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ABSTRACT 

 

The purpose of this research is to develop MEMS based acoustic emission 

sensors for structural health monitoring. Acoustic emission (AE) is a well-established 

nondestructive testing technique that is typically used to monitor for fatigue cracks in 

structures, leaks in pressurized systems, damages in composite materials or impacts. 

This technology can offer a precise evaluation of structural conditions and allow 

identification of imminent failures or minor failures that can be addressed by planned 

maintenances routines. AE causes a burst of ultrasonic energy that is measured as high 

frequency surface vibrations (30 kHz to 1 MHz) generated by transient elastic waves that 

are typically emitted from growing cracks at the interior of the structure.  

The AE sensor marketplace is currently dominated by bulky and expensive 

piezoelectric transducers that are wired to massive multichannel data acquisition 

systems. These systems are complex to operate with the need of signal conditioning units 

and near proximity pre-amplifiers for each sensor that demands a fairly complicated wiring 

requirements. Furthermore, due to the high prices of conventional AE sensors and 

associated instrumentation, and the current requirements in sensor volumes for smart 

transportation infrastructure, it is undeniable that new AE technology is required for 

affordable structural health monitoring. The new AE technology must deliver comparable 

performance at one or two orders of magnitude lower cost, size and weight. MEMS 

acoustic emission (AE) sensors technology has the potential to resolve several of these 



x 

traditional sensor’s shortcomings with the advantage of possible integration of on-chip 

preamplifier while allowing substantially cost reduction due to the batch processing nature 

of MEMS technology.  

This study will focus on filling some of the major existing gaps between current 

developments in MEMS acoustic emission sensors and commercial piezoelectric 

sensors, such as sensor size, signal-to-noise ratio (SNR), cost and the possibility to 

conform to sharply curved surfaces. Basically, it is proposed to develop a new class of 

micro-machined AE sensors or sensor arrays through strategic design of capacitive and 

piezoelectric MEMS sensors, which will focus on optimizing the following performance 

aspects: 

 Creating geometric designs to manipulate the sensor resonant frequency and to 

optimize Q factor under atmospheric pressure and ambient environment.  

 Developing a strategic selection of materials according to its acoustic impedance 

as insulator, structure and backing material.   

 Developing strategies to improve the signal to noise ratio SNR with and without 

integrated amplification/signal processing. 

 Performing a comparison between MEMS and commercial piezoelectric sensors. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Objective 

This study aims to develop novel batch-producible MEMS acoustic emission (AE) 

sensors with comparable performance to that of traditional piezoelectric sensors, while 

offering reduced cost, size and weight and improved versatility. Consequently, this next 

generation AE technology could provide the asset owners with a powerful monitoring tool 

for real-time assessment of structural integrity by detecting the formation of cracks or 

corrosion issues. 

The main objective of this research is to develop a set of micromachining process 

steps to produce capacitive MEMS AE sensors, within a frequency range between 100 

kHz and 1 MHz. To accomplish this goal, this study designed and developed arrays of 

out-of-plane MEMS electrostatic resonators with narrow gap capacitive transducers and 

well-tailored operation (resonance) frequencies.   

The performance of the proposed sensors will be benchmarked against the latest 

AE MEMS sensor developments that are available in the literature and as well as 

commercial piezoelectric sensors, using the reported AE parameters and damping 

behavior as the key figure of merit. 

In order to optimize the performance of the proposed sensor, the following aspects 

will be studied: 

 Geometric designs to manipulate the sensor resonance frequency.  



 2 

 Multiplexed sensor arrays to boost the electric signal and strategic MEMS 

processing approach to reduce the intrinsic noise. 

 Analysis of the intrinsic damping of out-of-plane capacitive electrostatic resonator 

on its performance as an AE sensor. 

1.2 Motivation 

Structural Health Monitoring (SHM) is the main structural engineering tool to 

prevent and mitigate premature structural damages. The potential ability of SHM systems 

to provide useful information that can avoid a catastrophic failure will have an important 

impact on public safety and economic investments. Modern sensing technologies can 

supply an enormous amount of information of structures conditions, but the added 

expenses need to be balanced with the benefits so that the owners and structures 

operators could agree to invest in these technologies.  

 One of the most popular tools for SHM of structures is the utilization of acoustic 

emission to determine if cracks are growing at the interior of a structure or to monitor its 

degree of deterioration.   Acoustic emissions are elastic waves of short duration and high-

frequency content that are caused by emerging micro fractures in solids and other 

confined events like chemical corrosion and pressure leaks. Common AE transducers are 

piezoelectric, fiber optics sensor and laser interferometers which have the advantage of 

being contactless. However, none of them can compete with piezoelectric acoustic 

emission sensing systems widely utilized by field engineers regarding the cost. 

MEMS technology and its inherent low-cost mass production characteristics have 

the potential to batch-produce AE sensors that are tailored for end applications in 
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structural health monitoring of concrete, steel, and composite structures and rotating 

machinery. 

1.3 Overview 

This work is divided into five chapters and two appendices. In Chapter 1 is the 

dissertation topic and the motivation for this research are introduced. In Chapter 2, the 

pertinent background on AE sensors is presented.  Chapter 3 shows the modeling and 

simulation strategy for capacitive MEMS acoustic emission transducers; the results are 

validated by comparing the simulated response with the experimental behavior of a 

device from the literature. Chapter 4 describes the details of the AE sensor fabrication 

and the experimental results are presented in Chapter 5. Lastly, concluding remarks and 

recommendations for future work are given in Chapter 6. 
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CHAPTER 2: BACKGROUND 
 

AE has drawn greater attention over other non-destructive testing (NDT) 

techniques due its capability to simplify data acquisition accompanied with its high 

sensitivity.  This technology is able to detect AE events caused by micro-cracking in solid 

materials like metals and concrete as well as fiber breakage or matrix cracking in 

composite materials. The waveforms that are acquired contain information about the size, 

type, orientation and location of the AE sources. Hence, if this information is correctly 

analyzed and processed, it’s possible to establish the amount and the type of damages 

within the structure. Furthermore, if this analysis is used to provide inputs for fracture 

mechanics models, then is possible to estimate the remaining life of the structure.  

The first documented research regarding AE was done by Kaiser in 1950  [1], who 

reported that several metals that he examined have exhibited an emission phenome on. 

He concluded that the source of these acoustic vibrations was originated in the boundary 

interfaces of grains, that an amplitude and frequency spectrum exists and was correlated 

to the stress level. Subsequently, the potential of AE was recognized, and investigations 

to correlate it with plastic deformation and crack propagation were reported by Tatro and 

Liptay [2] [3]. By this time, the research on AE was limited to low frequencies in the 60 

kHz range. Dunegan et.al, extended these studies into the 100 kHz to 1 MHz range, which 

was a significant breakthrough as it facilitated the practical application of AE by 

eliminating the need of sound proof facilities to acquire the acoustic signals [4]. 
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2.1 Acoustic Emissions Testing Overview 

Physically, an acoustic emission signal is a transient elastic wave that is produced 

by a release of energy from one or several localized sources [5]. As shown in Figure 1, 

an acoustic emissions measurement system requires at least two fundamental 

constituents: a) a material that undergoes sudden stress redistribution as a consequence 

of a material deformation, which act as a source; and b) transducers that gather the stress 

wave and generates a correlated electrical signal. 

 

 

Figure 1. Basic principle of generation and detection of acoustic emissions. 

 

The detection of an AE event is affected by the characteristics of the stress wave 

mode, the existence of multiple wave paths, wave propagation and attenuation. And the 

advanced algorithm has been used to determine the source location [6]. The AE based 

nondestructive  testing has the following advantages and disadvantages [7]: 
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The advantages are: 

 Possibility to examine large structures using only a small area to localize the 

sensor. 

 The testing can be done during regular service to diminish down time. 

 The structure evaluation and the damage location can be fulfilled in real time. 

 Possibility to define the rate of damage and estimate the structure remaining life. 

 The disadvantages are: 

 The AE event is an irreversible process, which means that once one event is 

over the structure has to be exposed to higher load (stimuli) to generate another event. 

 The quality of the information that can be gathered during a test is highly 

dependent on the background noise like friction, electromagnetic interferences or weather 

conditions.  

 The need to have knowledge about the suspected crack locations and the load 

history to design a test in order to locate the sensor in a reasonable distance from the 

damage sources 

 At least 2 sensors are required to perform a planar flaw location and 3 sensors 

for a 3D crack location. 

2.1.1 Acoustic Emission Wave Characteristics 

A usual AE wave is a mixture of transverse, longitudinal and reflected waves [8] 

and can be divided into two types: continuous and transient signals. Transient signals are 

also called bursts. And as can be seen in Figure 2 (a), a start and end points are evidently 

identifiable from background noise.  Figure 2 (b) presents a continuous AE signal, it can 
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be noted that there are some frequency and amplitude variations but the signal don’t have 

a clear ringing end. 

 

 

Figure 2. Waveforms of typical transient and continuous AE signals. Courtesy of Vallen 
Systeme GmbH. 

 

During a testing procedure the transient AE signals are the useful wave types. 

Meanwhile the continuous signal is unwanted, because this type of AE is an indication of 

background noise such as friction or flow.  So, the best noise existence scenario is when 

only the electrical noise from the amplifier is present [9].  But even under this ideal noise 

scenario, the background noise must be eliminated or minimized for the purpose of AE 

emissions analysis. To do this, the traditional AE emission systems are provided with 

signal processing algorithms to identify and manipulate the AE burst parameters. The key 

parameters are shown in Figure 2 and defined as the following [10]:  

The Threshold is the blue line as shown in Figure 3. This parameter is determined 

by the operator and is the voltage level that needs to be exceeded to be considered as a 
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valid AE signal, when the AE transducer is triggered by an actual AE event. An AE signal 

exceeding the threshold is usually called a hit. 

The Peak Amplitude is the maximum measured voltage in a waveform. This 

parameter determines the detectability of the AE signal.  

The Rise Time is the time elapsed between the first time that the threshold is 

crossed and the moment the peak amplitude is reached. This parameter is a function of 

the wave propagation between the sensor and source, which is used as a measure of 

quality of the signal and can be a condition to filter noise.   

 

 

Figure 3. A conceptual illustration of all the key AE burst signal parameters [10]. 

 
The Duration is the time elapsed between the first time that the threshold is 

reached and the last time it is surpassed. This parameter can be also used to filter noise 

and to identify the type of source.  

The Counts are the number of times that the threshold is crossed. This parameter 

in combination with the duration and the amplitude gives information about the quality of 

the signal.  
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Hence an acoustic emission testing scheme is being designed, these 

aforementioned parameters are preconfigured, followed by installation and calibration of 

the sensors. According to the calibration results and background noise, some parameters 

are adjusted and the test starts by recording each hit that the system collects. The system 

is also programed in such way that when consecutive hits within a specified time interval 

of Δt happen, the system record it and counted as one acoustic event. The time difference 

between the events registration on each sensor is used to localize the source via 

triangulation. When several events tend to cluster in a specific area, it is viewed as an 

indication of a growing flaw/cracks. 

2.1.2 Commercial AE Sensor Characteristics 

Acoustic emission sensors react to dynamic motion that is triggered by an acoustic 

emission event. To accomplish this, the sensor frame contains transducers that convert 

mechanical displacement into a measurable output electrical voltage signal.  Commonly 

the transducer component (often in disk shape) is made of a piezoelectric crystal, such 

as lead zirconate titanate (PZT). The selection characteristics for these transducers are 

sensitivity, operating frequency (typically between 30 KHz and 1 MHz), and environmental 

characteristics.  Usually, the sensitivity of these types of sensors can reach values on the 

orders of 1000V/µm. Hence, a displacement of 0.1 pm produces 100µVpk, which can be 

well differentiated from the electrical noise, that is typically around 10µVpk [9]. 

Figure 4 depicts the typical components that are included in an AE sensor [11]. As 

mentioned above, the core of these sensors is a thick and bulky piezoelectric disk that 

transforms a mechanical deformation into an electrical voltage. This element is attached 

to metal electrodes on both sides for electrical contact and usually the bottom electrode 
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is electrically connected with the metallic case to serve as ground and as electrical 

shielding. In order to optimize the sensitivity characteristic of the piezoelectric transducer 

element, it must be surrounded by a damping material, also called backing material, which 

offers specific mechanical and acoustic properties in order to provide structural support 

and selectable acoustic impedance to control reflections from the surface of the 

piezoelectric transducer. Additionally, a coupling material that is usually a thin gel layer 

used to enhance the acoustic coupling between the sample material and the sensor in 

order to eliminate or reduce the acoustic mismatch between them. In between the 

coupling material and the piezoelectric element, a wear plate is often introduced to avoid 

deterioration and contamination as can be seen in Figure 4.  

 

 

Figure 4. Configuration diagram of a commercial AE sensor [11].  

 

2.1.3 The Drawbacks of the Commercial AE Sensors 

The most commonly employed sensing mechanism in acoustic emissions systems 

is based on bulk piezoelectric transducers. This technology has been studied extensively. 
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Hence, its behavior and limitations are well understood.  The most significant drawback 

of this technology is that it cannot be directly and easily integrated with the accompanying 

electronics. This is highly desirable from the signal-processing perspective to achieve 

monolithic integration with the signal-conditioning circuits on a single chip  [12].  In current 

commercial AE technology, the electronic integration is achieved via cables that hinders 

the best achievable signal-to-noise ratio (SNR) and increases the onsite installation cost.  

Additionally, the traditional piezo-ceramic transducer technology for AE monitoring has 

the following constraints:  

 Traditional piezo-ceramic sensors footprint is typically and approximately 1” (25.4 

mm) in diameter and 1” in height, which makes it difficult to embed these AE sensors in 

structures for monitoring propose to be installed at high volumes. 

 Current commercial sensor cannot discriminate between out-of-plane or in-plane 

AE signals due to its piezoelectric transduction mechanism. But, such an ability would be 

advantageous for damage characterization and damage location. 

 Traditional piezoelectric materials cannot be used above 200C. 

 Traditional piezo transducers cannot be used in structures with complex shapes 

such as sharply curved surfaces or corners. 

2.2 MEMS Acoustic Emissions Sensors Review 

Some of the main concerns with regard to the traditional piezo-ceramic AE sensors 

lie in its high footprint that makes it difficult to be embedded in structures and its high cost 

(a single unit price between $300 and $500) that also prohibits high-volume installation. 

Micro-Electro-Mechanical-Systems (MEMS) technologies have the potential to mass-

produce miniaturized, narrowband, acoustic emission transducers at low cost, which 
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cannot be achieved using conventional bulk piezoelectric transducers. Additionally, a 

MEMS AE sensor could have an electronic integration with amplifiers and antenna for 

remote monitoring, and more importantly, its small size could remove the aperture 

problem that exist between the size on the commercials piezoelectric sensors and the 

input signal wavelength. Several micro-machined AE sensors could be fabricated on the 

same chip and if they are designed for different resonance frequencies as an AE sensor 

array, Hence, it will be possible to detect acoustic emission signal at different frequencies, 

improving the data analysis capabilities to filter undesired noise signals and to have a 

better understanding of the source of the acoustic emissions events. .  

 The transduction mechanisms of the micro-machined MEMS transducers for 

acoustic emission detection applications can be either capacitive or piezoelectric. 

2.2.1 Capacitive MEMS AE Sensors Review 

There are several prior studies on using MEMS fabrication tecnology to produce 

AE capacitive transducers. The first reported work was done by Jones et.al [13]. They 

developed 1 mm2 membranes using silicon nitride with capacitive gaps between 1 to 2 

μm, which were used as capacitive AE transducers with resonacet frequencies between 

100kHz to 250 kHz. The transducers were used to detect AE signals from composite 

materials in an aircraft and were able to detect a ball bearing drop and a pencil break at 

13 cm distance from the mounted transducer. 

