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Abstract

Capdevielle, Sophie (M.S., Civil Engineering)

Modeling fluid-rigid body interaction using the

Arbitrary Lagrangian Eulerian Method

Thesis directed by Prof. Mettupalayam V. Sivaselvan

The goal of this thesis is to build a clear understanding of the Arbitrary Lagrangian Eulerian

(ALE) method and to develop a useful simple implementation. A review of the ALE method

is presented with precise notations and detailed explanation of the combined kinematics. As an

application, a complete model of fluid-rigid body interaction is developed. Starting from the Navier-

Stokes equations, ALE governing equations for the fluid are derived. They are discretized in space

using the Finite Element method. Coupled with the rigid body equation of motion via compatibility

and equilibrium interface conditions, they lead to a nonlinear system of equations. The latter

is solved using an approximated Newton’s method. Details on the implementation are given to

illustrate the numerical solution procedure. In particular, the prescription of the mesh motion,

specific to the ALE method, is developed. The simple pure fluid problem of the Couette flow is

used to test the implementation. The formulation is then used to simulate the free oscillations of

a rigid circular cylinder embedded in a viscous fluid.
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Chapter 1

Introduction

1.1 Need for an alternate description of motion

1.1.1 Practical problems of interest

Several interesting problems are encountered by engineers in their search for optimizing our

resources and safety. Some examples are presented below, which all lead to continuum models

with very large deformation and a changing boundary position. These combined two features make

the classical modeling approaches hard to use, if not impossible. Thus, researchers resort to the

Arbitrary Lagrangian Eulerian (ALE) method to address these problems.

Fluid-structure interaction

Behind the general name fluid-structure interaction, various practical applications are hidden.

Civil engineers need to know how a bridge or a skyscraper behaves in interaction with the wind,

to ensure structural safety. To help progress in medicine, biomechanicians study the dynamics

of heart valves and blood flow in our cardiovascular system. In an attempt to find new durable

sources of energy, recent research is developing small energy-harvesting devices based on flow-

induced instabilities ([8]). For fluid-structure interaction applications of ALE, the reader is invited

to refer to [21], [22], [17],[7] or [15].

Industrial problems: rolling contact and forming process
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An apparently completely unrelated problem is the study of rolling contact. This is useful to

make concerned components last longer, such as car tires or rollers in rotating machines. The goal

is also to improve the performance of the products, such as printing machines ([13], [2]). Studying

forming processes has also as a goal to improve the quality of the final product, as well as the

manufacturing process, by predicting the load on the tools (see [18] and [12]).

Penetration mechanics

In the process of constructing a building, the foundation part is often the most uncertain, due

to the difficulty in modeling the soil accurately. Penetration mechanics is useful to model the

driving of a pile into the ground, serving as a structural support. It also models the intrusion of

measurement tools in the soil ([14], [19], [20]).

1.1.2 Two classical approaches with limitations

To observe a continuum in motion, two perspectives are classically used. In a Lagrangian de-

scription, the motion is captured by observers moving with the material particles. This point of

view enables precise tracking of moving boundaries. The Lagrangian approach is limited in its

inability to deal with large deformations.1 It is thus not suitable for studying fluid motion, but is

usually used for the study of pure solid problems.

For a pure fluid problem, an Eulerian approach is generally used. The motion of the flow is

then captured by observers fixed in space. This corresponds to the way most measurements are

made in real flows. Large deformations of the material do not cause any numerical problem since

the numerical discretization does not follow the material motion. Mobile boundaries can not be

followed accurately unless a very fine mesh is used. This usually does not matter for fluid only

problems, because the region of interest is usually fixed and fluid flows through. Difficulties arise

when there is an interface to solve for, such as in a fluid-structure interaction problem.

1 When the material encounters too large deformations, the deformation gradient becomes close to singular. The
computation of its inverse, if not impossible, leads to large numerical errors.
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1.1.3 Introduction of an alternate representation

As briefly stated above, the Lagrangian and Eulerian representations are not suitable for a

problem with large deformations where the position of a mobile boundary needs to be known with

accuracy. This arises in many applications, as shown in paragraph 1.1.1. To solve this issue,

a combined description of motion is needed. Once such framework is the Arbitrary Lagrangian

Eulerian (ALE) method, designed in the 1970’s to address the fluid-structure interaction issue ([9],

[21], [22], [17],[7], and [15]), and quickly extended to solid mechanics. The ALE method keeps the

advantages of both Lagrangian and Eulerian descriptions, without suffering from their drawbacks.

The ALE method is now used by commercial codes in solving multiphysics problems, such as

COMSOL for example ([1]).

In solid mechanics, the ALE method is applied in the simulation of forming processes (see [18]

and [12]), because the changing shape of the material needs to be precisely known, while really

large deformations are encountered. For the same reasons, the ALE method is applied in modeling

rolling contact (see [13]) or penetration mechanics (see [20]). Other applications can be found in

nonlinear elastoplasticity ([16], [10]). The ALE approach is used to avoid excessive mesh distorsion,

but leads to a new difficulty in the treatement of path-dependant constitutive relationships.

This study focuses on the ALE method because of its intriguing combined kinematic description

and its wide range of applications.

1.2 Motivation and organization of this ALE study

The main purpose of this thesis is to build a deep understanding of the ALE formulation and

express it in the clearest possible way. Literature is quite rich on the subject. But to lighten the

notations and stay concise, most authors do not develop the ALE governing equations in a complete

and indubitable way. Thus the first purpose of the work is to rigorously derive the ALE equations

by untangling the notations. [9] and [5] are helpful references to understand the concept of the



4

ALE representation.

To support the study, the second aim of this work is to develop a simple implementation. As

stated in paragraph 1.1.3, the oldest applications are found in fluid-structure interaction. [22]

presents the numerical example of a rigid cylinder freely oscillating in a fluid. The problem is

modeled in this thesis with the goal of getting results close to [22]. This numerical application

builds up the essential implementation ingredients of the ALE method. It should found a starting

point to explore further ALE applications, such as those cited in paragraph 1.1.1 and 1.1.3.

The presentation of the work is organized as follows. First, we explain how the ALE method

combines the Lagrangian and Eulerian descriptions. We then introduce the notations correspond-

ing to this combination, building all the bases to develop the governing equations for fluid-rigid

body interaction. They are derived in chapter 2, starting with the ALE formulation of the fluid

equations of motion. Solid governing equations are then presented, followed by the interface cou-

pling conditions. Chapter 3 discretizes the fluid ALE equations by the Finite Element Method,

to get a system of coupled nonlinear equations governing the problem. The numerical process to

solve this system is detailed next. Chapter 4 explains its practical implementation. Selected parts

of the code are highlighted to ease the reader’s understanding. Chapter 5 presents the numerical

examples. Finally, results of the work and concluding remarks are summarized in chapter 6.

1.3 From Lagrangian and Eulerian to ALE description of motion

1.3.1 A moving frame of reference

To combine the Lagrangian and Eulerian approaches, a third set of observers is introduced, used

as a reference for describing motion. These ALE observers move as prescribed by the user of the ALE

method, independently from the material (hence the name ”arbitrary”). The corresponding mesh’s

motion can be chosen to keep track of mobile boundaries, while avoiding excessive mesh distortion

where the material encounters large deformations. One way to prescribe the mesh motion is to set
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it as Lagrangian on the mobile boundaries and as Eulerian far from these boundaries. Motion of

the nodes located in the transition zone is treated using an interpolation technique, so that the

mesh displacement and velocity are as smooth as possible. For example, they can be computed

solving a Laplace equation (see [9] for more details or other interpolation techniques). [22] linearly

interpolates the mesh displacement and velocity functions of the distance from the interface.

When ALE observers follow the material motion, the ALE method reduces to the Lagrangian

formulation. Conversely, prescribing a fixed mesh motion reduces the ALE method to an Eulerian

formulation. Defining the mesh motion is the tool used to combine Lagrangian and Eulerian

descriptions.

The freedom of arbitrarily defining the mesh motion has another application : mesh adaptation.

This enables mesh refinement in specific zones, such as zones of steep gradients. Since the number

of elements and their connectivity remain the same, this mesh adaptation is computationally cheap.

The reader is referred to [9] for more details on this technique and to [3] and [4] for application to

failure localization.

Section 1.3.2 translates these concepts into mathematical notations. These are necessary for the

derivation of the ALE description of motion.

1.3.2 Definition of the notations

1.3.2.1 Domains and mapping functions

Labels for the three groups of observers are collected into three different sets (see figure 1.1). The

material domain Ω0 corresponds to the initial (undeformed) configuration and contains the labels

X of the Lagrangian observers. The spatial domain Ω corresponds to the current configuration

and contains the labels χ of the Eulerian observers. These are fixed and attached to the global

coordinate system x. Labels X of the ALE observers are contained by the ALE domain Ω̃, which

is used as a reference for motion description and spatial discretization.
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The mapping function between the ALE domain and the spatial domain Φ : X 7→ χ represents

the mesh motion. The mesh motion is the motion of ALE observers labeled by X , seen from the

point of view of Eulerian observers. The material (”true”) motion is given by the map ϕ : X 7→ χ.

Motion of the material observed by the ALE frame is given by the map φ : X 7→ X . These functions

are related by ϕ = Φ ◦ φ.

Figure 1.1: Notations for the ALE description of motion

1.3.2.2 Functions

A dependant variable f (such as velocity or pressure for example) can be function of any of the

particle labels X, χ or X . It keeps the same physical meaning but the function is different. Thus

distinct notations are needed.

The dependant variables are denoted with a hat when they are function of the material labels

X, with a tilde when they are functions of the ALE label X and without any additional symbol

when they are function of the spatial labels χ (see figure 1.2).
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Such a notational distinction is introduced in continuum mechanics textbooks (eg [5]), but quickly

dropped. However the distinction is especially helpful in the ALE context, where there is a third

set of observers.

Figure 1.2: Notations for a dependant variable f , where f̃(X , t) = f̂(X, t) = f(χ, t)

1.3.2.3 Velocities

Because of the addition of the ALE domain and two corresponding mapping functions, different

kinds of velocities are defined. Their definitions, notations and meanings require specific attention.

1.3.2.4 Material velocity

v̂(X, t) =
∂ϕ

∂t
(X, t) (1.1)

The material velocity v̂ is the velocity of the material particles (labelled by X), observed by the

spatial frame χ, and expressed in the global coordinate system x.
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1.3.2.5 Mesh velocity

ṽmesh(X , t) =
∂Φ

∂t
(X , t) (1.2)

The mesh velocity corresponds to the motion of the ALE nodes (labeled by X ) as seen from the

spatial perspective χ and expressed in the global coordinate system x. This motion is prescribed

by the user.

1.3.2.6 Convective velocity

Convective velocity is the difference between the material and mesh velocities. It represents

the material velocity relative to the velocity of the ALE particles, as seen by the spatial observers

χ. Its expression in terms of the ALE labels X is:

c̃ (X , t) = v̂
(
φ−1(X , t), t

)
− ṽmesh(X , t) (1.3)

The convective velocity is used in the formulation of the conservation equations in the ALE frame-

work, as detailed in chapter 2, section 2.1.



Chapter 2

ALE formulation of the governing equations for fluid-rigid body interaction

Introduction

The goal here is to set up the governing equations for a fluid-rigid body interaction problem.

Fluid-rigid body interaction is studied as an idealization of fluid-structure interaction, when the

structure deformations are small compared to its rigid-body motion. The problem is simpler,

because the solid does not need a continuum description. Since a 2D problem is modeled here, the

rigid body has only 3 degrees of freedom. But, because of the interface, an Arbitrary Lagrangian

Eulerian (ALE) description of motion is needed for the fluid.

The equations for a 2D fluid-structure interaction problem are presented in [22]. They are derived

here in more detail, with particular focus on obtaining the ALE form of the fluid equations. Section

2.1 explains the transformation of the Navier-Stokes equations from their Eulerian to their ALE

expression. The solid equation of motion is presented in section 2.2. The fluid and solid problems

interact through their common interface. Coupling conditions at this interface are detailed in

section 2.3.

2.1 ALE expression of the fluid governing equations

Fluid governing equations come from the Navier-stokes equations, taking into account the as-

sumptions listed in paragraph 2.1.1. They are expressed in Eulerian form in paragraph 2.1.2. These

equations are then transformed to the ALE representation in paragraphs 2.1.3 and 2.1.4. In this
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whole section, governing equations are written in index notation.

2.1.1 Assumptions

(1) 2D problem

(2) Homogeneous, Newtonian fluid

(3) Incompressible flow

(4) Effect of gravity neglected

2.1.2 Governing equations in the Eulerian representation

In Eulerian representation, the governing equations are completely evaluated at the Eulerian

(spatial) observers locations χ.

Conservation of mass

Taking assumption 3 into account, the conservation of mass is written as :

∂vk
∂χk

= 0 (2.1)

Conservation of momentum

ρ
dvi
dt

=
∂σij
∂χj

+ ρbi (2.2)

where d
dt denotes the material derivative.

Constitutive relationship

For Newtonian fluids, the Cauchy’s stress σ is related to the velocity gradient as follows:

σij = −p δij + µ

(
∂vi
∂χj

+
∂vj
∂χi

)
(2.3)

where p is the pressure and µ the viscosity. δij is the Kronecker delta.
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2.1.3 Transformation to ALE

Spatial discretization leading to the finite element formulation of the conservation equations is

based on the ALE frame of reference. Thus equations 2.1 and 2.2 need to be expressed in terms of

the ALE labels X .

But the most natural stress measure for fluid is the Cauchy’s stress σ. Constitutive relationships

are given in terms of σ for fluid. They are also often expressed in terms of σ in the solid case. Thus

from a computational point of view, it is less expensive to express the weak form of conservation

equations by integrating over the spatial domain Ω, according to [5]. Spatial derivatives are kept

in terms of the spatial labels χ. The location of the nodes X will be taken into account by moving

the mesh according to Φ.

To derive the ALE form of equations 2.1 and 2.2, the material time derivatives need to be

expressed in the corresponding framework. Dependant variables are expressed in terms of X but

spatial derivatives are kept in terms of χ. The convective term accounts for mesh motion.

2.1.3.1 Material derivative in the ALE description

With f being a dependent variable,

df

dt
(χ, t) =

∂f̂

∂t
(X, t)

∣∣∣∣∣
(ϕ−1(χ,t),t)

=

[
∂f̃

∂t
(X , t) +

∂f̃

∂X
(X , t) ∂φ

∂t

(
φ−1(X , t), t

)]∣∣∣∣∣
(Φ−1(χ,t),t)

(2.4)

Since the spatial derivatives need to be expressed in terms of the spatial coordinates, equation

2.4 is further transformed to:

df

dt
(χ, t) =

[
∂f̃

∂t
(X , t) +

∂f

∂χ
(Φ(X , t), t) ∂Φ

∂X
(X , t) ∂φ

∂t

(
φ−1(X , t), t

)]∣∣∣∣∣
(Φ−1(χ,t),t)

(2.5)
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2.1.3.2 Expression of the convective velocity c̃ in terms of the mapping functions φ

and Φ

Substituting the definitions of v̂ (1.1) and ṽmesh (1.2) into (1.3) leads to:

c̃(X , t) =
∂ϕ

∂t

(
φ−1(X , t), t

)
− ∂Φ

∂t
(X , t) (2.6)

Since ϕ = Φ ◦ φ,

c̃(X , t) =
∂Φ

∂X
(X , t)∂φ

∂t

(
φ−1(X , t)

)
+
∂Φ

∂t
(X , t)− ∂Φ

∂t
(X , t) (2.7)

Thus

c̃(X , t) =
∂Φ

∂X
(X , t)∂φ

∂t

(
φ−1(X , t), t

)
(2.8)

2.1.3.3 Final expression of the material derivative

Substituting result 2.8 into 2.5 leads to:

df

dt
(χ, t) =

[
∂f̃

∂t
(X , t) +

∂f

∂χ
(Φ(X , t), t) c̃ (X , t)

]∣∣∣∣∣
(Φ−1(χ,t),t)

(2.9)

In index notations, equation 2.9 is expressed as:

df

dt
(χ, t) =

[
∂f̃

∂t
(X , t) + c̃k (X , t) ∂f

∂χk
(Φ(X , t), t)

]∣∣∣∣∣
(Φ−1(χ,t),t)

(2.10)

Equation 2.9 is referred to as the fundamental ALE equation by [9], because it serves as a basis

to derive the ALE form of conservation equations.

2.1.4 ALE form of governing equations

Changing variable in the Eulerian form of the conservation equations 2.1 and 2.2, using the

expression of the material derivative 2.9, leads to the conservation equation in the ALE description:
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2.1.4.1 Conservation of mass

∂vk
∂χk

(Φ(X , t), t) = 0 (2.11)

2.1.4.2 Conservation of momentum

ρ

[
∂ṽi
∂t

(X , t) + c̃k (X , t) ∂vi
∂χk

(Φ(X , t), t)
]

=
∂σij
∂χj

(Φ(X , t), t) + ρ b̃i (X , t) (2.12)

2.1.4.3 Constitutive relationship

σij (Φ(X , t), t) = −p (Φ(X , t), t) δij + µ

(
∂vi
∂χj

(Φ(X , t), t) +
∂vj
∂χi

(Φ(X , t), t)
)

(2.13)

2.2 Rigid body equation of motion

2.2.1 Assumptions

(1) 2D problem

(2) Motion of each degree of freedom uncoupled from the others

(3) Constant mass, damping and stiffness coefficients

2.2.2 Conservation of momentum of the rigid body

The rigid body motion is described by the motion of its center of mass G. Displacements δ1 and

δ2 and rotation θ are collected in the vector δ.

