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Abstract 

 
 

 

Millimeter wave technologies present an appealing solution for increasing data 

throughputs as they provide abundant contiguous channel bandwidths as compared to 

conventional microwave networks. However, millimeter wave technologies suffer from severe 

propagation limitations and channel impairments such as atmospheric attenuation and 

absorption, path and penetration losses, and blockage sensitivity. Therefore, phased arrays and 

beamforming technologies are necessary to compensate for the degraded signal levels due to the 

aforementioned factors. Namely, base stations and mobile stations utilize directional 

transmission in the control- and data- plane for an enhanced channel capacity, which results in 

initial access challenges due to the absence of omni-directional transmission. Here the base 

station and mobile station are compelled to exhaustively search the entire spatial domain, i.e., in 

order to determine the best beamforming and combining vectors that yield the highest received 

signal level. 

Overall, a wide range of studies have looked at the initial beam access challenges in 

millimeter wave networks, with most efforts focusing on iterative and exhaustive search 

procedures, as well as subarrays schemes and out-of-band beam access. However, these studies 

suffer from significant signaling overhead attributed to the prolonged beam scanning cycle. In 

particular, access times here are excessively high that exceed control plane latencies and 

coherence times. Furthermore, existing work suffer from high computational complexity, power 

consumption, energy inefficiency, as well as low directivities and high outage probabilities.  



ix 
 

In light of the above, the contributions in this dissertation propose fast initial beam access 

schemes based upon novel meta-heuristic search schemes and beamforming architectures. These 

contributions include modified search procedures inspired by Nelder Mead, Luss-Jaakola, 

divide-and-conquer with Tabu search, generalized pattern search, and Hooke Jeeves methods.  

Furthermore, efficient and highly-directive access schemes are also developed in this 

dissertation levering sidelobe emissions, grating lobes and Hamming codes. The overall 

performance of the proposed solutions here is extensively evaluated versus traditional access 

schemes and incorporating different channel and path loss models.  

Finally, this dissertation addresses the problem of link sensitivity and blockage effects in 

millimeter wave networks, a subsequent stage to beam access and link association. Nevertheless, 

a novel link recovery procedure is proposed here that features instantaneous link-recovery and 

high signal levels.  
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Chapter 1 

Introduction 

 

This dissertation addresses initial beam access using beamforming solutions in standalone 

millimeter wave (mmWave) cellular networks with sparse poor-scattering channels and 

propagation limitations. To properly introduce the work, this chapter briefly outlines the key 

benefits of mmWave technologies, and the major requirements for beamforming designs. The 

beam access problem is then introduced along with the overall motivations of this thesis. The 

core research contributions are then briefly highlighted followed by the dissertation outline. 

1.1    Background Overview 

Recently, the 3
rd

 Generation Partnership Project (3GPP) finalized the new radio (NR) 

spectrum as part of its 5G Phase I [1]. The main requirements for 5G transmission include 10 

gigabits/sec (Gbps) throughput rates, 1 ms latency (versus 50 ms in 4G systems), much improved 

energy efficiency, and much higher density and coverage. Furthermore, mmWave transmission is 

also being promoted as a core technology for 5G systems to meet aforementioned requirements, 

i.e., as part of the NR for enhanced mobile broadband (eMBB) framework. Overall the move to 

mmwave frequencies has been driven by extreme spectrum congestion in current microwave 

cellular networks. This bottleneck is becoming a major impediment towards bandwidth 

throughput scalability. Furthermore, related bandwidth shortage and fragmentation concerns at 

decimeter radio frequency (RF) ranges is also limiting bandwidth growth, i.e., since most current 

allocations are below 100 MHz. By contrast, the mmWave bandwidth range extends from 500 

MHz–2 GHz and provides abundant underutilized contiguous bandwidth regions for 5G 
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transmission. As a result, the United States Federal Communications Commission (FCC) has 

proposed the auctioning of extremely high frequency (EHF) bands, i.e., 27.5–28.35 GHz and 37– 

40 GHz ranges for commercial 5G cellular deployment [2]. In general, this trend follows the 

standardization of unlicensed bands, such as 57–71 GHz for wireless local area networks 

(WLANs) and will provide a 10–20 fold increase in carrier aggregation over current 4G systems.  

Overall contiguous spectrum ranges offer a very suitable means for wideband single-

carrier transmission. As a result, mmWave technologies can eliminate some of the key 

challenges associated with 3.9G long term evolution (LTE) and 4G LTE-Advanced (LTE-A) 

networks, i.e., such as adaptive subcarrier channelization and assignment, frequency 

synchronization, and phase noise. However, these higher-frequency spectral regions also suffer 

from very notable propagation impairments, e.g., including path loss, oxygen absorption, 

atmospheric attenuation, penetration losses, diffraction, and high reflection coefficients. The 

latter can result in further isolation between indoor and outdoor networks. Furthermore, 

mmWave systems are also characterized as power- and noise-limited rather than bandwidth- and 

interference-limited for conventional cellular networks. Finally, mmWave bands suffer from 

high noise power and poor channel characteristics, i.e., hence a sparse structure.  

In light of the above, a host of challenges need to be investigated before mmWave 

technologies can be deployed in future 5G cellular networks. A major concern here is the use of 

omni-directional transmission, which introduces prolonged delay spread and severe inter-symbol 

interference (ISI) distortion in received signals. Now in general, these effects can be mitigated 

using beamforming arrays, i.e., where energy is captured from a reduced number of directions. 

Now most consider the fact that most mmWave wavelengths fall in the 5-10.7 mm range 

between 28-73 GHz, i.e., as per the wavelength-frequency equation, λ = c/f
c
, where  λ, c and f

c
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denote the wavelength frequency, speed of light and carrier frequency, respectively. As a result, 

compact arrays can be designed for mobile station (MS) nodes using the same antenna sizes of 

current commercial systems: for example a 4x4 array with a dipole antenna size of λ/2 at 28 GHz 

will occupy approximately 1.5 x 1.5 cm2 and can be incorporated in-package or on a chip at low 

cost [2]. As a result, compact substrate frontends can be designed for mmWave systems, thereby 

facilitating use of beamforming techniques to overcome channel and propagation deficiencies. 

Now recent studies have shown that steerable beamforming technologies can 

significantly mitigate limitations in mmWave transmission [3]-[5]. Foremost, beamforming gains 

can help improve link margins, e.g., by compensating for severe path losses (30 dB at 200 m), 

overcoming noise power, and deploying high order modulation techniques with 512 or 1,024 

quadrature amplitude modulation (QAM) constellations. In turn, these gains will improve the 

Shannon channel capacity and increase spectral efficiency. In addition, beamforming methods 

can also minimize the root mean square (RMS) delay spread and eliminate the need for 

sophisticated equalization requirements. Finally, these strategies can also reduce multi-user 

interference and lower delay spreads associated with large coherence bandwidths. As a result, 

phased arrays and beamforming technologies provide a very viable means to handle signal 

degradation in mmWave systems and extend coverage ranges for indoor users. Lowered 

footprints high reuse-factors at mmWave frequencies will also improve user density and 

bandwidth reuse/scalability.  

1.2    Problem Statement 

Despite the merits of using beamforming between base stations (BS) and mobile stations 

(MS), directional transmission and reception introduces key beam access challenges prior to data 

transmission, i.e., beam search or beam discovery. Namely, initial beam access requires beam 
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acquisition and association during the transition from sleep to idle mode, as shown in Figure 1.1. 

As a result, MS and BS nodes have to sweep over the entire azimuth or elevation planes to 

determine the best beam with the highest received signal level for sparse arrival clusters profile 

(in the time and space domains). Now traditional exhaustive beam search methods have very 

high computational burdens since both sides (BS, MS) must test all possible beamforming and 

combining vectors. This brute-force approach also results in increased signaling delays and 

prolonged access times, thereby worsening control plane latency (possibly exceeding mmWave 

channel coherence times). Further downsides also include RF power consumption (energy 

inefficiency) and time-frequency resource dissipation. As a result, efficient adaptive access 

techniques are vital for the proper realization and standardization of mmWave bands for cellular 

networks.  

1.3   Motivations 

As noted earlier, mmWave frequencies form a major component of the NR interface for 

eMBB transmission. Accordingly, the International Mobile Telecommunications (IMT) 

framework [1] specifies low control plane latencies for eMBB, i.e., below 10 ms. As a result it is 

essential to meet this design requirement for 5G systems, i.e., in addition to earlier-detailed 

requirements along with the computational complexity, time, power and energy metrics 

associated with beam access, as shown in Chapters 2 and 3. Overall, these challenges mandate 

the realization of new and improved access techniques that can operate with directional detection 

periods well below mmWave channel coherence times. Furthermore, fast beam access methods 

are also required for low-latency handovers, e.g., such as in frequency selective-fading channels 

and large Doppler spreads for high speed users.   
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 Figure 1.1: Directional transmission and reception between BS and MS nodes 

In light of the above, this dissertation develops some novel fast and adaptive initial beam 

access techniques based upon meta-heuristic search methods and various beamforming 

architectures. These solutions feature low computational complexity, rapid access times, low 

power consumption levels and high energy efficiencies compared to many competing 

alternatives. Furthermore, the proposed methods are evaluated against various proposed 

alternatives in terms of key design metrics, e.g., such as computational complexity, access times, 

power consumption, energy efficiency, success rates, outage probability and directivity.  

Carefully note that this dissertation study does not assume omni-directional support from 

microwave frequencies in outdoor environment, i.e., microwave-assisted beam access, thereby 

enhancing standalone mmWave access performance. 

1.4    Contributions 

This dissertation addresses beamforming challenges in mmWave systems and proposes 

novel initial beam access schemes. The main contributions in this work are summarized as 

follows:  

 

Line-of-sight 

Link sensitivity to channel obstacles 

Requirements for link recovery methods 

Non-line-of-sight 

Digital or hybrid beamforming at the BS 

for multi-user communications 

Analog beamforming at the MS  
MS 

MS 

MS 

MS 
MS 

BS 

BS 
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 Comprehensive survey on exiting mmWave access schemes 

 Robust meta-heuristic schemes for adaptive beam search based upon observed objective 

function outputs, i.e., based upon Nelder Mead (NM), Luus Jaakola (LJ), coordinated 

generalized pattern search (CGPS), divide-and-conquer with Tabu search (DC-TS), and 

Hooke Jeeves (HJ) methods 

 First in depth study of poor scattering properties in mmWave channels, including bi-

static radar cross section (BRCS) modeling of geometric objects in propagation link 

 Direct-pattern search scheme to capture sparse cluster arrival rates and help mitigate 

aggregated rays profile during directional search 

 New simultaneous beam transmission model for analog beamforming architectures. First 

known solution for multi-beam transmission via a single RF chain 

 New beam coding scheme for simultaneous transmitted beams based upon orthogonal 

extended Hamming codes, i.e., to generate distinguishable beams spatial directions 

 First known use of grating lobes in analog beamforming to improve transmit diversity, 

directivity and detection probabilities for wide-beam access codebooks 

 Novel sidelobe-based access scheme to reduce access times, representing one of the first 

such studies on sidelobe exploitation 

 Bundle-beam beamformer design to enhance transmit diversity and improve richness of 

sparse scattering profile 

 Detailed analysis of geometric channel model to fit mmWave channel delay profile, i.e., 

by considering aggregated rays within sparse clusters 

Overall, the remainder of the dissertation is as follows. Chapter 2 presents an overview of 

mmWave channel and propagation characteristics, related design challenges, and a 
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comprehensive survey of current beam access techniques. Subsequently, novel beam access 

schemes based upon a range of meta-heuristic methods are introduced in Chapter 3. Chapter 4 

then presents improved access solutions based upon phased arrays and beamforming 

architectures. A novel link recovery method based upon hybrid beamforming for near-

instantaneous recovery times is also proposed in Chapter 5. Overall conclusions and future 

directions are then presented in Chapter 6. 
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Chapter 2 

Background 

 

This chapter presents an overview on mmWave channel propagation characteristics, 

along with a review of existing beamforming architectures and hardware design challenges. A 

comprehensive survey of existing initial beam access methods is then presented. 

2.1   Millimeter Wave Propagation Characteristics 

In order to properly detail the key challenges facing initial beam access in mmWave 

systems, it is important to first detail the main characteristics and properties of the associated 

transmission channels. In general, signal propagation through any wireless channel is impacted 

by a host of large and short scale fading properties, i.e., including path loss, diffraction, 

reflection and penetration, scattering, Doppler effects and delay spread. In turn these factors 

require effective and precise transceiver modeling and design at the physical and medium access 

layers. Along these lines, this section overviews the key channel propagation characteristics 

affecting mmWave channel transmission. 

2.1.1    Path Loss 

Path loss represents the loss of signal power as transmission propagates through a 

medium. In general, this value increases proportional to carrier frequency increments, i.e., based 

upon Friis transmission theory which equates effective isotropic radiated power (EIRP), power 

flux density and overall power levels at the MS and BS. To better illustrate relationship between 

path loss and frequency, Table 2.1 summarizes free-space path loss values at ultra-high 
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frequencies (UHF) conventional (microwave) cellular bands (460 MHz and 2.4 GHz), WLAN 

bands (2.4 GHz), and licensed/unlicensed mmWave bands (28, 38, and 73 GHz) at 100 m and 

200 m separation distances. Clearly, the mmWave bands experience the most severe losses, i.e., 

91.38-105.7 dB range to 67.55-76.06 dB for the other bands. However this link degradation can 

be compensated for by implementing antenna array gains. In other words, the same amount of 

energy can be captured as in conventional frequencies via increased aperture sizes. Furthermore, 

these requisite array gains in mmWave transceivers can still be achieved using similar physical 

aperture sizes as in quasi-omni antennas used in microwave transceivers. This mitigates 

wavelength dependence, allowing the aperture size to remain constant regardless of the operating 

wavelength. In short, larger large aperture sizes yield frequency-independent received power 

levels.  

Table 2.1: Path loss levels at microwave, WLAN, and mmWave frequencies 

 

 

Separation 

Distances  

(meters) 

 

Microwave 

Frequencies 

 

 

 

 

 

 

 

 

 

 

WLAN 

 

 

 

 

 

 

 

 

 

 

mmWave Frequencies 

 

1.8 GHz 
 

 

2.4 GHz 
 

 

28 GHz 
 

 

38 GHz 
 

 

73 GHz 
 

100 
 

67.55 dB 
 

70.04 dB 
 

91.38 dB 
 

94.04 dB 

 

 

 

 

 

99.71 dB 
 

 

200 
 

73.57 dB 
 

 

76.06 dB 
 

97.40 dB 
 

100.1 dB 

 

 

 

 

 

105.7 dB 
  

 

 

 

 

 

 

 

To date, various measurement campaigns have been done for ultra-dense outdoor 

environments in order to model large-scale fading in rich reflective environments [6]-[8]. These 

effects utilize horn antennas with half-power beamwidth (HPBW) of 30
0
 and 15 dBi gains. Also, 

BS and MS separation distances are varied from 10-450 m in line-of-sight (LoS) and non-line-of-

sight (NLoS) settings. Overall, the recorded power delay profiles (PDP) show sparse multipath 

components (MPC) with high excess delays times. For example, the number of distinguished 
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resolvable MPCs is 8 in LoS setting (for d ≤ 200 m) and 7 in NLoS setting (for d ≤ 100 m). 

Furthermore, access delay times at a distance of 50 m are recorded as 745 ns in LoS and 1,389 ns 

in NLoS environments. Meanwhile, the path loss exponents (PLE) are measured as 2.3 dB and 

3.9 dB for LoS and NLoS settings, respectively. Overall, these empirical findings indicate that 

mmWave systems must handle a limited number of MPCs with large excess delays, i.e., sparse 

clusteral arrival rates. These conditions impose further challenges for precise channel estimation, 

i.e., in terms of angle of arrival (AOA), angle of departure (AOD), and path gains in highly-

dispersive channels (e.g., rapid channel fluctuations). 

2.1.2    Diffraction 

In general, diffraction defines the propagation of radio signals around an object. Hence 

this effect impacts link detection when a MS is blocked or shadowed by an obstacle, or when a 

MS transits from LoS to NLoS transmission. Now diffraction introduces high levels of signal 

attenuation for small fractional movements at mmWave frequencies. For example, diffraction 

losses are estimated at 30 dB when a MS node moves around the corner of a concrete building 

structure at a frequency of 73 GHz as observed in [9]. Similarly in indoor networks, the signal 

attenuation of diffracted signals is more severe at mmWave frequencies, e.g., about 10 dB 

attenuation when a MS moves around a corner, and about 40 dB when a MS moves behind an 

elevator shaft, see [10]. Overall, diffraction presents the weakest propagation component 

impairment in mmWave mobile systems due to the relatively small wavelengths involved. 

Meanwhile, scattering and reflection effects tend to be more dominant. These conditions contrast 

with microwave frequencies, where scattering is the weakest propagation phenomenon and 

diffraction offers favorable and robust signal propagation characteristics. However, beamforming 

solutions at the MS and BS can still overcome diffraction-based attenuation effects by using 
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beam-steering techniques, i.e., in order to allocate reflections and scattered paths from nearby 

buildings or surfaces. 

2.1.3    Reflection and Penetration 

As noted in [11] and [12], mmWave transmission exhibits high reflection coefficients, 

i.e., low penetration levels for indoor and outdoor environments. For instance, the reflection 

coefficients of tinted glass and concrete materials are on the order of 0.88 and 0.80 at 10
0
 

beamwidth, respectively. In other words, mmWave signals cannot penetrate significantly through 

outdoor materials, i.e., 80-88% of incident waves are reflected with high penetration losses 

nearing 40 dB, i.e., weak reflected waves. Additionally, transparent glass and dry wall reflection 

coefficients have also been recorded at 0.75 and 0.71, respectively [13]. Overall, these high 

coefficients yield reduced interference levels at the detriment of isolated indoor and outdoor 

networks, i.e., more relays are required for connectivity. Consequently, higher synchronization 

and handover challenges are introduced here. Furthermore, beamforming solutions are also 

required to compensate for penetration levels and improve link margins, i.e., by taking into 

account angular spreads. 

2.1.4    Doppler Effect 

The Doppler effect represents a change in wavelength/frequency of an incoming signal at 

a moving receiver. Namely, the received frequency, f
d
, is now dependent upon the receiver 

velocity, v, transmitter velocity, vo, carrier frequency f
c
 , and is given by: 

f
d
 = (

c + v

c - vo

) f
c
 - f

c
  = f

c
(

c + v

c - vo

-1) ,                                                  (2.1) 

where  f
c
 is the carrier frequency and c is the speed of light constant. From the above, a 

significant increase in Doppler effect can be caused by increments in carrier frequency or MS 

velocity. Overall, Doppler effects are expected to be 15-35 times greater at 28-73 GHz mmWave 
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bands versus microwave bands. Accordingly, Table 2.2 compares the Doppler levels at mmWave 

(73 GHz) and microwave frequencies (1.8, 28, and 38 GHz) for relatively slow and fast 

velocities. For example, consider a MS communicating at a carrier frequency of 38 GHz and 

travelling at a velocity of 100 km/sec. The Doppler spread here is 3.52 KHz compared to 164.38 

Hz at 1.8 GHz for the same MS speed, i.e., 20 times higher.  

Table 2.2: Doppler spread at different MS speeds for mmWave and microwave frequencies 
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Overall, the high Doppler rates here mandate adaptive and fast beam-tracking algorithms, 

i.e., with beam-switching times much lower than the coherence times needed to retrain 

communication sessions. In general, beamforming gives a limited number of specular-diffused 

MPCs, i.e., defined by the two-wave with diffuse power (TWDP) distribution [14]. Furthermore, 

when taking into account Doppler effects in time-varying channels, signal fading distribution 

will also depend upon the beamformer HPBW and number of MPCs. Hence the requistie fading 

channel models incorporating Doppler effects tend to follow a bi-modal probability distribution 

function (PDF) shown in [14]. Furthermore, the associated coherence time here (inversely 

proportional to Doppler spread) also depends on the beamwidth, frequency, system bandwidth 

and MS velocity.  

Overall, mmWave channels will vary more rapidly in time in the presence of Doppler 

effects, i.e., mmWave channels fluctuate 10 times faster when Doppler spread is increased by a 
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factor of 10. Therefore channel retraining times and transmission frame sizes need to be 

proportionally reduced, since the Doppler spread range determines the time interval over which 

the channel is static. As a result, shorter frame times and packets durations are required for 

mmWave systems, i.e., commensurate with the low-latency requirements [15]. Indeed, the 

channel time interval is a crucial parameter in the design of phase shifters (e.g., beam-switching 

speed), equalizers, and encoders. 

In light of the above, new mmWave channel tracking algorithms need to be developed to 

incorporate beamwidth, channel impulse response (IR) and motion speed at shorter 

synchronization times and symbol times. Expectedly, frame times and packet durations will be 

proportionally reduced when transferring operating frequencies from the microwave to mmWave 

bands. Note that this reduction can also be achieved by improved coherence times due to 

beamforming utilization. 

2.1.5    Scattering 

Unlike microwave bands, scattering is a critical propagation phenomenon at mmWave 

frequencies, i.e., since physical objects and obstacles in the channel are relatively larger than the 

propagated wavelength (e.g., pedestrians, lamp-stops, cars and walls). As a result, illuminated 

scatterers can build substantial mmWave propagation paths, i.e., enriched multipath profiles. 

Now the impact of scattering in any propagation environment is largely determined by the radar 

cross section (RCS) of its obstacles, i.e., in addition to surface roughness. Specifically, the 

received power from a scattered wave is a product of the RCS of a particular obstacle and the 

scattered field. Now the RCS profile defines the electromagnetic field scattering behavior of an 

object, i.e., it represents an object in terms of an aperture with a particular area (measured in m2). 

Furthermore, this value can be categorized into monostatic cross section (MCS) and bi-static 
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cross section (BSC) components. Namely, the MCS portion relates to backscattering and defines 

an electromagnetic field scattering in the direction of the transmitter (BS) when the receiver 

(MS) and transmitter are co-located. Meanwhile, the BSC portion defines an electromagnetic 

field scattering at the receiver when the transmitter and receiver are not co-located. Specifically, 

the BSC of an obstacle is defined as [16]: 

σ3D= lim
r→∞

[
4πr2Ss

Si

]= lim
r→∞

[
4πr2|Es|

2

|Ei|
2
] ,                                              (2.2) 

where σ3D, Ss and Si denote the 3-dimensional RCS, the scattered power density, and the incident 

power density, respectively. Furthermore, the variables Es, Ei and r in Eq. (2.2) represent in order 

the scattered electric field, the incident electric field, and the distance between the transmitter 

and receiver. Note that Eq. (2.2) ignores polarization effects, i.e., the low cross-polarization 

properties at mmWave bands. Furthermore, the RCS-based received power from a scattered ray 

is given by [17]: 

Pr[dBm]=Pt[dBm]+Gt[dBm]+20log
10

λ +RCS[dBm
2]-30log

10
(4π)-20log

10
(dt)-20log

10
(dr), (2.3) 

where Pt , Pr , Gt , dt , dr  denote in order the transmit power level, the received power level, 

antenna (or array) gain at the transmitter, the separation between the scattering object and 

transmitter antenna, and the separation between the scattering object and receiver antenna. 

Hence, higher power levels can be received from a scattered ray from object with higher RCS 

values. 

Furthermore, the impact of the surface roughness of an obstacle is also essential in 

modeling its scattering properties, e.g., intensity, direction and power level. For example smooth 

surfaces are less common to exist in outdoor settings, i.e., dominated by concrete and bricks, 

whereas indoor settings generally have smoother scattering slabs. Now the total RCS of a rough 
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surface can be derived based upon the scattering properties of a smooth surface summed over the 

cross-sectional scattering area (attributed to surface roughness) [18],[19]: 

σtot = σtot + |Xs|
2σsmooth,                                                            (2.4) 

where σrough and σsmooth are the scattering areas of the rough and smooth surfaces. Meanwhile, Xs 

in Eq. (2.4) represents the surface roughness and is given by [19]: 

Xs = exp(-k0
2〈hs

2〉2cos2(θi))
 
= exp(- (

2π

λ
) 〈hs

2〉2cos2(θi)),                                                 (2.5) 

where k0, 〈hs
2〉, and θi denote in order the wave number, average surface roughness (i.e., mean 

square height of the small-scale features of the surface), and the incident angle, respectively. 

Carefully note that the impact of scattering becomes more negligible in determining the total 

RCS of the scatterer as the surface roughness increases. Here σrough  in Eq. (2.4) is basically 

determined by the reflection coefficient of a rough surface given by [19]: 

 

σrough = Re-2k0
2〈h〉2cos (θi),                                                                 (2.6) 

where R is the specular reflection coefficient for waves scattering off smooth surfaces. Also note 

that the scattering direction for smooth surfaces is specified by Snell’s law.  

Overall, an object’s roughness levels are considerably higher at mmWave frequencies as 

compared to microwave frequencies. Meanwhile, illuminated smooth surfaces, e.g., such as 

outdoor lampposts and road signs, also contribute more to the multipath profile at mmWave 

frequencies than at microwave frequencies [20],[21]. Nevertheless, rough surfaces here are less 

effective in shaping the received profile, i.e., since the physical and electrical sizes of these 

surfaces largely exceeds mmWave wavelengths. Hence these surfaces tend to contribute to signal 

degradation, e.g., high penetration losses, and blockage. In short, illuminated smooth surfaces 
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such as lampposts and other metallic outdoor objects contribute to dominant NLoS paths 

between a BS and MS at 38 and 60 GHz [22]. 

2.1.6    Delay Spread 

Delay spread defines the overall time interval over which the entire temporal MPCs are 

recorded. In other words, it represents the time difference between the arrival times of the first 

and last MPC components, i.e., difference between minimum excess delay and maximum 

propagation time. Meanwhile, the RMS delay spread defines the temporal dispersion between 

arriving components, e.g., temporal spreading between dominant rays (of each cluster) in the 

mmWave profile. Additionally, the RMS delay spread is also related to the power delay profile 

(PDP), i.e., mean received power.  

Now the delay spread values in mmWave channels differ notably from their counterpart 

values in microwave channels. This variation is attributed to the use of highly-directional arrays, 

low angular spreads, and poor-scattering environments. Intuitively, the use of mmWave omni-

directional transmission should reduce excess delays and overcome wide noise bandwidths, i.e., 

due to reduced number of received MPCs with high signal-to-noise ratio (SNR). Therefore the 

impact of beamwidths has to be taken into account when modeling delay spreads. Now outdoor 

channel measurements at 28 and 38 GHz in [23],[24] have shown that wide beams yield larger 

delay profiles and smaller PLEs versus to narrow beams over shorter distances. These changes 

are caused by larger aperture sizes at wider beams, i.e., as needed to capture more incident 

energy. However, small array gains become ineffective over larger distances in NLoS settings. 

Overall, the use of beamforming in mmWave systems helps shorten delay spreads, and hence the 

scale of frequency selective-fading is lower than microwave systems (which utilize quasi-omni 

and omni-directional transmissions). 
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2.2    Design Constraints and Challenges 

In addition to channel impairments and propagation limitations, mmWave transceiver 

designs also face many additional challenges and constraints. Some of these are now detailed. 

2.2.1    Radio Frequency (RF) Safety Requirements 

Generally, mmWave radiation is non-ionizing in nature. Hence the main health and safety 

concern at these frequencies is RF heating, i.e., limiting exposure to mmWave radiation when the 

user is in the near field of radiating sources (MS device). As a result, power flux density limits in 

the near field should be regulated to determine limits for tissue heating as noted in [25]. Now 

carefully note that beamforming can control the amplitude and phase in antenna arrays to create 

destructive or constructive electric field patterns near the surface of the body, i.e., see Figure 2.1 

[25]. Therefore, the overall exposure to heat radiation can be compensated for by using beam-

steering arrays. For example, experiments in [26] have shown that the use of such techniques 

reduces penetration depth and power absorption in the head and skin to 3 mm and 90 mW/g, 

respectively, i.e., versus 40-45 mm and 1 mW/g at microwave ranges (see also Figure 2.1). 

