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ABSTRACT

Distributed on-chip voltage regulation where multiple voltage regulators are distributed

among different locations of the chip demonstrates advantages as compared to on-chip voltage reg-

ulation utilizing a single voltage regulator. Better on-chip voltage noise performance and faster

transient response can be realized due to localized voltage regulation. Despite the advantages of

distributed on-chip voltage regulation, unbalanced current sharing issue can occur among each volt-

age regulator, which has been demonstrated to deteriorate power conversion efficiency, stability, and

reliability of the power delivery network. An effective balanced current sharing scheme that can be

applied to most voltage regulator types is proposed to balance the current sharing. Furthermore, a

relatively high on-chip temperature induced by increased power density leads to prominent voltage

regulator performance degradations due to aging. The emerging type of digital low-dropout regu-

lator is investigated regarding aging induced transient and steady state performance degradations.

Reliability enhancement techniques for digital low-dropout regulators are developed and verified.

Such techniques introduce negligible power and area overhead and do not affect the normal oper-

ations of digital low-dropout regulators. Reliability enhancement techniques also reduce the area

overhead needed to mitigate aging induced performance degradations. Area overhead saving further

translates into more space for increased number of distributed on-chip voltage regulators, enabling

scalable on-chip voltage regulation.

viii



CHAPTER 1:

INTRODUCTION

1.1 Power Delivery Networks

Power delivery networks are essential parts of modern integrated systems such as processors,

internet of things (IoT) devices, and energy harvesting platforms to supply the required power

and voltage levels to each functional block within these systems. Representative power delivery

network components [1–3] for modern integrated systems are shown in Fig. 1.1, which include

power supply/off-chip voltage regulators, printed circuit board (PCB) with parasitics, package and

bumps, global power grid, on-chip voltage regulators, and local power grid. The power and voltage

levels generated by the power supply or off-chip voltage regulators feed to the integrated system

through PCB. PCB and global power grid are connected through package and bumps. Global and

local power grids are, respectively, connected to the inputs and outputs of on-chip voltage regulators.

On-chip voltage regulators provide the required power and voltage levels to the load circuits through

local power grid.

Performance of the whole power delivery network such as power conversion efficiency, sta-

bility, and reliability largely replies on the characteristics of each individual component and the

interactions among them [4–29]. Conventionally, a single on-chip voltage regulator per functional

block is utilized to supply the load circuits. Such an on-chip power delivery scheme may not be

able to satisfy the stringent on-chip voltage noise performance requirement especially when each

functional block occupies a relatively large chip area and the load current changes can be consider-

able and abrupt [30, 31]. The emerging distributed on-chip voltage regulation [4, 7, 18, 19, 25] is a

viable solution to achieve better on-chip voltage noise performance. Within such a power delivery

scheme, multiple tiny on-chip voltage regulators are distributed within each functional block to

1
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Figure 1.1: Representative power delivery network components for modern integrated systems.

regulate the voltage and supply the load current. Localized on-chip voltage regulation enabled by

each individual voltage regulator can rapidly mitigate the voltage overshoot and undershoot due to

load current changes to realize better on-chip voltage noise profile.

By adaptively turning on or off some of the distributed on-chip voltage regulators, the

regulator-gating methodology [15] can be adopted to achieve optimal power efficiency. Moreover,

once the optimal number of active on-chip voltage regulators is determined, the locations of these

active on-chip voltage regulators can be decided in a thermally-aware fashion to optimize the on-

chip thermal profile [31]. The locations of the distributed on-chip voltage regulators together with

decoupling capacitors at the design stage have also been investigated to achieve better voltage

noise performance [5]. Due to the large number of distributed on-chip voltage regulators and the

sophisticated interactions among different voltage regulators and the on-chip power grids, conven-

tional stability checking criteria for individual voltage regulator cannot be directly applied. Efficient

localized stability checking schemes [32, 33] have been proposed to address this issue.

More recently, power delivery network has been leveraged to enhance the security of modern

integrated systems [34–61]. The output voltage ripple of a multiphase switched capacitor converter

has been shown to be related to the activation/deactivation pattern of different phases in [61].

Through randomly changing the activation/deactivation pattern of a multiphase switched capacitor

converter, the security level against side channel power analysis attacks is enhanced. Converter-

reshuffling technique is proposed in [59] to further improve the security feature against side-channel

attacks by randomly changing the active converter stages even when there is no load current change.

Time-delayed converter-reshuffling [48], charge-withheld converter reshuffling [46], and false key-

2
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Figure 1.2: Schematic of a buck converter.

controlled aggressive voltage scaling [42] are more advanced countermeasures against power analysis

attacks through leveraging different characteristics of power delivery network. Multiphase on-chip

voltage regulators have been exploited as strong physical unclonable function (PUF) primitives to

secure IoT devices [35]. Distributed on-chip power delivery also demonstrates advantages against

electromagnetic (EM) side-channel attacks [51].

Individual voltage regulator is an essential part of distributed on-chip voltage regulation

systems. Different types of on-chip voltage regulators demonstrate their respective advantages that

can be utilized for different application scenarios. Typical on-chip voltage regulator types include

buck converters, low-dropout regulators (LDOs), and switched capacitor converters which are briefly

illustrated below.

1.1.1 Buck Converters

Buck converters consist of power switches MP and MN , an LC filter, feedback control

circuits, and gate drivers as shown in Fig. 1.2. Feedback control circuits sense the output voltage

Vout change and compare the instant Vout with a reference voltage Vref to determine if the duty

cycle of the power transistor gate signals needs to be increased or decreased. A ramp signal Vramp is

utilized for pulse width modulation (PWM) signal generation. The intermediate voltage generated

in the middle of the power transistors MP and MN is filtered to supply the load. Buck converters

3
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Figure 1.3: Schematic of a low-dropout regulator.

can achieve high power conversion efficiency over a wide load current range and are implemented

in recent Intel CoreTM SoCs [62].

1.1.2 Low-Dropout Regulators

LDOs have the benefits of easy implementation and fast transient response speed. The

schematic of a conventional analog LDO is shown in Fig. 1.3. It consists of a power transistor

MP , an error amplifier, and an output capacitor. The error amplifier senses the output voltage Vout

changes and compares the instant Vout with the reference voltage Vref to generate the gate signal of

MP for output voltage regulation. WhenMP is divided into a power transistor array and controlled

by a digital logic, digital LDOs [63] are formed which can operate under low supply voltages for

IoT applications. LDOs are widely used in recent IBM [64] and Intel products [65, 66].

4
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Figure 1.4: Schematic of a switched capacitor converter with 2:1 conversion ratio.

1.1.3 Switched Capacitor Converters

Switched capacitor (SC) converters consist of only capacitors and switches. The schematic

of a SC converter with 2:1 conversion ratio is shown in Fig. 1.4. It includes four switches and one

flying capacitor Cfly. The switches are controlled by complementary clock signals clk and clk_b.

Cfly is charged when connected to input voltage Vin and discharged when only connected to Vout

and ground. As no inductor is needed, SC converters have the benefits of easy integration. Through

varying the topologies of capacitors and switches, different conversion ratios as well as reconfigurable

conversion ratios can be achieved [67]. A high power density of 3.2 W/mm2 can also be realized

utilizing a switched capacitor converter [68]. Distributed version of a multiphase SC converter has

also been implemented in the form of a DC-DC converter ring to achieve fast dynamic voltage

scaling [69].

1.2 Our Contribution

Efficiency, stability, and reliability implications of unbalanced current sharing phenomenon

among distributed on-chip voltage regulators are investigated. An effective balanced current sharing

5



scheme that is general enough for most voltage regulator types within the framework of distributed

on-chip voltage regulation is proposed. The effectiveness and benefits of the proposed scheme are ver-

ified through extensive simulations under practical simulation settings. Furthermore, aging effects

on the emerging digital LDOs, which are essential parts of distributed on-chip voltage regulation

systems, are demonstrated to degrade transient and steady state performance. Aging mitigation

techniques that induce negligible power and area overhead are proposed and verified.

1.3 Organization

The content of this work is organized as follows. In Chapter 2, unbalanced current sharing

issue is discussed and the corresponding balanced current sharing scheme is proposed and verified.

Aging effects on the transient and steady state performance degradation of on-chip voltage regulators

are, respectively, investigated in Chapters 3 and 4. Conclusions and future work are, respectively,

offered in Chapters 5 and 6.

6



CHAPTER 2:

UNBALANCED CURRENT SHARING AMONG DISTRIBUTED

ON-CHIP VOLTAGE REGULATORS

2.1 Introduction

Efficient, stable, and reliable operation of power delivery networks (PDNs) are crucial to

sustain high performance and low power design targets of modern large scale integrated circuits

(ICs).1 Thermal design power (TDP) of microprocessors has increased over generations and can

go beyond 100W [2]. The peak power of a microprocessor can, however, be 1.5 times the TDP

rating [70]. Even small power conversion efficiency degradations within such power-hungry ICs lead

to tremendous power loss, resulting in higher heat dissipation. Meanwhile, the complexity and large

component count incur serious stability and reliability concerns.

Voltage regulators (VRs) as an essential part of PDNs, including commonly used buck,

switched capacitor, and low-dropout regulators, have been moved from off-chip placements to on-

chip implementations to save board area and to enable efficient, fast, and secure localized voltage

regulation [61, 71, 72]. Distributed on-chip voltage regulation has recently become an emerging re-

search field where multiple on-chip VRs are connected in parallel and distributed across the power

grid to supply current across the whole die [32, 33, 73–78]. Previous work mainly focuses on the

efficiency improvement of stand-alone VRs [71] and that of the PDNs as a whole [79]. The impli-

cations of the complex interactions among on-chip VRs and the power grid have, however, been

typically overlooked. Although there are appealing benefits of the distributed on-chip voltage regu-

lation, complex interactions among regulators and the power grid may lead to significant efficiency,
1This chapter was published in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no.

11, pp. 3019-3032, November 2017 "Efficiency, Stability, and Reliability Implications of Unbalanced Current Sharing
among Distributed On-Chip Voltage Regulators". Permission is included in Appendix A.
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stability, and reliability issues. Among the various implications of distributed on-chip voltage regu-

lation, unbalanced current sharing, if not carefully controlled, can stultify the previously proposed

efficiency enhancement benefits or even shorten the lifetime of the chip.

Unbalanced current sharing problem has been widely studied in conventional power elec-

tronics field for multiphase interleaving buck regulators [80, 81]. Little attention has, however, been

paid to this problem within microelectronics field for distributed on-chip voltage regulation and, to

the best of the authors’ knowledge, the efficiency, stability, and reliability implications of unbalanced

current sharing within distributed on-chip PDNs have not yet been investigated.

Voltage regulators within distributed on-chip PDNs, are connected to a passive mesh net-

work [2], which supplies the required current to the load circuits. Several factors may lead to

unbalanced current sharing within distributed on-chip power delivery systems that consist of mul-

tiple parallel VRs. These factors include mismatches in the component values and control loop

mismatches, which are common factors leading to the unbalanced current within conventional cen-

tralized multiphase regulators [80, 81]. Specific to distributed on-chip PDNs, the power grid parasitic

impedance among the VRs and load circuits, although quite small, may have significant variations

based on the placement of the VRs and the load circuits. Therefore, even with perfectly matched

components and control loops among different distributed on-chip VRs, the variations of the power

grid resistance among individual VRs and load circuits may lead to non-negligible mismatch and

severe current sharing problems.

The contribution of this chapter is threefold. First, the unbalanced current sharing problem

is presented with extensive simulations in both Cadence Virtuoso and VoltSpot [82]. Power effi-

ciency, stability, and reliability implications of the unbalanced current sharing within distributed

on-chip PDNs are investigated. Theoretical derivations and simulation results lead to the obser-

vation that unbalanced current sharing can adversely affect the important design concerns, which

necessitates an efficient current balancing scheme. Second, an adaptive reference voltage control

mechanism is proposed as the current balancing scheme for distributed on-chip VRs to dynami-

cally modulate the reference voltage of each individual VR. Circuit implementations are analyzed

for the proposed control algorithm and preliminary simulations are performed to verify the effec-

8
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Figure 2.1: On-chip power delivery network with distributed voltage regulators.

tiveness. Finally, an IBM POWER8-like [64] microprocessor simulation platform is constructed in

VoltSpot [82] to study the implications of the unbalanced current sharing problem in practical ap-

plications. Extensive simulations based on several benchmarks are performed and simulation results

confirm the benefits of balanced current sharing. Although the analyses are conducted assuming a

homogeneous PDN with buck regulators, without loss of generality, the proposed technique can be

easily applied to heterogeneous PDNs that house different regulator types.

