cell) growth (length per time) is computed as:

V = k0 · δexp
(
− Er
kBT

)
(6.51)

By substituting the activating energy Er from Eq. (6.49) into above equation, the following

equation is derived for the rate of cell growth:

V = k · δ · exp
(
−f

l · δ + f g · δ − fp · δ
kBT

)
(6.52)

where k = k0
φmf
φc
· exp

(
−∆µ0
kBT
− aµ

(
φc

φc∗

)5/4
)

. Eq. (6.52) shows that the membrane resisting

forces f l and f g decrease the rate of cell’s growth; while the pulling force fp increases

polymerization and growth rate. It also proves that the more concentration of actin monomer

leads to more growth while by decreasing monomer concentration, the cell’s growth slows

down. It also should be kept in mind that polymerization continues as long as monomer

concentration is greater than its critical value φmf,cr (Eq.(6.48)).

Furthermore, by neglecting the effect of pulling force and local membrane resistance,

fp and f l, respectively, one can derive the following equation from Eq. (6.52):

V = k · δ · exp
(
−f

g · δ
kBT

)
(6.53)
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The above equation is in complete agreement with what derived for cell growth by using the

concept of Brownian-Ratchet in [122].

As a summary of this section, the summary of equations corresponding to substrate

momentum balance, cell momentum balance, cytosol mass balance, cell mixture mass bal-

ance, integrins mass balance, and also the free energy equilibrium state between cytoskeleton

and G-actin, radial stress fiber and G-actin, circumferential stress fiber and G-actin, and in-

tegrins are shown respectively as follows:

∂T sr
∂r

+
1

r
(T sr − T sθ ) + ti = 0 (6.54)

∂T cr
∂r

+
1

r
(T cr − Tθ) +

∂T SFr
∂r

+
1

r
(T SFr − T SFθ )− ∂p

∂r
− ti = 0 (6.55)

φ̇f + αφf
(
∂vc

∂r
+
vc

r

)
+ βφf ṗ+

(
∂Jf

∂r
+
Jf

r

)
= 0 (6.56)

α

(
∂vc

∂r
+
vc

r

)
+ βṗ+

(
∂Jf

∂r
+
Jf

r

)
+

(
∂Jm

∂r
+
Jm

r

)
= 0 (6.57)

D
(
cL + cH

)
Dt

+
(
cL + cH

)(∂vc
∂r

+
vc

r

)
+

(
∂JL

∂r
+
JL

r

)
= 0 (6.58)

µc − µm = 0 (6.59)

µSFr − µm = 0 (6.60)

µSFθ − µm = 0 (6.61)

µH − µL = 0 (6.62)

6.4 Numerical solution of governed equations

6.4.1 Numerical strategy for cell contraction/spreading on substrate

The set of equations governed in previous section needs a numerical method to solve

for unknown fields. As shown in Fig. 6.1, the axisymmetric plane stress domain under study

includes two separate domains: cell Ωc and substrate Ωs. If these domains are approached

by two different mesh frames, we will face to the following difficulties:

• Due to cell spreading, at each time step the mesh should be updated for both cell
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and substrate.

• The adhesion between cell and substrate via adhesion complexes asks for interaction

between two separate domains with its specific difficulties.

• The surface tension on cell’s membrane cannot be naturally considered.

• Although not considered in this chapter, in a 2D or 3D case, the random shape of

cell, especially during evolution, asks for different meshes for each case/time step.

Figure 6.4: (a) Levelset function, enriched element and enriched nodes, (b) Heavy side and
(c) Ridge functions used to enrich the finite element interpolation.

For these reasons, in this chapter, we introduce a numerical approach which needs only

one mesh frame for both domains. The mesh frame covers the whole substrate while the

cell domain Ωc is defined by a function φ(r), called levelset function (Fig. 6.4a), where r is

radial distance of a point from center of cell. For our problem, levelset is a 2D curve/line

such that the border of the cell is defined as the intersection of this line with axis r (cell’s

level, Fig. 6.4a). The function φ(r) is defined such that it has different sign in two sides of

cell’s boundary. As a result it is very easy to determine if a material point P located at r is

inside, outside, or on the boundary of the cell such that:

if φ(r) > 0, P ∈ Ωc (6.63)

if φ(r) = 0, P ∈ Γc (6.64)

if φ(r) < 0, P /∈ Ωc (6.65)



148

This method enables us to define cell’s domain with different sizes during evolution inde-

pendently from finite element mesh. In addition, nodes located outside the cell have only

substrate displacement degree of freedom us, while nodes located outside the cell associate

with substrate displacement us and cell degrees of freedom uc, p, φc, φm, φSFr , φSFθ , cL, and cH .

The main difficulty of the problem under study when approached by ordinary finite

element method is that the continuum domain of cell is associated with discontinuities on its

boundary. For example, a typical cell continuum field f has a value inside the cell, while it

vanishes outside the cell boundary Γc. The reason is that the shape functions used in ordinary

finite element method are continuous, and the boundary Γc is located inside an element. To

overcome the mentioned difficulties, in this chapter we use extended finite element [43, 79]

that is very efficient in describing different types of discontinuity in a continuum field within

an element [105, 9, 7, 181, 54]. In this context (Fig. 6.4a), the elements cut by the levelset,

and their nodes, are considered as enriched elements/nodes. To introduce discontinuities

in a continuum field f (denoted as strong discontinuity) and its gradient (denoted as weak

discontinuity) across the cell boundary, fictitious degrees of freedom f̄ and ¯̄f are added to the

enriched nodes such that a numerical approximation f̃ of the function f can be introduced

using conventional finite element shape functions as follows:

f̃(r) =
n∑
I=1

NI(r)fI +
m∑
J=1

NJ(r)(H(r)−H(rJ))f̄J +
m∑
J=1

NJ(r) (χ(r)− χ(rJ)) ¯̄fJ (6.66)

where NI and NJ are ordinary shape functions of ordinary and enriched nodes, respectively.

As depicted in Fig. 6.4a, the element cut by levelset function is enriched element, and its

nodes are considered as enriched nodes. Also in Eq. (6.66), n and m denote the total number

of nodes and number of enriched nodes of an element, respectively. In addition, the Heaviside

and ridge functions, denoted as H(r) and χ(r) take the form:

H(r) =


1 φ(r) > 0

0 φ(r) < 0

and χ(r) = |φ(r)| (6.67)
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The function H(r) is used to introduce a jump in the fields u̇c, ṗ, φ̇c, φ̇m, φ̇SFr , φ̇SFθ , ċL and

ċH across the cell’s membrane, whereas the ridge function is used to define discontinuities

in the spatial derivatives of u̇s and u̇c ([105, 106]) due to the adhesion complex traction

force on substrate and the effect of cell membrane surface tension on cell, respectively. A

one-dimensional representation of the Heaviside and ridge function is provided in Fig. 6.4b

and 6.4c.

As a summary, the proposed framework has the following advantages compared with

ordinary finite element method:

(1) Because of using the same mesh for cell and substrate, the difficulties of interaction

between two separate domains is avoided.

(2) The effect of cell membrane surface tension on cell deformation is naturally consid-

ered as described in [54, 166].

(3) The problem of cell spreading is naturally incorporated by using the advantage of

levelset evolution [93, 136]. As a result, remeshing is not needed at each time step

during evolution.

6.4.2 Discretization and time integration

The proposed XFEM approximation Eq. (6.66) is substituted for continuum fields u̇s,

u̇c, ṗ, φ̇c, φ̇m, φ̇SFr , φ̇SFθ , ċL and ċH in the set of equations (6.54)-(6.62). It should be noted

that just the nodes corresponding to elements cut by zero levelset function are enriched.

Also, all fields except substrate displacement us are considered to have strong discontinuity

across cell border Γc, while only us and uc have weak discontinuity across Γc. The jump in

gradient field of us happens because of vanishing the traction force of focal adhesions outside

the cell area. In addition, the weak discontinuity for the gradient field of uc is considered

due to the effect of cell membrane surface tension that leads to jump in strain and stress

fields of cell’s body [163].
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Furthermore, the domain is discretized to nel 3-node elements, and corresponding

Lagrangian shape functions NI are used to interpolate the continuum fields between element

nodes. The nodal degrees of freedom Ue
I for any element e are then defined by the following

vector:

Ue
I =

[
ueI ūeI ¯̄ueI

]T
(6.68)

where

ueI =

[
us,eI uc,eI peI φm,eI φc,eI φSF,er,I φSF,eθ,I cL,eI cH,eI

]T
(6.69)

ūeI =

[
ūc,eI p̄eI φ̄m,eI φ̄c,eI φ̄SF,er,I φ̄FS,eθ,I c̄L,eI c̄H,eI

]T
(6.70)

¯̄ueI =

[
¯̄us,eI ¯̄uc,eI

]T
(6.71)

where I = 1, 2, 3 denotes the local node number for each element. It should be noted that

the terms ūeI and ¯̄ueI correspond to strong and weak degrees of freedom and are vanished for

non-enriched (normal) elements. Then, using above nodal values in approximation (6.66),

and substituting it in set of governed equations (6.54)-(6.62), integration over each element

domain is performed numerically using 3-node Gaussian quadrature rule for normal elements

with no enriched node, and 5-node Gaussian quadrature rule for normal elements neighboring

the enriched element (with one enriched node). The latter is called partially enriched element.

To integrate over the enriched element, the element is split to two sub-elements in two sides

of cell’s border Γc. Then 8-node Gaussian quadrature rule is used, for maximum accuracy, to

integrate over each sub-element following partition of unity for the whole element. It should

be noted that these sub-elements are used for only integration purposes and do not increase

elements or degrees of freedoms. Furthermore, on cell surface, there is only one point due to

axisymmetry, thus no numerical integration is needed on cell surface.