In 2003 Oppenheim et.al, fabricated a phased array of polysilicon capacitive 

diaphragms designed for a resonance frequency of 5 MHz in air by using the PolyMUMPs 

(a multi-user shared MEMS foundry) [14]. The device was evaluated successfully to 

detect the distance and direction of an ultrasonic signal. In 2006 Ozevein et.al adapted 
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the geometric designs made by Oppenheim to develop capacitive MEMS AE transducer 

with resonant frequencies between 100 kHz to 500 kHz [15]. Arrays of 49-100 parallel 

plate capacitive transducers, with a total static capacitance between 30-40 pF, were 

fabricated using the PolyMUMPs process to obtain 1.25 μm gaps by using the dimple 

mask. The transducers were tested against traditional piezoelectric transducers, using a 

pre-cracked steel specimen during a four point bending test. As compared with 

commercial sensors, fewer (50%) AE events were detected due lower SNR caused by 

electrical interference. The MEMS AE sensors were 52 times less sensitive than 

commercial piezoelectric transducers.  

 

Figure 5. MEMS AE sensors designed by Ozevin with specially designed dimples [15]. 

 

Figure 5 shows the AE sensor designs, particularly the arrays of vertical capacitive 

transducers that were designed and tested by Ozevin et.al. [15] In particular, Fig. 5 (a) 

presents the top-view of an adapted diaphragm, which initially was used as an acoustic 

transducer, while Fig. 5(b) illustrates a spring type transducers and Fig. 5(c) shows the 
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arras layouts for the transducers. Later in 2007, Wu et.al also developed a resonant 

capacitive MEMS transducer using the PolyMUMPs process. This work has focused on 

means to diminish the squeeze-film damping and increase the Q factor compared with 

previous design [16]. Figure 3 presents the geometric design for the transducer with 

frequencies between 100 kHz and 500 kHz. The redistribution of the etching holes and 

the vacuum sealing of the device result in four fold increase in sensitivity compared to 

earlier designs.  

In 2009, Wright et al. developed a MEMS chip that contains in-plane and out-of-

plane capacitive MEMS transducers, in order to detect different wave modes for acoustic 

emission signals [17], [18]. As shown in Figure 7(a), the in-plane device was an open grill 

design and the out-of-plane one was a finger type design.  

 

 

Figure 6. Illustration of vertical-gap MEMS AE sensors designed by Wu et al. [16] 
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The devices had resonance frequencies between 100 kHz to 500 kHz. Arrays of 

144 out-of-plane transducers, 532 in- plane transducers, with a total static capacitance of 

13 pF and 2.95 pF respectively, were fabricated using the PolyMUMPs process.  

Compared with the previous designs, the chip had an improved (vacuum sealed) package 

and amplifiers design. A noise analysis was performed to confirm that VRMS noise is 

independent of Q. The noise thus consists of a frequency independent component due to 

Johnson noise and a peaked component due to Brownian noise. And it was found that 

the main source of noise was the Amplifier. Furthermore, the open grill design had higher 

Q and sensitivity than others MEMS devices, which is still 24 times less than a commercial 

sensor. Nevertheless, the improved amplifier design reduced the sensitivity difference to 

12 times. Figure 7(b), Illustrates the in-plane device that showed a long ringing response, 

which seems to be problematic.  

 

 

Figure 7. Illustration of MEMS AE sensors designed by Wright [17], [18]. 
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In 2013, Saboonchi and Ozevin manufactured MEMS AE transducers of high 

aspect ratio by using the MetalMUMPs MEMS foundry process. Basically, they leveraged 

a thicker structural layer to increase the equivalent mass without over-dimensioning the 

planar size for low-frequency transducers while retaining the same spring coefficients. It 

is plausible to obtain higher spring coefficient at low resonance frequencies to enable 

application of higher DC voltages to increase the sensitivity. The devices had a resonance 

frequency between 50 kHz to 200 kHz. They made arrays of 55 transducers with a total 

static capacitance between 59 pF and 62 pF.  Compared with the previous designs the 

total gap between the polysilicon layer (stationary layer) and the nickel layer (freely 

moving layer) is reduced to 1.45 µm (1.1 µm air and 0.35 µm silicon nitride). They also 

redesigned the anchor to reduce signal loss so that the devices don’t require any 

amplifying circuitry or filtering. The sensors directionality was evaluated using a point 

source created by a short-pulse laser in the sensing direction. They report that for high 

frequency devices, the acoustic properties of the packaging structure play an important 

role with regards to its impact on sensitivity. Compared with commercial sensors, the 

MEMS devices had similar sensitivity and SNR.  Figure 8 presents SEM photos of the AE 

sensor devices designed by Saboonchi and Ozevin  [19].  

2.2.2 Piezoelectric MEMS AE Sensors Review 

There are only a few studies on micromachined AE piezoelectric transducers. In 

1998, Polla & Francis integrated piezoelectric materials through MEMS processing 

technique for micro-sensor and micro-actuator applications, including AE sensing [20].  

They used thin PZT films with thickness of 0.5 to 1 μm as the piezoelectric element and 

Ti/Pt as electrodes. The design frequencies were 50 kHz to 2 MHz. The AE sensors were 
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tested by minimizing the electromagnetic interferences while using the mechanical pencil 

break method. The measured peak voltage amplitude were 50 to 100 μV without external 

pre-amplification. Figure 9 shows a top-view SEM image of the PZT AE sensor. 

 

 

Figure 8. SEM photos of the MEMS AE sensors designed by Saboonchi and  Ozevin 
[19]. 

In 2013, Chen and Shi used PZT nano active fiber composites, which were 

fabricated by an electrospinning process to obtain AE PZT nanofibers  of approximately 

80 nm in diameter [21]. According to the authors, the transverse piezo-coefficient d33 of 

PZT nanofiber is approximately 0.079 Vm/N, which is considerable higher than that of the 

bulk PZT or microfiber PZT of  0.025 Vm/N and 0.059 Vm/N, respectively. Figure 10 

illustrates the basic sensor configuration and operation concept that consists of PZT 

nanofibers, gold interdigitate electrodes and a PDMS matrix.  For AE testing they used a 

faraday cage to eliminate electromagnetic interference and used a steel bar to generate 

the AE signals that generated a maximum of 0.2V peak voltage. 



 18 

Also in 2013, Pickwell et al. fabricated of a 4.4-μm-thick PZT film on a 110 μm-

thick titanium foil substrate to be used as an acoustic emission sensor and its 

performance was compared with a commercial sensor [22]. The MEMS AE sensor had a 

resonant frequency around 320 MHz, while the commercial sensor had a frequency range 

between 250 kHz and 650 kHz. They made static measurements using the pencil break 

test and a dynamic one using a bearings test bed. The results showed a SNR of 3 for the 

static test and a SNR of 1 for the dynamic test.  Figure 10 shows the MEMS sensor 

designed by Pickwell et.al. 

2.2.3 Drawbacks in the Current Advances on MEMS AE Sensors 

As mentioned above, the most common transduction mechanism used in MEMS 

AE sensor are capacitive and piezoelectric. The drawbacks and performance 

improvement opportunities will be discussed according to each sensing principle as 

follows:  

 

 

Figure 9. Top-view SEM image of the MEMS AE sensor designed by Polla and Francis 
[20]. 
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Figure 10. Conceptual illustration of the MEMS AE sensor designed by Chen and Shi 
[21]. 

  

The main shortcoming of the capacitive MEMS AE sensors is its limited SNR 

performance which is considerably lower than of the commercial piezoelectric sensors. 

Additionally, majority of the research in capacitive MEMS AE sensors is based on MEMS 

foundry processes such as PolyMUMPs or MetalMUMPs. The inherent design constraints 

of these foundry services limit the maneuverability of the designers with regard to 

materials selection, general process geometries and most importantly in terms of the 

signal strength that is determined by the minimal capacitive gap distance between the top 

and bottom electrodes in released and suspended parallel-plate membranes. 

In the piezoelectric MEMS AE sensors the actuation and sensing characteristics 

are proportional to the transducer size, which hinders the performance of the miniaturized 

piezoelectric MEMS AE sensors as compared to the bulky commercial piezoelectric 
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devices. Nevertheless, the considerable smaller foot print of the MEMS devices make 

them an attractive alternative to allow AE technology to be deployed in applications for 

which the bulky commercial piezoelectric AE sensors are ill-suited [23], [24]. Moreover, 

there is a lack of research towards the addition of an acoustically matched backing 

material to improve the properties of the MEMS piezoelectric AE devices by reducing 

waveform reflections from the active boundaries. 

 

 

Figure 11. Photo of the MEMS AE sensor designed by Pickwell et al. [22]. 

        

2.3 Electromechanical Characteristic of Capacitive MEMS Resonators 

Figure 12 illustrates the device configuration and the basic operation principle of a 

capacitive MEMS resonator that is used to detect acoustic emission signals. Basically, 

when an acoustic emission signal u(t) is generated due an energy release from a source 

inside of a material like localized stress energy release, the elastic wave produced cause 

a relative displacement x(t) of the bottom electrode with respect to the top electrode. If a 
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DC bias voltage (Vdc) is present between the electrodes, a time varying motional current 

i(t) is generated and can be converted to a time varying voltage v(t) to be detected and 

acquired later on [7].  

 

 

Figure 12. Schematic and cross-sectional diagrams of an open-grill shaped 
capacitive MEMS AE transducer. 

 

This type of devices can be modeled as a lumped mass-spring-damper system 

that is governed by the following equation [7]: 

 

 mݔሷ + ሶݔܿ + ݔ݇ − ��௟��௧ = ሷݑ݉−  (1)  
 

where k is the spring constant, c is the damping coefficient, m is the mass and Felect is 

electrostatic force that is generated between the two electrodes when de Vdc is applied. 

The resonance frequency is defines as: 

 

 ଴ = ʹ� ଴݂ = √ ݇݉ , ݏ݀�ݎ] ] (2)  
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The dimensionless parameter quality factor that describes the damping 

characteristics is given by: 

 

 Q = ݉଴ܿ  (3)  

 

The capacitance that exist between the two parallel plates or bottom nad top 

electrode can be modeled by: 

 

 C = �଴݃ܣ − ݔ ≈ �଴݃ܣ (ͳ +   (4) (ݔ݃

 

where A is the electrodes area, ϵ0 is the permittivity of free space and g is the static gap 

between electrodes. 

The electrical force Felect can be defined as: 

 

 ��௟��௧ = − ݔ݀݀ (ͳʹ (ଶܸܿ݀ܥ = − ͳʹ ܸ݀ܿଶ ݔ݀݀ ( �଴݃ܣ − (ݔ = ͳʹ ܸ݀ܿଶ �଴݃ܣ −   (5) ݔ

 

for small gaps or  g >> x: 
 

 ��௟��௧ = ͳʹ ܸ݀ܿଶ �଴ܣሺ݃ −   ሻଶ (6)ݔ

 

By consideration Eq. (6) then Eq. (1) can be simplified to an expression that takes 

into account the inertial forces, the damping forces, the electrostatic forces and the 

acceleration of the structure’s surface that is generated as consequence of the incoming 

acoustic emission waves. 
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The lumped mass-spring-damper system in Eq. (1) can be expressed as: 

 

 mݔሷ + ሶݔܿ + ݔ݇ − �଴ܸܿ݀ܣଶʹ݃ଶ = ሷݑ݉−  (7)  

 

According to this equation, the capacitive transducer can be under induced 

displacements in three cases: 

1) Existence of a DC bias voltage with no mechanical excitation: Under this 

scenario, the displacement of the top plate can be described using Eq. 8. 

 

 x = �଴ܸܿ݀ܣଶʹ݇݃ଶ  (8)  

 

then, replacing x in Eq. (4) the following is obtained: 

 

 C = �଴݃ܣ ቆͳ + �଴ܸܿ݀ܣଶʹ݇݃ଷ ቇ = ଴ܥ +   ଵܸ݀ܿଶ (9)ܥ

 

The static capacitance and C1 can be expressed as: 

 

 
଴ܥ = �଴݃ܣ , ଵܥ ݀݊� =  ଴ଶʹ݇݃ଶܥ

(10) 

 

2) If the electrostatic force is equal to the spring force, the voltage applied over the 

capacitance is at a point where if there is a small increase on its value, it will cause the 
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reduction of the distance between the parallel top and bottom electrode until they collapse 

and snap together.  

The pull-in voltage given by: 

 

 ௣ܸ௨௟௟ �௡ = √ ͺ݇݃ଷʹ͹�଴(11) ܣ 

 

3) The existence of mechanical input: Under a mechanical input, the induced 

current will be equal to (the 1st and 2nd components are electrical and motional currents): 

 

 �ሺݐሻ = ݐ݀ܳ݀ = ܥ ݐܸ݀݀ + ܸ ݐܥ݀݀ = ܥ ݐܸ݀݀ + ܸ݀ܿ�଴݃ܣଶ ݐ݀ݔ݀  (12) 

 

2.4 Noise in MEMS Devices 

Noise is often related to a random oscillation of molecules, atoms or electrons. The 

motion of these small particles results in a measurable noise at macro or micro-scale. 

Noise is an essential parameter to be considered in electronic designs, because it 

degrades the performance of electronic systems and limits the output of measurement 

systems like sensors.  In general there are internal and external sources of noise. Internal 

sources are those correlated to the circuit under study, which are caused by resistors, 

transistor amplifiers, etc.; while the external sources are those introduced to the circuit by 

different means.  

In micromechanical sensors and actuators, its performance can be degraded by 

mechanical and electrical input and output noise.  The specific noise source depends on 

the characteristics and physics of the sensor or actuator. But for MEMS devices that 
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usually have static or movable elements at the micrometer scale, the mechanical-thermal 

noise is the main source that limits its performance. In fact, this type of noise defines the 

minimum tolerable size for these devices, even though the thermal noise energy is 

independent of the size of the system. As the devices reduce its size, the signal power is 

ordinarily lower while the noise level tends to increase. Consequently, the device signal 

have tendency to fall below the noise floor [25], [26], [27]. 

2.4.1 Statistical Representation of Noise 

All the electronic systems has some degree of noise that can affect analog or digital 

circuits. The random characteristics of the noise makes it impossible to predict the 

instantaneous value of a measured signal. Nevertheless, it is possible to calculate the 

probability that a signal fall in a specific range. Majority of noise sources have a Gaussian 

probability distribution, then if voltage vn is used as an example of electrical noise, its 

probability distribution will be: 

 

 fሺݒ௡ሻ = ͳݒ௥௠௦√ʹ� ݁− ௩೙మଶ௩ೝ೘ೞ (13) 

  

where ݒ௥௠௦ is the standard deviation of the average voltage. Then the probability that the 

measured noise ݒ௡is in between ݒଵ and ݒଶ is [28]: 

 

 P = ∫ fሺݒ௡ሻ௩మ௩భ  ௡ (14)ݒ݀

 

The mathematical definition for the root mean square voltage ݒ௥௠௦  can then be 

given by Eq. 15. 
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If several noise sources are present, then these must be summed according to its 

correlation. For instance for uncorrelated sources the following Eq. 16 can be used. 

 

௥௠௦ݒ  = lim�→∞ √ͳ� ∑ �௡ଶݒ
௡=ଵ  (15) 

 

௥௠௦,௧௢௧ݒ  = ௥௠௦,ଵଶݒ√ + ௥௠௦,ଶଶݒ +∙∙∙  ௥௠௦,௡ଶ (16)ݒ+

 

On the other hand, if the unwanted noise signals are from correlated sources Eq. 

(17) as below must be used. 

௥௠௦,௧௢௧ݒ  = ௥௠௦,ଵݒ + ௥௠௦,ଶݒ +∙∙∙  ௥௠௦,௡ (17)ݒ+
 

Usually two noise signals are assumed to be uncorrelated, unless they are 

absolutely necessary. 