2.2 The Unbalanced Current Sharing Problem

An on-chip PDN model with distributed VRs is shown in Fig. 2.1. The inputs of the

distributed VRs are connected to a global power grid that is connected to the package through

9
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Figure 2.2: Unbalanced current sharing between two identical distributed on-chip buck regulators.
(a) Inductor currents of two identical regulators supplying total load current of 1A. (b) A zoomed
view of the inductor current profiles at steady state. (c) Inductor currents of two identical regulators
supplying total load current of 2A, one inductor current goes saturated due to the maximum 1.27A
load current one regulator can supply. (d) A zoomed view of the inductor current profiles showing
the saturation of one inductor current.

the dedicated C4 pads. The outputs of the distributed on-chip VRs provide the required current

at the target voltage level to the local power grid that feeds the load circuits. The global ground

distribution provides the ground plane for the load circuits and is connected to the package through

the dedicated GND C4 pads. The global and local power grid, and the global ground distribution

are composed of orthogonal metal lines connected with vias [2]. With a first order approximation,

these power grids can be modeled as a resistive mesh where the effective resistance between any

two nodes on the power grid depends on the distance between the two nodes [30, 83]. The effective

resistance mismatch between the distributed VRs with only local voltage regulation loops may cause

unbalanced current sharing among the VRs and may even cause VR malfunctions.
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VRs within IBM POWER8 like microprocessor.

metal layers in [23]. Second, a buck regulator model is
extracted and included in VoltSpot [20] for PDN simulations
with large number of on-chip VRs. An IBM POWER8 like
processor with 96 identical distributed regulators is used in the
simulations. Detailed VoltSpot simulation setup is explained
in Section VII. Simulation results demonstrating the unbal-
anced current sharing problem in both Cadence Virtuoso and
VoltSpot are summarized in this section.

A. Large current variations

The load current supplied by a buck regulator is the average
value of the respective inductor current. The inductor current
of the two regulators when the total load current is 1A is
shown in Fig. 2 (a) and (b). Due to the difference in the
effective resistance for the two regulators, these regulators
have different average inductor current values of 328.7mA and
671.3mA, respectively. With unbalanced current sharing, one
regulator supplies more than twice the average output current
than the other. With a larger effective resistance mismatch, the
difference can be even larger.

The output current values of the 96 identical distributed
on-chip VRs within an IBM POWER8 like microprocessor
chip for application lu ncb is shown in Fig. 3. The detailed
simulation setup is explained in Section VII. In this simulation,
96 on-chip VRs are evenly distributed across the chip. As can
be seen from Fig. 3, large current variations occur among these
on-chip VRs. The highest current supplied by one VR goes up
to nearly 2.5A and the lowest current supplied by one VR is
around 0.5A. There is 5x difference between the highest and
lowest on-chip VR current.

B. Voltage regulator malfunctions

For the same two buck regulator design at the same physical
locations on the power grid as used in Section II-A, with a
higher total load current of 2A, the inductor current distribu-
tion between the two regulators is shown in Fig. 2 (c) and (d).
As can be seen from these figures, the difference between the
two regulator inductor currents gradually becomes larger and
at steady state one inductor becomes saturated and provides a
constant current. For the saturated regulator, the pull-up PMOS
is always on, leading to 100% duty cycle operation and the
malfunction of the VR. When the total load current is equally
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Fig. 4. Conventional buck regulator, SC regulator, and LDO efficiency curves.

shared between the two, the malfunction of the VRs could be
avoided as the current supplied by each VR is less than the
maximum VR current capability.

Please note that, in Fig. 3, on-chip VR model is included
in VoltSpot for current distribution simulations and no limit
is set for the maximum current that an individual VR can
provide. If the output current capability of a VR is designed
to be 1.5A, there would be more than ten on-chip VRs that
enter this saturation point in this simulation, leading to chip-
wide VR malfunctions. As over-current protection schemes
are implemented for most of the DC-DC converters, VR mal-
functions can be avoided. However, overloaded current can
lead to output voltage drop [24], which is still not acceptable.
Furthermore, as one VR supplies 5x current than the other,
huge current density can lead to local hotspots of the VR and
even destroy the VR and the nearby functional blocks.

III. EFFICIENCY IMPLICATIONS OF UNBALANCED
CURRENT SHARING

Power conversion efficiency curves for the conventional
buck, SC, and LDO regulators are shown in Fig. 4. Consider
two identical distributed on-chip buck or SC regulators with
each design optimized at Io/2 for a total load current of Io.
With balanced current sharing, each buck or SC regulator
operates at the optimum design point, providing maximum
efficiency. With unbalanced current sharing, one regulator
provides lower current I1 while the other one provides higher
current I2. As can be seen from Fig. 4, any variation in the
load current from the optimum load current point leads to an
unavoidable power efficiency loss. For LDOs, the efficiency
is determined by

⌘LDO =
IoVo

(Io + Iq)Vi
, (1)

where Io is the output current of the LDO and Iq is the qui-
escent current. With balanced current sharing, each LDO pro-
vides Io/2 current and the total efficiency is (IoVo/2)/(Io/2+
Iq)Vi = IoVo/(Io + 2Iq)Vi. With unbalanced current sharing,
one of the LDOs provides I1 current and the other one
provides I2 current with I1 + I2 = Io. Since MOS transistors
have a nearly constant quiescent current with respect to the
load current [25], the total efficiency can be expressed as
(I1+I2)Vo/(I1+I2+2Iq)Vi, which is the same as the balanced
current sharing case. Theoretically, there is no significant
efficiency degradation due to unbalanced current sharing for
LDOs, however, larger currents induced by the unbalanced

Figure 2.3: Unbalanced current sharing among 96 identical distributed on-chip VRs within IBM
POWER8 like microprocessor.

To demonstrate the unbalanced current sharing problem, two sets of simulations are per-

formed. First, two identical buck regulators providing localized voltage regulation are designed and

simulated in Cadence Virtuoso using IBM 130nm CMOS process. The input voltage of the buck

regulator is 3.3V and the output voltage is 1V. The switching frequency is 140MHz with a 5nH

inductor. The peak to peak current ripple on the inductor is about 1A and the load regulation

is 0.02%/A. Each regulator has a maximum load current supply capability of 1.27A. The on-chip

power grid is designed as a resistive mesh using the design parameters of respective metal layers

in [84]. Second, a buck regulator model is extracted and included in VoltSpot [82] for PDN sim-

ulations with large number of on-chip VRs. An IBM POWER8 like processor with 96 identical

distributed regulators is used in the simulations. Detailed VoltSpot simulation setup is explained

in Section 2.7. Simulation results demonstrating the unbalanced current sharing problem in both

Cadence Virtuoso and VoltSpot are summarized in this section.

2.2.1 Large Current Variations

The load current supplied by a buck regulator is the average value of the respective inductor

current. The inductor current of the two regulators when the total load current is 1A is shown in

11



Fig. 2.2 (a) and (b). Due to the difference in the effective resistance for the two regulators, these

regulators have different average inductor current values of 328.7mA and 671.3mA, respectively.

With unbalanced current sharing, one regulator supplies more than twice the output current than

the other. With a larger effective resistance mismatch, the difference can be even larger.

The output current values of the 96 identical distributed on-chip VRs within an IBM

POWER8 like microprocessor chip for application lu_ncb is shown in Fig. 2.3. The detailed simu-

lation setup is explained in Section 2.7. In this simulation, 96 on-chip VRs are evenly distributed

across the chip. As can be seen from Fig. 2.3, large current variations occur among these on-chip

VRs. The highest current supplied by one VR goes up to nearly 2.5A and the lowest current sup-

plied by one VR is around 0.5A. There is 5x difference between the highest and lowest on-chip VR

current.

2.2.2 Voltage Regulator Malfunctions

For the same two buck regulator design at the same physical locations on the power grid

as used in Section 2.2.1, with a higher total load current of 2A, the inductor current distribution

between the two regulators is shown in Fig. 2.2 (c) and (d). As can be seen from these figures, the

difference between the two regulator inductor currents gradually becomes larger and at steady state

one inductor becomes saturated and provides a constant current. For the saturated regulator, the

pull-up pMOS transistor is always on, leading to 100% duty cycle operation and the malfunction

of the VR. When the total load current is equally shared between the two, the malfunction of the

VRs could be avoided as the current supplied by each VR is less than the maximum VR current

capability.

Note that, in Fig. 2.3, on-chip VR model is included in VoltSpot for current distribution

simulations and no limit is set for the maximum current that an individual VR can provide. If the

output current capability of a VR is designed to be 1.5A, there would be more than ten on-chip

VRs that enter this saturation point in this simulation, leading to chip-wide VR malfunctions. As

over-current protection schemes are implemented for most VRs, VR malfunctions can be avoided.

However, overloaded current can lead to output voltage drop [85], which is still not acceptable.

12
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Figure 2.4: Conventional buck regulator, SC regulator, and LDO efficiency curves.

Furthermore, as one VR supplies 5x current than the other, huge current density can lead to local

hotspots of the VR and even destroy the VR and the nearby functional blocks.

With unbalanced current sharing, each on-chip VR needs to be designed for the worst case

scenario to be able to supply the highest possible current with high efficiency. The size of power

MOSFETs needs to be increased as compared to the design targeting at the total load current

divided by N for N distributed VRs, which may introduce extra power and area overhead as power

MOSFETs can occupy a large percentage of the total VR area.

2.3 Efficiency Implications of Unbalanced Current Sharing

Power conversion efficiency curves for the conventional buck, SC, and LDO regulators are

shown in Fig. 2.4. Consider two identical distributed on-chip buck or SC regulators with each design

optimized at Io/2 for a total load current of Io. With balanced current sharing, each buck or SC

regulator operates at the optimum design point, providing maximum efficiency. With unbalanced

current sharing, one regulator provides lower current I1 while the other one provides higher current

I2. As can be seen from Fig. 2.4, any variation in the load current from the optimum load current

point leads to an unavoidable power efficiency loss. For LDOs, the efficiency is determined by

ηLDO =
IoVo

(Io + Iq)Vi
, (2.1)
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where Io is the output current of the LDO and Iq is the quiescent current. With balanced cur-

rent sharing, each LDO provides Io/2 current and the total efficiency is (IoVo/2)/(Io/2 + Iq)Vi =

IoVo/(Io + 2Iq)Vi. With unbalanced current sharing, one of the LDOs provides I1 current and the

other one provides I2 current with I1 + I2 = Io. Since MOS transistors have a nearly constant

quiescent current with respect to the load current [86], the total efficiency can be expressed as

(I1 + I2)Vo/(I1 + I2 + 2Iq)Vi, which is the same as the balanced current sharing case. Theoretically,

there is no significant efficiency degradation due to unbalanced current sharing for LDOs, however,

larger currents induced by the unbalanced current sharing do adversely affect the reliability as will

be discussed in Section 2.5.

Buck regulators will be the focus throughout the chapter, however, the proposed techniques

can also be tailored for SC and LDO regulators. The regulator loss model and optimum efficiency

discussions are provided in Section 2.3.1 . The extra power loss and efficiency degradation induced

by unbalanced current sharing for the general case of N identical distributed on-chip regulators are

theoretically explored in Section 2.3.2.

2.3.1 Regulator Loss Model and Efficiency

The simplified schematic of a synchronous buck regulator is shown in Fig. 2.5. It is composed

of high-side (Q1) and low-side (Q2) power MOSFETs for synchronous rectification, LC filter with

parasitic resistances RDCR and RESR, and a feedback control path.

The simplified power loss model in [87] is enhanced by including the conduction loss of the

capacitor ESR (PESR) for the power loss analysis in synchronous buck regulators

Ploss = Req · i2rms + PESR +A · f (2.2)

where Req is the regulator equivalent resistance, irms is the inductor RMS current, A is the switching

power loss factor, and f is the regulator switching frequency. Detailed power loss analysis and

expressions for Req, PESR, and A can be referred to [87, 88].
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Power conversion efficiency can be written as

η =
Pout

Pout + Ploss
. (2.3)

Since PESR is independent of the regulator output current Io, by setting ∂η/∂Io = 0, the maximum

efficiency for the continuous conduction mode (CCM) operation is obtained as [87]

ηmax =
1

1 + 2
Req

Vo
· Io_opt

(2.4)

at the optimum load current of

Io_opt =

√
A · f + PESR

Req
+

1

12
I2p−p (2.5)

where Vo and Ip−p are, respectively, the regulator output voltage and inductor peak to peak current.
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2.3.2 Efficiency Degradation of Distributed Regulators with Unbalanced Current Shar-

ing

Consider two identical buck regulators and assume the total load current supplied by these

two regulators is Io and each regulator design is optimized at Io/2. With unbalanced current sharing,

the load current supplied by the two regulators are, respectively, I1 and I2 for regulators 1 and 2.

Current sharing ratio (CSR) for the two regulators are

CSR1 =
I1
Io
, CSR2 =

I2
Io
. (2.6)

According to (2), for CCM operations, the extra power loss induced by the unbalanced

current sharing for two regulators as compared to the balanced case is

P exloss_2 = Req · I2o · (CSR2
1 + CSR2

2 −
1

2
) (2.7)

and P exloss_2 = 0 if and only if when CSR1 = CSR2 = 1/2, otherwise P exloss_2 > 0, which means that

unbalanced current sharing leads to extra power loss.

Efficiency degradation due to unbalanced current sharing can be written as

ηdeg_2 = ηmax|Io_opt=
Io
2
− Vo

Vo
ηmax|

Io_opt=
Io
2

+Req · Io · (CSR2
1 + CSR2

2 − 1
2)
, (2.8)

where ηmax|Io_opt=
Io
2

is the maximum efficiency at the optimum load current of Io/2. Note that

ηdeg = 0 for balanced current sharing.

Equations (2.7) (2.8) can be generalized for N identical distributed on-chip VRs with each

design optimized at Io/N for a total load current of Io as explained below.

The extra power loss induced by unbalanced current sharing with CSRi for the ith regulator

is

P exloss_N = Req · I2o · (
N∑
i=1

CSR2
i −

1

N
). (2.9)
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Figure 2.6: Unbalanced current sharing induced extra power loss and efficiency degradation as a
function of CSRi for N identical distributed on-chip VRs. (a) Extra power loss, N=2. (b) Efficiency
degradation, N=2. (c) Extra power loss, N=3. (d) Efficiency degradation, N=3.