After long but straightforward calculations, the following final matrix form XFEM

equation is governed:

C · U̇ + K · δU + F = 0 (6.72)
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where U denote global degrees of freedom vector. In addition, all components of Eq. (6.72),

are resulted from assembly of elemental values as following:

F = A nel
e=1F

e K = A nel
e=1K

e and C = A nel
e=1C

e. (6.73)

where A denote assembly operator. As a result, the final force vector, damping matrix, and

stiffness matrix take the forms:

F =

[
Fus , Fuc , Ff , Fm, Fc, FSF,r, FSF,θ, FL, FH

]T
(6.74)

C =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 Cfu Cff Cfm Cfc Cfr Cfθ 0 0

0 Cmu Cmf 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 CLu 0 0 0 0 0 CLL CLH

0 0 0 0 0 0 0 0 0



(6.75)

K =



Kss Ksu 0 0 0 0 0 0 KsH

Kus Kuu Kuf 0 0 Kur Kuθ 0 KuH

0 0 Kff 0 0 0 0 0 0

0 0 Kmf Kmm Kmc Kmr Kmθ 0 0

0 0 0 Kcm Kcc 0 0 0 0

0 Kru 0 Krm 0 Krr 0 0 0

0 Kθu 0 Kθm 0 0 Kθθ 0 0

0 0 0 0 0 0 0 KLL 0

KHs KHu 0 0 0 0 0 KHL KHH



(6.76)
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The detailed format of the components of above equations is brought in Appendix F. The

final nonlinear matrix form equation (6.72) is solved at each time step using Newton-Raphson

nonlinear iterations. Indeed, a backward Euler integration method is used to compute the

unknown fields at each time step based on its time derivative at the next time step such

that:

δU = δU̇ ·∆t (6.77)

where ∆t denote the time increment. As mentioned above, the contraction/growth problem

is inherently nonlinear; thus, we solve iteratively for U̇(t + ∆t) at time step t+ ∆t. Then,

the value U̇i(t+ ∆t) at iteration ith is computed by:

U̇i(t+ ∆t) = U̇i−1(t+ ∆t) + δU̇i (6.78)

Finally, the value δU̇i is computed for each iteration by substituting equations (6.77) and

(6.78) into equation (6.72) that leads to the following equation:

(
Ci−1
t+∆t + ∆t.Ki−1

t+∆t

)
.δU̇i = −

(
Fi−1
t+∆t + Ci−1

t+∆t · U̇
i−1
t+∆t

)
(6.79)

Iterations are then repeated until the norm of the vector |δUi| is smaller than a small

tolerance tol.

6.4.3 Cell growth and levelset evolution

As mentioned previously, the zero level of a levelset function defines the border of the

cell Γc (6.4a) in its undeformed configuration. One great advantage of the proposed XFEM

framework is that the cell growth is approached by evolving the levelset function during time

with no need to change the mesh. On the other words, the velocity of levelset function is

the same as growth rate in undeformed configuration of the cell.

As described before, if φ(r) defines the levelset value at material point P located at

coordinate r, to evolve φ during time the following levelset evolution equation is used [45]:

Dφ

Dt
=
∂φ

∂t
+ V ||∂φ

∂r
|| = 0 (6.80)
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where V denote cell surface velocity (defined in Eq. (6.52)). In the case of using signed

distance as levelset function, because of its good reported stability ([45]), the term ||∂φ
∂r
|| = 1.

Consequently, the levelset value of material point P at time t+ ∆t is computed by:

φt+∆t = φt + V ·∆t (6.81)

Because new material is added to the grown boundary of the cell, assumptions are

needed for their unknown fields uc, p, φc, φm, φSFr , φSFθ , cL and cH as initial condition at

the beginning of next time step. In this chapter it is assumed that all the mentioned fields

follow the same behavior of old surface such that for any field f of new material point P

located at r:

f(r) = fΓold +∇fΓold · (r − aold) (6.82)

where fΓold and aold denote the value of f at old surface material point and old cell radius,

respectively, both in undeformed configuration. The above assumption is made base on the

continuous and smooth changes of cell’s fields with no jump in the field or its gradient inside

the cell.

6.5 Simulations to verify the mathematical model

In this section some simulations are presented to verify the validity of the proposed

work using previous studies and experiments. In all examples, an axisymmetric circular cell

with radius ac0 is located on a similar substrate with radius as0, and several features of the

proposed work, related to contractile behavior of the cell and cell spreading, are investigated.

First, the effect of substrate stiffness is studied on rate of cell growth and its steady state

area. In this case, it is assumed that there are enough ligands on substrate surface to have

all high-affinity integrins attached to substrate. Then, we investigate the force induced to

substrate from cell via adhesion complexes for different substrate stiffnesses. This force is the

result of contractile behavior of the cell. Finally, we show how ligand concentration affects

the mentioned force and steady state area of the cell, studied in previous examples. We also
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show the distribution of high affinity integrins and stress fibers (radial and circumferential)

in cell for different substrate stiffness and at several steps during cell growth. The physical

parameters used in following simulations for cell and substrate characteristics are listed in

Table 6.1.

Definition Symbol Value unit Ref.
Cytosol volume fraction φf 70 % [2]

Cytoskeleton volume fraction φc 25 % n/a
SF+G-actin volume fraction φm + φSF 5 % n/a

Straight+bent integrin concentration cH + cL 5e15 #/m2 [36]
Cytoskeleton permeability κ/µ 1e−15 m4/N · sec [69]
G-actin diffusion constant D 5e−12 m2/sec [113]

L-integrin mobility coefficient m 10e−12 m2/sec [96]
Cytoskeleton Young’s modulus Ec 1 kPa [138]

Cytoskeleton Poisson’s ratio νc 0.3 [37]
Substrate Young’s modulus Es 1− 10000 kPa [138]

Substrate Poisson’s ratio νs 0.3 [37]
Stress fiber maximum tensile stress T ∗ 10 kPa [175]

Stress fiber Young’s modulus E1 100 kPa [91]
Integrin-ligand complex stiffness λs 0.15 nN/µm [36]

membrane stiffness kσ 0.01 N/m [82]
Absolute temperature T 310 K [36]

Membrane surface tension T σ0 1e−2 N/m n/a
Filament - G-actin standard potential ∆µp0 1kBT J [56]

Straight - bent integrin standard potential ∆µI0 5kBT J [36]
Cell initial radius ac0 14 µm [138]

Substrate initial radius as0 30 µm n/a
Rate of actin polymerization k0 280 sec−1 [122]
Cell and substrate thichness h 1 µm [36]

Table 6.1: Parameters used in the simulations.

6.5.1 Effect of substrate stiffness on cell contractile and spreading behavior

In this set of simulations, a circular cell is considered to be located on a circular

substrate, both under plane stress and axisymmetric conditions. We want to see what

changes happen to cell spreading and contractile behavior as the result of change in substrate
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stiffness. We expect to observe higher rate of growth, as well as larger steady state area,

for the cells located on stiffer substrate [138]. In this example, we provide enough ligands

on substrate (clg → ∞) to make sure that all high-affinity integrins are making adhesion

complexes. We also assume that the new material needed for cell body during growth are

provided by external sources.

Fig. 6.5, depicts the changes of cell area with time for different substrate stiffness

(substrate Young’s modulus Es varies between 1.0 and 1e4 kPa). As expected, we observe

that the cells located on stiffer substrates grow faster than the cells located on soft substrates

that is in good agreement with experiments done by other researches [138]. The difference

between our results and presented experimental results is in quantities. The observed dif-

ference is accepted becuause the values (both cell area and time) are of the same order in

both figures. Also, because of many other factors affecting cell spreading (not considered in

this chapter) we cannot expect our model to give exactly the same values as experimental

results.

The rate of cell growth is the same value we presented in Eq. (6.52). In this equation,

the pulling force fp plays the most important role in cell growth rate at the beginning of

spreading (because at this step all other parameters including resisting membrane forces f l

and f g are the same for soft and stiff substrates). As discussed previously, the pulling force

fp is the force applied to cell membrane from adhesion complexes on cell border Γc, facilitates

cell growth process, and is the result of cell contraction. The stiffness of substrate leads to

more relative displacement between cell and substrate that stabilizes high-affinity integrins

in the vicinity of cell border Γc according to Eq. (6.35). As a result, the traction force

of adhesion complexes applied to cell surface increases regarding Eq. (6.25). The increase

in focal adhesion force means applying more restriction to cell contraction that leads to

generation of more stress fibers, and thus, more contractile force in the body of cell (Eq.

(6.24) and [165, 53]). This increased force should be transfered to cell’s support (substrate)

via adhesion complexes. Consequently, the pulling force fp increases. The cycle of cell
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contraction, increasing relative cell-substrate displacement, high-affinity integrins formation,

and adhesion complex force increasing repeats until steady state were the resisting membrane

forces f g and f l overcome the pulling force fp and cell stops spreading.

Fig. 6.5 also gives some good information about stress fiber distribution in cell. First,

following the process discussed above, more stress fibers are generated in the cell’s body in the

case of being located on stiffer substrate. But the other fact explored from Fig. 6.5, is that

the concentration of both radial and circumferential stress fibers increases by approaching

the cell’s center. The reason is the contractile force that accumulatively increases toward

the center for radial stress fibers, and more circumferential resistance to contraction in the

vicinity of center due to the circular configuration of the cell. The other result we can get

from Fig. 6.5 is that the reduction of circumferential stress fibers by approaching cell border

is less than radial stress fibers reduction that represent almost no radial stress fiber in the

vicinity of cell membrane. The reason for this fact is as follows. As we approach the cell

border, by decreasing the remaining cell’s area with focal adhesion tractions, the contractile

force that leads to generation of radial fibers decreases. But in the circumferential direction,

even in the cell border, because of circumferential resistance of the circular cell against

contraction, there is still a significant amount of stress fibers in the mentioned direction.