2.2.2    Noise Bandwidth Limitations 

In general, mmWave channels operate at bandwidths ranges between 0.5-1 GHz versus 5-

20 MHz in LTE networks. Consequently, increased noise power levels are introduced for larger 

mmWave bandwidths, i.e., since noise power spectral density is constant. Furthermore, these 

noise levels cannot be compensated for by simply increasing transmitted power levels, i.e., 

transmitted power cannot exceed a few milliwatts (mWatts) due to RF safety corners. As a result, 

a more feasible approach for improving SNR is to use larger antenna gains. 
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Figure 2.1: MmWave RF heating at surface of human head 

2.2.3    Power Consumption 

Hardware power consumption presents another significant performance consideration for 

mmWave transceivers, i.e., as these designs have many components such wideband signal 

processing chips, large number of arrays, mixers, phase shifters, filters and amplifiers. As a 

result, power consumption tends to increase linearly with sampling rate and exponentially with 

the number of bits/samples [27],[28]. In light of the above, power consumption efficiency should 

also be taken into account here, particularly for the design of beamforming architectures. 

2.3    Beamforming Architectures 

Now various beamforming techniques have been used in earlier 4G networks based upon 

open- and closed- loop configurations with 2-8 antennas [29], i.e., to complement data-plane 

stage and improve spectral efficiency. However, this stage follows the control-plane procedure 

that is performed in omni-directional mode. Overall, this 4G approach contrasts with mmWave 

systems, where beamforming is used in both the control- and data- planes, e.g., with larger 32-

256 antenna elements. Additionally, traditional beamforming systems require limited feedback 

(information transmission) from the MS to the BS to determine instantaneous channel state 
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information (CSI), i.e., since the channel can be estimated by the MS. However this simplified 

strategy is infeasible in mmWave systems owing to shorter coherence times. Instead, a blind 

beamforming technique is the most viable solution for mmWave transceivers. In addition, earlier 

beamforming techniques also perform signal processing at microwave bands in the digital 

baseband domain, i.e., versus mmWave bands which require spatial filtering in the analog 

domain. Overall, beamforming architectures in mmWave networks impose new design aspects 

and requirements as compared to conventional cellular networks. Foremost, the reduced 

dimensionality of mmWave band antennas offers compact packaging and fabrication options in 

cascaded arrays, e.g., linear, circular and planar arrays. This saliency allows designs to utilize 

phased arrays for beamforming architectures. Along these lines, several arrays and beamforming 

designs for mmWave systems have already been considered, and these are now detailed. 

Overall, beamforming uses traditional array signal processing and spatial filtering 

techniques to adaptively control the amplitude and phase weights of multiple signals fed to each 

antenna. Hence a desired radiation beam pattern can be formed by combining these individual 

antennas wave-fronts and directing them in the most favorable propagation direction. 

Beamforming also requires further provisions at both the BS and MS. Namely, both transmit and 

receive beamforming vectors (combining vectors) are designed based upon array architectures. 

In general, beamforming sets the maximum link gains by selecting the dominant right and left 

singular vectors of the complex channel for the beamforming and combining vectors, 

respectively. 

In general, beamforming provides a range of benefits including spatial selectivity, 

sufficient array gain, enhanced SNR, and improved link quality and margins. As a result, this 

technique can combat mmWave propagation losses and channel impairments. Beamforming also 
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provides adaptive beam-steering support to help adjust to rapid channel state fluctuations, i.e., 

the steering capability captures highest signals from scattering and reflections. Another key 

benefit here is also null-steering, which can be used for suppressing undesired signals and 

mitigating co-channel interference (CCI), e.g., such as zero-forcing beamforming. Finally, 

beamforming provides an underlying enabling technology for spatial diversity and spatial 

multiplexing support to improve spectral efficiency. However, the choice of spatial diversity and 

spatial multiplexing schemes should always governed by the instantaneous CSI, where switching 

between these two schemes should be considered. Overall, several types of beamforming 

architectures have been studied for mmWave systems, including analog, digital, and hybrid 

solutions. These architectures are now overviewed.  

2.3.1    Analog Beamforming Schemes 

Analog beamforming techniques use a single RF chain connected to an antenna array and 

a set of phase shifters. In particular, Figure 2.2 illustrates the main components of the analog 

beamformer composed of digital baseband unit, single RF chain, phase shifters, antennas and 

low-noise amplifiers (LNA). This design generates a single-beam radiated along a particular 

direction, i.e., single data stream. Now beamforming is done here in the analog domain after the 

up-conversion to envelope-carrier frequencies. Specifically, analog beam-steering control is 

performed at intermediate frequencies using selective RF switches and passive or active phase 

shifters as proposed in [30],[31]. Note that the use of quantized phase shift values and constant 

modulus constraints imposes limits the choice of phase shifters here, i.e., for highly-adaptive 

shifting functions. Overall, the digitally-controlled phase shifters implement the core 

functionality of analog beamforming, e.g., number of phase shift states and switching speeds. As 

a result, active or passive phase shifter effects have to be taken into account in such designs, e.g., 



21 
 

including noise and non-linearity, as well as the resolution of the quantized phases (which 

determines power consumption). In practice, active phase shifters are more favorable owing to 

their compact physical designs and reduced insertion losses [32].  

 

 

 

 

Figure 2.2: Overview of analog beamforming approach 

Overall, analog phase shifters are more viable for mmWave systems due to their 

continuous scanning capability, i.e., unlike digital phase shifters which perform step scanning in 

discrete directions.  In other words, digital phase shifters provide lower switching speeds versus 

analog shifters, enabling beamformer scanning speeds under excess delay spread. In particular, 

loaded-line varactor phase shifters present a favorable choice for mmWave analog beamforming 

due to their wider scanning ranges and nano-second switching speeds. However, the use of a 

single RF chain here, Figure 2.1, complicates multi-streaming and multi-user transmission 

support. Hence one feasible solution here is to use sequential multi-streaming via a time-division 

multiplexing (TDM) scheme. Overall, spatial diversity is more suitable for mmWave low-rank 

channels, e.g., design of simultaneous beam transmission analog beamformers. Another 

limitation of analog beamforming is beam-squint, also known as beam deflection caused by 

phase offsets. However, this effect can be mitigated if the antenna array is in the far-field of the 

impinged-waves (in order to generate planar-waves). This approach can also avoid wave 
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impingement at the spacing (nulls or gaps) between adjacent antenna elements, i.e., array 

boresight reception. Regardless, beam-squint becomes negligible when using adaptive phase 

shifters to adapt beamformer lobe orientations in the best direction. Also, transverse mmWave 

oscillations generate low cross-polarization (high co-polarization), and this also mitigates beam-

squint.  

2.3.2    Digital Beamforming Schemes 

Digital beamforming dedicates a full RF chain (baseband and RF hardware unit) for each 

antenna. Namely, the number of RF chains is now equal the number of antennas in the arrays, as 

opposed to analog beamforming approach which uses single RF chain, see Figure 2.2. Now one 

of the main benefits is support for precoding and multi-streaming in the digital baseband domain. 

As a result, digital beamforming offers high a degree of freedom (DoF) and improved system 

performance, particularly in highly-dispersive channels. However, these gains are contingent to 

high channel rank and rich-scattering properties, i.e., in contrast to mmWave networks that 

attribute low channel ranks and poor-scattering propagation.  

In general, digital beamforming forms the core constituent of multiple-input multiple-

output (MIMO) architectures and gives the highest spectral efficiency. However, in practice, yhis 

approach has relatively high power consumption owing to the large number of required 

components, e.g., such as  power amplifiers (PA), digital-to analog-concerts (DAC), analog-to-

digital-converts (ADC), voltage-controlled oscillators (VCO), baseband filters, and data 

interface cards (DIC). Most notable here are the ADC and DAC components which must run at 

giga-sample per second (Gsample/sec) conversion for the ADC and DAC. Another main limiting 

factor here is also the physical footprint of digital beamforming devices, i.e., since a separate RF 

unit and data converter is required for each antenna. As a result, RF components have to be 
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designed in a compact manner in order to fit into very small physical area. In turn, this presents 

major fabrication challenges to overcome high substrate losses, along with insertion and return 

losses, e.g. matching circuits design. Overall, the above factors complicate digital beamforming 

designs and mandate rather sophisticated RF front-ends. 

2.3.3    Hybrid Beamforming Schemes 

Hybrid beamforming offers a compromise between analog and digital beamforming in 

terms of hardware simplicity, power consumption and spectral efficiency. Namely, a limited 

number of RF chains are now dedicated to a sectional group of antennas, as shown in Figure 2.4. 

As a result, the number of antennas is larger than the number of RF chains here. Consequently, 

there are fewer converters per antenna, which helpds lower power consumption overheads versus 

pure digital beamforming. Note however, that the DoF is also reduced here, i.e., limited 

simultaneous multi-streaming and multi-user support (equal to the number of RF chains). Also, 

precoding is now done jointly in the digital baseband and analog domains, and hence the overall 

precoding matrix is composed of analog and digital beamforming vectors.  

Overall, the analog section of hybrid beamformer design (Figure 2.4) can be built using 

phase shifters, RF switches, or continuous aperture dielectric lens arrays. Specifically, 

implementing passive lens arrays at the (BS, MS) front-ends offers direct channel access in the 

beam-space, i.e., by computing a spatial Fourier transform [33]. Carefully note that the design of 

analog and digital beamforming and combining matrices should also take into account mmWave 

channel sparsity i.e., by leveraging sparse recovery algorithms for channel estimation.  

However, a key limitation with hybrid beamforming is the need for explicit channel 

estimation, i.e., since the overall precoding matrix is composed of analog precoders and 

combiners with different constraints. Namely, the mmWave channel here is only seen by the 
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analog focal lenses, i.e., it is frequency-flat in the analog spatial signal processing domain and 

frequency-selective in the digital domain (broadband channels). In light of the above, new 

channel estimation algorithms are required based upon the CSI. Furthermore, hybrid 

beamforming designs must also be able to enhance the precision of the analog domain, e.g., 

mitigate residual multi-streaming interference [34].  

 

 

 

Figure 2.3: Overview of digital beamforming approach 

Overall, digital beamforming is a more desirable choice at the BS since it can support 

multi-user in frequency selective channels. Meanwhile, analog and hybrid solutions are favored 

at the MS. Now the choice between analog and hybrid beamformers is governed by a range of 

factors, including SNR regime, battery life, and power consumption levels. Nevertheless, despite 

the tremendous potential benefits of beamforming design, this directional transmission/reception 

approach imposes critical initial beam access challenges, as noted in Chapter 1. Hence in order to 

facilitate the further discussion of initial access in mmWave cellular networks, initial beam 

access (cell discovery) procedures in conventional LTE networks are presented next. 
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Figure 2.4: Overview of hybrid beamforming approach  

2.4    Initial Beam Access in LTE Networks 

Initial access in older 3GPP LTE networks is composed of several key steps, including 

initial synchronization (cell search and cell selection), system information acquisition, and 

random access. However, this section only addresses initial synchronization procedure, since it is 

equivalent to mmWave beam access. In general, most LTE networks use a hierarchical search 

procedure which radio cells are identified. Specifically, 504 physical layer cell identities are 

defined for LTE, and these are further divided into 168 unique cell layer identity groups in the 

physical layer. Here each group has also three physical layer identities, and this information is 

continuously transmitted via primary synchronization signal (PSS) and secondary 

synchronization signal (SSS) transmission.  

Overall, the LTE cell search procedure is mainly centered around finding the cell 

identity. Namely, each BS in LTE, also termed as evolved NodeB (eNodeB), periodically 

transmits the two synchronization control signals (PSS and SSS). Meanwhile, the user equipment 

(UE) conducts eNodeB search by scanning different frequency bands, i.e., signal detection is 

done via an omni-directional antenna. The main purpose here is to detect a PSS transmission and 

obtain a coarse estimate of the frame-timing, frequency offset, and receive power. Specifically, 

the PSS is transmitted in the last orthogonal frequency-division multiplexing (OFDM) symbol of 
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the first time slot of the first sub-frame in downlink frame structure, i.e., twice per radio frame. 

This setup allows a UE to acquire the slot boundary independently from the chosen cyclic prefix 

(CP). Next, the UE searches for the SSS transmission to obtain complete radio frame timing and 

the cell (eNodeB) group identity. Here the SSS is periodically transmitted in the symbol before 

the PSS, i.e., in the first and sixth subframes (5 ms periodicity).  

After the initial synchronization is completed, the UE decodes the physical broadcast 

channel (PBCH), i.e., which is scrambled and modulated with a cell-specific sequence, 

Thereafter, the UE retrieves the master information block (MIB) and system information blocks 

(SIB), which carry essential system information. The link betweek the UE and eNodeB is now 

setup for random access, and the user enters idle mode. Overall, this LTE network cell discovery 

procedure relies upon omni-directional periodic transmission of synchronization signals, i.e., 

beamforming solutions are not adopted in LTE networks cell discovery. By contrast, 5G cellular 

networks plan to implement beamforming for initial access for the first time in mmWave 

systems. As such, related access procedures differ drastically here, as detailed next. 

2.5    Related Work on mmWave Initial Access  

As opposed to existing LTE access schemes, mmWave initial beam access requires many 

steps, i.e., control preamble broadcast signaling, BS detection, random access, beam scanning 

and alignment, and beam refinement. Indeed, this process constituents a major part of mmWave 

control plane, i.e., to establish mmWave links. As a result, many studies have looked at 

developing effective, fast and robust access schemes. Hence, this section presents a detailed 

survey of the most recent solutions here, along with their merits and limitations. In particular, 

these methods include position context-information methods, single-sided search, exhaustive 

search, iterative search and auxiliary transceivers schemes. 
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2.5.1    Position Context Information Methods 

Position context schemes assume the availability of global positioning systems (GPS) at 

the MS nodes. Hence geographical context information for the BS beam direction can be 

retrieved at the MS without the need for spatial domain beam scanning. This information allows 

a MS node to immediately point its main lobe in the direction of the BS beam, yielding 

faster/reduced initial beam discovery times. For example, the work in [35] leverages such 

context information at the MS only to adjust its combining vector in the BS direction in a single 

step during random access. Nevertheless, the similar use of context information at the BS is not 

feasible since multiple MS devices can share the same geographical area (with the same best 

combining vector spatial directions).  By contrast, BS nodes generally have unique geographical 

locations, and hence a MS can probe a single BS to form a single beam in the best direction.  

Nevertheless, this GPS-based discovery scheme here suffers from high power 

consumption as it relies upon continuous GPS connectivity. Moreover this solution is only 

effective in outdoor settings, and is also highly-dependent upon GPS position accuracy. 

Furthermore this method will degrade in the presence of sectorization, remote radio heads 

(RRH) deployment, and overlaid BS nodes. Also, this GPS-based discovery scheme has an 

inherent mismatch scheme has a mismatch between the discoverable area (control-plane range) 

and the mmWave service area (data-plane range) due to the use of low-resolution beams. 

Meanwhile, other studies in [36],[37] also propose an enhanced discovery procedure 

(EDP) to overcome the above limitation. Specifically, GPS information is now used by the BS to 

estimate MS position based upon user distribution. This data is then conveyed to the mmWave 

network and leveraged for transmit beamforming directions, i.e., to facilitate synchronization 

signaling acquisition. Namely, the EDP scheme first scans large azimuth angles and then extends 
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its range by using narrower beams. Findings show that using sectors marginally improves 

rendezvous times, i.e., delayed probing of far-away areas. Meanwhile, using a larger number of 

sectors increases the number of required switches, i.e., heightened sensitivity to azimuthal 

location errors. For example, 3 sectors are needed for 10 m location accuracy error (120
0
 each). 

However, when location error exceeds 15 m, wider sectors must be deployed. The performance 

here is governed by user density, user distribution, forbidden zones and position accuracy. 

Consequently, this scheme degrades significantly in denser MS areas. Overall, the authors 

recommend using wider sectors at the detriment of low link capacity, i.e., in order to reduce error 

sensitivity with narrow sectors. 

Furthermore, work in [38] proposes a greedy algorithm to reduce the effects of user 

distribution, termed as discovery greedy search (DGS). Here the serving mmWave BS quickly 

computes the beamwidth and its associated pointing direction when a new MS randomly tries to 

access the network. Now if the estimated MS position is inaccurate, then the MS is misdetected 

and the BS tries to scan the region surrounding the MS using circular sectors. Specifically the 

first scanned sector covers adjacent beam directions using fixed beamwidth in alternating 

clockwise (CW) and counter-clockwise (CCW) directions. If the MS is still not detected here, 

then the BS adaptively reduces its beamwidth and repeatedly directs its transmit vector towards 

the estimated MS position. Furthermore, if no precise MS is detected after scanning the sector, 

then same per-sector beam scanning procedure is repeated for all the other adjacent sectors, i.e., 

alternating CW and CCW sectors. This process either ends with successful or failed MS 

detection. However, the design of a proper beamforming vector here implies perfect knowledge 

of path loss and channel models between the mmWave BS and the intended MS (unreliable). In 
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addition, the best spatial direction estimated by the microwave BS using anchor-based prediction 

can differ from that seen by the mmWave BS.  

2.5.2    Single-Sided Search Schemes 

In this scheme, a single side (BS or MS) initially performs directional search while the 

other side uses omni-directional antenna, then the roles here are reversed. The authors in [39] 

also propose a combined omni-directional and random directional transmission access scheme in 

order to reduce the number of measurements and discovery time (search delay). Namely, the BS 

transmits control signals using an omni-directional antenna, whereas the MS directionally scans 

the channel domain using a narrow beam hybrid beamformer, e.g., as shown in Figure 2.5 

(detection of two MPCs is shown in blue and grey). The MS then selects a random initial main 

lobe direction and exhaustively scans the entire spatial domain to detect the direction returning 

the highest signal. As a result, the MS effectively selects a unique beam vector that returns the 

highest spatial direction. The MS and BS roles are then reversed. Namely, a BS transmits pilot 

signals in the best direction using narrow beam, whereas the MS uses omni-directional 

transmission. This approach allows both sides to determine directions for highest signal 

receptions. Overall, this scheme simultaneously initiates directional transmission and reception 

for the data plane, i.e., no additional omni-directional transmission is required. Moreover after 

this handshake, channel estimation is finalized by transmitting the relative channel gains values, 

along with the estimated AoAs and AoDs.  

Nevertheless, omni-directional transmission and reception at mmWave frequencies yields 

in reduced coverage areas, i.e., less MS and BS separation distance. Hence a further mismatch is 

introduced between the area at which a MS can detect a BS, and also the area at which a MS can 

be served by a BS, i.e., distantly located due to the directional beams. Also, omni-directional 
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transmission does not compensate for high path losses and random sequential search methods 

also give larger delays. Overall, these limitations mandate the need for more effective beam 

discovery schemes. 

 

 
 

a) BS transmits omni-directional      b) MS scans multiple directions 

 

   
 

             c) BS transmits in the direction of its AoDs      d) MS scans multiple directions 

 

Figure 2.5: Single-sided beam search 

2.5.3    Exhaustive Search Schemes 

Exhaustive methods perform simultaneous beam search at both the MS and BS nodes. 

Namely, these scans are done over the entire angular space using narrow beams generated by a 

high number of antennas, i.e., brute-force method [40]. Both sides start with a random beam 

direction (such as one of the 64 predefined directions in Figure 2.6) and sequentially scan the 

entire azimuth plane in a time sliced (TDM) manner. Now when a MS initiates network random 

access, it essentially probes for synchronization signals transmitted by the BS beamforming 
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vectors. This technique returns the highest directivity and ranges across all discovery methods, at 

the expense of very high computational complexity and prolonged access times. Furthermore, the 

received signal levels at each narrow beam (at the MS) also have to be examined for all beams 

from the BS, and vice versa. The beam vectors returning the highest signal levels are then 

selected for data-plane transmission. Nevertheless, this scheme can also yield additional delays 

for cell discovery due to the random nature of the MS locations and the lack of context 

information. 

         
 

a) MS beams                                   b) BS beams 

 

Figure 2.6: Exhaustive search between MS and BS nodes 

 

2.5.4    Hierarchical Codebook Search Schemes 

Hierarchical search performs beam scanning over a set of stages composed of wide and 

narrow beams [41]. This scheme presents a compromise between the omni-directional and 

exhaustive search methodologies as shown in Figure 2.7. In Stage I, both the BS and MS nodes 

use the same beam discovery process here, with each one starting a random search with wide 

beams, see Figure 2.7. Specifically, both sides start with one wide beam and then conduct a 

sequential search (up to 4 predefined  wide beams) in other spatial directions (broadside and end-

fire) using the same array size, Figure 2.7(a). Hence, after the scanning cycle is completed, a 

single wide beam is selected at the MS and BS in the initial stage.  
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(a) Codebook Stage II: BS and MS beams 

   

(b) Codebook Stage II: BS and MS beams 

   

(c) Codebook Stage III: BS and MS beams 

Figure 2.7: Hierarchical codebook search between MS and BS nodes 

Carefully note that the detection of the best wide beam requires the highest signal within 

the range of this beam, whereas the other wide beam locations are discarded and are not 



33 
 

considered further in the successive search stages (beam refinement). Based upon this, Stage II 

further restricts the search to the angular range of the best detected beam, i.e., to better allocate 

this direction. Namely, a group of narrow beams are defined within this region, and the search is 

conducted using a single narrow beam over 4 directions selected from 16 beams, e.g., as shown 

in Stage II in Figure 2.7(b). This search process is repeated in codebook Stage III until the 

highest signal is detected using a pencil beam, as per Figure 2.7(b). 

However, hierarchical codebook search still entails high computational complexity and 

access times. In addition, the use of wide beams yields lower gain and directivity levels. Finally, 

selecting an incorrect combiner in the initial scanning stage can also cause access errors in the 

subsequent refinement stage. 

2.5.5    Subarrays Beam Access Schemes 

Subarrays access schemes perform beam scanning over a set of cascaded sectional arrays 

that compose the overall beamformer architecture, where each subarray conducts beam search 

over a small predefined angular range, i.e., the set of the subarrays here achieve complete search 

over the entire angular range [0, 2π]. As an example, the authors in [42] propose a beamtraining 

approach to estimate the antenna weight vectors (AWV) using spatial multiplexing, i.e., based 

upon codebook-based hybrid beamforming in LoS scenarios. Namely, the antenna arrays at the 

MS and BS are grouped into sections of subarrays with a predefined subarray separation, i.e., so 

that the resultant beam at each subarray points in a different spatial direction. Hence the scheme 

preforms initial coarse beamtraining in the inner-subarray followed by beam refinement, i.e., 

inter-subarray spatial multiplexing. In the former step, the best quasi omni-directional transmit 

and receive patterns are selected from a small set of pair-wise AWVs. Overall, results show that 

this subarray scheme significantly reduces beamtraining complexity and feedback overhead 
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versus stochastic gradient algorithm (SGA) blind beamforming beamtraining., i.e., 25% 

reduction. This solution can be also refined by using beamtraining selection based upon MIMO 

capacity at the inter-subarray spatial multiplexing level. 

Meanwhile, the work in [43] presents a similar approach that iteratively refines 

beamforming vectors based upon maximum instantaneous channel capacity. Namely, this 

method searches for best codebook beams from a subset of the RF chains at a time, i.e., while 

keeping the other chain beams fixed. The chain returning the highest cumulative capacity is then 

chosen, and t procedure is repeated until convergence, i.e., highest chain pair-wise capacity. 

Nevertheless, both of the above subarrays schemes impose restrictions on RF chain 

subset sizes at the MS and BS nodes. Hence overall search complexity is controlled by subset 

size, e.g., search complexity is linear for a single subset. Furthermore, pencil beam transmissions 

introduce further exponential complexity, i.e., power consumption overheads can become 

practically infeasible.  

2.5.6    Auxiliary Transceiver Schemes 

Auxiliary transceiver schemes assume that the MS nodes are quipped with a single array 

connected to two transceivers, i.e., hybrid auxiliary narrowband and digital wideband 

transceivers. This additional transceiver is purely digital and basically consists of narrowband RF 

chains (narrowband ADC and DAC). Note that the narrowband transceiver is used for initial 

access and control signaling purposes, i.e., other wideband hybrid transceiver is responsible for 

data transmission only. Although, both transceivers operate simultaneously using frequency 

division multiple access (FDMA) mode, the digital transceiver consumes most of the bandwidth 

here, i.e., since the auxiliary transceiver requires narrow/reduced bandwidth for control signaling 

purposes (small beacon overhead). Namely, the auxiliary transceiver performs beam scanning, 
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whereas the digital transceiver performs beamforming in the best direction. Now the initial 

access procedure here is composed of three stages including downlink (DL) cell detection, uplink 

(UL) access request, and access grant and resource allocation, see [44] for details  

Meanwhile, the work in [45] develops another auxiliary scheme for a multi-BS access. 

Namely, all BS nodes here transmit beacon signals using orthogonal preambles generated by 

their auxiliary transceivers. Now when a MS node accesses the mmWave network, frame 

detection is done akin to the single BS case using all available preambles. The MS node then 

selects the best detected beacons based upon the received power level, and thereafter it decodes 

the highest beacon signal. In general, the MS ranks the highest power levels across all detected 

beacon signals, and alternative beacon signals are used in case of link degradation or blockage. 

The overall performance of this scheme is compared to a hybrid beamforming access scheme in 

terms of beacon overhead and duration. This latter scheme performs sequential rather than 

simultaneous beacon and data transmission. Results indicate much lower beacon overheads for 

0.1 ms sub-frame lengths, i.e., close to the fully-digital scheme. Note that beacon overhead and 

duration also depend upon the bandwidth of the auxiliary transceiver, i.e., lower bandwidth can 

result in lower beacon overheads. Results also show that the duration of the auxiliary transceiver 

beacon exceeds its hybrid counterpart due to its narrowband specifications. Therefore, the 

associated beam acquisition delays are still relatively small (3-5 ms range) as compared to the 

hybrid case (8-10 ms range).  

Finally, the work in [46] proposes a new beamforming architecture using hybrid 

wideband and auxiliary digital MIMO narrowband transceivers. This solution exploits the long 

beacon durations (narrow beacon bandwidth) associated with digital auxiliary transceiver to 

reduce beacon overhead and beam alignment delays. Additionally the narrowband ADC and 
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DAC at the auxiliary transceiver also yield lower quantization resolution, thereby reducing cost 

and complexity. However this approach consumes excessive power due to simultaneous 

operation of two transceivers and scanning operations across multiple parallel beams. In fact, 

these levels can even exceed the requirements for digital and analog beamformers combined. 

2.5.7    Coordinated Triangulation Access Schemes 

A coordinated triangulation technique for clustered mmWave small cells (mmSCs) is 

proposed in [47] to reduce access times. This method is best suited for ultra-dense LoS 

standalone networks without overlaid legacy networks. Namely, the mmSCs (or BSs) within 

each clustered coverage area perform initial access in a coordinated fashion using PDP 

measurements, i.e., the mmSCs are synchronized to start beam-scanning simultaneously. 

Meanwhile, the MS beam directions are randomly chosen in an exhaustive brute-force manner. 

The beam access procedure is then performed jointly between the entire mmSCs in the coverage 

cluster. Overall, the proposed access scheme is divided into several key phases, i.e., PDP 

measurement (Phase I), coordinated beam sweep reordering (Phase II), initial access (Phase III), 

and asymmetric multi-cell association (Phase IV). In Phase I, the initial beam directions are 

randomly selected by the mmSC nodes. Here, each mmSC calculates PDP values for each beam 

cycle duration to generate PDP peak reports. Note that the number of peaks is equal to the 

number of transmit beams at the MS, i.e., each corresponds to a single beam index. Overall, 

Phase I measures the PDP of the received preambles and shares this information with the other 

mmSCs in the cluster through LoS backhaul links. Next in Phase II, the mmSCs jointly order the 

power levels for the various spatial direction associated with the preambles. The best beam 

direction is then computed based upon the measurements reports. Meanwhile, the MS also 

conducts coarse beam scanning for a given beam-triplet until an uplink connection to the MS is 
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successfully established (Phase III). Namely, the mmSC is discovered if the PDP peaks are 

above a detection threshold based upon the target false alarm detection probability. Finally, in 

Phase IV the existing uplink connection is used to setup additional connections with the same or 

different mmSC for improved spectral efficiency.  

