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ABSTRACT 

 

 

 

Two methods of dielectric characterization are presented that offer quick and cost-

effective solutions for screening complex dielectric material properties. Through Direct-Print 

Additive Manufacturing (DPAM) methods, a dielectric material of choice is dispensed into a 

capacitor structure and characterized through 1-port s-parameter measurements. The presented 

methods use fixtures that are modeled and validated through simulation then implemented in 

practice. Advanced simulations are performed to gain insights which are used to optimize the 

dielectric characterization performance of the fixtures. Additional investigations are performed 

which investigate the durability of the fixture and material within by exposing the combination to 

rough environmental conditions for an extended duration. The presented capacitor structures are 

investigated to characterize dielectric materials within the bandwidth of 0.1-15 GHz, saving the 

time and effort required in using multiple dielectric characterization methods that cover the same 

bandwidth. Both methods are compared based on the results for each method achieved in 

practice while considering the process required perform each method. The pros and cons of the 

presented characterization methods are weighed which highlights the key aspects for 

successfully characterizing dielectric materials with each method as well as revealing the 

potential limitations associated with each.  
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CHAPTER 1: INTRODUCTION  

 

 
 

1.1 Motivation 

Additive manufacturing is changing the world as we know it; transforming traditional 

processes into new digital processes and providing great cost benefits as well as advantageous 

design freedoms. [1] Many aspects of industry are incorporating additive manufacturing methods 

in attempt to find new ways to benefit in their particular sector. One major area of interest for 

incorporation of additive manufacturing techniques is in the area of RF and microwave circuit 

design. The inherent benefits of incorporating these techniques to RF and microwave circuit 

design are the added flexibility and design freedoms. Exploitation of these freedoms can yield 

better electrical and mechanical performance not previously obtainable with traditional methods 

and opens the door for complex but efficient designs. [2]  

 The rapid growth of the additive manufacturing industry for RF and microwave circuits 

has resulted in a large number of commercially available printable materials that cover a variety 

of applications. One of the main categories of printable materials is dielectric inks. Dielectric 

inks come in many colors and viscosities all with particular applications ranging from in-mould 

electronics to flexible and wearable technologies. Many of these new printable dielectrics are 

desired to be used for RF and Microwave applications, and thus, must be characterized in the 

frequency band of interest. Some dielectric information may typically be provided on the 

respective manufacturer’s datasheet, but will likely be limited, if at all available. 
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Traditional dielectric characterization methods require samples to be prepared that are of 

a specific set of dimensions to be used with a cavity specific fixture. For wide-band dielectric 

material characterization, multiple cavities may be required, making the overall process 

potentially slow and inefficient. This work proposes some quick screening solutions for the 

characterization of dielectric inks through utilization of Direct-Print Additive Manufacturing 

(DPAM) techniques. The presented solutions are intended to cut the time out of using multiple 

cavities or methods and could potentially be used in-line with a manufacturing process.  

1.2 Overview 

 The first method of dielectric characterization presented features a circular fixture etched 

from PCB substrate. This method has been the subject of a few papers published from research 

conducted at the University of Massachusetts Lowell where the fixture was used to characterize a 

few different materials for the dielectric permittivity and loss tangent over an appreciable 

bandwidth. Through an admittance analysis method, the capacitor can be used to effectively 

extract the permittivity and loss tangent profile of the dielectric ink that is placed within the gap 

of the fixture.  

In this investigation, an analysis is conducted on the effectiveness of the PCB fixture for 

dielectric properties extraction of dielectric inks. An improved equivalent circuit model of the 

PCB capacitor fixture is presented which is used to derive new extraction equations for 

permittivity and loss tangent based on the input admittance of the fixture. A simulation-based 

circuit model of the PCB fixture is built and simulated to test the effectiveness of the 

methodology and newly proposed extraction equations. This simulation-based model is built 

through optimization fitting the proposed circuit model to 3D simulation data of the fixture 

generated with ANSYS EDT. Through advanced 3D modeling, additional analyses are presented 
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which have not been previously conducted, providing key insights on practical utilization of the 

PCB fixture for dielectric characterization. 

In addition to the PCB capacitor characterization method, a second method of dielectric 

characterization is proposed in which the simplicity of the parallel plate capacitor is exploited. 

With the presented method, a DPAM parallel plate capacitor is printed exclusively by micro-

dispensing conductive and dielectric inks. Through an admittance analysis the capacitor is 

analyzed to extract the permittivity and loss tangent of the dielectric material between the plates. 

The printing of the capacitor is a three-step process by which the capacitor built by stacking layer 

upon layer. The simplicity of the proposed parallel plate extraction method makes for a fair 

comparison to the PCB capacitor fixture extraction method. 