The total efficiency degradation induced by unbalanced current sharing is

ηdeg_N = ηmax|Io_opt=
Io
N
− Vo

Vo
ηmax|

Io_opt=
Io
N

+Req · Io · (
∑N

i=1CSR
2
i −

1
N )
. (2.10)

Note that (2.9) (2.10) can be applied to a wide range of load current. As phase shedding

technique [62, 89] for conventional multiphase converters and converter gating technique [61] for

distributed on-chip VRs are well developed to enhance the light load efficiency and achieve a high

efficiency over a wide load range, the number of active VRs Nactive can be dynamically changed

to make sure that each regulator can operate at the optimal efficiency point under various load
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conditions with balanced current sharing. Thus, (2.9) (2.10) hold for extra power loss and efficiency

degradation calculations under a wide load range.

As an example, using design parameters in [71] for the fully integrated buck regulator,

the extra power loss and efficiency degradation are evaluated for two and three distributed buck

regulator cases with different CSR values. Each regulator is optimized at 225mA and the total load

currents are, respectively, 450mA and 675mA for two and three regulator cases. As can be seen from

Fig. 2.6, as CSR varies from the balanced current sharing point (CSR1 = 0.5 for two regulator case,

CSR1 = CSR2 = 1/3 for three regulator case), the additional power loss and efficiency degradation

increase rapidly. Moreover, the highest extra power loss and efficiency degradation points for the

three regulator case are worse than the two regulator case. It is difficult to visually demonstrate

the extra power loss and efficiency degradation change when the number of regulators increase over

three. With more number of regulators and larger output current, however, the highest extra power

loss and efficiency degradation further increase. This indicates that significant attention should be

paid to guarantee the proper current sharing among distributed on-chip VRs that are widely used

in high performance microprocessors.

2.4 Stability Implications of Unbalanced Current Sharing

Stable operation of the stand-alone on-chip VR as well as the whole PDN is the basis for

every other performance metric. Oscillations can occur due to an unstable internal feedback loop

of a single VR or interactions among different VRs. The stability issue, if not properly addressed,

can adversely affect important design aspects including line and load regulations, making other

performance enhancing techniques useless.

Stability implications of unbalanced current sharing are explored for both individual on-chip

VRs and the PDN as a whole in this section. To evaluate the effects of unbalanced current sharing

on individual on-chip VRs, the state-space averaging method [90] is applied to obtain the various

important transfer functions of closed loop synchronous buck regulators while considering parasitic

impedances. For the stability of the whole PDN, the implications of unbalanced current sharing
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can be examined by analyzing the Y-parameter model of the individual on-chip VRs based on the

recently proposed hybrid stability framework for PDNs [32].

2.4.1 Stability of Individual On-Chip Voltage Regulators

The state-space expression for a conventional voltage mode controlled buck regulator with

diode rectification and g-parameters has been explored in [91]. For the synchronous buck regulator

operating in CCM, as shown in Fig. 2.5, the open-loop g-parameter set can be written as

 Yi_o Toi_o

Gio_o −Zo_o

 =

 D2s
L

D(1+sRESRC)
LC

D(1+sRESRC)
LC − (RE+sL)(1+sRESRC)

LC


s2 + sRE+RESR

L + 1
LC

(2.11)

Gci
Gco

 =

 sDUE
L

UE(1+sRESRC)
LC


s2 + sRE+RESR

L + 1
LC

+

Io
0

 (2.12)

where

RE = RDCR +Ron_hsD +Ron_ls(1−D) (2.13)

UE = Vi + (Ron_ls −Ron_hs)Io. (2.14)

Yi_o, Toi_o, Gio_o, Zo_o, Gci, Gco, D are, respectively, the open loop input admittance, the output to

input current transfer function, the input to output voltage transfer function, the output impedance,

the control to input current transfer function, the control to output voltage transfer function, and

the duty cycle of the buck regulator.

The line and load regulation capabilities of a buck regulator can be examined by analyzing

the closed-loop input to output voltage transfer function Gio_c and the output impedance Zo_c,

respectively. To achieve a stable line and load regulation, all poles of the corresponding transfer

function need to lie within the left-half of the s-plane. The closed-loop g-parameters can be obtained
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Figure 2.7: Stability of individual on-chip VR as a function of CSRi and N .

based on the open-loop g-parameters and the relationship demonstrated in [91]. Assuming Type III

compensation [92], the characteristic equation of Gio_c and Zo_c is

CLs2 + (CGaGccGseUERESR + CRESR + CRE)s+GaGccGseUE + 1 = 0 (2.15)

where Gse, Gcc, Ga are, respectively, the sensing gain of the output voltage, the transfer function

of the error amplifier (EA) and compensator, and the PWM generator gain. Typically, Gse and

Ga are constant. As some of the coefficients are a function of Io, solutions of (2.15) change as

Io changes. For N identical distributed on-chip VRs with unbalanced current sharing, some of the

parallel on-chip VRs will supply more current while others will supply less, leading to the movement

of system poles. As the stability is affected by the right-half plane (RHP) poles, we define a CSR-
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and N -dependent function S(CSR,N) as

S(CSR,N) =


max
i=1,...,n

{Re(pi)}, max
i=1,...,n

{Re(pi)} < 0

min
i=1,...,j

{Re(p+i )}, otherwise

(2.16)

where n, j, pi (i = 1, ..., n), p+i (i = 1, ..., j) are, respectively, the total number of system poles, the

total number of RHP (or 0) poles, the ith system pole, and the ith RHP (or 0) pole. |S(CSR,N)|

either indicates how close the system is to be unstable (for max
i=1,...,n

{Re(pi)} < 0) or how far the system

has gone beyond the marginally stable point (for otherwise). The system is stable if S(CSR,N) < 0

and unstable otherwise.

Using similar design parameters in [71], S(CSRi, N) for the ith VR within N identical

distributed on-chip VRs is plotted as a function of CSRi and N in Fig. 2.7. It can be seen from

Fig. 2.7 that, for a fixed number N , S(CSRi, N) increases as CSRi increases. Note that although

all CSRi values are plotted even for large number of N in Fig. 2.7 for completeness, due to the

maximum current supply capability of a single VR, inductor current of individual VR can become

saturated and the CCM model is no longer valid. The output voltage can drop [85] for large

number of N and CSRi values, for example N = 80 and CSRi = 0.5. Also, as N becomes large,

S(CSRi, N) approaches the unstable region from the stable one as CSRi increases, indicating the

negative effects of unbalanced current sharing on the stability and proper operation of individual

VR.

2.4.2 Stability of the Power Delivery Network

A sufficient condition for stability checking of the PDN network is proposed in [32] based

on the hybrid stability framework. This condition consists of a complementary way of using either

passivity evaluation or system gain evaluation for LTI systems. By satisfying either one of these two

conditions, the stability of the PDN can be guaranteed. For stability checking using the system gain

condition, a Z-parameter model of the passive subnetwork is needed for evaluation. The passive

subnetwork model can vary for different applications or design requirements, which makes it difficult
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to evaluate the general effects of unbalanced current sharing on the stability of PDN. However, the

passivity evaluation does shed light on this point.

The synchronous buck regulator system is approximated as a linear continuous-time time-

invariant system through state-space averaging method [93]. Thus, the passivity criterion [32] can

be applied, which is given by

λmin(jωk) = min
i=1,...,N ;j=1,2

{λj(Yi(jωk) + Y H
i (jωk))} (2.17)

where λmin(jωk) is the minimum eigenvalue among any ith VR at ωk and H denotes the complex

conjugate transpose. Passivity condition is met for the VRs if λmin(jωk) ≥ 0.
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The Y-parameter model for the ith VR can be obtained through the closed-loop g-parameters.

Note that the Y-parameter model is a function of individual VR output current Io and thus with

unbalanced current sharing, it will be affected and so does λmin(jωk). Using the same design pa-

rameters in Section 2.4.1, λimin(jωk) is examined for the ith VR under different CSRi and N values

in Fig. 2.8, where

λimin(jωk) = min
j=1,2
{λj(Yi(jωk) + Y H

i (jωk))}. (2.18)

λimin(jωk) remains negative for fk < 10MHz and positive for fk > 100MHz. As Io supplied by the

ith VR, (i.e., N · CSRi), increases, λimin(jωk) shifts rightwards, rendering the following

λmin(jωk)|ωk≤ωk0
= min

i=1,...,N
{λimin(jωk)} = λimin(jωk)|CSRi=CSRmax (2.19)

where

λmin(jωk0) = 0, CSRmax = max
i=1,...,N

CSRi. (2.20)

For example, at fk = 45MHz, with balanced current sharing (CS), (i.e., ∀N , balanced CS),

λmin(jωk)|ωk=9π·107 > 0, the passivity condition is satisfied. However, with unbalanced current

sharing case, (e.g., N = 20, CSRi = 0.1), λmin(jωk)|ωk=9π·107 < 0, which pushes the originally

passive point to the potentially unstable region, indicating the adverse effects of unbalanced current

sharing on the stability of the whole PDN.

2.5 Reliability Implications of Unbalanced Current Sharing

Electromigration (EM) induced wear-out dictates the lifetime of each component of the

PDN. EM results in gradual mass transport in metal conductors along the direction of an applied

electric field, which in turn may cause open or short circuits. The metal wires in the PDN are

particularly vulnerable to EM as they experience uni-directional currents [94], and such constant

stress reveals EM failures faster. EM grows with current density J.

Black’s equation [95] captures the mean time to failure (MTTF) due to EM:

MTTF = AJ−nexp(Ea/kT ) (2.21)
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where A is a constant that depends on the geometry, Ea is the EM activation energy, k is Boltzmann

constant, n is a material-specific constant, and T is the temperature. Following [82], Black’s equation

can be adjusted to consider current crowding and Joule heating as

MTTF = A(cJ)−nexp[Q/k(T + ∆T )] (2.22)

where both Q and c are material-specific constants.

Consider N identical distributed on-chip VRs, each of which optimized for a load current of

Io/N , where Io represents the total load current. Since J is directly related to CSRi at a specific

Io, MTTF of the metal wire at the output of the ith regulator can be expressed in terms of CSRi

as

MTTFi = A
′
(cCSRi)

−nexp[Q/k(T + ∆T )] (2.23)

where A′ is a constant that depends on the geometry and Io.

24



VR1

VR2

Vi

Vo1

Vo2

Vo

Reff1

Reff2

Reff3
Iload

I1

I2

I3

Figure 2.10: Simplified model of two identical distributed on-chip VRs with power grid effective
resistances.

For the same example in [71], for two and three regulator cases with a total load current of

450mA and 675mA, respectively, Fig. 2.9 shows how MTTFi for the ith regulator changes due to

unbalanced current sharing. Fig. 2.9 captures the impact of unbalanced current sharing on MTTF

under EM per (2.23). We report how the MTTF varies as a function of CSR where n = 1.8, Q

= 0.8eV, c = 10, and ∆T = 40◦C [96]. We observe that differences in CSR can result in notable

differences in MTTF. The MTTF at CSR = 0.5 (0.33), which corresponds to perfect load balance,

is 5 years at 65◦C for the two (three) regulator case. For the two regulator case, both regulators

would have this same MTTF=5 years at CSR = 0.5. If CSR assumes a higher value than 0.5 for

one of the regulators, the MTTF value quickly decreases below 5 years. The other regulator’s CSR

in this case remains lower than 0.5, and hence induces an MTTF of more than 5 years. In this case,

one of the regulators would fail much earlier than the other. Better load balance (i.e., CSR = 0.5

for the two regulator case) mitigates this adverse effect on reliability. Fig. 2.9 reveals a similar trend

for three VR case.
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generator for N identical distributed on-chip VRs.

2.6 Adaptive Reference Voltage Control

The implications of unbalanced current sharing on power efficiency, stability, reliability and

overall functionality of the chip are demonstrated above. Balanced current sharing is beneficial to

maintain the overall PDN performance. An adaptive reference voltage control method designed

specifically for distributed on-chip VRs is proposed to balance the current sharing. The proposed

technique is scalable for different number of distributed on-chip VRs and can be used for different

types of VRs. The control algorithm is explained and circuit implementation and simulations are

presented to verify the effectiveness of the proposed techniques. Practical concerns are also addressed

in this section.

2.6.1 Adaptive Reference Voltage Control Mechanism

Consider two identical distributed VRs connected to the same power grid. The simplified

model is shown in Fig. 2.10 with the power grid effective resistance included between any two

connection nodes within the grid. With a large number of VDD C4 pads, the input voltage of the

VRs Vi can be considered ideal and constant. To perform a steady state analysis with multiple VRs,

suppose Vo1 = Vo2, then I3 = 0, and Reff3 can be removed as open circuit. When Vo1 = Vo2, to

make I1 = I2 for balanced current sharing, Reff1 and Reff2 have to be equal. However, in practice,

due to the location variations of the VRs with respect to the load, Reff1 and Reff2 can hardly be
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equal, which means variations between Vo1 and Vo2 are unavoidable to make I1 = I2 for balanced

current sharing. In fact, the effective resistances Reff1, Reff2, and Reff3 are very small, making the

balanced current sharing possible with quite small variations of Vo1 and Vo2 with negligible effects

on the regulated output voltage Vo.