δ =


δ1

δ2

θ

 (2.14)
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Solid velocities and accelerations are obtained by differentiation with respect to time:

ν =


δ̇1

δ̇2

θ̇

 (2.15)

α =


δ̈1

δ̈2

θ̈

 (2.16)

The resulting external forces Fext1 and Fext2 and moment M acting on G are collected in the

vector Fext.

Fext =


Fext1

Fext2

M

 (2.17)

Mass, damping, and stiffness coefficients are collected into the matrices m, c, and k respectively.

According to assumptions 2 and 3, these matrices are diagonal with constant coefficients.

Conservation of momentum for the rigid body is then written as:

mα+ c ν + k δ = Fext (2.18)

2.3 Interface coupling conditions

The velocities and accelerations of the solid and fluid particles are constrained to be equal at the

interface. This kinematic compatibility condition is described in section 2.3.1. The computation of

the resultant of fluid forces on the solid at the interface is described in 2.3.2. This latter computation

is related to compatibility by principle of virtual work.
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2.3.1 Compatibility condition

Let A be a point belonging to the interface (see figure 2.1). Because A is part of the rigid body,

its displacement dA is related to δ through:

dA =

δ1

δ2


︸ ︷︷ ︸

rigid body displacement

+

cos(θ)− 1 −sin(θ)

sin(θ) cos(θ)− 1


xA0
yA0


︸ ︷︷ ︸

rigid body rotation

(2.19)

Figure 2.1: Initial and displaced configurations of the rigid body

xA0 and yA0 are the initial coordinates of A in the global coordinate system, which has the initial

position of G as the origin.

Solid velocity at point A is calculated by differentiating equation 2.19. The first compatibility

condition requires the fluid velocity to be equal to the solid velocity at point A. This leads to:
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vA =

1 0 −sin(θ)xA0 − cos(θ) yA0

0 1 cos(θ)xA0 − sin(θ) yA0



δ̇1

δ̇2

θ̇

 = TA
T
ν (2.20)

The second compatibility condition requires the fluid acceleration at point A to be equal to the

solid acceleration. The latter is obtained by further differentiating equation 2.20:

aA = TA
T


δ̈1

δ̈2

θ̈

+

−cos(θ)xA0 + sin(θ) yA0

−sin(θ)xA0 − cos(θ) yA0

 θ̇2 (2.21)

2.3.2 Resultant force on the solid

Fext is defined as the vector of resultant external forces and moments acting on G. With FA

defined as the external forces acting on the solid at point A,

Fext =
∑

A∈interface

TAFA (2.22)

With fA defined as the force acting on the fluid at point A, equation 2.23 is due to Newton’s

third law:

FA = −fA (2.23)

Combining equations 2.22 and 2.23 leads to the equilibrium condition 2.24:

Fext =
∑

A∈interface

TA
(
−fA

)
(2.24)
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2.4 Summary of the fluid-rigid body interaction governing equations

Momentum conservation for the rigid body

mα+ c ν + k δ = Fext (2.25)

Conservation of mass for the fluid

∂vk
∂χk

(Φ(X , t), t) = 0 (2.26)

Conservation of momentum for the fluid

ρ

[
∂ṽi
∂t

(X , t) + c̃k (X , t) ∂vi
∂χk

(Φ(X , t), t)
]

=
∂σij
∂χj

(Φ(X , t), t) + ρ b̃i (X , t)

(2.27)

Constitutive relationship for the fluid

σij (Φ(X , t), t) = −p (Φ(X , t), t) δij + µ

(
∂vi
∂χj

(Φ(X , t), t) +
∂vj
∂χi

(Φ(X , t), t)
)

(2.28)

Interface compatibility conditions

vA =

1 0 −sin(θ)xA0 − cos(θ) yA0

0 1 cos(θ)xA0 − sin(θ) yA0



δ̇1

δ̇2

θ̇

 = TA
T
ν (2.29)

aA = TA
T


δ̈1

δ̈2

θ̈

+

−cos(θ)xA0 + sin(θ) yA0

−sin(θ)xA0 − cos(θ) yA0

 θ̇2 (2.30)

Resultant force on solid

Fext =
∑

A∈interface

TA
(
−fA

)
(2.31)



Chapter 3

Finite Element discretization and numerical solution

Introduction

The problem defined by the governing equations 2.25 to 2.31 can not be solved analytically. A

numerical solution procedure is needed. Section 3.1 discretizes the governing equations in space

and in time to obtain a set of discrete equations representing the problem. Section 3.2 develops

the integration procedure to solve these discrete equations.

3.1 Setting up a numerically solvable problem

Whereas the solid part of the problem has only three degrees of freedom, the fluid part has

an infinite number of degrees of freedom. The fluid domain is thus discretized to compute the

solution at a finite number of locations. The spatially discrete equations are obtained using the

Finite Element method, as detailed in paragraph 3.1.1. Using the solid governing equation and

the coupling conditions, the final set of semi-dicrete equations is derived in paragraph 3.1.2. These

equations are further discretized in time in paragraph 3.1.3.

3.1.1 From the continuous to the discrete flow problem

In this section, the partial differential equations 2.26 and 2.27 are discretized in space. First,

they are expressed in weak form using the method of weighted residuals. Then, the fluid domain

is spatially dicretized, to get the finite element form of the equations.
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3.1.1.1 Weak form of the conservation equations

In this section, if a function is in spatial representation, dependency is not shown, but (χ, t)

should be understood.

Mass conservation

Equation 2.26 is multiplied by the pressure weighting function δp and integrated over the spatial

domain Ω.

∫
Ω

∂vk
∂χk

δp dΩ = 0 (3.1)

Momentum conservation

Equation 2.27 (corresponding to direction i) is multiplied by the ith component of the velocity

weighting function δvi and integrated over the spatial domain Ω.

∫
Ω

(
ρ

[
∂ṽi
∂t

(
Φ−1(χ, t), t

)
+ c̃k

(
Φ−1(χ, t), t

) ∂vi
∂χk

]
− ∂σij
∂χj

)
δvi dΩ = 0 (3.2)

To take the constitutive relationship and boundary conditions into account, term
∫

Ω
∂σij
∂χj

δvi dΩ

needs to be integrated by parts:

∫
Ω

∂σij
∂χj

δvi dΩ = −
∫

Ω
σij

∂δvi
∂χj

dΩ +

∫
∂Ω
σij nj δvi d∂Ω (3.3)

Introducing the constitutive relationship 2.28 into equation 3.3 leads to:

∫
Ω

∂σij
∂χj

δvi dΩ = −
∫

Ω

[
−p δij + µ

(
∂vi
∂χj

+
∂vj
∂χi

)]
∂δvi
∂χj

dΩ +

∫
∂Ω
σij nj δvi d∂Ω (3.4)

The boundary of the fluid domain ∂Ω is split into a prescribed i-direction traction part ∂ΩT i

and prescribed i-direction velocity part ∂Ωvi. On ∂ΩT i, σij nj = Ti. On ∂Ωvi, δvi = 0. Substituting

these results into equation 3.4, we get:
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∫
Ω

∂σij
∂χj

δvi dΩ = −
∫

Ω

[
−p δij + µ

(
∂vi
∂χj

+
∂vj
∂χi

)]
∂δvi
∂χj

dΩ +

∫
∂ΩT i

Ti δvi d∂Ω (3.5)

Introducing this result into equation 3.2, we get the final weak form of the momentum

equation:

∫
Ω
ρ
∂ṽi
∂t

(
Φ−1(χ, t), t

)
δvi dΩ +

∫
Ω
ρ c̃k

(
Φ−1(χ, t), t

) ∂vi
∂χk

δvi dΩ +

∫
Ω
µ

(
∂vi
∂χj

+
∂vj
∂χi

)
∂δvi
∂χj

dΩ

−
∫

Ω
p δij

∂δvi
∂χj

dΩ =

∫
∂ΩT i

Ti δvi d∂Ω (3.6)

Equations 3.1 and 3.6 are the final weak forms that will serve as basis for spatial discretization.

3.1.1.2 Spatial discretization

Discretization of the fluid domain into finite elements

The current domain (2D) is discretized into nel bilinear quadrilateral finite elements as:

Ωh =

nel

A
e=1

Ωe (3.7)

Ωh refers to the discrete approximation of the spatial domain Ω. Ωe represents the element

domain.

Interpolations

The discrete solution is computed at ALE observer locations. Thus, the shape functions Ñ(X )

used for the global coordinates and velocity interpolations are expressed in terms of the ALE labels.

The acceleration term in the balance of momentum equation contains ∂ṽ(X ,t)
∂t (see equation 2.27).

Using Ñ(X ) as shape functions, time dependence only appears in the discrete velocity vector.
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The pressure is treated separately as piecewise constant (constant in each element), for stability

reasons.1

In practice, the fields and weighting functions are interpolated at the element level, using the

parent coordinate system ξ =

[
ξ1 ξ2

]T
. Matrices and vectors necessary to build the discrete

equations are then assembled. An isoparametric formulation is used, meaning that the same shape

functions interpolate the ALE observers labels X and the fluid velocity. The mapping function

from the parent coordinates to the ALE coordinates inside an element is given by equation 3.8.

The mapping function relating the element coordinates to the spatial coordinates inside an element

is given by equation 3.9. Nodal quantities are denoted with a bar.

ψX : ξ 7→ X = N(ξ)X̄ (3.8)

ψχ : (ξ, t) 7→ χ(t) = N(ξ)χ̄(t) (3.9)

N is the matrix containing the shape functions, defined by equation 3.10. X̄ is the vector of

the ALE labels of the nodes. χ̄ is the vector of spatial labels of the nodes.

N =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 (3.10)

The shape function Na associated to node a is given by equation 3.11, where ξa1 and ξa2 are

the parent coordinates of the node a (given on figure 3.1).

Na =
1

4
(1 + ξa1ξ1) (1 + ξa2ξ2) (3.11)

At the element level, the trial functions (velocity and pressure) are interpolated as :

ṽe (ψX (ξ), t) = N(ξ) v̄e(t) (3.12)

1 Too many pressure degrees of freedom risk to prevent the uniqueness of the solution.
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Figure 3.1: Representation of an element in the parent coordinate system and in the global coor-
dinate system associated with spatial observers

p̃e (ψX (ξ), t) = P(ξ) p̄e(t) (3.13)

Since the pressure is interpolated as constant in each element, P(ξ) = 1 and p̄e is just the

value of the pressure for the concerned element. Equation 3.13 becomes:

p̃e (ψX (ξ), t) = p̄e(t) (3.14)

The interpolations for the test functions are:

δve (ψχ(ξ, t)) = N(ξ) δ̄ve(t) (3.15)

δpe (ψχ(ξ, t)) = P(ξ) δ̄pe(t) = δ̄pe(t) (3.16)

Note that here, the same shape functions are used to interpolate the trial and weighting (or test)

functions. In [22] however, different functions are used, which are based on the SUPG formulation

described in [6].
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Discrete continuity equation

The discrete approximation of the weak form of the continuity equation (also called conservation

of mass) 3.1 is written as:

∫
Ωh

∂vk
∂χk

δp dΩ =

nel

A
e=1

∫
Ωe

∂vek
∂χk

δpe dΩe = 0 (3.17)

Equation 3.17 appears to be completely written in spatial representation. But the ALE repre-

sentation implicitly comes in through ψχ = Φ ◦ ψX . ψX relates the element coordinates ξ to the

ALE coordinates X , taken as reference to compute the discrete solution. Each node’s reference

coordinate is related to its updated (spatial) coordinate through the mesh motion Φ, prescribed by

the user.2

∂vek
∂χk

is expressed as:

∂vek
∂χk

= dN
(
ψ−1
χ (χ, t)

)
v̄e(t) (3.18)

where d is the operator defined as:

d =

[
∂
∂χ1

∂
∂χ2

]
(3.19)

Substituting the result 3.18 and the interpolation for δpe defined by equation 3.16 into equation

3.17 leads to:

∫
Ωh

∂vk
∂χk

δp dΩ =

nel

A
e=1

[
δ̄pe

∫
Ωe

dN
(
ψ−1
χ (χ, t)

)
dΩe v̄e

]
= 0 (3.20)

After assembly of the global discrete test pressure vector δ̄p =

nel

A
e=1

δ̄pe and the global discrete

velocity vector v̄ =

nel

A
e=1

v̄e, equation 3.20 becomes :

2 Chapter 4, section 4.1 explains how the nodal coordinates are updated in practice
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δ̄p

nel

A
e=1

[∫
Ωe

dN
(
ψ−1
χ (χ, t)

)
dΩe

]
v̄ = 0 (3.21)

Since the components of the discrete weighting function vector can be varied independently, this

leads to the discrete continuity equation 3.22:

nel

A
e=1

[∫
Ωe

dN
(
ψ−1
χ (χ, t)

)
dΩe

]
v̄ = GT v̄ = 0 (3.22)

Discrete momentum conservation equation

The discrete approximation of the weak form of the conservation of momentum 3.6 is written as:

∫
Ωh ρ

∂ṽi
∂t δvi dΩ +

∫
Ωh ρ c̃k

∂vi
∂χk

δvi dΩ +
∫

Ωh µ
(
∂vi
∂χj

+
∂vj
∂χi

)
∂δvi
∂χj

dΩ−
∫

Ωh p δij
∂δvi
∂χj

dΩ

−
∫
∂ΩT

h Ti δvi d∂Ω

=

nel

A
e=1

[∫
Ωe ρ

∂ṽei
∂t δvi dΩe +

∫
Ωe ρ c̃

e
k
∂vei
∂χk

δvei dΩe +
∫

Ωe µ
(
∂vi
∂χj

+
∂vj
∂χi

)
∂δvi
∂χj

dΩe −
∫

Ωe p δij
∂δvi
∂χj

dΩe
]

−
∫
∂ΩT

h Ti δvi d∂Ω

(3.23)

To explain the derivation of the discrete equation as clearly as possible, each term of equation

3.23 is treated separately.

Mass term Using the interpolations 3.12 and 3.15 for the velocity trial and test functions

respectively, the first term in equation 3.23 becomes:

∫
Ωe
ρ
∂ṽei
∂t

δvei dΩe = δ̄v
T
e ρ

∫
Ωe

NTNdΩe dv̄
e

dt
= ρ δ̄v

T
e

∫
Ωe

NTNdΩe āe (3.24)

Convective term The same interpolation as 3.12 is used for the convective velocity vector,

that is:

c̃e (ψX (ξ), t) = N(ξ) c̄e (3.25)
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This interpolation and equations 3.12 and 3.15 for v̄e and δ̄ve cause the second term of

equations 3.23 to become:

∫
Ωe
ρ c̃ek

∂vei
∂χk

δvei dΩe = δ̄v
T
e ρ

∫
Ωe

NT
2∑

k=1

(Nc̄e)k
∂N

∂χk
dΩe v̄e (3.26)

Viscosity term Similarly, using the interpolations 3.12 and 3.15 for the velocity trial and

test functions respectively, the third term in equation 3.23 becomes:

µ

∫
Ωe

(
∂ (Nv̄e)i
∂χj

+
∂ (Nv̄e)j
∂χi

)
∂
(
Nδ̄ve

)
i

∂χj
dΩe (3.27)

To express this equation in a friendlier form, the operators D1 and D2 need to be defined:

D1 =



∂
∂χ1

0

0 ∂
∂χ1

∂
∂χ2

0

0 ∂
∂χ2


(3.28)

D2 =



∂
∂χ1

0

∂
∂χ2

0

0 ∂
∂χ1

0 ∂
∂χ2


(3.29)

Note that:

D1δv =



∂
∂χ1

0

0 ∂
∂χ1

∂
∂χ2

0

0 ∂
∂χ2


δv1

δv2

 =



∂δv1
∂χ1

∂δv2
∂χ1

∂δv1
∂χ2

∂δv2
∂χ2


(3.30)
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D2v =



∂
∂χ1

0

∂
∂χ2

0

0 ∂
∂χ1

0 ∂
∂χ2


v1

v2

 =



∂v1
∂χ1

∂v1
∂χ2

∂v2
∂χ1

∂v2
∂χ2


(3.31)

Thus

∂vi
∂χj

∂δvi
∂χj

+
∂vj
∂χi

∂δvi
∂χj

= (D1δv)T (D1v) + (D1δv)T (D2v) (3.32)

Equation 3.27 becomes then:

µ

∫
Ωe

(
∂ (Nv̄e)i
∂χj

+
∂ (Nv̄e)j
∂χi

)
∂
(
Nδ̄ve

)
i

∂χj
dΩe = δ̄v

T
e µ

∫
Ωe

[
(D1N)T (D1N) + (D1N)T (D2N)

]
dΩe v̄e

(3.33)

Pressure term Using the interpolation 3.15 for δv, the result 3.18, and the interpolation

3.14 for p, the fourth term in equation 3.23 becomes:∫
Ωe
p δij

∂δvi
∂χj

dΩe =

∫
Ωe
p
∂δvi
∂χi

dΩe = δ̄v
T
e

∫
Ωe

(dN)T dΩe p̄e (3.34)

External force term The remaining terms in equation 3.23 compose the discrete external

force vector f .