Fig. 6.6 depicts the result of what we discussed above about the pulling force fp

that facilitates the cell growth, and the resisting forces f g and f l that resist it. While the

pulling force increases by substrate stiffness increasing, the global membrane resisting force

f g increases by membrane stretching Eq. (6.29). As a result, the pulling force that is initially

much larger than the resisting forces is gradually overcome by membrane being stretched

such that the growth stops. It is obvious that the greater the pulling force is, the more

deformation is needed for the membrane to overcome the pulling force. On the other hand,

for the cells located on very soft substrate, the constant resisting terms, such as f l that is the

result of local deformation of the membrane, are great enough to stop cell spreading. The

results depicted in Fig. 6.6, are in very good qualitative and even quantitative agreement
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with the experimental results such as what presented in [138].

Furthermore, colored plotted field in Fig. 6.6, represent bound high-affinity integrin

concentration (number per unit membrane area)in cell for different substrate stiffneses. It is

observed that while the bound high-affinity concentration increases very fast by approaching

cell’s border, its maximum value at the cell border increases by increase in substrate stiffness.

Both these phenomena can be explained by the mechanical term of free energy of bound high-

affinity integrins (Eq. (6.35)) that stabilizes them. The absolute value of the mentioned

mechanical energy increases by increase in relative cell-substrate displacement ∆i = uc−us.

∆i increases by approaching cell’s border because of cell’s displacement being accumulatively

increased. Also, as the substrate stiffness increases, following what we discussed above,

integrin-ligand force increases, due to formation of more stress fibers, that leads to increasing

the absolute value of the mechanical term of free energy of bound high-affinity integrins,

and then more stabilization in high-affinity integrins happens, and thus more high-affinity

integrins are generated.

6.5.2 Effect of ligand concentration on cell contractile and spreading behavior

In previous simulations, we assumed infinity number of ligands available on substrates

surface such that all high-affinity integrins were attached to substrate. Let us now study the

effect of ligand concentration, ranging from 1e-3 to 1e3, on different phenomena discussed

above such as cell area in steady state and focal adhesion force.

Fig. 6.7 depicts the changes of cell grown area as a function of ligand concentration for

different substrate stiffness. It is obvious in the figure that by increasing ligand concentration,

the final cell area increases. The reason is explained by what we presented in Eq. (6.34)

as bound high-affinity definition. The number of bound high-affinity integrins increase by

increasing ligand concentration. As a result, more pulling force (integrin-ligand force) is

produced that leads to larger grown area for the cell according to what we explained in the

previous examples. The lower limit of the curves shown in Fig. 6.7 converges to the value
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presented in previous set of simulations for very soft substrate. The reason is that in the

case of cell being located on very soft substrate, as discussed previously, substrate resistance

to cell contraction is very small, as a result even if there are a lot of ligands available, the

contractile force and stabilizing term of high-affinity integrins free energy is not large enough

to make integrin-ligand complexes that is vital for cell spreading. On the other hand, the

upper limit of the curves converges to the maximum values shown in the previous example

for different substrate stiffnesses because we assumed in previous simulations that ligand

concentration was infinity. between these two limits, there is an almost linear transition

region that fits experimental results done in reference [129] (Fig. 6.7).

Finally, Fig. 6.8 depicts what we explained about the cell contractile force (or integrin-

ligand complex force) as a function of substrate stiffness and ligand concentration. The fig-

ure shows that the mentioned force increases by increasing ligand concentration or substrate

stiffness, such that it finally converges to a value related to the cell located on a very stiff

substrate with infinite number of ligands on it. Both substrate stiffness and ligand con-

centration provide more constraint against cell contraction that leads to generation of more

stress fibers, and thus, contractile force.

6.6 Summary and concluding remarks

As a summary, in this chapter we presented a mathematical model to study cell con-

traction and spreading as the result of mechanical and chemical interacting with the elastic

substrate it is located on. Our model has the following benefits:

• We introduced a stress plane axisymmetric mixture model for cell contractile be-

havior including its main constituents, namely cytoskeleton, stress fibers, G-actin

monomers, and cytosol. This model is able to capture the main factors affecting its

contraction such as G-actin flux and formation of stress fibers as the result of chemo-

mechanical equilibrium state between G-actin monomer and stress fiber. Generally
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stress fibers are generated in the areas (along the directions) that are more restricted

to deformation.

• Focal adhesions (integrin-ligand complexes) are modeled in this chapter based on a

chemo-mechanical reactions between high-affinity and low-affinity integrins on cell

membrane and ligands on substrate. In the proposed model integrin-ligand com-

plexes are formed mostly in areas with more traction force on cell/substrate surface.

There is an interaction mechanism between the traction force and contraction force

in the cell body such that each of them increases the other until steady state is

reached.

• Another feature of the proposed framework is the model we introduced for cell

growth. We presented a Ratchet in which cytoskeletal filaments are formed by

G-actin polymerization beneath the cell membrane. In this model the difference

between G-actin monomer and filament chemical potentials, and membrane resis-

tance, due to its local deformation and global stretching, resist the cell growth. On

the other hand, the traction force on cell membrane increases the rate of growth.

Growth (cell spreading) continues until global membrane resistance overcomes the

pulling force.

• We presented a numerical approach based on extended finite element and levelset

such that we are able to discretize both cell and substrate using only one mesh

for both of them. This feature helps to avoid the difficulties of dealing with the

interactions between two different domains. Also, as the cell border is defined by

levelset function (not by mesh), we do not change the mesh at each time step during

cell growth. Indeed, we are able to consider the effect of cell membrane surface

tension on its deformation naturally by using XFEM/levelset features.
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At the end, we verified our model by presenting some simulations and comparing them

with experimental results done by other researchers. In all simulations we showed that our

model is able to predict cells contractile/spreading behavior, such as traction forces on the

cell due to focal adhesion formation, grown area and its rate of growth as a function of

substrate stiffness and ligand concentration on substrate. In all cases, our model results are

in good quantitative and qualitative agreement with experiments.

We are developing our model to 2D case to be able to estimate what is happening

during some biological problems related to cell- substrate interactions and cell spreading

such as cell migration, morphogenesis, tissue engineering, and wound contraction.
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Figure 6.5: a) Changes of cell area and stress fiber volume fraction during growth for different
substrate stiffness, and b) a) Experimental results of reference [180].
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Figure 6.6: Changes of cell area and high-affinity integrin concentration at steady state for
different substrate stiffness, and comparison with experimental results of [138]

Figure 6.7: Changes of cell area at steady state for different ligand concentration, and
comparison with experimental results of [129]
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Figure 6.8: Changes of integrin-ligand complex force at steady state for different substrate
stiffness and ligand concentration, and comparison with experimental results of [62]



Chapter 7

Summary, Concluding Remarks, and Suggestions for Future Work

In summary, this thesis presented a new theoretical/computational framework to model

the large deformation of cells, accounting for the effect of a stiff surrounding cortical mem-

brane. Under the assumption of a very small cortical thickness, the equations of surface

elasticity, originally developed for free surface stresses in solids, were developed in the case

of large deformations following the Eulerian description. A numerical formulation, based on

the XFEM/level-set method was then introduced and utilized to study the effect of cortical

elasticity on the deformation of a contractile cell. The contributions and advantages of the

proposed method can be summarized as follows:

• The geometry of the cell is entirely represented by level-set functions that are defined

independently from the finite element mesh. Simple, regular FEM meshes may thus

be used regardless of the geometric complexity of the cell.

• Discontinuities in velocities and deformations resulting from the governing equations

are naturally taken into account within the XFEM methodology.

• The model provides an efficient and flexible way to incorporate the contribution of

cortical membrane in cell mechanics. In particular, it can easily be extended to

incorporate more sophisticated descriptions of the cell’s cytoskeleton and its cortical

membrane.
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Our analysis on the effects of the cortical membrane on cell deformation generally

showed that by adding stiffness to the cell’s surface, the presence of the cortex induced

homogeneous membrane strains and curvature. While this aspect had been shown with a

simple analysis considering a cable deforming under the action of an external perpendicu-

lar force, the model neglected the effects of cytoskeletal elasticity on surface deformation.

Because it is able to incorporate the effect of both cytoskeleton and cortical membrane de-

formation, the proposed framework could overcome these limitations and accurately capture

the distinct role of surface and bulk elasticity in cell deformation. Results showed that while

the analytical solution provides a good approximation of membrane curvature when the

cytoskeleton is much softer than the cortical membrane, it greatly overestimated its value

for low values of cortical stiffness. The numerical method was then used to investigate the

variation of cell deformation for various cytoskeleton elastic parameters as well as cortical

tension and elasticity. This technique may therefore prove very useful in the determination

of cell properties through the analysis of its shape.

Furthermore, this thesis presents a mixture framework that aims at describing the

processes by which contractile cells are able to sense their mechanical environment (through

stiffness) and react by adjusting the amount of contractile force they generate. By describing

the cell’s body as a mixture of four critical contractile elements, the proposed model is able to

accurately capture the interplay between both mechanical and chemical mechanisms taking

place in cells. The key features of the approach are:

• SF contraction is described by the velocity-tension and length-tension relationships

arising from cross-bridge dynamics

• SF formation arises from mass exchange with dispersed globular actin monomers

and is assumed to depend on the tension in existing SF. This aspect is the main

assumption of the model regarding the mechano-sensitivity of contraction. Cytosol

and globular actin transport is described by conventional diffusion-convection type
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laws

• Cell contraction is described in terms of both passive elasticity of the cytoskeleton

and active contractile stress from a statistical distribution of SF.

The model exhibits a positive feedback mechanism resulting between mechanical-

chemical interplay between constituents. Contractile stress (that depends on strain-rate

through the tension velocity relationship) promotes SF formation and SF formation results

in increasing contraction. This loop eventually ends when the stock of available globular actin

for SF formation is depleted. The solution to the model shows that this chemo-mechanical

cross-talk could be responsible for the sensitivity of cell contraction on substrate stiffness.