Based on the above analyses, an adaptive reference voltage Vref control mechanism that is

tailored specifically for distributed on-chip VRs is proposed. A system level block diagram of the

proposed adaptive Vref control method is illustrated in Fig. 2.11 and the Vref control algorithm is

presented in Fig. 2.12 for N identical distributed on-chip VRs. The proposed adaptive Vref control

block consists of an average current sensor within each VR, two comparators with N inputs for each

(N comparator) [97] to determine the maximum and minimum currents, a current_mismatch deci-

sion block, and a Vref control logic. For each iteration, the average current value of each VR for that
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cycle is obtained through the average current sensor and represented by respective output voltage

Vsensei (i = 1, ..., N). The maximum and minimum value of Vsensei (i = 1, ..., N) are decided by the

N comparator [97]. The difference between the maximum and minimum current is compared to a

current_mismatch value by the current_mismatch decision block. The processed outputs of the

N comparator and current_mismatch decision block serve as the control signals for the Vref con-

trol logic for multi-level Vref generation through the switch network and resistor string. Mismatch

between the maximum and minimum average inductor current indicates unbalanced current sharing.

If the mismatch is larger than a certain threshold current_mismatch, the proposed Vref control

algorithm is triggered and the corresponding reference voltages are adjusted. current_mismatch

value is added as an option to adjust the desired accuracy for the current matching among the VRs

and to eliminate constant toggling during steady state where all the VR output currents are close

to each other. If the optimal load current (Io_opt in (2.5)) a single VR can supply is in the range

of several hundred mA, a few mA of the threshold value can be considered as balanced current.

A threshold value of 30 mA is used in the simulations. A too small threshold value can lead to

toggling reference voltages at steady state.

By increasing (decreasing) Vref of an individual on-chip VR, the output current supplied by

that VR will increase (decrease). Vref_max and Vref_min in Fig. 2.12 denote the reference voltages

for the on-chip VRs with the maximum and minimum average inductor current, respectively. Once

the difference between the maximum and minimum average inductor current values is greater than

current_mismatch, Vref_max is decreased by a voltage step to decrease the output current supplied

by the VR which provides the maximum output current. Vref_min is increased by a voltage step to

increase the output current supplied by the VR which provides the minimum output current. The

reference voltages of other VRs remain unchanged.

Note that the Vref control loop waits n clock cycles before changing the Vref again. This

is done in order to allow the VR’s voltage regulation feedback loop to respond before any changes

made to the Vref in the next step. Making the reference control loop slower than the VR’s voltage

regulation feedback loop improves the stability of the overall system.
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Figure 2.13: Schematic of the average current sensor.

As compared with [73], the proposed method does not rely on equalizing duty cycles to

balance the current sharing, and thus can be applied to most regulator types that need a reference

voltage to operate. Furthermore, as the reference voltage of each VR is adjusted individually with

respect to an initial reference voltage, the power noise on the local power grids is less affected by

localized load fluctuations.

2.6.2 Adaptive Reference Voltage Control Implementation

Circuit level implementation of the proposed adaptive Vref control method is analyzed in

this section. Although buck regulator is adopted for demonstration, the proposed Vref control

method can be applied to other regulator types by adopting an appropriate current sensor for that

regulator type, as the proposed method is a general way of modulating Vref to balance the current.

2.6.2.1 Average Current Sensor

The schematic of the average current sensor [98] is shown in Fig. 2.13. When the sampling

clock φ becomes high, the drain voltages of the power MOSFET and the sense MOSFET are

equalized by the operational amplifier. The inductor current from the power MOSFET is mirrored
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to the sense MOSFET and a corresponding voltage Vsense that is proportional to the inductor

current is generated as output. Vsense is maintained when φ becomes low. By replacing the ramp

signal in Fig. 2.5 with a symmetrical triangular waveform shown in Fig. 2.11, a clock signal φ′ can

be generated to sample the instant inductor current value in the middle of the inductor energizing

or de-energizing phase, which corresponds to the average inductor current value [98]. As n clock

cycles need to be skipped before taking the next sample for average inductor current, the frequency

fφ of the actual sampling clock signal φ needs to be fφ′/(n+ 1).

2.6.2.2 N Comparator

The schematic of the N comparator [97] for maximum and minimum current decision is

shown in Fig. 2.14. Vsensei (i = 1, ..., N) from the output of the average current sensor serves as the

input of the N comparator. For the N comparator for maximum current decision, the tail current
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provided by transistor Mtail is divided into each branch equally when the same voltage is given

to all inputs. Mi (i = 1, ..., N) devices are biased and sized appropriately ((WL )Mtail
=N(WL )Mi) to

reflect this distribution. The voltage input Vsensei determines the portion of the tail current that

passes through each branch. Since the sum of the currents from all the branches must be equal to

the tail current provided by the Mtail device, the branch with the highest input voltage gets the

largest portion of the tail current. The branch currents are then mirrored and a high resistance

output node is formed using theMi (i = 1, ..., N) devices. SinceMi (i = 1, ..., N) devices are biased

for 1/N of the tail current, the output voltage becomes logic high when a branch gets more than

1/N of the tail current, which is true for the branch with the highest voltage, and logic low if a

branch gets less than 1/N of the tail current. The high resistance node provides high gain at the

output but further cascading may be needed to provide rail to rail outputs. Less than 1mV input
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Figure 2.16: Simulation results with and without the proposed adaptive Vref control scheme for two
identical distributed on-chip VRs. (a) Inductor currents before and after the proposed Vref control
is applied. (b) A zoomed view of balanced current sharing showing the effectiveness of the proposed
Vref control method. (c) A zoomed view of unbalanced current sharing without the proposed Vref
control. (d) Vrefs signal change showing the operation of the proposed Vref control method.

voltage difference can be distinguished by cascading three stages in the simulations. In the case

where the input voltages are very close to each other, this comparator may give incorrect outputs

where more than one current is minimum or maximum. Considering this case, the outputs of the

N comparator Vmaxi and Vmini (i = 1, ..., N) are processed by a digital logic to generate V ′maxi

and V ′mini
(i = 1, ..., N) to control the current_mismatch decision block and Vref control logic

shown in Fig. 2.11. If there are more than one maximum or minimum current, the digital logic

simply selects the VR with smaller i as the one that supplies the maximum or minimum current.

The N comparator for minimum current decision can be implemented as a complement of the N

comparator for maximum current decision shown in Fig. 2.14.
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Figure 2.17: Simulation results with and without the proposed adaptive Vref control scheme for
three identical distributed on-chip VRs. (a) Inductor currents before and after the proposed Vref
control is applied. (b) A zoomed view of balanced current sharing showing the effectiveness of
the proposed Vref control method. (c) A zoomed view of unbalanced current sharing without the
proposed Vref control. (d) Vrefs signal change showing the operation of the proposed Vref control
method.

2.6.2.3 Current Mismatch Decision

The schematic of the current_mismatch decision block is shown in Fig. 2.15. The processed

outputs of theN comparator V ′maxi and V
′
mini

(i = 1, ..., N) are fed to 2N transmission gates (TG) as

selection signals for the maximum and minimum value of Vsensei (i = 1, ..., N). The maximum and

minimum value of Vsensei serve as the inputs of the current_mismatch comparator as, respectively,

Vmax and Vmin to generate the enable signal EN for subsequent Vref control logic. An intentional

input transistor size mismatch is introduced for the current_mismatch comparator with larger

transistor size connected to Vmin as compared to that connected to Vmax to achieve the offset voltage

Voffset that corresponds to the current_mismatch value. Only when Vmax − Vmin > Voffset will

the EN signal be active. As current_mismatch does not need to be accurate as long as it is
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Figure 2.18: Simulation results with sinusoidal and step load current for three identical distributed
on-chip VRs. (a) Sinusoidal load current applied at 2µs. (b) Step load current waveform applied.
(c) Balanced inductor currents under sinusoidal current load. (d) Balanced inductor currents under
step current load. (e) A zoomed view of balanced inductor currents near the rising edge of the step
current load. (f) A zoomed view of balanced inductor currents near the falling edge of the step
current load.

larger than ∆(∆I), as will be discussed next, practical circuit implementations considering process

variations have negligible impacts on the circuit function.
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Figure 2.19: Simulation results with and without the proposed adaptive Vref control scheme for
three distributed on-chip VRs under distribution wire and VR mismatches. (a) Inductor currents
before and after the proposed Vref control is applied. (b) A zoomed view of balanced current
sharing showing the effectiveness of the proposed Vref control method under distribution wire and
VR mismatches. (c) A zoomed view of unbalanced current sharing without the proposed Vref
control. (d) Vrefs signal change showing the operation of the proposed Vref control method.

2.6.2.4 Multi-Level Reference Voltage Generation

The proposed multi-level Vref generator is composed of a Vref control logic, a bandgap

voltage reference, and a simple resistor string DAC as shown in Fig. 2.11. There are two resistors

with large resistance Rb at the top and bottom of the string and a few resistors with smaller

resistance Rs connected in the middle to generate the desired Vrefs. V ′maxi , V
′
mini

(i = 1, ..., N),

EN and a clock signal, which is a delayed version of φ are given to the Vref control logic. This

logic determines how the reference voltages for each VR should behave according to the algorithm

in Fig. 2.12. The logic can be implemented completely in verilog and synthesized.

The reference voltage generation requires analog implementation, and this implementation

can be a resistor string DAC. The voltage step level that can achieve the desired current_mismatch
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value is the LSB of the DAC. The goal of the adaptive Vref control method is to achieve ∆I =

Imax− Imin < current_mismatch. If without Vref control, ∆I = ∆I0 and one voltage step change

can introduce ∆(∆I) of ∆I change, the number of bits for the DAC (NDAC) that is fine enough

for balanced current sharing can be estimated as NDAC > log2(∆I0/∆(∆I)). A 7-bit DAC is used

to achieve a 30mA current_mismatch value with a voltage step of 1mV in the simulations. In

the case where large number of VRs and high resolution DAC are needed, a charge pump can be

utilized for each phase after the Vref control logic for DAC implementation to avoid possible routing

problem induced by the resistor string.

2.6.3 Simulation Verifications

To demonstrate the effectiveness of the proposed control method, two and three identical

distributed on-chip VR cases are simulated. The power grid parameters are provided in Section 2.7.

Simulation results with constant DC load current are shown in Fig. 2.16 and Fig. 2.17, respectively,

for the two and three VR cases. In the simulations, ideal Vref = 0.5V is used to realize 1V output

voltage. A Vref step of 1mV is used in the simulations. The proposed adaptive Vref control method

begins to operate at 5µs. As can be seen from Fig. 2.16 (a)(c) and Fig. 2.17 (a)(c), for stand-

alone VRs operating without proper Vref control, large inductor current variations occur among

those VRs. After the proposed Vref control mechanism is applied, seen from Fig. 2.16 (a), (b) and

Fig. 2.17 (a), (b), the unbalanced current converges quickly to the balanced one for both two and

three VR cases. Also, as can be seen from Fig. 2.16 (d) and Fig. 2.17 (d), only small variations of

reference voltage lead to quite good inductor current match and meanwhile the proper operation of

the VRs is guaranteed. Simulation results with a fast changing sinusoidal and a step current load

are shown in Fig. 2.18. In the simulations, the frequency of the sinusoidal wave is ten times of the

VR switching frequency. As can be seen from Fig. 2.18, the proposed Vref control method works

well under changing load currents.
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Table 2.1: Technology and Architecture Parameters

Technology Parameters
Technology node: 22nm, Frequency: 4.0GHz
TDP: 150W, Area: 441mm2, Vdd: 1.03V

Architecture Parameters
# cores: 8
issue width: 8
64 architectured FRF, 32 architectured IRF
L1-I cache: 32KB, 8-way, 64B, LRU, 1-cycle hit
L1-D cache: 64KB, 8-way, 64B, LRU, 1-cycle hit
L2 cache: 512KB, 8-way, 128B, LRU, 11-cycle hit
L3 cache: 64MB, 8-way, 128B, LRU, 30-cycle hit

2.6.4 Practical Concerns

Considering the practical implementations of the Vref control method, there are parasitic

impedances between the generated reference voltage and the corresponding error amplifier intro-

duced by the distribution wires. The impedance of the distribution wires among different VRs can

be different. Also, there can be VR components and control loop mismatches. Considering these

effects, simulations are performed by introducing wire resistances and capacitances as well as VR

components and loop delay mismatches to justify the effectiveness of the proposed method. 1mm

distribution wire is assumed in the simulations. Based on IBM 130nm process, the parasitic re-

sistance and capacitance are, respectively, around 70Ω and 230fF. A 10% mismatch is introduced

among each VR regarding distribution wire impedance, L, C, RDCR, RESR, Q1, Q2 size. 5ns con-

trol loop delay difference is introduced among each phase. The simulation results for three phases

are shown in Fig. 2.19. As can be seen from the simulation results, the proposed method is immune

to these mismatches.
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2.7 Case Study: IBM POWER8 Like Microprocessor

2.7.1 Benchmarks

All the benchmarks used in the simulations are from SPLASH2x [99]. The benchmarks

experimented represent typical application domains and features. Eight threads are involved in the

simulations and analysis is limited to the region-of-interest of the benchmarks.

2.7.2 Architecture

An IBM POWER8-like [64] processor is modeled to quantitatively characterize unbalanced

current sharing effects. The technology and architecture parameters of the processor are summa-

rized in Table 2.1. The schematic of a core is shown in Fig. 2.20a, which contains a private L2,

an instruction scheduling unit (ISU), an execution unit (EXU), a load store unit (LSU), and an

instruction fetch unit (IFU). L1 data cache is a part of LSU, while L1 instruction cache resides
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Figure 2.21: Calibrated efficiency curve for the on-chip voltage regulator.

inside IFU. Fig. 2.20b illustrates the whole chip floor plan, which contains 8 cores, 96 identical

on-chip regulators, shown as little squares, network-on-chip (NOC), and memory controller (MC).