Gathering the results 3.24, 3.26, 3.33 and 3.34 and substituting them into equation 3.23 leads to:

nel

A
e=1

δ̄v
T
e

[
ρ

∫
Ωe

NTNdΩe āe + ρ

∫
Ωe

NT
2∑

k=1

(Nc̄e)k
∂N

∂χk
dΩe v̄e

+µ

∫
Ωe

[
(D1N)T (D1N) + (D1N)T (D2N)

]
dΩe v̄e −

∫
Ωe

(dN)T dΩe p̄e
]
− f = 0 (3.35)
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After assembling the global discrete weighting velocity vector δ̄v, the global discrete acceleration

vector ā, velocity vector v̄ and pressure vector p̄, equation 3.35 becomes:

δ̄v
T

nel

A
e=1

[
ρ

∫
Ωe

NTNdΩe

]
ā+

nel

A
e=1

[
ρ

∫
Ωe

NT
2∑

k=1

(Nc̄e)k
∂N

∂χk
dΩe

+µ

∫
Ωe

[
(D1N)T (D1N) + (D1N)T (D2N)

]
dΩe

]
v̄ −

nel

A
e=1

[∫
Ωe

(dN)T dΩe

]
p̄− f = 0 (3.36)

The mass matrix M and the convection-viscosity matrix N are defined as:

M =

nel

A
e=1

[
ρ

∫
Ωe

NTNdΩe

]
(3.37)

N =

nel

A
e=1

[
ρ

∫
Ωe

NT
2∑

k=1

(Nc̄e)k
∂N

∂χk
dΩe + µ

∫
Ωe

[
(D1N)T (D1N) + (D1N)T (D2N)

]
dΩe

]
(3.38)

Using these equations and the definition of G given by 3.22, equation 3.36 becomes:

Mā+ Nv̄ + Gp̄ = f (3.39)

Section 3.1.1.3 details the expression of the elementary parts of the matrices G, M and N.

3.1.1.3 Expression of the element matrices

Matrices G, M and N defined by equations 3.22, 3.37 and 3.38 are actually built element-wise,

that is :

G =

nel

A
e=1

Ge M =

nel

A
e=1

Me N =

nel

A
e=1

Ne (3.40)

This section details the derivation of the element matrices Ge, Me and Ne, necessary for a

practical calculation. The actual implementation of the element matrices computation and of the

assembly process are presented in chapter 4.
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Element gradient matrix Ge It is an 8× 1 matrix, defined by (see equation 3.22):

Ge =

∫
Ωe

(dN)T dΩe (3.41)

For each node a of the element, the corresponding 2× 1 matrix Ge
a is given by:

Ge
a =

∫
Ωe

∂Na∂χ1

∂Na
∂χ2

 dΩe (3.42)

Transfer to the element coordinate system

Since the computations are made at the element level, the integral in equation 3.42 needs

to be converted to the element coordinate system ξ.

Applying the chain rule to ∂Na
∂χi

leads to:

∂Na

∂χi
=
∂Na

∂ξk

∂ψχ
−1
k

∂χi
(3.43)

∂Na∂χ1

∂Na
∂χ2

 =

∂ψχ
−1
1

∂χ1

∂ψχ
−1
2

∂χ1

∂ψχ
−1
1

∂χ2

∂ψχ
−1
2

∂χ2


∂Na∂ξ1

∂Na
∂ξ2

 =

∂ψχ1
∂ξ1

∂ψχ2
∂ξ1

∂ψχ1
∂ξ2

∂ψχ2
∂ξ2


︸ ︷︷ ︸

E

−1 ∂Na∂ξ1

∂Na
∂ξ2

 (3.44)

E−1 needs to be calculated, because ψ−1
χ is not known explicitly.

E−1 =
1

det(E)
[Com(E)]T (3.45)

Thus

E−1 =
1

Jχ

 ∂ψχ2
∂ξ2

−∂ψχ2
∂ξ1

−∂ψχ1
∂ξ2

∂ψχ1
∂ξ1

 (3.46)

Where Jχ is the Jacobian of the transformation from the element coordinates to the global

coordinates attached to the spatial observers. Jχ is given by:
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Jχ =
∂ψχ1

∂ξ1

∂ψχ2

∂ξ2
−
∂ψχ2

∂ξ1

∂ψχ1

∂ξ2
(3.47)

The expression of the derivatives
∂ψχi
∂ξj

(i = 1, 2 and j = 1, 2) are given in appendix A.

Inserting the result from equation 3.46 into equation 3.44 leads to

∂Na∂χ1

∂Na
∂χ2

 =
1

Jχ

 ∂ψχ2
∂ξ2

−∂ψχ2
∂ξ1

−∂ψχ1
∂ξ2

∂ψχ1
∂ξ1


∂Na∂ξ1

∂Na
∂ξ2

 (3.48)

Now, changing variables in equation 3.42 gives

Ge
a =

∫ 1

−1

∫ 1

−1

1

Jχ

 ∂ψχ2
∂ξ2

−∂ψχ2
∂ξ1

−∂ψχ1
∂ξ2

∂ψχ1
∂ξ1


∂Na∂ξ1

∂Na
∂ξ2

 Jχdξ (3.49)

That is to say

Ge
a =

∫ 1

−1

∫ 1

−1

 ∂ψχ2
∂ξ2

−∂ψχ2
∂ξ1

−∂ψχ1
∂ξ2

∂ψχ1
∂ξ1


︸ ︷︷ ︸

DT

∂Na∂ξ1

∂Na
∂ξ2


︸ ︷︷ ︸
dNTa

dξ (3.50)

Element mass matrix Me It is an 8× 8 matrix defined by (see equation 3.37):

Me = ρ

∫
Ωe

N
(
ψ−1
χ (χ, t)

)T
N
(
ψ−1
χ (χ, t)

)
dΩe (3.51)

Transfer to the element coordinate system

The process is simpler than for the element gradient matrix Ge since no spatial derivatives

are implied here. With Jχ defined by equation 3.47, changing variable in equation 3.51 leads to:

Me = ρ

∫
Ωe

N(ξ)TN(ξ) Jχ(ξ)dΩe (3.52)
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Element convection-viscosity matrix Ne It is an 8× 8 matrix defined by (see equation 3.38):

Ne = ρ

∫
Ωe

NT
2∑

k=1

(Nc̄e)k
∂N

∂χk
dΩe + µ

∫
Ωe

[
(D1N)T (D1N) + (D1N)T (D2N)

]
dΩe (3.53)

It consists of 16 2× 2 matrices, each corresponding to a pair (a, b) of element nodes. Such a

block Neab is given by:

Neab = ρ

(∫
Ωe
Na

2∑
k=1

(Nc̄e)k
∂Nb

∂χk
dΩe

)
I

+ µ

∫
Ωe

([
∂Na
∂χ1

∂Na
∂χ2

] [
∂Nb
∂χ1

∂Nb
∂χ2

]T
I +

[
∂Na
∂χ1

∂Na
∂χ2

]T [
∂Nb
∂χ1

∂Nb
∂χ2

])
dΩe (3.54)

This can be rewritten as:

Neab = ρ

(∫
Ωe
Na

[
∂Nb
∂χ1

∂Nb
∂χ2

]
(Nc̄e) dΩe

)
I

+ µ

∫
Ωe

([
∂Na
∂χ1

∂Na
∂χ2

] [
∂Nb
∂χ1

∂Nb
∂χ2

]T
I +

[
∂Na
∂χ1

∂Na
∂χ2

]T [
∂Nb
∂χ1

∂Nb
∂χ2

])
dΩe (3.55)

Transfer to element coordinates

As seen in the derivation of the element gradient matrix Ge (see equations 3.42 to 3.50),

the vector

[
∂Nb
∂χ1

∂Nb
∂χ2

]
can be expressed in terms of the element coordinates ξ as:

[
∂Na
∂χ1

∂Na
∂χ2

]
=

1

Jχ

[
∂Na
∂ξ1

∂Na
∂ξ2

] ∂ψχ2
∂ξ2

−∂ψχ1
∂ξ2

−∂ψχ2
∂ξ1

∂ψχ1
∂ξ1

 =
1

Jχ
dNaD (3.56)

Now, changing variable in equation 3.55 leads to:

Neab = ρ

(∫ 1

−1

∫ 1

−1
Na

1

Jχ
[dNbD] (Nc̄e) Jχdξ

)
I

+ µ

∫ 1

−1

∫ 1

−1

(
1

Jχ
[dNaD]

1

Jχ
[dNbD]T I +

1

Jχ
[dNaD]T

1

Jχ
[dNbD]

)
Jχdξ (3.57)

That is to say:

Neab = ρ

(∫ 1

−1

∫ 1

−1
Na [dNbD] (Nc̄e) dξ

)
I + µ

∫ 1

−1

∫ 1

−1

1

Jχ

(
[dNaD] [dNbD]T I + [dNaD]T [dNbD]

)
dξ

(3.58)
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3.1.1.4 Numerical integration

The element matrices are expressed by the integral of functions over a 2D domain. In practice,

these integrals are not calculated continuously, but approximated by numerical integration.This is

performed by adding the values of the integrand evaluated at specific points.

The two-by-two Gausssian quadrature rule is used for numerical integration by [22], who follows

the approach of [6]. The general formula for this rule is given by [11]:

∫ 1

−1

∫ 1

−1
g(ξ1, ξ2) dξ = g

(
− 1√

3
,− 1√

3

)
+ g

(
1√
3
,− 1√

3

)
+ g

(
1√
3
,

1√
3

)
+ g

(
− 1√

3
,

1√
3

)
(3.59)

3.1.1.5 Conclusion: summary of the fluid spatial discrete equations

This section has presented the derivation of the discrete fluid equations 3.60 and 3.61. Starting

from the continuous Navier-Stokes equations, the weak forms have been expressed. Then the finite

element approximation has been detailed. All the formulas to build the discrete matrices element-

wise have been derived. The assembly process will be presented in chapter 4, completing the tools

to build the discrete equations, summarized below.

Spatially discrete conservation of mass

GT v̄ = 0 (3.60)

Spatially discrete conservation of momentum

Mā+ Nv̄ + Gp̄ = f (3.61)

To set up the final semi-discrete problem, these equations need to be coupled with the solid

equations through the conditions 2.29, 2.30 and 2.31. This is the subject of the next section.
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3.1.2 Coupled semi-discrete equations

In this section, fluid semi-discrete equations 3.60 and 3.61 are coupled with the solid governing

equation 2.25. To do so, these equations are first reorganized, to separate the interface from the

rest of the fluid domain. Then, the interface conditions 2.29, 2.30 and 2.31 are expressed in a

discrete form to enable the coupling.

3.1.2.1 Reorganization of the fluid semi-discrete equations

Fluid degrees of freedom coming from the finite element discretization are distributed into three

sets. Interface degrees of freedom are marked by the superscript I. The rest of the fluid domain is

further split into free degrees of freedom (marked by the superscript f) and prescribed degrees of

freedom (marked by the superscript p).

Equations 3.60 and 3.61 are then reorganized as:

[
Gf T GpT GIT

]

v̄f

v̄p

v̄I

 = 0 (3.62)


Mff Mfp MfI

Mpf Mpp MpI

MIf MIp MII




āf

āp

āI

+


Nff Nfp NfI

Npf Npp NpI

NIf NIp NII




v̄f

v̄p

v̄I

−

Gf

Gp

GI

 p̄ =


ff

fp

f I

 (3.63)

In these equations, āf , v̄f and fp are unknown. āp, v̄p and ff are prescribed. Since we are

interested in solving for the fluid velocity and acceleration, and not for the reaction forces fp, the

second row of equation 3.63 can be ignored, leading to:

Mff Mfp MfI

MIf MIp MII



āf

āp

āI

+

Nff Nfp NfI

NIf NIp NII



v̄f

v̄p

v̄I

−
Gf

GI

 p̄ =

ff
f I

 (3.64)



33

āI , v̄I and f I will be related to the solid degrees of freedom and forces through the discrete

coupling conditions, developed in section 3.1.2.2.

3.1.2.2 Discrete expression of the coupling conditions

Because of the spatial discretization of the fluid domain, the interface comprises a finite number

of nodes nnI .

Interface compatibility conditions At a node A, the compatibility conditions 2.29 and 2.30

are written as:

vA =

1 0 −sin(θ)xA0 − cos(θ) yA0

0 1 cos(θ)xA0 − sin(θ) yA0



δ̇1

δ̇2

θ̇

 = TA
T
ν (3.65)

aA = TA
T


δ̈1

δ̈2

θ̈

+

−cos(θ)xA0 + sin(θ) yA0

−sin(θ)xA0 − cos(θ) yA0

 θ̇2 = TA
T
α+AAθ̇2 (3.66)

Gathering all the matrices TA in the transformation matrix T (size 3× 2nnI ), v̄
I is related to ν

by:

v̄I = T T ν (3.67)

Furthermore, gathering all the matrices AA in a matrix A (size 2nnI × 1), āI is related to α and

θ̇ by:

āI = T Tα+A θ̇2 (3.68)

Resultant force on the solid

Fext =
∑

A∈interface

TA
(
−fA

)
= T

(
−f I

)
(3.69)
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3.1.2.3 Coupled semi-discrete equations

Substituting the interface equilibrium condition 3.69 into the solid momentum conservation equa-

tion 2.25 leads to:

mα+ c ν + k δ = T
(
−f I

)
(3.70)

Now, substituting the second row of equation 3.64 into equation 3.70 leads to:

mα+ c ν + k δ = −T
[
MIf MIp MII

]

āf

āp

āI

− T
[
NIf NIp NII

]

v̄f

v̄p

v̄I

+ TGI p̄ (3.71)

Substituting the compatibility conditions 3.67 and 3.68 into the first row of equation 3.64 and

into equation 3.71 leads to:

[
Mff Mfp MfI

]


āf

āp

T Tα+A θ̇2

+

[
Nff Nfp NfI

]

v̄f

v̄p

T T ν

−Gf p̄ = ff (3.72)

mα+c ν+k δ = −T
[
MIf MIp MII

]


āf

āp

T Tα+A θ̇2

−T
[
NIf NIp NII

]

v̄f

v̄p

T T ν

+TGI p̄ (3.73)

Recalling the continuity equation 3.62 and rearranging equations 3.72 and 3.73 leads to the final

set of coupled semi-discrete equations:
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Coupled semi-discrete equations

[
Mff Mfp MfI

]


āf

āp

T Tα+A θ̇2

+

[
Nff Nfp NfI

]

v̄f

v̄p

T T ν

−Gf p̄ = ff (3.74)

(
m+ TMIIT T

)
α+ cν + k δ

= −T
[
MIf MIp MII

]

āf

āp

A θ̇2

− T
[
NIf NIp NII

]

v̄f

v̄p

T T ν

+ TGI p̄ (3.75)

[
Gf T GpT GIT

]

v̄f

v̄p

T T ν

 = 0 (3.76)

3.1.3 Time discretization

Equations 3.74 to 3.76 are discrete in space. They need to be further discretized in time in order

to be solved numerically.

3.1.3.1 Discretization of time derivatives

Fluid discrete acceleration vector is defined as (recall equation 3.24):

ā =
dv̄

dt
(3.77)

For the numerical solution procedure, continuous time is discretized in a sequence of intervals

∆t. At time tn = n∆t, the fluid acceleration and viscosity are respectively denoted by ān and v̄n.

Using these notations, the time derivative of the fluid velocity is approximated as:

dv̄

dt
≈ v̄n+1 − v̄n

∆t
(3.78)



36

Using Newmark’s method, equation 3.77 is then discretized in time as:

v̄n+1 − v̄n
∆t

= (1− γv) ān + γvān+1 (3.79)

Thus

v̄n+1 = v̄n + ∆t [(1− γv) ān + γvān+1] = v̄∗n+1 + ∆t γv ān+1 (3.80)

Where v̄∗n+1 collects the known part in v̄n+1, which is a combination of the previous solutions

ān and v̄n at time tn.

Following the same idea, solid velocity and displacement at time tn+1 are given by:

νn+1 = νn + ∆t [(1− γ)αn + γ αn+1] = ν∗n+1 + ∆t γ αn+1 (3.81)

δn+1 = δn + ∆t νn +
∆t2

2
[(1− 2β)αn + 2β αn+1] = δ∗n+1 + ∆t2 β αn+1 (3.82)

For stability reasons, values of the Newmark’s method parameters are chosen as γv = 1/2,

γ = 1/2 and β = 1/4.

3.1.3.2 Derivation of the discrete equations

The semi-discrete equations 3.74 to 3.76 are written at time tn+1 as:

[
Mff Mfp MfI

]


āfn+1

āpn+1

T Tαn+1 +A θ̇2
n+1

+

[
Nff Nfp NfI

]


v̄fn+1

v̄pn+1

T T νn+1

−Gf p̄n+1 = ff (3.83)

(
m+ TMIIT T

)
αn+1 + cνn+1 + k δn+1

= −T
[
MIf MIp MII

]

āfn+1

āpn+1

A θ̇2
n+1

− T
[
NIf NIp NII

]


v̄fn+1

v̄pn+1

T T νn+1

+ TGI p̄n+1 (3.84)
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[
Gf T GpT GIT

]


v̄fn+1

v̄pn+1

T T νn+1

 = 0 (3.85)

Note that all the matrices M, N, G, T and A, as well as the force vector f , depend on time. The

subscript n+ 1 is not written here because the matrices at time n are not needed.