Both dielectric characterization methods presented utilize structures that are 1-port, 

therefore, they are both measured with a single probe in practice. The s-parameter data from the 

1-port measurement is converted into admittance data which is used to construct models of the 

proposed structures. In both cases, circuit models are developed to identify and model the 

parasitics of each structure. Once the parasitics are identified, they are de-embedded from the 

fixture data. The admittance resulting from the de-embedding process is analyzed assuming a 

simplified capacitor model to extract the dielectric properties of interest. 

After the presentation of the extraction methods, the two methods are compared 

analytically from a theoretical as well as practical perspective. An analysis of the pros and cons 

of each method is conducted where the challenges that were overcome with each method are 

considered. The performance of each extraction method is evaluated with the data obtained 

through the various investigations conducted. 
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The material printer utilized to conduct the experiments on the methods presented is a 

Tabletop-3Dn Series nScrypt like that shown in figure 1.1. The printer utilizes a pressurized 

valve system to dispense the ink that is actuated through programming. The desired valve 

actuation is proportional to the particle size of the material being used and determines the printed 

line width. The printer has a resolution of 0.5 um in every dimension with 100 mm of vertical 

range. 

 

 

 

Figure 1.1 - Tabletop Series nScrypt Material printer used to conduct the experiments presented. 
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CHAPTER 2: CIRCULAR PCB CAPACITOR CHARACTERIZATION METHOD 

 

 

 

2.1 Introduction and Background 

The first method of dielectric characterization presented utilizes a circular fixture etched 

from PCB substrate which can be seen in figure 2.1. This fixture was utilized previously to 

characterize a Barium Strontium Titanate polymer and a dielectric ink where it was reported that 

the fixture could yield wide-band dielectric characterization from 1-20 GHz [4,5]. The 

methodology used to characterize those materials with this fixture is explored further and 

improved upon by introducing a new set of equations for the dielectric properties extraction. 

Some additional experiments and analysis are performed to optimize the extraction performance 

of the fixture. 

 The effective capacitance of this circular PCB fixture can be modeled by considering a 

coaxial transmission line as the foundation. With that assumption, the capacitance equation is 

derived from the per-unit-length capacitance of a coaxial transmission line. From the Pozar text, 

the per-unit-length capacitance of a coaxial transmission line is calculated as [6]: 

𝐶′ =
2𝜋𝜀

ln ( 
𝑏
𝑎 )

                                                                    (2.1) 

In equation (2.1), variables a and b are the inner and outer radii of the gap, respectively, 

and are replaced as shown in figure 2.1. Since equation (2.1) represents the per-unit-length 

capacitance, the equation must be multiplied by the length of the assumed coaxial transmission 

line to get the whole fixture capacitance. In this situation the length of transmission line is equal 
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to the thickness of the copper cladding, h, so the per-unit-length capacitance gets multiplied by 

the cladding height to arrive equation (2.2).  

 

 

Figure 2.1 - Depiction of the circular PCB fixture with labeled dimensions and corresponding 

capacitance equation. 

 

The simplicity of the circular design allows for flexibility when it comes to probing the 

structure as measurements can be performed from any angle with an appropriately sized Ground-

Signal-Ground (GSG) probe. The signal pin would land on the center conductor and the ground 

pins are free to land anywhere on the outer conductor across the gap. Two important design 

parameters of interest with this fixture are the gap width, which controls the ratio of Rout to Rin, 

and the cladding thickness, which determines h. 

2.2 Fixture Modeling 

 The equivalent model of the circular capacitor fixture is presented in figure 2.2 [4,5]. The 

gap between the conductors represents a capacitance (Cmat) which can be calculated using 

equation (2.2). To complement this capacitance, there is an associated frequency dependent loss 

mechanism (Gmat) in parallel which is calculated using (2.3). When the fixture is empty (air-

filled), Gmat is zero because air is assumed to be lossless. 

𝐺𝑚𝑎𝑡 = 𝜔𝐶𝑚𝑎𝑡tan ∂mat                                                             (2.3) 

Embedded in the circuit elements Cmat and Gmat, are the dielectric properties of the 

material in the gap where the permittivity is embedded in Cmat and the loss tangent is embedded 

Rin 

h 

Rout 
 

𝐶𝑔𝑎𝑝 =
2𝜋휀ℎ

ln ( 
𝑅𝑜𝑢𝑡
𝑅𝑖𝑛

 )
                          (2.2) 
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in Gmat. There is also an associated parasitic capacitance (Cpar) resulting from the ground plane of 

the PCB which needs to be included in the model along with its associated loss (Gpar) defined by 

the same equation as Gmat. Additionally, an equivalent series resistance (Rs) is included to 

account for the conductor losses. 