In other words, the proposed model may be used as a first step to characterize the interac-

tions between a contractile cell and its environment, which is an important feature of the

processes of tissue remodeling, would healing and morphogenesis. In addition, the present

study has shown how multiscale principles [164](homogenization) and multiphasic mixture

concepts can be extended to investigate the active behavior of cells. This approach is very

promising as various physical processes including chemistry, mechanics and transport and

their interactions can be described in a consistent framework that satisfy basic conservation

principles (balance of mass, momentum and energy).

In addition, this we presented a numerical approach to study the behavior of contrac-

tile cells and their interactions with a two-dimensional elastic substrate. The continuum

model of cell contraction is based on a constrained mixture formulation [165] that describes

the contractile apparatus of cells in terms of four major constituents, namely cytoskeleton,

cytosol, G-actin monomers and F-actin (or SF) polymers. This framework enables us to

characterize important processes of cell contraction such as SF formation (mass exchange

between actin monomers and SF), actin diffusion and convection as well as the evolution

of a anisotropic contractile network in time. Biologically, the model rests on two key as-

sumptions: (a) SF contraction increases with decreasing strain rate (Hill’s model) and (b)
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SF formation is promoted by contraction. The interactions of cells with their underlying

substrate were then considered through focal adhesions, modeled here by an elastic cohesive

law between the two continua.

The main contribution of this work was the introduction of an XFEM/level set method

to accurately and efficiently model the interactions between cells of arbitrary shapes and an

underlying deformable substrate. The key feature of the proposed method are as follows:

• Despite being represented by two distinct domains, cell and substrate are discretized

by a single, regular finite-element mesh. The (possibly complex) cell geometry is then

defined in terms of an analytical function (the level-set function) that is independent

of discretization. This feature has the merit of greatly simplifying the numerical is-

sues associated with meshing complex geometries and handling interactions between

bodies discretized by distinct meshes.

• The stiffness of the thin cortical layer surrounding cells can naturally be accounted

for by incorporating surface elasticity on the cell boundary. This feature is possible

by enriching the XFEM shape functions with weak discontinuity functions, that

enable a jump in stress across the cell membrane.

• Since cell geometry is independent of discretization, the method can be extended to

describe cell growth, migration and spreading without resorting to remeshing tech-

niques, known to be computationally expensive. Instead, more efficient techniques

involving level-set evolution equations can be invoked. This will be the object of

future studies.

The performance of the method was then assessed by considering biologically relevant

problems of cell-substrate interactions. Generally, our results showed that the proposed

numerical method, together with the constrained mixture formulation, led to realistic be-

haviors that correlated very well with experimental observations. The coupling of XFEM
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and the levelset method therefore provides a promising route to study a variety of biological

problems involving cell-substrate interactions, such as morphogenesis, tissue engineering, cell

spreading and migration as well as wound contraction.

Finally, in this thesis we presented a mathematical model to study cell contraction and

spreading as the result of mechanical and chemical interacting with the elastic substrate it

is located on. Our model has the following benefits:

• We introduced a stress plane axisymmetric mixture model for cell contractile be-

havior including its main constituents, namely cytoskeleton, stress fibers, G-actin

monomers, and cytosol. This model is able to capture the main factors affecting its

contraction such as G-actin flux and formation of stress fibers as the result of chemo-

mechanical equilibrium state between G-actin monomer and stress fiber. Generally

stress fibers are generated in the areas (along the directions) that are more restricted

to deformation.

• Focal adhesions (integrin-ligand complexes) are modeled in this thesis based on a

chemo-mechanical reactions between high-affinity and low-affinity integrins on cell

membrane and ligands on substrate. In the proposed model integrin-ligand com-

plexes are formed mostly in areas with more traction force on cell/substrate surface.

There is an interaction mechanism between the traction force and contraction force

in the cell body such that each of them increases the other until steady state is

reached.

• Another feature of the proposed framework is the model we introduced for cell

growth. We presented a Ratchet in which cytoskeletal filaments are formed by

G-actin polymerization beneath the cell membrane. In this model the difference

between G-actin monomer and filament chemical potentials, and membrane resis-

tance, due to its local deformation and global stretching, resist the cell growth. On

the other hand, the traction force on cell membrane increases the rate of growth.
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Growth (cell spreading) continues until global membrane resistance overcomes the

pulling force.

• We presented a numerical approach based on extended finite element and levelset

such that we are able to discretize both cell and substrate using only one mesh

for both of them. This feature helps to avoid the difficulties of dealing with the

interactions between two different domains. Also, as the cell border is defined by

levelset function (not by mesh), we do not change the mesh at each time step during

cell growth. Indeed, we are able to consider the effect of cell membrane surface

tension on its deformation naturally by using XFEM/levelset features.

At the end, we verified our model by presenting some simulations and comparing them

with experimental results done by other researchers. In all simulations we showed that our

model is able to predict cells contractile/spreading behavior, such as traction forces on the

cell due to focal adhesion formation, grown area and its rate of growth as a function of

substrate stiffness and ligand concentration on substrate. In all cases, our model results are

in good quantitative and qualitative agreement with experiments.
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Appendix A

Computing angular SF distribution using structure matrix

The angular distribution of SFs, φpθ, is defined as the volume occupied by of the SFs

oriented along the direction that makes angle θ from horizontal axis per total volume. The

distribution function φpθ (Fig. A.1) is assumed to follow π-periodic Von-Mises distribution

function defined as [59]:

φpθ (θ) = φp
(
exp [b cos (2θ − 2θ0)]

I0 (b)

)
(A.1)

where I0 (b) is the Bessel’s function of the first kind of order zero given by:

I0 (b) =
1

π

∫ π

0

exp (b cosθ)) dθ. (A.2)

The Von-Mises distribution is represented in Fig. A.1b when the largest fiber density is

along the θ0-direction. On the figure, it can clearly be seen that the parameter b in (A.1)

captures the degree of anisotropy. In particular, when increasing b from 0 to ∞, the SFs

orientation varies from a totally isotropic distribution to a strongly oriented distribution in

the direction θ = θ0.

Following [165], the structure matrix Φp can be represented in terms of three inde-

pendent variables {φp, η, θ0}, where η refers to the degree of anisotropy and θ0 shows the

principal direction of SFs. In this context, the structure tensor may be constructed in the

form:

Φp = φp

ηI + (1− 2η)

 cos2θ cosθsinθ

cosθsinθ sin2θ


 . (A.3)
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Figure A.1: Illustration of SF volume fraction at a continuum point and its representation
with a Von-Mises distribution function.

where I is the identity tensor. It can be seen that if η = 0, all fibers are aligned in the same

direction (defined by angle θ0), whereas as η → 1/2, the distribution becomes isotropic.

Knowing structure matrix Φp, one can compute the independent variables {φp, η, θ0} as the

trace of Φp, the smaller eigenvalue and the direction corresponding the greater eigenvalue of

matrix Φp/φp, respectively.

Because of their similar physical interpretation, it is possible to find a relationship

between parameters b (appearing in the Von-Mises distribution) and η by substituting (A.1)

into (A.3). One can show that:

η =
1

π

∫ π/2

−π/2

exp [b cos (2θ)] sin2θ

I0 (b)
dθ. (A.4)

This integral may be computed numerically to determine the b − η curve as shown in Fig.

A.2. This ensures that there is a one-to-one mapping between the structure tensor shown in

(A.3) and the Von-Mises distribution (A.1).
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Figure A.2: Relationship between parameters b and η.



Appendix B

Governing equations for plane stress assumptions

As mentioned previously, both cell and substrate are considered in 2D x-y plane stress

because of small thickness for the cell and simplicity for the substrate. For substrate as

a homogeneous material it is assumed that T szz = T sxz = T syz = 0 where T s is substrate’s

Cauchy stress. The details of 2D plane-stress condition for a solid can be found in any

mechanic of materials book. But the condition of plane-stress for cell as a mixture is different

because of the existence of the fluid phase, and is written as Txz = Tyz = 0, Tzz − p = 0

or T σJxz = T σJyz = 0, T σJzz − ṗ = 0. To find stress-strain relationship for this situation, one

can start from the general material rate form of stress-strain relationship written in voigt

notation as [10]:

T σJxx

T σJyy

T σJzz

T σJyz

T σJxz

T σJxy


=



2µ′ + λ λ λ 0 0 0

λ 2µ′ + λ λ 0 0 0

λ λ 2µ′ + λ 0 0 0

0 0 0 µ′ 0 0

0 0 0 0 µ′ 0

0 0 0 0 0 µ′





Dxx

Dyy

Dzz

2Dyz

2Dxz

2Dxy


(B.1)

where µ′ = µ− λ lnJ . Then, by applying the plane-stress conditions to above equation, the

following equation can easily be derived:

Dzz =
1

1− ν

[ p
E

(1 + ν)(1− 2ν)− ν(Dxx +Dyy)
]

(B.2)
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where E and ν are cytoskeleton’s Young’s modulus and Poisson’s ratio, respectively, and are

given by:

E =
µ′(3λ+ 2µ′)

λ+ µ′
; and ν =

λ

2(λ+ µ′)
(B.3)

Consequentely the Jaumann rate of cytoskeleton Cauchy stress is written as:
T σJxx

T σJyy

T σJxy

 =
E

(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2



Dxx

Dyy

2Dxy

+
ν

1− ν
p


1

1

0

 (B.4)

Eq. (B.4) is written in matrix notation in x-y plane as TσJ = Cc : D + ν
1−νpI. Furthermore,

using eq. (B.2), and 3D divergence of cytoskeleton velocity ∇(3) · v = Dxx +Dyy +Dzz, it is

concluded that ∇(3) · v = α ∇ · v + β ṗ where ∇ · v = Dxx +Dyy introduces 2D divergence

of velocity, and the constants α and β are given as a function of cytoskeleton’s material

properties (Young’s modolus and Poisson’s ratio) given by:

α =
1− 2ν

1− ν
; and β =

(1 + ν) (1− 2ν)

E (1− ν)
(B.5)



Appendix C

Incremental weak form of the governed equations

Before writing the incremental form of the set of derived equations, it is needed to

find equations for δφf and φ̇f = Dφf

Dt
as a function of cell’s variables. As mentioned before,

cell’s body is assumed to be satuarated by four constituents: cytoskeletal network, cytosol,

SF polymers and G-actin monomers; consequently, one can write φf + φc + φp + φm = 1.