Substituting time discretizations 3.80, 3.81 and 3.82 into equations 3.83 to 3.85 leads to3 :

[
Mff Mfp MfI

]


āfn+1

āpn+1

T Tαn+1 +A
(
θ̇∗n+1 + ∆t γ θ̈n+1

)2



+

[
Nff Nfp NfI

]


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)


−Gf p̄n+1 = ff

(3.86)

(
m+ TMIIT T

)
αn+1 + c

(
ν∗n+1 + ∆t γ αn+1

)
+ k

(
δ∗n+1 + ∆t2 β αn+1

)

=− T
[
MIf MIp MII

]


āfn+1

āpn+1

A
(
θ̇∗n+1 + ∆t γ θ̈n+1

)2



− T
[
NIf NIp NII

]


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)


+ TGI p̄n+1

(3.87)

3 Note that only the free part of the fluid velocity is substituted, since the prescribed part is known.
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[
Gf T GpT GIT

]


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)

 = 0 (3.88)

3.1.4 Concluding remarks

From the continuous governing equations summarized in 2.4, the discrete system of equations

has been derived. Starting with the weak form of Navier-Stokes equations, the spatially discrete

fluid governing equations have been set up. Coupled with the solid governing equation, the discrete

fluid equations led to a coupled semi-discrete system of equations. The latter needed to be further

discretized in time to enable the numerical solution process. The resulting nonlinear system of

equations that remains to be solved is summarized below.
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Residual equations

r1 =

[
Mff Mfp MfI

]


āfn+1

āpn+1

T Tαn+1 +A
(
θ̇∗n+1 + ∆t γ θ̈n+1

)2



+

[
Nff Nfp NfI

]


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)


−Gf p̄n+1 − ff = 0

(3.89)

r2 =
(
m+ TMIIT T

)
αn+1 + c

(
ν∗n+1 + ∆t γ αn+1

)
+ k

(
δ∗n+1 + ∆t2 β αn+1

)

+ T

[
MIf MIp MII

]


āfn+1

āpn+1

A
(
θ̇∗n+1 + ∆t γ θ̈n+1

)2



+ T

[
NIf NIp NII

]


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)

− TGI p̄n+1 = 0

(3.90)

r3 =

[
Gf T GpT GIT

]


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)

 = 0 (3.91)

Unknown variables are āfn+1, αn+1 and pn+1. At each step, v̄fn+1, νn+1 and δn+1 are calculated

using equations 3.80 to 3.82. Matrices M, N, G, T and A depend on the current solution. To solve

this nonlinear system of equation, Newton’s method is used. The process is developed in section

3.2.
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3.2 Numerical solution

3.2.1 Introduction

In this section, the numerical procedure to solve the system of equations 3.89 to 3.91 is explained.

[22] uses a predictor-multicorrector algorithm, based on [6] and [11]. This algorithm can be shown

to come from Newton’s method, with an approximated Jacobian matrix. This derivation is the

subject of paragraph 3.2.2. The solution procedure is then summarized in paragraph 3.2.3.

3.2.2 Time integration by Newton’s method

3.2.2.1 Exact Newton’s method derivation

At each Newton iteration, linear system 3.92 needs to be solved.


∂r1
∂āfn+1

∂r1
∂αn+1

∂r1
∂p̄n+1

∂r2
∂āfn+1

∂r2
∂αn+1

∂r2
∂p̄n+1

∂r3
∂āfn+1

∂r3
∂αn+1

∂r3
∂p̄n+1


︸ ︷︷ ︸

Bfull


∆a

∆α

∆p

 =


−r1

−r2

−r3

 (3.92)

The variables ∆a, ∆α and ∆p represent the fluid acceleration, solid acceleration, and pressure

increments respectively.

To calculate the exact Jacobian matrix, we need to know which terms of equations r1, r2, and

r3 depend on which variable. Matrices m, c and k are constant. M, N and G depend on αn+1

through δn+1. More precisely, δn+1 is needed to calculate the new position of the nodes, which is

necessary to compute the derivatives of the shape function (see section 3.1.1.3). N also depends

on āfn+1 through the convective velocity c̄. T and A depend on αn+1 through θn+1 (see paragraph

3.1.2.2). None of the matrices depend on the pressure p̄n+1.

Taking these into account, the derivatives appearing in equation 3.92 can now be computed. The

subscripts n+ 1 are dropped to lighten the notations.
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∂r1

∂āf
= Mff + Nff∆tγv +

∂

∂āf

([
Nff Nfp NfI

])


v̄∗ + ∆t γv ā
f

v̄p

T T (ν∗ + ∆t γ α)

 (3.93)

To compute the derivatives of r1 and r2 with respect to α, we need to distinguish between α1 or

α2 (corresponding to δ̈1 and δ̈2 respectively) and α3 (corresponding to θ̈).

∂r1

∂α1−2
= MfIT T + NfIT T∆t γ + MfI ∂T

T

∂α1−2
α1−2

+
∂

∂α1−2

([
Mff Mfp MfI

])


āf

āp

T Tα+A
(
θ̇∗ + ∆t γ θ̈

)2



+
∂

∂α1−2

([
Nff Nfp NfI

])


v̄∗ + ∆t γv ā
f

v̄p

T T (ν∗ + ∆t γ α)

+
∂Gf

∂α1−2
(3.94)

∂r1

∂α3
= MfIT T + NfIT T∆t γ + MfI ∂T

T

∂α3
α3 + MfIA2∆tγ

(
θ̇∗ + ∆t γ α3

)

+
∂

∂α3

([
Mff Mfp MfI

])


āf

āp

T Tα+A
(
θ̇∗ + ∆t γ θ̈

)2



+
∂

∂α3

([
Nff Nfp NfI

])


v̄∗ + ∆t γv ā
f

v̄p

T T (ν∗ + ∆t γ α)

+
∂Gf

∂α3
(3.95)

∂r1

∂p̄
= −Gf (3.96)
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∂r2

∂āf
= TMIf + TNIf ∆t γv + T

∂

∂āf

([
NIf NIp NII

])


v̄∗ + ∆t γv ā
f

v̄p

T T (ν∗ + ∆t γ α)

 (3.97)

∂r2

∂α1−2
= m+ TMIIT T + c∆tγ + k∆t2β +

∂

∂α1−2

(
TMIIT T

)
α1−2 + TNIIT T∆t γ

+ TNII
∂T T

∂α1−2
(ν∗ + ∆t γ α) +

∂

∂α1−2

(
T

[
MIf MIp MII

])


āf

āp

A
(
θ̇∗n+1 + ∆t γ θ̈

)2



+
∂

∂α1−2

(
T

[
NIf NIp NII

])


v̄∗ + ∆t γv ā
f

v̄p

T T (ν∗ + ∆t γ α)

−
∂
(
TGf

)
∂α1−2

p̄ (3.98)

∂r2

∂α3
= m+ TMIIT T + c∆tγ + k∆t2β +

∂

∂α3

(
TMIIT T

)
α3 + TNIIT T∆t γ

+TMII2A∆tγ
(
θ̇∗3 + ∆t γ θ̈

)
+ TNII

∂T T

∂α3
(ν∗ + ∆t γ α)

+
∂

∂α3

(
T

[
MIf MIp MII

])


āf

āp

A
(
θ̇∗3 + ∆t γ θ̈

)2



+
∂

∂α3

(
T

[
NIf NIp NII

])


v̄∗ + ∆t γv ā
f

v̄p

T T (ν∗ + ∆t γ α)

−
∂
(
TGf

)
∂α3

p̄

(3.99)

∂r2

∂p̄
= −TGI (3.100)
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∂r3

∂āf
= Gf T∆t γv +

∂

∂āf

([
Gf T GpT GIT

])


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)

 (3.101)

∂r3

∂α
= GITT T∆t γ + GIT ∂T

T

∂āf
(
ν∗n+1 + ∆t γ αn+1

)

+
∂

∂α

([
Gf T GpT GIT

])


v̄∗n+1 + ∆t γv ā
f
n+1

v̄pn+1

T T
(
ν∗n+1 + ∆t γ αn+1

)

 (3.102)

∂r3

∂p̄
= 0 (3.103)

3.2.2.2 Method based on the approximated Jacobian

In practice, the linear system of equations solved at each iteration is not the complete one

presented in paragraph 3.2.2.1. The matrix Bfull in equation 3.92 is approximated by a matrix B, in

which the derivatives of the matrices M, N, G, T and A are ignored. The off-diagonal terms ∂r1/∂α

and ∂r2/∂ā
f are also set aside. In addition, the terms TNIIT T∆t γ and TMII2A∆tγ

(
θ̇∗3 + ∆t γ θ̈

)
are ignored in ∂r2/∂α.

These assumptions lead to the following linear system of equations:


Mff + Nff∆t γv 0 −Gf

0
(
m+ TMIIT T

)
+ c∆t γ + k∆t2β −TGI

Gf T∆t γv GITT T∆t γ 0


︸ ︷︷ ︸

B


∆a

∆α

∆p

 =


−r1

−r2

−r3

 (3.104)
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The equations of the solution phase presented in [22] are equivalent to solving this system. [22]

does not solve it by directly inverting the matrix B but by using a procedure based on the Schur

complement of the lower right block 0. Different ways to solve the linear system 3.104 are discussed

in chapter 4.

3.2.3 Summary of the solution procedure

Section 3.2.2 presents the application of Newton’s method to solve the nonlinear system of equa-

tions 3.89 to 3.91. The complete solution procedure in one time step is summarized here to clarify

the structure of iterations.

From time tn to time tn+1

(1) Initial guess :

āfn+1 = 0

v̄fn+1 = v̄∗n+1

p̄n+1 = p̄nαn+1 = 0

νn+1 = ν∗n+1

δn+1 = δ∗n+1

(3.105)

Prescribed parts of the fluid acceleration, fluid velocity, solid acceleration, solid velocity,

and solid displacement are assigned. They do not change during the Newton iterations. the

interface part of the velocity is computed according to equation 3.67. It will be updated at

each iteration, since it is needed to compute c̄.

(2) Newton iterations [while criterion > tolerance ]

(a) Compute T and A

(b) Compute the new coordinates of the nodes and c̄

(c) Get element matrices Me, Ne and Ge

(d) Assemble M, N and G
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(e) Compute the residuals r1, r2 and r3

(f) Solve equation 3.104

(g) Update āfn+1, v̄fn+1 and free parts of αn+1, νn+1 and δn+1 as:

āfn+1 = āfn+1 + ∆a

v̄fn+1 = āfn+1 + ∆tγv∆a

αn+1(free) = αn+1(free) + ∆α

νn+1(free) = νn+1(free) + ∆tγ∆α

δn+1(free) = δn+1(free) + ∆t2β∆α

(3.106)

Update p̄n+1 as p̄n+1 = p̄n+1 + ∆p

Then update vIn+1 = T T νn+1

(3) Compute āIn+1 = T Tαn+1 +A θ̇2
n+1

3.3 Summary of the finite element discretization and numerical solution

In this chapter, the complete discrete system of nonlinear equations governing the fluid-rigid

body interaction problem has been established. Starting from the continuous ALE form of the fluid

governing equations (derived in chapter 2), the weak form has been written. Spatial discretization

using finite elements has then been performed. The coupled semi-discrete equations have been

obtained by coupling the semi-discrete fluid-equations to the solid equation of motion through the

interface conditions. The semi-discrete equations are then discretized in time, leading to the final

discrete equations.

Due to the convective velocity and the dependence of the matrices on the updated node co-

ordinate, the discrete equations are nonlinear. A solution procedure based on an approximated

Newton’s method has been developed to solve the system of nonlinear discrete equations.
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The practical implementation of the discrete equations and their solution is detailed in the next

chapter.



Chapter 4

Implementation

Introduction

Chapter 3 has established the discrete governing equations of the fluid-rigid body problem and

the numerical procedure to solve them. This chapter explains how these equations, as well as the

procedure summarized in 3.2.3, are implemented in practice.

The global structure of the code is as follows:

(1) Input

(2) Numbering and reorganization of the DOF

(3) Global calculation of the matrix K needed to compute the mesh motion (see section 4.1)

(4) Allocation of memory for the matrices, mesh velocity and solution

(5) Application of the initial condition

(6) Time loop

(a) Initial guess for Newton’s method

(b) Assign prescribed part of the solution

(c) Newton iterations loop

(i) Compute T , A
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(ii) Compute the interface part of the fluid velocity

(iii) Compute the mesh velocity and update the node coordinates

(iv) Loop over the elements

(iv.a) Compute the convective velocity c̄

(iv.b) Get element matrices Me, Ne and Ge

(iv.c) Assign this element part to the global matrices M, N and G

(v) Complete the assembly of M, N and G

(vi) Compute the residuals r1, r2 and r3

(vii) Solve for the accelerations and pressure increments

(viii) Update the free part of the solution

(d) Assign the converged free part of the solution

(e) Assign the interface part of the solution

The input needs to specify the fluid and solid parameters ρ, µ, m, c, and k. Newmark’s method

parameters γv, γ, and β are also given there. The mesh of the fluid domain is defined by the initial

coordinates of the nodes and a ”boundary condition” matrix that specifies whether each degree

of freedom is free, fixed, prescribed (not fixed) or belongs to the interface. A connectivity matrix

describes which node belongs to which element, as well as its local position in the element. A ”link

matrix” relates each node to its closest interface and opposite boundary node (more precision will

be given in paragraph 4.1.2). The input code contains the prescribed acceleration, velocity, and

force. It also specifies the initial condition for the solution. For time integration, the input code

gives the total time over which the solution is computed, the time increment size, and the tolerance

for Newton’s method.

Selected parts of the code globally presented above are further detailed in the following sections.

The purpose is to help the reader understand the implementation and to highlight some interesting

efficiency considerations.
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In section 4.1, the mesh and choice for the mesh motion are described. This point is specific to

the application of the ALE method. It is thus interesting to have a concrete example to better

understand the method. Knowing the mesh motion is necessary to update the node coordinates

and compute the convective velocity. These are needed for the element matrices computation,

detailed in section 4.2. This computation has shown to be time consuming, especially given the

large number of elements needed in the numerical example (see chapter 5, section 5.2). Thus,

the implementation’s design presented in section 4.2 accounts for numerical efficiency. Section 4.3

details the matrices assembly process. First, we explain how the fluid degrees of freedom are sorted

out between the free, prescribed and interface ones. Then, the actual assembly routine is briefly

described. Section 4.4 discusses how the solution procedure is implemented. Finally, section 4.5

explains how the solution is updated, to be as efficient as possible. Parts of the Matlab code

corresponding to each section are available in appendix B.

4.1 An ALE mesh in motion

As mentioned in chapter 3, section 3.1, the fluid domain is discretized in finite elements. The

mesh is defined in input by the original coordinates of the nodes and by the connectivity matrix.1

The main feature of the ALE method is that the nodes do not stay at their original positions, but

instead follow a motion prescribed by the user. This section first describes the mesh motion chosen

here, which comes from [22]. Then, mesh motion implementation is explained. Corresponding parts

of the Matlab code can be seen in appendix B.1.

4.1.1 Choice of the ALE observer’s motion

Motion of the interface between the fluid and the rigid body can be easily captured with good

accuracy if a Lagrangian description is used. Further away from the interface, an Eulerian descrip-

tion seems more suitable, as it is usually used to study pure fluid problems. Thus, the motion of

1 Generation of the mesh has not been automated here. It will be explained for each numerical example in chapter
5.
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the ALE observers is prescribed as the Lagrangian ones on the interface and as the Eulerian ones

far from the interface. In between, ALE observers motion is linearly interpolated, functions of the

distance to the interface.

Concretely, let’s consider a node A belonging to the fluid domain. If A belonged to the rigid

body, its motion would be (see equations 2.19 and 2.20):

displacement dA =

δ1

δ2

+

cos(θ)− 1 − sin(θ)

sin(θ) cos(θ)− 1


xA0
yA0


velocity vA = TA

T
ν

(4.1)

Defining the number κA as equal to 1 when A belongs to the interface, 0 if it belongs to the opposite

boundary, and varying linearly in between, the following equation results:

κA =
domain width− distance of A to interface

domain width
(4.2)

Mesh motion of node A is prescribed as equation 4.3, with κA staying constant during the motion:

displacement dA = κA


δ1

δ2

+

cos(θ)− 1 − sin(θ)

sin(θ) cos(θ)− 1


xA0
yA0




velocity vA = κA
(
TA

T
ν
) (4.3)

Note that this particular prescription of the mesh motion works only for a certain type of mesh.

Namely, the user needs to be able to define nodes as belonging to a line relating the interface to

its opposite boundary. This is suitable to the numerical example presented in [22] reproduced in

chapter 5, which is a cylinder oscillating in a cylindrical fluid domain. The idea would need to be

adapted for other kinds of problems, as it has been for the first numerical example presented in

chapter 5 that consisted in fluid moving in a rectangular domain.

The next section explains how the mesh motion described by equation 4.3 is implemented in

practice.
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4.1.2 Translation to implementation

Link matrix The input file defines a ”link matrix” that relates each node to the corresponding

interface node AI and to the opposite boundary node AB (see figure 4.1). This matrix is used to

compute κA for each node.

Figure 4.1: Structure of the link matrix

Matrix K This is a 1× nnodes array, containing the κA. From equation 4.2, κA is computed as:

κA = 1−

√(
xA0 − x

AI
0

)2
+
(
yA0 − y

AI
0

)2

√(
xAI0 − x

AB
0

)2
+
(
yAI0 − y

AB
0

)2
(4.4)

Coordinates of the nodes are given by the input matrices X and Y. Thus, the coordinates xA0 , yA0 ,

xAI0 , yAI0 ,xAB0 and yAB0 are obtained as follows:

xA0 = X(A) yA0 = Y (A) (4.5)

xAI0 = X (link matrix(A, 1)) yAI0 = Y ((link matrix(A, 1)) (4.6)
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xAB0 = X (link matrix(A, 2)) yAB0 = Y ((link matrix(A, 2)) (4.7)

The computation of K is explained here node by node but is vectorized in practice (see code in

appendix B.1).

Mesh displacement The 2×nnodes array d-A-GLOB contains the mesh displacements in direc-

tions x and y for each node. It is computed globally following equation 4.3 (see code in appendix

B.1). Node coordinates are then updated in a vectorized fashion.