 

 

 

 

 

Figure 2.2 - Equivalent circuit model diagrams of the empty fixture (left) and the filled fixture (right). 

With material in the gap, there is an additional loss mechanism, Gmat. 

 

The addition of the parasitic capacitance in the model makes it difficult to de-embed the 

desired parameters of interest. However, if the assumption is made that the parasitic capacitance 

does not change under any circumstance, then some exploitations can be applied to effectively 

subtract out the parasitic capacitance. This assumption was applied previously to arrive at the 

extraction equations that are shown in [4] and [7], derived from the impedance of the structure. 

This same assumption for the parasitic capacitance will be applied to generate a new set of 

extraction equations, derived from the admittance of the structure rather than the impedance. 

2.3 Modeling Analysis 

When a material is present in the gap, there is an additional loss mechanism, Gmat, which 

arises from the loss tangent of that material. The main difference between the empty fixture 

admittance and the material-filled fixture admittance is between Cmat and Gmat, where Cpar and Rs 

are assumed to be equivalent in both the empty and filled cases. This assumption is made since 

neither the conductor nor the substrate should be affected by the presence of a material in the gap 

Cair 

Cpar Gpar 

Rs 
Cmat 

Cpar Gpar 

Rs 

Gmat 
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of the fixture. If the series conductor loss Rs is assumed to be negligible, then the resulting 

admittance equations for the empty and filled fixture scenarios are the following: 

𝑌𝑒𝑚𝑝𝑡𝑦 = 𝐺𝑝𝑎𝑟 + 𝑗𝜔(𝐶𝑎𝑖𝑟 + 𝐶𝑝𝑎𝑟)                                                (2.4) 

𝑌𝑓𝑖𝑙𝑙𝑒𝑑 = 𝐺𝑚𝑎𝑡 + 𝐺𝑝𝑎𝑟 + 𝑗𝜔(𝐶𝑚𝑎𝑡 + 𝐶𝑝𝑎𝑟)                                         (2.5) 

From observation of the provided admittance equations, a note can be made about their 

similarity, only differing by the material capacitance and conductance terms. Assuming that the 

parasitic capacitance is the same for both the empty and filled cases, then by subtracting the 

admittance of the empty fixture from the admittance of the filled fixture, the parasitic 

capacitance term drops out and the result can be analyzed to derive the equations to extract the 

dielectric properties of the material in the gap. 

𝑌𝑓𝑖𝑙𝑙𝑒𝑑 − 𝑌𝑒𝑚𝑝𝑡𝑦 = 𝐺𝑚𝑎𝑡 + 𝑗𝜔(𝐶𝑚𝑎𝑡 − 𝐶𝑎𝑖𝑟)                                     (2.6) 

Embedded in the imaginary part of this result is the material capacitance, containing the 

permittivity of material, and embedded in the real part of this result is the material conductance, 

containing the loss tangent of the material. By taking the imaginary part of this result, the 

material capacitance can be solved for through some algebraic manipulation. A similar result can 

be reached for the loss tangent by taking the real part of equation (2.6). 

𝐼𝑚𝑎𝑔{𝑌𝑓𝑖𝑙𝑙𝑒𝑑 − 𝑌𝑒𝑚𝑝𝑡𝑦} = 𝜔(𝐶𝑚𝑎𝑡 − 𝐶𝑎𝑖𝑟) 

𝐶𝑚𝑎𝑡 =
𝐼𝑚𝑎𝑔{𝑌𝑓𝑖𝑙𝑙𝑒𝑑 − 𝑌𝑒𝑚𝑝𝑡𝑦}

𝜔
 + 𝐶𝑎𝑖𝑟                                           (2.7) 

With the material capacitance, equation (2.2) can be rearranged to solve for the permittivity: 

𝜀𝑟 =
ln (

𝑅𝑜𝑢𝑡

𝑅𝑖𝑛
)

2𝜋𝜀0ℎ
𝐶𝑚𝑎𝑡                                                                (2.8) 

By taking the real part of equation (2.6), only the material conductance term remains: 

𝑅𝑒𝑎𝑙{𝑌𝑓𝑖𝑙𝑙𝑒𝑑 − 𝑌𝑒𝑚𝑝𝑡𝑦} =  𝐺𝑚𝑎𝑡 
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From here, equation (2.3) can be substituted and the result can be re-arranged to solve for the 

loss tangent of the material: 