Overall, a key limitation of coordinated triangulation scheme is position estimation 

accuracy, i.e., the MS location can only be approximated and the central direction of the MS 

beam may not be perfectly aligned with the direction of a single mmSC. Hence the chosen beams 

at the mmSCs may not point towards the actual MS location due to such estimation errors. 

Furthermore, estimation accuracy can only be improved by using more than three measurement 

reports at the expense of higher access times. Nevertheless, a key advantage of the proposed 

scheme is its reduced measurement reporting overheads, i.e., only a few bits are required to carry 

the index of the beam. Results confirm that this algorithm delivers fast access times without 

results overhead between mmWave and overlaid legacy networks. 

Now carefully note that the coordinated triangulation scheme is only applicable in LoS 

scenarios between the mmSCs and the MS. Hence if the LoS link is blocked, the MS beam can 

potentially point to a reflector, i.e., forming a NLOS link. However this setup is contingent upon 

the scattering and reflection properties of the cannel obstacles. Also, the estimated MS position 

also differs from the actual location. As a result, none of the mmSCs can precisely adjust their 

transmit beam directions. Nevertheless, the robustness of the proposed algorithm is highly-

dependent upon network deployment densification. Furthermore, this scheme is only practical in 

smaller dense networks, since three mmSCs are required to perform simultaneous preamble 

reception. 
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2.6    Open Challenges 

Overall, beam access scheme remains a major challenge in mWwave networks. Despite 

the some existing proposals to minimize beam access overheads, many open challenges still 

remain here. Foremost there is a critical need to reduce beam access times to meet the tight 

control latency requirements for 5G systems. Namely, efficient and fast beam access schemes are 

needed to handle the sparse nature of mmWave channels. Furthermore, these solutions must 

present feasible beamforming architectures, i.e., in terms of power consumption, energy 

efficiency and channel rank. Also, these access schemes must incorporate a range of channel 

models for LoS and NLoS environments, such as Rayleigh and Rician path gains. Finally, there 

is also a further need to develop reliable link recovery schemes subsequent to the initial beam 

access stage, i.e., that incorporate channel blockage models. Accordingly, these various 

challenges form the main motivating factors for this dissertation research. 
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Chapter 3 

Initial Beam Access Schemes: Efficient Search Solutions  

 

As noted in Chapter 2, existing initial beam access methods suffer from high 

computational complexity and prolonged access times (latencies). Hence fast and power efficient 

schemes are necessary for highly-directional beamforming architectures in mmWave networks. 

In light of the above, this chapter presents rapid access schemes based upon gradient-free 

heuristics. First, the access problem is formulated as a search model composed of a search grid 

(angular domain) and beam indices. Direct pattern search procedures are then developed for LoS 

and NLoS propagation environments. These procedures are inspired by the Nelder Mead (NM), 

Luus Jaakola (LJ), divide-and-conquer (DC), Tabu search (TS), coordinated generalized pattern 

search (CGPS), and Hooke Jeeves (HJ) search methods. Namely, instead of testing all possible 

beamforming combinations, these procedures are designed to only evaluate a limited number of 

beamforming and combining vectors to estimate the best direction with reduced computational 

complexity. The performance evaluation of these solutions is then analyzed in details compared 

to some existing methods in terms of computational complexity, access times, power and energy 

consumption, and success rates. See Figure 3.1 for the overall structure of this chapter. 

First, the system framework is presented to introduce a multi-resolution hierarchical 

codebook and array model for the beamformer, along with the signal and channel models. The 

beam access problem formulation is presented next, followed by the access procedures and 

performance evaluation. 
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Figure 3.1: Adaptive pattern search schemes for LoS and NLoS environments 

3.1    System Framework 

In general, digital beamforming techniques can enhance spatial multiplexing and high 

spectral efficiencies. However, these gains come at the detriment of high power consumption as 

discussed in Chapter 2. Hence analog beamforming solutions are proposed for BS and MS 

access. Namely, these methods can provide reduced power consumption in MS front-ends and 

are suitable for the low-rank mmWave channels, i.e., sparse analog precoding matrix. Along 

these lines, corresponding codebook structure and array model is presented for the analog 

beamformer. The requisite signal and the sparse channel models are also detailed, i.e., for 

subsequent use in the proposed beam access solution. Note that beamforming design is only 

presented for the MS (solution at the BS can be defined similarly). 

3.1.1    Codebook Structure 

The overall system model assumes that the BS and MS nodes are both equipped with a 

multi-resolution cascaded codebook, i.e., for beam reciprocity between the downlink and uplink 

directions. Furthermore, each codeword specifies a predefined beam steering weight to drive 
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discrete phase shifters. Namely, this codebook consists of y =1, 2,…,Y stages, where each stage 

defines b =1,2 ,...,B  wide beams ∈ [0, 2π] generated by NMS
 y

 antennas at each codebook stage y, 

Y ≠ B, where B = 2π/ϕ
0
MS|

y=1
 and ϕ

0
MS

 is the beamwidth for the observation angle at the MS, i.e., 

at broadside or endfire directions {ϕ
0

MS
: ϕ

brd

MS
, ϕ

endfire

MS
}. Each beam vector in b is also divided into 

b̌ narrow beams for y >1, where b̌ =1, 2, ..., B (b̌ ⊆ B, ϕ
b̌
⊆ϕ

b
) for a total of BT

 y
 = 4

 y
 beams in each 

stage. For example, Figure 3.2(a)-(c) illustrates a sample codebook design for Y = 3 stages. Here 

the initial stage performs beam search using wider beams to capture higher power intensity at the 

expense of lower gains. The beam with the highest detected power is then selected for further 

refinements in the latter stages.  

 

(a) Codebook Stage I               (b) Codebook Stage II 

 

 

(c) Codebook Stage III 

Figure 3.2: Cascaded codebook with Y = 3 stages and B = 4 beams 
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3.1.2    Array Model 

Now consider a BS and MS pair equipped with  NBS
T  and  NMS

T  co-polarized antenna 

elements, respectively, where NMS
T =2∑ NMS

 yY
y=1 , NBS

T =2∑ N BS
yY

y=1 . Here the ABF design is 

constructed using a single RF chain with back-to-back uniform amplitude linear arrays (ULA) 

having uniform inter-element spacing dn = λ/2, where λ is the wavelength. Now in order to avoid 

grating lobes and pattern blindness, the antenna elements displacements must be small enough 

such that dn < 1+|cosθ0
MS|, where θ0

MS
 is the observation angle at the MS. Based upon the above 

setup, the closed-form normalized array response vector at the MS, AMS, is given by the periodic 

array factor. Specifically, this response at azimuth scanning directions in stage y is given by [48]: 

MS

MS

MS MS 0 MS

1MS

1
exp( ( 1)( cos ),

y
N

y

n v ny
n

A a j N k d
N

 


                                  (3.1) 

 

where an is the n-th element amplitude excitation, kv = 2π/λ  is the wave number, and β
MS

 is the 

incremental progressive phase shift between the antenna elements at the MS. Also, 

φ
MS

= kvdncosθ0
MS

 + β
MS

 is the array phase function at the MS with a visible region varying 

between -kvdn ≤ φ
MS

 ≤ kvdn. Furthermore, the array beamwidth in the broadside and scanning 

directions ∀θ0
MS(θ0

MS
: 0 < θ0

MS
 ≤ π) for each stage is [49]: 

MS 1 MS MS

0 0

MS

2.782
co 0s cos ,  ,

2
brd v n y
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k d
d N

   


 
 

   
 

                               (3.2) 

 
 

Finally, the beamwidth at codebook stage y in the end-fire direction is given by: 

                    MS 1 MS

MS 02cos (1 1.391 / ),   0, .     
endfire

y

nN d for                                       (3.3) 

 

 

Overall, the spatial footprint of the array increases proportionally to a broadening factor 

бb, where бb =1/cosθ0
MS

 for directions scanned off the broadside [49]. Also, the array gain is 

given by GAMS
= AMSGa, where Ga is the gain for a single element. In particular, a gain of 3-5 dBi 



43 
 

is reasonable for a microstrip rectangular patch antenna design of the commonly used in 

mmWave applications [50]. 

3.1.3    Signal and Channel Models 

In general, mmWave systems are best-suited for low mobility outdoor pedestrian 

environments. Hence considering a single stationary MS in LoS, the received single carrier 

waveform for the downlink is given by: 

                         ƴ
l
 = ul

H(θ0
MS

)HLoSvl(θ0
BS

) z + wl,                                                (3.4)  

where (.)
H

,  ul(θ0
MS)  and  vl(θ0

BS
) are the Hermitian operation, beamforming and combining 

vectors for the l-th channel path, respectively, i.e., ‖ul
2‖ = NMS

 y
, ‖vl

2‖ = NBS
 y

. The observation 

angles here (θ0
MS

 and θ0
BS

) also represent the angles of arrival and departure at the MS and BS, 

respectively. Note that ul = AMS
T

 and vl = ABS
T

 due to the absence of a baseband precoding stage in 

analog beamformer, where (.)
T
 represents the transpose operation. Therefore the channel gain, 

HLoS, for LoS environment is defined as: 

                                          HLoS=hLoSulvl
H,                                                             (3.5) 

where hLoS is the small-scale fading coefficient (rank one) for the LoS path. Furthermore, z in 

Eq. (3.4) is the control signal carrying the primary and secondary synchronization signals (PSS, 

SSS) in which the cell number is modulated using the Zadoff Chu sequence, where Ptr is the 

transmit power constraint. The additive white Gaussian noise (AWGN) component is also given 

by wl ~N(∂,  σ2 ), with mean ∂ and variance σ2.  Meanwhile for NLoS channels, the complex 

channel gain, HNLoS, is defined using the geometry-based stochastic channel model [41]: 

               
T T

MS H BSMS BS
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                                 (3.6) 
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where Pl is the path loss between the BS and MS, hNLoS is the complex gain of the NLoS path for 

L total number of rays (paths) arriving in S clusters (spatial lobes). The channel is also S-sparse 

here, i.e., S is the number of non-zero elements in the channel matrix (total number of resolvable 

clusters). Note that the choice of a geometric channel model here is mainly driven by the BRCS 

properties of obstacles and the reduced energy levels captured via beamforming. Overall, this 

selection results in a low-rank angular sparse channel with low density impulse response (IR). 

Meanwhile, the path loss (Pl) is given by the floating intercept model using least square fit [51] 

for outdoor environments, expressed by:  

1010lo[dB] g ( ) ,fl sl sflP r                                                  (3.7) 

 

 where αfl  is the floating intercept in dB, 𝜌sl  is the intercept slope, and ξsf  represents shadow 

fading, i.e., ξsf ~ logN(0, σs) with 0 dB mean and σs standard deviation. Alternatively, the path 

loss model can also be based upon the reference model defined in [52] for outdoor settings, i.e.:  

10 0 10

0

20log (4 / ) 10 log ( ),   l

r
P r

r
                                           (3.8) 

 

where η, r  and  r0  represent the PLE, the BS and MS separation and reference distances, 

respectively. These two path loss models are adopted in this chapter, where approximate path 

loss levels are achieved. 

3.2    Beam Access Problem Formulation  

The initial mmWave access problem is now modeled. Foremost, let the beamforming and 

combining vectors for the l-th path (ul, vl) be denoted by the ri and sj beam indices, respectively, 

where  i, j =1, 2,..., B, and ri  = ∀ul(θ0
MS

) ∈ [0, 2π] and  sj  = ∀vl(θ0
BS

) ∈ [0, 2π]. Namely, these vectors 

span the overall spatial domain using the proposed multi-stage codebook in Section 3.1.1. Hence 

the η-dimensional search grid is given by Ĝ = {∀(ri, sj)}, where Ĝ ∈ ℝ𝜂 represents an angular space 
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of [0, 2π] with Ƥk points, k =1, 2,..., ij, and Ƥk is a beam index pair (ri, sj). This grid corresponds 

to all possible azimuth combination for the beam directions at the BS and MS. 

Based on the above, the overall objective function is defined using the received signal 

power level at point Ƥk  at the MS after the combining vector stage (or at the BS after the 

beamforming vector), i.e., ƴ
l
(Ƥ

k
(ri, sj)). The overall goal of the mmWave access scheme here is 

to find the best pair that maximizes the signal level (objective function) in LoS and NLoS 

settings, given by:  

(ri, sj)bsty
= max{ƴ

l
(Ƥ

k
(ri, sj))|Ƥk⊂ Ĝ}, s.t. i, j, ∈[1, B].                                  (3.9) 

Figure 3.3 shows an example of the received signal profile at codebook stage y =1 (B = 4) in a LoS 

environment at a distance separation (r) of 200 m and scalar channel gain, i.e., hLoS    =1 (see Table 

3.1 for other parameter settings). Hence, the goal here is to detect the single best index pair that 

gives the highest signal level of -47 dBm.  

 
 

Figure 3.3: Received signal profile in LoS for codebook Stage I ( y=1, B=4) 

 

Note that Figure 3.3 also shows a local maximum corresponding to a low received signal level 

attributed to the detection of the undesired side lobe levels (SLL), i.e., when the BS and MS main 
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beams are not perfectly aligned (e.g., -63 dBm). The sparse structure of the received signal levels 

in the NLoS case is also evident here in Figure 3.4. 

 

Figure 3.4: Received signal profile in NLoS for codebook Stage I ( y =1, B=4) 

Table 3.1: System settings for the proposed Nelder Mead schemes 
 

 
 

Category 
 

 

Parameters 
 

Value 
 

System 
 

 

f
c
 (GHz), BW (MHz), ƴth (dBm) 

 

 

28, 100, -55 
 

Channel 
 

η, hLoS, ∂, σ2, r (m), r0 (m) 
 

 

2, 1, 0, 1, 1, 50 
 

ULA 
 

 

𝑃tx(dBm), Ga, NMS,BS
 S1 , NMS,BS

 S2 , NMS,BS
 S3 , an 

 

 

35, 5, 2, 6, 19, 1 
 
 

 

Codebook 

 

Y, B, BT
1 , BT

2 , BT
3  

 

 

 

 

2, 4, 4, 16, 64 
 

NM schemes 
 

 

 Г, δ, ζ
r
, nr, μ, 𝜌c, dc 

 

2, 2, 1, 1, 2, 0.5, 1 
 

 

 

 

 

Power (mW) 
 

 

PADC, PBB, PM, PLO, PLPF, PAMP, PLNA, PPS
S1 ,   

PPS
S2 , PPS

S3  
 

 

20, 20, 19, 5, 14, 5, 20, 

10, 45, 78 
 

PSS time 
 

 

tPSS (μs) 
 

 

200 
 

 

 

 

 

 

It is clear that the objective function in the NLoS case consists of few dominant and 

resolvable clusters, i.e., a single global maximum (e.g., -102 dBm) corresponding to a unique 

(ri, sj) pair, and a local maximum (e.g., -110 dBm) resulting from undesired SLL similar to the 

LoS case. Consider here the memoryless probability for the direct pattern search schemes 
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detecting the highest received signal at Ƥk(ri, sj), i.e., ƴ
l
((ri, sj)bsty

), after ṫ trials, ṫ =1, 2, ..., Ṫ. 

Namely, this value is given by: 

ℙ[ƴ
l
 (Ƥ

k
(ri, sj))bsty

]=

{
 
 

 
 

1

B2
,  for k =1,                           

1

B2 − (k − 1)
∏

B2 − ṫ 

B2 − (ṫ − 1)
, for k ≥ 2.

Ṫ= k-1

ṫ =1

                        (3.10) 

Additionally, the conditional probability of an event Č successfully detecting the highest signal 

at Ƥk(ri, sj) after ṫ trials given Ƒ previous failures is: 

                         ℙ(Č| Ƒ)=
ℙ(Č ∩ Ƒ )

ℙ( Ƒ )
=
ℙ(Č )ℙ( Ƒ )

ℙ( Ƒ )
=

1

B2 − (ṫ− 1)
, ṫ =1, 2.., k.                        (3.11) 

In light of the above, nonlinear search methods for LoS and NLoS are now presented to 

solve the aforementioned objective function with least possible number of measurements.  

3.3    Efficient Search Schemes for LoS Environments 

The search schemes proposed here try to solve Eq.(3.9) with a reduced number of 

measurements. In particular, the proposed beamforming solutions for (single-rank) LoS settings 

use an enhanced version of the downhill simplex method. Consider the details. 

The Nelder Mead (NM) search method is shown in Figure 3.5. This meta-heuristic can be 

used to find a global maximum for a smooth unimodal function within a few steps. Multiple key 

variables are further proposed here in efforts to achieve acceptable convergence rates for the NM 

method, i.e., based upon Von Neumann and Chebyshev distances search, and Levy Flight 

random walk. 

Now the traditional NM method starts by constructing a simplex of Δ = ГNM  +1 vertices 

∈ ℝ2
, where ГNM is the number of variables in the NM scheme that identify the beamforming 

and combining vectors (beam indices). Namely, each vertex here represents a beam pair that will 
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be tested to maximize the objective function. The scheme then adapts the shape and location of 

the simplex based upon the outcomes of the objective function until a maximum is found at 

which time the search prodecure terminates.  

Now three points are used to form the initial simplex here, i.e., denoted by P1(r1, s1), 

P2(r2, s2) and P3(r3, s3). Although this set can be randomly selected anywhere in the search 

space, it is generally favorable to start from the edges to test different regions in ascending or 

descending order (and thereby strengthen the convergence behaviors). Note that the boundaries 

of the search space are also confined by the predefined set of MS and BS codebooks. 

Additionally, the dimension of the simplex is governed by the step size, δ, away from P1. Hence 

in order to accelerate the search process and avoid exceeding the lower and upper bounds of the 

beam sequences, the step size is critically chosen as δ = B/2. After the simplex is constructed, the 

search procedure runs the key steps of the modified NM scheme: 

1) Ranking 

The objective function is first evaluated at the three vertices: ƴ
l
 (P1(ri, sj)), ƴl

(P2(ri, sj)), 

and ƴ
l
(P3(ri, sj)). The results are then sorted, as best (PB), intermediate or good (PG), and worst 

(PW) [53] according to the detected signal levels, i.e., worst corresponds to the lowest value of 

the objective function across all three vertices, i.e.:  

          PW = P1(ri, sj), PG= P2(ri+δ, sj+δ), and PB= P3(ri, sj+δ).                            (3.12) 

Carefully note if all vertices deliver equal signal levels, then the ranking is based upon the 

location of the vertex, with the worst vertex corresponding to the lowest subscript order. This 

choice migrates the search away from poor regions when the objective function may be equal at 

all vertices.  
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2) Reflection 

This step formulates and examines a new point that is distantly located from PW and in 

the proximity of PG and PB, i.e., to reinforce the prediction of the best pair location. In particular, 

this “reflected” point is calculated as per [54]:  

PR = (1+ ζ
r
)P̅c − ζ

r
PW, ζ

r
 ∈ ℝ ∣ ζ

r
 > 0,                                         (3.13) 

where P̅c is the centroid of the line joining PG and PB given by P̅c= (PB + PG)/2, and  ζ
r
 is the 

reflection coefficient away from PW. Note that if ƴ
l
(P

R
) > ƴ

l
(P

W
), then PW is replaced with PR to 

formulate a new simplex. 

3) Von Neumann and Chebyshev Distances Search 

This step amends the traditional NM method to achieve more accurate convergence 

towards the highest signal level. Namely the objective function is now computed in a Von 

Neumann (VN) squared lattice neighborhood of the (above-computed) reflected points, 

PR1, R2
vn (ri, sj∓nr

) and PR3, R4
vn

 (ri∓nr
, sj), where nr= δ/2 ∈ [1, B] is the Von Neumann neighborhood 

range. A single reflection point is then selected after which expansion is performed. This 

approach avoids formulating unnecessary redundant triangles in case all initial vertices are equal. 

Hence the Von Neumann distance satisfies: 

                   N(ri, sj)
v

 = {(r, s): |r - ri| + |s - sj| ≤ nr}.                                            (3.14) 

To further increase the robustness of the search procedure, the Chebyshev distance, dc, is 

also considered here, i.e., to improve performance at the expense of increased computational 

complexity. Namely, this latter value is calculated at the refection point as:  PR1, R2
cv (ri∓dc

,sj),  

PR3, R4
cv (ri, sj∓dc

), PR5, R6
cv (ri∓dc

, sj+dc
), and PR7, R8

cv (ri+dc
, sj∓dc

), where dc = δ/2 ∈ [1, B]. 
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4) Expansion  

In case the Von Neumann or Chebyshev reflection schemes give a new local maximum, 

the search grid can be expanded to point PE , defined as PE = μPR + (1-μ)P̅c , where μ is the 

expansion coefficient, μ > 1. However, if both reflection and expansion cannot extract the 

maximum, then subsequent contraction and shrinkage operations are performed jointly.  

5) Contraction 

If the objective function at the reflected point ƴ
l
(P

R
) is equal to the worst point ƴ

l
(PW), 

i.e., ƴ
l
(P

R
) = ƴ

l
(PW), then additional beam pairs must be tested. Now the maximum is expected to 

fall within the interior of the simplex rather than along the outer grid region. Hence two mid-

points PC1, C2  are symmetrically constructed around the line segments PW-PM  and   PM-PR, 

respectively, expressed by PC1, C2 = ρ
c
PW ∓ (1- ρ

c
)P̅C, where ρ

c
 is the contraction 

coefficient ∈ (0, 1]. The point that returns max (ƴ
l
(r

i
, sj)) is denoted as PC, and the new simplex is 

given by PB-PG-PC.  

6) Shrinkage 

Now if the objective function at the contraction point ƴ
l
(PC) is less to that at the worst 

pointƴ
l
(PW), i.e., ƴ

l
(PC) < ƴ

l
(PW), then PG and PW are shrunk toward PB by replacing them with 

PM = (PG + PB)/2, and PS= (PW + PB)/2, respectively.  

Overall, the NM scheme terminates when a new simplex has been formed after the 

expansion or shrinkage steps and a sufficient signal level has been detected, i.e., to exceed the 

receiver threshold, ƴ
l
((ri,  sj)) >>  ƴ

th
.  
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 Inputs: Y, B, Г, δ, nr, ζr
, μ, 𝜌c 

 For y ≥ 1, y ≤ Y, ∀(ri, sj) ∈ [1, B]  // Start Nelder Mead search with codebook Stage I 

    ΡΔ(ri, sj): Ρ1(ri, sj), Ρ2(ri+δ, sj), Ρ3(ri, sj+δ), i, j = 1, 2, …, B // Construct initial simplex 

     ƴ
l
(∀ΡΔ(ri, sj))   // Measure signal level at the initial simplex 

    Rank: ΡB, ΡG, ΡW  // Rank the simplex vertices as best, good and worst 

    Reflection: ΡR = (1 + ζ
r
)P̅c - ζr

ΡW     // Refection point 

    Von Neumann Search: ΡR
vn(ri, sj) = PR1, R2

vn (ri, sj∓nr
), PR3, R4

vn (ri∓nr
, sj)  // Von Neumann (VN) Reflection points 

    max ƴ
l
(ΡR

vn(ri, sj)), ΡR ← Ρ
R

vn  // Measure signal at the VN points, select the best point as the  new refection point 

Chebyshev Search: PR1, R2
cv (ri∓dc

,sj),  PR3, R4
cv (ri, sj∓dc

), PR5, R6
cv (ri∓dc

, sj+dc
), and PR7, R8

cv (ri+dc
, sj∓dc

) 

max ƴ
l
(ΡR

cv(ri, sj)), ΡR ← Ρ
R

cv  // Measure signal at the Chebyshev points and select the best reflection point 

      If    ƴ
l
(ΡR) > ƴ

l
(ΡG)             

             If    ƴ
l
 (PR) < ƴ

l
(PB), PW ← PR  

                 Else    ΡE(ri, sj) = μΡR + (1- μ)P̅c,   μ = δ  // Expansion point 

                           ƴ
l
(ΡE)   // Measure signal a the expansion point 

                           If    ƴ
l
 (PE) > ƴ

l
 (PR), (ri, sj)bsty

 ← PE, y ← y +1  // Expansion point is the best beam indices pair 

                              Else   (ri, sj)bsty
← PR,  y ← y +1   // Reflection point is the best beam indices pair 

                         End if       

                End if     

         Else                // PR < PG < PB 

             If    ƴ
l
(PR) > ƴ

l
(PW), PW ← PR 

                      PC1,C2 = ρ
c
Pw∓ (1 - ρ

c
)P̅c     // Contraction   

                      Pc  ← max ƴ
l
{PC1,PC2}   // Calculate best contraction point 

                     If    ƴ
l
(PC) > ƴ

l
(PW), PW ← PC  // New simplex is constructed 

                            (ri, sj)bsty
 ←𝑚𝑎𝑥max ƴ

l
{ΡΔ(ri, sj)}, y ← y +1  

                     Else   PS= (PB+ PW)/2, PM = (P
B

+ PG)/2   // Shrinkage 

                               ƴ
l
(PS), ƴl

(PM), PS ← PW & PM ← PG 

                               ΡΔ(ri, sj) ← PB-PM-PS  // New simplex is constructed 

                               (ri, sj)bsty
 ← max ƴ

l
{PB, PM, PS}, y ← y +1  // Measure signal at the new simplex 

                 End if       

               Else     // Do contraction and shrinkage for ΔWGB 

                            (ri, sj)bsty
← max ƴ

l
{PB, PM, PS}, y ← y +1 

               End if 

        End if 

   End for 

 

 

 

Figure 3.5: Von Neumann and Chebyshev Nelder Mead initial beam access schemes 

 

A further modified scheme is also presented to improve search success rates and reduce 

computational complexity, as detailed in Figure 3.6.  Specifically, this  approach  uses  an  access  
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 Inputs: δ, Y, B 

 For y ≥ 1, y ≤ Y, ∀(ri, sj) ∈ [1, B]     // Start Levy Flight NM scheme with Codebook Stage I 

   Δ1: P1 ← (rimin
, sjmin

), P2 ← (rimin+δ
, sjmin

), P3 ← (rimin
, sjmin+δ

)   // Construct first simplex 

   ƴ
l
(Δ1): ƴ

l
(P1), ƴ

l
(P2), ƴ

l
(P3), PB1 ← max ƴ

l
(Δ1)   // Measure signal at first simplex and choose best point PB1 

   Δ2: P4 ← (rimax
, sjmax

), P5 ← (ri
max-δ

, sjmax
), P6 ← (rimax

, sj
max-δ

)  // Construct second simplex 

   ƴ
l
(Δ2): ƴ

l
(P4), ƴ

l
(P5), ƴ

l
(P6), PB2 ← max ƴ

l
(Δ2)  // Measure signal l at second simplex and choose best point PB2 

   If   ƴ
l
(PB2) > ƴ

l
(PB1) // If the highest signal level exists in the best point PB2 of the second simplex 

        If     P5 = PB2, P̿4 ← (ri
max-δ/2

, sjmax
), P̅5 ← (rimin

, sjmax
)  // Explore the vicinity of  P5   

                P8← (ri
max-δ

, sj
max-δ/2

),  ƴ
l
(P̿4), ƴ

l
(P̅5), ƴl

(P8)    

                (ri, sj)bsty
← max ƴ

l
, y ← y + 1   // Select the point that maximizes the received signal level 

           Else if        PΔ2B
, P̅6 ← (rimax

, sjmin
),  // If the highest signal exists in the best point PB1 of the first simplex 

                              P9 ← (ri
max-δ/2

, sj
max-δ

)  // Construct additional points in the vicinity of PB1 

                              ƴ
l
(P̅6), ƴ

l
(P9)    // Measure the signal level at these new points 

                              (ri, sj)bsty
← max ƴ

l
{PΔ2B

,P̅6, P9},  y ← y +1 select the point that maximizes the received signal  

           Else if        P4 = PB2, P̅4 ← (rimax
, sj

max-δ/2
), ƴ

l
(P̅4), ƴl

(P̿4) // Explore the vicinity of  P4   

                             (ri, sj)bsty
← max ƴ

l
{P4, P̅4, P̿4}, y ← y +1 

           Else           P7 ← (ri
max-δ/2

, sj
max-δ/2

),  P9 ← (ri
max-δ/2

, sj
max-δ

)      // Explore the vicinity of  P7           

                              ƴ
l
(P7), ƴl

(P8), ƴl
(P9), (ri, sj)bsty

 ← max ƴ
l
{P7, P8, P9}, y ← y + 1 

        End if 

    Else if   ƴ
l
(PB2) < ƴ

l
(PB1)     // If the highest signal level exists in the best point PB1 of the first simplex 

         If        P1= PB1, P̅1 ← (rimin+δ/2
, sjmin

), P̿1 ← (rimin
, sjmin+δ/2

)  // Explore the vicinity of  P1    

                    P11 ← (rimin+δ/2
, sjmin+δ/2

), ƴ
l
(P̅1), ƴ

l
(P̿1), ƴ

l
(P11), (ri, sj)bsty

← max ƴ
l
{P̅1, P̿1, P11}, y ← y + 1  

           Else if     P2 = PB1, ƴ
l
(P̅1), ƴl

(P̅6,), ƴl
(P9)        //  Explore the vicinity of  P2    

                           (ri, sj)bsty
← max ƴ

l
{P̅1,P̅6, P9}, y ← y +1 

           Else if    P3 = PB1, (ri, sj)bsty
 ← max ƴ

l
{P̿4, P̅5, P8}, y ← y +1  // Explore the vicinity of  P3    

           Else        ƴ
l
(P7), ƴ

l
(P8), ƴ

l
(P11), (ri, sj)bsty

← max ƴ
l
{P7, P8, P11}, y ← y +1 

         End if 

    Else    //  Do contraction and shrinkage for the first and second simplexes 

   End if 

End for 
 

 

Figure 3.6: Levy Flight Nelder Mead initial beam access schemes 
 

technique that is implicitly derived from the Levy Flight random walk, i.e., step-

lengths feature heavy-tailed probability distribution. Hence two oppositely-located simplexes are 

formed in the search space (ri, sj) ∈ [1, B], i.e., Δ1and Δ2. For example, one can migrate from one 

https://en.wikipedia.org/wiki/Heavy-tailed_distribution
https://en.wikipedia.org/wiki/Probability_distribution
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edge of the search grid to the opposite (diagonal) side to form the second counterpart simplex, 

i.e., while keeping the same step size δ and simplex dimensions. Hence the locations of the two 

simplexes are inherently analogous to a Levy Flight random walk. The objective function is then 

evaluated at all vertices of Δ1 and Δ2 and the simplex with the highest value of the objective 

function is chosen for the next stage. Subsequently, a global maximum search is carried out in 

the vertex neighborhood of this simplex. Now if the objective function is equal at all six vertices 

(very unlikely), then any single simplex can be chosen and contraction and shrinkage procedures 

executed (as detailed previously). For instance, when all vertices are equal at Δ1, then the points 

P1, P̅1, P2, P3, P̅5, P9 and P11 are tested. Alternatively, the points P4, P̅4, P5, P7, P6, P̅6 and P8 are 

tested if all vertices are equal at Δ2. Now the overall schematic sequences for the proposed Von 

Neumann and Levy Flight Nelder Mead schemes are shown in Figure 3.7(a)-(b), respectively. 