2.7.3 Simulation Framework

Dynamic power traces are collected by integrating MR2 [100] version of McPAT [101] into

SNIPER6.0 [102] micro-architectural simulator. Then, we calculate the static power of each unit

based on its temperature and area. We use the equation from [103] to capture temperature-

dependence of static power. The static power of the whole chip is calibrated in a way that it

takes less than 30% of the total chip power at 80◦C. Hotspot6.0 [104] is used to find the transient

temperature across the chip. Transient temperature (output of Hotspot) is used to calculate the

static power (input to Hotspot). So, we iteratively run Hotspot and update the static power num-

bers until they converge. Default parameters of Hotspot are used. VoltSpot is deployed to capture

the current distribution among VRs at different locations and the method from [82] is followed to

generate cycle-accurate power traces. One sample contains 2K cycles and 200 samples are obtained
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Figure 2.22: Power saving and regulator power loss saving with balanced current sharing for
different applications.

with equal distance for each application. The first 1K cycles are used for warm-up and the rest for

analysis. 4 clock cycles are used as the power trace sampling interval.

2.7.4 Power Grid and Voltage Regulator Properties

In VoltSpot configurations, the on-chip power grid is designed as a resistive mesh using

similar metal width, pitch, and thickness parameters in [84] for the global, intermediate, and local

PDN layers. The unit power grid resistance is around 8mΩ and the total power grid size is 345 by

345. The effective resistance between any two nodes can be estimated using the equations in [30,

83].

LDOs used in IBM POWER8 microprocessor and FIVRs used in Intel Haswell micropro-

cessor are two state-of-the-art on-chip power delivery solutions. It is demonstrated in [78] that

FIVR-based power delivery scheme is more advantageous with large number of cores due to high

efficiency over a wide conversion ratio. The gaining impetus and benefits of distributed on-chip

voltage regulation together with the advantages of FIVR motivate us to investigate distributed

buck regulators in the simulation setups.

96 identical on-chip VRs, with the area of each as 0.04mm2, are used in the simulations to

distribute across the chip as shown in Fig. 2.20b. The optimal placement of LDOs is first investigated
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in [105] to meet the IR-drop constraint. To avoid any adversely biased analysis in our simulations,

we mimic the algorithm proposed in [106] where a voltage-noise-minimizing technique is proposed

to determine the locations of the C4 pads across several benchmarks. We use this algorithm to

determine the optimal locations of the on-chip VRs that would minimize the voltage-noise. Since

the resulting maximum voltage noise only decreases by less than 0.4% with the optimal placement

as compared to the uniform distribution, we adopt the uniform placement of the VRs to simplify

the analysis. These on-chip regulators are calibrated to match the conversion efficiency of FIVR

design in Intel’s Haswell processor [62] as it is one of the most efficient regulators in industry.

Efficiency curves in [62] are picked for calibration and each VR provides around 1A load current

with the optimum efficiency of about 90%. The calibrated efficiency curve is shown in Fig. 2.21.

The on-chip VR is modeled as an ideal supply voltage in series with a RLC network in VoltSpot [82]

simulations. Simpler RL and RC based models have previously been used, respectively, in [2, 107]

and in [108] to model VRs. The proposed adaptive Vref control method can be applied to balance

the current sharing.

Simulation results showing the power saving and regulator power loss saving with balanced

current sharing for different applications are shown in Fig. 2.22. Power saving up to 1W and

VR power loss saving up to 8% are observed. Note that balancing the current may lead to extra

power losses on the power-grid resistors. The total gained power saving is due to the fact that

the power saving induced by balanced current sharing can be much larger than the extra power

loss consumed on the power grid resistors. For a general case of N distributed VRs, a total load

current NIo_opt with any CSRi (i = 1, ..., N) for the ith VR, when CSRi varies further from the

balanced current sharing point, balanced current sharing may introduce more loss on the power-grid

parasitic resistors, however, balanced current sharing induced power saving also increases as can

be seen from Fig. 2.6 and (2.9). With large number of VRs deployed, distributed load currents

are supplied by adjacent VRs, which effectively reduces the distance VR output currents travel to

balance others. Furthermore, effective resistance between two nodes on the power grid does not

increase linearly with distance [30, 83]. Even with quite large distance, effective resistance can be

only a few times of the unit power-grid resistance. All these factors contribute to the power savings
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seen from Fig. 2.22. More importantly, with balanced current sharing, VR malfunctions can be

avoided and stability and reliability are enhanced.

2.8 Conclusion

Efficiency, stability, and reliability implications of unbalanced current sharing among dis-

tributed on-chip voltage regulators are investigated in this chapter both theoretically and through

extensive simulations. A current balancing scheme that can be applied to most regulator types

is proposed in this work. A simple relationship between the individual voltage regulator output

current and its corresponding Vref is identified for balanced current sharing. And an adaptive Vref

control method based on the relationship is proposed. The proposed method generates and modu-

lates the Vref for each regulator to balance the output current. The implementation of the method

is analyzed and simulations are presented to verify the effectiveness. Regulator power loss saving

up to 8%, enhanced system stability, and several years of MTTF improvement are verified through

practical case studies.
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CHAPTER 3:

AGING EFFECTS ON THE TRANSIENT PERFORMANCE DEGRADATION OF

ON-CHIP VOLTAGE REGULATORS

3.1 Introduction

With ubiquitous applications of on-chip voltage regulation [2] within modern micropro-

cessors, Internet of Things (IoT), wireless energy harvesting, and applications such as aerospace

engineering, the reliable operation and lifetime of on-chip voltage regulators have become one of the

most significant and challenging design considerations.1 Within those applications, large variations

in the load current, voltage, and temperature can occur. These variations may speed up the aging

process of the devices under stress and further deteriorate the performance and lifetime of on-chip

voltage regulators. As those regulators are already deployed in the field, replacement of them can

be costly or even impossible. The conflicting need of harsh environment applications and highly

reliable designs necessitates reliability evaluations at design stage as well as reliability enhancement

techniques.

The major transistor aging mechanisms include bias temperature instability (BTI), hot

carrier injection (HCI), time dependent dielectric breakdown (TDDB), and electromigration (EM),

among which BTI is the dominant reliability concern for nanometer integrated circuits design [2-4].

BTI can induce threshold voltage increase and consequent circuit level performance degradation.

Positive BTI (PBTI) induces aging of nMOS transistors while negative BTI (NBTI) causes aging of
1This chapter was published in IEEE Design, Automation and Test in Europe Conference and Exhibition, Dres-

den, Germany, 2018, pp. 803-808 "Mitigation of NBTI Induced Performance Degradation in On-Chip Digital
LDOs" and in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Early Access, DOI (identifier)
10.1109/TVLSI.2018.2871381 "Exploiting Algorithmic Noise Tolerance for Scalable On-Chip Voltage Regulation".
Permissions are included in Appendix A.
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pMOS transistors [109]. The impact of BTI aging mechanism is a strong function of temperature,

electrical stress, and time.

On the other hand, as an essential part of large scale integrated circuits, on-chip voltage

regulators need to be active most of the time to provide the required power to the load circuit.

The load current and temperature can vary a lot especially for microprocessor applications [31]. All

of these variations partially contribute to different aging mechanisms of on-chip voltage regulators,

which should be considered to avoid overdesign for a targeted lifetime.

Several studies have been performed regarding the reliability issues in nanometer CMOS

designs [6-8]. There is, however, quite limited amount of work on the reliability of on-chip voltage

regulators. Device aging on the immunity level of electro-magnetic interference (EMI) for low-

dropout regulators (LDO) is characterized in [110]. A method of distributing the aging stress by

rotating the phase to shed at light load is proposed in [111] to enhance the light load efficiency for

multiphase buck converters. The reliability of metal wires connected to on-chip voltage regulators is

investigated in [6]. Nonetheless, quantitative analysis of aging effects on on-chip voltage regulators

considering load current characteristics and temperature variations as well as efficient reliability

enhancement techniques under arbitrary load conditions have not yet been investigated.

As compared to other voltage regulator types, the emerging digital LDO (DLDO) has gained

impetus due to the design simplicity, easiness for integration, high power density, and fast response

[63, 112]. DLDOs have demonstrated major advantages in modern processors including the recent

IBM POWER8 processor [64]. More importantly, as compared to the analog LDOs, DLDO can

provide certain advantages for low-power and low-voltage IoT applications due to its capability for

low supply voltage operations [113]. However, as pMOS is used as the power transistor for DLDOs,

NBTI induced degradations largely affect important performance metrics such as the maximum

output current capability Imax, load response time TR, and magnitude of the droop ∆V as defined

in [73]. It is therefore imperative to investigate aging mitigation techniques for DLDOs to achieve

reliable operation of critical systems.

The main contributions of this chapter are threefold. First, NBTI induced threshold volt-

age Vth degradations are theoretically demonstrated that deteriorate DLDO performance metrics
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Figure 3.1: Schematic of conventional DLDO.

including Imax, TR, and ∆V , making NBTI-aware DLDO designs necessary. Second, a novel uni-

directional shift register (uDSR) is proposed to mitigate the NBTI induced DLDO performance

degradation under arbitrary load conditions without degrading the performance. Third, possible

mitigation strategies of DLDO performance degradation using the proposed technique are evaluated

and reliability-aware design considerations are explored within practical applications.

The rest of this chapter is organized as follows. Background information regarding conven-

tional DLDO regulator and NBTI is introduced in Section 3.2. NBTI induced DLDO performance

degradation including Imax, TR, and ∆V is demonstrated theoretically in Section 3.3. The pro-

posed uDSR based NBTI-aware DLDO is described in Section 3.4. Evaluation of the benefits of the

proposed NBTI-aware DLDO through simulation of an IBM POWER8 like processor is provided in

Section 3.5. Concluding remarks are offered in Section 3.6.

3.2 Background

3.2.1 Conventional DLDO Regulator

The schematic of a conventional DLDO [63] is shown in Fig. 3.1. DLDO is composed

of N parallel pMOS transistors Mi (i = 1, ..., N) connected between the input voltage Vin and
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Figure 3.2: Digital controller for conventional DLDO. (a) Bi-directional shift register. (b) Operation
of bi-directional shift register.

output voltage Vout, and feedback control loop implemented with a clocked comparator and digital

controller. The value of Vout and reference voltage Vref are compared through the comparator at

the rising edge of the clock signal clk. More (less) number of Mi is turned on through the digital

controller output signals Qi (i = 1, ..., N) if Vout < Vref , Vcmp = H (Vout > Vref , Vcmp = L). A

bi-directional shift register (bDSR), as shown in Fig. 3.2a, is conventionally implemented for the

digital controller to turn on (off) power transistors M1 to Mm (Mm+1 to MN ) with the value of m

decided by the load current Iout. At a certain step k+1, Mm+1 (Mm) is turned on (off) if Vcmp = H

(Vcmp = L) and bDSR shifts right (left) as demonstrated in Fig. 3.2b.
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DLDO needs to able to supply the maximum possible load current Imax. It is, however,

demonstrated that, within most practical applications, including but not limited to smart phone

[111] and chip multiprocessors [114], less than the average power is consumed most of the time. The

application environment of DLDO together with the conventional activation scheme of Mi leads to

the heavy use of M1 to Mm and less or even no use of Mm+1 to MN . This scheme can therefore

introduce serious degradation to M1 to Mm due to NBTI. The subsequent DLDO performance

deteriorations are discussed in Sections 3.2.2 and 3.3.

3.2.2 Negative Bias Temperature Instability

NBTI can introduce significant Vth degradations to pMOS transistors due to negatively

applied gate to source voltage Vgs. The increase in |Vth| due to NBTI is considered to be related

to the generation of interface traps at the Si/SiO2 interface when there is a gate voltage [115].

|Vth| increases when electrical stress is applied and partially recovers when stress is removed. This

process is commonly explained using a reaction-diffusion (R-D) model [115]. The Vth degradation

can be estimated during each stress and recovery phase using a cycle-to-cycle model and can also be

evaluated using a long-term reliability model [109, 116, 117]. As the long-term reliability evaluation

is the focus of this work, the analytical model for long-term worst case threshold voltage degradation

∆Vth estimation in [109] is adopted in this work as

∆Vth = Klt

√
Cox(|Vgs| − |Vth|)e

−Ea
kT (αt)

1
6 (3.1)

where Cox, k, T , α, and t are, respectively, the oxide capacitance, Boltzmann constant, temperature,

the fraction of time (activity factor) when the device is under stress, and operation time. Klt and

Ea are the fitting parameters to match the model with the experimental data [109]. Note that NBTI

recovery phase is already included in the model.
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Figure 3.3: Percentage IpMOS degradation of conventional bDSR based DLDO.

3.3 NBTI Induced Performance Degradation

Imax, TR, and ∆V are among the most important design parameters for DLDOs. The effect

of NBTI induced degradations on these important performance metrics is examined in this section.