𝑡𝑎𝑛𝜕𝑚𝑎𝑡 =
𝑅𝑒𝑎𝑙{𝑌𝑓𝑖𝑙𝑙𝑒𝑑 − 𝑌𝑒𝑚𝑝𝑡𝑦}

𝜔𝐶𝑚𝑎𝑡
                                                 (2.9) 

 The real part of the fixture admittance contains the loss mechanisms of the structure, and 

consequently, includes the loss tangent of the material deposited in the gap.  This loss tangent is 

embedded in the additional loss mechanism, Gmat, which represents the frequency dependent loss 

resulting from the presence of a material in the gap. However, this loss term also depends on the 

capacitance of the material in the gap which can now be calculated with equation (2.7).  

 By observing the resulting characterization equations (2.8) and (2.9), it can be observed 

that this method of dielectric parameter extraction is straightforward to perform in practice so 

long as the admittances of an empty fixture and its corresponding filled counterpart are known. 

The admittance can be calculated through a 1-port s-parameter measurement and the well-known 

formulation:  

𝑌𝑓𝑖𝑥𝑡𝑢𝑟𝑒 =
1

𝑍0 

( 
1 − Γe−j2βl

1 + Γe−j2βl
 ) 

In this situation, we are dealing with a one-port structure so the term Γe−j2βl is replaced by 

S(1,1): 

𝑌𝑓𝑖𝑥𝑡𝑢𝑟𝑒 =
1

𝑍0 

( 
1 − S(1,1)

1 + S(1,1)
 )                                                 (2.10) 

 To summarize, characterization of a printable dielectric material with this fixture requires 

admittance data for the empty and filled situations. Then, equation (2.7) is used to calculate the 

capacitance of the material in the gap. From there, the capacitance data is used in equation (2.8) 

to extract the corresponding permittivity. Finally, using the real part of the admittance data, 



10 

 

along with the calculated material capacitance, the loss tangent of the material in the gap is 

calculated using (2.9).  

2.4 Simulations 

 In this section, the circular PCB capacitor is modeled using ANSYS EDT 3D modeling 

and analysis software. The PCB fixture was modeled on a 60mil Rogers RT/Duroid 5870® 

substrate with 1 oz. copper cladding (35 um thickness). The capacitor has an inner radius of 400 

um and an outer radius of 600 um. The goal is to test the proposed extraction method by 

obtaining two 1-port s-parameter data files from the simulation and employ the formulations 

found the in the previous section to arrive at a characterization result. 

 

Figure 2.3 - Model setup in ANSYS EDT with the port definition and integration line shown 

 

The initial model setup can be seen in figure 2.3 along with the port definition. Since the 

capacitance of gap was derived from the coaxial transmission line assumption, the port definition 

resembles the dielectric portion of a coaxial transmission line whose cross-section is parallel to 

60mil Rogers RT/Duroid 5870 
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the surface. The integration line of the port is defined from the edge of the center conductor to 

the edge of the outer conductor.  

 

 

Figure 2.4 - Cross-sectional view of the empty capacitor used to generate Yempty (left), cross-sectional 

view of the filled capacitor used to generate Yfilled (right). The scaling of the dimensions 

were altered slightly to aid the visualization. 

 

Initially, the empty fixture is simulated to generate the s-parameter file that will be used 

to extract Yempty. Then, a material is modeled into the gap like that shown in figure 2.4 and 

another 1-port s-parameter file is generated to extract Yfilled. The material used in this simulation 

experiment is ABS, a commonly used 3D printing material. The relatively permittivity and loss 

tangent were entered into the software as a single scalar value vs. frequency with the goal of 

being extrapolated with equations (2.7) through (2.9) and the methodology presented in the 

previous section. The simulations were run from 10 MHz to 15 GHz after which the data was 

processed through a Matlab script which was used to generate the results shown in figure 2.5. 

The permittivity value used in the simulation was 2.6 and the loss tangent value used was 0.006. 

The script used to perform this simulation data processing can be found in Appendix B. 

From the resulting dielectric properties data it can be observed that the permittivity 

profile was relatively close to the expected value that was specified in the simulation, differing 

by about 7% across the entire simulated band. The loss tangent shows some deviation in the 

lower frequencies, dipping down to as low as 30% difference around 3 GHz. Overall, the
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Figure 2.5 - Results of the PCB extraction method performed on simulation data from ANSYS EDT. The 

Solid blue line is the extracted dielectric property profile from simulation data processed 

with a code in Matlab that performs the functions described in section 2.3. The simulation 

data extraction is compared against the dielectric property profile entered in simulation.  
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simulation based extraction results show some promise for the presented method which was able 

to effectively extract a flat permittivity profile and a loss tangent profile with some accuracy at 

high frequency. 