2.4.2 Noise in Frequency Domain 

In frequency domain a Gaussian noise usually assumed, because it facilitates its 

calculation and because this assumption can take into account the unknown nature of the 

noise. The rms noise represents the amplitude of the noise in the time domain, which 

does not give any information about its characteristics in frequency. This information is 

given by the power spectral density  ݒ௡ଶ̅̅ ̅  and the spectral density ௡̅̅ݒ ̅ = ௡ଶ̅̅ݒ√ ̅ . These 

parameters determines the average amount of noise per unit bandwidth on a specific 

frequency. The root mean square noise or rms noise can be related to the noise spectral 

density by Eq. 18.  
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In any real system, the measured noise is always shaped by its transfer function 

H(f), then the measured noise is given by Eq. 19.  

 

௥௠௦ݒ  = √∫ ௡ଶ̅̅ݒ ̅ሺ݂ሻ݂݀ (18) 

 

௡,௢௨௧ଶ̅̅ݒ  ̅̅ ̅̅ ̅ሺ݂ሻ = |�ሺ݂ሻ|ଶݒ௡ଶ (19) 

 

where �ሺ݂ሻ = ௩೚ೠ೟௩�೙ , then the output rms noise is given by: 

 

௥௠௦ݒ  = √∫|�ሺ݂ሻ|ଶ ݒ௡ଶ̅̅ ̅ሺ݂ሻ݂݀ = ̅̅ ௡ݒ ̅̅ √∫|�ሺ݂ሻ|ଶ ݂݀ (20) 

The noise bandwidth can be modeled as: 

 

ܹܤ  = ͳ|�௣௞|ଶ ∫|�ሺ݂ሻ|ଶ ݂݀ (21) 

 

where |�௣௞| is the peak value of the transfer function, and the vrms noise is:  

 

௥௠௦ݒ  = |�௣௞| √ݒ ܹܤ௡ ̅̅ ̅̅  (22) 

  

2.5 Thermal Noise  

Thermal noise is the intrinsic noise generated by thermal fluctuations generated 

by electrical or mechanical components of the system.  This type of noise can be 

quantified using the equipartition theorem of thermodynamics. For each element that is 
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capable of storing energy independent of other variables (degree of freedom), the 

average thermal energy is ܹ = ଵଶ ݇஻ܶ, where kB is the Boltzmann constant. 

2.5.1 Electrical Thermal Noise  

The thermal noise is the electronic noise produced by the thermal agitation of the 

charge carriers inside an electrical conductor at equilibrium. Is usually called Johnson-

Nyquist noise. It occurs regardless of the applied voltage and its degrees of freedom or 

energy storage elements is often determined by the number of independent capacitors 

plus the number of independent inductors. According to the equipartition theorem, the 

thermal energy stored in a capacitor is: 

 

 ஼ܹ = ͳʹ ௥௠௦ଶݒܥ = ͳʹ ݇஻ܶ (23) 

 

The rms noise voltage for a capacitor is also referred as kTC noise is given by: 

௥௠௦ݒ  = √݇஻ܶܥ  (24) 

 

Similarly, for inductors the stored energy is: 

 

 �ܹ = ��௥௠௦ଶ = ͳʹ ݇஻ܶ (25) 

 

Then the rms noise current for the inductor is given by: 

 

 �௥௠௦ = √݇஻ܶ�  (26) 
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In general, for electrical components, the noise frequency spectrum is defined by 

the damping condition of the system. Then the noise spectral density is related to each 

resistor by: 

 

௡ଶ̅̅ݒ  ̅ = 4݇஻ܴܶ (27) 
 

2.5.2 Mechanical Thermal Noise  

The thermal noise comes from mechanical components is usually known as 

Brownian noise. Similarly to the case for the electrical thermal noise, it depends on the 

energy-storing elements.  MEMS resonators can be modeled as mass-spring-damper 

system as can be seen in Figure 13. In these systems, energy is stored as potential 

energy in the spring and kinetic energy in the mass.  

Then based on the equipartition theorem, it is possible to define the rms noise 

displacement and velocity as follows: 

 

 ௞ܹ�௡ = ͳʹ ሶ௥௠௦ଶݔ݉ = ͳʹ ݇஻ܶ (28) 

 

 ௣ܹ௢௧ = ͳʹ ௥௠௦ଶݔ݇ = ͳʹ ݇஻ܶ (29) 

 

௥௠௦ݔ  = √݇஻ܶ݇  (30) 

 

Similar to that of the electrical thermal noise, the frequency content for the mechanical 

thermal noise is related with the damping as a force noise generator as is expressed in 
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Eq. 31. Where γ is the damping coefficient of the system, kB is the Boltzmann constant 

ant T is the temperature.  

  

 �௡ଶ̅̅̅̅ = 4݇஻ܶ� (31) 
 

2.6 Signal to Noise Ratio  

In every electronic measurement system, it is important to achieve the lowest noise 

floor to maximize performance from the signal acquisition circuitry. Then is critical to 

measure and understand the noise sources in order to be able to attain a good resolution 

from small input signals. These sources can other electrical devices or external machines 

that generate mechanical noise. 

 

 

 
Figure 13. Equivalent rms noise model of a standard mass-spring-damper system. 

�௡ଶ̅̅̅̅ = 4݇஻ܶ� 
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To describe and quantify a sensor performance, it is necessary to calculate its 

signal-to- noise ratio (SNR), which describes the quality of the signal. The SNR is usually 

defined as power ratios in order to make it applicable for most of the situations: 

 

 ܵ�ܴ = ,ݎ݁ݓ݋݌ ݈�݊݃�ݏ ,ݎ݁ݓ݋݌ ݁ݏ�݋�ݏܲ ܲ݊  (32) 

 

In electrical systems, this can be expressed as: 

 

 ܵ�ܴ = ݊ܲ ݏܲ  = ௦ଶݒ ௡ଶݒ⁄ܴ ܴ⁄ =  ௡ଶ (33)ݒ௦ଶݒ

 

or in dB units as the following: 

 ܵ�ܴ = ͳͲ ݈݃݋ଵ଴ ݊ܲ ݏܲ  = ʹͲ ݈݃݋ଵ଴  ௡ (34)ݒ ௦ݒ 
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CHAPTER 3: ACOUSTIC EMISSIONS MODELING 
 

Structural Health Monitoring (SHM) is the main engineering tool to prevent and 

mitigate premature structural collapses. The ability of SHM systems to provide timely and 

accurate information, thus avoiding a catastrophic failure, has a crucial impact on both 

public safety and economic investments. Acoustic Emission (AE) is one of the most 

common nondestructive SHM techniques to determine if cracks are growing at the interior 

of a structure or monitor the degree of structural deterioration. These acoustic emissions 

are short-duration elastic waves (impulses) with high-frequency contents (30 kHz to 1 

MHz) that are triggered by evolving micro- fractures in solids and other confined events 

related to structural integrity, such as chemical corrosion and pressure leaks.  

Between all the current AE technologies, MEMS capacitive acoustic emission (AE) 

transducers have the greatest potential to resolve several shortcomings of the traditional 

piezoelectric sensors with the advantage of possible on-chip integration with preamplifier, 

while allowing a substantial cost reduction due to the batch manufacturing nature of 

MEMS processing technology. 

 In order to evaluate the performance of capacitive acoustic emission sensors, in 

this chapter, a thorough modeling and simulation approach for capacitive MEMS acoustic 

emission transducers is presented and validated by using the experimental behavior of a 

device from the published literature. Furthermore, four revised designs were made, in 

order to explore the effect of the top electrode perforations’ aspect ratio and electrodes’ 
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gap distance on the quality factor, sensitivity, transient response, and signal to noise ratio 

(SNR). Six 3D solid finite element analysis (FEA) models were constructed to perform 

modal and harmonic analysis of the devices with a particular emphasis on their damping 

characteristics. 

3.1 Analytical Modeling 

In Chapter 1, it was mentioned that a parallel plate capacitive actuator could be 

modeled as a lumped mass-spring-damper system that is governed by the equation: 

 

 mݔሷ + ሶݔܿ + ݔ݇ − ௘�௘௖௧ܨ = ሷݑ�−  (1)  
 

where k represents the equivalent stiffness, c accounts for the damping coefficient, m is 

the equivalent mass, and ܨ௘�௘௖௧ is electrostatic force that is generated between the two 

electrodes, when a DC bias voltage (Vdc) is applied. The damping coefficient defines the 

amplitude of an oscillation as a result of energy that comes from an acoustic emission 

event. On the other hand, the stiffness constant can be directly correlated to resonance 

frequency of the acoustic emission sensor. This two parameters and the electrostatic 

force are strongly affected by the top electrode’s geometry as well. In order to study the 

performance of MEMS AE sensors, a similar top electrode design and geometry was 

investigated by Wu et al.  [1], Wright et al. [2] and Saboonchi et al.[3], was adopted to 

simulate the effective electromechanical characteristics and dynamic behaviors. This 

open grill geometry was modified to generate five MEMS AE sensors designs with 

different perforation aspect ratios in order to evaluate the correlation and effect of 

electrodes’ openings dimensions and gap distance between top electrode and substrate 

on squeeze damping, Q-factor, SNR and transient response of the AE sensors. Figure 
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14 depicts the CAD layouts and the key geometries of the top electrodes that have been 

used for the AE sensor design optimization of this work. Basically, as can be seen in Fig. 

14 (a)-(e), the original design was modified by varying the aspect ratio (AR) of the 

perforated holes while retaining the effective electrode area (Ae) and perforated hole area 

(Ah) as close as possible. The exact geometrical layouts and the key lateral dimensions 

for all designs were summarized in Table 1. 

 

 

Figure 14. Illustration of the AE sensor design geometries and key CAD layout (lateral) 
dimensions. 

 
Table 1. A summary of the geometrical designs and key dimensions of the investigated 

AE sensors. 

Device AR Width (W) Length (L) Wh Lh Ae/Ah 

AEs1 1:1 390 µm 400 µm 40 µm 40 µm 1.71 

AEs2 3:1 390 µm 400 µm 60 µm 20 µm 1.60 

AEs3 8:1 390 µm 400 µm 80 µm 10 µm 1.57 

AEs4 16:1 390 µm 400 µm 160 µm 10 µm 1.57 

AEs5 32:1 390 µm 400 µm 320 µm 10 µm 1.57 
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In order to perform the numerical evaluation of equation 1, the stiffness of the 

structure and damping coefficient must be known. Table 2 presents the calculated value 

of the static capacitance, electrostatic force and displacement under a 10V DC bias 

voltage, using equations (6), (8) and (9).  The differences in the calculated parameters 

are due to the slight variances in the overlap area and gap between the electrodes. 

 

Table 2. The values of the key electrical parameters with a DC bias voltage (Vdc = 
10V). 

Device ܥ଴ [pF] ܨ௘�௘௖ [N] x [nm] 

AEs1 0.868 −Ͷ.͵ͺ × ͳͲ−ହ 6.45 

AEs2 0.847 −Ͷ.ʹ͹ × ͳͲ−ହ 6.29 

AEs3 0.84 −Ͷ.ʹͶ × ͳͲ−ହ 6.24 

AEs4 0.84 −Ͷ.ʹͶ × ͳͲ−ହ 6.24 

AEs5 0.84 −Ͷ.ʹͶ × ͳͲ−ହ 6.24 

Saboonchi[10] 0.742 −͵.ʹͻ × ͳͲ−ହ 4.84 

 

3.1.1 Stiffness Constant Calculation 

Amongst MEMS devices, it is prevalent to use the planar flexural mechanism, such 

as supporting beams, due to their ability to have a highly repeatable dynamic behavior. 

The strategically designed support beams also enable a stiffness-based movement 

constraint in order to generate actuation only in the desired direction while limiting the 

other movements due to a drastic stiffness difference. The anchor design adopted in this 

study is a variation of the typical crab-leg supporting beams, where the fixed end of the 

shin shares the same anchor point as shown in Figure 14. This supporting beam 
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arrangement is designed to occupy a less chip area in an array configuration while 

keeping the same flexural behavior of the typical crab-leg supporting beams. Similar to 

commercial AE sensors, this design is gear toward an excellent out-of-plane sensitivity, 

indicating that the beam suspension has to be significantly softer in the z-direction (out-

of-plane) than x and y (in-plane) directions. With the assumption that there is no rotation 

between the fixed anchor points and the suspended proof mass, the following equations 

were used to determine the equivalent stiffness of the flexural supporting beams [4]: 

 

 k௫ = ௕ܮ௕ଷሺͶݓℎܧ + ௕ଷܮ௔ሻܮ� ሺܮ௕ + ௔ሻܮ�  (35)

 

 k௬ = ௕ܮ௔ଷሺݓℎܧ + Ͷ�ܮ௔ሻܮ௔ଷ ሺܮ௕ + ௔ሻܮ�  (36) 

 

 k௭ = Ͷͺܵ௘௔ଶܵ௘௕ଶܮ௕ܮ௔Ͷܵ௘௔ܵ௘௕ଶܮ௔ସܮ௕ + Ͷܵ௘௔ଶܵ௘௕ܮ௔ܮ௕ସ (37)

 

where La and wa are the length and width of the thigh, Lb and wb are the length and width 

of the shin, E is Young’ Modulus of the structural material, h is the thickness.  α represents 

a scaling factor defined as α=(wb/wa)3, while Sea and Seb represent the bending stiffness, 

which are related to Young’s Modulus and moment of inertia by: Sea=EIx,a, Seb=EIx,b. The 

moment of inertia can be calculated as Ix,a=wat3/12 and Ix,b=wbt3/12. As noted earlier, the 

geometric variations were solely applied in the form of the different aspect ratio of the 

perforated holes within the suspended membrane/proof mass, while identical supporting 

beam configuration and dimensions have been used. The calculated equivalent 
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stiffnesses were of the supporting spring under x, y, z axis   ݇௭ = ͸.͹ͻ × ͳͲଷ � ∙ �−ଵ, ݇௬ =ͳ.͵͹ × ͳͲହ� ∙ �−ଵ, ݇௫ = ͷ.͸͵ × ͳͲଷ� ∙ �−ଵ 

3.1.2 Damping Factor Calculation 

The oscillatory motion of the MEMS microstructures is known to be significantly 

affected by the surrounding air [5], [6], [7]. The air generates a force that opposes to the 

vibrational movements and causes a damping effect. This becomes more severe when 

the microstructure oscillates near another surface owing to the squeeze film damping 

created by the trapped viscous gas air between the surfaces [8]. The squeeze-film air 

damping is the dominant energy dissipation mechanism in capacitive MEMS devices with 

a suspended oscillatory proof mass adjacent to a stationary electrode that drastically 

affects the frequency characteristics of these micromechanical structures [6].  

The effects of pressure, viscosity, and inertia in fluids are fully described by the 

Navier-stokes equations. Generally, the behavior of squeeze films is characterized by the 

inertial and viscous effects, but the inertial effects can be ignored due to the tiny 

dimensions of MEMS devices. Hence, the mathematical modeling of squeeze-film 

damping in MEMS devices can be further simplified into the Reynolds equation [9]. For a 

parallel plate transducer, the effects of the fluid squeeze-film damping, under isothermal 

conditions, can be described by Reynolds equation as follows: 

 

 ∇ ∙ (ሺͳ + ͸ܭ௡ሻℎଷሺ ଴ܲ + (݌∇ሻ݌ = ͳʹ� ߲(ሺ ଴ܲ + ݐ߲(ሻℎ݌  (38) 

 

where P0 is the environment pressure, ȝ is the fluid viscosity, p is the amount of pressure 

change with respect the environment and h it’s the air or gas film thickness. Kn is the 
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Knudsen number, that is represented by Ȝ/h, where Ȝ is the mean free path or the average 

distance traveled by a moving particle between collisions. If the film thickness is so small 

in such way that the mean free path became significant with respect to the thickness of 

the film, then a slip-flow condition could occur, and the continuum fluid equations cannot 

describe the flow behavior accurately [10]. 