Mesh velocity Mesh velocity is computed node by node, since the transformation matrix T

(defined by equation 3.67) needs to be calculated node by node.

Element loop Updated nodal coordinates and mesh velocity are only needed at the element

level, to compute the element matrices, but they are calculated outside the element loop (as seen

in the global structure of the code presented in introduction). Parts of these global arrays are

then accessed for each element. This way of computing the mesh motion is less time-consuming.2

Further time-efficiency considerations are developed in the next section.

4.2 Obtaining element matrices

4.2.1 First implementation: an unexpectedly expensive operation

In the first version of the code, equations 3.50, 3.52, 3.58 (respectively defining the element ma-

trices Ge, Me and Ne) were directly translated to the implementation, together with the numerical

integration equation 3.59. The corresponding Matlab code had the following structure:

For each element

2 One Newton iteration takes 0.41 s. if nodal position updates and mesh velocity are computed inside the element
loop and 0.37 s. as the code is set up.
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(1) D is computed for each Gauss point. The corresponding 4 matrices (since there are 4 Gauss

points) are stored in the same array. Parts of this array are accessed when a specific Gauss

point is needed. Jχ is computed following the same concept.

(2) Memory for the element matrices is allocated.

(3) Loop over the element nodes a.

(a) Loop over the Gauss points l

(i) Product dNaD(l) is computed and stored

(ii) Part a of the matrix Ge(l) is computed for each Gauss point, following equation

3.50 and added to the previous part.

(b) Loop over the element nodes b

(i) Loop over the Gauss points l

(i.a) Product dNbD(l) is computed and stored

(i.b) Part ab of the matrix Ne(l) is computed for each Gauss point, following

equation 3.58 and added to the previous part.

(4) Loop over the Gauss points l

(a) Me(l) is computed according to equation 3.52 and added it to the previous part.

With this implementation, time needed for one iteration, for the numerical example of [22], was

1.600 s.. Time needed for one element loop was 3.687 × 10−3 s. (which, multiplied by the number

of elements nel = 432 gave 1.593 s. for all the element loops). Inside the element loop, time needed

for the element matrices was 3.376 × 10−3 s. (which, multiplied by nel = 432 gave 1.458 s.). In

summary, computing the element matrices took 91% of one iteration’s time. In comparison, the

solution procedure computed as described in [22] took 1.5% of an iteration.3 These timing tests

showed that the efficiency of the element matrices computation really needed to be improved.

3 The solution procedure is further discussed in paragraph 4.4.
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4.2.2 Improving the code efficiency

The first idea to improve the code efficiency was to avoid repeated access to the same part of

an array. For example, instead of accessing the Gauss points coordinates as part of a vector, the

coordinates are directly written where they are needed.

This idea also led us to look for a more direct way to compute the matrices. The calculation of

Me(l) was already vectorized. Most of the time consumption came from the computation of Ne(l).

Thus, a function was built to directly calculate Ne(l) in terms of the Gauss points, avoiding the

a- and b-loops over element nodes. The a−loop could be avoided when calculating Ge(l) too. The

goal was to make the computation of the element matrices as explicit as possible to avoid accessing

parts of arrays, plus as vectorized as possible to take advantage of Matlab matrix calculus features.

The principle of the new computation is simple: instead of using the following loops:

for a = 1 to 4

for l = 1 to 4

Ge(2a− 1 : 2a) = Ge(2a− 1 : 2a) + (dNa(l)D(l))T (4.8)

The matrix Ge(l) is directly computed as follows:

Ge =



([
∂N1
∂ξ1

∂N1
∂ξ2

]
D
)T

([
∂N2
∂ξ1

∂N2
∂ξ2

]
D
)T

([
∂N3
∂ξ1

∂N3
∂ξ2

]
D
)T

([
∂N4
∂ξ1

∂N4
∂ξ2

]
D
)T


=



(dN1D)T

(dN2D)T

(dN3D)T

(dN4D)T


(4.9)

The same concept is applied to the calculation of Ne. Furthermore, by looking at equation 3.58,

one will realize that two of the terms are numbers that go on the diagonal of each ab block. They
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can be calculated in a vectorized fashion, using a 4× 4 matrix Nediag:

Nediag =


ρ



dN1

dN2

dN3

dN4


DNc̄

[
N1 N2 N3 N4

]


T

+
µ

Jχ



dN1

dN2

dN3

dN4


D





dN1

dN2

dN3

dN4


D



T

(4.10)

Then, they need to be assigned to the corresponding location in Ne. This can be done through a

double loop as follows:

for a = 1 to 4

for b = 1 to 4

Ne(2a− 1 : 2a, 2b− 1 : 2b) = Nediag(a, b)I (4.11)

But this assignment is similar to the assembly process. So, Ne is left as only the term reproduced

in equation 4.12. Nediag is directly added during the assembly part of the code.

µ

∫ 1

−1

∫ 1

−1

1

Jχ

(
[dNaD] [dNbD]T I + [dNaD]T [dNbD]

)
dξ (4.12)

The calculation of Me needs variables that are used for Ge and Ne (namely the shape functions

N and the Jacobian determinant Jχ). Thus, all these matrices are gathered in the same function

element-matrices2 (see code in appendix B.2) to avoid repeated calculation.

After all the changes, time needed to create and assemble the element matrices for one element

is 0.644× 10−3. It was 3.405× 10−3 before, a factor of five times slower.

Now that the computation of the element matrices has been explained, the next section develops

how the global matrices M, N and G are assembled.
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4.3 Assembling the matrices

4.3.1 Reorganizing the fluid degrees of freedom

Fluid degrees of freedom need to be sorted out between the free ones, prescribed ones, and the

ones belonging to the interface, in order to build the discrete equations (recall chapter 3, section

3.1.2). In the input file, the boundary condition matrix BC specifies each DOF’s category (see figure

4.2). It serves as condition to count and reorder the degrees of freedom as free, then prescribed,

then belonging to the interface. The new global degrees of freedom numbers are stored in the

nnodes × 2 matrix nodeDOFnum, which corresponds to the ID array in [11]. Figure 4.3 draws this

matrix’s structure. The code to build it can be seen in appendix B.3.1.

Figure 4.2: Structure of the link matrix

4.3.2 Assembly of matrices

Based on the nodeDOFnum matrix, the nel × 8 elemDOFnum matrix is built as represented

on figure 4.4. It corresponds to the LM array in [11]. Each row of the elemDOFnum matrix

corresponds to one element. Each column corresponds to one of these element’s DOF. The global
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Figure 4.3: Structure of the nodeDOFnum matrix

DOF number is stored at the corresponding location. Corresponding Matlab code can be seen in

appendix B.3.2.

Figure 4.4: Structure of the elemDOFnum matrix
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The principle of assembly process is as follows: parts of each element matrices are assigned

to their global positions (given by the corresponding DOF number) in the global matrices. This

assignment is done inside the element loop. Concretely, at a given element e, each element DOF n

is reached by looping over rows and columns of the element matrices. The global DOF number is

given by elemDOFnum(e, n).

Global matrices M, N, and G are respectively size nDOF × nDOF, nDOF × nDOF, and nDOF × nel

(where nDOF is the total number of DOF that are not fixed). But since a DOF belongs to at most

four elements, the matrices are sparse. To take advantage of this feature, the assembly process is

based on the sparse function in Matlab. Instead of directly assigning the element part to the global

part, three arrays are built: one containing the row indices of the global location, one containing

the column indices, and one containing the actual values. The sparse function is then called after

the loops over all the elements are done.

The code corresponding to the matrix assembly can be seen in appendix B.3.3.

4.4 Discussion on the solution procedure

Once the matrices are assembled, the residuals can be computed. Newton linear equation 3.104,

reproduced below, needs to be solved (see chapter 3, section 3.2.3).
Mff + Nff∆t γv 0 −Gf

0
(
m+ TMIIT T

)
+ c∆t γ + k∆t2β −TGI

Gf T∆t γv GITT T∆t γ 0


︸ ︷︷ ︸

B


∆a

∆α

∆p

 =


−r1

−r2

−r3

 (4.13)

[22] has a solution process that solves for the pressure and acceleration increments separately. This

can be shown as based on the Schur complement of the lower right block 0 of the matrix B. This

method is presented first in section 4.4.1. Then, an alternate way to solve the system, simply using

Matlab built-in linear solver, is tried (section 4.4.2). Timing for the two solution methods are

compared.
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4.4.1 Solution procedure based on the Schur complement

To reduce the notations, the matrices M̄ and m̄∗ are defined as follows:

M̄ = Mff + Nff∆t γv (4.14)

m̄∗ =
(
m+ TMIIT T

)
+ c∆t γ + k∆t2β (4.15)

Equation 4.13 becomes:
M̄ 0 −Gf

0 m̄∗ −TGI

Gf T∆t γv GITT T∆t γ 0


︸ ︷︷ ︸

B


∆a

∆α

∆p

 =


−r1

−r2

−r3

 (4.16)

The Schur complement of the lower right block 0 is then:

K = 0−
[
Gf T∆t γv GITT T∆t γ

]M̄ 0

0 m̄∗


 −Gf

−TGI

 (4.17)

K = ∆t γvGf T M̄−1Gf + ∆t γGITT T m̄∗−1TGI (4.18)

Steps to solve equation 4.16 are then as follows:

(1) Solve for ∆p

K∆p = −r3 + ∆t γvGf T M̄−1r1 + ∆t γGITT T m̄∗−1r2 (4.19)

(2) Solve for ∆a and ∆α

M̄∆a = −r1 + Gf∆p (4.20)

m̄∗∆α = −r2 + TGI∆p (4.21)
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This solution procedure implemented in Matlab is reproduced in appendix B.4.1 and took

0.0249 s. to complete.

4.4.2 Procedure based on the direct factorization of B

B is a bigger matrix than M̄, m̄∗ or K but its inversion is needed only once. Using the Matlab

command \, this solution method took 0.0186 s. For the size of problems that are solved in this

thesis (see chapter 5), the direct linear solve seems to be faster.4 Thus, this simpler solution

procedure is kept in the final version of the code. See appendix B.4.2 for Matlab implementation

details.

4.5 Update of the dependent variables

The dependent variables that form the solution are p̄, ā, v̄, α, ν and δ. ā and v̄ are split into

three parts. Only the free part needs to be solved for, and the prescribed part does not change

throughout Newton iterations. Some of the solid degrees of freedom can be prescribed, in which

case they do not need to be solved for. To efficiently update the variables, it is interesting to

think of which parts are necessary to compute the residuals and which parts change during Newton

iterations. These need to be updated in each iteration, while the remaining parts can be updated

at each time step only.

A first look at the residual equations 3.89 to 3.91 shows that the free and prescribed parts of

the fluid acceleration āf and āp, the prescribed part of the fluid velocity v̄f , and the complete solid

acceleration α are needed, as well as the pressure vector p̄. But it should not be forgotten that

the complete fluid velocity is necessary to compute the convective velocity c̄, intervening in the

matrix N. To compute the interface part of v̄, complete solid velocity is needed. Furhtermore, to

update the nodal coordinates, complete solid displacement is needed. Table 4.1 summarizes the

4 Note that a procedure based on the Schur complement my be chosen for other reasons, such as less numerical
error propagation.
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parts of the dependent variables needed to build the residual equations and the parts that need to

be updated at each Newton iteration.

Dependent variables parts needed for the residuals needs to be updated at each iteration

p̄ yes yes
āf yes yes
āp yes no
āI no no
v̄f yes yes
āp yes yes
āI yes yes
α yes, entirely yes for the free part
ν yes, entirely yes for the free part
δ yes, entirely yes for the free part

Table 4.1: Summary of the necessary updates

At each time step, the new solution is stored in column n + 1 of the corresponding array. To

avoid repeated access to this column, a temporary vector denoted by the subscript ”new” is defined

for each dependent variable. Since only the free part of ā needs to be updated throughout the

iterations, anew = āfn+1. The structure of the updates can be seen in the appendix B.5, reproducing

a whole time step of the code.

Summary of the implementation chapter

This chapter presented selected parts of the Matlab code written to solve a fluid-rigid body

interaction problem, which has been summarized in introduction. The purpose was to lead the

reader through interesting implementation issues, as well as to make a potential extension of the

work easier. Mesh motions’s choice and implementation, introduced first, are the main features of

the ALE description. They are specific to the kind of problems this code is applied to, presented

in chapter 5. For different kinds of mesh motion, the reader is invited to refer to [9]. Conceptual

aspects of different mesh update methods are presented, without practical applications though.

Building element matrices required some attention for computational efficiency. Resulting code
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might not have been intuitive for the reader without the explanations of section 4.2. The assembly

part explained how these element matrices are assembled, which is classical for any finite element

method. Then, the solution procedure and the update of the dependent variables were discussed,

taking efficiency into account.

The next chapter presents the numerical examples used to test the code described above. Once

trustworthy results were obtained, a model problem of article [22] was implemented. The significant

number of elements needed for this problem led to the computational efficiency concerns mentioned

in this chapter.



Chapter 5

Numerical examples

Introduction

The previous chapter derived the complete discrete formulation and solution for the fluid-rigid

body interaction, as well as its detailed implementation. This chapter shows the code application

through two numerical examples.

The first example, presented in 5.1, is a fluid-only problem and simulates the steady-state Couette

flow. One of the boundaries is registered as solid to cast this problem into the fluid-rigid body

interaction framework. Due to the way the code is set up (see chapter 4), having a rigid body

is necessary. This simple problem has the advantage of having a well-known analytical solution.

Results given by the code can be easily checked. When these results are convincing enough, the

second problem can be modeled as the rigid cylinder freely oscillating in a fluid presented by [22].

This problem is simulated in section 5.2. This section first details the geometry and parameters

necessary to model the problem and summarizes its implementation as input for the previously

presented code. Results obtained by the code are then compared to the ones presented in [22].

5.1 A model test problem: Simulation of 1D Couette flow

After a review of this problem and its analytical solution (paragraph 5.1.1), paragraph 5.1.2

presents its implementation as a test problem for the code built here. The main advantage of the

1D Couette flow problem is the existence of an analytical solution, to which answers given by the
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code can be compared. The problem is implemented with only 4 elements, to keep the numbers of

degrees of freedom very low. These two features ease the tracking of implementation errors while

testing the solution.

5.1.1 Description of the problem and analytical solution

The Couette flow is driven by a prescribed velocity vx = U at y = H (see figure 5.1). Prescribing

the velocity at the top while the bottom is kept fixed is equivalent to applying a shear stress. There

is no pressure gradient in the x direction.

Figure 5.1: Geometry and boundary conditions of the Couette flow problem

5.1.1.1 Assumptions

• Newtonian fluid (constitutive relationship σ = −pI + 2µ1
2

(
grad(v) + grad(v)T

)
, where σ

is the Cauchy stress, p the pressure and v the velocity)

• Incompressible

• Steady state

• 1D flow
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5.1.1.2 Simplified Navier-stokes equation

Taking the assumptions 5.1.1.1 into account, the Navier-Stokes equations are simplified as follows:

∂vx
∂x

= 0 (5.1)

∂p

∂x
= µ

∂2vx
∂y2

= 0 (5.2)

∂p

∂y
= ρg (5.3)

5.1.1.3 Solution

Equation 5.3 shows that the vertical pressure gradient just balances gravity. In our case, all body

forces are neglected. Equation 5.3 becomes:

∂p

∂y
= 0 (5.4)

Integrating equation 5.2 twice and using the boundary conditions vx(y = 0) = 0 and vx(y =

H) = U leads to:

vx =
U

H
y (5.5)

Figure 5.2 shows the resulting velocity profile.

5.1.2 Implementation and numerical results

The goal is to model the simplest possible problem to test the code. So, only four elements are

used to discretize the fluid domain. Two cases are studied. The simplest case is to set the rigid

body to the fixed boundary, shown in figure 5.3. None of the solid DOFs are moving. Thus the

mesh stays fixed too. In the second studied case, the rigid body is set to the mobile upper boundary

(figure 5.5). This enables the simulation of a very simple problem with a nonzero mesh motion.
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Figure 5.2: Velocity profile for the pure shear driven flow

5.1.2.1 First model problem: solid as the fixed bottom boundary

The first problem set the fixed bottom boundary as a rigid body. All the solid motions are

prescribed as 0. The fluid has only seven free degrees of freedom. Figure 5.3 shows the geometry

of the problem, with the interface nodes and prescribed velocities. Prescribed force vector is 0 for

each free degree of freedom.

Figure 5.3: Representation of the finite element model for the Couette flow problem with the solid as fixed
boundary
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Since the effect of gravity is neglected, the pressure must be initially defined as constant within

the domain. With the elements and nodes ordered as denoted on the figure 5.3, the initial conditions

are as follows:

ā = 0 (18× 1 vector) (5.6)

v̄ = v̄ = [0 0 0 0 0 0 U/2 0 U/2 0 U/2 0 U 0 U 0 U 0]T (5.7)

p̄ =

[
0 0 0 0

]T
(5.8)

α =

[
0 0 0

]T
(5.9)

ν =

[
0 0 0

]T
(5.10)

δ =

[
0 0 0

]T
. (5.11)

Since it is theoretically a steady state problem, the solution is expected to stay as the initial

condition. With the fluid acceleration and velocity vectors reordered as free degrees of freedom

first, then prescribed and then belonging to the interface, the expected solution is:

ā = 0 (18× 1 vector) (5.12)

v̄ = [U/2 0 0 0 0 0 0 U/2 U/2 U U U 0 0 0 0 0 0]T (5.13)

p̄ =

[
0 0 0 0

]T
(5.14)

α =

[
0 0 0

]T
(5.15)

ν =

[
0 0 0

]T
(5.16)

δ =

[
0 0 0

]T
(5.17)

Setting U = 0.5m/s, the solution given by the Matlab code is shown in figure 5.4. For this very

simple problem, the numerical results match the theory.
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Figure 5.4: Matlab results for the Couette flow problem with the solid as fixed boundary

Note that if the pressure initial condition is not zero, the prescribed force vector can not be zero.