After deriving the material time derivative of the latter equation, the following formula is

obtained: φ̇f = φ̇c− φ̇p− φ̇m, where φ denotes the volume fraction of each cell’s component,

and the superscripts f, c, p and m stand for cytosol, cytoskeleton, polymers and monomers,

respectively. Furthermore, following [165] and considering plane-stress condition for the cell,

the balance of mass equation for cytoskeleton takes the form: Dφc

Dt
= φ̇c = −φc α∇·u̇−φc β ṗ.

As a result: 
φ̇f = φc α ∇ · u̇ + φc β ṗ− tr

(
Φ̇p
)
− φ̇m

δφf = φc α ∇ · δu + φc β δp− tr (δΦp)− δφm
(C.1)

To write the non-linear form, Jaumann rate is used for Cauchy stress values because of large
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deformations of cell and substrate [10]. As a result, the nonlinear equations take the form:∫
Ωs
∇ωs :

[
T̃s +

(
Cs : Ds + Ws · T̃s + T̃s ·WsT

)
· δt
]
dΩs −∫

Ωc
ωs ·

[
t̃a + Ka (vc − vs) · δt

]
dΩc = 0 (C.2)∫

Ωc
∇ω :

[(
T̃c + T̃p − p̃ I

)
+

(
Cc : D +

(
ν

1− ν

)
ṗI + W · T̃c + T̃c ·WT

)
· δt+

∂Tp

∂Φp
: δΦp +

∂Tp

∂E
: δE +

∂Tp

∂Ė
: δĖ +

(
W · T̃p + T̃p ·WT

)
· δt− δp I

]
dΩc +∫

Ωd
ω ·
[
t̃a + Ka (vc − vs) · δt

]
dΩd +∫

Γc
(P · ∇ω ·P) :

[
T̃σ +

(
Sσ : Dσ + Wσ · T̃σ + T̃σ ·WT

σ

)
· δt
]
dΓc = 0 (C.3)

∫
Ωc
θ [ α ∇ · v + β ṗ] dΩc +∫

Ωc
∇θ ·

[
κ

µ
∇p̃+

(
φ̃m

φ̃f
κ

µ
∇p̃+D ∇φ̃m − φ̃m

φ̃f
D ∇φ̃f

)
+

κ

µ
∇δp+

(
δφm

φ̃f
κ

µ
∇p̃+

φ̃m

φ̃f
κ

µ
∇δp+D ∇δφm − δφm

φ̃f
D ∇φ̃f

)
+

φ̃m

φ̃f

(
− 1

φ̃f
κ

µ
∇p̃+

1

φ̃f
D ∇φ̃f

)
·
(
φ̃c α ∇ · δu + φ̃c β δp− tr (δΦp)− δφm

)
−

φ̃m

φ̃f
D ∇

(
φ̃c α ∇ · δu + φ̃c β δp− tr (δΦp)− δφm

)]
dΩc = 0 (C.4)

∫
Ωc
λ
[(
φ̃c α ∇ · u̇ + φ̃c β ṗ− tr

(
Φ̇p
)
− φ̇m

)
+

φ̃f ( α ∇ · u̇ + β ṗ)
]
dΩc +

∫
Ωc
∇λ ·

(
κ

µ
∇p̃+

κ

µ
∇δp

)
dΩc = 0 (C.5)
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Ωc

Λ :

[
Φ̇p + Φ̃p ( α ∇ · v + β ṗ)−

(
Mp

Mm

(
1

2
kf0 I + kf1 T̃p

)
φ̃m

φ̃f
− kd0Φ̃p

)
−(

Mp

Mm
kf1

(
∂Tp

∂Φp
: δΦp +

∂Tp

∂E
: δE +

∂Tp

∂Ė
: δĖ

)
φ̃m

φ̃f
+

Mp

Mm
kf1

(
W · T̃p + T̃p ·WT

) φ̃m
φ̃f

)
−(

Mp

Mm

(
1

2
kf0 I + kf1 T̃p

)
δφm

φ̃f
− kd0 δΦp

)
− Mp

Mm

(
1

2
kf0 I + kf1 T̃p

)
−φ̃m

φ̃f
2 ·(

φ̃c α ∇ · δu + φ̃c β δp− tr (δΦp)− δφm
)]

dΩc = 0 (C.6)



Appendix D

Discretized form of the governed equations

To discretize the equations derived formerly, voigt notation is used for all symmetric

tensors. In voigt notation, all stress and strain tensors are written as:

{T} =


T11

T22

T12

 ; {E} =


E11

E22

2 E12

 ; {D} =


D11

D22

2 D12

 ; {W} =


W11

W22

2 W12

 (D.1)

For structural matrix we use:

{Φp} =


φp11

φp22

φp12

 (D.2)

Also, we make the following definitions:

W ·T + T ·WT ≡ {{T}} ·G · u̇e (D.3)

δW ·T + T · δWT ≡ {{T}} ·G · δue (D.4)

where;

{{T}} =


2 T12

−2 T12

T22 − T11

 (D.5)

G =

[
G1 G2 ... G9+m

]
and GI = 0.5

[
∂NI(x)
∂x2

− ∂NI(x)
∂x1

]
(D.6)
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for substrate:

Gs =

[
G1 G2 ... G9

]
(D.7)

In this paper, quadratic 9-node (commonly called Q9) elements are used for displacement

fields us and u; while, for the other three fields (p, φm and Φp), quadratic 4-node (commonly

called Q4) elements are used. As a result, the parameter n in Eq. (6.66) is 9 for displacement

fields, and 4 for the other fields.

Furthermore, the following definitions will be used for descretization:

ωs = Ns · ωs,e; ω = N · ωe; θ = Nf · θe; λ = Nf · λe; Λ = Np ·Λe (D.8)

us = Ns · us,e; u = N · ue; p = Nf · pe; φm = Nf ·Φm,e; Φp = NpΦ
p,e (D.9)

∇ωs = Bs · ωs,e; ∇ω = B · ωe; ∇θ = Bf · θe; ∇λ = Bf · λe (D.10)

∇us = Bs · us,e; ∇u = B · ue; ∇p = Bf · pe; ∇φm = Bf ·Φm,e (D.11)

∇ · u = B̃ · ue; {D} = B · u̇e; {Ds} = Bs · u̇s,e (D.12)

The same definitions are used for rates. In above equations, if it is assumed that m and

m′ are the number of enriched nodes in Q9 and Q4 elements, respectively, the following

definitions are given:

Ns =

[
N1 N2 · · · N9

]
; N =

[
N1 N2 · · · N9+m

]
; NI =

N I 0

0 N I

 (D.13)

Nf =

[
M1 M2 · · · M4+m′

]
(D.14)

Np =

[
N1 N2 · · · N4+m′

]
; NI =


M I 0 0

0 M I 0

0 0 M I

 (D.15)

where N I and M I are qudrature 9-node and 4-node shape functions, respectively. Also:

Bs =

[
B1 B2 · · · B9

]
; B =

[
B1 B2 · · · B9+m

]
; BI =


∂NI

∂x1
0

0 ∂NI

∂x2

∂NI

∂x2
∂NI

∂x1

 (D.16)
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B̃ =

[
B̃1 B̃2 · · · B̃9+m

]
; B̃I =

[
∂NI

∂x1
∂NI

∂x2

]
(D.17)

Bf =

[
B1
f B2

f · · · B4+m′

f

]
; BI

f =

[
∂MI

∂x1
∂MI

∂x2

]T
(D.18)

Furthermore, knowing that, in matrix notation, Ė = FT ·D · F, Fm is chosen such that in

voigt notation one can write {Ė} = Fm · {D} ; where,

Fm =


F 2

11 F 2
21 F11 F21

F 2
12 F 2

22 F12 F22

2 F11 F12 2 F21 F22 F11 F22 + F12 F21

 (D.19)

As a result, the descretized nonlinear weak form of Eqs. (C.2)-(C.6) takes the form:

ωs,eT
∫

Ωs,e
BsT ·

(
{T̃s}+ {Cs} ·Bs · δus,e + {{Ts}} ·Gs · δus,e

)
dΩs,e −

ωs,eT
∫

Ωc,e
NsT ·

[
t̃a + Ka · (N · δue −Ns · δus,e)

]
dΩc,e = 0 (D.20)

ωeT
∫

Ωc,e

[
BT ·

(
{T̃c}+ {T̃p}+ {Cc} ·B · δue + {{Tc}} ·G · δue+

{∂Tp}
{∂Φp}

·Np · δΦp,e +
∂{Tp}
∂{E}

· Fm ·B · δue +
∂{Tp}
∂{Ė}

· Fm ·B · u̇e + {{Tp}} ·G · δu
)
−

B̃T ·
(
p̃+

1− 2ν

1− ν
Nf · δpe

)]
dΩc,e +

ωeT
∫

Ωc,e
NT ·

[
t̃a + Ka · (N · δue −Ns · δus,e)

]
dΩa −

ωeT
∫
σ

BT ·MT
p ·
(
{T̃σ}+ {Ss} ·Mp ·B · δue + {{Tσ}} ·Mp ·G · δue

)
dΓc,e = 0 (D.21)