For Eq. (38) to be applicable, the following assumptions must be valid: the gap is 

small; the pressure distribution across the gap is uniform; the film is isothermal, and the 

fluid velocity normal to the mass surface is negligible. Additionally, if the MEMS devices 

under analysis have small displacements compared with the nominal film thickness value 

(∆h<<h0) and small pressure changes (p<<P0), then Eq. (38) can be linearized into the 

following partial differential equation, which requires less computational power to be 

solved [10]: 

 

 
଴ܲℎ଴ଶͳʹ�௘௙௙ ∇ଶ ଴ܲ݌∆) ) − ݐ߲߲ ଴ܲ݌∆) ) = ݐ߲߲ ( ℎℎ଴) (39)

 

To verify the validity of Eq. (38) and Eq. (39), the Knudsen number (Kn) must lie in 

the slip flow regime (0.01 < Kn < 0.1), is not in this range, some correction factors for the 

fluid viscosity must be included to solve the differential equations. Meanwhile, the 

squeeze number (σ), which measures the degree of fluid compression in squeeze-films 

given by Eq. (40), should be less than 1 or the spring effects become important and need 

to be taken into account in the evaluated system. The σcut-off, is the cut-off squeeze 

number or the value where the damping and spring forces become equal. And it can be 

determined by Eq. (41) [7]. 
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 � = ͳʹ�߱ܮ௦ଶℎ଴ଶ ଴ܲ  (40) 

 

where Ls is the smallest characteristic dimension of the system and ω is the angular 

frequency. 

 

 �௖௨௧−௢௙௙ = �ଶ ቆ�ଶͶ + ͳቇ (41)

 

where χ is the width-to-length ratio of the structure χ = W ⁄ L. 

The mean free path of air at ambient pressure is 68 nm [11], then the calculation 

of the Knudsen number is  Kn = 0.068 for a for devices that have a 1 μm air gap. Based 

on the structure dimensions of the designs under study, the cut-off squeeze number σcut-

off  ≈ 12. Table 3 shows the angular frequency dependent squeeze numbers for each 

design and the limit frequency where the damping force dominates over spring force for 

all the devices under test. 

 

Table 3. Angular frequency dependent squeeze numbers and the limit frequency. 

Device �ሺ߱ሻ fmax (KHz)  

AEs1 ͳ.ͳ͸ × ͳͲ−7߱ ͳ͵͹ 

AEs2 ͸.͵ͷ × ͳͲ−7߱ ʹͷͳ 

AEs3 ʹ.ʹ × ͳͲ−7߱ ͹ʹͷ 

AEs4 ʹ.ʹ × ͳͲ−7߱ ͹ʹͷ 

AEs5 ʹ.ʹ × ͳͲ−7߱ ͹ʹͷ 
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3.1.2.1 Mesh Convergence Study 

The strategically designed AE sensors are composed of rectangular shaped plates 

and planar beams with orthogonal geometry. Thus eight-node Manhattan bricks were 

used as the mesh elements with uniform mesh density as is illustrated in Figure 15. 

Additionally, to have a right balance between computational resources and model 

accuracy, a mesh convergence study was done. Basically, successive mesh refinements 

were performed by isotropically reducing the mesh element sizes. Then a mechanical 

analysis was performed for the different mesh models until the peak proof mass plate 

displacement converges asymptotically.  

 

 

Figure 15. Schematic diagram of the meshed model. Eight-node Manhattan bricks were 
used for the mesh study for the top electrode of the AE sensor. 

 

Figure 15 shows the proof mass plate displacement when a vertical pressure of 

0.001 μN/μm2 is applied to its top surface. Based on these results, from a mesh element 

number of 25,842 and more, the change in variation of the proof mass displacement is 

less than 0.7%. As seen in Figure 16, convergence has been attained with a minimum 
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mesh element number of 3×104 and simulation time is at least 5 times shorter than the 

higher mesh density used in this study. 

 

 

Figure 16. Results of the mesh convergence study. A minimum mesh element number 
of 3×104 is needed. 

 

3.1.3 Damping Coefficient Extraction 

Six 3D solid models were created within FEA tool to extract the damping 

coefficients, then modal and harmonic analysis were performed to identify the resonance 

frequencies of the MEMS structures and to determine the modal deformation 

displacements at the frequencies of interest. These tasks were conducted by using 

Coventorware as an FEA design software that contains a so-called DampingMM module 

to solve Eq. (38) numerically and to extract the damping coefficients for each of the 

relevant degrees of freedom. Figure 17 shows the squeezed-film damping coefficients in 

the z-direction, for the capacitive MEMS AE devices designed in this work and by 

Saboonchi et al. [3] at different frequencies. 
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By comparing these results with the analytical and experimental results reported 

by Saboonchi et al. [3], a small (4%) resonance frequency discrepancy is observed by 

our numerical results. In this prior work, an analytical model was used to calculate an 

anticipated Q value of 114, while their reported experimental results by a standard device 

admittance test and half-power bandwidth method indicated a Q-factor of 6 and 16, 

respectively. The numerical damping model incorporated by this work has led to an 

improved accuracy with 9.5% and 83% discrepancies, which is substantially better than 

180% and 150% differences obtained by Saboonchi et al. by their analytical model [3]. 

 

 

Figure 17. Simulated damping coefficients vs frequency for all the designs under study 
by this work. 

 
Table 4 presents a summary of the key mechanical characteristics of all the 

devices under evaluation, including 5 new designs and a design identical to prior work by 

Saboonchi et al [3].  



45 
 

3.2 Electromechanical Analysis 

The AE sensors investigated in this study leverages electrostatic actuation as its 

electromechanical energy transduction mechanism. The dynamic behavior of this MEMS 

structure is a function of the geometrical design of its moving parts base on perforated 

membranes and its elastic characteristics.  

 

Table 4. A summary of the key mechanical characteristics of the AE devices designed 
and studied by this work. 

Device ଴݂  
Numerical 

଴݂  
Analytical 

kz kx ky c Q 

AEs1 90425.4 97877.9 

   

Ͷͻ.ʹͺ × ͳͲ−ସ 2.07 

AEs2 92342.5 99093.3 ͵Ͳ.ͻ͵ × ͳͲ−ସ 3.3 

AEs3 92899.7 99509.3 ͳͻ.͵͹ × ͳͲ−ସ 5.21 

AEs4 94212.9 99509.3 ʹͷ.͸ × ͳͲ−ସ 3.26 

AEs5 95230.7 99509.3 ͵Ͷ.ͺͷ × ͳͲ−ସ 2.82 

Saboonchi 92341.2 99509.3 ͳͷ.ʹ × ͳͲ−ସ 6.6 

 

Admittance is a measure of how ease an alternating current flow in a circuit or 

device, it’s a vector quantity and its units are Siemens. The admittance tests are generally 

used to characterize the frequency response and the electromechanical coupling 

coefficient of transducers. Admittance is usually defined as the ratio of output current to 

the input voltage when a device is driven by a sinusoidal AC input voltage [12]. The 

following analytical expression for admittance is typically used for an electrostatic 

resonant actuator [12], [13].  
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 � = ଴ܥ݆߱ + ܨ ݆߱߱଴ଶ − ߱ + ݆߱߱଴ ܳ⁄  (42)

 

Eq. (42) correlates the frequency characteristic of a resonant sensor with its 

electrostatic, geometric and structural characteristics. The details of the derivation of this 

equation are given in [14]. Figure 18 shows the simulated admittance amplitude and 

phase plots for the devices under study. The resonance frequencies can be seen more 

clearly in the phase plots presented in Figure 18(b). The admittance magnitude is peaked 

at the resonance frequencies, and the amplitudes are maximized for the design with 

perforation hole’s aspect ratio (AR) of 8:1 that corresponds to AEs 3 that is similar to 

Saboonchi’s design. Also as shown, the design with different perforation hole patterns 

only exhibited slight differences in their resonance frequencies. 

3.3 Sensor Signal-To-Noise Ratio (SNR) 

The performance of micromechanical sensors and actuators can be more severely 

impacted or degraded by mechanical and electrical noise. The specific noise source 

depends on the characteristics and physics of the sensor or actuator. But for MEMS 

devices that typically have static or movable elements at the micrometer scale, the 

mechanical-thermal noise is the main source that limits its performance. In fact, this type 

of noise generally defines the minimum tolerable size for these devices, even though the 

thermal noise energy is independent of the scale of the system.  

As the devices reduce their sizes, the signal power is ordinarily lower while the 

noise level tends to increase in general. Consequently, the device’s signal falls below the 

noise floor [15], [16], [17]. Specifically for AE sensors, the work made by Wu et al. 

demonstrated that main source of noise for the sensor itself is due to Brownian motion 
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[1]. This type of noise It is triggered by the random motion of particles suspended in a 

fluid (air) due to their collisions with the microstructure, thus causing motion of the 

movable parts and inducing a noise current. The rms current value generated by 

Brownian motion is given by [14], [2]: 

 

 

Figure 18. Admittance calculations results. a) Admittance amplitude, b) Admittance 
phase. 

 

 ݅ோ�ௌଶ = (�஽஼ܥ଴݃ )ଶ ݇஻ܶ��ௗ (43)

 

where N is the number of devices, kB is the Boltzmann’s constant and T is the temperature 

in Kelvin.  

In order to quantify a sensor performance, it is necessary to calculate its signal-to-

noise ratio (SNR), which describes the quality of the signal. In this paper, the method 

proposed by Vallen et al. to compare the sensitivity of different AE sensors was adopted, 

where the peak SNR is defined as [18]: 
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 ܵ�ܴ ሺ݀ܤሻ = ͳͲ݃݋ܮ ቆܣ௣_௦�௚௡௔�ܣ௣_௡௢�௦௘ ቇ (44)

 

where, Ap_signal and Ap_noise are the highest peak signal amplitude of the sensing element 

and the highest peak Brownian noise, respectively. It is important to highlight that the 

SNR calculated using only the Brownian noise underestimates its value as compared to 

a measured device with a readout circuit, as the added noise from the amplification 

electronics (e.g., Johnson or thermal noise) was not taken into account [1], [14], [12]. 

However, the fact that this type of noise comes from the MEMS sensor itself make it a 

good reference point to evaluate how the damping coefficient affects the best achievable 

SNR in these type of devices.   

3.4 Dynamic Simulation 

The AE sensor dynamic performance can be modeled by a second-order mass-

spring-damper system with an electrostatic actuation as shown in Eq. (1). This 

mathematical model can be simulated by using MATLAB/Simulink, which is expressly 

instrumental to study systems that are governed by dynamic differential equations. This 

approach has been used to simulate the behaviors of many MEMS devices that are 

described by a second-order mass-spring-damper equation [19], [20], [21], [22], [23].    

To perform the dynamic simulation of the deigned AE sensors, Eq.(1) was 

programmed in MATLAB/Simulink by using a force input that is generated at sensor’s 

boundary by the surface displacement u(t) after an acoustic emission event occurs within 

a material. ASTM approves several methods to simulate AE signal sources in order to 

test or compare the performance of acoustic emission sensors. Sources like pencil lead 

break, gas jet and ultrasonic transducers driven by white noise, sweep or pulse 
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generators can be used for this task [24]. In this work, a pulse generator block is 

introduced as an input into the Simulink model, and its block waveform parameters were 

programmed following ASTM E976 recommendations. Basically, the pulse width should 

be either slightly less than one-half the period of the center frequency of the transducer 

and the pulse repetition rate should be low so that every acoustic wave train is completely 

damped before the next one arrive.  

Figure 19 shows the Simulink’s block diagram for the dynamic modeling of the AE 

sensor. The Brownian noise was modeled as bandwidth-limited white noise source (i.e., 

ideal white noise current) over the entire bandwidth of the system. Its power magnitude 

is calculated by Eq. (18), and the output current generated is proportional top electrode 

velocity given by [14]: 

 

 ݅ሺݐሻ = (�஽஼߳଴݃ܣଶ ) ݐ݀ݔ݀  (45)

 

Eq. (45) can be programmed as a gain that multiplies the velocity of the proof 

mass.  

In typical AE signal, the waveforms initially are direct waves from the source, while 

the latter part are from waves that have been reflected back and forward several times 

before hitting the sensor. In general, a typical AE source motion takes about a few 

microseconds, the wave takes about a millisecond to reach the sensor and the total span 

of the wave is about 1.5 milliseconds [31]. Figure 20 shows the transient response of 

each one of the analyzed sensors after a pulse input signal. In all the devices the 

waveform envelope shows a fast rise, but the decay response differs from one sensor 
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design to another as the damping factor increases. It is evident that the damping 

coefficient strongly affects the overall “ringing” behavior. 

 

 

Figure 19. Block diagram for the Matlab/Simulink dynamic modeling of the AE sensor. 

 

In a typical resonant sensor such as an accelerometer, ringing can be detrimental 

because it increases its settling time while a region beyond the maximum tolerable 

displacement can be reached to damage the sensor due to significant overshoot [25].  

The ringing behavior of an AE sensor needs to be even more carefully evaluated because 

it influences several waveforms parameters including hit counts, rise time, duration and 

energy content, which are used to locate and characterize the AE sources. Meanwhile 

inadequate ringing conditions can lead to distorted AE information content. Particularly, 

the hit count parameter, which is the number of times a signal crosses a preset threshold, 

is evidently affected by the damping characteristics of the transducer, as shown in Figure 

20. For the same pulse signal, if the threshold is around 0.3E-7A, AEs1 is capable of 
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detecting one signal crossing (hit count), while Saboonchi’s sensor can pick up four. 

Therefore, in order to exhibit consistency in AE data interpretation, it is essential to tune 

up the damping characteristics of these type of  MEMS AE transducers. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 20. Simulated time-domain dynamic response of sensors. a) AEs1, b) AEs2, c) 
AEs3, d)AEs5, e) AEs6, and d) Saboonchi [3]. 

 

Figure 21 shows the signal-to-noise ratio (SNR) and the quality factor (Q) for the 

AE devices with different perforation aspect ratios (AR) within the suspended proof 

mass/plate. The SNR is slightly affected by the pattern and aspect ratio perforated holes 

in such way that the device with AR 8:1 (AEs3) have higher SNR even though it has 

slightly less electrode area than those of AR 1:1 (AEs1)  and AR 3:1 (AEs2). This is 

because the current signal is directly proportional to the electrode velocity and higher 

damping coefficient results in a lower peak velocity.  In general, as can be seen in Eq. 
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(3), reduced damping coefficient results in higher Q. The devices with AR 8:1 (i.e., AEs3 

and Saboonchi’s design) have shown higher Q. It is important to highlight that the slight 

difference in the Q value between these devices with same AR can be ascribed to the 

difference in gap distance (1 μm for AEs3 vs. 1.1 μm for Saboonchi’s device). The 

squeeze-film damping effect strongly depends on the gap distance. As a result, the 

damping coefficient of the latter is slightly lower. 

 

 

Figure 21. SNR and Q factor for AE devices composted of perforated plates with 
different perforation aspect ratio (AR). 

 

The effect of the gap can be seen in Figure 22, which shows the SNR and Q values 

for a device with AR 8:1 designed with different capacitive gap distances between 

electrodes. Basically, the SNR decreases with a greater gap distance due to the lower 

capacitance, whereas Q increases with an increased gap spacing due to the lower 
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damping coefficient. For AE applications, SNR ratio can be readily improved by using a 

parallel array of individual transducers to boost the signal and/or improving the readout 

circuit, but the damping characteristics should be managed carefully by tailoring the 

design of the plate perforation and gap spacing between the electrodes to ensure a fast, 

stable and adequate ringing characteristics of the designed MEMS AE sensor. 

 

 

Figure 22. SNR and Q values for a device with AR 8:1 with different capacitive gap 
distances between electrodes. 

 

With this simulation results, it can be stated that although capacitive transducer is 

known to be strongly affected by damping coefficient, a trade-off must be made between 

higher signal strength and damping characteristics of the transducer for the target AE 

sensor application. Although the large electrode surfaces and small gaps required to 

attain proper sensing capacitance, the utilization of bigger electrode surfaces or 

inadequate gaps can lead to inconsistencies in AE data interpretation. In essence, the 
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key parameters used to locate and characterize the AE sources, including hit counts, rise 

time, duration and energy content, can be distorted if the damping behavior of these types 

of transducers is not correctly tuned. 
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CHAPTER 4: AE SENSOR FABRICATION PROCESS 
 

In this work, a versatile fabrication process that offers compatibility with low-cost 

structural materials were developed. Additionally, different material’s alternatives were 

investigated for the bottom and top electrode, the sacrificial layer, and the insulation layer.  