       
 

           (a) Von Neumann Nelder Mead access                       (b) Levy Flight Nelder Mead access  
 

Figure 3.7: Nelder Mead procedures for initial beam access 

 

Overall, the key advantage of the Levy Flight NM scheme is that it tests adjacent beam 

pairs located at two azimuthally-opposite directions separated by the maximum progressive 

phase shift, β
max

. This strategy can help accelerate the detection process versus sequential 

regional pair testing. The Levy Flight NM approach also reduces the chances of finding a local 
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maximum region, i.e., potentially triggered by detectable SLL at the array aperture which may 

perturb the search procedure and cause premature termination. 

The proposed NM schemes are now analyzed using network simulation. The overall 

setup assumes an interference-free LoS environment with a single BS and MS. The operating 

frequency here, f
c
, is set to 28 GHz and the channel bandwidth (BW) is set to 100 MHz. The 

other related parameters for the proposed NM schemes are also listed in Table 3.1. Detailed 

results are now presented for performance metrics to evaluate the efficiency of the above 

schemes. 

First, the computational complexity of the beam access scheme is gauged using the total 

number of objective function evaluations for the beamforming and combining pairs (across all 

the hierarchical codebook stages). Namely, if ƴ
l
(PR) > ƴ

l
(PW), the total number of measurements 

for the Von Neumann NM scheme, SVN, is given by:  

SVN|ƴl
(PR) > ƴ

l
(PW) = Y(SΔ+S

ref
 

+ Snbr+ Sexp),                             (3.15) 
 

 

or if ƴ
l
(PR) > ƴ

l
(PW), the number of measurements is given by:  

 

 

SVN|ƴl
(PR) < ƴ

l
(PG) = Y(SΔ+ Sref+ Snbr+ Scon+ Sshr),                            (3.16) 

 

where in order the variables  SΔ, S
ref

 
, Snbr

 
, Sexp

 
, Scon

 
, and Sshr 

  are defined as the number of steps 

at the traditional NM simplex, reflection point, Von Neumann locations, expansion point, 

contraction point, and shrinkage point. Similarly for the Levy Flight NM scheme, the number of 

measurements, SLF, is given by:  

SLF=Y(SΔ1
+ SΔ2

+SB
 nbr

),                                                   (3.17) 

where SΔ1
, SΔ2

, and SB
 nbr

 are the number of steps in the initial two simplexes for the Levy Flight 

and the neighborhood of the best vertex, respectively. Based upon the above evaluations, Figure 

3.8 plots the complexity of the proposed NM schemes compared to the conventional access 
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methods. Namely, Levy Flight NM features 99.3% and 78% reduction in computational 

complexity versus the exhaustive search [40], and the subarrays, single-sided and GPS schemes 

[42],[39],[35], respectively. The Levy Flight NM also performs its beam measurements by 43% 

and 25% less steps versus the iterative search and the beamtraining method for indoor WLAN in 

[58]. Among the proposed NM schemes, the Von Neumann search yields the lowest complexity, 

i.e., 25% and 10% less than the Chebyshev and traditional NM schemes.  

 

Figure 3.8: Nelder Mead computational complexity for different beamforming vectors 

Now access time is another key performance parameter for beam access schemes. In 

particular this value, denoted here as Ta, is determined by the beamforming scan cycle time over 

all azimuth spatial directions in which PSS signaling is transmitted periodically on each 

beamforming/combining vector [55]. As a result, the access times for the Von Neumann and 

Levy Flight NM schemes in order are as Ta = SVNtPSS/RMS and Ta = SLFtPSS/RMS, where tPSS and 

RMS are the PSS duration and the number of RF chains at the MS, respectively. These associated 

results are also shown in Figure 3.9. 
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Moreover, the Levy Flight NM scheme achieves the shortest access durations versus 

traditional access methods. Namely, its associated scan cycle is 99.3% shorter than the 

exhaustive search, 78% faster than subarrays method, the single-sided scheme, and the GPS 

search. Also, the Levy Flight NM converges 43% and 25% faster than the iterative search and 

the indoor WLAN access method. Indeed, the Levy Flight NM search also outperforms the 

traditional and Chebyshev NM schemes in terms of access times, i.e., 5.3 ms versus 5.8 ms and 

8.5 ms, respectively.   

 
 

        Figure 3.9: Access times for Nelder Mead techniques for different beamforming vectors 

 

Furthermore, energy efficiency is another critical parameter for NM schemes. 

Specifically this value is computed as the power consumption (in millijoules) during the beam 

access time interval, i.e., given by EC = PMS
ABFTa, where PMS

ABF is the power consumption in the 

ABF at the MS and is defined as: 

ABF 1 1 2 2 3 3 1 2 3

MS MS MS PS MS PS MS PS LNA MS MS MS RF ADC BB2[ ( ) ( ) ( ) ],P R N P N P N P P N N N P P P          (3.18)                                 

           
RF M LO LPF AMP ,   P P P P P                                              (3.19) 

step

ADC ADC ADC 2 , WP E Sr                                                          (3.20) 
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where NMS
1 , PPS

1 , NMS
2 , PPS

2 ,  NMS
  3 , and PPS

  3  in order are the power consumption levels for the 

number of antennas and phase shifter in the three codebook stages at the MS. Furthermore, PLNA, 

PRF, PADC, PBB, PM, PLO, PLPF, and PAMP denote in order, the power consumption for the low 

noise amplifier (LNA), RF chain, ADC, baseband combiner (BB), mixer (M), local oscillator 

(LO), low pass filter (LPF) and the baseband amplifier (AMP). Additionally, the terms EADC
 step

, 

SrADC, and W  in Eq. (3.20) denote the energy consumption per conversion, the sampling rate and 

the total number of bits, respectively [56]. Based upon the above, the total power consumption is 

plotted in Figure 3.10 (and the related consumption values in milliwatts for the different 

components are also summarized in Table 3.1, as derived from earlier studies in [57]). 

Overall, the energy consumption results confirm that the proposed Levy Flight NM 

scheme herein delivers the minimum energy consumption levels over existing methods. 

Specifically, it requires 7.5 mJ to scan over 40 number of beamforming vectors compared to 13 

mJ for the WLAN access method, 15 mJ for the iterative search, and 28 mJ for the subarrays, 

single-sided and GPS methods. 

 

  Figure 3.10: Nelder Mead energy consumption for different beamforming vectors 

 



58 
 

Finally, the success rates for the various NM schemes correspond to cases at which the 

received signal level exceed the predefined signal threshold, ƴ
th

, that is sufficient to enable data 

transmission. Accordingly, Figure 3.11 plots the objective function (received signal levels) for 

the various access schemes in a large iterations window. Here the traditional, Von Neumann, 

Chebyshev and Levy Flight NM schemes give success rates of 87%, 97% and 100%, 

respectively. Based upon these findings, it is concluded the proposed NM schemes present very 

reliable techniques for rapid mmWave initial beam access.  

 
 

         Figure 3.11: Number of iterations for the proposed Nelder Mead schemes 

 

3.4    Efficient Search Schemes for NLoS Environments 

Although mmWave networks are well-suited for LoS settings, wireless channels 

generally exhibit various fading levels and path gains. Hence further beam access procedures are 

required for NLoS propagation. Overall, the sparsity structure of such spatial mmWave channels 

can be exploited to relax beam search procedures. In particular, the presence of scarce local 

maxima can be utilized to adapt the search sequence and accelerate the detection of candidate 

spatial directions, i.e., where MPCs are collectively concentrated in a few S clusters. Along these 

lines, global optimization techniques are developed to detect the best beamforming directions in 

Number of Iterations   
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NLoS environments, i.e., for different channel sparsity levels. In particular, these schemes utilize 

several global search methods, including Luus Jaakola (LJ), hybrid divide-and-conquer with 

Tabu search (DC-TS), coordinated generalized pattern search (CGPS) and Hooke Jeeves (HJ) 

methods. 

3.4.1    Uniform Local Search Schemes 

In general, uniform local search access schemes divide the search grid into congruent 

sections with uniform intervals, i.e., in order to improve search efficiency and convergence 

accuracy. The LJ and DC-TS schemes are classified as such are detailed first. Namely, a 

drastically-modified version of the traditional heuristic LJ scheme [59] is proposed for improved 

beam access. The modified LJ scheme in Figure 3.12 here constructs two adjacent sub-regions 

with uniform intervals, i.e., interior sub-region Ɍ1 and exterior sub-region Ɍ2. An arbitrary single 

point is then selected from each sub-region. Namely, a primary point P1 is chosen from interior 

sub-region Ɍ1∈ Ɍ with boundaries specified by Ɍ1
r  and Ɍ1

s , 

Ɍ1 = (Ɍ1
r , Ɍ1

s) ∈ ℝ2|Ɍ1
r  ~ U(rimin

, rimin+δ
), Ɍ1

s  ~ U(sjmin
,  sjmin+δ

),                          (3.21) 

and a secondary point P2 is chosen from the exterior sub-region Ɍ2, P2 ∈ Ɍ2, where Ɍ2(Ɍ2
r , Ɍ2

s) 

= Ɍ - Ɍ1and Ɍ1∪ Ɍ2 = Ɍ. An auxiliary location is then constructed as P3 = P1 + P2 and compared 

with P2 for better assessment of candidate solutions in the exterior sub-region. Consequently, the 

point with the highest objective function (received signal) is set as the best exterior point, Pext. 

Now if the objective function at the exterior point ƴ
l
(Pext) is less than the objective 

function at the primary point ƴ
l
(P1), i.e., ƴ

l
(Pext) > ƴl

(P1), then the proposed LJ scheme explores 

the exterior sub-region defined by shrinking the sampling interval of the exterior point Pext by the 

step size δ, i.e., to formulate a shrinkage point,  Pshr.  However, if  the  objective  function  at  the   
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    Inputs: Y, B, Q, δ. 

   δ = B /4, δ ≤ B-1  // Step size 

   Initialization: q = 0  // Iterations counter  

   For y ≥ 1, y ≤ Y, ∀{(ri, si)| 1 ≤ ri ≤ B, 1 ≤ sj ≤ B}  // Start with codebook Stage I 

   While q < Q   // Number of iterations Bound 

       P1(r1, s1), P1 ∈ Ɍ
1
, ƴ

l
(P1)   // Select a primary point from sub-region Ɍ1  

       P2(r2, s2), P2 ∈ Ɍ
2
, ƴ

l
(P2) // Select a secondary point from sub-region Ɍ2  

       P3(r3, s3) = P1+ P2   // Construct an auxiliary point 

       Pext (rext, sext) ← max{ƴ
l
(P2), ƴl

(P3)}  // Determine the exterior point 

           If ƴ
l
 (Pext) > ƴ

l
(P1)      

                Pshr(rshr, sshr),  Pshr ∈ Ɍshr, Ɍshr = (Ɍshr
r , Ɍshr

s ) // Shrinkage  

                Ɍshr
r  ~ U(rext-δ, rext+δ), Ɍshr

s  ~ U(sext-δ, sext+δ)   // Shrinking the sampling interval of the exterior point 

                ƴ
l
(Pshr) // Evaluate the objective function at the shrinkage point Pshr 

                    If    ƴ
l
 (Pshr) > ƴ

l
(Pext) 

                            P1 ← Pshr, Ɍ1 ← Ɍshr 

                              If  q = = Q,  (ri, sj)bsty
← P1,  y ← y + 1 

                                Else  q = q + 1     

                        Else 

                            P1 ← Pext, Ɍ1 ← Ɍext 

                            If  q = = Q, (ri, sj)bsty
← P1, y ← y +1 // The best point is selected for codebook Stage I 

                                 Else    q = q + 1  

                            End   

                    End 

            Else        ƴ
l
 (Pext) ≤ ƴ

l
 (P1)  

                           P1
exp
(r1

exp
, s1

exp
), P1

exp
∈ Ɍ

exp
, Ɍexp = (Ɍexp

𝑟 , Ɍexp
s )  

                           Ɍexp
r ~ U(rimin

, rimin+2δ
), Ɍexp

s ~U(sjmin
, sjmin+2δ

)  

                           ƴ
l
(P1

exp
)         

                             If  ƴ
l
 (P1

exp
) > ƴ

l
(P1) 

                                  P1 ← P1
exp

 , Ɍ1 ← Ɍexp 

                                   If  q = = Q, (ri, sj)bsty
← P1,  y = y + 1 // The best point is selected for codebook Stage I 

                                     Else   q = q + 1  

                                   End   

                              Else 

                                   If  q = = Q, (ri, sj)bsty
← P1,  y = y + 1   // The best point is selected for codebook Stage I 

                                      Else   q = q + 1 

                                   End    

                            End If   

            End If  

    End While 

  End For  

 
 

 

Figure 3.12: Luus Jaakola (LJ) beam access scheme  
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shrinkage point ƴ
l
(Pshr) is higher than the objective function at the exterior point  ƴ

l
(Pext), i.e., 

 ƴ
l
(Pshr)  >  ƴ

l
(Pext) , then  P1  and Pext  are discarded and Pshr is set as the new primary point, 

P1 ← Pshr . Otherwise, Pext  is considered as the primary point,  P1 ← Pext . Conversely, if 

ƴ
l
(Pext) < ƴ

l
(P1), then the exterior exploratory search has failed to return any candidates, and the 

vicinity of P1  is chosen as the feasible sub-region. The LJ scheme then proceeds to expand 

around the vicinity of P1, scaled by the step size in order to construct Pexp. This procedure is 

repeated for a number iterations q =1,2,…,Q with a stopping criterion set to Q = B-1, at which 

point the LJ scheme adapts the location of the primary point and the size of the sampling interval 

at each iteration.  

 Now a crucial design parameter for the proposed LJ scheme here is the interval length. If 

this value is too small relative to the feasible region, the search procedure can get trapped in a 

local maximum. Conversely, if the interval is too large, it may result in inaccurate and rapid 

convergence. However, this vulnerability can be easily mitigated by setting the step size of the 

uniform interval size relative to the feasible region, i.e., a rule of thumb is δ = B/4. Note that the 

number of iterations grows linearly with the dimension of the feasible region, thus requiring a 

higher number of iterations to accurately converge in large search grids. As a result, the LJ 

scheme generally performs better in smaller feasible regions for solely-cascaded codebooks. 

 Furthermore, the primary point in the aforementioned LJ scheme can be alternatively 

selected by applying a hybrid pattern search procedure based upon the divide-and-conquer with 

Tabu search method [60], i.e., termed as DC-TS scheme. The first phase (Phase I) of this scheme 

is termed as the parallel sub-region search and divides the feasible region Ɍ into  ɍb  equally-

adjacent sub-regions, ɍb ⊆ Ɍ,∑ ɍb= Bɍb∈ ℝ
2 . Next, the DC-TS scheme performs an inner pattern 

search (Phase II) in each sub-region, where a single random point is selected from each, P1

ɍb ∈ ɍb.  
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  Inputs: Y, B, δ 

  δ = B/4    // Step size 

  Initialization: TL:= {}  // Initial Tabu list is a null set  

  For y ≥ 1, y ≤ Y, ∀{(ri, sj): 1 ≤ ri ≤ B, 1 ≤ sj ≤ B} 

    Phase I: Parallel sub-region search 

    ɍ1(rɍ1
, sɍ1

): rɍ1
= U(rimin

, rimin+δ
), sɍ1

= U(sjmin
, sjmin+δ

)  // Construct first sub-region and choose primary points 

    ɍ2(rɍ2
, sɍ2

): rɍ2
= U(rimin+2δ

, rimin+3δ
), sɍ2= sɍ1

    // Construct a second sub-region and choose primary points 

    ɍ3(rɍ3
, sɍ3

): rɍ3
=  rɍ1

, sɍ3
= U(sjmin+2δ

,  sjmin+3δ
)   // Construct a third sub-region and choose primary points 

ɍ4(rɍ4
, sɍ4

): rɍ4
= rɍ2

, sɍ4
= sɍ3

  // Construct a fourth sub-region and choose primary points 

Phase II: Inner pattern search 

    P1
ɍ1∈ ɍ1 // Select a random primary point P1

ɍ1 from sub-region  

    P1
ɍ2∈ ɍ2 // Select a random primary point P1

ɍ2 from sub-region 

    P1

ɍ3∈ ɍ3 // Select a random primary point P1

ɍ3 from sub-region 

P1
ɍ4∈ ɍ4 // Select a random primary point P1

ɍ4 from sub-region 

    P1
bst ← max{P1

ɍb: ƴ(P1
ɍ1,..., P1

ɍb)}  // Identify the best point among all sub-regions  

    ɍH ← ɍb|ɍb ⊃ P1
bst  // Select highest sub-region and highest primary points 

    TL ← {ɍb: ∀ɍb < ɍH}       // First Tabu list 

   For b = 1: B-1 

     If  ∀{ƴ
l
: ƴ

l
(P1

ɍb)}= = ƴ
l
(P1

ɍb+1)   // If all signal levels are equal at all primary points 

          For b =1: B 

             P2

ɍb |P2

ɍb ∈ ɍb   // Select a random secondary point from each sub-region 

               P2
H ← max{P2

ɍb: ƴ
l
(P2

ɍ1,..., P2

ɍb)}  // Select the besy secondary point 

                ɍH ← ɍb|ɍb ⊃ P2
bst   // Identify the highest sub-region ɍH containing the best secondary point  

             TL ← {ɍb: ∀ɍb < ɍH}     // Second Tabu list       

          End For 

       End If 

   End For 

    P1(r1, s1) ← P1
bst   // Best primary point for the LJ scheme 

q = Q // Terminate iterations 

Start LJ scheme 

     End For 

 

Figure 3.13: DC-TS initial beam access scheme  
 

 Furthermore, the sub-region with the highest value of the objective function, ɍH , that 

contains the best point P1
bst∈ ɍb, is selected as the interval of the primary point in the LJ scheme. 

Meanwhile, other sub-regions are discarded and considered as Tabu sub-regions, ɍT, i.e., ɍT  ⊆ Ɍ. 

These sub-regions have null feasible solutions, S ∉ ɍT, and hence are defined as prohibited sub-

regions which the hybrid scheme cannot revisit. As a result, these regions are stored in a Tabu 

list, TL,  in order to be excluded from the primary point selection in the LJ 

https://en.wikipedia.org/wiki/%C3%98_(disambiguation)
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scheme, ∃ɍT|ƴ
l
(∀P(ri, sj) < ƴ

th
,  ∀P(ri, sj) ∈ ɍb). Note that the Tabu list is reset after the selection 

of the primary point in each codebook  stage.  Furthermore,  if  the  function  values  at  all  sub-

regions  are   equal,   then  an additional random point P2
ɍb∈ ɍb is also selected from each sub-

region in order to determine the best sub-region. Overall, the hybrid DC-TS scheme returns ɍb 

function outcomes in Phase II and only a single point is fed into the LJ scheme. Subsequently, LJ 

scheme is initiated and the exterior regional search is triggered. The overall sequence for this 

search scheme for B  =  4 is illustrated in Figure 3.13. 

 Overall, the proposed hybrid DC-TS scheme has several key advantages. First, it yields a 

reduced search space, thereby linearly increasing the detection probability by a rate of B. Also, 

this method reduces the tendency to get trapped in plateau regions when the feasible region is 

large. Moreover, the Tabu search mechanism also eliminates recursive searches in sub-regions 

with poor objective function values, i.e., in which such-regions are unable to return global or 

local maxima after Q iterations. Such conditions may occur when the zero elements of the 

channel sparse matrix fall at the array boresight.  

 The proposed LJ and DC-TS uniform local search schemes are now evaluated for a single 

BS communicating with a single MS. In contrast to the previous LoS scenario, the operating 

frequency ( f
c
) is now set to 38 GHz and the channel bandwidth (BW) is set to 500 MHz, i.e., in 

order to introduce more severe sparsity levels. However the same beamformer in Section 3.1 is 

also used here (see Table 3.1 for codebook and ULA settings), and the various other system 

parameters are summarized in Table 3.2. Detailed NLoS results are now presented for a range of 

performance evaluation metrics. 

 Foremost, the computational complexity in the worst case scenario for LJ scheme, SLJ, is 

gauged by the total number of measurements at each codebook stage, given by: 
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LJ pri sec aux shr (exp)( ),S Q S S S S                                               (3.22) 

 
 

where the variables Spri, Ssec, Saux, and Sshr (exp) in order are the number of steps for the objective 

function evaluations at the primary, secondary, auxiliary and shrinkage (or expansion) points. 

Meanwhile for DC-TS scheme, this modified count at each codebook stage is given by: 

                         SDC-TS  =  B(Spri+Ssec) +SLJ|Q=1
,                                            (3.23) 

 

where SLJ|Q=1
 is the objective function evaluation steps for the LJ scheme for a single iteration, 

i.e., Eq. (3.22). The results are plotted in Figure 3.14 and confirm that the proposed LJ and DC-

TS schemes can perform beam search with much fewer measurements versus existing solutions 

(as a function of beamforming vectors). Note that the complexity of both schemes exhibits 

logarithmic growth as the number of beamforming vector increases, modeled as O(SLJlog
4
(B2)) 

and O(SDC-TSlog
4
(B2)) for the LJ and DC-TS schemes, respectively. Namely, LJ and DC-TS 

schemes require 99.12%, 71.87%, and 25% less measurements (steps) for the objective function 

compared to the exhaustive, iterative, single-sided and subarrays search methods. Here, these 

schemes require 36 steps to detect the highest signal using a three-staged codebook of 64 pencil 

beams. This is compared to 48, 128 and 4096 steps for the iterative, subarrays (single-sided), and 

exhaustive search methods. 

Table 3.2: System settings for the LJ, DC and TS beam access 
 

 

Category 
 

 

Parameters 
 

Value 
 
 

System 
 

f
c
 (GHz), BW (MHz), ƴ

th
 

 

 
 

38, 500, -128 [61] 
 

Channel ∂, σ𝑤
2 , r (m) 

 

0, 1, 50 
 

Uniform local search schemes 
 

 

δ, Q 
 

 

 

1, 3 
 

Path loss, LogN 
 

αfl(dB), 𝜌sl (dB), σs(dB) 
 

 

117, 0.4, 8.3 
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Figure 3.14: Computational complexity for uniform local search schemes  

 

 Meanwhile, the access time Ta is also shown in Figure 3.15 and is computed in a similar 

manner to the previous access schemes, i.e., Ta = S
LJ

tPSS/RMS and Ta = S
DC-TS

tPSS/RMS for the LJ 

and DC-TS schemes, respectively. These results confirm that the proposed search LJ and DC-TS 

search schemes also deliver significant improvements versus existing solutions. Specifically, the 

proposed LJ and DC-TS schemes are 99.12%, 71.87%, and 25% faster than the exhaustive, the 

iterative, the single-sided and subarrays search methods. Namely, LJ and DC-TS schemes 

require 7 ms to detect the highest signal level using 64 beams, compared to 10-820 ms for the 

other methods. 
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Figure 3.15: LJ access times for different beamforming vectors 
 

3.4.2    Coordinated Generalized Pattern Search (CGPS) 

 Another NLoS access solution is also developed based upon the coordinated generalized 

pattern search (CGPS) method. Namely, it was originally developed in [62] and works by locally 

polling the objective function in an asymptotically dense set of directions around an incumbent 

solution, i.e., forming a search pattern. Hence, this method is also applied to beam access and is 

comprised of both exploratory bisectional and polling phases. Namely, the beam search sequence 

is adopted based upon the outcomes of the objective function. Furthermore, instead of sweeping 

the entire spatial plane, only a limited number of directions are tested here in order to determine 

the best beamforming and combining vectors. The overall access pseudocode for the proposed 

CGPS scheme is presented in Figure 3.16 and consists of two stages. Consider the details. 

1) Phase I: Exploratory Bisection Search 

 The first phase of the CGPS scheme searches for a candidate incumbent point using 

bisectional filtering, where the search grid Ĝ, is divided into ẞ𝑥, equally-sized bisections, ẞ𝑥⊂Ĝ, 

ẞ𝑥∈ℝ
𝜂,  x =1, 2,…, X, X = ij/2η. Here the size and boundaries of each bisection, Λẞ𝑥

, are 
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determined by the mesh scale parameter, δ  (as used in Figure 3.16). Furthermore, each ẞ𝑥 

consists of finite set of mesh points Ṕm, m=1, 2,…, M. Initially, a primary point is selected from 

each mesh within each bisection, Ṕm
a ∈ ẞx, and the scheme returns a total of X objective function 

evaluations at each bisection. The bisection returning the highest value of objective function, 

ẞx
Hi

, that contains the highest (best) point, Ṕm
Hi∈ ẞx

Hi
 is then selected for further mesh refinement 

in the polling phase. However, if Phase I does not return a candidate bisection, ∄S∈ ẞx , 

∀ƴ
l
(Ṕm) = ƴ

l
(Ṕm+1), then the CGPS scheme examines a secondary point, Ṕm

b  ∈ ẞx. 