3.3.1 Maximum Current Supply Capability

Without NBTI induced degradations, Imax=NIpMOS , where IpMOS is the maximum output

current of a single pMOS stage. For DLDO, |Vgs| in (3.1) is equal to Vin when Mi is active. The

pMOS transistor Mi operates in linear region when turned on and the on-resistance Ron of a single

pMOS stage can be approximated as [109]

Ron ≈ [(W/L)µpCox(Vin − |Vth|)]−1 (3.2)
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where W , L, µp, and Cox are, respectively, the width, length, mobility, and oxide capacitance of

Mi. IpMOS can thus be expressed as

IpMOS =
Vsd
Ron

= (Vin − Vout)(W/L)µpCox(Vin − |Vth|) (3.3)

where Vsd is the source drain voltage of Mi. NBTI induced degradation factor DFi for Mi can be

defined as

DFi =
IdegpMOSi

IpMOS
=
Vin − |Vth| −∆Vthi

Vin − |Vth|
(3.4)

where ∆Vthi and I
deg
pMOSi

are, respectively, NBTI induced Vth degradation and the degraded IpMOS

for Mi. Degraded Imax can be expressed as

Idegmax = IpMOS

N∑
i=1

DFi. (3.5)

As an example, the percentage IpMOS degradation 1−DFi for smaller value of i, considering

Mi is active most of the time, is shown in Fig. 3.3 as a function of time under different temperatures.

A 32 nm metal gate, high-k strained-Si CMOS technology from PTM model library [117] is utilized.

A nominal supply voltage Vin = 0.9 V is used. PTM is adopted for simulation as it is widely used

for BTI study due to the availability of fitting parameter values in the ∆Vth degradation model [109,

118], [6-8]. As shown in Fig. 3.3, NBTI can induce significant IpMOS degradations, especially at

high temperatures. Degraded IpMOS can further lead to reduced Imax and lower output voltage

regulation capability under high load current. Moreover, as discussed in Sections 3.3.2 and 3.3.3,

degraded IpMOS also exacerbates TR and ∆V , necessitating reliability enhancement techniques.

3.3.2 Load Response Time

Load response time TR measures how fast the feedback loop responds to a step load. TR

can be estimated as [119]

TR = RCln(1 +
∆iload

IpMOSfclkRC
) (3.6)
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where R, C, fclk, and ∆iload are, respectively, the average DLDO output resistance before and after

∆iload, load capacitance, clock frequency, and amplitude of the load change. Considering NBTI

effect, degraded TR can be expressed as

T degR = RCln(1 +
∆iload

DFIpMOSfclkRC
). (3.7)

As 0 < DF < 1 and TR < T degR , NBTI induced degradation slows down DLDO response.

3.3.3 Magnitude of the Droop

Magnitude of the droop ∆V reflects the Vout noise profile under transient response and can

be estimated as [119]

∆V = R∆iload − IpMOSfclkR
2Cln(1 +

∆iload
IpMOSfclkRC

). (3.8)

Considering NBTI effect, degraded ∆V can be expressed as

∆Vdeg = R∆iload −DFIpMOSfclkR
2Cln(1 +

∆iload
DFIpMOSfclkRC

). (3.9)

Let ∆iload/IpMOSfclkRC = A, A > 0. Under 0 < DF < 1, the following holds

1 +A > (1 +
A

DF
)DF (3.10)

thus

IpMOSfclkR
2Cln(1 +

∆iload
IpMOSfclkRC

) > DFIpMOSfclkR
2Cln(1 +

∆iload
DFIpMOSfclkRC

) (3.11)

and ∆V < ∆Vdeg, which means NBTI can degrade the transient voltage noise profile.

Furthermore, it is worth noting that, as seen from (3.5), (3.6), and (3.8), NBTI induced

DLDO performance degradations are mainly due to the degradation of the power transistors Mi
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Figure 3.4: Proposed uni-directional shift register for NBTI-aware DLDO.

(i = 1, ..., N) rather than the control loop. Thus, mitigation of power transistor degradations should

be taken as a priority.

Power transistor Mis with smaller values of i are more heavily used than those with larger

values of i for conventional bDSR based DLDO. As studied in [114] that load current variation per

processor clock cycle can be small most of the time. It is thus reasonable to assume that the newly

activated/deactivated power stages have similar level of IpMOS degradations. As below average

power is mostly consumed, conventional bDSR based DLDOs experience worst case TR and ∆V

degradations since the worst degraded Mis are utilized most of the time.

3.4 NBTI-Aware DLDO Voltage Regulator

To mitigate NBTI induced DLDO performance degradations, distributing the electrical

stress among all available power transistors as evenly as possible under arbitrary load current con-

ditions is essential. Reliability is not considered in conventional bDSR based DLDO designs, and

therefore too much stress is exerted on a small portion of Mis. A novel uDSR is thus proposed in

this work to evenly distribute the electrical stress among all of the Mis to realize a NBTI-aware

DLDO voltage regulator and enhance reliability.

The schematic and operation of the proposed uDSR are shown, respectively, in Figs. 3.4

and 3.5. The elementary D flip-flop (DFF) and multiplexer within bDSR, as shown in Fig. 3.2a, are

replaced with T flip-flop (TFF) and simple logic gates within the proposed uDSR, respectively. The

rest of the DLDO including parallel power transistors and clocked comparator remains unchanged.

The idea is to balance the utilization of each available Mi under all load current conditions. To

achieve this objective, control signals Qi−1 and Qi for two adjacent power transistors Mi−1 and Mi,
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respectively, are XORed to determine if Mi−1 and Mi are at the boundary of active and inactive

power transistor portions. Normally, there are two such boundaries if at least one power transistor

is active, as shown in Fig. 3.5. Qi−1 and output of the comparator Vcmp are thus XORed to decide

which power transistor at the boundaries need to be turned on/off at the rising edge of the clock

signal. Inactive (active) power transistor at the right (left) boundary is turned on (off) if Vcmp

is logic high (low). A uni-directional shift register is realized through this activation/deactivation

scheme, as demonstrated in Fig. 3.5. Qi−1 for the first stage is QN from the last stage and

thus a loop is formed. Considering the initialization step when all Mis are off and the full load

current condition when all Mis are on, additional control signals are inserted as Tb and Tc in the

first stage, to avoid inaction under these two situations, where Tb = Q1 · Q2 · · · QN · Vcmp and

Tc = Q1 +Q2 + · · ·+QN + Vcmp. The logic functions for Tb and Tc can be implemented with

n-input AND/NOR gates [120]. Considering the similar area of DFF and TFF, the proposed uDSR

only induces ∼ 3.8% area overhead per control stage compared to bDSR. The total area overhead

is thus ∼ 2.6% of a single DLDO area designed with µA current supply capability [63]. As little

extra transistors are added per control stage and the bDSR only consumes a few µW power [63],

the uDSR induced power overhead is also negligible. With larger IpMOS for higher load current

rating, both the area and power overhead can be significantly less.
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Table 3.1: Load Characteristics of Different Functional Blocks within One Core of an IBM POWER8
Like Microprocessor Chip under All Experimented Benchmarks

IFU LSU ISU EXU L2
Min Iload (A) 0.091 0.172 0.125 0.251 0.178
Max Iload (A) 3.245 12.092 1.356 5.056 2.195
Avg Iload (A) 1.138 0.908 0.201 1.294 1.719

Under transient load current conditions, if Vout < Vref (Vout > Vref ) due to increased (de-

creased) load current, inactive (active) power transistors at the right (left) boundary are gradually

turned on (off) to supply the required output current and regulate Vout. Under steady state con-

ditions, the number of active power transistors changes dynamically due to limit cycle oscillations

as shown in [63] in order to supply the required current. Newly activated (deactivated) power

transistors always occur at the right (left) boundary, leading to the right shift of the active power

transistors all the time. Thus, regardless of the load current conditions, electrical stress can always

be evenly distributed among all of the available power transistors. Furthermore, as compared to

conventional bDSR based DLDO, the number of activated/deactivated power transistors per clock

cycle remains the same and thus the DLDO performance is not negatively affected.

Unlike the rotating phase-shedding scheme for multiphase buck converters implemented

in [111], which only mitigates aging effects at light load conditions with only one active phase, the

proposed uDSR is effective under all load current conditions. Moreover, as the proposed uDSR is

a generalized method to determine which parallel power stage needs to be turned on/off, it can

also be tailored for reliability enhancement within multiphase buck or switched capacitor voltage

regulators with phase-shedding functionality.

3.5 Evaluation

To evaluate the benefits of the proposed uDSR based DLDO architecture in terms of reli-

ability enhancement and to provide design insights for a targeted lifetime, an IBM POWER8 like

microprocessor [64] simulation platform is constructed.
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like microprocessor chip.

3.5.1 Simulation Framework

3.5.1.1 IBM POWER8 Like Microprocessor

IBM POWER8 microprocessor [64] is among one of the state-of-the-art server-class proces-

sors and thus representative for evaluation of the proposed NBTI-aware DLDO scheme. The same

corresponding technology and architecture parameters listed in Table 2.1 are considered. The IBM

POWER8 like microprocessor as shown in Fig. 3.6, includes a load store unit (LSU), an execu-

tion unit (EXU), an instruction fetch unit (IFU), an instruction scheduling unit (ISU), an L1 data

cache inside LSU, an L1 instruction cache inside IFU, and a private L2. All benchmarks are from

SPALSH2x [121] and cover a wide range of representative application domains. Analysis is restricted

to the region-of-interest of the benchmarks and eight threads are involved in the simulations. The

load characteristics of different functional blocks, as shown in Fig. 3.6, under all experimented

benchmarks are summarized in Table 3.1.
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Table 3.2: Conventional DLDO Performance Degradation for Different Functional Blocks under All
Experimented Benchmarks for a Five-Year Time Frame

IFU LSU ISU EXU L2
% IpMOS degradation 16.2 21.4 15.3 16.6 15.1
% TR degradation 9.4 12.9 8.9 9.7 8.7
% ∆V degradation 6.4 8.7 6.1 6.6 6

3.5.1.2 DLDO Design Specifications

Distributed micro-regulators are implemented in IBM POWER8 microprocessor [122]. In

this simulation example, a switch array of 256 pMOS transistors, which is typical in DLDO designs

[63], is implemented in each micro-regulator. Two different DLDO designs with bDSR and uDSR

controls are implemented using 32 nm PTM CMOS technology where Vin = 1.1 V and Vout = 1 V

as in [122]. IpMOS = 2 mA and Imax = 512 mA are used in the simulations, leading to 7, 24, 3, 10,

and 5 micro-regulators (DLDOs) in, respectively, IFU, LSU, ISU, EXU, and L2 blocks to be able

to supply the maximum load current across all benchmarks in each block. Load current of each

block is assumed to be supplied by micro-regulators within that block, which is reasonable due to

the principle of spatial locality [30] regarding current distribution. Each micro-regulator within a

certain block is assumed to provide equal current due to the availability of current balancing scheme

implemented within IBM POWER8 microprocessor [73]. fclk = 10 MHz and C = 15 nF are used

for each DLDO to achieve smaller than 10% Vdd transient voltage noise [31] most of the time. The

total output capacitance of 735 nF is comparable to 750 nF used in [122].

3.5.1.3 Evaluation of NBTI Induced Performance Degradation

Equations (3.1), (3.3), (3.6), and (3.8) are leveraged for evaluation of NBTI induced perfor-

mance degradation. A typical temperature profile [31, 123] of 90oC, 69oC, 67oC, 63oC, and 62oC

for, respectively, LSU, EXU, IFU, ISU, and L2 is adopted for evaluations. The activity factors

for both DLDO designs under different benchmarks and functional blocks are estimated through

simulations in Cadence Virtuoso. The worst case IpMOS degradations are used for evaluations of

both designs, which is reasonable due to load characteristics of typical applications [114] and the

consequent heavy use of a portion of Mis in conventional DLDOs.
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Figure 3.7: Percentage IpMOS degradation mitigation of the proposed NBTI-aware DLDO as
compared to the conventional DLDO design for different functional blocks under all experimented
benchmarks.

3.5.2 Simulation Results

3.5.2.1 Performance Degradation within Conventional DLDO

Conventional DLDO performance degradation for different functional blocks for a five-year

time frame is summarized in Table 3.2. These degradations apply to all the experimented bench-

marks as the worst case IpMOS degradation is considered. As shown in Table 3.2, NBTI can induce

serious IpMOS , TR, and ∆V degradations for all functional blocks. IpMOS degradation can lead

to the deterioration of DLDO Vout regulation capability and possible Vout drop under large load

current conditions. Larger than 10% Vout drop can lead to voltage emergencies and potential execu-

tion errors for microprocessors. Similarly, TR and ∆V degradations can, respectively, increase the

duration and frequency of voltage emergencies, which can slow down microprocessor executions as

further actions may need to be taken to remedy the errors. Moreover, for a longer targeted lifetime

of more than five years, the degradations are expected to be more disastrous as IpMOS degradations

are even worse, as seen from Fig. 3.3, which may not be tolerable for critical applications where

replacement of the devices can be costly or even impossible.

3.5.2.2 Mitigation with Proposed NBTI-Aware DLDO

Simulation results for all benchmarks are summarized in Figs. 3.7, 3.8, and 3.9 regarding,

respectively, IpMOS , TR, and ∆V degradation mitigation of the proposed NBTI-aware DLDO as
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Figure 3.8: Percentage TR degradation mitigation of the proposed NBTI-aware DLDO as compared
to the conventional DLDO design for different functional blocks under all experimented benchmarks.

Figure 3.9: Percentage ∆V degradation mitigation of the proposed NBTI-aware DLDO as compared
to the conventional DLDO design for different functional blocks under all experimented benchmarks.

compared to the conventional DLDO design for a five-year time frame. Up to 39.6%, 43.2%, and

42% performance improvement is achieved for, respectively, IpMOS , TR, and ∆V . The highest

performance improvement is obtained for LSU with the highest operation temperature. Even at the

lowest operation temperature within L2, degradation mitigations of up to 15.1%, 16.4%, and 15.9%

are achieved for, respectively, IpMOS , TR, and ∆V .