θeT
∫

Ωc,e
Nf

T
[
α B̃ · u̇e + β Nf · ṗe

]
dΩc,e +

θeT
∫

Ωc,e
Bf

T ·

[
κ

µ
Bf · pe +

(
φ̃m

φ̃f
κ

µ
Bf · pe +D Bf · φm,e −

φ̃m

φ̃f
D ∇φ̃f

)
+

κ

µ
Bf · δpe +

(
Nf · δφm,e

φ̃f
κ

µ
Bf · pe +

φ̃m

φ̃f
κ

µ
Bf · δpe +D Bf · δφm,e−

Nf · δφm,e

φ̃f
D ∇φ̃f

)
+
φ̃m

φ̃f

(
− 1

φ̃f
κ

µ
Bf · pe +

1

φ̃f
D ∇φ̃f

)
·(

φ̃c α B̃ · δue + φ̃c β Nf · δpe −mT ·Np · δΦp,e −Nf · δφm,e
)
−

φ̃m

φ̃f
D B

(
φ̃cαB̃ · δue + φ̃cβNf · δpe −mT ·Np · δΦp,e −Nf · δφm,e

)]
dΩc,e = 0(D.22)
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λeT
∫

Ωc,e
NT
f

[(
φ̃c α B̃ · u̇e + φ̃c β Nf · ṗe −mT ·Np · Φ̇p,e −Nf · φ̇

m,e
)

+

φ̃f
(
αB̃ · u̇e + βNf · ṗe

)]
dΩc,e + λeT

∫
Ωc,e

BT
f

(
κ

µ
Bf · p̃+

κ

µ
Bf · δpe

)
dΩc,e = 0(D.23)

ΛeT

∫
Ωc,e

NT
p

[
Np · Φ̇p,e + {Φp}

(
α B̃ · u̇e + β Nf · ṗe

)
−(

Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
φ̃m

φ̃f
− kd0Np ·Φp,e

)
−(

Mp

Mm
kf1

(
{∂Tp}
{∂Φp}

·Np · δΦp,e +
∂{Tp}
∂{E}

· Fm ·B · δue+

∂{Tp}
∂{Ė}

· Fm ·B · u̇e + {{Tp}} ·G · δu
)
φ̃m

φ̃f

)
−(

Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
Np · δφm,e

φ̃f
− kd0 Np · δΦp,e

)
−

Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
−φ̃m

φ̃f
2 ·(

φ̃c α B̃ · δue + φ̃c β Nf · δpe −mT ·Np · δΦp,e −Nf · δφm,e
)]

dΩc,e = 0 (D.24)

In above equations, mT = {1 1 0}, and the matrix Mp is defined such that in voigt notation

one can write {Aσ} = Mp ·{A}, where {Aσ} and {A} are vector forms of symmetric tensors

Aσ and A, respectively. As a result, the matrix Mp takes the form [181]:

Mp =


P 2

11 P 2
12 P11P12

P 2
12 P 2

22 P22P12

2P11P12 2P22P12 P 2
12 + P11P22

 (D.25)

Also, the cortex’s stiffness matrix {Sσ} can be calculated by using its elastic matrix {Cσ}

by {Sσ} = MT
p · {Cσ} ·Mp. Furthermore, the notations {C} is used to define the forth order

constitutive matrix C as a second order matrix in voigt notation.



Appendix E

Components of final equation (6.72)

The components of Eq. (6.72) are given by:

Fus,e =

∫
Ωs

BsT · {T̃s} dΩs −
∫

Ωc
NsT · t̃a dΩc (E.1)

Fu,e =

∫
Ωc

[
BT
(
{T̃c}+ {T̃p}

)
− B̃T · p+ NT · t̃a

]
dΩc +

∫
Γc

BTMT
p · {T̃σ}dΓc(E.2)

Ff,e =

∫
Ωc

Bf
T

[
κ

µ
Bf · pe +

(
φ̃m

φ̃f
κ

µ
Bf · pe +D Bf · φm,e −

φ̃m

φ̃f
D ∇φ̃f

)]
dΩc (E.3)

Fm,e =

∫
Ωc

BT
f ·

κ

µ
Bf · pe dΩc (E.4)

Fp,e = −
∫

Ωc
NT
p ·

(
Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
φ̃m

φ̃f
− kd0Np ·Φp,e

)
dΩc (E.5)

and

Kss,e =

∫
Ωs

BsT · {Cs} ·Bs dΩs +

∫
Ωc

NsT ·Ka ·Ns dΩc (E.6)

Ksu,e = −
∫

Ωc
NsT ·Ka ·N dΩc (E.7)
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Kus,e = −
∫

Ωc
NT ·Ka ·Ns dΩc (E.8)

Kuu,e =

∫
Ωc

BT ·
(
{Cc} ·B + {{Tc}} ·G +

∂{Tp}
∂{E}

· Fm ·B + {{Tp}} ·G
)
dΩc

+

∫
Ωc

NT ·Ka ·N dΩc

+

∫
Γc

(
BT ·MT

p · {Ss} ·Mp ·B + BT ·MT
p · {{Tσ}} ·Mp ·G

)
dΓc (E.9)

Kuf,e = −
∫

Ωc
B̃T · 1− 2ν

1− ν
Nf dΩc (E.10)

Kup,e =

∫
Ωc

BT · {∂Tp}
{∂Φp}

·Np dΩc (E.11)

Kfu,e =

∫
Ωc

BT
f

φ̃m

φ̃f

(
− 1

φ̃f
κ

µ
Bf · pe +

1

φ̃f
D ∇φ̃f

)
· φ̃c α B̃ dΩc

−
∫

Ωc
BT
f

φ̃m

φ̃f
D B

(
φ̃c α B̃

)
dΩc (E.12)

Kff,e =

∫
Ωc

BT
f

(
1 +

φ̃m

φ̃f

)
κ

µ
Bf dΩc

+

∫
Ωc

BT
f

φ̃m

φ̃f

(
− 1

φ̃f
κ

µ
Bf · pe +

1

φ̃f
D ∇φ̃f

)
· φ̃c β Nf dΩc

−
∫

Ωc
BT
f

φ̃m

φ̃f
D B

(
φ̃c β Nf

)
dΩc (E.13)

Kfm,e =

∫
Ωc

BT
f

(
1

φ̃f
κ

µ
Bf · pe ·Nf +D Bf −

1

φ̃f
D ∇φ̃f ·Nf

)
dΩc

+

∫
Ωc

BT
f

φ̃m

φ̃f

(
− 1

φ̃f
κ

µ
Bf · pe +

1

φ̃f
D ∇φ̃f

)
· (−Nf ) dΩc

−
∫

Ωc
BT
f

φ̃m

φ̃f
D B (−Nf ) dΩc (E.14)

Kfp,e =

∫
Ωc

BT
f

φ̃m

φ̃f

(
− 1

φ̃f
κ

µ
Bf · pe +

1

φ̃f
D ∇φ̃f

)
·
(
−mT ·Np

)
dΩc

−
∫

Ωc
BT
f

φ̃m

φ̃f
D B

(
−mT ·Np

)
dΩc (E.15)

Kmf,e =

∫
Ωc

BT
f ·
(
κ

µ
Bf

)
dΩc (E.16)
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Kpu,e = −
∫

Ωc
NT
p

(
Mp

Mm
kf1

(
∂{Tp}
∂{E}

· Fm ·B + {{Tp}} ·G
)
φ̃m

φ̃f

)
dΩc

−
∫

Ωc
NT
p

Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
−φ̃m

φ̃f
2 ·
(
φ̃c α B̃

)
dΩc (E.17)

Kpf,e = −
∫

Ωc
NT
p

Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
−φ̃m

φ̃f
2 · φ̃

c β Nf dΩc (E.18)

Kpm,e = −
∫

Ωc
NT
p

(
Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
1

φ̃f
Np

)
dΩc

−
∫

Ωc
NT
p

Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
−φ̃m

φ̃f
2 · (−Nf ) dΩc (E.19)

Kpp,e = −
∫

Ωc
NT
p

[(
Mp

Mm
kf1

(
{∂Tp}
{∂Φp}

·Np

)
φ̃m

φ̃f

)
− kd0 Np

]
dΩc

−
∫

Ωc
NT
p

Mp

Mm

(
1

2
kf0 m + kf1{T̃p}

)
−φ̃m

φ̃f
2 ·
(
−mT ·Np

)
dΩc (E.20)

and

Cuu,e =

∫
Ωc

BT ∂{Tp}
∂{Ė}

· Fm ·B dΩc (E.21)

Cfu,e =

∫
Ωc

Nf
T
[
α B̃

]
dΩc (E.22)

Cff,e =

∫
Ωc

Nf
T [ β Nf ] dΩc (E.23)

Cmu,e =

∫
Ωc

NT
f ·
(
φc + φf

)
α B̃ dΩc (E.24)

Cmf,e =

∫
Ωc

NT
f

(
φc + φf

)
β Nf dΩc (E.25)

Cmm,e =

∫
Ωc

NT
f (−Nf ) dΩc (E.26)

Cmp,e =

∫
Ωc

NT
f

(
−mT ·Np

)
dΩc (E.27)

Cpu,e =

∫
Ωc

[
NT
p · {Φp} α B̃ · u̇e −NT

p ·
Mp

Mm
kf1

(
∂{Tp}
∂{Ė}

· Fm ·B
)
φ̃m

φ̃f

]
dΩc(E.28)

Cpf,e =

∫
Ωc

NT
p · {Φp} β Nf dΩc (E.29)

Cpp,e =

∫
Ωc

NT
p ·Np dΩc (E.30)



Appendix F

Computing the details of equations (6.74)-(6.76)

substrate: ∫
Ωs
ωs
(
∂T sr
∂rs

+
T sr − T sθ
rs

+
1

hs
γcHka (uc − us)

)
rsdrs = 0 (F.1)

∫
Ωs

[
∂

∂rs
(ωsrsT sr )− ∂

∂rs
(ωsrs)T sr + ωsT sr − ωsT sθ + ωsrs

1

hs
γcHka (uc − us)

]
drs = 0 (F.2)

∫
Ωs

[
∂ωs

∂rs
rsT sr + ωsT sθ − ωsrs

1

hs
γcHka (uc − us)

]
drs = [ωsrsT sr ]rs=as = 0 (F.3)