2) Phase II: Polling Search 

 This phase performs deterministic local exploration in the vicinity of the incumbent 

solution,  Ṕm
Hi . Namely dp  polling directions are centered at Ṕm

Hi , denoted as dp =1, 2,…, Dp , 

dp⊂Dp,  Dp= 2η, Dp ∈ ℝ. A set of polling points is then constructed as well, Чp, p=1, 2,…, P, P = 

Dp.  In particular, these points are spaced at distance ∆  from Ṕm
Hi  along Dp , i.e., 

Чp={Ṕm
Hi(ri±∆, sj±∆)}, where ∆ is the direction scale size, ∆=B/X. Hence the objective function is 

evaluated at all points in Чp, and the highest value, Чp
Hi = (ri,  si)bsty

 is chosen as the best point for 

y and inserted into the successive codebook stage. 

 Overall, the proposed CGPS scheme presents several key advantages. Foremost, its non-

sequential beam index search effectively examines distantly-separated angular directions that 

resemble the behavior of sparsely-received spatial lobes. Also, the detection of an incumbent 

solution (after the first phase) yields a reduced search space which linearly increases detection 

probability. Consequently, the probability of detecting high signal at the input of the polling 

phase is: 
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    ℙ [ƴ
l
(Ṕm(r

i
, sj)

bsty
]=

{
 
 

 
 

1

X
,  for m =1                                                   

1

X− (m − 1)
∏

X− ṫ 

X− (ṫ − 1)
, for m ≥ 2.

Ṫ= m-1

ṫ =1

                     (3.24) 

 
 

 

 Inputs: Y, B, η, ∆, δ    

 Phase I: Exploratory bisectional search    

 For y ≥ 1, y ≤ Y, ∀{Ƥk(ri,  si) ∈ Ĝ}      // Construct bisections 

   For x ≥ 1 

         Ṕm
a ∈ẞx, ƴ

l
(Ṕm

a ), x + 1 ← x        // Select primary mesh points 

            Ṕ1
a∈ẞ1|Λẞ1

= (rẞ1
, sẞ1

): rẞ1
=U(rimin

, rimin+δ
), sẞ1

= U(sjmin
, sjmin+δ

)    

        Ṕ2
a∈ẞ2|Λẞ2

= (rẞ2
, sẞ2

): rẞ2
=U(rimin+2δ

, rimin+3δ
), sẞ2

= sẞ1
    

        Ṕ3
a∈ẞ3|Λẞ3

= (rẞ3
, sẞ3

): rẞ3
= rẞ1

, sẞ3
= U(sjmin+2δ

, sjmin+3δ
)    

      Ṕ4
a∈ẞ4|Λẞ4

= (rẞ4
, sẞ4

): rẞ4
= rẞ2

, sẞ4
= sẞ3

  

     End For 

         Ṕm
Hi ← max{∀Ṕm

a : ƴ
l
(Ṕ1

a,..., Ṕm
a )}       // Primary mesh points test 

         ẞx
Hi ← ẞx|ẞx⊃Ṕm

Hi 

         If  ∀ƴ
l
(Ṕm

a ) ≠ ƴ
l
(Ṕm+1

a )  

              Phase II: Polling Search 

                   For p ≥ 1,    // Construct D polling directions 

                    Чp={Ṕm
Hi(ri±∆, sj±∆)}, ƴ

l
(Чp) 

               End For 

                 Чp
Hi← max{ƴ

l
∀(Ч

p
): ƴ

l
(Ч1,..,Чp)},   y +1 ← y 

         Else 

              For x ≥ 1 

                   Ṕm
b ∈ẞ𝑥, ƴ

l
(Ṕ1

b), x +1 ← x       // Select secondary mesh points  

                End For 

                 Ṕm
Hi ← max{ƴ

l
(∀Ṕm

Hi∈ẞ𝑥): ƴ
l
(Ṕ1

b,.., Ṕm
b )} 

                 ẞx
Hi ← ẞx|ẞx⊃Ṕm

Hi 

                 For p ≥ 1,                    // Perform polling search 

                        Чp={Ṕm
Hi(ri±∆, sj±∆)}  

                 End For 

                        Чp
Hi ← max{∀Чp: ƴ

l
(Ч1,..., Чp)},   y + 1 ← y                        

         End If 

 End For 

 

Figure 3.16: CGPS scheme for initial beam access 

 

 The proposed CGPS scheme is also evaluated for a single BS and MS operating in a 

wideband setting, i.e., 1 GHz channel bandwidth. The design parameters used for the codebook, 

link budget, and access scheme parameters are also summarized in Table 3.3. Detailed results for 
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a range of performance evaluation metrics are now presented, and in particular comparisons are 

made versus the iterative, exhaustive, single-sided and subarrays search methods.  

Table 3.3: System settings for the CGPS beam access 
 

 

Category 
 

 

Parameters 
 

Value 
 
 

System 
 

f
c
(GHz),  BW (GHz) 

 

 

38, 1 
 

 

Channel 
 

 

 

∂(dB), σ𝑤
2 (dB), r(m),α(dB), Г(dB),  σs(dB) 

 

 

0, 1, 50, 117, 0.4, 8.3 
 

 

CGPS  
 

η, δ, ∆ 
 

 

2,1, 1 

 

First consider the worst-case number of objective function measurements at the beam indices 

pair (at each codebook stage y of the proposed CGPS scheme). This value is given by:  

                Q
y

CGPS
=Y[Q(ƴ

l
(Ṕm

a )) + Q(ƴ
l
(Ṕm

b )) + Q(ƴ
l
(Чp))],                                    (3.25) 

where Q(ƴ
l
(Ṕm

a )) , Q(ƴ
𝑙
(Ṕm

b )),  and Q(ƴ
𝑙
(Чp)),  in order, are the number of objective function 

evaluations at the primary and secondary mesh points and polling points. Furthermore, the 

scheme complexity is also scaled by O[Q
y

CGPS
log

4
(B2)], since the iterative search is repeated 

similarly in  each codebook stage y using B number of predefined beams at the BS and MS 

nodes. The resultant complexity for the CGPS scheme is plotted in Figure 3.17. It is noticed here 

that the proposed scheme delivers very favorable (reduced) complexity overheads versus existing 

solutions. Namely, the proposed CGPS scheme here provides 99.12% less number of 

measurements for the objective function compared to the exhaustive search, 25% reduced 

computational complexity versus the iterative search, and 71.87% reduced complexity overheads 

than the subarrays, single-sided and GPS search methods.  
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Figure 3.17:  CGPS computational complexity for different beamforming vectors 

 

 Next, the access time is also gauged as Ta = Q
y

CGPS
τPSS/RMS  similar to the LoS case 

(Section 3.3.2). These values are plotted in Figure 3.18, and show that the proposed CGPS access 

scheme delivers noticeable reduction rates in beam access times for the NLoS environments. 

Specifically, the proposed CGPS scheme here requires 7.2 ms to determine the spatial direction 

for the highest signal level. This is compared to the 9.6, 25.6, and 819.2 ms access times for the 

iterative, subarrays (single-sided and GPS) and the exhaustive search methods, respectively.  
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        Figure 3.18:  CGPS access times for different beamforming vectors  

 

3.4.3    Adaptive Hooke Jeeves (HJ) Beam Access Scheme   

 Finally, a modified version of the Hooke Jeeves (HJ) adaptive search method is also 

developed to solve the beam access problem, see Figure 3.19. The HJ method was originally 

provides in [63],[64] and can be classified as a fast random pattern search technique due to its 

gradient-free nature. Hence this approach presents an effective option for initial beam access 

search as well. Again, the HJ scheme in Figure 3.19 comprises of two exploratory search phases, 

i.e., a primary (Phase I) and a secondary (Phase II). Consider some further details here. 

 In the initial Phase I search, the BS and MS nodes randomly select an initial beam indices 

pair, represented by the grid point Ƥ1, Ƥ1(ri, si) ∈ Ĝ, and measures the objective function at this 

point, ƴ
l
(Ƥ1) . An exploratory search is then conducted by further perturbing Ƥ1  to find an 

improved value of the objective function. Namely, equal-length perturbation vectors are 

constructed in the vicinity of Ƥ1 and the HJ method is used to generate a total of 2
η 

+ 2 possible 

directional perturbations for each grid point. These vector perturbations are then  further  divided  
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 Inputs: Y, B, i, j, δ, 𝜗, δ = B/4      

 Initialization: 

 Perturbation vectors: ∆Ƥk

pert
: ∆Ƥk

UW, ∆Ƥk
DW, ∆Ƥk

SW  

 For  y ≥ 1, y ≤ Y, ∀{Ƥk(ri, si): 1 ≤ i ≤ B, 1 ≤ j ≤ B} 

  Phase I: // Primary exploratory search  

  Ƥ1(ri, si) ∈ (0, B), ƴ
l
(Ƥ1)    // Random initial point 

  ƴ
l
(Ƥ1

UW1), ƴ
l
(Ƥ1

UW2)     // Start upward perturbations 

  If    ƴ
l
(∆Ƥ1

UW) > ƴ
l
(Ƥ1), Ƥ1

pert
 ← max (∆Ƥ1

UW) 

         Ƥ2= Ƥ1+ ϑ(Ƥ1
pert
− Ƥ1), ƴ

l
(Ƥ2)    // Set tentative point 

         If  ƴ
l
(Ƥ2) > ƴ

l
(Ƥ

1

pert
),  

             Phase II: // Secondary exploratory search around Ƥ2 

              ƴ
l
(Ƥ2

UW1), ƴ
l
(Ƥ2

UW2)    // Upward perturbations  

              If ƴ
l
(∆Ƥ2

UW) > ƴ
l
(Ƥ2),  Ƥ2

pert
 ← max (∆Ƥ2

UW),    y ← y + 1 

                  Else if 

                  ƴ
l
(Ƥ2

DW) > ƴ
l
(Ƥ2), Ƥ2

pert
 ← max (∆Ƥ2

DW), y ← y +1 

                  Else if 

                  ƴ
l
(Ƥ2

SW) > ƴ
l
(Ƥ2),  Ƥ2

pert
 ← max (∆Ƥ2

SW),  y ← y +1 

                  Else   Ƥ2
pert

 ← Ƥ2,  y ← y + 1 

              End if 

            Else    (ri, sj)bsty
 ← Ƥ1

pert
    // If  Ƥ2 ≤ Ƥ1

pert
   

         End if 

     Else if    // Downward perturbations 

          ƴ
l
(Ƥ1

DW1), ƴ
l
(Ƥ1

DW2) 

          ƴ
l
(Ƥ

1

DW
) > ƴ

l
(Ƥ1), Ƥ1

pert
 ← max (∆Ƥ1

DW), ƴ
l
(Ƥ2) 

          If  ƴ
l
(Ƥ2) > ƴ

l
(Ƥ

1

DW
), do Phase II for Ƥ2  

               Ƥ2
pert

 ← max{Ƥ2, ∆Ƥ2
UW, ∆Ƥ2

DW, ∆Ƥ2
SW}, y ← y +1 

             Else  (ri, sj)bsty
← Ƥ1

pert
,  y ← y + 1 

          End if 

     Else if    // Sideways perturbations 

          ƴ
l
(Ƥ1

SW1), ƴ
l
(Ƥ1

SW2)               

          ƴ
l
(∆Ƥ

1

SW
) > ƴ

l
(Ƥ1), Ƥ1

pert
 ← max (∆Ƥ1

SW), ƴ
l
(Ƥ2) 

          If  ƴ
l
(Ƥ2) > ƴ

l
(∆Ƥ

1

SW
), do Phase II for Ƥ2 

                Ƥ2
pert

  ← max{Ƥ2, ∆Ƥ2
UW, ∆Ƥ2

DW, ∆Ƥ2
SW}, y ← y +1 

              Else   (ri, sj)bsty
 ← 𝑚𝑎𝑥 (∆Ƥ

1

SW
), y ← y +1 

           End if 

     Else  

              (ri, sj)bsty
 ← ƴ

l
(Ƥ1), y ← y +1 

  End if 

 End for  
 
 

Figure 3.19:  Adaptive Hooke Jeeves (HJ) initial beam access scheme 
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into three different categories, i.e., upward, ∆Ƥ1
UW , downward, ∆Ƥ1

DW , and sideways 

perturbations, ∆Ƥ1
SW. Note that the lengths of these perturbation vectors are determined by the 

perturbation tolerance parameter, δ, as used in Figure 3.19. Subsequently the receives signal 

ƴ
l
(Ƥ1) is compared to the outputs at ƴ

l
(∆Ƥ1

UW), ƴ
l
(∆Ƥ1

DW), and ƴ
l
(∆Ƥ1

SW), where the directional 

perturbations are defined as follows: 

∆Ƥk
UW={Ƥk

UW1, Ƥk
UW2}, where Ƥk

UW1 = (ri+δ, sj+δ), Ƥk
UW2 = (ri-δ, sj+δ),                         (3.26)                                               

∆Ƥ1
DW={Ƥk

DW1, Ƥk
DW2}, where  Ƥk

DW1 = (ri+δ, sj-δ), Ƥk
DW2 = (ri-δ, sj-δ),                       (3.27)                                                                                                                

∆Ƥk
SW={ Ƥk

SW1, Ƥk
SW2}, where  Ƥk

SW1 = (ri+δ, sj),  Ƥk
SW2 = (ri-δ, sj).                               (3.28)  

Now if the objective function fails to return an improved value using upward vectors, then the 

other directional perturbations are tested next. Specifically, if ƴ
l
(∆Ƥ1

UW) < ƴ
l
(Ƥ1), then ∆Ƥ1

DW is 

evaluated. Meanwhile, if ƴ
l
(∆Ƥ1

DW) <  ƴ
l
(Ƥ1 ), then the sideways perturbations are triggered, 

ƴ
l
(∆Ƥ1

SW). Finally, if all directional perturbations do not yield any improvements, then Ƥ1  is 

considered as the best point for stage y without the need for Phase II. However, if any of the 

perturbations exceeds Ƥ1, then the search procedure proceeds to the follow-on exploratory search 

(Phase II), i.e., if ƴ
l
(∆Ƥ1

UW) > ƴ
l
(Ƥ1) or ƴ

l
(∆Ƥ1

DW) > ƴ
l
(Ƥ1) or ƴ

l
(∆Ƥ1

SW) > ƴ
l
(Ƥ1). Namely the 

point with the highest received signal, Ƥ1
pert

, is used as input for Phase II (Figure 3.19). Also, the 

associated probabilities of detecting the highest signal via the upward, downward and sideways 

perturbations can also be written as: 

  ℙ [ƴ
l
(∆Ƥ1

UW)
bsty
]=

{
 
 

 
 

Ɲ
UW

B2
,  for k =1,                                                             (3.29)

Ɲ
UW

B2 − (k-1)
∏

B2 − ṫ 

B2-(ṫ -1)
,  for k ≥ 2.

Ṫ= k-1

ṫ =1
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 ℙ [ƴ
l
(∆Ƥ1

DW)
bsty
]=

{
 
 

 
 

Ɲ
DW

B2
,  for k =1,                                                           (3.30)

Ɲ
DW

B2 − (k− 1)
∏

B2 − ṫ 

B2 − (ṫ − 1)
,  for k ≥ 2.

Ṫ= k-1

ṫ =1

                                

  

ℙ [ƴ
l
(∆Ƥ1

SW)
bsty
]=

{
 
 

 
  

Ɲ
SW

B2
,  for k =1,                                                             (3.31)

Ɲ
SW

B2 − (k − 1)
∏

B2 − ṫ 

B2 − (ṫ − 1)
,  for k ≥ 2,              

Ṫ= k-1

ṫ =1

                

  

where Ɲ
UW

,  Ɲ
DW

,  and Ɲ
SW

,  are the number of upward, downward and sideward directional 

perturbation vectors in Phase I, respectively, i.e.,  Ɲ
UW

= Ɲ
DW

= Ɲ
SW

= η.   Specifically, the above 

probabilities are derived based upon the memoryless properties of random beam access, i.e., 

discrete uniform probability distribution. Meanwhile, the second phase (Phase II) constructs a 

tentative point, Ƥ2, based upon Ƥ1 and Ƥ1
pert

, given by: 

                         Ƥ2= Ƥ1+ ϑ(Ƥ1
pert

− Ƥ1),                                                    (3.32) 

where 𝜗 is the acceleration coefficient, 𝜗∈ℝ|𝜗 >  0 that explores the neighborhood of Ƥ1
pert

. Akin 

to Phase I, a new set of directional perturbation vectors (upward, downward and sideways) are 

also constructed around Ƥ2  to find the best beam pair with the highest received signal, 

i.e., Ƥ2
pert

 = (ri, sj)bsty
. Similarly, the probability of detecting the highest signal level at Ƥ2 is given 

by: 

  ℙ [ƴ
l
(Ƥ2)

bsty
]=

{
 
 

 
 

B2 − Ɲ
UW

− Ɲ
DW

− Ɲ
SW

B2
,  for k =1,                                       (3.33)

B2 − Ɲ
UW

− Ɲ
DW

− Ɲ
SW

B2 − (k − 1)
∏

B2 − ṫ 

B2 − (ṫ − 1)
, k ≥ 2.

Ṫ= k-1

ṫ =1

                               

 

 Overall, the adaptive HJ scheme does not exhaust all perturbations and usually converges 

to the highest signal level at an earlier stage. However the increased number of perturbations 
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improves overall success rates at the expense of higher computational complexity. Additionally, 

for LoS Gaussian channels with single cluster and severely-sparse channels, such as rural 

environment, this method can be further enhanced to improve detection by doubling the 

perturbation tolerance. 

 Several additional points are also noted here. Foremost, the perturbation tolerance 

parameter, δ, dictates the least possible perturbation vector length that can be explored in the 

vicinity of an initial point. Meanwhile, the acceleration coefficient, 𝜗, plays a crucial role in 

controlling HJ convergence behavior. For example, large values can cause the scheme to 

terminate prematurely at a local point, whereas small values can confine the scheme to restricted 

sections of the search space. Finally, the implicit global search here resembles a gradient 

direction, and thereby yields improved search directions without having to compute derivatives 

of the objective function, i.e., classified as a quasi-gradient global search. This property allows 

the adaptive HJ method to achieve good accuracy with low complexity, a key saliency.  

 The proposed adaptive HJ scheme is now evaluated for a single BS and MS nodes 

operating in a wideband environment. Again, performance is measured for a range of metrics for 

various system parameters shown in Table 3.4. First, the worst-case number of objective function 

measurements/evaluations in codebook stage y (for the adaptive HJ scheme), Q
y

HJ
, is computed 

as:  

Q
y

HJ
 = Y[Q(ƴ

l
(Ƥ1)) + Q(ƴ

l
{∆Ƥ

1

UW}) + Q(ƴ
l
{∆Ƥ

1

DW}) +Q(ƴ
l
{∆Ƥ

1

SW})+Q(ƴ
l
(Ƥ2))+Q(ƴ

l
{∆Ƥ

2

UW})+ 

Q(ƴ
l
{∆Ƥ

2

DW})+ Q(ƴ
l
{∆Ƥ

2

SW})],                                                                                                                                                                          (3.34) 

           

where Q(ƴ
l
(Ƥ1)), Q(ƴ

l
{∆Ƥ

1

UW}), Q(ƴ
l
{∆Ƥ

1

DW}), and Q(ƴ
l
{∆Ƥ

1

SW}), denote in order, the number of 

objective function evaluations at the initial point and its upward, downward and sideways 

perturbations locations. Also the variables, Q(ƴ
l
(Ƥ2)),  Q(ƴ

l
{∆Ƥ

2

UW}),  Q(ƴ
l
{∆Ƥ

2

DW}), and 
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Q(ƴ
l
{∆Ƥ

2

SW}) in Eq. (3.34) denote the number of times the objective function is evaluated at the 

tentative points and its upward, downward and sideways perturbation directions, respectively. 

Based on the above, Figure 3.20 plots the computational complexity of the adaptive HJ beam 

access scheme along with various other methods. For instance, the HJ scheme yields to the 

highest objective function value (received signal level) in 42 measurements (steps) versus is 

4096, 128, and 48 steps for the exhaustive, iterative, and subarrays (single-sided) search 

methods. 

 
 

 

Figure 3.20:  HJ computational complexity for different beamforming vectors 
 

 

Table 3.4: System settings for the HJ beam access 
 

 

Category 
 

Parameters 
 

 

Value 
 
 

System 

 

 

f
c
(GHz), BW (MHz) 

 

 
 

38, 500 
 

 

Channel 

 

 
 

∂(dB),σw
2 (dB), r(m),α(dB), ρ(dB), σs(dB) 

 

 

 

 

0, 1, 50, 117, 0.4, 8.3 
 
 

 

HJ scheme 

 

η, δ, 𝜗, Ɲ
UW

, Ɲ
DW

, Ɲ
SW

 
 

 
 

 

2, 1, 1, 2, 2, 2 
 

 

 Next, the access time for the HJ approach is also derived by Ta = Q
y

HJ
τPSS/RMS , and 

plotted in Figure 3.21. The results here indicate the fastest access (lowest delays) with the 

proposed adaptive HJ solution, i.e., 98.9%, 67.2% and 12.5 % shorter access times and reduced 
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control latencies for B ≥ 15 beams, compared to the exhaustive, iterative,  and subarrays (single-

sided) search methods. 

 

Figure 3.21:  HJ access times for different beamforming vectors 

 

 Finally, the energy efficiency for the adaptive HJ scheme is also plotted in Figure 3.22. 

This value is measured by the power consumption during beam access times, i.e., EC = PMS
ABFTa, 

as introduced in Section 3.3.2. The proposed scheme here features noticeable reduction in energy 

and power consumption levels due to the reduced time durations over which the RF transceivers 

are active. Namely, the adaptive HJ scheme here delivers 98.9%, 67.2% and 12.5 % enhanced 

energy efficiencies than the exhaustive, iterative and subarrays (single-sided) search methods, 

respectively. 
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Figure 3.22:  HJ energy consumption for different beamforming vectors 

 Some general observations are also noted here. Foremost, the findings across all the 

proposed schemes (NM, LJ, DC-TS, CGPS, and adaptive HJ) indicate that existing single-sided 

and subarrays schemes yield slightly lower access times when using limited number of 

beamforming vectors, i.e., less than 10. However these settings are largely infeasible in 

mmWave systems. In particular, the array gain generated from a small number of antennas is 

generally insufficient to compensate for high path loss (e.g., 130 dB) and noise power. 

Therefore, the received signal will be in permanent outage mode and no communication will be 

established. However, as the number of beamforming vectors increases, the single-sided search 

performance degrades significantly, whereas the proposed schemes in this chapter still yield 

reasonable access times in the 5-8 ms range (with 20-64 beams). 

 Overall, various direct pattern search schemes are proposed here for LoS and NLoS 

environments. Although these schemes feature approximate complexity and access times levels, 

their efficiency can differ based upon the channel rank, transmission bandwidth, fading class, 

and sparsity levels. Namely, the NM method is highly applicable for low-rank channels, i.e., 

since the procedure here applies vertex concept in search for a single-ray search at a distantly 
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located directions. Meanwhile, the LJ and DC-TS schemes perform much effectively in flat 

fading channels with long coherence times, i.e., due to the bisectional and Tabu search behavior. 

Furthermore, the CGPS scheme can be applied for wideband communications of dispersive and 

frequency-selective fading channels. Finally, the proposed adaptive HJ method is most 

applicable for low-sparsity levels with increased number of clusters, thereby it yields the highest 

computational complexity among the proposed schemes. 
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Chapter 4 

 

Initial Beam Access Schemes: Beamforming Solutions 

 

All of the proposed access schemes in Chapter 3 leverage analog beamforming 

techniques to improve power efficiency. However single beam transmission is a key limitation of 

any analog approach. Namely, codebook designs here only use the main lobes for beam access 

procedures, and this can result in prolonged beamforming scan cycle and access times. Hence in 

order to improve upon these designs, this chapter proposes additional multi-beam analog 

beamforming schemes. In particular, these methods can provide enhanced directivity, improved 

received signal levels, and higher detection probabilities. Furthermore, multi-beam access also 

gives reduced access times as compared to the proposed schemes in Chapter 3. 

This chapter is organized as follows. Foremost, a novel approach is proposed, leveraging 

sidelobe information as an auxiliary factor to identify location of the best beam (main lobe) 

direction. Next, a new instantaneous analog beam scanning scheme is presented using beam 

coding and grating lobes to increase number of radiated beams from the same RF chain. Finally, 

a novel DC access scheme is introduced using instantaneous dual-beam scanning. Detailed 

performance results are also presented to gauge the efficiencies of the proposed multi-beam 

access schemes. 

4.1    Sidelobe Exploitation for Beam Access 

In general, sidelobe emissions are considered as deleterious due to their harmful effects 

on interference and secrecy. Although array tapering and binomial array designs can be utilized 
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to minimize such radiations, these schemes actually end up widening the main lobe. In turn this 

further compromises pencil beams requirements in mmWave systems. To address these 

concerns, a novel beam access scheme is presented here to leverage the presence of sidelobes 

and improve main beam direction discovery, albeit solely for LoS settings. Namely, sidelobes are 

exploited to determine the spatial direction returning the highest signal in order to reduce 

computational complexity and discovery times. Note that the sidelobes associated with the main 

lobe of the signal of interest (SoI) can be distinguished using beam coding (e.g., Walsh codes). 

Although sidelobe signal levels present detection challenges, the power intensity in the first SLL 

generally exceeds receiver sensitivity in most LoS scenarios. Hence the proposed approach is 

very feasible in mmWave systems operating with high receiver sensibility [65]. The detailed 

array model and codebook structure are now presented, followed by the beam access scheme and 

its associated performance results.  

 

 

 

4.1.1    Array Model 

 

Consider a single BS and MS pair operating in a LoS outdoor setting. It is assumed that 

both sides are equipped with an analog beamformer composed of two back-to-back cascaded 

ULA, where each array scans the [0, π] angular space. Now in practice beam-broadening effects 

should be taken into consideration here, yielding a feasible angular space of [α𝑏, π-αb], where αb 

is the beam-broadening factor. Now the array response vector for this beamformer at the MS for 

codebook stage y, AMS
 y

 is also given by Eq. (3.1), and similarly for the BS. Furthermore, the 

beamwidth for each array is given by Eq. (3.2)-(3.3), and the array gain at the MS is given by 

GMS= AMS
 y

+ Ga. Additionally, the sidelobe gain at the MS is given by: 

 MS

SL 10 MS MS20log sin( (2 1) / 2) / sin( (2 1) / 2 ) / ,    
 

y y

sl slG q q N N                              (4.1) 

  

where q
sl

 = 1, 2, …, Q
sl

 is the sidelobe level order.  
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4.1.2    Codebook Structure 

Now consider the multi-resolution codebook proposed in Section 3.1.1. A sample 

codebook design with visible sidelobes structure is shown for Stages I and II in Figures 4.1 (a) 

and (b), respectively, where the sidelobes start to appear at NMS
 y

 > 2. Hence the sidelobe direction 

at the MS (and similarly at the BS) is given by θs
MS

 = (Θη
MS

 + Θη+1
MS

)/2, where Θη
MS

 is the η-th null 

direction (η  = 1, 2, ...,  Ɲ) for each array given by [66]: 

1 MS

MS MS 0

MSMS

1 MS

0

MS

2
cos ( ) , ,  0 < ,

2

cos 1 ,  0, .                                

y

y

y

N for
d N

for
N d



 
   




 





  
     

  
  

 
  

 

                              (4.2) 

 

  
(a) Codebook Stage I                   (b) Codebook Stage II 

Figure 4.1: Sidelobes codebook structure with Y = 2 and B = 4 

Furthermore, the spatial distance between the observation angle (θ0
MS

) and sidelobe direction 

(θs
MS

) at the MS can be expressed as: 

ΔΘ = θ0
MS − θs

MS
=

ϕη

2
+ |

Θ1
MS− Θ2

MS

2
|,                                             (4.3) 

where ϕ
𝜂
 is the first null beamwidth (FNBW) given by [74]: 
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1 MS

0

MS

1 MS

0

MS

2cos 1   =0, ,

2 cos  0 .
2

y

y

for
N d

for
N d




 


 

 





  
  

 
 

  
    

  

                                          (4.4) 

Meanwhile the received baseband downlink signal is still given by Eq. (3.4) for a LoS channel 

gain given by Eq. (3.5). 