It should be noted that the situation presented in these simulations thus far is idealistic in 

the sense that the height of the material in the gap is flush with the height of the copper surface. 

In reality, the surface of the dried dielectric within the gap will have some roughness to it. 

Furthermore, the surface of the material in the gap will likely be above or below the surface of 

the copper by some amount. The capacitance equation for the material in the gap is assuming a 

squared-off donut shape, perfectly fitting the fixture. Any deviation from this shape will affect 

the extraction results and such is the case in reality. 

2.5 Practical Considerations and Additional Modeling 

 

 

Figure 2.6 - Depiction of material height and cladding height difference (a) material overflow (b) 

material underflow. 

 

In the previous section, the PCB capacitor was modeled assuming that the material in the 

gap and the conductor cladding have the same height. This assumption allowed the port in the 

3D simulation to resemble that of a coaxial line which resulted in relatively simple extraction 

process for the parameters of interest. In reality, it would be difficult to print material at the exact 

(a) (b) 
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height of the conductor cladding, especially in a uniform fashion across the entire gap of the 

fixture. This section will investigate how the parameter extraction presented is affected as a 

result of minor differences between material and cladding heights. 

The basics of the investigation that is being performed can be seen in figure 2.6 where the 

material in the gap has a different height level than the cladding. Of course, if the height of the 

material is lower than the copper cladding, then the same simulation method used previously 

would suffice, but not if material is higher than the cladding. Practically, a material height above 

the cladding is a reasonable case to consider, however, the model must be altered to do so. 

 

 

Figure 2.7 - PCB capacitor modeling setup with a probe included. The port for the simulation was 

defined as a typical coaxial port on a cross section of the coaxial transmission line of the 

probe. 

 

 The new setup used to investigate the height differences can be seen in figure 2.7 where 

there is now a GSG probe included in the model. Here, the port is defined identically to the first 

case, except now it is located on the coaxial line of the probe. The model presents a challenge in 

the sense that now there is a probe in the way of extracting the parameters of interest. This is not 
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a major issue, though, since the probe can be modeled and de-embedded. The first part of the 

probe is a coaxial transmission line and the second part is a series-shunt LC circuit representing 

the probe fingers. The 3D model and equivalent circuit model of the probe are both shown in 

figure 2.8. The probe was modeled after an 850-pitch GGB Picoprobe which was determined as 

the best sized fit for the given dimensions of the simulated PCB capacitor (details in section 2.4). 

 

 

Figure 2.8 - Equivalent circuit model of the 850-pitch probe used in the simulations. The coaxial portion 

of the probe is modeled as a coaxial transmission line and the fingers were modeled as a 

series-shunt LC network. 

 

 To model the coaxial portion of the probe, a 2-port simulation in ANSYS EDT was 

performed on an equivalent coaxial transmission line 3D model to obtain a 2-port s-parameter 

file. That data file was then ported to Keysight ADS to create a coaxial transmission line model 

from the drop-in coaxial element available in the software. The parameters of the coax model 

were declared as variables that were optimized through simulation. The optimization goals 

minimized the vector magnitude difference between S(1,1) and S(2,1) of each circuit as shown in 

figure 2.9. The resulting model parameters are shown in table 2-1. 

To create a model for the fixture itself, the circuit model presented previously in section 

2.2 is used as the foundation. However, this fixture model now includes a series inductor which 

Probe Finger Model 
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accounts for the inductance resulting from the copper cladding of the fixture. Using the 

simulation setup utilized previously in section 2.4 where the port was flush with the cladding, 

simulation data was generated that was then used to construct the model of the fixture. Similarly 

to the probe model, the fixture simulation data generated in ANSYS is ported to ADS where the 

optimizer minimizes the vector magnitude difference of the S-parameters between the simulation 

and the model. Through this method, a model for the empty air-filled fixture and ABS-filled 

fixture were constructed. 

 
Table 2-1 - Final values of the parameters for the coaxial transmission line model 

 

Parameter Di Do L 𝜺𝒓 𝒕𝒂𝒏𝝏 

Value 176 um 451 um 4 mm 1.324 0.0009 

 

 

Figure 2.9 - Modeling approach for the coaxial portion of the probe. The ANSYS EDT simulation data 

was ported to ADS where the optimizer was used to minimize the vector magnitude 

difference between S(1,1) and S(2,1) of the circuits. 