Force boundary conditions need to be applied to model the effect of the surrounding fluid, because

the domain has been artificially cut in the x direction. See code in appendix C.1 for more precision

on how this is applied.

5.1.2.2 Second model problem: solid as the mobile upper boundary

The first problem set the moving top boundary as the rigid body. Solid velocity ν is thus

prescribed as ν =

[
U 0 0

]
. At time tn, solid displacement is prescribed as δ =

[
(U n∆t) 0 0

]T
.

Bottom fluid degrees of freedom are fixed in the x direction and left free in the y direction1 . The

fluid has again 7 free degrees of freedom. Figure 5.3 shows the geometry of the problem, with the

1 If all the vertical bottom degrees of freedom are fixed for the fluid, we run into numerical issue because there
are not enough conditions to determine the pressure.
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interface nodes and prescribed velocities. Prescribed force vector 0 for each free degree of freedom.

Code in appendix C.1 shows how to implement this problem as an input for the main code.

Figure 5.5: Representation of the finite element model for the Couette flow problem with the solid set as
the mobile boundary

Since the number and order of elements and nodes has not changed compared to the previous

problem, the fluid initial conditions are the same as equations 5.6 to 5.14. Solid initial conditions

are:

α =

[
0 0 0

]T
(5.18)

ν =

[
U 0 0

]T
(5.19)

δ =

[
0 0 0

]T
. (5.20)

Again, the solution is expected to stay fixed as the initial condition. Since the three bottom

x degrees of freedom are fixed, they are not solved for. Thus, the fluid acceleration and velocity
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reordered solution vectors are size 15× 1. The expected solution is:

ā = 0 (15× 1 vector) (5.21)

v̄ = [0 0 0 0 U/2 0 0 U/2 U/2 U 0 U 0 U 0]T (5.22)

p̄ =

[
0 0 0 0

]T
(5.23)

α =

[
0 0 0

]T
(5.24)

ν =

[
U 0 0

]T
(5.25)

δ =

[
0 U∆t 2U∆t

]T
(5.26)

Setting U = 0.3m/s, and ∆t = 0.5 s, the solution given by the Matlab code is shown in figure

5.6. For this less simple problem (complicated by the moving mesh), the numerical results once

again match the theory. The deformed mesh is shown in figure 5.7. Nodes are moving as they are

expected to, as explained in chapter 4, section 4.1.

Note, if the pressure initial condition is not zero, nonzero force boundary conditions need to be

applied to model the effect of the surrounding fluid. The problem is that the artificially created side

boundaries are tilting due to the mesh motion (see figure 5.7). Pressure applied by the surrounding

fluid acts in the normal direction to the boundary. Thus, the applied force needs to change during

the iterations.

5.1.3 Conclusion on the Couette flow problem simulation

Results of the simulations detailed in this section match the theoretical results. Some specific

issues to the Couette flow problem arose, such as the expression of the force boundary conditions

on the artificially created fluid side boundaries. When the fluid is contained in a finite domain like

it is the case for the problem presented in section 5.2, this issue does not occur. The Couette flow

problem was convenient to test the code, thanks to the existence of an analytical solution and the
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Figure 5.6: Matlab results for the Couette flow problem with the solid set as the mobile boundary

possibility to set up a model with very few degrees of freedom. But the ALE method is clearly

not the best to address this pure flow problem. If the goal was to study the Couette flow itself, an

Eulerian approach would have been much more suitable.

Results obtained in this section are convincing enough to enable us to step forward in the imple-

mentation by modeling our target problem of the oscillating cylinder. Compared to the Couette

flow problems, the cylinder problem adds the complications of a free solid degree of freedom and a

transient behavior.

5.2 Free oscillations of a rigid cylinder in a cylindrical fluid domain

The numerical example presented here is a rigid cylinder oscillating in a fluid, introduced by [22].

Maintained by a spring attached to the outer boundary, the cylinder is initially perturbed from its
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Figure 5.7: Deformed ALE mesh for the Couette flow problem

equilibrium position. It then freely oscillates in its fluid environment. Paragraph 5.2.1 presents the

geometry and the parameters necessary to carry the study. The implementation of the problem is

explained next in paragraph 5.2.2, with focus on the mesh generation. Paragraph 5.2.3 presents

the results of the simulation.

5.2.1 Presentation of the problem

Figure 5.8 presents the geometry and notations for the studied problem. A circular domain of

diameter D, with an impermeable fixed rigid boundary, is filled with a viscous fluid of density ρ and

viscosity µ. A rigid circular cylinder of mass m11 is attached to the outer boundary by an elastic

spring of stiffness k11. At time t = 0, the cylinder’s position is perturbed by the displacement
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δ1 = a. The cylinder oscillates then freely in the x-direction, assuming that the spring does not tilt

during motion.

Figure 5.8: Geometry of the cylinder problem

The values of the parameters needed for the simulation are given in tables 5.1 to 5.3. They are

taken form [22] and converted to the international unit system. They are specified in the input for

the code (see appendix C.2).

symbol d D a

value 1.27× 10−2m 5 d d/100

Table 5.1: Geometrical parameters for the oscillating cylinder problem

matrix m c k

value

3.408× 10−3 0 0
0 0 0
0 0 0

 kg
0 0 0

0 0 0
0 0 0

 34.6113 0 0
0 0 0
0 0 0

 N/m

Table 5.2: Solid parameters for the oscillating cylinder problem
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symbol ρ µ

water 1000 kg/m3 1.33× 10−3 Pas
silicon oil 936 kg/m3 0.145Pas

Table 5.3: Fluid parameters for the oscillating cylinder problem

5.2.2 Mesh generation

The input file for the cylinder problem, in appendix C.2, is very similar to the one needed for

the Couette flow problem. But generating the mesh for the cylinder is more challenging. Thus it

is interesting to give some more details on this operation.

An example of coarse mesh with narc = 4 arcs and nrad = 8 radii is shown in figure 5.9. Nodes

and elements are numbered according to a spiral from the node adjacent to the solid on the right.

The mesh is generated by advancing front. More precisely, the code loops over the arcs and radii

as follows:

(1) Loop over the arcs

(a) Get the arc radius R. To have a finer mesh closer to the solid, arcs are logarithmically

distributed over the total width (D − d)/2.

(b) Loop over the radii

(i) Get the radius angle

(ii) Compute the coordinates x0 and y0 of the corresponding node

(iii) Assign corresponding parts of the link matrix and connectivity matrix

(2) Compute the boundary condition matrix: the inner arc is the interface, the outer arc is

fixed, and all other nodes are free.

Note that the problem is symmetric with respect to the x-axis. Thus to save some computational

expense, it would be good to model only half of the problem (for example the top half, as is done
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Figure 5.9: Coarse mesh example for the cylinder problem

in [22]). This requires to apply symmetry conditions on the bottom line, operation that is not

straightforward. That is why the full problem is modelled here.

5.2.3 Results

5.2.3.1 Settings

To simulate the cylinder problem, narc = 10 and nrad = 48 are used, so that we get the plot of

the initial mesh in figure 5.10. Two fluids are tested : water and silicon oil. The time increment

is set as ∆t = 10−3 for the water simulation and as ∆t = 5 × 10−5 for the silicon oil simulation

(specified by [22]). A tolerance of 10−12 is used for Newton’s method.

5.2.3.2 Rigid body displacement

Rigid body displacement δ1in the x-direction is shown in figure 5.11 in the case of water and in

figure 5.12 in the case of silicon oil.

Comparing figures 5.11 and 5.12, we can see that damping is higher in the case of silicon oil,

which is more viscous than water (see table 5.3 for the values). Qualitatively, the results make
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Figure 5.10: Matlab mesh at t = 0 for the simulated cylinder problem

Figure 5.11: Resulting rigid body displacement δ1 in the case of water



77

Figure 5.12: Resulting rigid body displacement δ1 in the case of silicon oil

good intuitive sense.

Comparing the rigid-body displacement with the results of [22], figures 5.11 and 5.12 show more

damping and a lower oscillations frequency. A possible explanation for this difference is the need of

a refined mesh. Two clues are in favor of this explanation. When trying to model the same problem,

but with a coarser mesh (namely 8 elements), the resulting δ1 is further away from [22], that is to

say that the frequency and damping are higher. The other reason is the difference in formulations

between [22] and our problem. [22] uses a Streamline Upwind Petrov Galerkin formulation (SUPG),

presented in [6], for the finite element discretization. The formualtion used in this thesis is a simple

Galerkin formulation (see chapter 3, section 3.1.1). according to [6], spatial instabilities occur when

using a Galerkin formulation for convection-dominated problems. One way to get around this issue

is to severely refine the mesh. To avoid refining the mesh for computational expense reasons, the

SUPG formulation has been developed. Our results might match the ones in [22] better if we

heavily refine the mesh.
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5.2.4 Concluding remarks on the oscillating cylinder problem

We have been able to model and implement the problem of the rigid cylinder oscillating in a fluid,

introduced in [22]. This was one of the present work’s objective. Results in terms of rigid body

displacement make good intuitive sense. To further interpret the results, it would be interesting

to compute the resultant force exerted by the fluid on the solid and to quantify the net effects in

terms of added mass and added damping. Plotting and interpreting the pressure and velocity fields

is still to be done, and would probably require another tool than Matlab.

To get closer results to [22], for the rigid body displacement δ1, a severe mesh refinement or the

use of the SUPG formulation are probably necessary.

5.3 Concluding remarks on the numerical examples

Two numerical examples have been presented here. First, the pure fluid Couette flow problem has

been simulated. Its simplicity and the existence of an analytical solution were the useful ingredients

that made us choose the Couette flow as a first test problem. It has been adapted to the fluid-rigid

body interaction framework by assigning the rigid body to one of the boundaries. Depending on

whether the solid where assigned to the fixed or the moving boundary, the ALE mesh was fixed

or moving. This example has been helpful to confirm the code results by comparison with the

theoretical solution. As an extension of the Couette problem implementation, Stokes’ first and

second problem could be modelled with the ALE code.

The second model problem was the freely oscillating cylinder, introduced in [22]. This example

added to the first test problem a more complicated geometry (hence a less straightforward mesh

generation), a free solid degree of freedom and an actual transient behavior. Results providing by

our code were satisfying enough to be convinced that the method worked. Nevertheless, further

refining the mesh, quantifying the added mass and added damping effects, and plotting the pressure

and velocity fields would be interesting extensions of the work, to get further confirmation. Finally,
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an SUPG formulation would be interesting to implement in the code that has been built in this

thesis. Results of the code should then completely match the ones in [22].



Chapter 6

Concluding remarks

Along this thesis, we have built an understanding of the Arbitrary Lagrangian Eulerian method,

concept and application. First, the motivation and a precise description of the ALE method have

been presented. Clear and rigorous notations have been set up to derive ALE governing equations.

One of the work’s goal was to develop a simple implementation. The application to fluid-rigid

body interaction has been adopted. Within this context, ALE governing equations for the fluid have

been derived. Fluid governing equations have been discretized in space using the Finite Element

method. The derivation of their weak form using the method of weighted residuals, as well as

the discrete approximation of the equations using the Galerkin formulation have been developed

in detail. Spatially discrete fluid equations have been coupled with the solid motion governing

equations through the interface coupling conditions. By discretizing the resulting set of equations

in time, we have obtained the final set of discrete nonlinear equations governing the system. The

solution method to solve them has been derived next, based on an approximated Newton’s method.

Interesting implementation parts have been pointed out to support the reader’s understanding

and ease potential extension of the work. In particular, we have described the choice of a mesh

motion, on which the ALE method is based. Two concrete examples have been implemented. The

first one, Couette flow problem, has been chosen for its simplicity and the existence of an anlytical

solution. With a simple 4-element model, good matching results have been obtained. Thus a more

sophisticated problem has been simulated. The free oscillations of a rigid cylinder in a fluid medium
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have been presented by [22]. Results of [22] have not been exactly reproduced here, but our code

has obtained decent results. This simple fluid-rigid body interaction example should then be able

to serve as basis for future work.

Fluid-structure interaction was the first motivation for the development of the ALE method.

Fluid-rigid body interaction, application chosen for this work, is interesting as an idealization of

fluid-structure interaction, when the solid deformations are small compared to its rigid-body motion.

This is the case for offshore structure in the ocean for example. Considering the solid as a rigid

body leads to a simpler problem, because only the fluid governing equations need to be expressed

in the ALE framework and discretized in space using finite elements. But the ALE method has

numerous other applications, as has been stated in introduction. If we further want to model

forming processes, rolling contact, crack propagation, or pile driving using the ALE method, the

framework developed in this thesis should make the work easier. Obviously, the governing equations

of the problem would be different. But their transformation to the ALE representation would follow

the one described in this thesis. Finite element discretization and associated implementation are

not specific to the ALE method. The concept of the mesh motion would stay the same, but the

practical choice of a mesh motion might need to be adapted to the requirements of the new problem.
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Appendix A

Expression of ψχ spatial derivatives

∂ψχ1

∂ξ1
=

4∑
a=1

∂Na

∂ξ1
χ1a (A.1)

∂ψχ2

∂ξ1
=

4∑
a=1

∂Na

∂ξ1
χ2a (A.2)

∂ψχ1

∂ξ2
=

4∑
a=1

∂Na

∂ξ2
χ1a (A.3)

∂ψχ2

∂ξ2
=

4∑
a=1

∂Na

∂ξ2
χ2a (A.4)



Appendix B

Selected parts of Matlab code explained in chapter 4

B.1 Mesh motion

%------------Compute Kappa for the mesh motion --------------------

%kappa stays constant during the calculation

dist2interface=sqrt((X-X(link_matrix (: ,1))).^2 ...

+(Y-Y(link_matrix (: ,1))).^2);

domain_width=sqrt((X(link_matrix (:,1))-X(link_matrix (: ,2))).^2 ...

+(Y(link_matrix (:,1))-Y(link_matrix (: ,2))).^2);

kappa=1- dist2interface ./ domain_width;

%-------------Allocating memory for mesh velocity ----------------------

v_mesh=zeros(NUM_DOF_PER_ELEM ,1); %v_mesh only needed at the element level

VMESH=zeros(nnodes ,NUM_DOF_PER_NODE );

%Inside Newton iteration loop

theta=d_solid_new (3);

R=[cos(theta), -sin(theta);

sin(theta), cos(theta )];

T=zeros(3, interface_DOF_num );

A=zeros(interface_DOF_num ,1);

%loop over interface nodes

X_interface=X(BC(: ,1)==3);

Y_interface=Y(BC(: ,2)==3);

for i=1: length(X_interface) %loop over nodes belonging to the interface

T(:,2*i -1:2*i)= node_transformation_matrix ...