3.5.2.3 Discussions

For high temperature applications and applications with high maximum to average current

ratio, such as the LSU block, NBTI can induce greater performance degradations as summarized

in Tables 3.1 and 3.2. The benefits of the proposed NBTI-aware DLDO scheme are also more

advantageous for certain applications as shown in Figs. 3.7, 3.8, and 3.9 for the LSU portions. For
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applications where the average current is close to the maximum current, such as the L2 block, the

performance degradation mitigations using the proposed NBTI-aware DLDO are less significant but

still beneficial as compared to the conventional design considering negligible extra power and area

overhead induced by the proposed design.

DLDO performance degradations can vary under different load characteristics and temper-

ature. It is thus essential to examine these degradations in early design stage with the applied

reliability enhancement techniques. Extra design margins, such as increased number of Mi and/or

output capacitance, should be adopted adaptively according to the aging speed of different func-

tional blocks and benchmark applications instead of utilizing a uniform margin to avoid potential

overdesign.

3.6 Conclusion

The DLDO regulators can experience serious NBTI induced performance degradations in-

cluding IpMOS , TR, and ∆V . These degradations are typically overlooked in the design of DLDOs

and can deteriorate the regulation capability, response speed, and transient voltage noise profile. A

novel uni-directional shift register is proposed in this chapter to evenly distribute the electrical stress

among different power transistors to mitigate NBTI induced performance degradation with nearly

no extra power and area overhead under arbitrary load conditions. Through practical simulations

of an IBM POWER8 like microprocessor and benchmark evaluations, it is demonstrated that up to

39.6%, 43.2%, and 42% degradation mitigation can be achieved for, respectively, IpMOS , TR, and

∆V with the proposed technique. Simulation results also highlight the necessity of adaptive design

margins to avoid overdesign.
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CHAPTER 4:

AGING EFFECTS ON THE STEADY STATE PERFORMANCE

DEGRADATION OF ON-CHIP VOLTAGE REGULATORS

4.1 Introduction

Distributed on-chip voltage regulation [2, 124] in fine temporal and spatial granularity en-

ables fast and timely control of the operating point.1 Thereby the operating voltage and frequency

can better match the needs of the workload to maximize energy efficiency. As a function of the

workload, throughout the execution time, different components of a processor chip exhibit different

microarchitectural activities, which translates into different demands for current to be pulled from

the respective regulators. Different components of the processor chip also show different degrees of

tolerance to errors, which may result from deviation of design parameters from their target values

due to device wear-out, voltage noise, temperature, or process variations. For example, it has been

observed that the emerging recognition, mining, and synthesis (RMS) [125] applications can tolerate

errors in the data flow, but not in control [126].

Heterogeneous distributed on-chip voltage regulation has been explored to best capture

spatio-temporal variations in current demand of different processor components, where the regula-

tor operating regimes are tailored to the activity range of the respective load (processor component).

Such tailoring can be achieved by (i) keeping the regulator design constant across chip, but making

each regulator reconfigurable; or (ii) by designing each regulator from the ground-up to match differ-

ent load conditions. A promising direction which has not been explored is how such heterogeneity

can help in trading the program output quality for area overhead, by e.g., assigning error-prone
1This chapter includes portions of the published paper in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Early Access, DOI (identifier) 10.1109/TVLSI.2018.2871381 "Exploiting Algorithmic Noise Toler-
ance for Scalable On-Chip Voltage Regulation". Permission is included in Appendix A.
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(i.e., slower and/or less accurate) regulators to feed processor components in charge of data flow

which can tolerate errors. Control-heavy components, on the other hand, should not be permitted

to leave the error-free zone to avoid catastrophic program termination or excessive loss in program

output quality even if the program does not crash.

To this end, we must understand the type and impact of errors that voltage regulators can

introduce to the system, such that we can assess to what extent such regulator-induced errors can be

masked by their respective loads (i.e., data flow heavy processor components) and how regulator-

induced errors interact with load-induced potential errors in determining the final computation

accuracy. In this chapter, we will try to shed light into this question by quantifying the impact

of one of the most prevalent reliability concerns, aging, on regulator robustness, without loss of

generality.

The major transistor aging mechanisms include bias temperature instability (BTI), hot

carrier injection (HCI), time dependent dielectric breakdown (TDDB), and electromigration (EM),

among which BTI is the dominant reliability concern for nanometer integrated circuits design [109,

118, 127]. BTI can induce threshold voltage increase and consequent circuit level performance

degradation. Positive BTI (PBTI) induces aging of nMOS transistors while negative BTI (NBTI)

causes aging of pMOS transistors [109]. The impact of BTI aging mechanism is a strong function

of temperature, electrical stress, and time.

As an essential part of a processor chip, on-chip voltage regulators need to be active most

of the time to provide the required power to different components of the processor chip. The load

current and temperature can vary significantly among these components for different processor ap-

plications [31]. All of these variations partially contribute to different aging mechanisms of on-chip

voltage regulators, which should be considered to avoid over-design for a targeted lifetime. Addi-

tionally, in certain processor components that can show higher degrees of tolerance to errors, the

regulators can be intentionally under-designed to save valuable chip area and potentially power-

conversion efficiency. In other words, a heterogeneous distributed power delivery network can be

designed consisting of different voltage regulators with accurate voltage regulators that house ad-

ditional circuitry to mitigate the aging induced supply voltage variations and approximate voltage
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regulators that are intentionally under-designed to mitigate just-enough aging-induced variations.

The quality of the supply voltage directly affects data path delay and signal quality, and fluctua-

tions in the supply voltage result in delay uncertainty and clock jitter. Accordingly, the supply noise

tolerance of certain processor components is investigated as an area-quality control knob where the

quality of the supply voltage can be compromised to save valuable chip area.

Several studies have been performed regarding the reliability issues in nanometer CMOS

designs [116, 128, 129]. There is, however, quite limited amount of work on the reliability of on-chip

voltage regulators. Device aging on the immunity level of electro-magnetic interference (EMI) for

low-dropout regulators (LDO) is characterized in [110]. A method of distributing the aging stress

by rotating the phase to shed at light load is proposed in [111] to enhance the light load efficiency

for multiphase buck converters. An algorithm to uniformly distribute the current provided by the

power transistor array of a digital LDO (DLDO) is proposed in [65] to reduce hot spots and ensure

reliable silicon operation. The reliability of metal wires connected to on-chip voltage regulators is

investigated in [6]. Nonetheless, quantitative analysis of aging effects on on-chip voltage regulators

considering load current characteristics and temperature variations as well as efficient reliability

enhancement techniques under arbitrary load conditions have not yet been investigated.

As compared to other voltage regulator types, the emerging digital LDO has gained impetus

due to the design simplicity, easiness for integration, high power density, and fast response [63, 112,

130]. DLDOs have demonstrated major advantages in modern processors including the recent IBM

POWER8 processor [64]. More importantly, as compared to the analog LDOs, DLDO can provide

certain advantages for low-power and low-voltage IoT applications due to its capability for low

supply voltage operations [113]. However, as pMOS is used as the power transistor for DLDOs,

NBTI induced degradations largely affect important performance metrics such as the maximum

output current capability Imax, load response time TR, and magnitude of the droop ∆V as defined

in [73]. Meanwhile, the combined NBTI and PBTI induced control loop degradations can potentially

increase the mode of inherent limit cycle oscillations (LCOs) within DLDOs and adversely affect

the steady state output voltage ripple performance. It is therefore imperative to investigate aging

mitigation techniques for DLDOs to achieve reliable operation of critical components. As aging
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Figure 4.1: Nonlinear sampled feedback model of a conventional DLDO.

effects on the transient performance degradation of DLDOs have been investigated in Chapter 3,

aging effects on the steady state performance degradation of DLDOs will be the focus of this chapter.

Furthermore, when a circuit component can tolerate higher degrees of errors, the DLDOs can be

designed with minimal area overhead, achieving heterogeneous power delivery. A voltage regulator

is proposed in this chapter that can be designed at the design time based on the supply noise

resiliency requirement of the circuitry it powers. Since the number of voltage regulators can be as

high as several hundreds in modern processors [64], the area and number of voltage regulators can

be easily scaled thereby to satisfy the diverse needs of systems that house components with varying

degrees of noise tolerance.

The rest of this chapter is organized as follows. The potential side effects of limit cycle

oscillation on the steady state performance of DLDO is studied in Section 4.2. Aging-aware limit

cycle oscillation mitigation technique is investigated in Section 4.3. Effectiveness of the proposed

technique is verified in Section 4.4. Trade-off between area overhead and program output quality is

illustrated in Section 4.5. Concluding remarks are offered in Section 4.6.
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4.2 Limit Cycle Oscillation

In conventional DLDOs, when the shift register turns on/off the pass transistor, the output

voltage of the DLDO cannot change instantaneously due to the output pole of the DLDO. The

delay between the operation of the shift register and fluctuation of the output voltage, together

with the quantization effects of the comparator and the delay between the sampling instant and

the time of pMOS array actuation lead to the occurance of LCO. Such behavior can be examined

by a nonlinear sampled feedback model developed in [131] to determine the possible modes and

amplitudes of LCOs.

The model consists of N(A,ϕ), P (z), S(z), and D(z) as shown in Fig. 4.1, which represent,

respectively, the describing function of the clocked comparator, transfer function of the zero-order

hold (ZOH) together with the pMOS array and load circuit, transfer function of the shift register,

and delay element between the comparator and shift register. A and ϕ stand for the LCO amplitude

and the phase shift of x(t), respectively.

N(A,ϕ), P (z), S(z), and D(z) can be expressed, respectively, as [132, 133]

N(A,ϕ) =
2D

MTA

M−1∑
m=0

sin(
π

2M
+
mπ

M
)∠(

π

2M
− ϕ) (4.1)

P (z) = KOUT
1− e−FlT

Fl(z − e−FlT )
(4.2)

S(z) =
z

z − 1
(4.3)

D(z) = z−1 (4.4)

where KOUT = KDCIpMOS , T = 1/fclk, Fl = 1/(RL||RpMOS)C, and ϕ ∈ (0, π/M). D, Fl, KOUT ,

KDC , RL, and RpMOS are, respectively, the amplitude of comparator output, load pole, gain of

P (z), DC proportional constant, load resistance, resistance of power transistor array.

The mode and amplitude of LCO can be determined by the following Nyquist criterion,

N(A,ϕ)P (ejωT )S(ejωT )D(ejωT ) = 1∠(−π) (4.5)
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Figure 4.2: Schematic of the proposed aging-aware DLDO.

where ω = π/TM is the angular LCO frequency. The phase shift ϕLCO for a steady LCO can thus

be expressed as [132]

ϕLCO =
π

2
− π

2M
− tan−1( π

MTFl
). (4.6)

ϕLCO needs to be within (0, π/M) for mode M to exist.

Transistor aging can lead to increased path delay [134]. Considering BTI induced propaga-

tion delay degradation of the clocked comparator and shift register, the delay element in Fig. 4.1

becomes

D′(z) = z−1z−
tdc
T z−

(tds−tdc )

T = z−1−
tds
T (4.7)

where tdc and tds are, respectively, the degraded propagation delay of the clocked comparator and

shift register. Note that tdc is canceled out in D′(z) and thus the propagation delay of clocked

comparator has negligible effects on the mode of LCO. ϕLCO then becomes

ϕ′LCO =
π

2
− π

2M
− tan−1( π

MTFl
)− πtds

MT
. (4.8)
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The negative effect of the propagation delay of the shift register on LCO can be explained as

follows. If an LCO modeMa exists and the propagation delay of the shift register is not considered,

the phase shift ϕLCO is within (0, π/Ma). That is 0 < π/2 − π/2Ma − tan−1(π/MaTFl) < π/Ma.

For a larger LCO mode Ma + 1 to exist, the following condition needs to be satisfied

0 <
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
) < π/(Ma + 1). (4.9)

Typically
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
) >

π

2
− π

2Ma
− tan−1( π

MaTFl
) (4.10)

and if π/2− π/2Ma − tan−1(π/MaTFl) is very close to π/Ma, it is likely that

ϕLCO|M=Ma+1 =
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
) > π/Ma > π/(Ma + 1) (4.11)

such that LCO mode Ma + 1 can not exist as (4.9) is violated.

However, if the propagation delay of the shift register is included, for LCO mode Ma + 1,

ϕLCO becomes

ϕ′LCO|M=Ma+1 =
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
)− πtds

(Ma + 1)T
. (4.12)

The contribution of πtds/(Ma + 1)T term may push ϕ′LCO|M=Ma+1 to be within the range of

(0, π/(Ma + 1)), making a larger LCO mode Ma + 1 possible. This demonstrates the potential

negative effect of the propagation delay of the shift register on LCO.