 

 The complete model of the probe and fixture can be seen in figure 2.10 where the probe 

model is being represented by the box labeled “Probe_Model” at the front of the circuit. Since 



17 

 

the probe and the fixture both have an equivalent series resistance, the two were lumped together 

as the variable Rs on the inductance of the probe fingers as shown in figure 2.8.  

The main parameters of interest when building the fixture model are the parasitic 

inductance (Lpar) and the parasitic capacitance (Cpar). The resistance values are defined by 

equation (2.3) where Gpar is a function of the parasitic capacitance and loss tangent of the 

substrate and Gmat is a function of the loss tangent of the material in the gap and its associated 

capacitance. The material capacitance is calculated using equation (2.2) and the loss tangent of 

the substrate and material are entered as known information. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10 - The full model of the PCB capacitor with probe simulation setup. 

 

 Through the same vector magnitude difference optimization method utilized previously, 

two full fixture models were developed for the air-filled and ABS-filled situations where the 

final values of the optimized parameters can be seen in table 2-2. From the final results shown in 

the table, it can be seen that the assumption about the parasitic capacitance being the same 

between empty and filled scenarios holds true as the values ended up almost identical in both 

cases. The parasitic inductance resulting from the copper cladding was also found to be identical 

in both scenarios, as would be expected.   

 

Probe Model  

(figure 2.8) 

Full Fixture Model 
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Table 2-2 - Values used in the model as well as final optimization values for optimized parameters Lpar 

and Cpar. 

 

Material 𝛆𝐫 𝐭𝐚𝐧𝛛𝐦𝐚𝐭 Cmat Cpar Lpar 

Air 1 0 2.33 fF 215 fF 12.7 pH 

ABS 2.6 0.006 6.06 fF 217 fF 12.7 pH 

  

With the equivalent model shown in figure 2.10, data from the improved simulation setup 

(shown in figure 2.7) can be utilized to generate an effective model of the complete setup. The 

inductance and capacitance values for the probe fingers are still unknown at this point; however, 

the model for the fixture is known and a coaxial model has been built for the probe. Using the 

air-filled and ABS-filled fixture models built previously in conjunction with the coax model, the 

simulation data generated by the setup shown in figure 2.7 is ported to ADS and optimizations 

are run to match the two models to the two simulation data files. Since the only variables left are 

the probe inductance and capacitance, these variables are optimized exclusively and a complete 

model is established. The results of this optimization for the final values of the probe finger 

circuit elements are shown in table 2-3. 

 

Table 2-3 - Final values of the circuit elements representing the probe fingers for the probe model. 

 

Parameter Cf Lf 

Value 6.22 fF 58.9 pH 

 

2.6 Model Testing 

By identifying the values of the circuit elements representing the probe fingers, the model 

of the simulation setup in figure 2.7 has been completed. To test this model, the material 

properties of air and ABS are extracted through de-embedding the fixture parasitics and probe 
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model. After de-embedding the probe and fixture parasitics, the only part that remains is the 

donut shaped volume of the gap which contains the material properties as shown in figure 2.11. 

An analysis of the input admittance of this de-embedded result will provide the dielectric 

parameters of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.11 - Visual representation of the effect of de-embedding the probe and fixture models from the 

simulation data. After the de-embedding process, all that remains is the squared-off donut-

shaped gap that contains the material circuit elements: Cmat and Gmat. 

 

The assumption is that the resulting donut shape is a two-element circuit where the input 

admittance (Yin) is a function of Gmat and Cmat, the parameters bearing the dielectric properties of 

interest. With this assumption the material capacitance can be solved for by taking the imaginary 

𝑡𝑎𝑛𝜕𝑚𝑎𝑡 =  
𝑅𝑒𝑎𝑙{𝑌𝑖𝑛}

𝜔𝐶𝑚𝑎𝑡
 

Probe and 

fixture 

parasitics de-

embedding 

Model of resulting 

donut shape 

From equation (2.3) 

𝐶𝑚𝑎𝑡 = 
𝐼𝑚𝑎𝑔{𝑌𝑖𝑛}

𝜔
 

Yin 

𝑌𝑖𝑛 = 𝐺𝑚𝑎𝑡 + 𝑗𝜔𝐶𝑚𝑎𝑡 

Gmat Cmat 

𝜀𝑟 =
ln (

𝑅𝑜𝑢𝑡

𝑅𝑖𝑛
)

2𝜋𝜀0ℎ
𝐶𝑚𝑎𝑡     

𝐺𝑚𝑎𝑡 =  𝑅𝑒𝑎𝑙{𝑌𝑖𝑛} 

From equation (2.2) 
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part of the input admittance and performing some algebra. With this capacitance, the resulting 

permittivity can be calculated with (2.2). The loss tangent is embedded in the real part of the 

admittance. However, the assumption here is that the real part of the input admittance is equal to 

Gmat; therefore, equation (2.3) can be substituted accordingly and the result can be rearranged to 

solve for the loss tangent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.12 - De-embedding process to extract dielectric properties from the PCB fixture and probe 

simulation setup. The resulting input admittance is calculated and the dielectric 

parameters are extrapolated. 