(X_interface(i),Y_interface(i), theta);

A(2*i -1:2*i)=-R*[ X_interface(i);

Y_interface(i)];

end

v_fluid(fluid_DOF_num +1:end ,nt+1)=T’* v_solid_new;

% node coordinate update and mesh motion

% order following the global numbering

d_A_GLOB =[ d_solid_new (1)* one_vec;

d_solid_new (2)* one_vec] + (R-eye2x2 )*[X;

Y];

XELEM=X+kappa.* d_A_GLOB (1,:);

YELEM=Y+kappa.* d_A_GLOB (2,:);

for i=1: nnodes

VMESH(i ,:)=( kappa(i)*...
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node_transformation_matrix(X(i),Y(i),theta)’* v_solid_new )’;

end

% inside the loop over all the elements for e = 1:nel

%------ element nodes global coordinates -----------

% note that x and y must be column vector to calculate D

xelem = XELEM(connectivity(e,:)) ’;

yelem = YELEM(connectivity(e,:)) ’;

for i=1: NUM_DOF_PER_NODE

v_mesh(i:NUM_DOF_PER_NODE:end)=VMESH(connectivity(e,:),i);

end

B.2 Element matrices

function [Ge,NNe ,NNe_diagparts ,Me] = element_matrices2( xsi ,eta ,x,y,c,rho ,mu )

%function that builds the element matrix N

N1=1/4*(1 - xsi)*(1-eta);

N2 =1/4*(1+ xsi)*(1-eta);

N3 =1/4*(1+ xsi )*(1+ eta);

N4=1/4*(1 - xsi )*(1+ eta);

N=[N1 0 N2 0 N3 0 N4 0;

0 N1 0 N2 0 N3 0 N4 ];

dN1= -1/4*(1 -eta); dN2 =-1/4*(1- xsi);

dN3 =1/4*(1 - eta); dN4 = -1/4*(1+ xsi);

dN5 =1/4*(1+ eta); dN6 =1/4*(1+ xsi);

dN7 = -1/4*(1+ eta); dN8 =1/4*(1 - xsi);

dphi1_dxi =[dN1 dN3 dN5 dN7]*x; %sum(dNa/dxsi*xa);

dphi2_dxi =[dN1 dN3 dN5 dN7]*y; %sum(dNa/dxsi*ya);

dphi1_deta =[dN2 dN4 dN6 dN8]*x; %sum(dNa/deta*xa)

dphi2_deta =[dN2 dN4 dN6 dN8]*y; %sum(dNa/deta*ya)

D=[ dphi2_deta -dphi1_deta;

-dphi2_dxi dphi1_dxi ];

Jx=dphi1_dxi*dphi2_deta -dphi1_deta*dphi2_dxi;

dND=[dN1 dN2; dN3 dN4; dN5 dN6; dN7 dN8]*D;

NNe_diagparts =(rho*dND*N*c*[N1 N2 N3 N4])’+mu/Jx*(dND*dND ’);

%NN21=mu/Jx*(dND*dND ’);

% Slightly faster

dNDv1=[dN1 dN2]*D;

dNDv2=[dN3 dN4]*D;

dNDv3=[dN5 dN6]*D;

dNDv4=[dN7 dN8]*D;

%additional line (compared to the program that ran only M and NN)

Ge=[dNDv1 ’;dNDv2 ’;dNDv3 ’;dNDv4 ’];



87

NNe=mu/Jx*[dNDv1 ’*dNDv1 , dNDv1 ’*dNDv2 , dNDv1 ’*dNDv3 , dNDv1 ’* dNDv4;

dNDv2 ’*dNDv1 , dNDv2 ’*dNDv2 , dNDv2 ’*dNDv3 , dNDv2 ’*dNDv4;

dNDv3 ’*dNDv1 , dNDv3 ’*dNDv2 , dNDv3 ’*dNDv3 , dNDv3 ’*dNDv4;

dNDv4 ’*dNDv1 , dNDv4 ’*dNDv2 , dNDv4 ’*dNDv3 , dNDv4 ’*dNDv4 ;];

Me=rho*Jx*(N’*N);

end

B.3 Assembly

B.3.1 Fluid DOF reorganization

%-------------Ordering the DOF ------------------------------------

free_DOF_num =0; % numbering the free DOF

prescribed_DOF_num =0; % numbering the prescribed non fixed DOF

interface_DOF_num =0; % numbering the DOF belonging to the interface

%solid_prescribed_DOF_num =0; %number of prescibed solid DOF

nodeDOFnum = zeros(size(BC)); % ID array

%solid_ID=zeros (3,1);

f_prescribed=zeros(nnodes*NUM_DOF_PER_NODE ,1);% at most

v_prescribed=zeros(nnodes*NUM_DOF_PER_NODE ,1);% at most

a_prescribed=zeros(nnodes*NUM_DOF_PER_NODE ,1);%at most

solid_DOF_num=size(solid_cond(solid_cond ==0) ,2); %number of solid free DOF

for m = 1: nnodes

for n = 1: NUM_DOF_PER_NODE

if (BC(m,n)==0)

free_DOF_num = free_DOF_num + 1;

nodeDOFnum(m,n) = free_DOF_num;

f_prescribed(free_DOF_num )= f_input (2*(m-1)+n);

end

end

end

f_prescribed(free_DOF_num +1: end )=[];

for m = 1: nnodes

for n = 1: NUM_DOF_PER_NODE

if (BC(m,n)==2)

prescribed_DOF_num= prescribed_DOF_num + 1;

nodeDOFnum(m,n) = free_DOF_num+prescribed_DOF_num;

v_prescribed(prescribed_DOF_num )= v_input (2*(m-1)+n);

a_prescribed(prescribed_DOF_num )= a_input (2*(m-1)+n);

end

end

end

%delete the extra part of v_prescribed and a_prescribed

v_prescribed(prescribed_DOF_num +1: end )=[];

a_prescribed(prescribed_DOF_num +1: end )=[];

for m = 1: nnodes

for n = 1: NUM_DOF_PER_NODE

if (BC(m,n)==3)

interface_DOF_num= interface_DOF_num + 1;
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nodeDOFnum(m,n) = free_DOF_num+prescribed_DOF_num ...

+interface_DOF_num;

end

end

end

a_solid_prescribed=a_solid_input(solid_cond ==1);

v_solid_prescribed=v_solid_input(solid_cond ==1);

d_solid_prescribed=d_solid_input(solid_cond ==1 ,:);

equation_num=free_DOF_num+prescribed_DOF_num+interface_DOF_num;

fluid_DOF_num=free_DOF_num+prescribed_DOF_num;

B.3.2 ElemDOFnum matrix

%--elemDOFnum:global DOF number in terms of the element and the node DOF --

elemDOFnum = zeros(nel ,NUM_DOF_PER_ELEM ); % LM array

for m = 1:nel

for n = 1: NUM_NODES_PER_ELEM

elemDOFnum(m,(n-1)* NUM_DOF_PER_NODE +1:n*NUM_DOF_PER_NODE) = ...

nodeDOFnum(connectivity(m,n),:);

end

end

B.3.3 Assembly of G, M and N

%--elemDOFnum:global DOF number in terms of the element and the node DOF --

elemDOFnum = zeros(nel ,NUM_DOF_PER_ELEM ); % LM array

for m = 1:nel

for n = 1: NUM_NODES_PER_ELEM

elemDOFnum(m,(n-1)* NUM_DOF_PER_NODE +1:n*NUM_DOF_PER_NODE) = ...

nodeDOFnum(connectivity(m,n),:);

end

end

B.4 Solution procedures

B.4.1 Solution based on the Shur complement

% COMPUTE f1 , f2 AND f3 (residual equations)

f1=M(1: free_DOF_num ,:)*...

[a_fluid_new;

a_prescribed;

T’* a_solid_new+A*( v_solid_star (3)+dt*gamma*a_solid_new (3))^2]...

+ NN(1: free_DOF_num ,:)*...

[v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )]...

-G(1: free_DOF_num ,:)* pressure_new ...
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-f_prescribed;

m_star=m_matrix_input + T*M(fluid_DOF_num +1:end ,fluid_DOF_num +1: end )...

*T’;

f2=m_star*a_solid_new ...

+c_matrix_input *( v_solid_star+dt*gamma*a_solid_new )...

+k_matrix_input *( d_solid_star+beta*dt^2* a_solid_new )...

+T*M(fluid_DOF_num +1:end ,:)*...

[a_fluid_new;

a_prescribed;

A*( v_solid_star (3)+dt*gamma*a_solid_new (3))^2]...

+T*NN(fluid_DOF_num +1:end ,:)*...

[v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )]...

-T*G(fluid_DOF_num +1:end ,:)* pressure_new;

f3=G’*[ v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )];

% NORM OF THE RESIDUAL

residual_norm=norm([f1;f2(solid_cond ==0);f3]);

% INTERMEDIATE STEPS

Mbar=M(1: free_DOF_num ,1: free_DOF_num )...

+NN(1: free_DOF_num ,1: free_DOF_num )*dt*gamma_v;

mstarbar=m_star(solid_cond ==0, solid_cond ==0)+...

c_matrix_input(solid_cond ==0, solid_cond ==0)* dt*gamma +...

k_matrix_input(solid_cond ==0, solid_cond ==0)* beta*dt^2;

B=[Mbar zeros(free_DOF_num ,solid_DOF_num) -G(1: free_DOF_num ,:);

zeros(solid_DOF_num ,free_DOF_num) mstarbar -T(solid_cond ==0 ,:)...

*G(fluid_DOF_num +1:end ,:);

dt*gamma_v*G(1: free_DOF_num ,:)’ dt*gamma *(T(solid_cond ==0 ,:)...

*G(fluid_DOF_num +1:end ,:))’ zeros(nel ,nel)];

% SOLVE FOR INCREMENTS IN ACCELERATION AND PRESSURE

temp_a1=Mbar\f1;

temp_a2=Mbar\G(1: free_DOF_num ,:);

temp_alpha1=mstarbar\f2(1: solid_DOF_num );

temp_alpha2=mstarbar \(T(1: solid_DOF_num ,:)*G(fluid_DOF_num +1:end ,:));

K=gamma_v*dt*G(1: free_DOF_num ,:)’* temp_a2 ...

+gamma*dt*G(fluid_DOF_num +1:end ,:)’*T(1: solid_DOF_num ,:) ’...

*temp_alpha2;

% SOLVE FOR INCREMENTS IN ACCELERATION AND PRESSURE

Delta_p=K\(-f3+G(1: free_DOF_num ,:)’* gamma_v*dt*temp_a1 ...

+dt*gamma*G(fluid_DOF_num +1:end ,:)’*T(1: solid_DOF_num ,:) ’...

*temp_alpha1 );

Delta_a=-temp_a1+temp_a2*Delta_p;

Delta_alpha=-temp_alpha1+temp_alpha2*Delta_p;
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B.4.2 Solution based on direct inversion of B

% COMPUTE f1 , f2 AND f3 (residual equations)

f1=M(1: free_DOF_num ,:)*...

[a_fluid_new;

a_prescribed;

T’* a_solid_new+A*( v_solid_star (3)+dt*gamma*a_solid_new (3))^2]...

+ NN(1: free_DOF_num ,:)*...

[v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )]...

-G(1: free_DOF_num ,:)* pressure_new ...

-f_prescribed;

m_star=m_matrix_input + T*M(fluid_DOF_num +1:end ,fluid_DOF_num +1: end )...

*T’;

f2=m_star*a_solid_new ...

+c_matrix_input *( v_solid_star+dt*gamma*a_solid_new )...

+k_matrix_input *( d_solid_star+beta*dt^2* a_solid_new )...

+T*M(fluid_DOF_num +1:end ,:)*...

[a_fluid_new;

a_prescribed;

A*( v_solid_star (3)+dt*gamma*a_solid_new (3))^2]...

+T*NN(fluid_DOF_num +1:end ,:)*...

[v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )]...

-T*G(fluid_DOF_num +1:end ,:)* pressure_new;

f3=G’*[ v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )];

% NORM OF THE RESIDUAL

residual_norm=norm([f1;f2(solid_cond ==0);f3]);

% INTERMEDIATE STEPS

Mbar=M(1: free_DOF_num ,1: free_DOF_num )...

+NN(1: free_DOF_num ,1: free_DOF_num )*dt*gamma_v;

mstarbar=m_star(solid_cond ==0, solid_cond ==0)+...

c_matrix_input(solid_cond ==0, solid_cond ==0)* dt*gamma +...

k_matrix_input(solid_cond ==0, solid_cond ==0)* beta*dt^2;

B=[Mbar zeros(free_DOF_num ,solid_DOF_num) -G(1: free_DOF_num ,:);

zeros(solid_DOF_num ,free_DOF_num) mstarbar -T(solid_cond ==0 ,:)...

*G(fluid_DOF_num +1:end ,:);

dt*gamma_v*G(1: free_DOF_num ,:)’ dt*gamma *(T(solid_cond ==0 ,:)...

*G(fluid_DOF_num +1:end ,:))’ zeros(nel ,nel)];

% SOLVE FOR INCREMENTS IN ACCELERATION AND PRESSURE

Delta=B\[-f1;-f2(solid_cond ==0); -f3];

Delta_a=Delta (1: free_DOF_num );

Delta_alpha=Delta(free_DOF_num +1: free_DOF_num+solid_DOF_num );



91

Delta_p=Delta(free_DOF_num+solid_DOF_num +1: end);

B.5 Update of the dependent variables

%---------------------Time integration ---------------------------------

for nt=1:fix(tt/dt)

%nt

%Initialization of Newton ’s method

% 1) Initial guess

a_fluid_new=zeros(free_DOF_num ,1);

v_fluid_star=v_fluid (1: free_DOF_num ,nt)...

+dt*(1- gamma_v )* a_fluid (1: free_DOF_num ,nt);

pressure_new=pressure(:,nt);

v_solid_star=v_solid(:,nt)+dt*(1-gamma )* a_solid(:,nt); %useful to compute residual

d_solid_star=d_solid(:,nt)+dt*v_solid(:,nt)...

+dt^2/2*(1 -2* beta)* a_solid(:,nt);

%solid acceleration , velocity , displacement (needed entirely)

a_solid(solid_cond ==0,nt+1)= zeros(solid_DOF_num ,1);

a_solid(solid_cond ==1,nt+1)= a_solid_prescribed;

v_solid(solid_cond ==0,nt+1)= v_solid_star(solid_cond ==0);

v_solid(solid_cond ==1,nt+1)= v_solid_prescribed;

d_solid(solid_cond ==0,nt+1)= d_solid_star(solid_cond ==0);

d_solid(solid_cond ==1,nt+1)= d_solid_prescribed (:,nt+1);

a_solid_new=a_solid(:,nt+1);

v_solid_new=v_solid(:,nt+1);

d_solid_new=d_solid(:,nt+1);

%initializing v_fluid (needed for convective velocity c)

v_fluid (1: free_DOF_num ,nt+1)= v_fluid_star;

% Assigning prescribed part of the solution

v_fluid(free_DOF_num +1: fluid_DOF_num ,nt+1)= v_prescribed;

a_fluid(free_DOF_num +1: fluid_DOF_num ,nt+1)= a_prescribed;

% v_fluid(fluid_DOF_num +1:end ,nt+1)=T’* v_solid_new;

% (needs to be updated every iteration)

v_fluid_new=v_fluid(:,nt+1);

% 2) initial value of the error and iteration number

residual_norm =1;

iteration_num =0;

%Newton ’s method iterations

while residual_norm >tol && iteration_num <=100

% INITIALIZING ntriplets_G AND ntriplets_MNN

ntriplets_G = 0;

ntriplets_M = 0;

ntriplets_NN = 0;

% DISPLACEMENT OF INTERFACE NODES , T AND A MATRICES

iteration_num=iteration_num +1;

% if iteration_num ==500

% disp(’number of iteration exceeds 500’);

% break

% end

% solid rotation
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theta=d_solid_new (3);

R=[cos(theta), -sin(theta);

sin(theta), cos(theta )];

T=zeros(3, interface_DOF_num );

A=zeros(interface_DOF_num ,1);

%loop over interface nodes

X_interface=X(BC(: ,1)==3);

Y_interface=Y(BC(: ,2)==3);

for i=1: length(X_interface) %loop over nodes belonging to the interface

T(:,2*i -1:2*i)= node_transformation_matrix ...

(X_interface(i),Y_interface(i), theta);

A(2*i -1:2*i)=-R*[ X_interface(i);

Y_interface(i)];

end

v_fluid(fluid_DOF_num +1:end ,nt+1)=T’* v_solid_new;

% node coordinate update and mesh motion

% order following the global numbering

d_A_GLOB =[ d_solid_new (1)* one_vec;

d_solid_new (2)* one_vec] + (R-eye2x2 )*[X;

Y];

XELEM=X+kappa.* d_A_GLOB (1,:);

YELEM=Y+kappa.* d_A_GLOB (2,:);

for i=1: nnodes

VMESH(i ,:)=( kappa(i)*...

node_transformation_matrix(X(i),Y(i),theta)’* v_solid_new )’;

end

% GET MATRICES M,NN,G

for e = 1:nel % loop over all the elements

%------ element nodes global coordinates -----------

% note that x and y must be column vector to calculate D

xelem = XELEM(connectivity(e,:)) ’;

yelem = YELEM(connectivity(e,:)) ’;

%---------Convective velocity c -----------------------

%c=v_fluid -v_mesh;

for i=1: NUM_DOF_PER_NODE

v_mesh(i:NUM_DOF_PER_NODE:end)=VMESH(connectivity(e,:),i);

end

% if a DOF is fixed , elemDOFnum(e,i)=0

c=zeros(NUM_NODES_PER_ELEM*NUM_DOF_PER_NODE ,1);

c(elemDOFnum(e,:)>0) = ...

v_fluid_new(elemDOFnum(e,elemDOFnum(e,:) >0))...

-v_mesh(elemDOFnum(e,:) >0) ;

%--------- Element matrices ---------------------------

[Ge1 ,NNe1 ,NNe_diag1 ,Me1]= element_matrices2 (-1/sqrt (3) ,...

-1/sqrt(3),xelem ,yelem ,c,rho ,mu);

[Ge2 ,NNe2 ,NNe_diag2 ,Me2]= element_matrices2 (1/ sqrt (3) ,...

-1/sqrt(3),xelem ,yelem ,c,rho ,mu);

[Ge3 ,NNe3 ,NNe_diag3 ,Me3]= element_matrices2 (1/ sqrt (3) ,...

1/sqrt(3),xelem ,yelem ,c,rho ,mu);

[Ge4 ,NNe4 ,NNe_diag4 ,Me4]= element_matrices2 (-1/sqrt (3) ,...

1/sqrt(3),xelem ,yelem ,c,rho ,mu);

Ge=Ge1+Ge2+Ge3+Ge4;

NNe=NNe1+NNe2+NNe3+NNe4;
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NNe_diag=NNe_diag1+NNe_diag2+NNe_diag3+NNe_diag4;

Me=Me1+Me2+Me3+Me4;

%-------------Assembling the matrices -----------------------

for mm = 1: NUM_DOF_PER_ELEM % loop over rows of the elmnt mat

if (elemDOFnum(e,mm) > 0) % this dof is not fixed

ntriplets_G = ntriplets_G + 1;

IG(ntriplets_G) = elemDOFnum(e,mm);

JG(ntriplets_G) = e; %column index in the global G matrix

XG(ntriplets_G) = Ge(mm ,1);

for nn=1: NUM_DOF_PER_ELEM % loop over the columns

% of element matrices

if (elemDOFnum(e,nn) > 0) % this dof is not fixed

ntriplets_M= ntriplets_M + 1;

IM(ntriplets_M) = elemDOFnum(e,mm);

JM(ntriplets_M) = elemDOFnum(e,nn);

XM(ntriplets_M) = Me(mm,nn);

end

end

end

end

for mm=1: NUM_NODES_PER_ELEM

for nn=1: NUM_NODES_PER_ELEM

if (elemDOFnum(e,2*mm -1)>0 && elemDOFnum(e,2*nn -1) >0)

ntriplets_NN= ntriplets_NN + 1;

INN(ntriplets_NN) = elemDOFnum(e,2*mm -1);

JNN(ntriplets_NN) = elemDOFnum(e,2*nn -1);

XNN(ntriplets_NN) = NNe (2*mm -1,2*nn -1)...