4.1 Bottom Electrode 

 

 

Figure 23. Illustration of the fabricaiton of bottom electrodes by a lift-off process. 

 

The fabrication process starts with a low resistivity silicon wafer coated with 1 μm 

of thermal silicon oxide or 300 nm of Si3N4 as an insulation layer. The wafer is cleaned 

using Acetone, followed by Methanol and DI water. Then the wafer is dried with N2 and 

baked for 5 minutes at a 110 °C to eliminate any humidity traces. Once the wafer has 

cooled down a dual layer spinning and lithography is performed as follows: 

1) Initially, hexamethyldisilazane (HMDS) is spun on the wafer at 3500 rpm for 1 

min. This organosilicon compound is used when the surface of the wafer is coated with 

Si3N4, SiO2 or other oxide starting layers. The reason is that these layers are hydrophilic 
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and have the tendency to absorb water from ambient humidity. The humidity can cause 

that the developer and other chemicals or etchants to penetrate the photoresist and 

generate extreme etch undercutting or the delamination of the photoresist film. The 

application of HMDS ensures photoresist adhesion by attaining the surface 

hydrophobicity required to avoid photoresist delamination [1].  

2) As is showed in Figure 24, the Bottom electrode is fabricated by a lift-off 

technique using an undercut layer in a bi-layer lift-off process. The first layer is composed 

of a Polydimthylglutarimide resist that is commercialized as LOR and can be spun at 

speeds between 2500 and 4500 rpm to obtain different thicknesses between a few 

hundreds of nanometers to several microns. The layer thickness is a crucial parameter to 

be able to achieve a successful lift-off process. Its value will depend on the thickness of 

the deposited film, in such way that the LOR layer should be at least 25% thicker than the 

metal layer. If the layer is too thick, it can generate short circuit problems between nearby 

electrode features, this specifically critical if highly conformal depositions technique such 

as sputtering is employed. Table 5 shows the lithography conditions for the types of LOR 

resist that were used in this research.  

3) For the second layer, AZ 1512 photoresist is used.  Table 5 presents the 

lithography conditions for spinning, soft bake, exposure, hard bake and developing for AZ 

1512. Figure 24 a-c illustrates the lithography sequence for the bi-layer processing for 

achieving a complete develoment of the AZ 1512 photoresist and a suitable undercut 

generated by the etching of the LOR when is exposed to the developer. The lithography 

conditions are demarcated by the type of photoresist that is used because the LOR is not 

UV sensitive. On the other hand,  the undercut rate can be tailored by modifying the LOR’s 
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soft-bake temperature and time; The undercut rate decreases with a higher temperature 

and soft bake times, and the temperature has a higher impact than the soft bake time [2]. 

Figure 25 shows the bottom electrode lithography and the resultant undercut in the LOR 

layer. 

 

 

Figure 24. Step-by-step illustration of the bi-layer lift-off process studied in this work. 
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Figure 25. Top-view microscope photo showing the lithographically defined pattern for 
the bottom electrode. 

 
Table 5. UV lithography process parameters for the bottom electrode lift-off process. 

Photoresist LOR 3B ࡾࡻࡸ ૚૙ࡾࡻࡸ ࡮ ૚૙࡮ 

(Diluted) 

AZ 1512 

Spinnig step 1 [rpm] 

(time [s]) 

500 

(10) 

500 

(10) 

500 

(10) 

500 

(10) 

Spinnig step 2 [rpm] 

(time [s]) 

2000 

(45) 

4500 

(45) 

3750 

(45) 

2500 

(45) 

Soft bake [ºC] 

(time [s]) 

180 

(510) 

180 

(510) 

180 

(510) 

95 

(50) 

Dose [mJ/cm2] NA NA NA 31.7 

Post bake [ºC] 

(time [s]) 

NA NA NA 105 

(50) 

Developer 

(time [s]) 

NA NA NA AZ 726 

(25) 

Layer thickness [µm] 0.350 0.7 0.395 1.1 
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4) Once the lithography step is completed, the wafer is treated with O2 descum at 

50 W and 100 mTorr for 2 minutes to remove any residual photoresist. As is shown in 

Figure 24 c, the next step is to deposit the metal layer for the bottom electrode. In this 

work three materials were studied to be used as a bottom electrode including; 

Molybdenum, Platinum, and Ruthenium. The following properties defined the material 

selections criteria: 

 The resistivity is usually the key characteristic required for thin films that are 

going to be used as an interconnect material in MEMS technology are low contact 

resistivity, low sheet resistance, high electron and stress-migration resistance [3]. 

Between them, an appropriate electrical resistivity is critical to decrease the energy 

dissipation and boost the energy transfer performance of the device [4]. As can be seen 

in Table 6, between the selected materials in this work Molybdenum has the lowest 

resistivity, but Platinum and Ruthenium also have a competitive electrical resistivity [5].  

 

Table 6. Comparison of the key properties of the bottom electrode materials studied by 
this work. 

Electrode 
Material 

Resistivity   ሺρ x ͳͲ-8)  ሺ� ∙  ሻ࢓

Thermal expansion 
coefficient (α x10-6)  

࢓ሺ/࢓  ∙  ሻࡷ
Molybdenum 5.2 5 

Ruthenium 11.5 9.1 

Platinum 10.5 9 

 

 The thermal expansion (α): is a phenomenon that occurs when a temperature 

gradient generates a change in the dimensions of the material. Then a low thermal 
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expansion coefficient is desired for compatibility with other material in contact with the 

bottom electrode. Otherwise, a high mismatch between two adjacent materials can lead 

to development of residual stress that can compromise the device’s structural integrity. 

The bottom electrode layer is going to be in direct contact with the SiO2 insulation layer, 

which has fairl low thermal expansion coefficient α = 0.65 x 10-6 m/(m∙K). Likewise, the 

top electrode as will be described later, could be Molybdenum or nickel (α = 13 x 10-6 

m/(m∙K)) [6], [7]. As can be seen in Table 6, Molybdenum has the closets match in terms 

of its thermal expansion properties with that of the, but Platinum and Ruthenium have 

closets match with Nickel. 

 The bottom electrode layer will be exposed to all the micromachining steps for 

the AE sensor fabrication. It is important that the selected material has an adequate 

chemical and physical compatibility with all the etchants, developers and any other 

reagents that will be in close contact with the electrode. From the selected materials, 

Platinum holds the highest chemical resistance and temperature stability, followed closely 

by Ruthenium while Molybdenum exhibits much poor stability.  

The selected materials were deposited using an AJA Orion 5 sputtering system 

using the process conditions shown in Table 7. It is important to highlight that a good 

adhesion between this layer and the substrate must be guaranteed to have a good 

reliability of the device. Therefore, the substrate must be very clean and is highly 

advantageous to deposit first an oxide forming element between a metal and the SiO2 or 

any oxide layer; this intermediate film allows a continuous transition from one lattice to 

another improving the adhesion properties [8]. Usually, Chrome, Titanium, and Aluminum 

are used as an adhesion layer and provide a good anchor for the subsequent metal layer.  
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In this work Chrome used as an intermediate layer and its sputtering conditions are 

presented in table 7. 

 

Table 7. Sputtering conditions for the bottom electrode materials. 

Electrode 
Material 

Pressure  
(mTorr) 

Power 
(W) 

Time 

(Min) 

Thickness 

(nm) 

Chrome 3 100 14 20 

Molybdenum 3 100  200 

Ruthenium 3 100  160 

Platinum 3 100  200 

 

5) The last step to fabricate the bottom electrode is the lift-off process. The wafer 

is immersed into AZ-400T stripper at 180 °C for 45 to 60 minutes and then is washed with 

DI water. The inverse pattern and the undercut that was created in the bi-layer lithography 

process is used so that the stripper can reach the surface of the substrate. In this way the 

photoresist is used as a sacrificial layer and is washed away, the metal on top is lifted-off 

and is carried away with the sacrificial material, leaving only the desired pattern of the 

bottom electrode on the wafer. Figure 26 illustrates the CAD layout of the bottom 

electrode mask, and the fabricated bottom electrode using the explained process’ 

sequence.  

4.2 Insulation Layer Deposition 

After the fabrication of the bottom electrode, an insulation layer is deposited using 

a Savannah 200 atomic layer deposition (ALD) system.  
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This layer is needed because the AE sensors have a large area and there is a high 

probability that residues from the top electrode fabrication like release features, parts of 

the alignment marks or even from other devices, land near or between the top and bottom 

electrode a create a short circuit between them. Figure 28 presents an example of the 

fabrication’s debris landing in the AE device.  

 

 

Figure 26. Bottom electrode CAD layout and fabrication. a) Bottom electrode CAD 
layout. b) Top-view microscope image of fabricated bottom electrode. 

 

 

Figure 27. Schematic illustration of the insulation layer deposition. 
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This layer is needed because the AE sensors have a large area and there is a high 

probability that residues from the top electrode fabrication like release features, parts of 

the alignment marks or even from other devices, can land near or between the top and 

bottom electrode a create a short circuit between them. Figure 28 presents an example 

of the fabrication’s debris landing inside an AE device causing a short-circuit issue.   

 

 

Figure 28. Top-view microscope image shown fabrication generated debris after the top 
electrode release process. Which might cause short-circuit problems. 

 

In this work we used two materials as an insulation layer; Aluminum oxide (Al2O3) 

and Hafnium oxide (HfO2). Its choice depends on the post-processing approach, if the 

subsequent fabrication process uses Buffered oxide etch (BOE), then HfO2 is used 

preferably because its considerable lower etching rate compared with Al2O3.  

Figure 29 presents the graphics interface of the Savannah atomic layer deposition 

system’s control software. Table shows the ALD deposition process parameters for Al2O3 
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and HfO2 films studied by this work, and all the recipes used to deposit each material 

have been included in Appendix II. 

 

Table 8. ALD deposition process parameters for the two thin films studied in this work. 

 Al2O3 HfO2 

Inner heater temperature (°C) 200 250 

Precursor manifold temperature 
(°C) 

150 150 

Outer heater temperature (°C) 200 200 

Stop valve temperature (°C) 150 150 

Trap / Pump line temperature 
(°C) 

150 150 

Layer thickness [nm] 45 45 

 

 

Figure 29. Graphic interface of the Savannah ALD control software. 
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4.3 Sacrificial Layer Deposition 

 

 

Figure 30. Schematic of the sacrificial layer deposition. 

 
The next step in the fabrication process of capacitive MEMS AE sensors is the 

deposition of a sacrificial layer that will define the gap distance between the top and the 

bottom electrode. The material selected for this purpose will define the releasing process 

of the suspended and perforated metal membrane, which is one of the most critical steps 

in the fabrication of a MEMS capacitive device since the choice of sacrificial material will 

determine the releasing method.  In this work, both wet and dry release methods were 

studied along with two sacrificial layer materials, which are plasma-enhanced chemical 

vapor deposition (PECVD) SiO2 and photoresist. Wet etching of PECVD oxide by buffered 

HF and oxygen plasma dry etching were conducted as the final releasing processes. 

4.3.1 Plasma-Enhanced Chemical Vapor Deposition (PECVD) SiO2 

Silicon dioxide is a common sacrificial layer to release movable mechanical parts 

of MEMS actuators and sensors, it has as advantages such as its compatibility with IC 

processes and its excellent etch selectively to silicon and several IC-compatible metals 

[9]. The main disadvantage of this wet release method is that if the structure is not 

sufficiently stiff, the capillary forces can result in a permanent stiction of the released 

microstructure to the substrate. To prevent this phenomenon, a  variety of techniques 
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have been studied ranging from using an oxide etchant that creates an hydrophobic 

surface [10], a specific rinse-drying approach using low-surface tension alcohols or using 

supercritical carbon dioxide (CO2) drying [11], among others.  

To deposit this material a Plasma-Therm system have been employed by using 

reactive gases in an RF (radio frequency) reactive ion plasma. The plasma enhanced 

chemical vapor deposition (PECVD) system operates at 13.56 MHz, and the specific 

operating parameters to deposit SiO2 are shown in Table 9. 

 

Table 9. PECVD SiO2 deposition parameters. 

 SiO2 

Power (W) 50 Chamber’s tem�erature ሺ°Cሻ 250 Chuck’s tem�erature ሺ°Cሻ 60 

Pressure (mTorr) 800 

N2O flow (sccm) 500 

SiH4 flow (sccm) 110 De�osition rate [μm/hr] 2.3 

 

4.3.2 Photoresist as a Sacrificial Layer 

There are several motivations to use photoresist as a sacrificial layer: it is easy to 

coat; it can be patterned directly; it can be readily dissolved by wet or dry methods without 

the use of strong acids; it is compatible with the processes used in conventional IC 

manufacturing; and it have a low processing cost. However, when the photoresist is used 

as a sacrificial layer, it cannot be processed in the same fashion as in a regular lithography 

step. Even more, if the subsequent step is to deposit a metallization layer through 
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seeding/electro-plating or physical vapor deposition (evaporation or sputtering), more 

precautions are needed. The reason behind this is that the after developing the 

photoresist, it often deforms undesirably after any subsequent heating/baking process 

that is deemed necessary. Figure 31 shows the profilometer-scaned thickness profile of 

AZ 1512 photoresist after a regular UV lithography and a standard post-development hard 

bake at 110 °C for different times. Figure 31a illustrates the patterned thickness profile 

after development when no extra heating is applied,  while Figures 31b, 31c, and 31d 

show the deformation in the profile’s corners after 60, 900 and 2700 second of heating at 

110 °C, respectively..  

 

 

Figure 31. AZ 1512 photoresist profile changes after baking for different time at 110 °C. 
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These sharp corners in the photoresist’s profile become a stress generator after a 

metallization layer is applied on top of the photoresist, which causes that the metal layer 

to crack and delaminate either right after the deposition or after any other subsequent 

heating step. Figure 32 illustrates this phenomenon after a copper layer was sputtered on 

top of the photoresist and heated to prepare for the next lithography step. It can be seen 

that the crack grow mainly from the corner of the big alignment bar feature, the alignment 

marks and the corners of the anchor points. The reason behind this is that the localized 

stresses present in sharp corners or notches could be several times higher than the 

average stress in the thin metal layer. In general, the level of stress intensity is higher due 

to smaller radius of curvature for these sharp edges [12].  

 

 

Figure 32. Cracks growth after a heating step on a copper layer over a photoresist 
sacrificial layer. 
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To reduce the stress concentration issues in the photoresist layer, it is required to 

heat it beyond its reflow temperature to cause the sharp edges to smooth out.  

After several heat treatment experiments, it was found that the best condition to 

avoid the metal crack growth is achieved when the photoresist sacrificial layer is heated 

to 200 °C for 2 minutes. It can be seen in Figure 33 that the patterned photoresist 

thickness profile changes after this heat treatment. The sharp edges disappeared but it 

is also evident that there is a visible geometry change in the intended pattern. Fortunately, 

the fairly small geometrical change is not critical in the fabrication process of the acoustic 

emission sensors in this work.   

 

Figure 33. Patterned photoresist profile change after heating it at 200 °C for 2 minutes. 

 

To be used as sacrificial layers, two photoresists were studied that are AZ 1512 

and AZ 12XT. The former can achieve a range thickness from 1  to 2 μm, while the latter 

allows a thickness range from 4 to 14 μm. Figure 34 and Figure 35 presents the 
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experimental results for these photoresists that correlate the spin speed and the 

photoresist coating thickness.    

 

 

Figure 34. Correlation of the AZ 1512 photoresist thickness vs. spin speed.  

 

 

Figure 35. Correlation of the AZ 12XT photoresist thickness vs. spin speed. 
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4.4 Anchor Patterning 

 

 

Figure 36. Schematic illustration of the device anchor patterning step. 