4.1.3    Sidelobe Beam Access Procedure 

Akin to the earlier beam access problem formulation in Section 3.2, again the 

beamforming and combining vectors ( ul  and vl ) are represented by ri  and sj  beam indices, 

respectively, i, j=1, 2,.., B. Likewise, the objective function is still given by the received signal 

power level, ƴ
l
(ri, sj), and the overall goal is to find the best beam index pair Ƥk for the given 

search grid, i.e., Eq. (3.9). Now analog beam scanning always yields in a unique beam index pair 

returning highest signal level. However spatial leakage can occur when a sidelobe falls at the 

effective aperture of an array, i.e., when different beam indices are tested and main lobes are 

misaligned. Hence four possible signal combinations can result from the orientation of array-

radiated lobes, as shown in Figure 4.2:  

 

                  (a) Main lobe-to-main lobe,  ƴ
MM

                   (b) Sidelobe-to-main lobe,  ƴ
SM

 

 

                       ( c) Sidelobe-to-sidelobe, ƴ
SS

                         (d) null reception, ƴ
η
 

Figure 4.2: Spatial lobe orientations  
 

r r 

r r 
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 Main lobe-to-main lobe (MM) with signal level ƴ
MM

, per Figure 4.2 (a) 

 Sidelobe-to-main lobe (SM) with signal level ƴ
SM

, per Figure 4.2 (b) 

 Sidelobe-to-sidelobe (SS) with signal level ƴ
SS

 (ƴ
SS

 > ƴ
th

), per Figure 4.2 (c) 

 Null reception with signal level ƴ
η
 (ƴ

η
 < ƴ

th
), per Figure 4.2 (d) 

Of these, the MM signal gives maximum beamforming gain. Further details are now presented. 

Overall, a SoI with low-power level (i.e., below Shannon capacity) detected during beam 

scanning can be used to estimate the location of the highest signal. Namely, the sequence of 

subsequent directional scans is adapted based upon the observed signal level in the instantaneous 

scan direction, i.e., θ0
MS

 is rotated by ΔΘ towards the detected signal. This rotation corresponds 

to the sidelobe or null locations where signals were originally observed, i.e., since the θs
MS

 and 

θ0
MS

 directions are always adjacent and equally-spaced in ULAs. Consequently, this procedure 

can rapidly detect the highest signal levels and also allows for earlier termination of beam 

scanning, i.e., no exhaustive search. In turn, vital time-frequency resources are freed up earlier 

for subsequent data-plane transmission. Furthermore, this formulation also assumes a 

memoryless probability for the global maximum detection for each beam pair Ƥk(ri, sj), i.e., as 

given by: 

  ℙ1[ƴl
  ≥ ƴ

MM
] = (ΩSL

MS
ΩSL

BS
)/B2,                                                        (4.5) 

where ΩML
MS

 and ΩML
BS

 are the number of main lobes at the MS and BS, respectively. Also, the 

probability of an event Č successfully detecting a high signal (ƴ
l
 ≥ ƴ

MM
) at Ƥk(ri, sj) after ṫ trials 

with Ƒ previous failures (ƴ
l 
 < ƴ

MM
) is given by:  

    ℙ(Č | Ƒ)=
ℙ(Č ∩  Ƒ )

ℙ(  Ƒ )
=
ℙ(Č )ℙ(  Ƒ )

ℙ(  Ƒ )
=

1

B2 − (ṫ− 1)
, ṫ =1, 2.., k.                        (4.6) 

Furthermore, the detection probabilities for the SM, SS and null signals are given by: 



85 
 

    ℙ2[ƴl
 = ƴ

SM
] = (ΩSL

MS
ΩML

BS + ΩSL
BS

ΩML
MS)/B2,                                    (4.7) 

                    ℙ3[ƴl
 = ƴ

SS
] = (ΩSL

MS
ΩSL

BS)/B2,                                                          (4.8) 

ℙ4[ƴ
l
 = ƴ

η
]=ℙ4[ƴl

 < ƴ
SS
]=1-ℙ1-ℙ2-ℙ3                                           (4.9) 

                                             = (B2- (ΩSL
MS

ΩML
BS

+ΩSL
BS

ΩML
MS

) -ΩSL
MS

ΩSL
BS

-1)/B2,  

respectively, where ΩSL
MS

 = 2ΩML
MS

 and ΩSL
BS 

= 2ΩML
BS

 are the numbers of the first sidelobe levels 

(FSLL) in the MS and BS scans, respectively, associated with ΩML
MS

 and ΩML
BS

 main lobes at the 

MS and BS, respectively.  

The sidelobe-based beam access algorithm is presented in Figure 4.3. This solution 

assumes that the MS and BS are separated by a distance of r and start the beam scanning process 

by choosing a random initial beam direction (ri, sj) from the directions defined in codebook 

Stage I ( y =1). Hence the MS and BS initial directions correspond to the initial beam index pair 

Ƥ1(ri, sj) in the search grid, and the received signal observed at this random initial beam index 

pair is given by ƴ
l
(Ƥ1(ri, sj)). Along these lines, Figures 4.4 (a)-(b) depict the received signal 

profile for two codebook stages at different lobe orientations. Note that the highest signal level 

here is observed at 80 dBm and 72 dBm for codebook stages I and II, respectively.  

First of all, if the initial signal is sufficiently strong and exceeds Shannon link capacity 

requirements, then the main lobe-to-main lobe signal has been observed, i.e., 

 ƴ
l
(Ƥ1(ri, sj)) ≥ ƴ

MM
. Consequently, the signal level ƴ

l
(Ƥ1(ri, sj))  here is compared with the 

received values at the neighboring beams which may potentially include additional SoI with 

different power levels, i.e., to determine whether the highest signal has been detected. 

Specifically, four perturbed index pairs are derived here, i.e., Ƥ1
a= (ri+δ, sj) , Ƥ1

b= (ri-δ, sj), 

Ƥ1
c  = (ri, sj+δ), and Ƥ1

d = (ri, sj-δ), where δ is the grid step size that specifics the spatial distance, 
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ΔΘ. The respective received power levels at these pairs are denoted as ƴ
l
(Ƥ1

a), ƴ
l
(Ƥ1

b), ƴ
l
(Ƥ1

c), and 

ƴ
l
(Ƥ1

d). Using these values, the beam index with the highest received signal is selected for 

additional refinement in the successive codebook stage, i.e., (ri, sj)bsty
. 

 

Inputs:  δ, r0 

 For y = 1, y ≤ Y, ∀ Ƥ(ri, sj) ∈ Ɍ   

          Ƥ1 = (ri, sj), ƴl
(Ƥ1)   // Random initial beam indices  

  If  ƴ
l
(ƤI) ≥ ƴ

MM
   // Main lobe-to-main lobe (MM) 

       Ƥ1
a,b

 = (ri±δ, sj), Ƥ1
c,d

 = (ri, sj±δ),  ƴ
l
(Ƥ1

a), ƴ
l
(Ƥ1

b), ƴ
l
(Ƥ1

c), ƴ
l
(Ƥ1

d) 

       (ri, sj)bsty
← max ƴ

l
{Ƥ1,Ƥ1

a ,Ƥ1
b,Ƥ1

c ,Ƥ1
d}, y ← y + 1 // Terminate codebook stage 

    Else If   ƴ
SM

 ≤ ƴ
l
(Ƥ1) < ƴ

MM
   // Sidelobe-to-main lobe (SM) 

                  ri̅ =  ri±δ, ƴ
l
(ri̅, sj), (ri, sj)bsty

←𝑚𝑎𝑥 ƴ
l
(Ƥ(ri̅, sj)),  y ← y + 1    

    Else If   ƴ
ss
 ≤ ƴ

l
(Ƥ1) < ƴ

SM
   // Sidelobe-to-sidelobe (SS) 

                  Ƥnr
a,b(ri+δ, sj±δ), Ƥnr

c,d(ri-δ, sj±δ),  ƴ
l
{Ƥnr

a,b,Ƥnr
c,d}, 

                  (ri, sj)bsty
← max ƴ

l
{Ƥnr

a,b,Ƥnr
c,d},  y ← y + 1 // Terminate codebook stage 

    Else If    ƴ
l
(Ƥ1) < ƴ

ss
  // Locations at nulls 

                   Ƥrad = (ri-δ, sj-δ), ƴ
l
(Ƥrad)   // Do radial perturbation 

                    If  ƴ
l
(Ƥrad) ≥ ƴ

ss
,  Ƥ1 ← Ƥ

rad
,  ƴ

l
(Ƥ1)   // Restart Ƥ1 test  

                     Else Ƥdw = (ri, sj-δ), ƴ𝑙(Ƥdw)   // Downward perturbation 

                              If  ƴ
l
(Ƥdw) ≥ ƴ

ss
, Ƥ1 ← Ƥ

dw
, ƴ

l
(Ƥ1) // Restart Ƥ1 test  

                                Else Ƥsd = (ri-δ, sj), ƴl
(Ƥsd) // Do side perturbation 

                                          Ƥ1 ← Ƥ
sd

,  ƴ
l
(Ƥ1)  // Restart Ƥ1 test  

                              End If 

                       End If 

  End If 

 End For 
 

 

Figure 4.3: Sidelobe exploitation for initial beam access 

 

Meanwhile, a sidelobe-to-main lobe (SM) signal level is received if ƴ
SM

 ≤ ƴ
l
(Ƥ1(ri,  sj)) 

< ƴ
MM

, Figure 4.2(b). Hence the (MS or BS) node receiving the signal at the location of the main 

lobe stops scanning for τβ
BS seconds (assuming BS). Meanwhile, the other side (MS) rotates its 

main lobe towards the location of the sidelobe where the signal was observed and measures the 

signal level after rotation,  ƴ
l
(Ƥ(ri̅, sj)) , r ̅i = ri±δ . Furthermore, if ƴ

SM 
> ƴ

l
(Ƥ1) ≥ ƴ

ss
, then the 

sidelobe-to-sidelobe (SS) orientation has been observed. Hence two neighboring perturbations, 

i.e., Ƥnr
a, b and Ƥnr

c, d, are tested here at which the MS and BS jointly rotate the direction of their 
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main lobes towards the direction of the detected signal (location of the sidelobe). The first 

sidelobes level adjacent to the main lobes are then tested, namely ƴ
l
{Ƥnr

a,b, Ƥnr
c,d}, Ƥnr

a,b=(ri+δ, sj±δ), 

Ƥnr
c,d = (ri-δ, sj±δ). 

 

(a) Codebook Stage I                                  (b) Codebook Stage II 

Figure 4.4: Sidelobe received signal levels for codebook Stages I and II 

Finally, if  ƴ
l
(Ƥ1) < ƴ

SS
, then the null region case has been detected, i.e., the main lobe or 

sidelobe point towards the nulls,  ƴ
l
(Ƥ1) = ƴ

η
. Hence both the MS and BS change their beam 

indices (pointing directions) by the spatial distance, ΔΘ, in a radial manner, Ƥrad = (ri-δ, sj-δ). 

Now if ƴ
l
(Ƥrad) < ƴ

ss
, then the downward perturbation is tested, i.e., Ƥdw= (ri, sj-δ). Namely, only 

the BS (or MS) changes its direction (index), whereas the remote MS (or BS) maintains its 

current direction by delaying its scan cycle by τβ
MS, i.e., dwell time for single progressive phase 

shift. Alternatively, if ƴ
l
(Ƥdw) < ƴ

ss
, a final sideways perturbation is checked, i.e., Ƥsd=  (ri-δ,  sj).  

 

 

 

 



88 
 

Table 4.1: System settings for sidelobe exploitation scheme 
 

 

Category 
 

 

Parameters 
 

Value 
 

System 
  

 f
c
 (GHz), bandwidth (MHz) 

 

 38, 100 
 

Signal level (dBm) 
      

    ƴ
th

, ƴ
SS

, ƴ
SM

, ƴ
MM

 
 

-120, -113, -95, -82 
 

Channel 
 

  ζ, l, hl, σ
2, r0(m), r (m) 

 

  2, 1, 1, 1, 5, 350 

 

ULA, Codebook 

 

 Ptr (dBm),  Ga, NMS
1 ,  NMS

2 ,  NMS
T , an ,  C, 

Q, Y, BT
1 , BT

2 , ΩML
MS

, ΩSL
MS

, ΩML
BS

, ΩSL
BS

 
 

 

  30, 3, 3, 7, 20, 1, 1, 1, 

2, 4, 16, 1, 2, 1, 2 
 

 

Time (μs), step size 

 

 

 

tPSS, τβ
MS, τβ

BS, δ 

 

 

  200, 200, 200, 1 

 
4.1.4  Performance Evaluation of Sidelobe Access Scheme 

 

The sidelobe-based access scheme is now evaluated for a single stationary BS-MS pair in 

a LoS environment. The related system parameters are listed in Table 4.1, and several 

performance metrics are evaluated. First, the computational complexity of this scheme is derived 

based upon the number of worst case measurements (for null reception, ƴ
l
 = ƴ

η
) as follows: 

S = S(Ƥ1) + Sη+ SSS ⋁SSM ⋁ SMM, Sη = S(Ƥrad) + S(Ƥdw) + S(Ƥsd),                 (4.10) 

SMM =  SSS =S(Ƥnr
a, b) + S(Ƥnr

c, d) , SSM=S(Ƥ(r ̅i, sj)), 

where Sη, SSS, SSM, and SMM are the processing step counts when receiving null, SS, SM and 

MM signal levels, respectively, with computational complexity scaled by O(Slog
4
(B2)).  

The resultant complexity of the proposed solution is plotted in Figure 4.5 alongside that 

of existing schemes (as per Chapter 3). Overall these results confirm that the sidelobe-based 

scheme gives significant improvements here, i.e., 50% lower complexity than the iterative and 

single-sided schemes, 62.5% lower than the GPS search and 93.75% lower than the exhaustive 

search for 16 beams. These improvements also hold for larger beam sizes (results not shown).  
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Figure 4.5: Computational complexity for the sidelobe exploitation scheme     

Meanwhile, the access time, τd, is also plotted in Figure 4.6. This value is derived by 

computing the beamforming scan cycle time during which the PSS signal is periodically 

transmitted on each beamforming vector, i.e., τd= τβ
MS(Ƥdw) +  τβ

BS(Ƥsd) + tPSS/C, where τβ
MS(Ƥdw), 

τβ
BS(Ƥsd), C, and tPSS are the dwell times during the downward and sideways perturbations at the 

MS and BS, the number of RF chains, and the PSS duration, respectively. Again, the sidelobe-

based scheme vastly outperforms all other methods here, particularly if there are a larger number 

of beams ( B = 64), i.e., 44%, 48%, 60%, and 99.4% faster than the iterative, single sided, GPS, 

and exhaustive schemes respectively.  
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Figure 4.6: Sidelobe beam access times for different schemes 

 

Finally, the outage probability is also gauged for random (uniformly-distributed) range 

values between rmin  and rmax. Specifically, this value is computed for the SS configuration as 

follows: 

ℙ[ƴ
l
 ≤ ƴ

SS 
]= ℙ [

PtGSL
MS

GSL
BS|hl|

216π2λ
2

r2
≤ ƴ

SS 
] = ℙ [√  

PtGSL
MS

GSL
BS|hl|

216π2λ
2

ƴSS 

 ≤ r]   

=∫  
1

2√x(rmax-rmin)
dx, 

rmax
2

PtGSLGSL|hl|
2

16π2λ
2

ƴSS 

= 
1

(rmax-rmin)
[rmax-√

PtGSL
MS

GSL
BS|hl|

216π2λ
2

ƴSS 

]=
rmax-rout

(rmax-rmin)
, x = r2  (4.11) 

where rout is the outage distance (meters) and GSL
MS

 and GSL
BS

 are sidelobe gains at the MS and BS, 

respectively (similar expressions can also be derived for other configurations). These 

probabilities are plotted in Figure 4.7 and indicate outages at 350 m and 450 m for codebook 

Stages I and II, respectively. A SM outage is also seen at 650 m and 750 m for Stages I and II, 

respectively. These results confirm that the proposed algorithm has very favorable detectable 
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ranges for LoS links. In particular, SS signals can be detected at longer distances up to 350m, 

making the proposed algorithm more reliable for larger LoS environments.   

 
 

Figure 4.7: Outage probabilities for the different lobe configurations 

4.2    Simultaneous Multi-Beam Initial Access  

Another novel fast access scheme is also developed using multi-beam beamforming 

(along with grating lobes and beam coding). This upgraded beamformer design, termed as 

simultaneous multi-beam analog beamforming (MB-ABF), eliminates the gain and directivity 

deficiencies associated with wide beams in hierarchical codebooks. As a result, this approach is 

analogous to digital and hybrid beamforming as it provides spatial diversity at the expense of 

lower channel capacity. However, the MB-ABF scheme simultaneously generates multiple 

beams for the same input power, i.e., versus sequentially for the single-beam analog 

beamforming (SB-ABF) approach in Chapter 3.  

Now antenna spacing is a key criterion in array design for any beamforming architecture. 

Specifically, smaller spacing (dense array) gives a host of concerns, e.g., such as mutual 

coupling, reduced directivity, pattern blindness and spatial under-sampling. Meanwhile larger 
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spacing (sparse array) generates grating lobes and also reduces channel sparsity, and also 

increases cluster richness. Since the antenna spacing here exceeds the coherence distance, 

distinct received angle of arrivals can also be resolved at adjacent antennas. In turn, this property 

leads to space-selective channels. 

Based upon the above, the proposed MB-ABF access scheme deliberately generates 

grating lobes in simultaneous multi-beam arrays. Unique orthogonal codes are then assigned to 

each simultaneous beam and its affiliated grating lobe, i.e., in order to resolve spatial beam 

signatures and mitigate interference effects. Furthermore, narrow beams are also generated to 

simultaneously overlay the entire spatial domain. Therefore this overall solution mitigates the 

requirement for exhaustive beam spatial scanning using low-resolution codebook structures. 

However carefully note that some minimal refinement scanning is still required in limited 

directions.  

The system model is now presented, including the design aspects for simultaneous 

beam, grating lobes and beam coding. The proposed access scheme is then detailed, followed by 

some detailed performance analysis results. 

4.2.1   Simultaneous Multi-Beam Analog Beamformer 

Consider two back-to-back linear arrays p and q, where each array is composed of NT
 p

 

and NT
 q

 total antenna elements. The η
s
 p and η

s
 q adjacent antennas in p and q, respectively, are 

further combined into s sections, s = 1, 2,…,  S,  where η
s
 p ⊆ NT

 p
∈ Z , η

s
 q⊆NT

 q
∈Z , NT

 p
 = Sη

s
 p,  and 

NT
 q

 = Sη
s
 q. Both arrays are also connected to a single RF chain to generate the simultaneous MB-

ABF with NT  ∈ Z total antenna elements, i.e., NT = NT
 p

 + NT
 q

, where the signal at the output of the 

RF chain is split and fed into S multiple sections. Furthermore, the weighting vectors of these 

sections are also adjusted to constructively add the antenna patterns of each section. Hence the 
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overall output from array p and q is a single primary beam which is radiated from each section s, 

i.e., Θs
 p∈ [0, π]  and  Θs

q
 ∈ [0, π]  respectively. Note that the number of simultaneous beams is 

equal to the number of sections here. Consequently, the resultant array output consists of a total 

of BT  non-overlapping and independent simultaneous primary beams propagating in different 

directions, BT ∈ [0, 2π]. The overall response vector for this MB-ABF at the MS can also be 

expressed by the periodic array factor for arrays p and q as follows:  

1 2

1

1

1 2

1

T

1 2

1 1

1 2

1 1

exp( cos ), exp( cos ),...
1

exp( cos )

exp( cos ), exp( cos ),...
1

       

exp( cos )

p p

p

p
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p
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q q

p

p p

n v n n v n

n
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T p

n v n S
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                        (4.12) 

Furthermore, the pointing direction for each beam at p (and similarly at q) is given by: 

1cos ,
2






  

   
 

pp

s

nd
                                                              (4.13) 

where β
p
 is the progressive phase shift between the elements in p. Furthermore, the HPBW for 

each pointing beam Θs
 p

 at array p (and similarly at array q) is given by:  

1

1

cos ( /2 ( cos 2.782/ )),  < ,

2cos (1 1.391 / ),  0, .                     

0<p p p

n v n s s sp

s p p

s n s

d k d for

d for

  


 





    
 

   

                         (4.14) 

As mentioned earlier, the simultaneous MB-ABF design implements a form of redundant 

transmit diversity, i.e., where each primary beam is maintained during the entire control 

signaling duration. This scheme contrasts with a typical SB-ABF design which conducts limited 

sequential scanning in TDM mode. For example, Figure 4.8 shows a case with 32 (sections) 

simultaneous adjacent primary beams. Furthermore, in order to establish full spatial coverage 
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during beam access, the remnant spatial nulls are also overlaid with grating lobes. Specifically, 

each primary beam Θs
 p

 and Θs
 q

 at arrays p and q, respectively, has g
s
 total grating lobes, i.e., 

g
s
= dn/λ at Θg

 p
 and Θg

 q
 pointing directions. 

 

Figure 4.8: Simultaneous multi-beam transmission 

4.2.2 Grating Lobes Generation 

In general the wider beams (used in the initial scanning stage of cascaded codebook 

designs) yield poor directivity and blockage sensitivity [67]-[71]. However directivity can be 

significantly improved by using simultaneous beams with a spacing of dn = λ , i.e., without 

increased power consumption or additional antenna elements. Namely, transmission power can 

now be divided between the primary beam and grating lobes (fringes) instead of concentrating it 

into a single wide beam. Consequently, the identical narrow beams (spatial images) generated 

here have higher directivity and transmit diversity. Also, this antenna spacing further increases 

scattering intensity and reduces sparsity levels for mmWave channels. Carefully note that a value 

of dn = λ also increases the visible region proportionally. Hence this region exceeds the Nyquist 

interval, and the grating lobes have the same magnitude as the primary beam, i.e., 

- kvdn ≤ (φ
vis

 p
, φ

vis

 q
 ) ≤  kvd

n
, where φ

vis

 p
=  kvdncosΘs

 p 
+ β

p
 and φ

vis

 q
=  kvdncosΘs

𝑞
 + β

𝑞
 at arrays p 
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and q, respectively. Furthermore the total number of grating lobes, GT, in the radiation pattern of 

the proposed MB-ABF is now proportional to dn, i.e., equal to the number of complete Nyquist 

intervals falling within the width of the visible region;  

  
T

(2 )
g + g ,


 n

p q

d S
G                                                      (4.15) 

where g
p
 and g

q
 denote the number of grating lobes in arrays p and q, respectively. For example, 

Figure 4.9 shows a sample radiation pattern for a MB-ABF composed of simultaneous primary 

beams and grating lobes, i.e., to be utilized for beam access as detailed later. 

 

Figure 4.9: Simultaneous multi-beam with grating lobes 

Note that the periodic locations of these grating lobes, Θg
 p

 and Θg
q
, can be also specified 

as a function of the simultaneous primary beam directions Θs
 p

 and Θs
 q

 as [72],[73]: 

        1   1  =  and = .
     

        
   

p p q q

g s g s

n nd d
sin sin sin sin                                      (4.16) 

 
 

Finally, the total number of radiated beams in the MB-ABF is given by BT= ( 2S ) + GT, whereas 

the radiated pointing directions at the MS are as follows (and likewise at the BS): 
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    Θrad
MS = {Θs

 p
,…,ΘS

 p
, Θs

 q
,…,ΘS

q
, Θg

 p
,…,Θg

 q}.                                       (4.17) 

4.2.3 Beam Coding  

As noted earlier, orthogonal codes are also mapped onto the primary beams Θs
 p

 and Θs
 q

 

in order to generate distinctive spatial signatures for the radiated patterns, see [74]. This step is 

essential since all radiated beams at the MS and BS (Θrad
MS

 and Θrad
BS ) carry otherwise identical 

modulated signals (single RF chain). Furthermore, beam coding is also required to mitigate 

interference effects and extract the SoI. Overall, linear error correcting block-codes are most 

favorable choice here given their robust correlation properties. Hence an orthogonal extended 

Hamming code is used, i.e., C={C
 p

, C
 q

}, where C
 p

[e, Ɲ, dH] and C
 q

[e, Ɲ, dH], and e is the 

codeword length, Ɲ  is the code dimension (number of signature codeword), and dH  is the 

minimum Hamming distance. Some further details on the mapping process are now presented. 

The linear p and q arrays are assigned C
 p

 and C
 q

 block-codes, respectively, where each 

block-code has S unique codewords (sequences), cS

 p
 and cS

 q
, respectively. Each simultaneous 

primary beam (and its affiliated grating lobe) in p and q is also assigned a single unique 

codeword. Finally, each codeword in cS

 p
 and cS

q
 has (in order) bI

 p
 and bJ

q
 codebits which linearly 

multiply the element amplitudes, an, in each section, where I=η
s

 p=S/2, J =η
s

 q = S/2. In notational 

form these block-codes can be written as:  

            C
 P

=[c1

 p
, c2

 p
,…cS

 p
]
T
 and C

 q
=[c1

q
, c2

q
,…cS

q
]
T
,                                      (4.18) 

             cs
 p

=[b1
 p

, b2
 p

,…,bI
 p

] and cs
q
=[b1

q
, b2

q
,…,bJ

q
],                                         (4.19) 

where bI
 p

 and bI
 q

 are the number of states in each codebit. Overall, the above block-codes are 

derived by using the H(7,4) Hamming code and computing the parity check and complementary 

�̅� matrix. The block-code generator matrices for C
 p

 and C
 q

 are also shown in Tables 4.2 and 

4.3, respectively. Consider some properties here. 
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1) Hamming Weight 

The Hamming weight is the number of codebits (symbols) that differ from negation (-1), 

expressed as: 

WH(bI
 p

)≜|{I: bI
 p

≠ -1}|                                                     (4.20) 

Table 4.2: [8, 16, 4] Orthogonal block-code for array p 

c1

 p
=[-1 -1 -1 -1 -1 -1 -1 -1]  c9

 p
=[-1 1 1 -1 -1 1 1 -1]  

c2

 p
=[1 -1-1 -1 1 1 1 -1]  c10

 p
=[-1 1 -1 1 1 1 -1 -1]  

c3

 p
=[-11-1-1 1 -1 1 1]  c11

 p
=[-1 -1 1 1 1 -1 1 -1]  

c4

 p
=[-1 -1 1 -1 1 1 -1 1]  c12

 p
=[1 1 1 -1 1 -1 -1 -1]   

c5

 p
=[-1 -1 -1 1 -1 1 1 1]   c13

 p
=[1 1 -1 1 -1 -1 1 -1]   

c6

 p
=[1 1 -1 -1 -1 1 -1 1]  c14

 p
=[1 -1 1 1 -1 1 -1 -1]   

c7

 p
=[1 -1 1 -1 -1 -1 1 1]  c15

 p
=[-1 1 1 1 -1 -1 -1 1]   

c8

 p
=[1 -1 -1 1 1 -1 -1 1]   c16

 p
=[1 1 1 1 1 1 1 1]   

 

Table 4.3: [8, 16, 4] Orthogonal block-code for array q 

c1

q
=[-1 1 1 1 1 -1 -1 -1]  c9

q
=[1 -1 -1 -1 -1 1 1 1]  

c2

q
=[1 -1 1 1 -1 1 -1 -1]  c10

q
=[-1 1 -1 -1 1 -1 1 1]  

c3

q
=[1 1 -1 1 -1 -1 1 -1]  c11

q
=[-1 -1 1 -1 1 1 -1 1] 

c4

q
=[1 1 1 -1 -1 -1 -1 1]  c12

q
=[-1 -1 -1 1 1 1 1 -1]  

c5

q
=[-1 1 -1 1-1 1 1 -1]  c13

q
=[1 -1 1 -1 1 -1 -1 1]  

c6

q
=[-1 1 -1 1 1 -1 -1 1]  c14

q
=[1 -1 1 -1 -1 1 1 -1] 

c7

q
=[-1 1 1 -1 -1 1 -1 1]  c15

q
=[1 -1 -1 1 1 -1 1 -1] 

c8

q
=[-1 1 1 -1 1 -1 1 -1] c16

q
=[1 -1 -1 1 -1 1 -1 1]  

 

2) Minimum Hamming Distance 

The minimum Hamming distance, dH , between any two successive and distinct 

codewords (cs
 p

,cs+1

 p
) and (cs

q
,cs+1

q
) at arrays p and q is expressed, respectively, as:   

dH(cs
 p

,cs+1

 p
) = min{dH(cs

 p
, cs+1

 p
)|cs

 p
, cs+1

 p
∈C

 p
, cs

 p
≠cs+1

 p
}=∑|cs

 p
-c s+1

p
|

S

s =1

,                 (4.21) 
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dH(cs
q
,cs+1

q
) = min{dH(cs

q
, cs+1

q
)|cs

q
,cs+1

q
∈C

q
, cs

q
≠cs+1

q
} =∑|cs

q
-cs+1

q
|,

S

s =1

                     (4.22) 

additionally, dH(cs
q
,cs+1

q
)  is also equal to the Levenshtein distance at arrays p and q, i.e., termed 

as levcs
 p

,cs+1
 p (|cs

 p|,|cs+1

 p
|) and  levcs

q
,cs+1

q (|cs
q|,|cs+1

q
|), respectively. 