∫
Ωs

[
∂ωs

∂rs
rsT̃ sr + ωsT̃ sθ − ωsrs

1

hs
γc̃Hka (ũc − ũs)

+
∂ωs

∂rs
rs
(

Es

1− νs2
(δεsr + νsδεsθ)

)
+ ωs

(
Es

1− νs2
(νsδεsr + δεsθ)

)
−ωsrs 1

hs
γ δcHka (ũc − ũs)− ωsrs 1

hs
γc̃Hka (δuc − δus)

]
drs = 0 (F.4)

ωs,eT
∫

Ωs

[
BT rsT̃ sr + NT T̃ sθ −NT rs

1

hs
γc̃Hka (ũc − ũs)

+BT rs
(

Es

1− νs2

(
B · δus,e + νs

1

rs
N · δus,e

))
+ NT

(
Es

1− νs2

(
νsB · δus,e +

1

rs
N · δus,e

))
−NT rs

1

hs
γ N · δcH,eka (ũc − ũs)−NT rs

1

hs
γc̃Hka (N · δuc,e −N · δus,e)

]
drs = 0(F.5)
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Fs,e =

∫
Ωs

[
BT rsT̃ sr + NT T̃ sθ −NT rs

1

hs
γc̃Hka (ũc − ũs)

]
drs (F.6)

Kss,e =

∫
Ωs

[
Es

1− νs2

(
BT rsB + BT rsνs

1

rs
N + νsNTB +

1

rs
NTN

)
+ NT rs

1

hs
γc̃HkaN

]
drs (F.7)

Ksu,e =

∫
Ωs
−NT rs

1

hs
γc̃HkaNdrs (F.8)

KsH,e = −
∫

Ωs
NT rs

1

hs
γ Nka (ũc − ũs) (F.9)

Cell:∫
Ωc
ωc

(
∂T cr
∂rc

+
T cr − T cθ
rc

+
∂T sfr
∂rc

+
T sfr − T

sf
θ

rc
− ∂p

∂rc
− 1

hc
γcHka (uc − us)

)
rcdrc = 0

(F.10)

∫
Ωc

[
∂

∂rc
(ωcrcT cr )− ∂

∂rc
(ωcrc)T cr + ωcT cr − ωcT cθ

+
∂

∂rc
(
ωcrcT sfr

)
− ∂

∂rc
(ωcrc)T sfr + ωcT sfr − ωcT

sf
θ

−ωcrc ∂p
∂rc
− ωcrc 1

hc
γcHka (uc − us)

]
drc = 0 (F.11)

∫
Ωc

[
∂ωc

∂rc
rcT cr + ωcT cθ +

∂ωc

∂rc
rcT sfr + ωcT sfθ + ωcrc

∂p

∂rc
+ ωcrc

1

hc
γcHka (uc − us)

]
drc

=
[
ωcrcT cr + ωcrcT sfr

]
rc=ac

= −ωc (T σ + T σ0 )(F.12)

∫
Ωc

[
∂ωc

∂rc
rcT̃ cr + ωcT̃ cθ +

∂ωc

∂rc
rcT̃ sfr + ωcT̃ sfθ + ωcrc

∂p̃

∂rc
+ ωsrc

1

hc
γc̃Hka (ũc − ũs)

+
∂ωc

∂rc
rc
(

Ec

1− νc2
(δεcr + νcδεcθ) +

νc

1− νc
δp

)
+ ωc

(
Ec

1− νc2
(νcδεcr + δεcθ) +

νc

1− νc
δp

)
+
∂ωc

∂rc
rcδφsfr (E1ε̃

c
r + T ∗) +

∂ωc

∂rc
rcφ̃sfr E1δε

c
r + ωcδφsfθ (E1ε̃

c
θ + T ∗) + ωcφ̃sfθ E1δε

c
θ + ωcrc

∂δp

∂rc

+ωcrc
1

hc
γ δcHka (ũc − ũs) + ωcrc

1

hc
γc̃Hka (δuc − δus)

]
drc + ωc

(
T̃ σ + T σ0

)
+ ωcδT σ = 0(F.13)
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ωc,eT
∫

Ωc

[
BT rcT̃ cr + NT T̃ cθ + BT rcT̃ sfr + NT T̃ sfθ + NT rcBpe + NT rc

1

hc
γc̃Hka (ũc − ũs)

+BT rc
(

Ec

1− νc2

(
B · δuc,e + νs

1

rc
N · δuc,e

)
+

νc

1− νc
Nδpe

)
+NT

(
Ec

1− νc2

(
νcB · δuc,e +

1

rc
N · δuc,e

)
+

νc

1− νc
Nδpe

)
+BT rcNδφsf,er (E1ε̃

c
r + T ∗) + BT rcφ̃sfr E1B · δuc,e

+NTNδφsf,eθ (E1ε̃
c
θ + T ∗) + NT φ̃sfθ E1

1

rc
N · δuc,e + NT rcBδpe

+NT rc
1

hc
γ N · δcH,eka (ũc − ũs) + NT rc

1

hc
γc̃Hka (N · δuc,e −N · δus,e)

]
drc

+ωc,eT
(

NT
(
T̃ σ + T σ0

)
+ NTkσ

1

ac0
Nδuc,e

(
3ac2

ac0
2 − 1

))
= 0(F.14)

Fu,e =

∫
Ωc

[
BT rcT̃ cr + NT T̃ sfθ BT rcT̃ sfr + NT T̃ cθ + NT rc

1

hc
γc̃Hka (ũc − ũs)

]
drc

+ NT
(
T̃ σ + T σ0

)
(F.15)

Kuu,e =

∫
Ωc

[
Ec

1− νc2

(
BT rcB + BTνcN + νcNTB +

1

rc
NTN

)
+ BT rcφ̃sfr E1B + NT φ̃sfθ E1

1

rc
N + NT rc

1

hc
γc̃HkaN

]
drc

+ NTkσ
1

ac0
N

(
3ac2

ac0
2 − 1

)
(F.16)

Kus,e =

∫
Ωc
−NT rc

1

hc
γc̃HkaN drc (F.17)

Kup,e =

∫
Ωc

[
NT rcB + BT rc

νc

1− νc
N + NT νc

1− νc
N

]
drc (F.18)

Kur,e =

∫
Ωc

BT rcN (E1ε̃
c
r + T ∗) drc (F.19)

Kuθ,e =

∫
Ωc

NTN (E1ε̃
c
θ + T ∗) drc (F.20)

KuH,e =

∫
Ωc

NT rc
1

hc
γ Nka (ũc − ũs) (F.21)

Mixture Mass:
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∫
Ωc
ω

[
α

(
∂u̇c

∂rc
+
u̇c

rc

)
+ βṗ+

(
∂Jf

∂rc
+
Jf

rc

)
+

(
∂Jm

∂rc
+
Jm

rc

)]
rcdrc = 0 (F.22)

∫
Ωc

[
ωrcα

(
∂u̇c

∂rc
+
u̇c

rc

)
+ ωrcβṗ

+

(
∂

∂rc
(
ωrcJf

)
− ∂ω

∂rc
rcJf

)
+

(
∂

∂rc
(ωrcJm)− ∂ω

∂rc
rcJm

)]
drc = 0 (F.23)

∫
Ωc

[
ωrcα

(
∂u̇c

∂rc
+
u̇c

rc

)
+ ωrcβṗ− ∂ω

∂rc
rc
(
Jf + Jm

)]
drc = −ωac

[
Jf + Jm

]
rc=ac

(F.24)

∫
Ωc

[
ωrcα

(
∂u̇c

∂rc
+
u̇c

rc

)
+ ωrcβṗ− ∂ω

∂rc
rc
(
J̃f + J̃m

)
+
∂ω

∂rc
rc
κ

µ

∂δp

∂rc
+
∂ω

∂rc
rc
(
κ

µ

∂p̃

∂rc
δφmf + φ̃mf

κ

µ

∂δp

∂rc
+ φ̃mf D

∂δφmf
∂rc

)
− ∂ω
∂rc

rc

(
D
∂φ̃mf
∂rc

1

1 + φ̃mf

(
δφc + φ̃fδφmf + δφsfr + δφsfθ

))]
drc = −ωac

[
Jf + Jm

]
rc=ac

(F.25)

ωeT
∫

Ωc

[
NT rcα

(
Bu̇c,e +

1

rc
Nu̇c,e

)
+ NT rcβNṗe −BT rc

(
J̃f + J̃m

)
+BT rc

κ

µ
Bδpe + BT rc

(
κ

µ

∂p̃

∂rc
Nδφm,ef + φ̃mf

κ

µ
Bδpe + φ̃mf DBδφm,ef

)
−BT rc

(
D
∂φ̃mf
∂rc

1

1 + φ̃mf

(
Nδφc,e + φ̃fNδφm,ef + Nδφsf,er + Nδφsf,eθ

))]
drc

= −ωeTNTac
[
Jf + Jm

]
rc=ac

(F.26)
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Fm =

∫
Ωc
−BT rc

(
J̃f + J̃m

)
drc + NTac

[
Jf + Jm

]
rc=ac

(F.27)

Cmu =

∫
Ωc

NT rcα

(
B +

1

rc
N

)
drc (F.28)

Cmp =

∫
Ωc

NT rcβNdrc (F.29)

Kmm =

∫
Ωc

[
BT rc

(
κ

µ

∂p̃

∂rc
N + φ̃mf DB

)
−BT rc

(
D
∂φ̃mf
∂rc

1

1 + φ̃mf
φ̃fN

)]
drc (F.30)

Kmr =

∫
Ωc
−BT rc

(
D
∂φ̃mf
∂rc

1

1 + φ̃mf
N

)
drc (F.31)

Kmθ =

∫
Ωc
−BT rc

(
D
∂φ̃mf
∂rc

1

1 + φ̃mf
N

)
drc (F.32)