 

Once the sacrificial layer is chosen and deposited, it is necessary to pattern the 

access to define the anchor points that will allow the ohmic contact between the top 

electrode through the anchor point located on the bottom electrode layer. The processes 

required to achieve this will depend on the sacrificial layer and the insulation layer 

selection as follows: 

4.4.1 HfO2 and SiO2 Sacrificial Layer 

1) For these materials, the fabrication step for the anchor starts with AZ 1512 

lithography as is shown in Table 10.   

Once the lithography step is completed, the wafer is treated with O2 descum 

(ashing) at 50 W and 100 mTorr for 2 minutes to remove any residual photoresist. 

2) Then a SiO2 wet etch is performed using diluted 6:1 Buffer Hydrofluoric Acid 

(BOE) in DI water for 5 minutes or until a visible undercut is achieved as shown in Figure 

37. Since AZ 1512 is formulated to have the best performance during  wet etch 

applications, it is not required to hard bake the photoresist before the BOE wet etch 

procedure. 
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Table 10. UV lithography process conditions for the anchor patterning. 

Photoresist AZ 1512 

Spinnig step 1 [rpm] 

(time [s]) 

500 

(10) 

Spinnig step 2 [rpm] 

(time [s]) 

2500 

(45) 

Soft bake [ºC] 

(time [s]) 

95 

(50) 

Dose [mJ/cm2] 57.6 

Post bake [ºC] 

(time [s]) 

105 

(50) 

Developer 

(time [s]) 

AZ 726 

(25) 

Layer thickness [µm] 1.1 

 

3) After the wet etch step, a reactive ion etching (RIE) process is performed to 

remove the HfO2 layer at the anchor locations. This process was done with an Alcatel 

AMS 100 inductively couple plasma (ICP) etcher. Table 11 presents the RIE parameters 

to etch the HfO2 layer. 

To verify that the HfO2 layer is completely etched, a contact resistivity test is 

performed to check to ensure an ohmic contact between the metal electrodes. 

4.4.2 Al2O3 and Photoresist Sacrificial Layer 

1) For these choice of materials, the fabrication step for the anchor definition starts 

with the lithography of the either choice of photoresist (i.e., AZ 12XT, AZ 1512) that is 

used as sacrifice layer as is shown in Table 12. 
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Once the lithography step is completed, the wafer is treated by an O2 descum 

(ashing) at 50 W and 100 mTorr for 2 minutes to remove any residual photoresist. 

 

 

Figure 37. Top-view photo showing undercut observed after 5 minutes of BOE wet etch. 

 

Table 11. Reactive ion etching (RIE) parameter to etch through the HfO2 layer. 

 HfO2 

ICP Power (W) 600 

Rf Power (W) 200 

Pressure (mTorr) 2 

Ar flow (sccm) 100 

SF6 flow (sccm) 100 

Time (mins) 8 
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2) Then an Al2O3 wet etch is performed using 6:1 Buffer Hydrofluoric Acid (BOE) 

in DI water for 1 minute or until a contact resistivity test shows an ohmic contact between 

the metal electrodes. 

Figure 38 illustrates the CAD layout of the anchor mask and the fabricated wafer 

with the explained device anchor definition processing step.  

 

Table 12. Lithography process conditions for the chosen photoresist sacrificial layer. 

Photoresist AZ 12 XT AZ 1512 

Spinnig step 1 [rpm] 

(time [s]) 

500 

(10) 

500 

(10) 

Spinnig step 2 [rpm] 

(time [s]) 

6000 

(90) 

2500 

(45) 

Soft bake [ºC] 

(time [s]) 

110 

(120) 

95 

(50) 

Dose [mJ/cm2] 124.8 57.6 

Post bake [ºC] 

(time [s]) 

90 

(60) 

105 

(50) 

Developer 

(time [s]) 

AZ 300 

(60) 

AZ 726 

(25) 

Layer thickness [µm] 4.0 1.1 

 

4.5 Electroplating Seed Layer Deposition 

After the anchor patterning, a seed layer deposition is performed using an AJA 

Orion 5 sputtering system. The seed layer is made of a thin layer of titanium that acts as 
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an adhesion layer and a 200 nm-thick copper layer. Table 13 presents the sputtering 

conditions of these materials.  

 

Figure 38. Anchor patterning mask CAD layout and fabrication. a) Anchor mask CAD 
layout. b) Fabricated device structure with anchor patterns defined. 

 

 

Figure 39. Schematic illustration of the seed layer deposition step. 

 

It is worthwhile mentioning that the chosen seed layer material can be easily 

oxidized under atmospheric gas environment,   thus, a suitable low base pressure needs 

to be achieved (at least 3 x 10-6 Torr or lower) and a pre-sputter of titanium for 10 min as 
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a form of the gettering process with the shutter closed needs to be performed before 

sputtering of each material.  

  

Table 13. Sputtering process conditions for the seed layer deposition. 

Electrode 
Material 

Pressure  
(mTorr) 

Power 
(W) 

Time 

(Min) 

Thickness 

(nm) 

Titanium 3 150 8 20 

Copper 3 100 20 200 

 

4.6 Top Electrode Deposition 

The top electrode formation is the most important step for the entire AE sensor 

fabrication because it will define the resonance frequency of the device and its damping 

characteristics. For this purpose, two materials and fabrications process have been 

investigated. 

 

 

Figure 40. Schematic illustration of the top electrode deposition process. 

 
4.6.1 Sputtered Molybdenum as the Top Electrode 

Molybdenum have some interesting electrical and mechanical properties that 

make it very attractive as the structural material of MEMS acoustic emission sensor. As 

compared with Nickel, Molybdenum has a higher conductivity, density, and Young’s 
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modulus. This means that molybdenum can achieve similar resonance frequency 

characteristics by having a considerable less electrode thickness while exhibiting less 

electrical resistance. To study this alternative, the following processing steps were 

explored: 

1) Initially, a dual layer spinning and lithography was made using LOR 30B and AZ 

1512 photoresist. The lithography process parameters are shown in Table 14. 

2) Then 2 microns thick of molybdenum were sputtered using an AJA Orion 5 

sputtering system. Before this step, a thin layer of Chrome that acts as an adhesion layer 

was also sputter deposited. Table 15 presents the sputtering process conditions for 

deposition of these materials.  

 

Table 14. Lithography process parameters for lift-off of the Mo top electrode. 

Photoresist LOR 30B AZ 1512 

Spinnig step 1 [rpm] 

(time [s]) 

500 

(10) 

500 

(10) 

Spinnig step 2 [rpm] 

(time [s]) 

1500 

(45) 

2500 

(45) 

Soft bake [ºC] 

(time [s]) 

180 

(510) 

95 

(50) 

Dose [mJ/cm2] NA 31.7 

Post bake [ºC] 

(time [s]) 

NA 105 

(50) 

Developer 

(time [s]) 

NA AZ 726 

 (25) 

Layer thickness [µm] 3 1.1 
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3) In a similar way to the formation of the bottom electrode (see section 4.1), a lift-

off step is performed by immersing the wafer in AZ-400T photoresist stripper solution at 

60 °C for 45 mins followed by washing with DI water. Figure 41 shows the molybdenum 

top electrode after the lift-off procedure.  

 

Table 15. Sputtering process conditions for deposition of the Cr/Mo top electrode. 

Electrode 
Material 

Pressure  
(mTorr) 

Power 
(W) 

Time 

(Min) 

Thickness 

(nm) 

Chrome 3 100 14 40 

Molybdenum 3 150 95 1045 

 

4.6.2 Nickel Electroplated Top Electrode  

For micromachining purposes, Nickel is an attractive material because of its wide 

range of variation of its alloys’ properties like hardness, magnetic permeability, and 

reflectance. Additionally, when it is deposited by electroplating, a thick layer can be 

produced at low cost and high yield. This last manufacturing related characteristic make 

this material a viable choice as the top structural electrode for the AE sensors proposed 

in this work. Especially for obtain resonance frequencies in the range between 100 kHz 

to 1 MHz, the thickness of the nickel structural layer must be varied between 5 to 20 μm. 

Consequently, nickel electroplating is the most practical way to achieve the relatively thick 

layers to form suspended and perforated top electrode microsctures.  

 The nickel electroplating process starts from the seed layer deposition step (see 

section 4.5) as follows: 
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1) The electroplating mold is made by performing a  AZ 12XT lithography using the 

conditions illustrated in Table 16.  Once the lithography step is completed, the wafer is 

treated with an O2 descum at 50 W and 100 mTorr for 2 minutes to remove any residual 

photoresist. 

 

 

Figure 41. Micro-fabricated Mo top electrode of the AE sensor after the lift-off step. 

 

2) Then one small portion of the photoresist on the edge of the silicon wafer 

substrate is removed by acetone and methanol in such way that the electroplating 

electrode fits and make direct contact with the copper seed layer underneath. Following 

this, the wafer with the lithography-patterned mold is hard baked at 110 °C for 5 minutes.  

3) Prior to the electroplating process, the seed layer needs to be activated by 

removing any oxide residues that can be generated by the O2 plasma descum (ashing) 
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process or the exposure of the copper to the environmental air. To do this, a copper oxide 

wet etch is performed by using a 200:1 solution of DI water to 30% Ammonium Hydroxide 

(NH4OH). The activation is done by soaking the wafer in the solution for 30 seconds, 

followed by washing in abundant DI water. This processing procedures are repeated for 

three times[13].   

Table 16. Lithography process conditions for defining the electroplating mold. 

Photoresist AZ 12XT 

Spinnig step 1 [rpm] 

(time [s]) 

500 

(10) 

Spinnig step 2 [rpm] 

(time [s]) 

1000 

(90) 

Soft bake [ºC] 

(time [s]) 

110 

(120) 

Dose [mJ/cm2] 249.6 

Post bake [ºC] 

(time [s]) 

90 

(60) 

Developer 

(time [s]) 

AZ 300 

(60) 

Layer thickness [µm] 13 

 

4) For the nickel electroplating process, a solution of nickel sulfamate 

(Ni(SO3NH2)2) was used to achieve low stress and high ductility. As is illustrated in Table 

17, the solution was mixed with boric acid to keep the PH value between 3.5 and 4.5 to 

reduce the roughness and pitting, while nickel chloride and sodium lauryl sulfate are 

added to improve the conductivity and to improve the brightness, respectively [14]. The 
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wafer is connected to the cathode or the positive electrode of the current source, while a 

pure Nickel plate is connected to the anode. In the electroplating process when the current 

source is running, the Ni2+ ions are attracted and deposited on the cathode.  

The approximated deposition thickness can be calculated from the current value 

and time with the following equation: 

 

 
� = ͳʹ.ʹ9Ͷ × � × ��  

(46)  

 

where A is the area being electroplated in dm2, T is the thickness (μm) and, I is the current 

in amperes and t is the time of the process in hours. The ratio I/A is the current density. 

The deposition rate is highly dependent on the current density and time, while the 

accuracy of the above equation is affected by the cathode current efficiency that may vary 

from 90% to 97%. Figure 42 illustrates the AE sensor array after the electroplating 

process as explained above. 

4.7 Seed Layer Wet Etch 

Once the electroplating is performed, the seed layer must be removed by wet 

etching in such way that the etchant has a good selectivity with respect the plated nickel 

electrode. Initially, the wafer is diced and the die is soaked for 4 minutes in a 1:1 solution 

of hydrogen peroxide (H2O2) and 30% Ammonium Hydroxide (NH4OH) to remove the 

copper seed layer. Then it is washed with DI water and soaked for 1 minute in a 10: 1 

solution of DI water and Hydrofluoric acid (HF) to also remove the titanium layer. Figure 

43 presents the de AE sensor array after the seed layer removal and before the device’s 

release.  
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Table 17. Composition and processing conditions for nickel electroplating solution 
based on nickel sulfamate. 

Reagent or Condition Value 

Nickel Sulfamateࡺ�ሺࡻࡿ૜ࡺ�૛ሻ૛ 180 
� �⁄  (ρ=1.5gr/cc) 

Nickel Chloride ࢒࡯�ࡺ૛. ��૛� 4.5 
� �⁄  

Boric Acid ࡮ሺࡻ�ሻ૜ 22.5 
� �⁄  

Sodium Lauryl Sulfate ࡯�૜ሺ࡯�૛ሻ૚૚ࡻࡿࡻ૜ࡺ� 
2.7 

� �⁄  

Temperature ͷͲ − ͷͷ0� 

Agitation rate 200 rpm 

Current density  10 ࡭࢓ ⁄૛࢓�  

pH value 3.5-4.5 

 

4.8 AE Sensor Release 

As the last step in the fabrication process, the device must be released and 

suspened before the subsequent acoustic or electrical performance test as an acoustic 

emissions sensor. The release procedure varied according to the selection of the 

sacrificial layer as follows: 

4.8.1 PECVD SiO2 Sacrificial Layer Release Process 

The PECVD silicon dioxide layer was removed by wet etch using a 6:1 Buffer Oxide 

Etch (BOE) solution. The solution was mixed with a 1% in a volume amount of Triton-X 

surfactant, to facilitate the wetting action of BOE in small gaps or geometries, where the 

surface tension will otherwise limit the access of the etchant or produce a very slow etch 

rate. The dies are soaked in BOE solution for ten mins, which were then carefully soaked 

in DI water and dried with N2.  
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Figure 42. Top-view microscope image of the top electrode of the AE sensor fabricated 
by nickel electroplating process. 

 
Table 18. O2 plasma photoresist dry etching parameters by using an ICP etcher. 

Parameters Value 

ICP Power (W) 2800 

Rf Power (W) 200 

Pressure (mTorr) 2 

Ar flow (sccm) 100 

O2 flow (sccm) 100 

Time (mins) 5 

 

4.8.2 Photoresist Sacrificial Layer Release Process 

When the photoresist is chosen as the sacrificial layer, the release process is then 

performed in two steps as follows: 
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1) Initially, the bulk photoresist that is not covered by the structural layer is 

removed using an O2 plasma with an Alcatel AMS 100 inductively coupled plasma (ICP) 

etcher. Table 18 presents the O2 plasma etching parameters to etch the photoresist layer. 

 

Figure 43. Top-view photo of the AE sensor array after the seed layer removal. 

 
2) Then, to remove the remaining photoresist, a Plasma-Therm RIE system is used 

in a plasma etching mode (also known as PE mode).  This mode utilizes a relatively high 

pressure to increase the lateral etching rate by shortening the mean free path. Because 

the photoresist sacrificial layer has to be heated beyond its reflow temperature before the 

nickel electroplating process, this O2 plasma dry etching of baked and harden photoresist 

can be fairly slow. It can take around 3 hours for AZ 1512 and more than 9 hours for AZ 

12XT to be fully removed to form fully released microstructures. To define the required 
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time to release the AE sensor device structure, the top electrode of one of the devices is 

manually removed and checked under the microscope. Figure 44a shows a device with 

the incomplete release, while Figure 44b shows one device that is fully released. Table 

19 shows the etching parameters for the plasma etching system. 

 

 

Figure 44. Top-view photos taken during release test.  a) The bottom electrode after an 
incomplete release step; and b) the bottom electrode after a complete release.   

 

Table 19. Photoresist dry etch process parameters under plasma etching mode. 

Parameters Value 

Power (W) 400 Chuck’s tem�erature ሺ°Cሻ 25 

Pressure (mTorr) 500 

O2 flow (sccm) 200 

Time (sec) 10000 
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CHAPTER 5: RESULTS 
 

5.1 Top Electrode Outcome 

The main purpose of this work was to fabricate and evaluate the performance of 

MEMS Acoustic Emission (AE) sensors.  In Chapter 3, the design and simulation of 

MEMS AE sensors were elaborated, followed by discussion of the device microfabrication 

processes in Chapter 4. Among all the fabrication steps, the top electrode deposition and 

its release process are the most challenging and critical step for achieving a functional 

AE sensor.  In this chapter, the outcome for the two approaches for the fabrication of AE 

sensors will be detailed and compared. 