 

The schematic used for the de-embedding process is shown in figure 2.12 along with 

some description on how the process is laid out. The simulation data from the complete setup in 

figure 2.7 is fed into the block on the right hand side of the schematic. The de-embedding box to 

the left of the simulation data contains the model parameters (minus the circuit elements 

Probe and fixture model data are 

called in the de-embed block as a 

dataset. Material circuit elements 

are removed from the model 

Simulation data from the ANSYS EDT 

setup shown in figure 2.7 

Admittance 

of the result 

is calculated 
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representing the material). The resulting S-parameters of this circuit are converted to admittance 

values which are analyzed to extract the dielectric properties of the material in the gap through 

the analysis method shown in figure 2.11. 

 

 

Figure 2.13 - Results of the extracted permittivity and loss tangent through de-embedding the probe and 

fixture parasitics then analyzing the resulting admittance. 

 

The results of the admittance analysis of the de-embedded simulation data can be seen in 

figure 2.13 where the permittivity and loss tangent profiles are plotted vs. frequency. From the 

data, it can be observed that the loss tangent extraction of ABS has improved from the last 

attempt, particularly from 0.1-12 GHz. The permittivity extraction results are now within ±4% of 

the expected value, an improvement from the 7% difference seen with the previous attempt. 

Input Permittivity Profile 

Input Loss Tangent Profile 
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However, in both cases there are some parasitics that were not effectively modeled and are 

revealing themselves as oscillations around the expected result.  

2.7 Material Height vs. Cladding Height Analysis 

 With a model of the PCB fixture developed, an additional advanced analysis can be 

performed. In this section, an investigation is conducted where the height of the material within 

the gap is varied to observe the effects on the extraction of the dielectric properties. Different 

material height levels were chosen with respect to the cladding height, some above and some 

below. The relative height values chosen for this analysis were: 3 um, 1 um, 0 um, -1 um, and -3 

um where 0 um represents the material height being equal to the copper cladding height and the 

negative values represent a material height below the cladding height. A visual representation of 

what is being described can be seen in figure 2.6. 

By running the simulation setup with the material in the gap at the relative heights 

mentioned, a series of s-parameter files are generated. Then, each s-parameter file is put through 

the de-embedding process described in the previous section. The results of the extracted 

permittivity and loss tangent for these different situations are shown in figure 2.14 where the red 

line represents the condition where material height is equal to the cladding height (results from 

the previous section).  

From inspection of the results, it can be observed that the height of the material within 

the gap should be carefully controlled. Any deviation from the perfect donut shape results in a 

respectable difference in extracted dielectric properties. This is an important consideration in 

practice, primarily because the material and the cladding are typically not going to be at the exact 

same height, and especially not in a uniform fashion throughout the gap. Surely, there will be 

some roughness in the dielectric, resulting in slight deviations from the perfect donut shape. 
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However, this is also assuming that the material was printed at the exact height of the cladding 

which is difficult in practice; especially considering 1oz cladding which is only 35 um thick. 

Rather, it would be simpler to print an overflow situation, and then sand down the excess 

solidified dielectric to make the cladding flush with the material surface. 

 

 

Figure 2.14 - Permittivity and loss tangent extraction results for different material heights with respect to 

the cladding height. Relative values were selected above and below the surface where the 

ideal case, 0 um, is shown in red.  

 

 The simulations performed in this analysis revealed that any deviation from the ideal 

situation where the material perfectly fits the cavity has its consequences. Just one micron 

difference between the two heights results in roughly 8% difference in extracted permittivity and 

30% difference in extracted loss tangent at 3 GHz. Such a deviation would be very easy to 

achieve in practice, highlighting an important consideration when using this characterization 

method. Additional measures should be taken to ensure that the material height and the cladding 

height are equal to ensure the least possible extraction difference. 