Kmp =

∫
Ωc

BT rc
κ

µ
B
(

1 + φ̃mf

)
drc (F.33)

Kmc =

∫
Ωc
−BT rc

(
D
∂φ̃mf
∂rc

1

1 + φ̃mf
N

)
drc (F.34)

Cytosol Mass:

∫
Ωc
ω

[
φ̇f + αφf

(
∂u̇c

∂rc
+
u̇c

rc

)
+ βφf ṗ+

(
∂Jf

∂rc
+
Jf

rc

)]
rcdrc = 0 (F.35)

∫
Ωc

[
ωrcφ̇f + ωrcαφf

(
∂u̇c

∂rc
+
u̇c

rc

)
+ ωrcβφf ṗ+

(
∂

∂rc
(
ωrcJf

)
− ∂ω

∂rc
rcJf

)]
drc = 0(F.36)

∫
Ωc

[
ωrcφ̇f + ωrcαφf

(
∂u̇c

∂rc
+
u̇c

rc

)
+ ωrcβφf ṗ− ∂ω

∂rc
rcJf

]
drc = −ωac

[
Jf
]
rc=ac

(F.37)

∫
Ωc

[
−ωrc 1

1 + φmf

(
φ̇c + φ̃f φ̇mf + φ̇sfr + φ̇sfθ

)
+ ωrcαφ̃f

(
∂u̇c

∂rc
+
u̇c

rc

)
+ ωrcβφ̃f ṗ− ∂ω

∂rc
rcJ̃f

+
∂ω

∂rc
rc
κ

µ

∂δp

∂rc

]
drc = −ωac

[
Jf
]
rc=ac

(F.38)
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ωeT
∫

Ωc

[
−NT rc

1

1 + φmf

(
Nφ̇

c
+ φ̃fNφ̇

m

f + Nφ̇
sf

r + Nφ̇
sf

θ

)
+NT rcαφ̃f

(
Bu̇c,e +

1

rc
Nu̇c,e

)
+ NT rcβφ̃fNṗe −BT rcJ̃f + BT rc

κ

µ
Bδpe

]
drc

= −ωeTNTac
[
Jf
]
rc=ac

(F.39)

Ff =

∫
Ωc
−BT rcJ̃fdrc + NTac

[
Jf
]
rc=ac

(F.40)

Cfu =

∫
Ωc

NT rcαφ̃f
(

B +
1

rc
N

)
drc (F.41)

Cfm =

∫
Ωc
−NT rc

1

1 + φ̃mf
Ndrc (F.42)

Cfr =

∫
Ωc
−NT rc

1

1 + φ̃mf
Ndrc (F.43)

Cfθ =

∫
Ωc
−NT rc

1

1 + φ̃mf
Ndrc (F.44)

Cfc =

∫
Ωc
−NT rc

1

1 + φ̃mf
Ndrc (F.45)

Cff =

∫
Ωc

NT rcβφ̃fNdrc (F.46)

Kmm =

∫
Ωc

BT rc
κ

µ
Bdrc (F.47)

Cytoskeleton-monomer chemical potential

∫
Ωc
ω [µc − µm] rcdrc = 0 (F.48)

∫
Ωc
ω [∆µp0 + kBT (ln(φc)− ln(φm))] rcdrc = 0 (F.49)

∫
Ωc

[
ωrc∆µp0 + ωrckBT

(
ln(φ̃c)− ln(φ̃m)

)
+ ωrckBT

(
1

φ̃c
δφc − 1

φ̃m
δφm

)]
drc = 0 (F.50)
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ωeT
∫

Ωc

[
NT rc∆µp0 + NT rckBT

(
ln(φ̃c)− ln(φ̃m)

)
+NT rckBT

(
1

φ̃c
Nδφc − 1

φ̃m
Nδφm

)]
drc = 0 (F.51)

Fc =

∫
Ωc

[
NT rc∆µp0 + NT rckBT

(
ln(φ̃c)− ln(φ̃m)

)]
drc (F.52)

Kcc =

∫
Ωc

NT rckBT
1

φ̃c
Ndrc (F.53)

Kcm =

∫
Ωc
−NT rckBT

1

φ̃m
Ndrc (F.54)

radial stress fiber - monomer chemical potential

∫
Ωc
ω
[
µsfr − µm

]
rcdrc = 0 (F.55)

∫
Ωc
ω
[
∆µp0 + kBT

(
ln(φsfr )− ln(φm)

)
+ Esf

r

]
rcdrc = 0 (F.56)

∫
Ωc

[
ωrc∆µp0 + ωrckBT

(
ln(φ̃sfr )− ln(φ̃m)

)
+ ωrcẼsf

r

+ωrckBT

(
1

φ̃sfr
δφsfr −

1

φ̃m
δφm

)
+ ωrcV cu (E1ε̃

c
r − T ∗) δεcr

]
drc = 0 (F.57)

ωeT
∫

Ωc

[
NT rc∆µp0 + NT rckBT

(
ln(φ̃sfr )− ln(φ̃m)

)
+ NT rcẼsf

r

+NT rckBT

(
1

φ̃sfr
Nδφsfr −

1

φ̃m
Nδφm

)
+ NT rcV cu (E1ε̃

c
r − T ∗) Bδuc,e

]
drc = 0 (F.58)
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Fr =

∫
Ωc

[
NT rc∆µp0 + NT rckBT

(
ln(φ̃sfr )− ln(φ̃m)

)
+ NT rcẼsf

r

]
drc (F.59)

Kru =

∫
Ωc

NT rcV cu (E1ε̃
c
r − T ∗) Bdrc (F.60)

Krr =

∫
Ωc

NT rckBT
1

φ̃sfr
Ndrc (F.61)

Krm =

∫
Ωc
−NT rckBT

1

φ̃m
Ndrc (F.62)

Similarly for θ stress fiber - G-actin monomer

Fθ =

∫
Ωc

[
NT rc∆µp0 + NT rckBT

(
ln(φ̃sfθ )− ln(φ̃m)

)
+ NT rcẼsf

θ

]
drc (F.63)

Kθu =

∫
Ωc

NT rcV cu (E1ε̃
c
θ − T ∗)

1

rc
Ndrc (F.64)

Kθθ =

∫
Ωc

NT rckBT
1

φ̃sfθ
Ndrc (F.65)

Kθm =

∫
Ωc
−NT rckBT

1

φ̃m
Ndrc (F.66)

Integrin Mass:

∫
Ωc
ω

[(
ċL + ċH

)
+
(
cL + cH

)(∂u̇c
∂rc

+
u̇c

rc

)
+

(
∂JL

∂rc
+
JL

rc

)]
rcdrc = 0 (F.67)

∫
Ωc

[
ωrc

(
ċL + ċH

)
+ ωrc

(
cL + cH

)(∂u̇c
∂rc

+
u̇c

rc

)
+

(
∂

∂rc
(
ωrcJL

)
− ∂ω

∂rc
rcJL

)]
drc = 0(F.68)

∫
Ωc

[
ωrc

(
ċL + ċH

)
+ ωrc

(
cL + cH

)(∂u̇c
∂rc

+
u̇c

rc

)
− ∂ω

∂rc
rcJL

]
drc = −ωac

[
JL
]
rc=ac

(F.69)

∫
Ωc

[
ωrc

(
ċL + ċH

)
+ ωrc

(
cL + cH

)(∂u̇c
∂rc

+
u̇c

rc

)
− ∂ω

∂rc
rcJ̃L

+
∂ω

∂rc
rcm

∂δcL

∂rc

]
drc = −ωac

[
JL
]
rc=ac

(F.70)
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ωeT
∫

Ωc

[
NT rc

(
NċL,e + NċH,e

)
+NT rc

(
c̃L + c̃H

)(
Bu̇c,e +

1

rc
Nu̇c,e

)
−BT rcJ̃L + BT rcmBδcL,e

]
drc

= −ωeTNTac
[
JL
]
rc=ac

(F.71)

FL =

∫
Ωc
−BT rcJ̃Ldrc + NTac

[
JL
]
rc=ac

(F.72)

CLu =

∫
Ωc

NT rc
(
c̃L + c̃H

)(
B +

1

rc
N

)
drc (F.73)

CLL =

∫
Ωc
−NT rcNdrc (F.74)

CLH =

∫
Ωc
−NT rcNdrc (F.75)

KLL =

∫
Ωc

BT rcmBdrc (F.76)

H - L chemical potential

∫
Ωc
ω
[
µH − µL

]
rcdrc = 0 (F.77)

∫
Ωc
ω
[
∆µI0 + kBT

(
ln(cH)− ln(cL)

)
+ EH

]
rcdrc = 0 (F.78)

∫
Ωc

[
ωrc∆µI0 + ωrckBT

(
ln(c̃H)− ln(c̃L)

)
+ ωrcẼH

+ωrckBT

(
1

c̃H
δcH − 1

c̃L
δcL
)
− ωrcγka (ũc − ũs) δuc + ωrcγka (ũc − ũs) δus

]
drc = 0(F.79)

ωeT
∫

Ωc

[
NT rc∆µI0 + NT rckBT

(
ln(c̃H)− ln(c̃L)

)
+ NT rcẼH + NT rckBT

(
1

c̃H
NδcH − 1

c̃L
NδcL

)
−NT rcγka (ũc − ũs) Nδuc,e + NT rcγka (ũc − ũs) Nδus,e

]
drc = 0(F.80)
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FH =

∫
Ωc

[
NT rc∆µI0 + NT rckBT

(
ln(c̃H)− ln(c̃L)

)
+ NT rcẼH

]
drc (F.81)

KHs =

∫
Ωc

NT rcγka (ũc − ũs) Ndrc (F.82)

KHu =

∫
Ωc
−NT rcγka (ũc − ũs) Ndrc (F.83)

KHH =

∫
Ωc

NT rckBT
1

c̃H
Ndrc (F.84)

KHL =

∫
Ωc
−NT rckBT

1

c̃L
Ndrc (F.85)
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