5.1.1 Sputtered Molybdenum Top Electrode 

In section 4.6.1, the fabrications condition for AE devices with sputtered 

molybdenum top electrode before the release step was described.  However, the built-in 

residual stress of the sputter deposited molybdenum microstructures are deemed to be 

problematic. Figure 45 illustrates the release process for the top electrode of AE sensors 

when sputtered molybdenum is used as the structural material. Figure 45a shows a 

device before the release process, while Figure 45b shows the partially released device 

after a SiO2 wet etching step. It can be seen that the top electrodes are starting to bend 

due to the intrinsic stress of the sputter deposited molybdenum layer. Figure 45c shows 

fully released device where the stress level causes some delamination of some of the 

released top electrode microstructures.  
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Some prior studies have been able to control the stress in sputtered Molybdenum 

thick films by a post-process annealing [1] or using low-pressure sputtering conditions[2]. 

In this work, initially several annealing temperatures were tried to reduce the stress level 

of the sputtered Molybdenum, but as can be seen in Figure 46a and 46b, the annealing 

process under atmospheric conditions not only oxidized the Molybdenum but also didn’t 

solve the residual stress problem completely.  

 

 

Figure 45. Micro-fabricated device with Mo top electrode after release process. The 
SiO2 sacrificial layer is etched away by wet etchant. 

 

Subsequently as a new attempt to reduce the built-in residual stress of the sputter 

deposited Mo layer, the sputtering pressure conditions were changed from 5 mTorr to 3 

mTorr, which is the lowest level of pressure that the AJA ORIN 5 sputtering system can 

be programed.  The yield of the top electrode after release improved and the bending was 

no longer visible under a microscope, but several structures still delaminate after the wet 

etching of SiO2. Based on prior work by Cuthrell et al., a lower sputtering pressure near 

1 mTorr could accomplish a near zero stress level[2].    
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Figure 46. Top-view photos of AE devices after annealing of the Molybdenum top-
electrode layer. a) Annealed top electrode before wet release; and b) Annealed top 

electrode after wet release. 
 

5.1.2 Electroplated Nickel Top Electrode 

As opposed to the sputtered Molybdenum, the electroplated Nickel under the 

process conditions described on section 4.6.2 assured a low-stress deposition. 

Consequently, this was the fabrication approach selected. Figures 47and 48 present the 

CAD designs and top-view microscope photos of the fabricated top electrodes for different 

aspect ratio (AR) and different resonance frequencies.  

Figure 49a and 49b shows SEM photos of an array of Acoustic Emission (AE) 

sensor and the approximated final dimensions of one of the devices with 15:1 perforation 

aspect ratio are also presented. On the other hand, Figure 50 illustrates the device 

thickness profile and vertical/lateral dimensions of the fabricated device. There is visible 

distortion from the designed straight/vertical sidewall profile and the originally 10-µm 

lateral gap spacing. Those alterations are a direct consequence of the alterations in 

geometry owing to the patterned photoresist molding and electroplating process, 
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specifically when the photoresist mold requires a hard baking above its reflow 

temperature and further deformation during the nickel electroplating process. 

 

Figure 47. Top electrode designs (CAD layout) and top-view photos microfabricated AE 
sensors with different resonance frequencies. 

 

5.2 Performance Evaluation of the MEMS Acoustic Emissions Sensor  

To evaluate the performance of the MEMS AE sensor, a basic electrical test must 

be conducted. Figure 51 illustrates the implementation of two test fixtures. Initially, using 

fixture configuration number 1, a connection between the pads for a top electrode at left 

and right of the die must be checked to present a short circuit. The same check is 

conducted for the bottom electrode. This test is performed to verify the integrity of the thin 

metal lines that connect the pads and the electrodes.  

Then, fixture configuration number 2 is used to verify that there is an open circuit 

between the top and bottom electrodes. And the capacitance between them can be 
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roughly measured a by using an LCR meter. Usually, the experimental capacitance lies 

between 250 pF to 480 pF that matches with the designed values quite well.  

 

 

Figure 48. Top electrode designs (CAD layout) and top-view photos microfabricated AE 
sensors with different perforation AR’s. 

 
An additional functionality test is then conducted by performing capacitance-

voltage or C-V measurement that measures the capacitance of the device while a varied 

DC voltage is applied between the top and bottom electrodes. Figure 52 presents the 

measured C-V characteristics of one of the fully released capacitive MEMS AE sensor 
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devices. As shown, the measured capacitance increases as the bias voltage increases 

between the bottom and a top electrode, thus causing the capacitive gap between them 

to decrease due to the generation of the electrostatic force.  

 

 

Figure 49. Zoom-out and zoom-in top-view SEM images. a) An array of AR 15:1 AE 
sensor devices; and b) measured key lateral dimensions of one device with perforation 

aspect ratio (AR) of 15:1 
 

 

Figure 50. Schematic-view SEM image of a fabricated AE sensor device. It shows its 
structure, thickness profile, and a key lateral dimension. 
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Figure 51. Basic electrical test fixture. 

 

Once the initial electrical test and verification steps are done, the device is taken 

to a probe station under a test configuration shown in Figure 53. Basically, the top 

electrode is biased using a Hewlett Packard E3620A power supply, while the bottom 

electrode is the DC grounded with its AC output goes to a readout circuit and data 

acquisition unit (i.e. 1283 USB AE node), which is a single channel acoustic emission 

digital signal processor. This highly specialized AE sensor data acquisition unit can 

accept single-ended or differential AE sensor output, it also has a built-in internal 

preamplifier as well as analog and programmable digital filters. Then the specialized 

software AEwinTM is used for real-time waveform processing and analysis. 
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Figure 52. Measured C-V response of one of the fully released capacitive MEMS AE 
sensors. 

 

 

Figure 53. Capacitive MEMS AE sensor testing setup showing its key biasing/readout 
circuits. 

 

To evaluate the MEMS acoustic emission sensor, an artificial AE signals source is 

required. Ideally, the AE source should produce a standard acoustic emission in the form 
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of a short duration pulse with controllable amplitude, at an arbitrarily location [3]. The 

typical standard acoustics emission sources include electrically driven ultrasonic 

transducer, a pencil lead break, a gas jet, spark impact, ball impact, a capillary break, 

between others [4], [5]. Between them, the ball impact source has the advantage that the 

absolute amplitude of the seismic waves can be associated with the momentum of the 

ball, that is a function of its mass and drop height.  

Figure 54 depicts the acoustic emission testing setup where a ball drop testing 

fixture is used to generate artificial AE signals. A small steel ball is dropped from a fixed 

height at less than 2 inches distance away from the acoustic emission sensor, and the 

induced capacitive MEMS AE senor signals are recorded by the USB 1283 USB AE node 

and the AEwinTM software for further analysis.   

 

 

Figure 54. Capacitive MEMS AE sensor testing setup equipped with a ball dropping 
fixture for artificial AE signal generations. 
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5.2.1 Testing of the MEMS AE Sensor  

Initially, the AE acquisition system setup is created by defining the acoustic 

emission parameters and the detected real-time waveform plots. The setting of the timing 

parameters, such as Peak Definition Time (PDT), Hit Definition Time (HDT) and Hit 

Lockout Time (HLT) are not critical for most regular AE tests, and the recommended 

default values were used. The PDT that measures the rise time was set to 200 μsec, the 

HDT that defines when a hit has ended was set to 800 μsec and the HLT that defines a 

“dead time” after the end of a hit, was set to 1000 μsec. Additionally, the Max duration, 

which sets a limit to a maximum duration allowed for a hit, was set to 1000 μsec. Firstly, 

the threshold was set to 40 dB, but the amount of noise clearly shows that the probe 

station is not the ideal setup for characterizing this type of AE sensor device and a senor 

package must be designed and implemented to reduce the mechanical and electrical 

noise for the future work. Then to reject the ambient mechanical vibration noise, the 

threshold was set to 70 Db.  

Using the acoustic emission parameters as described above, an R15A Alpha 

Series piezoelectric sensor is used as a reference device and connected in replacement 

of the MEMS AE sensor as shown in Figure 54. Then the steel ball drop tests were 

conducted for several times while recording the signals continuously. Figure 55 shows a 

3D scatter plot that illustrates the acoustic emission (AE) hits, its arrival, and its amplitude 

during the test. Figure 56 shows the power spectrum of the signals while Figure 57 

presents the time domain waveforms of the AE event. The same test is performed with 

the capacitive MEMS AE sensor connected as shown in Figure 53. The same real-time 

AE signal plots are presented in Figures 57, 58 and 59.  
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There is a notable difference in the dynamic response of the two kinds of sensors, 

is evident that the squeeze film damping of the capacitive devices is limiting its ringing 

behavior. On the other hand, there is also a difference in the frequency spectrum of the 

studied sensors. Initially is important to highlight that the USB 1283 USB AE node uses 

an analog passband filter that attenuates any undesired signal outside of the range 

between 100 to 600 kHz. Comparing figures 55 and 58 is noticeable that there is a more 

resonant response in piezoelectric sensor around its 150 kHz resonant frequency, while 

the MEMS AE sensors are showing and wider band signal but with lower power levels. 

This behavior can be explained by the fact that the resonant frequencies are highly 

influenced by the thickness of the top electrode structure, and the devices tested in this 

work have a thickness around ten μm and then a resonant frequency below a 100 KHz. 

 

 

Figure 55. Amplitude (dB) vs hits vs time (sec) of the R15A piezoelectric sensor. 
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Figure 56. Power spectrum plot of the R15A piezoelectric sensor. 

 

 
 

Figure 57. Voltage (mVolts) vs. time (sec) waveform of the R15A piezoelectric sensor. 
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Figure 58. Amplitude (dB) vs. hits vs. time (sec) of one of the MEMS AE sensors 

 

 

Figure 59. Power spectrum plot of one of the MEMS AE sensor 
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Figure 60. Voltage (mVolts) vs. time (sec) waveform of the MEMS AE sensors 

 
One of the main tasks of this work is to explore how the damping is affecting the 

performance of the MEMS AE sensor compared with commercial AE sensor. As was 

stated in chapter 3, to study the damping effect on MEMS AE sensors a top electrode 

open grill geometry was modified to generate five MEMS AE sensors designs with 

different perforation aspect ratios. These designs were fabricated as was explained in 

chapter 4 and experimentally tested as described above. To compare the performance of 

the commercial AE sensor and the MEMS AE sensor the following parameters were 

measured:  
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 The number of Counts or the times that the signal crosses the demarcated trigger 

threshold. 

 Duration is the time difference among the first threshold crossing and the last 

one. 

 Energy or MARSE energy (Measured Area under the Rectified Signal Envelope). 

 Amplitude is the highest measured voltage in a waveform. 

 Strength is the integral of the rectified voltage signal over the duration of a hit. 

 Absolute Energy, The integral of the squared voltage signal above the threshold 

divided by the reference resistance during a hit.  

 SNR or Signal to Noise Ratio. 

 Q, or quality factor related to the squeeze damping.   

These acoustic emission parameters were selected because are closely related to 

the signal waveform shape and are typically used to filter out unwanted signal or for post-

processing analyses. Between them, the related energy parameters (Energy, Absolute 

Energy and Strength) are interrelated with the area under the waveform envelope. Then 

the discrepancies in these parameter between the two types of sensors analyzed in this 

work could make a high impact in considering the signal a valid acoustic emission event 

and in the further analysis of the nature of the acoustic emission source. 

In table 20 are summarized the simulated and experimental results for the 

designed MEMS AE sensors with different aspect ratios. Furthermore, in table 21 are 

presented the differences in the acoustic emission parameters for the designed devices 

and the commercial piezoelectric sensor (the data for the AR 32:1 couldn’t be collected). 

The signal to noise ratio was calculated using equation 42 from chapter 3, and the Q 
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factor was calculated using the experimental ring down method (the details of this method 

are presented in Appendix C). 

 
Table 20. Comparison of the simulated and experimental AE signals 

AE sensor Simulated Signal Experimental signal 

AR 1:1 

 

AR 3:1 

  

AR 8:1 
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Table 20. (Continued) 

Ar 16:1 

  

 

Table 21. Experimental AE parameters of the evaluated sensors. 

AE sensor R-150A AR 1:1 AR 3:1 AR 8:1 AR 16:1 

Counts  8  1  1  5  1 

Duration (μs)  412  1  1  7  1 Energy ሺμV·sሻ 95  1  1 4  1 

Amplitude (dB) 76 72 72 76 71 

Strength (pV·s) 595E3  2.53 2.53 27E3 2.34E3 

Absolute Energy 

(aJ) 
153E3 700 700 12.4E3 747 

SNR  16.2  14.3  14.3  22.16 16.7 

Q 15 1.82  1.82  9.06 1.82  

 
This result shows a close fit between the simulated and experimental results that 

evidence that the squeeze damping between the parallel electrodes is remarkably 

affecting the dynamic behavior of the device as an AE sensor. This statement is backed 

up by the AE parameters measurements that show that even that both types of sensors 

have a similar amplitude, the waveform related parameters are significantly different and 
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can lead to inconsistencies in AE data interpretation. In essence, the key parameters 

used to locate and characterize the AE sources, including hit counts, rise time, duration 

and energy content, can be distorted if the damping behavior of these types of 

transducers is not correctly tuned. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 

This work was concentrated on the design, fabrication and preliminary testing of 

MEMS acoustic emission (AE) sensors based on capacitive transduction mechanism. A 

thorough modeling and simulation approach for out-of-plane capacitive MEMS acoustic 

emission transducers was systematically pursued by using finite element analysis (FEA) 

models with particular emphasis on their damping characteristics. Additionally, a second 

order equivalent mass-spring-damper model together with an electrostatic actuation was 

rigorously programmed using MATLAB/Simulink to evaluate the key parameters under 

study and to analyze the transient response of this transducer and the key performance 

limiting factors  for several capacitive MEMS AE sensor designs as a detector of acoustic 

emission signals. To validate these simulation results, customized and highly versatile 

fabrication method was developed and performed to construct the designed capacitive 

MEMS AE sensors through a mass-manufacturing amenable process sequence. Then 

the newly designed MEMS AE sensor devices were tested using a dedicated commercial 

acoustic emissions signal acquisition module and software to evaluate its performance 

as AE sensor as compared with a commercial piezoelectric device. 

6.1 Conclusions 

After this dissertation research study the following conclusions were made: 

 The bottom electrode fabrication was fabricated using lift-off technique using an 

undercut layer in a bi-layer lift-off process. This process is ideal for this purpose, but the 
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LOR thickness needs to be carefully defined. Because if the layer is too thick, it can 

generate short circuit problems between nearby electrode features. This is specifically 

critical when highly conformal depositions techniques such as sputtering is utilized.  

Moreover, three materials were studied in this work as a viable bottom electrode material, 

including Molybdenum, Platinum, and Ruthenium. All three of them have low resistivity, 

and adequate thermal expansion properties. But molybdenum have process compatibility 

issues when a long exposure to hydrofluoric acid or BOE etchants is necessary.    

 Between the bottom and top electrodes, an insulation layer is required. The 

reason is that AE sensors have a large area, and there is a high probability that residues 

from the top electrode fabrication such as released or lift-off features, such as parts of the 

alignment marks, can land near or between the top and bottom electrodes to create a 

short circuit between them. 

 The selection of the sacrificial material will define the releasing process of the 

suspended and perforated metal membrane as the top electrode of the capacitive MEMS 

transducers. This is one of the most critical steps in the entire fabrication process of a 

MEMS capacitive device since its choice will determine the nature of release method (i.e. 

wet or dry release).  In this work, both release methods were studied using the two chosen 

sacrificial layer materials, which were plasma-enhanced chemical vapor deposited 

(PECVD) SiO2 and photoresist. Even though both methods have led to funcational 

devices, the use of photoresist as a sacrificial layer will require it to be heated beyond its 

reflow temperature to reduce stress concentration issue to prevent crack formation and 

delamination during the subsequent metal layer depositions or any other post-deposition 

heating step. 
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 Two approaches were studied for the top electrode microfabrication, including 

sputtered deposited Molybdenum thin film and nickel electroplating. The former was not 

successful due to the intrinsic stress generated during the Mo sputtering deposition. A 

higher vacuum deposition condition (1mTorr or below) will be needed to deposit stress-

free Mo layer by using this fabrication technique. On the other hand, nickel electroplating 

process have been successfully demonstrated as a reliable and quick method for the 

fabrication of top electrode microstructure.  