4.3 Reduced Clock Pulse Width

Dual clock edge triggering has been employed in [133, 135] to reduce the control signal delay,

where the clocked comparator and shift register are triggered at the rising and falling edge of the

clock signal, respectively. Considering the potential side effect of the control loop delay element

D′(z) on LCO, a reduced clock pulse width tc, as shown in Fig. 4.2, is proposed to minimize the

delay element. With dual clock edge triggering implementation of the control loop, the following
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Table 4.1: TFF Setup Time, Logic Delay, and Comparator Delay Before and After a Five-Year
Aging Period

TFF setup time Logic delay Comparator delay
Fresh (ps) 170 209.6 171.5
Aged 5 yrs (ps) 180 227.4 225
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Figure 4.3: Maximum LCO mode with simulation results superimposed for conventional and aging-
aware DLDO under different load current conditions after a five-year aging period.

condition needs to be satisfied regarding tc for proper operation of the uDSR based DLDO

tc > tdc + tdl + tstt (4.13)

where tdl and tstt are, respectively, the total propagation delay of the logic gates connected to the

first stage TFF within the uDSR and the setup time of the TFF. Aging induced degradation of tdc ,

tdl , and t
st
t needs to be considered with the targeted lifetime to decide the value of tc. The one-shot

pulse generator in [98] can be leveraged for reduced pulse width clock generation.

Within the proposed aging-aware DLDO, ϕLCO becomes

ϕ′′LCO =
π

2
+

π

2M
− tan−1( π

MTFl
)− π(tds + tc)

MT
. (4.14)
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Table 4.2: Maximum LCO Mode under Different Sampling Clock Frequency and Load Current
Condition for Conventional Dual Edge (CDE) and Aging-Aware (AA) DLDO

CDE/AA LCO mode Sampling clock frequency fclk (MHz)
Iload (mA) 10 50 100 300 500

10 4/2 8/6 11/9 20/18 27/27
100 3/2 3/2 4/3 6/6 8/8
500 3/2 3/2 3/2 3/3 4/4

4.4 LCO Mitigation with Proposed Aging-Aware DLDO

To verify the benefits of the proposed reduced clock pulse width DLDO regarding LCO mit-

igation, the theoretical maximum LCO mode for dual edge triggered and reduced clock pulse width

DLDO with uDSR implementation are respectively examined by considering BTI induced threshold

voltage degradation of the control loop. An average IBM POWER8 microprocessor temperature

profile of 70oC is utilized for Vth degradation evaluation. NBTI and PBTI are considered as the

major Vth degradation factor for pMOS and nMOS transistors in the control loop, respectively.

Under different load current conditions, the activity factor of each transistor within the control loop

is obtained through Cadence Virtuoso simulations. Equation (3.1) is then leveraged to calculate the

Vth degradation for each transistor within a five-year time frame. The calculated Vth degradation is

embedded in each transistor by adopting the subcircuit model for BTI effect in [136] within Cadence

Virtuoso simulations. The fresh and aged TFF setup time tstt , logic delay tdl , and comparator delay

tdc are summarized in Table 4.1. The aged tstt , tdl , and t
d
c are approximately load current indepen-

dent. tc = 1ns is adopted to satisfy timing constraint in (4.13). The maximum LCO mode for dual

edge triggered and reduced clock pulse width DLDO under different load current conditions after a

five-year aging period is illustrated in Fig. 4.3.

Seen from Fig. 4.3, with reduced clock pulse width considering aging imposed limitations,

maximum LCO mode can be greatly reduced especially at light load conditions. The simulated

steady state output voltages for both conventional dual edge triggered DLDO and the proposed

aging-aware DLDO under 10 mA load current are demonstrated in Fig. 4.4. LCO mode reduction

from 4 to 2 and 3 times output voltage ripple amplitude reduction are achieved. As the minimum

and average Iload can be way smaller than the maximum Iload shown in Table 3.1 especially for LSU,
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Figure 4.4: Simulated output voltage ripple and LCO mode reduction with the proposed aging-
aware DLDO under 10 mA load current.

light and medium load conditions are experienced most of the time such that outstanding benefits

can be achieved with the proposed aging-aware DLDO considering the negligible power and area

overhead induced.

Furthermore, in many applications the clock frequency can be much higher than 10 MHz such

as 1 GHz in [137]. However, the 1 GHz sampling clock sacrifices the quiescent current. Recent work

such as [135] and [138] utilizes a high clock frequency for fast transient and a much lower frequency

for steady state operation. For a better verification of LCO improvement utilizing the proposed

reduced clock pulse width scheme, maximum LCO mode under different sampling clock frequency

and load current condition for both conventional dual edge and aging-aware DLDO is shown in Table

4.2. Seen from the table, the proposed reduced clock pulse width scheme demonstrates maximum

LCO mode reduction under a wide fclk range especially under light load current condition. For a

clock frequency of 1 GHz, there would be no room to further reduce the pulse width due to the

timing constraint. However, as discussed before, clock frequency utilized at steady state operation

is typically much lower.
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Figure 4.5: Percentage area overhead (OH) utilizing conventional DLDO and percentage area
overhead saving (OH_S) utilizing aging-aware DLDO for ∆V degradation mitigation within each
functional unit.
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Figure 4.6: Percentage area overhead utilizing conventional DLDO and percentage area overhead
saving utilizing aging-aware DLDO for ∆V degradation mitigation within LSU under different
temperature profile.

4.5 Trade-Off between Area Overhead and Program Output Quality

Considering aging effects, regulators are typically designed and optimized for the expected

service life of the processor. Deploying regulators optimized for a shorter service life cannot guar-

antee error-free operation, however, if such regulators are confined to feed error-tolerant loads, the
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Figure 4.7: Percentage ∆V degradation mitigation of the proposed aging-aware DLDO as com-
pared to the conventional DLDO design for LSU under all experimented benchmarks and different
temperature profile.

service life can be traded for lower hardware complexity, which almost always directly translates

into area savings. Please note that area represents a scarce on-chip resource for distributed voltage

regulators as many of these regulators are squeezed between various circuit blocks. Such area savings

can enable a higher number of on-chip voltage regulators, hence enhance the scalability of on-chip

voltage regulation. To illustrate this point, the percentage area overhead within each functional unit

to achieve the same fresh ∆V performance utilizing conventional DLDO is examined in Fig. 4.5.

The relative area between pMOS array & shift register and output capacitance is based on the data

in [138] for estimation. Adding extra output capacitance to mitigate ∆V degradation is considered

in the estimation. The percentage area overhead is relative to the original DLDO area including out-

put capacitance designed in an aging-unaware fashion. The percentage area overhead saving within

each functional unit for ∆V degradation mitigation utilizing the proposed aging-aware DLDO is

also demonstrated in Fig. 4.5. As shown in Fig. 4.5, a large area overhead can be introduced

to mitigate aging induced transient voltage noise degradation for conventional DLDOs. Similar to

the trend demonstrated in Fig. 3.3, the area penalty required to compensate for the aging-related

deterioration of ∆V is significant especially in the first two years. The percentage area overhead

also plateaus to within 10% after two years. These trends need to be considered to realize optimal
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Figure 4.8: Percentage area overhead within each functional unit for percentage error rate degra-
dation mitigation utilizing bDSR and uDSR based DLDO.

design based on different application environment and lifetime target. Furthermore, leveraging the

proposed aging-aware DLDO, due to mitigation of aging induced ∆V degradation, significant area

overhead savings compared to the conventional DLDO case can be achieved as shown in Fig. 4.5.

Our proof-of-concept analysis reveals approximately 1% total DLDO area, which corresponds to ∼

36% active DLDO area, savings for per year service life reduction.

The temperature variation effects on percentage area overhead (saving) within LSU is

demonstrated in Fig. 4.6. Seen from the figure, as temperature increases, the percentage area

overhead needed for conventional DLDO to mitigate ∆V degradation increases significantly. The

percentage area overhead saving achieved by the aging-aware DLDO also greatly increases. Although

the relative benefits of aging-aware DLDO do not improve significantly as temperature increases

shown in Fig. 4.7, the area overhead saving is considerable due to the relatively large ratio between

the area of output capacitance and that of active DLDO.

For a proof of concept analysis, considering a five-year aging period, the percentage area

overhead within each functional unit for percentage error rate degradation mitigation utilizing bDSR

and uDSR based DLDO is demonstrated in Fig. 4.8 based on the relationship between error rate and

supply voltage demonstrated in [139, 140]. The percentage error rate degradation mitigation is with
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respect to the degraded error rate utilizing bDSR based DLDO and a 100% error rate degradation

mitigation means the same error rate within each functional unit is achieved as the fresh one after

a five-year aging period. Seen from Fig. 4.8, contrary to the bDSR curves, the uDSR curves do not

start from origin, which means with negligible area overhead, uDSR based DLDO achieves certain

amount of error rate degradation mitigation compared to bDSR based DLDO. Also, for the same

amount of error rate degradation mitigation, the area overhead needed for uDSR based DLDO is

lower than that of bDSR based DLDO.

4.6 Conclusion

As an emerging and essential part of modern processor power delivery network, DLDO

regulators experience serious aging induced performance degradations including IpMOS , TR, and

∆V . In particular, DLDO degradation can increase noise in the supply voltage and further de-

teriorate program output quality. Area overhead needed to fully compensate these degradations

can be significant especially when a conventional DLDO design is utilized. Algorithmic noise toler-

ance of different processor components is leveraged as an area-quality control knob to alleviate the

area overhead requirement through scalable on-chip voltage regulation at design time. Furthermore,

DLDO designed in an aging-aware fashion is proposed to mitigate aging induced performance degra-

dations with negligible power and area overhead. With reduced DLDO performance degradation,

a significantly better area and quality trade-off can be achived due to aging-aware DLDO induced

area overhead savings. Therefore, more efficient scalable on-chip voltage regulation can be realized

with the proposed aging-aware DLDO. Up to 3X steady state DLDO performance improvement as

well as more than 10% area overhead saving can be achieved utilizing the proposed aging-aware

paradigm.
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CHAPTER 5:

CONCLUSIONS

Unbalanced current sharing among distributed on-chip voltage regulators negatively affect

the power conversion efficiency, stability, and reliability of the power delivery network. An effective

balanced current sharing technique is proposed to enhance the power efficiency, stability, and relia-

bility. The proposed technique slightly increases the reference voltages of on-chip voltage regulators

that provide less current and decreases the reference voltages of those providing more current to

balance the overall current sharing. Due to the small effective resistance variations connecting volt-

age regulators at different locations, the reference voltage changes needed to balance the current are

also negligible. Simulation results demonstrate up to 8% regulator power loss saving, several years

of MTTF improvement, and enhanced system stability.

NBTI leads to the amplitude increase of the threshold voltage and has been demonstrated

to degrade the current supply capability, transient response time, and voltage droop performance of

digital LDOs. Conventional digital LDOs utilizing bidirectional shift register for power transistor

array control impose too much stress on a certain portion of power transistors. The proposed

unidirectional shift register based NBTI-aware digital LDO can more evenly distribute the electrical

stress among all of the power transistors to mitigate NBTI induced performance degradations. Under

practical simulation settings, NBTI-aware digital LDO can achieve up to 42% voltage droop and

43.2% transient response time degradation mitigation.

BTI also leads to control loop degradation of digital LDOs, specifically propagation delay

degradation of the control loop, which is not desirable for steady state performance. It is demon-

strated through simulations that the propagation delay degradation can be small as compared to

half clock cycle of typical digital LDO clock signal such that reduced clock pulse width triggering

can be implemented to further reduce the mode and amplitude of steady state limit cycle oscilla-
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tions especially at light load conditions. Up to three times steady state digital LDO performance

improvement is achieved.

Error rate of a certain functional block is largely affected by the supply voltage level. Aging

can lead to the degradation of on-chip voltage noise profile and further the degradation of error

rate. Algorithmic noise tolerance of different functional blocks can vary. Meanwhile, additional area

overhead is needed to mitigate aging induced on-chip voltage regulator performance degradations.

Higher algorithmic noise tolerance of a certain functional block can be leveraged to reduce area

overhead and allow more on-chip voltage noise degradations. The desired error rate can also be

maintained. Area overhead reduction may further enable increased number of distributed voltage

regulators for functional blocks that may have lower level of algorithmic noise tolerance.
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CHAPTER 6:

FUTURE WORK

6.1 Co-Optimizing Different Design Aspects to Avoid Overdesign

High performance on-chip power delivery network involves different design aspects such

as power conversion efficiency, thermal issue, and reliability. Different application scenarios and

environments may impose different design targets and specifications. Power conversion efficiency,

thermal issue, and reliability can be mutually affected and should be considered as a whole to realize

optimal design and avoid overdesign. For example, power conversion efficiency can be a function

of temperature. Reliability can be largely affected by temperature. Implementation of thermal

mitigation techniques may need to sacrifice power conversion efficiency. Reliability enhancement

techniques can also introduce additional power and area overhead. Depending on the targeted

lifetime, power efficiency requirement, and on-chip temperature profile, appropriate efficiency boost

technique, thermal emergency mitigation technique, and aging mitigation technique need to be

adopted. Furthermore, algorithmic noise tolerance capability of different functional blocks needs to

be considered. A generic design flow considering different design aspects and trade-offs among them

will be considered in our future work.

6.2 NBTI-Aware Digital LDO with Adaptive Gain Scaling Control

Unidirectional shift register that can activate or deactivate a single power transistor per clock

cycle is proposed in our recent work [4, 130] to mitigate NBTI induced digital LDO performance

degradations. Digital LDO with improved transient performance [141] has been proposed to achieve

faster response time by turning on or off more number of power transistors per clock cycle during

the load transient. However, bidirectional shift register is utilized in [141] that can lead to the heavy
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use of a portion of power transistors. The unidirectional shift register proposed in [4, 130] cannot be

directly applied to digital LDOs with adaptive gain scaling control capability. Novel NBTI-aware

digital LDO with adaptive gain scaling control capability will be proposed in our future work to

mitigate NBTI induced performance degradations.
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