3) Balanced Sequence 

Since the codeword length is even, each codeword cs
 p

 ∈ C
 p

 and cs
q
 ∈ C

 q
 is also a 

balanced sequence, and the Hamming weight is equal to e/2. 

4) Cross-Correlation 

The cross-correlation between any codewords in arrays p and q is expressed in order as:  

Ɍcs
 p

cs+1
 p (0) =∑ cs

 p
cs+1

 p
= 0,

S

s =1

                                                       (4.23) 

Ɍcs
q
cs+1

q (0) =∑ cs
q
cs+1

q
= 0.

S

s =1

                                                       (4.24) 

Overall, the zero cross-correlation obtained here preserves the orthogonal property of the 

proposed block-codes. Hence the array factor for the MB-ABF (after beam coding) is given by: 
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where the response vectors for each section s at arrays p and q at the MS is denoted by 

us = [u1

p
…uS

p
, u1

q
…uS

q
]. 

4.2.4  Signal Model 

A full-duplex link with CSI knowledge is also assumed at the BS and MS. Hence the 

transmitted signals from each section s at p and q at the BS is expressed, respectively, as: 

 xs
 p

= vs
 p

z1 and xs
q
=  vs

 q
z1                                                     (4.26) 

where vs
 p

 and  vs
 q

 in order are the response vectors of section s at p and q, respectively. 

Meanwhile, z1 in Eq. (4.26) represents the control signal that carries the BS codewords generated 

from each section at p and q. Hence the overall signal transmitted by the MB-ABF after beam 

coding is:  

    XBS=∑ xs
 p

  +  xs
q
.                                                            

S

s =1

(4.27) 

Meanwhile the received signal model at p and q at the MS is also given by:  

 
H H

tr BS

1 1

( ) ( ) H ,
S S

q q

s s

s s

P u u X w
 

 
    

 
                                   (4.28) 

where Ptr is the transmitted signal (equally split between the primary beams and grating lobes). 

Note that this setup assumes a geometric channel and floating-intercept path loss model, i.e., Eq. 

(3.6) and Eq. (3.7), respectively. 

4.2.5 Simultaneous Multi-Beam Access Procedure 

Based upon the above architecture and notation, the multi-beam access procedure is now 

detailed, i.e., including beam signature discovery, feedback signaling, and grating lobe 

refinement. 
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1) Unique Primary Beam Signature Discovery 

This stage broadcasts the PRCS in a directional and simultaneous manner over the entire 

azimuth plane, i.e., in order to avoid beam scanning and save time resources. Consider a BS and 

MS equipped with the proposed MB-ABF model. Hence, the main objective is to identify the 

maximum response vectors, (us, vs)max
, and thereby determine the best simultaneous primary 

beams at the BS and MS which maximize the received signal levels, i.e., Θs_bst
BS  (Θs_bst

BS  ∈ Θrad
BS ) 

and Θs_bst
MS  (Θs_bst

MS  ∈ Θrad
MS), respectively. In order to achieve this goal, the received signals at the 

MS and the BS are cross-correlated with the hamming block-codes, C={C
 P

, C
 q

}, as follows: 

   (us, vs)max
 = max Ɍx( ϒ, C)                                                        (4.29) 

Now it is also assumed that the BS and MS use the same codewords for their primary 

beams. Therefore once a signal is impinged at the effective aperture of the MS, the maximum 

cross-correlation between the received signal and the block-codes is calculated (similar approach 

also employed for signals arriving at the BS). The above output is a unique codeword which is 

then used by the BS to achieve improved signal reception at the MS. Thereafter, the MS relays 

this information back to the BS via the secondary reference control signal (SRCS), termed as z2. 

2) Feedback Signal  

The SRCS signals from the MS are sent in an open-loop feedback manner from each 

section s. These signals contain important information on the best-detected codeword at the BS, 

i.e., in order to notify the BS about its best codewords. Specifically: 

y
s
 p = us

 p
z2 and y

s
q = us

q
z2,                                                        (4.30) 

 

xs
q
 = vs

 p
z2 and xs

 p
= vs

 p
z2.                                                        (4.31) 

Moreover, if the highest signal comes from the direction of the grating lobe, then the primary 

beam associated with this grating lobe is selected for refinement in the successive stage.  



101 
 

3) Grating Lobes Refinement 

Since the maximum array response comes from the direction of the best primary beam, 

Θs_bst
BS , and its affiliated grating lobe, Θg_bst

BS
, directional ambiguity can occur if signals are 

detected in the presence of grating lobes. In this case, the array cannot resolve the precise angle 

of the highest signal, which can either be Θs_bst
BS  or Θg_bst

BS
. As a result, a further sequential 

refinement stage is implemented here in the directions of Θs_bst
BS  and Θg_bst

BS
. Specifically, once 

(us,vs)max
 are identified, then the directions Θs_bst

BS  and Θg_bst
BS

, are fed to an adjacent series SB-

ABF connected to the MB-ABF through an RF switch. This SB-ABF is composed of a ULA 

with an antenna spacing of dn= λ/2, which helps suppress the grating lobes and radiate a single 

high-resolution beam. Note that sequential beam scanning is only done using this SB-ABF over 

Θs_bst
BS  and Θg_bst

BS
, i.e., no need for additional beam coding in this stage. The beam direction 

returning the maximum channel capacity, i.e., [Θ0
MS, Θ0

BS]bst is finally selected for the data-plane, 

formulated as:  

 [Θ0
MS, Θ0

BS]bst = max log
2
[
PtǦMSǦBS|hl|

2

ΨT0б
]                                               (4.32) 

 

Θ0
MS={Θs_bst

MS , Θg
MS|Θ0

MS∈us
max, Θg_bst

MS ∈Θs_bst
MS }                                         (4.33) 

 

  Θ0
BS={Θs_bst

BS , Θg
BS|Θ0

BS∈vs
max, Θg_bst

BS
 ∈Θs_bst

BS }                                         (4.34)  

where б is the contiguous channel bandwidth (in MHz), Ψ is the Boltzmann constant and T0 is 

the operating temperature (in Kelvin).  

4.2.6 Simultaneous Multi-Beam Access Performance 

The efficiency of the proposed multi-beam access scheme is examined for a single BS 

and MS operating in NLoS environment with regards to directivity and access times. Again, 
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comparisons are also made with the same set of existing mmWave initial access methods used in 

Chapter 3 and Section 4.1. The various (MB-ABF) system parameters used here are also 

summarized in Table 4.3. 

1) Directivity 

As mentioned earlier, large spacing between antenna elements will increase array 

aperture, thereby reducing beamwidth broadening rates and increasing directivity, i.e., if λ/2 

≤ dn≤ λ. By contrast, when dn > λ, the array aperture and directivity start to decay significantly as 

the sidelobes become more enlarged, i.e., a substantial amount of radiated energy is dedicated to 

the sidelobes. Hence the highest possible directivity is achieved in the presence of grating lobes, 

i.e., by maintaining the maximum array response values at dn = λ. Overall, the directivity for the 

proposed MB-ABF design at array p (and similarly at array q) in the broadside and endfire 

directions is given by [75]: 

          D0[dBi]={
   10log

2
[2η

s
 p

dn

λ
] ,  for 0 < {Θrad

MS
, Θrad

BS
} < π,

10log
2
[4η

s
 p

dn

λ
] ,  for {Θrad

MS
, Θrad

BS
} = 0, π.

                                      (4.35) 

Table 4.4: System parameters for the simultaneous multi-beam analog beamformer  

 

 

Category 
 

 

Parameters 
 

 

Value 
 

System 
 

Pt(dBm), f
α
(GHz), б, T0  

 

 

30, 28, 800, 290 
 

Channel 
 

 

∂, σ𝑤
2 , r  

 

0, 1, 200 
 

 

 

 

 

 

 

MB-ABF 

   

 

η
s
 p , NT

 p
, S, NT

 MS , BT , an , dn ,  g
s
, 

GT  

 
 

 

 

8, 128, 32, 256, 64, 1, 0.0107, 1, 

32  
 

 
 

 

 

Block-codes 

 
 

 

dH, WH, ς, e,  Ɲ 
 

    

 

4, 4, 2, 8, 16 
 

 

 

SB-ABF 
 

 

dn, BT, g
s
, GT, NT

 MS 
 

 

5.3e-3, 1, 0, 0, 56 
 

Time-slots 
 

 

tPRCS (μs) 
 

200  
 

 

µ, logN 
 

Ɣ(dB), Γ(dB), σ(dB) 
 

 

117, 0.4, 8.3 
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Overall, the results in Figure 4.10 confirm that the proposed MB-ABF scheme delivers 

50% better directivity in the broadside and endfire directions, i.e., as compared to wide beam 

scanning using a SB-ABF desiggn, as propsoed in Chapter 3. Indeed, this increased directivity 

can potentially boost transmission ranges by compensating for penetration losses (~ 30dB). This 

saliency also reduces blockage sensitivity and enhances the richness of sparse mmWave 

channels. In light of these merits the MB-ABF scheme provides an efficient alternative for low-

resolution codebooks in 802.11ad, 802.11ay, and mmWave cellular systems.  

 

Figure 4.10: Directivity at broadside and endfire directions for MB-ABF 

2) Initial Access Times 

The proposed MB-ABF scheme also supports fast beam access times for narrow (pencil) 

beams (ϕ
s

 p
 = 5.5o). Now the initial access time, τa, is defined here as the required duration for the 

BS (or MS) to transit from sleep-mode to active-mode. In other words, it is the time required for 

beam association prior to data-plane transmission, i.e., τa= MT tPRCS/RMS, where MT, RMS 

and tPRCS are the number of time-slots dedicated for the beam control signals, number of RF 
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chains at the MS, and the PRCS duration, respectively. Now the total number of time slots prior 

to data plane transmission at the MS, M𝑇
 MS, termed as is also given by:  

M𝑇
 MS = M𝑆

 MS + Mfb
 MS+ Mref

 MS,                                                   (4.36) 

where M𝑆
 MS, Mfb

 MS and Mref
 MS in order represent the number of time-slots occupied (at the MS) 

during the transmission of the simultaneous primary beams, the number of time-slots for 

feedback signaling and the number of time-slots for refinement over the best primary beam and 

its affiliated grating lobe.  

Next, Figure 4.11 plots the initial access times as a function of the transmitted primary 

beams (for a range of schemes). Now consider various numbers of transmitted beams in Figure 

4.11. First, for small number of transmitted beams (e.g., BT=16), single time-slot is occupied 

during the simultaneous primary beams control and feedback signaling transmission (MS
 MS =1 

and Mfb
 MS =1), whereas four time-slots are occupied during the refinement stage (Mref

 MS = 4). 

Similarly, for larger number of transmitted beams (e.g., BT=64), PRBS control signaling is sent 

using one time-slot simultaneously over 32 beams. Additionally, one time-slot is used for 

feedback (i.e., sending z2  signal), and four time-slots are used for refinement over the best 

primary beam and its grating lobe. Overall, the proposed scheme requires fixed number of time-

slots for any number of transmitted primary beams. Hence the proposed scheme delivers notably 

faster access times versus all other methods [40]-[43], i.e., ranging from 75-88%. For example, 

the access time needed to acquire a pencil beam (ϕ
s

 p
 = 5.5o) is 1.2 milliseconds versus 4.8 ~ 9.8 

milliseconds for the other access methods. Overall, a key benefit of the proposed MB-ABF 

scheme is that it uses a fixed number of time-slots, i.e., regardless of the number of transmitted 

primary beams. 
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Figure 4.11: Beam access times for different number of primary beams 
 

 

 

 

4.3   Dual-Beam (DB) Scanning for mmWave Initial Access 

Finally, a new direct pattern search strategy is also developed here based upon the 

aforementioned simultaneous MB-ABF architecture, i.e., to achieve a combination of dual-beam 

(DB) codebook transmission and beam coding for faster initial access. Again, the access 

formulation model introduced in Section 3.1 is adopted here. The proposed algorithm adapts 

beam search by conquering the observed clusters profile. Namely, it tests the aggregated spatial 

locations of received clusters by using wide DB to capture the overall azimuthal spatial lobe of 

each cluster (and its affiliated rays at each codebook stage). An extended system model is first 

presented to introduce the proposed design, i.e., leveraging from the definitions in Chapter 3.1 

Subsequently, the access scheme is detailed along with some performance results. 

4.3.1   Codebook Structure for Dual-Beam Scanning 

Now simultaneous dual-beam analog beamformer (DB-ABF) system is developed here 

based upon the array structure in Section 4.2. Namely, consider the codebook structure defined 
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in Section 4.2.1 with y =1, 2,..,Y stages and B simultaneous beams for d =1, 2,…, D total radiated 

scanning directions per codebook stage (D = 2B). A sample single-stage codebook design with 

this DB structure is shown in Figure 4.12 in the broadside and endfire directions. The resultant 

array output at the MS (likewise at the BS) has b simultaneous beams in D directions pointing in 

ΘS
MS

 directions, and this array is fed with a single RF unit. Hence the transmitted signal is 

simultaneously split into S multiple sections (transmissions) in the array. 

Furthermore, orthogonal codes are also assigned to all D radiated beams in order to create 

distinguishable spatial signatures and retrieve the SoI. Specifically, an orthogonal extended 

Hamming block-code is also developed here (akin to Section 4.2.3) for each codebook stage y, 

Cy
 
[e, Ɲ, dH], where each stage has cy,D

  unique codewords, i.e., each b beam at d direction is 

assigned a single codeword cy,d
 , mapped as:  

 

(a) Codebook Stage I (broadside)              (b) Codebook Stage I (endfire) 

Figure 4.12: Simultaneous dual-beam transmission 
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 c1,1
 =[-1 -1 -1 -1 -1 -1 -1 -1], c1,2

 =[1 -1-1 -1 1 1 1 -1],         

c1,3
 =[-11-1-1 1 -1 1 1], c1,4

 =[-1 -1 1 -1 1 1 -1 1],                                 (4.37) 

                                    c2,1
 =[-1 1 1 1 1 -1 -1 -1], c2,2

 =[1 -1 1 1 -1 1 -1 -1],  

                                    c2,3
 =[1 1 -1 1 -1 -1 1 -1], c2,4

 =[1 1 1 -1 -1 -1 -1 1],                             (4.38) 

                                    c3,1
 =[-1 1 -1 1-1 1 1 -1], c3,3

 =[-1 1 -1 1 1 -1 -1 1],                              (4.39) 

                                      c3,3
 =[-1 1 1 -1 -1 1 -1 1], c3,4

 =[-1 1 1 -1 1 -1 1 -1]. 

Finally, each codeword has ЪF
 , where F=η

s
 y  codebits that linearly multiply the antenna’s 

amplitude excitation, an, in each section s. In notational form this operation is represented as:  

        Cy
 
=[cy,1

 , cy,2
 ,…,cy,D

 ]
T
 and cy,d

 =[Ъ1
 , Ъ2

 ,…,ЪF
 ],                                     (4.40) 

whereas the cross-correlation between any two successive codewords is R(0)=∑ cy,d
  cy,d+1

 = 0.D
d=1  

Note that this property preserves the orthogonality of the proposed block-codes, which is 

essential for determining the unique angular direction.  

4.3.2   Signal Model for Dual-Beam Scanning 

Assuming a time-division duplexing (TDD) channel access scheme at the BS and MS, the 

overall DB-ABF transmitted signal (after beam coding at the BS) is given by:  

    XBS=∑ xs
 ,    xs

 = vs
 

 z1,                                             

S

s =1

              (4.41) 

where xs
 , vs

   and z1, in order, are the transmitted signal from s, the array response vectors of s, 

and the PSS carrying the BS control signals, e.g., constant amplitude zero auto-correlation 

(CAZAC) sequences. Meanwhile the received signal at the MS is also formulated as: 

H

tr BS

1

( ) H ,
S

s

s

P u X w


 
   

 
                                                (4.42) 
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where Ptr is the transmitted signal (equally-split between S antenna sections) and the channel, H, 

follows a geometric model given by Eq. (3.6). 

4.3.3  Access Scheme for Dual-Beam Scanning 

The overall DB access scheme is shown in Figure 4.15 and consists of several search 

phases. Akin to Section 3.2, the objective function here is also defined by the received power 

level, ƴ
l
(Ƥ

m
(ri, sj)),  and hence the goal is to find of the pair that maximizes the received signal, 

written as: 

   (ri, sj)bsty
= max {ƴ

l
(Ƥ

m
(ri, sj))|Ƥm ⊂ Ĝ},  s.t. i, j, ∈ [1, D].                               (4.43) 

Now Figure 4.13 plots a sample received signal level profile for the first stage of the proposed 

DB codebook with a BS and MS separation distance of r = 200 m and narrowband settings, i.e., 

bandwidth (BW) = 100 MHz. Carefully note that this profile is composed of few dominant K 

clusters ranging between -100 and -110 dBm resulting from the DB transmission. Hence a novel 

recursive divide-and-conquer access algorithm is proposed to test a limited number of grid points 

at scattered locations in order to detect these K observed clusters. This search strategy resembles 

the received clusters profile of mmWave channels in NLoS settings. Namely, the channel 

exhibits a sparse cluster arrival rate, P(K), with large void spatial distances between K, as per 

Figure 4.14, e.g., the spatial distance between observed clusters is approximately 180
0
. 

Accordingly, the DB access scheme in Figure 4.15 implements three distinct search phases, i.e., 

inner, outer and edge searches. These are now detailed.  
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Figure 4.13: Received signal levels at different BS and MS beam indices 
 

 
 

            Figure 4.14: Received clusters profile 

1) Phase I: Inner Exploratory Search for Best Cluster 

Consider a MS and BS pair equipped with the above DB-ABF with both entities initiating 

asynchronous control plane communication. The initial search phase mainly tests the ƤD
in 

adjacent centric grid points, N = D, for any Ƥm(ri, sj), i.e., to cover a large spatial region that 

exceeds the cluster (lobe) azimuth spread of k, ϕ
s

MS
 > Ak. Namely, these ƤD

in adjacent points are 

defined as: 

ƤD
in={Ƥ1

in(rimin+δ
, sjmin+δ

), Ƥ2
in(rimin+2δ

, sjmin+δ
), Ƥ3

in(rimin+δ
, sjmin+2δ

), Ƥ4
in(rimin+2δ

, sjmin+2δ
)},      (4.44) 
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where δ is the step size of the search grid, which is also equivalent to the progressive phase shift 

between antennas, β. Hence this approach detects the K clusters with a limited number of 

measurements, eliminating the need for unnecessary exhaustive sequential search. Moreover this 

process also detects at least one ray within any cluster corresponding to the best point in Phase I, 

denoted as Ƥbst
in .  

2) Phase II: Outer Exploratory Search for Best Cluster 

 

The second stage defines an additional set of points, ƤD
out, which are uniformly located at 

the edges of the search grid, given by: 

 

 

ƤD
out ={Ƥ

1

in
(rimin

, sjmin
), Ƥ2

out(rimin
, sjmax

), Ƥ3
out(rimax

, sjmin
), Ƥ4

out(rimax
, sjmax

)}.            (4.45)           

 

The signal levels at these points are then tested to find the best outer point, Ƥbst
out . Next, the 

received signal level, ƴ
l
(ri, sj), is compared at the inner and outer exploratory searches, i.e., 

ƴ
l
(Ƥ

D

in
) and ƴ

l
(Ƥ

D

out
), and the point returning the maximum received signal, Ƥbst

I (ri, sj), is selected 

for refinement in the final phase, where: 

 Ƥbst
I (ri, sj) =max{ƴ

l
(Ƥ

D

in
), ƴ

l
(Ƥ

D

out
)}= max{ƴ

l
(Ƥ

bst

in
), ƴ

l
(Ƥbst

out)}.                            (4.46)  

 

The above point corresponds to the beam indices at which the best primary cluster (cursor), kbst, 

is spatially located at Θk. Overall Phases I and II detect and measure all K clusters in [0, 2π], 

since ϕ
s

MS
 > Ak. Furthermore, since the grid step size δ between ƤD

in and ƤD
out is less than Ak, all K 

clusters are detected here, yielding improved robustness. 

3) Phase III: Edge Exploratory Search for Best Ray 

In general, the K observed clusters are composed of l rays with the lobe azimuth spread 

given by a normal distribution within each cluster, i.e., N( ρ, ς2), where ρ and 𝜍2 are the mean 

and standard deviation of the RMS angular ray spreads. Similarly, the pre-cursor and post-cursor 
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ray arrival rates, i.e., lpre and lpost, generally also follow normal distributions [8], i.e., given by 

N(M
pre

, ϑpre
2 ) and N(Mpost , ϑpost

2
), where Mpre , ϑpre

2
, Mpost , and ϑpost

2
 in order are the means and 

variance of the number of the pre- and post- cursors. Each cluster k also has lk rays with lp and la 

pre- and post- cursor rays, i.e., lk=lp  + la, and L=Klk. Hence the proposed algorithm exploits this 

property by testing any group of adjacent points in Phases I and II (resembling lc arrival profile 

in k).  

Now the highest signal direction likely exists at points adjacent to the best point 

Ƥbst
I (ri, sj), i.e., at the local rays of the cursor kbst. Hence the precise spatial direction within kbst 

must be further resolved to enable pencil beam transmission, i.e., 5-6
0
 range. Hence the final 

phase implements an adjacent points search for Ƥbst
I (ri, sj) in the upward, downward or sideway 

directions. Namely signal levels are tested at adjacently-located rays to the sides of the cursors 

(pre- and post- locations). Based upon these measurements, the best primary ray returning the 

highest signal level, lbst, is resolved at Ƥbst
II (ri, sj), and the directions for these beam indices are 

adopted for data plane transmission, see Figure 4.15.  

Overall, the DB-ABF initially transmits B instantaneous beams in D directions during the 

beam search, and each beam tests D/2 grid points in Phases I-III. The unique beamforming and 

combining vectors (beam indices) returning the best cluster (kbst) and best primary ray (lbst) are 

then determined. Now beam coding is a vital for eliminating ambiguity in the highest received 

signal direction, i.e., since the D radiated beams carry data generated from a single RF chain. 

The direction of the highest received signal also corresponds to the maximum cross-correlation 

at the receiving side. Hence the received signals at the MS and BS are cross-correlated with the 

block-code at each codebook stage, Cy, i.e., (us, vs)max
 = max R(ƴ

l
, Cy).  Furthermore, the best 



112 
 

point detected across all Phases I-III is chosen as the unique codeword, 𝑐y,d
bst, yielding the highest 

signal level. Note that the remaining codewords are distorted as they experience high fading i.e., 

low cross-correlation.  

    
 

  Inputs: Y, B, D, δ 
  For y ≥ 1, y ≤ Y,  

  For Ƥm(ri, sj) ∈ Ĝ 

   Phase I 

      ƴ
l
{ƤD

in) // Test inner points   

      Ƥbst
in  ⃪ max ƴ

l
{ƤD

in}  // Best inner point   

   Phase II 

      ƴ
l
{ƤD

out} //Test outer points   

      Ƥbst
out ⃪ max ƴ

l
{ƤD

out}  // Best outer point 

      Ƥbst
I  ⃪ max{ƴ

l
(Ƥbst

in ), ƴ
l
(Ƥbst

out)}  // Comparison between best inner and outer points 

   Phase III 

    If Ƥbst 
I = Ƥm(rimin+δ

, sjmin+δ
)  // Test adjacent point 

        Ƥbst
II  ⃪ max {ƴ

l
(Ƥm(rimin+δ

, sjmin
), ƴ

l
(Ƥm(rimin

, sjmin+δ
)},  y +1 ⃪ y   

    Else If Ƥbst
I  = Ƥm(rimin+2δ

, sjmin+δ
) 

                Ƥbst
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l
(Ƥm(rimax

, sjmin+δ
), ƴ

l
(Ƥm(rimin+2δ

, sjmin+δ
)},  y +1 ⃪ y   

    Else If Ƥbst
I  = Ƥm(rimin+δ

, sjmin+2δ
) 
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l
(Ƥm(rimin+δ

, sjmin+2δ
), ƴ

l
(Ƥm(rimin+δ

, sjmin+2δ
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    Else If Ƥbst 
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, sjmin+2δ
) 

                Ƥbst  
II ⃪ max {ƴ

l
(Ƥm(rimax

, sjmin+2δ
), ƴ

l
(Ƥm(rimin+2δ

, sjmax
)},  y+1 ⃪ y   

    Else If Ƥbst
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, sjmin
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                Ƥbst  
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l
(Ƥm(rimin+δ

, sjmin
), ƴ
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    Else If Ƥbst
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                Ƥbst  
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, sjmax−δ
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   End For 

  End For 
 

 

Figure 4.15: Direct-pattern search for dual-beam mmWave access 

  



113 
 

4.3.4  Performance Evaluation of Dual-Beam Scanning 

The performance of the proposed DB-ABF access scheme is also evaluated versus the 

existing methods used in Chapter 3. All related system parameters here are listed in Table 4.5. 

Foremost, the computational complexity of the proposed DB-ABF scheme is derived as:  

                                           
DB

T in out adj = ( + + )/ ,Q Q Q Q B                                                  (4.47) 
 

where Q
in

, Q
out

 and Q
adj

, are the number of objective function evaluations at the inner, outer and 

adjacent exploratory phases, respectively. Note that the complexity of this algorithm is modeled 

as O(Q
T

DB
log

4
(D2)). The resulting values here are plotted in Figure 4.16 and confirm that the 

proposed algorithm delivers sizeable complexity reduction versus several existing methods. For 

example, with pencil beam transmission (D = 64), the proposed DB-ABF scheme only requires 15 

measurements as opposed to 24-48 measurements with all the other methods, i.e., 32-60% 

higher. 