 To evaluate the functionality of the MEMS AE sensor, a basic electrical test must 

be conducted. A connection between the pads for a top electrode need to be checked to 

present a short circuit. The same test should done for the bottom electrode. This test is 

performed to verify the integrity of the thin metal lines that connect the pads and the 

electrodes. Additionally, a similar test need to be done to verify an open circuit condition 

between the top and bottom electrodes. , that there is The effective capacitance between 

the top and bottom electrodes needs to tested by a LCR meter. The measured 

capacitance for the proposed AE sensor designs should lie between 250 pF to 480 pF. 

 There is a notable difference in the dynamic responses of the commercial and 

the MEMS AE sensor, the squeeze-film damping of the capacitive MEMS devices limits 

its ringing behavior. Meanwhile, there is also a difference in the frequency characteristics 

of the studied sensors. There is a detectable resonance response for the piezoelectric 

sensor around its 150 kHz resonance frequency, while the MEMS AE sensors showing a 

wider band signal but with lower signal power levels. This behavior can be explained by 

the fact that the resonance frequencies are highly influenced by the thickness of the 

released top electrode structure, and the devices tested in this work have a thickness 
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around 10 μm and a corresponding resonance frequencies below a 100 kHz, which is 

below the cutoff frequency of (outside the passband) the dedicated AE sensor data 

acquisition system. 

There is a close fit between the simulated and experimental results that serve as 

a strong evidence that the squeeze-film damping between the parallel electrodes 

drastically affect the dynamic behavior of the capacitive MEMS device as an AE sensor. 

This statement is backed up by the measurements of the AE parameters that indicate 

that even though t both types of sensors have exhibited a similar amplitude, the waveform 

related parameters are significantly different and can lead to inconsistencies in AE data 

interpretation. In essence, the key parameters used to locate and characterize the AE 

sources, including hit counts, rise time, duration and energy content, can be distorted if 

the damping behavior of these types of capacitive MEMS AE transducers is not correctly 

tuned to precisely match with the commercial piezo transcuers. 

To compare the performance of the commercial AE sensor and the MEMS AE 

sensors, acoustic emission parameters that are closely related to the signal waveform 

and typically used to filter out unwanted signal during post-processing analyses were 

selected.  From the results, the following can be concluded on each parameter: 

 Counts: the devices with designed perforation aspect ratio (AR) of 1:1, 3:1 and 

16:1 had only one count, while the best design with perforation aspect ratio (AR) of 8:1 

had rendered 5 counts. As a comparison, the commercial sensor picked up 8 AE counts 

for the same input signal by the ball-drop test. The squeeze-film damping of MEMS AE 

sensors still caused  a slightly lower Q and more damped ringing characteristic, which 

could lead to these aforementioned AE signal discrepancies. But, it is quite plausible to 
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further improve the ambient Q of MEMS AE sensors to match that of the commercial 

piezoelectric transducers on the order of 15 or so by further optimizing the device 

perforation patterns and capacitive gaps spacing.  

 Duration: All the devices showed a considerable short duration (between 1 to 7 

μs) as compared to 412 μs of the commercial sensor. Depending on the type of flaw that 

the AE analysis is target for in its monitoring task, the short duration can be adjusted by 

a filtering parameter during post-processing analysis.  

 Amplitude: The commercial AE sensor and the MEMS AE sensor showed a 

similar and quite comparable amplitude when responding to the same signal input. 

 Energy, Strength and Absolute Energy are AE parameters used to measure the 

signal impact energy and they are usually used to identify the type of wave source. All the 

capacitive MEMS AE devices acquired a very low energy content from the input signal, 

which can lead to wrong interpretation of the signal source. 

It is important to highlight that even though the damping characteristics have a 

strong influence on the differences in the device behavior based on the captured AE 

parameters.These differences can be mitigated by setting a higher threshold value during 

the experiments. If a better insulation of the environmental noise can be achieved most 

likely from a well packaged sensor that enable direct testing of a packaged sensor without 

the usage of a probe station, the difference can be decreased. Overall, it is anticipated 

that the capacitive MEMS AE sensors based on the proposed device configuration with 

further optimized designs of perforation patterns and capacitive gap spacing to reduce 

squeeze-film damping can result in AE performance on par with commercial bulky piezo-

ceramic AE transducers.  
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 6.2 Future Work 

The traditional piezo-ceramic AE sensors have a high footprint that makes it 

difficult to be embedded in structures and costly (a single unit price between $300 and 

$500), thus preventing high-volume installation and continuing structural health 

monitoring. On the other hand, Micro-Electro-Mechanical-Systems (MEMS) technologies 

have the potential to enable mass-production of miniaturized, narrowband, acoustic 

emission transducers at low cost, which cannot be achieved using conventional bulk 

piezoelectric materials. Additionally, a MEMS AE sensor could have an electronic 

integration with amplifiers and antenna for remote monitoring, and more importantly, its 

small size could remove the aperture problem that exist between the size on the 

commercials piezoelectric sensors and the input signal wavelength. Several micro-

machined AE sensors could be fabricated on the same chip and if they are designed for 

different resonance frequencies as an AE sensor array. Hence, it will be possible to detect 

acoustic emission signal at different frequencies, improving the data analysis capabilities 

to filter undesired noise signals and to have a better understanding of the source of the 

acoustic emissions events. Moreover, if a capacitive transduction mechanism is used, 

then AE sensors could be used even under harsh environments (high temperature or 

corrosive environments) that cannot be accessed by the current sensor technology. 

The Capacitive MEMS AE sensor still has plenty of room for improvements. Based 

on the presented work, the following are the suggestions by the author: 

 To improve the dry release method and the top electrode patterning, a better 

sacrificial layer needs to be used. According to some of the latest preliminary test results 
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LOR seems to be an interesting alternative, which can be readily removed by wet release 

without the need of harsh acids. 

 The amount of ambient noise pick up by the probe station indicated that it is not 

the ideal setup for testing the AE responses of the capacitive MEMS AE sensors. A better 

insulation from the environment to reduce the mechanical noise must be exploited along 

with a strategically designed package that help to reduce the electrical noise while 

keeping a suitable acoustic impedance with the analyzed materials. With a fully packaged 

MEMS AE sensor, direct mounting with an ideal coupling material to the material/structure 

under test can be performance to allow minimal ambient mechanical noise influence.  

 To improve the damping conditions of the devices, the use of vacuum, new 

geometries, and properly designed gap distances should be explored,  to achieve better 

AE signal levels. The damping should be tuned to guarantee that the MEMS AE sensor 

acquires the same AE parameter specific information identical to that of the commercial 

piezo-ceramic AE transducers.   
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APPENDIX A: COPYRIGHT PERMISSIONS 

 

The permission below is for the use of Figure 2 
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The permission below is for the use of Figure 3 
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The permission below is for the use of Figure 3 
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The permission below is for the use of Figure 5 
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The permission below is for the use of Figure 6 
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The permission below is for the use of Figure 8 
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The permission below is for the use of Figure 9 
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The permission below is for the use of Figure 10 
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The permission below is for the use of Figure 11 
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APPENDIX B: ATOMIC LAYER DEPOSITIONS (ALD) RECIPES 

 

Table B1 presents the program used by the Savanah Atomic Layer Deposition 

System to deposit 45 nm of Al2O3 thin film.  

 

Table B1. Program steps for the deposition of Al2O3 thin film by the Savanah ALD tool. 

 Instruction # Value 

0 heater 9 200 

1 heater 8 200 

2 stabilize 9  

3 stabilize 8  

4 Wait 5  

5 Flow  20 

6 Pulse 0 0.015 

7 Wait 15  

8 Pulse 3 0.015 

9 Wait 15  

10 goto 6 450 

11 heater 9 150 

12 heater 8 150 

13 Flow  5 
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Table B2 show the program used the Savanah Atomic Layer Deposition System 

to deposit 45 nm of HfO2 thin film. 

 

Table B2. Program steps for the deposition of HfO2 thin film by the Savanah ALD tool. 

 Instruction # Value 

0 heater 9 200 

1 heater 8 75 

2 heater 14 75 

3 stabilize 9  

4 stabilize 8  

5 stabilize 14  

6 Wait 10  

7 Flow  20 

8 Pulse 0 0.015 

9 Wait 25  

10 Pulse 4 0.4 

11 Wait 25  

12 goto 6 450 

13 heater 9 150 

14 heater 8 150 

15 heater 14 0 

16 Flow  5 
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APPENDIX C: RING DOWN METHOD TO CALCULATE DEVICE Q-FACTOR 

 

Figure C1 presents a damped oscillation waveform u(t), and its envelope amplitude 

decreases exponentially following the equation below: 

 

ሻݐሺݑ  = �− �2��  (C1) 

 

where U0 is a constant equal to the maximum peak of the oscillatory waveform at u(0), 

and Q is the quality factor. Then the time when u(t) equals to the half of the maximum 

value will be:  

 

 ܷ0�− �2�� = ܷ0ʹ
 (C2) 

 

Using the natural logarithm function this expression will be simplified as: 

 

 
�ʹ� ݐ = ��ሺʹሻ (C3) 

 

If is considered that the number of cycles N in a period T is defined as N=1/T, then 

Eq. (C2) can be rewritten as: 

 
ͳʹ� ʹ�ܶ �ܶ = ��ሺʹሻ (C4) 
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Figure C1. Envelope of a damped oscillation signal in its time-domain waveform. 

 

By solving for Q, the following expression is obtained: 

 � ≅ Ͷ.ͷ͵� (C3) 

 

Using the methodology above, the Q factors for the experimental waveforms were 

calculated as follows: 

 

Figure C2. Q factor for the R-150A AE sensor. 
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Figure C3. Determination of the Q factor for the AR 1:1 AE sensor. 

 

 

Figure C4. Determination of the Q factor for the AR 3:1 AE sensor. 

 

 

Figure C5. Determination of the Q factor for the AR 8:1 AE sensor. 
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Figure C6. Determination of the Q factor for the AR 16:1 AE sensor. 
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APPENDIX D: FABRICATION PROCESS FOR THE PLATED NICKEL AE SENSORS 

 

1) Samples cleaning 

 A RCA cleaning is performed for newly acquired wafers. 

 Solvent cleaning by Acetone, Methanol and Isopropanol can act as an 

alternative.  

2) Bottom Electrode (Mask # 1) 

2.1) UV Lithography for patterning LOR and AZ 1512 

Spin: Laurell Spinner 

LOR 3B: 40 sec @ 2500 RPM 

Softbake: 8mim 30 sec @ 180°C 

Spin: Laurell Spinner 

AZ 1512: 40 sec @ 2500 RPM 

Softbake: 50 sec @ 95°C 

Exposure: 3.3 sec @ 9.6 mW/cm2, hard contact 

PEB: 50 sec @ 105°C 

Develop: 25 sec in AZ 726 

2.2) Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 250 mTorr 
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Power: 50 watts 

Time: 2 min 

2.3) Chrome Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

Pressure: 3 mTorr 

Flow rate: Ar 12 sccm 

Time: 14 min (~40 nm) 

2.4) Ruthenium Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

Pressure: 3 mTorr 

Flow rate: Ar 12 sccm 

Time: 33 min (~160 nm) 

2.5) Lift-off 

Submerge wafer in AZ 400T photoresist stripper heated at 60°C  

Water cleaning in DI water 

3) Insulation layer deposition 

3.1a) Al2O3 deposition 

Equipment: Savannah 200 

Temperature: 200 °C 

Number of Cycles: 450 (~45 nm) 

3.1b) HfO2 deposition 
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Equipment: Savannah 200 

Temperature: 200 °C 

Number of Cyces: 600 (~60 nm) 

4) Sacrificial layer deposition  

4.1a) SiO2 deposition  

Equipment: Plasma Therm 

N2O: 500 sccm 

SiH4: 110 sccm 

Pressure: 500 mTorr 

Power: 50 watts 

4.1b) Photoresist deposition  

Spin: Laurell Spinner 

AZ 1512 spun for 40 sec @ 1000 RPM 

Softbake: 50 sec @ 95°C 

5) Anchor Lithography (Mask # 2)   

5.1a) SiO2 Sacrificial layer  

Spin: Laurell Spinner 

AZ 1512 spun for 40 sec @ 1000 RPM 

Softbake: 50 sec @ 95°C 

Exposure: 7 sec @ 9.6 mW/cm2, hard contact 

PEB: 50 sec @ 105°C 

Develop: 25 sec in AZ 726 

5.1b) Photoresist Sacrificial layer  
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Exposure: 7 sec @ 9.6 mW/cm2 with a hard contact 

PEB: 50 sec @ 105°C 

Develop: 25 sec in AZ 726 

Hardbake: 2 min @ 200°C 

6) Sacrificial layer etch (SiO2 only) 

Solution: BOE 6:1 

Submerge wafer in solution for 5 min 

Rinse wafer with water and dry in N2 

Submerge wafer in acetone for 10 min 

Solvent clean 

7) Insulation layer etch  

7.1a) Al2O3 

Solution: BOE 6:1 

Submerge wafer in solution for 1 min 

Rinse wafer with DI water and dry by N2 

7.1b) HfO2 

Spin: Laurell Spinner 

AZ 12XT 40 sec @ 3000 RPM 

Softbake: 1 min @ 110°C 

Exposure: 13 sec @ 9.6 mW/cm2, hard contact 

PEB: 1 min @ 95°C 

Develop: 1 min in AZ 300 

Descum: 2 min 
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Equipment: AMS 100, Alcatel Vacuum Technology 

SF6/Ar 

Ar: 100 sccm 

SF6: 100 sccm 

Power: 600 watts 

Substrate temperature: 20 °C 

Time: 8 min 

Submerge wafer in acetone for 10 min 

Solvent clean 

8) Seed layer deposition  

8.1) Titanium Deposition 

Equipment: AJA Sputtering 

Power: 150 watts RF 

Pressure: 3 mTorr 

Flow rate: Ar 12 sccm 

Time: 8 min (~20 nm) 

8.2) Copper Deposition 

Equipment: AJA Sputtering 

Power: 100 watts RF 

Pressure: 5 mTorr 

Flow rate: Ar 12 sccm 

Time: 20 min (~200 nm) 

Solvent clean 
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9) Top Electrode Deposition 

9.1) Lithography AZ 12XT 

Spin: Laurell Spinner 

AZ 12XT spun for 40 sec @ 1500 RPM 

Softbake: 1 min @ 110°C 

Exposure: 26 sec @ 9.6 mW/cm2, hard contact 

PEB: 1 min @ 95°C 

Develop: 1 min in AZ 300 

Descum: 2 min 

9.2) Nickel electroplating deposition 

Equipment: Nickel plating setup 

Temperature: 50 °C 

Current: 200 mA 

Time: 60 min (~10 microns) 

Submerge wafer in acetone for 10 min 

Solvent clean 

Water rinse 

Dice the wafer into chip scale samples  

9.3) Seed layer etch 

9.3.1) Copper etch 

Solution: 50:50 H2O2: NH4OH 

Submerge wafer in solution for 4 min 

Rinse wafer with water and dry 
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9.3.2) Titanium etch 

Solution: BOE 6:1 

Submerge wafer in solution for 1 min 

Rinse wafer with water and dry 

10) Release 

10.1a) Photoresist Sacrificial layer 

Equipment: Plasma Therm (PE mode) 

O2: 200 sccm 

Pressure: 500 mTorr 

Power: 400watts 

Time: 10000 sec 

10.1b) SiO2 Sacrificial layer 

Solution: BOE 6:1 

Submerge wafer in solution for 12 min 

Rinse wafer with water and dry 
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