+NNe_diag(mm,nn);

end

if (elemDOFnum(e,2*mm -1)>0 && elemDOFnum(e,2*nn)>0)

ntriplets_NN= ntriplets_NN + 1;

INN(ntriplets_NN) = elemDOFnum(e,2*mm -1);

JNN(ntriplets_NN) = elemDOFnum(e,2*nn);

XNN(ntriplets_NN) = NNe (2*mm -1,2*nn);

end

if (elemDOFnum(e,2*mm)>0 && elemDOFnum(e,2*nn -1) >0)

ntriplets_NN= ntriplets_NN + 1;

INN(ntriplets_NN) = elemDOFnum(e,2*mm);

JNN(ntriplets_NN) = elemDOFnum(e,2*nn -1);

XNN(ntriplets_NN) = NNe (2*mm ,2*nn -1);

end

if (elemDOFnum(e,2*mm)>0 && elemDOFnum(e,2*nn)>0)

ntriplets_NN= ntriplets_NN + 1;

INN(ntriplets_NN) = elemDOFnum(e,2*mm);

JNN(ntriplets_NN) = elemDOFnum(e,2*nn);

XNN(ntriplets_NN) = NNe (2*mm ,2*nn)+ NNe_diag(mm ,nn);

end

end

end

end

G = sparse(IG(1: ntriplets_G), JG(1: ntriplets_G), XG(1: ntriplets_G), ...

equation_num , nel);

M = sparse(IM(1: ntriplets_M), JM(1: ntriplets_M), ...

XM(1: ntriplets_M), equation_num , equation_num );
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NN = sparse(INN (1: ntriplets_NN), JNN (1: ntriplets_NN), ...

XNN (1: ntriplets_NN), equation_num , equation_num );

% COMPUTE f1 , f2 AND f3 (residual equations)

f1=M(1: free_DOF_num ,:)*...

[a_fluid_new;

a_prescribed;

T’* a_solid_new+A*( v_solid_star (3)+dt*gamma*a_solid_new (3))^2]...

+ NN(1: free_DOF_num ,:)*...

[v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )]...

-G(1: free_DOF_num ,:)* pressure_new ...

-f_prescribed;

m_star=m_matrix_input + T*M(fluid_DOF_num +1:end ,fluid_DOF_num +1: end )...

*T’;

f2=m_star*a_solid_new ...

+c_matrix_input *( v_solid_star+dt*gamma*a_solid_new )...

+k_matrix_input *( d_solid_star+beta*dt^2* a_solid_new )...

+T*M(fluid_DOF_num +1:end ,:)*...

[a_fluid_new;

a_prescribed;

A*( v_solid_star (3)+dt*gamma*a_solid_new (3))^2]...

+T*NN(fluid_DOF_num +1:end ,:)*...

[v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )]...

-T*G(fluid_DOF_num +1:end ,:)* pressure_new;

f3=G’*[ v_fluid_star+dt*gamma_v*a_fluid_new;

v_prescribed;

T’*( v_solid_star+dt*gamma*a_solid_new )];

% NORM OF THE RESIDUAL

residual_norm=norm([f1;f2(solid_cond ==0);f3]);

% INTERMEDIATE STEPS

Mbar=M(1: free_DOF_num ,1: free_DOF_num )...

+NN(1: free_DOF_num ,1: free_DOF_num )*dt*gamma_v;

mstarbar=m_star(solid_cond ==0, solid_cond ==0)+...

c_matrix_input(solid_cond ==0, solid_cond ==0)* dt*gamma +...

k_matrix_input(solid_cond ==0, solid_cond ==0)* beta*dt^2;

B=[Mbar zeros(free_DOF_num ,solid_DOF_num) -G(1: free_DOF_num ,:);

zeros(solid_DOF_num ,free_DOF_num) mstarbar -T(solid_cond ==0 ,:)...

*G(fluid_DOF_num +1:end ,:);

dt*gamma_v*G(1: free_DOF_num ,:)’ dt*gamma *(T(solid_cond ==0 ,:)...

*G(fluid_DOF_num +1:end ,:))’ zeros(nel ,nel)];

% SOLVE FOR INCREMENTS IN ACCELERATION AND PRESSURE

Delta=B\[-f1;-f2(solid_cond ==0); -f3];

Delta_a=Delta (1: free_DOF_num );

Delta_alpha=Delta(free_DOF_num +1: free_DOF_num+solid_DOF_num );

Delta_p=Delta(free_DOF_num+solid_DOF_num +1: end);
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% UPDATE

a_fluid_new=a_fluid_new+Delta_a;

a_solid_new(solid_cond ==0)= a_solid_new(solid_cond ==0)...

+Delta_alpha;

pressure_new=pressure_new+Delta_p;

v_fluid_new (1: free_DOF_num )= v_fluid_new (1: free_DOF_num )...

+gamma_v*dt*Delta_a;

v_solid_new(solid_cond ==0)= v_solid_new(solid_cond ==0)...

+gamma*dt*Delta_alpha;

d_solid_new(solid_cond ==0)= d_solid_new(solid_cond ==0)...

+beta*dt^2* Delta_alpha;

end

% Assigning the free part of the solution

a_fluid (1: free_DOF_num ,nt+1)= a_fluid_new;

v_fluid (1: free_DOF_num ,nt+1)= v_fluid_new (1: free_DOF_num );

a_solid(solid_cond ==0,nt+1)= a_solid_new(solid_cond ==0);

v_solid(solid_cond ==0,nt+1)= v_solid_new(solid_cond ==0);

d_solid(solid_cond ==0,nt+1)= d_solid_new(solid_cond ==0);

pressure(:,nt+1)= pressure_new;

a_fluid(fluid_DOF_num +1:end ,nt+1)=T’* a_solid_new ...

+A*v_solid_new (3)^2;

v_fluid(fluid_DOF_num +1:end ,nt+1)=T’* v_solid_new;

end



Appendix C

Matlab code for the numerical examples input files

C.1 Couette flow problems

C.1.1 Problem with solid as the fixed boundary

clear all

%INPUT

g=9.81; %m.s^(-2)

%Flow parameters

%assumptions : homogeneous fluid and incompressible flow

%parameters for water at 20C

rho=1; % kg/m^3

mu=1e-3; % Pa.s

% Solid parameters

%number of solid DOF

% Mass matrix (3*3, diagonal)

m_matrix_input =0* diag(ones (3 ,1));

% Damping matrix

c_matrix_input =0* diag(ones (3 ,1));

% Stiffness matrix

k_matrix_input =0* diag(ones (3 ,1));

% Nodes initial coordinates

L=4;

H=2;

X = [-L/2, 0, L/2, -L/2, 0, L/2, -L/2, 0, L/2]; % global x coords of the nodes

Y = [0, 0, 0, H/2, H/2, H/2, H, H, H]; % global y coords of the nodes

% Time

tt=2; %total time

% Increments

dt=1; % Delta_t

n_inc=fix(tt/dt); % # of increments

% Tolerance

tol =10^( -6);
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% Boundary conditions

%0 is free , 1 is fixed , 2 is a prescribed (nonzero) velocity , 3 is a node

%belonging to the interface fluid -solid.

BC = zeros (9 ,2);

BC(1:3 ,:)=3;

BC(4 ,1)=2;

BC(6 ,1)=2;

BC(7:9 ,1)=2* ones (3 ,1);

%solid condition: to know if the DOF are fixed or prescribed

% 0 is free , 1 is prescribed

solid_cond =[1 1 1];

% Prescribed_velocity and acceleration

U=0.5;

v_input=zeros (9*2 ,1);

v_input ([7 11] ,:)=U/2* ones (2,1);

v_input ([13 15 17] ,:)=U*ones (3,1);

a_input=zeros (9*2 ,1);

a_solid_input =[0 0 0];

v_solid_input =[0 0 0];

d_solid_input=zeros(3,n_inc +1);

% Prescribed force

f_input=zeros (9*2 ,1);

% If pressure is initially 15

% f_input ([14 18] ,:)= -15;

% f_input (16 ,:)= -30;

% Initial conditions

a_fluid_init=zeros (9*2 ,1);

v_fluid_init=zeros (9*2 ,1);

v_fluid_init (9)=U/2;

v_fluid_init ([7 11] ,:)=U/2* ones (2,1);

v_fluid_init ([13 15 17] ,:)=U*ones (3,1);

p_init =[0;0;0;0];

%p_init =[15;15;15;15];

a_solid_init=zeros (3,1);

v_solid_init=zeros (3,1);

d_solid_init=zeros (3,1);

% Connectivity matrix (nel*4 matrix for us)

connectivity = [1 2 5 4;

2 3 6 5;

4 5 8 7;

5 6 9 8];

% Matrix that relates nodes to their closest interface and boundary node

% (2 columns: first one is the closest interface node ,

% second one is the closest outer boundary node)

link_matrix=zeros (9 ,2);

link_matrix (: ,1)=[1; 2; 3; 1; 2; 3; 1; 2; 3];

link_matrix (: ,2)=[7; 8; 9; 7; 8; 9; 7; 8; 9];
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% Newmark ’s method parameters

gamma_v =1/2;

gamma =1/2;

beta =0.25;

% END OF INPUT

C.1.2 Problem with solid as the mobile boundary

clear all

%INPUT

g=9.81; %m.s^(-2)

%Flow parameters

%assumptions : homogeneous fluid and incompressible flow

%parameters for water at 20C

rho=1; % kg/m^3

mu=1e-3; % Pa.s

% Solid parameters

%number of solid DOF

% Mass matrix (3*3, diagonal)

m_matrix_input =0* diag(ones (3 ,1));

% Damping matrix

c_matrix_input =0* diag(ones (3 ,1));

% Stiffness matrix

k_matrix_input =0* diag(ones (3 ,1));

% Nodes initial coordinates

L=4;

H=2;

X = [-L/2, 0, L/2, -L/2, 0, L/2, -L/2, 0, L/2]; % global x coords of the nodes

Y = [-H, -H, -H, -H/2, -H/2, -H/2, 0, 0, 0]; % global y coords of the nodes

% Time

tt=1; %total time

% Increments

dt=0.5; % Delta_t

n_inc=fix(tt/dt); % # of increments

% Tolerance

tol =10^( -12);

% Boundary conditions

%0 is free , 1 is fixed , 2 is a prescribed (nonzero) velocity , 3 is a node

%belonging to the interface fluid -solid.

BC = zeros (9 ,2);

BC(1:3 ,1)=1;

BC(4 ,1)=2;

BC(6 ,1)=2;
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BC(7:9 ,:)=3;

%solid condition: to know if the DOF are fixed or prescribed

% 0 is free , 1 is prescribed

solid_cond =[1 1 1];

% Prescribed_velocity and acceleration

U=0.3;

v_input=zeros (9*2 ,1);

v_input ([7 11] ,:)=U/2* ones (2,1);

a_input=zeros (9*2 ,1);

a_solid_input =[0 0 0];

v_solid_input =[U 0 0];

d_solid_input=zeros(3,n_inc +1);

for nt=1: n_inc

d_solid_input (:,nt +1)=[nt*U*dt ,0,0]’;

end

% Prescribed force

f_input=zeros (9*2 ,1);

% Initial conditions

a_fluid_init=zeros (9*2 ,1);

v_fluid_init=zeros (9*2 ,1);

v_fluid_init (9)=U/2;

v_fluid_init ([7 11] ,:)=U/2* ones (2,1);

v_fluid_init ([13 15 17] ,:)=U*ones (3,1);

% pressure

p_init =[0;0;0;0];

a_solid_init=zeros (3,1);

v_solid_init=zeros (3,1);

v_solid_init (1)=U;

d_solid_init=zeros (3,1);

% Connectivity matrix (nel*4 matrix for us)

connectivity = [1 2 5 4;

2 3 6 5;

4 5 8 7;

5 6 9 8];

% Matrix that relates nodes to their closest interface and boundary node

% (2 columns: first one is the closest interface node (actually closest

% Lagrangian boundary node), second one is the closest

% (Eulerian) boundary node)

link_matrix=zeros (9 ,2);

link_matrix (: ,1)=[7; 8; 9; 7; 8; 9; 7; 8; 9];

link_matrix (: ,2)=[1; 2; 3; 1; 2; 3; 1; 2; 3];

% Newmark ’s method parameters

gamma_v =1/2;

gamma =1/2;

beta =0.25;

% END OF INPUT
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C.2 Oscillating cylinder problem

C.2.1 Input file

% INPUT FILE FOR THE PROBLEM OF FREE VIBRATIONS OF A CIRCULAR CYLINDER

%Flow parameters

%assumptions : homogeneous fluid and incompressible flow

%parameters for water from the article

rho=1; % kg/m^3

mu=1.33e-3; % Pa.s

% %parameters for silicon oil from the article

% rho =0.956; % kg/m^3

% mu =0.145; % Pa.s

% %parameters for mineral oil from the article

% rho =0.935; % kg/m^3

% mu =0.041; % Pa.s

% %parameters for air from the article

% rho =1.18e-3; % kg/m^3

% mu =1.82e-5; % Pa.s

% Solid parameters

%number of solid DOF

% Mass matrix (3*3, diagonal)

m_matrix_input =0* diag(ones (3 ,1));

m_matrix_input (1 ,1)=3.408e-3; %kg

% Damping matrix

c_matrix_input =0* diag(ones (3 ,1));

% Stiffness matrix

k_matrix_input =0* diag(ones (3 ,1));

k_matrix_input (1 ,1)=34.6113; %kg/s^2=N/m

% Geometrical parameters

d=1.27e-2; %m

D_domain =5*d;

% parameters for mesh generation

narc =10;

nrad =48;

% Time

tt=0.6; %total time (s)

% Increments

dt=1e-3; % Delta_t for water and air

% dt=5e-5; % Delta_t for silicon and mineral oil

n_inc=fix(tt/dt); % # of increments

% Tolerance

tol =10^( -4);
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% Matrices associated with the mesh

[X,Y,link_matrix ,connectivity ,BC] = full_mesh_generation( d,D_domain ,narc ,nrad );

%solid condition: to know if the DOF are fixed or prescribed

% 0 is free , 1 is prescribed

solid_cond =[0 1 1];

% Prescribed_velocity and acceleration

v_input=zeros(narc*nrad *2,1);

a_input=zeros(narc*nrad *2,1);

a_solid_input =[0 0 0];

v_solid_input =[0 0 0];

d_solid_input=zeros(3,n_inc +1);

% Initial conditions

% pressure

p=0;

%p_init=p*ones((narc -1)*(nrad -1) ,1);

p_init=zeros ((narc -1)*nrad ,1);

a_fluid_init=zeros(narc*nrad *2,1);

v_fluid_init=zeros(narc*nrad *2,1);

a_solid_init=zeros (3,1);

v_solid_init=zeros (3,1);

d_solid_init=zeros (3,1);

d_solid_init (1)=d/100;

% Prescribed force

f_input=zeros(narc*nrad *2,1);

% free one of the boundary DOF

BC(433 ,1)=0;

% Newmark ’s method parameters

gamma_v =1/2;

gamma =1/2;

beta =0.25;

%END OF INPUT

C.2.1.1 Mesh generation code

function [X,Y,link ,connect ,BC] = full_mesh_generation( d,D,narc ,nrad )

%Function to generate the axisymmetric mesh using advancing front

% nrad needs to be even

% Initialize X, Y, link (link_matrix), connect (connectivity)

X=zeros(1,narc*nrad); % X and Y inputs are row vectors

Y=zeros(1,narc*nrad);

link=zeros(narc*nrad ,2);

connect=zeros((narc -1)*(nrad -1) ,4);
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e=0;

%R=0;

R=d/2;

for i=1:narc -1

R=R+log10(i)*(D/2-d/2)/(narc -1);

% R=R+r^(i-1)*d/2;

for j=1:nrad -1

theta=(j-1)*pi/(nrad /2);

X((i-1)* nrad+j)=R*cos(theta);

Y((i-1)* nrad+j)=R*sin(theta);

link((i-1)* nrad+j,:)=[j,(narc -1)* nrad+j];

e=e+1;

connect(e ,:)=[(i-1)* nrad+j, i*nrad+j, ...

i*nrad+j+1, (i-1)* nrad+j+1];

end

% j=nrad

theta =(nrad -1)*pi/(nrad /2);

X(i*nrad)=R*cos(theta);

Y(i*nrad)=R*sin(theta);

link(i*nrad ,:)=[ nrad ,narc*nrad];

e=e+1;

connect(e ,:)=[i*nrad , (i+1)*nrad , i*nrad+1, (i-1)* nrad +1];

end

%i=narc; want to make sure R is exactly D/2

R=D/2;

for j=1: nrad

theta =(j-1)*pi/(nrad /2);

X((narc -1)* nrad+j)=R*cos(theta);

Y((narc -1)* nrad+j)=R*sin(theta);

link((narc -1)* nrad+j,:)=[j,(narc -1)* nrad+j];

end

% BC

%0 is free , 1 is fixed , 2 is a prescribed (nonzero) velocity , 3 is a node

%belonging to the interface fluid -solid.

BC=zeros(narc*nrad ,2);

%interface

BC(1:nrad ,:)=3;

%fixed boundary

BC((narc -1)* nrad +1: narc*nrad ,:)=1;

% Symmetric part of the model

end
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