Table 4.5: System parameters for the dual-beam scheme 
 

Category Parameters Value 
 

System 
  

 f
c
 (GHz), bandwidth (MHz), Ptr 

 

38, 100, 30 
 

 

DB-ABF 
   

Y, η
s
1, η

s
2, η

s
3, B, b̌, D  

 

3, 2, 6, 19, 2, 2, 4 
 

 

 

 

Received clusters profile 

  

  

L, K, lk, lp, 𝑙𝑎, Mpre, ϑpre
2

, Mpost, ϑpost
2

, 

ρ,  ς2     

 

 

8, 2, 4, 2, 2, 2, 1, 2, 1, 4, 

2 
 

 

 

 

DB access scheme 

 

 

 

 

i, j, δ , F, e, Ɲ, dH , MT , Q
T

DB
, Q

in
, 

Q
out

, Q
adj

 

 

 

 

 

4, 4, 1, 8, 8, 4, 4, 5, 5, 4, 

4, 2 
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Figure 4.16: Computational complexity for the dual-beam access scheme  

 

Finally, the initial beam access times for the proposed DB scheme τa is also defined as: 

 τa = MT tPSS / RMS,                                                            (4.48) 

where MT is the number of time-slots dedicated for z1 transmission, i.e., MT = Q
T

DB
. Accordingly, 

Figure 4.17 plots the access times for varying numbers of simultaneously-transmitted beams for 

the different schemes. Again, the proposed method gives much faster performance here. For 

instance, the results show 40-70% lower access times when transmitting 64 beams. Namely, 3 

ms are required to resolve the best beam indices (primary ray detection) at the third codebook 

stage versus 5-9.6 ms with the other methods. 
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Figure 4.17: Beam access times for different transmitted beams 
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Chapter 5 

 

Hybrid Beamforming Method for Link Recovery 
 

As noted in Chapter 2, mmWave links are highly sensitive to obstacles/objects in the 

propagation channel, as they can cause blockage and signal degradation. For instance, obstacles 

such as pedestrians can yield an additional 20 dB [76] in path loss during link transition from 

LoS-to-NLoS operation. In turn, this drop can cause received signal levels to fall below critical 

receiver sensitivity levels, i.e., resulting in blockage-based outage and link failure. In addition, 

MS mobility can also yield alternating channel gain and fading effects. As a result, instantaneous 

CSI can vary rapidly, further causing link recovery times to exceed coherence times.  

Now conventional link recovery techniques generally reset the spatial beam scanning 

procedure when the primary link between the BS and MS degrades, e.g., due to channel 

blockage. Namely, hierarchical codebooks are used to determine new beam directions for the 

highest received signal. Alternatively other strategies try to test directions that are adjacent to the 

recently-failed beams [77]. However, these techniques have longer recovery times, potentially 

resulting in a connection drop (failures). As a result, fast link adaptation and recovery (beam-

maintenance) methods are required to sustain communication sessions between BS and MS in 

both the control- and data- planes. 

In light of the above, this chapter proposes a novel dual-beam recovery method for 

blocked links in outdoor mmWave settings. Namely, hybrid beamforming (HBF) techniques are 

used to achieve transmit diversity and establish recovery beams. Furthermore, equal-gain 

combining (EGC) is also applied to incoming dual-beam signals if the direct LoS link is blocked, 
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i.e., to compensate for signal degradation. Overall this method mitigates the effects of link 

blockage and reduces link loss in Rician channels. Furthermore, the proposed link recovery 

method also provides near-instantaneous beam recovery without the need for a recursive 

exhaustive or iterative search for an alternative spatial direction. Finally, a HBF architecture is 

also developed based upon a ULA (along with its associated signal and blockage models). The 

proposed link recovery method is then presented, followed by detailed simulation and 

performance evaluation results to validate its effectiveness in a range of settings. 

5.1   Hybrid Multi-Beam Beamformer 

Consider BS and MS nodes equipped with ULA frontends with NBS and NMS antennas 

each, respectively. It is assumed that nBS  ∈ NBS  and nMS∈ NMS  adjacent antennas are also 

combined into s =1, 2,..., S sections, and each section s is connected to a single RF chain to 

generate a single data stream. The total number of RF chains at the MS is also denoted by RMS, 

i.e., S = RMS  << NMS . Hence the overall array and chains here form a HBF structure, which 

consists of a limited number of data streams radiated by b=1,2,…,B simultaneous beams 

(beamforming and combining vectors) in Θs pointing directions. Now the design of the pointing 

directions of S antenna sections is determined by the precoding matrix at the BS, i.e., PBS, which 

is composed of p precoding vectors. Specifically, PBS is constructed as PBS  = P
bb

Pan, where Pbb 

and Pan are the baseband and analog precoding stages, i.e., Pbb   =  S x RBS  and  Pan = RBS 
x NBS. 

Carefully note the RF chains are still exploited to support transmit diversity (diversity 

modulation) even though the HBF supports spatial multiplexing,. Hence this approach can 

provide link recovery and signal aggregation to compensate for signal degradation due to 

blockage.  
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5.2   Signal Model  

The HBF framework here assumes a full-duplex downlink channel with reciprocal CSI 

knowledge at the BS and MS nodes. Hence the received RF signal at the antenna lenses in the 

MS (analog side of the precoder) is expressed as: 

ƴan= PBSHz + wl,                                                             (5.1) 

where the complex channel H incorporates blockage effects for sparse-scattering propagation at 

mmWave frequencies. Specifically, this channel is represented as:  

  HBS MS
BS MS

1 1

H ,
K L

l

k lbl

N N
hV U

 




                                                       (5.2) 

where Γbl is the blockage path loss (in dB), and VBS and UMS are the array response vectors at the 

BS and MS, respectively, i.e., RF precoder of the HBF where the channel is captured. Note that 

the LoS path gains follow a Rician distribution model, i.e., hl ~ Ɍ(0, ζ
c
), where ζ

c
 is the ratio 

between the power in dominant first (direct) path component and the available power in the other 

paths (reflected and scattered links). Meanwhile, the overall received signal at the MS after the 

combiner stage CMS at the baseband unit is given by:  

ƴbb=PtrCMS
H

PBSHz+CMS
H

wl,                                                    (5.3) 

where CMS is the MS combiner and is composed of two baseband and analog combiners, i.e., 

CMS= C
bb

Can.  Meanwhile, the instantaneous received signal generated by the p  and c 

beamforming and combining vectors a6 the MS, respectively, ( p ∈ PBS, c ∈ CMS) is expressed 

as: 

ƴ
c, p

 inst
=Ptrc

HpHz+cHwl.                                                       (5.4) 
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Hence the overall response vector for the HBF system at the MS is given by the RF precoding 

matrix, i.e., expressed by periodic array factor in Eq. (3.1). Furthermore, the pointing direction 

Θs
 
 at the BS and MS for each radiated beam b is also given by: 

1 MScos ,
2





   
   

 
s

nd
                                                    (5.5) 

and the HPBW is still given by Eq. (3.2)-(3.3). 

5.3   Blockage Model 

As mentioned earlier, mmWave direct links are very vulnerable and sensitive to 

obstacles. Therefore a blockage model is also incorporated here to capture the transition from 

LoS-to-NLoS operation in the presence of mobile obstacles. This path loss model leverages the 

blockage and distance parameters in [78] as follows: 

          Гbl=𝕀[𝕡(r)] ГLoS(r)+𝕀[1-𝕡(r)] ГNLoS(r),                                        (5.6) 

where 𝕀 is an indicator function that determines the adopted path loss based upon the link-

blockage state, i.e., 𝕀(x) =1 iff  x =1, and 0 otherwise. Furthermore, 𝕡(r) and (1-𝕡(r)) in Eq. (5.6) 

represent the LoS and NLoS probabilities at distance r, i.e., 𝕡(r)= exp (-φr) , where φ  is the 

blockage parameter representing obstacles size and density. Note that the LoS link length is 

proportional to 1/φ. Also, the terms ГLoS(r) and ГNLoS(r) in Eq. (5.6) denote the LoS and NLoS 

path losses and are given by [79]: 

 ГLoS(r) =10log
10
( r0) + 10 δLoSlog

10
(r ),  for LoS,                                 (5.7) 

 ГNLoS(r) =10log
10

( r0) + 10 δNLoSlog
10

(r ),   for NLoS,                             (5.8) 

where δLoS  and δNLoS  represent in order, the PLE for the LoS and NLoS links, respectively. 

Hence if a LoS link is unaffected by blockage, then the NLoS term decays to zero. Overall, this 
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formulation indicates that the probability of encountering denser obstacles increases with larger 

distance (r) values, and hence 𝕡(r) decreases.  

5.4   Link Recovery Method 

In general, initial beam access procedures have to be completed before any link recovery 

can be attempted. Hence the proposed recovery scheme implements the following set of 

procedures. 

1)  Initial Access  

Consider BS and MS nodes operating with B predefined beams generated by RBS and 

 RMS  RF chains, respectively, as shown in Figure 5.1. Here both sides start by initiating an 

exhaustive brute-force search to find the best beamforming and combining vectors. This 

operation returns a primary signal level of ƴc, p
  pri

, corresponding to the single direct LoS path for 

data-plane transmission: 

(c, p)bst = 𝑚𝑎𝑥 (ƴc, p
 inst).                                                    (5.9) 

Now since the BS and MS have already tested the signal levels at all p and c 

beamforming and combining vectors for B possible signal levels, they can readily identify the 

second highest signal level. Specifically, this secondary value is denoted as ƴc, p
 sec and is 

associated with another pair of beamforming and combining vectors, i.e., (c, p)sec. Similarly, the 

third highest signal level, ƴc, p
      ter , can also be resolved, i.e., tertiary value associated with 

beamforming and combining vectors (c, p)ter. Also, the total number of selected redundant links 

is denoted by  RMS-1 (RBS-1 in uplink), and only three directions are analyzed here (although 

further extension to multiple directions is also feasible).  

Now once the primary link selection/establishment procedure is complete using (c, p)pri, 

the subsequent data-plane stage is initiated. Namely, the BS and MS use the primary link 
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(dominant LoS link) for data transmission, i.e., this direct link provides the highest signal levels 

for increased channel capacity. Meanwhile, the RF chains associated with the secondary and 

tertiary signals are also deactivated to reduce power consumption. However, if a high level of 

instantaneous channel capacity is detected, then these chains can be reactivated to achieve spatial 

multiplexing. Namely, secondary and tertiary beam directions are reserved to establish redundant 

beams. Carefully note that ƴc, p
 pri

 >  ƴc, p
 sec  > ƴc, p

 ter  > ƴth  > ƴrx , where ƴth  and ƴrx  represent the 

threshold signal level exceeding channel capacity and receiver sensitivity, respectively, as given 

by Eq. (4.32). Also note that the initial access procedure can be similarly performed by adopting 

codebook structures. 

 

Figure 5.1:  Beamforming and combining vectors at the BS and MS nodes 

2)  Link Recovery Procedure 

Overall, the multiple favorable directions recorded during beam scanning are used during 

the recovery stage. In particular, the best beam direction returning the primary signal is used for 

data transmission as shown in Figure 5.2(a). Meanwhile, the secondary and tertiary beam 

directions are used when the main beam is blocked, see Figure 5.2(b). Hence once a blockage 

effect is introduced, the BS and MS utilize the simultaneous dual-beam and apply EGC to 

compensate for the blocked LoS link. Consider the details.  
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(a) Single beamforming and combining vectors returning primary signal  

 

(b) Simultaneous dual-beam returning secondary and tertiary highest signals 

Figure 5.2: Proposed link recovery method using simultaneous dual-beam hybrid beamforming 

As noted earlier, if the primary link exhibits high signal quality, i.e., ƴc, p
 inst ≥ ƴc, p

 pri
, then the 

HBF only utilizes a single beam generated by a single RF chain. In other words, the remaining 

(RMS-1) chains are deactivated and their affiliated beam vectors are set to null. Thus the HBF 

acts as an analog beamformer in order to reduce power and energy consumption. However, if the 

primary link degrades, these ( RMS-1) chains are now reactivated and data-plane transmission is 

recovered over these redundant links. Specifically, the redundant beam sections provide transmit 

diversity when the received signal level degrades due to increased blockage, i.e., ƴc, p
 inst < ƴ c, p

pri
. 

Furthermore, the same data stream is redundantly transmitted across all beamforming vectors. 

Hence the receiving side, e.g., MS node applies the EGC method to magnify ƴc,p  from all 

reflected paths, i.e., since the dominant link has been blocked. The received EGC signal from 

each redundant link (incorporating blockage) is therefore expressed as: 

ƴ 
c, p

 EGC
 = ƴ

c, p

  sec
 + ƴ

c, p

  ter
 = Ptx csec 

 H p
sec
Hz + csec

 H wl + Ptx cter
 H  p

ter
Hz + cter

 H wl.                  (5.10) 
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Although the primary signal exceeds the secondary and tertiary signals, i.e., ƴ
c, p

  ter
 < ƴ

c, p

  sec
< ƴ c, p

pri
, 

the use of EGC here in Eq. (5.10) compensates for this differential if ƴ 
c, p

 EGC
 ≥ ƴ c, p

pri
. Note that this 

design also assumes non-coherent channels in the secondary and tertiary links, i.e., resulting in 

non-coherent fading and noise correlations. By contrast, coherent channels may cause similar 

signal increments and hence provide zero diversity gain.  

Overall the proposed HBF design implements a form of diversity switched combining at 

the BS and MS, i.e., where ƴ
c, p

  sec
 and ƴ

c, p

  ter
 are co-phased and added constructively. This approach 

magnifies the received signal level to compensate for a degraded/blocked primary link. In 

general EGC is more effective than a maximal ratio combining (MRC) strategy since the best 

directions have already been estimated during the exhaustive search stage (considering 

independent fading channel gains). Hence, the BS and MS nodes can simply establish alternative 

protection links to maintain communication without conducting new search.  

5.5   Performance Evaluation 

The performance of the proposed HBF link recovery scheme is compared to default 

recovery methods in terms of instantaneous received signal level and beam recovery times. The 

study assumes stationary BS and MS nodes operating in a LoS outdoor urban environment with a 

carrier frequency of 38 GHz and channel bandwidth of 500 MHz. Additional network test 

parameters are also summarized in Table 5.1.  

Table 5.1: System parameters for the link recovery scheme 
 
 

 

Category 
 

 

Parameters 
 

Value 
 

System 
 

f
c
(GHz), BW (MHz), ƴ

rx
(dBm) 

 

 

38, 500, -110 
 

Channel 
 

ζ
c
, r0, r  

 

1.8, 5, 200 
 

HBF 
 

Ptr, gn
, NBS,  NMS, a, RBS,  RMS 

 
 

30, 5, 16, 16,1 ,3, 3 
 

Path loss 
 

δLoS,  δNLoS 
 

2, 4 
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5.5.1    Received Signal Level 

The received signal levels at the MS are plotted in Figure 5.3 for various blockage 

parameter settings In general, when the blockage parameter φ = 0, then the NLoS probability is 

(1-𝕡(r)) = 0, and the MS and BS simply operate in LoS mode over a single primary link, ƴc, p
 pri

 > 

ƴth (Section 5.3). However when φ > 0, the density and size of obstacles along the primary link 

path increase, causing severe signal degradation and link failure (NLoS operation).  

 

Figure 5.3: Received signal level at different blockage parameter values 

Now the effectiveness of the proposed scheme method is clearly demonstrated in Figure 

5.3. For example, when the link initially transits from LoS-to-NLoS operation at φ = 0.002, the 

redundant beams are quickly reactivated to magnify incoming signal levels from the dual-beam 

using EGC, i.e., to build alternative links without any iterative beam search. By contrast, the 

(default) adjacent beam scanning method can only maintain the signal level for a short duration, 

after which the link is completely blocked at φ = 0.005. Furthermore, the proposed HBF link 

recovery method only yields a slight degradation in the received signal level, i.e., 10 dBm from 

approximately -40 dBm to -50 dBm. Again, this value compares very favorably to the larger 25 
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dBm loss seen with the adjacent beam scanning technique. In this latter case, the levels fall 

below the receiver sensitivity, resulting in connection drop and repeated beam scanning and 

channel estimation (complexity). 

5.5.2    Link Recovery Times 

Link recovery time is another key performance metric here, and this value is basically 

defined as the scan cycle time to find an alternative (best) link, i.e., to replace a blocked primary 

link. Specifically, the link recovery duration is computed as Tr = Q
c,p

τpss/RMS (in microseconds), 

where Q
c,p

 is the number of signal measurements at different combining and beamforming 

vectors (c, p) for detecting a new best direction. Now in the default adjacent beam scanning 

approach, the BS and MS nodes are forced to reset their spatial search to find a new direction 

after link blockage. Specifically, new beamforming and combining vectors are needed here, and 

these repeated beam search operations will result in prolonged recovery (re-access) times. By 

contrast, the proposed HBF recovery solution delivers near-instantaneous link switchovers. 

Accordingly, the link recovery times are also plotted in Figure 5.4 and confirm much faster 

operation versus the default beam scanning approach in [85], i.e., 50% lower recovery times 

across all tested beamforming vector sizes. Note that the proposed method also maintains 

constant recovery times regardless of the number of transmitted beams and their affiliated 

beamwidths, a key saliency.  
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      Figure 5.4: Recovery times at various number of beamforming vectors 
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Chapter 6 

Conclusions and Future Work 

 

This dissertation studies the topic of initial beam access challenges in beamforming-based 

millimeter wave (mmWave) cellular networks. First, Chapter 2 presents a background review of 

mmWave channel propagation characteristics. Existing research on analog, digital and hybrid 

beamforming designs for mmWave transceivers is then presented. Novel initial beamforming 

solutions are then presented in Chapter 3 based upon several meta-heuristic access strategies, i.e., 

Nelder Mead, Luus Jaakola, hybrid divide-and-conquer and Tabu search, coordinated 

generalized pattern search, and Hooke Jeeves methods. This is followed by analog beamforming 

architectures leveraging sidelobes, grating lobes and beam coding in Chapter 4. Finally, a link 

recovery method is proposed in Chapter 5 to mitigate blockage effects using hybrid 

beamforming. A summary of the major findings from this research are now presented along with 

potential future directions and extensions.  

6.1 Conclusions 

 

This dissertation research assumes directional BS and MS nodes operating in standalone 

outdoor mmWave network environments. Hence all of the access schemes developed here do not 

require any assistance from out-of-band networks. Also, the proposed beam access procedures 

are designed for various mmWave frequencies (28, 38 and 73 GHz) and distances (100, 200, 500 

and 800 m) with provisions for varying sparsity levels.  
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Foremost, initial access is formulated as a search model using analog beamforming and 

codebook designs for random access in the control- or data- plane (Chapter 3). 

Efficient meta-heuristic schemes are then developed to achieve rapid and efficient beam 

access. Overall, some of the key contributions and findings include: 

 Novel cascaded codebook design is proposed based upon uniform linear arrays for 

analog beamforming transceivers. This practical solution considers beam-broadening 

effects and adopts practical microstrip antenna gains for array factor computations. 

 A modified geometric channel model is presented to incorporate sparsity and rank 

levels. The model here also considers a cluster arrival pattern which composed of 

independent and identically distributed rays 

 Novel direct pattern search schemes are proposed to solve the search model in LoS 

(rank-one) environments, i.e., based upon Von Neumann and Levy Flight Nelder Mead 

techniques. These solutions give notably better performance as compared to existing 

access methods, i.e., in terms of computational complexity, access times, energy 

consumption and success rates 

 Access schemes for NLoS environments are also proposed here based upon uniform 

local search procedures for flat-fading channels of long coherence times, i.e., Luus 

Jaakola (LJ), divide-and-conquer with Tabu search (DC-TS) methods. The use of 

localized sub-region searches here also increases detection probabilities and lowers the 

confinement tendency in plateau regions  

 Further, CGPS scheme is built to enhance beam access efficiency for frequency-

selective fading wideband channels. This method constructs bisectional filtering to 

measure spatial regions with higher detection probabilities. Also, the construction of the 

polling directions here resembles rays arrival distribution in the received clusters profile 
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 Modified Hooke Jeeves access scheme is also presented for improved success rates in 

wideband channel bandwidths. This method evaluates multiple directional perturbation 

vectors (upward, downward and sideways) to improve detection of the highest signal 

levels and determine best beamforming and combining vectors 

Nevertheless, despite the above-detailed advantages, conventional analog beamforming 

techniques can prolong beamforming scan cycle and access times due to the use of single 

beamforming and combining vectors. Hence in order to further reduce these times and meet the 

low latency requirements for 5G and beyond standards, novel access schemes are also proposed 

based upon more advanced multi-beam analog beamformers (Chapter 4). Namely, the main 

contributions here are as follows: 

 One of the first schemes is presented to exploit sidelobe information as auxiliary 

information to detect the location of the main lobe during the initial access procedure. 

This approach mitigates the need for exhaustive beam search in multi-resolution 

codebooks. Associated results here show that the sidelobe-based method scheme 

outperforms existing solutions by substantial margins for large BS and MS distances ( > 

800 m) LoS settings 

 Multi-beam analog beamforming transmission is proposed here that leverages grating 

lobes and beam coding for highly-directive initial access. This multi-beam approach is 

analogous to digital and hybrid beamforming techniques in terms of spatial diversity and 

time-division duplexing channel capacity, but yields reduced power consumption.  

 Improved antennas spacing design is presented to avoid enlarged sidelobes and mutual 

coupling. This technique is one of the first to generate grating lobes to increase to 

increase the number of main lobes visible in one beamforming scan cycle 
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 Furthermore, orthogonal block-codes are also developed to be assigned to the radiated 

beams in order to generate distinctive spatial signatures. This orthogonality is preserved 

here by the zero cross-correlation properties of the proposed codes 

 The proposed multi-beam approach is well-suited for highly-directive access and hence 

compensates for low gains associated with wide beams. Also, access times achieved 

here represent one the shortest reported times in mmWave standalone access, i.e. 3-5 ms 

 A novel direct pattern search algorithm is also developed to leverage simultaneous dual-

beam analog beamforming transmissions, i.e., motivated by clusters and rays arrival 

profile of sparse mmWave channels to achieve faster access times 

Channel obstacles and user (MS) mobility can result in mmwave link failure. As a result, 

conventional recovery techniques have to reset spatial search to find alternative beamforming 

and combining vectors. To address these concerns, a new link recovery procedure is also 

presented to mitigate signal degradation using equal gain combining at the receiver (Chapter 5). 

The key contributions and outcomes here are summarized as follows: 

 A novel hybrid beamforming recovery method is proposed for instantaneous link 

recovery during transition from LoS to NLoS settings in Rician channels. This solution 

utilizes the first highest received direction (direct path) for data-plane transmissions and 

further redundant dual-beam along second and third highest directions. These backup 

beams activated/deactivated based upon instantaneous channel capacity status, i.e., 

power efficient recovery scheme 

 The proposed solution incorporates various channel blockage parameters in order to 

model obstacles with different size and shape  

 Equal gain combining technique is also utilized for the first time in mmWave 

transceivers to enhance the received signal levels  
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 Overall, the proposed recovery method eliminates the need for repeated beam scanning 

for alternative spatial directions associated with high received signal levels. Also, the 

solution here yields near-instantaneous recovery times and thereby avoiding connection 

drops 

6.2 Future Work 

This dissertation presents some new innovations and findings for initial beam access 

design in mmWave networks. Furthermore, these contributions also open up several new 

avenues for future research. Some potential major future directions here include: 

 Channel coherence time modeling: Here channel coherence time models need to be 

developed for wide and narrow beamforming and combining vectors, and these 

solutions must also take into account MS mobility and Doppler effects 

 Multi-user beam access: The proposed schemes designed in this dissertation also need 

to be evaluated for more complex multi-user access scenarios. These settings will 

require digital beamforming designs at the BS to support multi-stream transmission. 

Furthermore, co-channel interference effects must also be considered here, and 

interference exploitation and mitigation techniques can also be applied to resolve signals 

of interest 

 Channel estimation: Geometric channel models are generally composes of multiple path 

gains and angles of arrivals/departures (beamforming/combining vectors). Note that 

work in this dissertation has only looked at estimating the latte r quantities. As a 

result, future extensions can develop path gains estimation schemes based upon sparse 

approximation algorithms to estimate overall channel components 

 Edge-user beam access: A MS located near the edge of a cell in an overlay network will 

requires further coordinated multi-point access schemes which incorporate beamforming 
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transmissions. These solutions must necessary consider a wider set of design metirics, 

e.g., such as aggregated power  gains,  channel ranks, diversity gains, and cell breathing 

and off-loading 

 Beam-tracking: User mobility and channel fluctuations can cause mmWave link 

degradation. Hence other key focus areas also include instantaneous link quality 

estimation and the design of rapid beam-tracking schemes to maintain BS and MS mode 

locations 

https://en.wikipedia.org/wiki/Rank_(linear_algebra)
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Appendix A: Glossary of Terms 

AOA          angle of arrival  

AOD          angle of departure  

AWGN      additive white Gaussian noise  

ADC          analog-to-digital-converts  

AWV         antenna weight vectors  

BS                  base stations  

AMP               baseband amplifier  

BB             baseband combiner  

BSC                 bi-static cross section  

BRCS        bi-static radar cross section  

CGPS         coordinated generalized pattern search  

CSI            channel state information  

CP                 cyclic prefix  

CW                    clockwise  

CCW            counter-clockwise  

CCI                 co-channel interference  

CAZAC            constant amplitude zero auto-correlation  

DC-TS             divide-and-conquer with Tabu search  

DIC               data interface cards  

DB                    dual-beam  

DGS             discovery greedy search  

DoF             degree of freedom  

DAC                 digital-to analog-concerts  

DB-ABF          dual-beam analog beamformer  
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EIRP                effective isotropic radiated power  

EDP           enhanced discovery procedure  

EGC             equal-gain combining  

eNodeB      evolved NodeB  

eMBB             enhanced mobile broadband  

EHF                 extremely high frequency  

FCC                Federal Communications Commission  

FSLL              first sidelobe levels  

FDMA            frequency division multiple access  

GPS           global positioning systems  

HJ              Hooke Jeeves  

HBF               hybrid beamforming  

HPBW             half-power beamwidth  

ISI               inter-symbol interference  

IMT            International Mobile Telecommunications  

IR               impulse response  

LTE           long term evolution  

LTE-A       LTE-Advanced  

LJ                  Luus Jaakola  

LoS                  line-of-sight  

LO             local oscillator  

LPF               low pass filter  

LNA          low-noise amplifiers  

MIB                master information block  

mmSCs           mmWave small cells  
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MB-ABF   multi-beam analog beamforming  

M                     mixer  

MIMO       multiple-input multiple-output  

mmWave        millimeter wave  

MM               Main lobe-to-main lobe  

MCS          monostatic cross section  

MS                  mobile station  

MRC             maximal ratio combining  

MPC          multipath components  

mWatts             milliwatts  

NM            Nelder Mead  

NR                    new radio  

NLoS                non-line-of-sight  

OFDM              orthogonal frequency-division multiplexing  

PDP              power delay profiles  

PLE                  path loss exponents  

PDF               probability distribution function  

PDP               power delay profile  

PA                power amplifiers  

PSS            primary synchronization signal  

QAM         quadrature amplitude modulation  

RCS                  radar cross section  

RRH            remote radio heads  

RF                 radio frequency  

RMS          root mean square  
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SNR                 signal-to-noise ratio  

SSS                   secondary synchronization signal  

SLL              side lobe levels  

SoI                    signal of interest  

SM                   sidelobe-to-main lobe  

SS              sidelobe-to-sidelobe  

SB-ABF      single-beam analog beamforming  

SRCS            secondary reference control signal  

SIB             system information blocks  

TDD          time-division duplexing  

3GPP         3
rd

 Generation Partnership Project  

TWDP       two-wave with diffuse power  

TDM           time-division multiplexing  

UHF             ultra-high frequencies  

UE             user equipment  

VCO          voltage-controlled oscillators  

VN              Von Neumann  
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