2.8 Measurements 

 In this section, the proposed circular PCB capacitor method of dielectric characterization 

is tested through measurement of fixtures loaded with dielectric ink. The capacitors were 

prepared by a copper etching process on Rogers 5870 substrate with 1oz. copper cladding (35 

+3 um +3 um 

+1 um +1 um 

-1 um 

-3 um 

-3 um 

-1 um 
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um). The resulting copper etched fixture is shown in figure 2.15 along with a fixture that has 

been filled with a dielectric. To begin the characterization of dielectric inks with this method, 

first the fixtures that will be used in the characterization should be selected and measured for 

their inner and outer radii. For this analysis, a sample set of five fixtures were chosen whose 

dimensions are listed in table 2-4. The dimensions of the fixtures were obtained through 

microscope measurements with a calibration slide. From the table, some spread in the dimension 

values can be observed as a consequence of the etching process. 

 
Table 2-4 - Values of the inner and outer radii of the fixtures used in the characterization study. 

Parameter Fixture 1  Fixture 2 Fixture 3 Fixture 4 Fixture 5 

Rin  356.4 um 357.7 um 359.1 um 344.3 um 345.6 um 

Rout 557.4 um 571.7 um 564.0 um 569.4 um 566.7 um 

 

 

 

 

 

 

 

 

Figure 2.15 - Empty air-filled fixture (left) and its corresponding dielectric-filled counterpart (right). 

 

With the fixtures selected and dimensions measured, the next step is acquisition of the s-

parameter data of the empty fixtures. First, a good one-port probe-tip calibration must be 

achieved on the vector network analyzer that is desired to be used for the measurement. With an 

Rout 

Rin 



25 

 

acceptable calibration on the VNA, the air-filled fixtures are measured for their one-port S-

parameters which will later be used to calculate Yempty. Then, the fixtures are taken to the nScrypt 

printer where the dielectric ink that is desired to be characterized is printed within the gap. Since 

the dielectric ink requires curing, the samples are placed in an oven where the residual solvent 

within the ink evaporates out as the dielectric bulk solidifies. The resulting samples are then 

taken back to the VNA with the previous calibration that was used for the air measurements, and 

a new set of measurements are taken of the material filled fixtures. 

Based on the result of the advanced simulation modeling in the previous section, the 

material in the gap of the samples should be sanded down to the level of the copper cladding 

prior to the second set of measurements to reduce the amount of deviation in the extraction that 

results from mismatching height levels. In practice, it is easy to print above the level of copper 

cladding due to physical limitations of the minimum thickness of dielectric material that can be 

printed.  

The measurements of the PCB capacitor samples were made on a Keysight ENA Series 

Network Analyzer which was calibrated from 10 MHz to 18 GHz. There are 401 points in the 

measurement and an averaging factor of 16 was used. The samples were measured with an 850-

pitch GGB Picoprobe that was calibrated out to the probes tips using a CS-10 calibration 

substrate. 

After sanding down the samples and measuring them for S-parameters, the data was 

processed using the same MATLAB script utilized previously (found in appendix B). The results 

of this measurement-based extraction performed the dielectric ink can be found in figure 2.16 

where the data is being compared to characterization results from two Damaskos cavity 
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resonators that cover a similar bandwidth. The details of the dielectric characterization process of 

the ink with the Damaskos cavities can be found in appendix A. 

The resulting permittivity and loss tangent from the five PCB capacitor samples is 

consistent with the exception of the sample 5 permittivity profile which differed from the other 

samples by about 25%. Upon further investigation, it was found that the dielectric appeared to 

have a slightly over-sanded surface with respect to the other samples. Additionally, the surface of 

the dielectric had a characteristic air bubble. As a result of these surface impurities, the measured 

dielectric bulk is now a combination of the dielectric and air, resulting in a lower-than-average 

dielectric constant and loss tangent extraction. 

The results of the measured extraction show that the presented method can be a quick and 

useful way to screen a dielectric ink for its characteristic properties. With the exception of 

sample 5, the permittivity results were accurate up to about 10 GHz. The other four samples had 

extracted permittivity values that were within ±8% difference of the expected value from 2-10 

GHz. The loss tangent results of the first four samples from 2-8 GHz differed from the 

Damaskos results by about 50% from 2-8 GHz. In the same frequency ranges, sample 5’s 

permittivity extraction differed from the Damaskos results by roughly 20% and the loss tangent 

extraction differed by about 70% as a result of its characteristic surface impurities. At around 9 

GHz, the loss tangent extraction begins to deviate, indicating a potential limitation with this 

method. The permittivity extraction appears to be valid over a slightly wider bandwidth, but 

unfortunately starts to deviate around 12 GHz. Certainly, the samples did not achieve the 1-20 

GHz characterization that was set out to be achieved. 
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Figure 2.16 - Results of the measured PCB capacitor extraction of dielectric properties compared to 

Damaskos results. Five samples were prepared with dielectric ink 1in the gap. 
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2.9 Temperature and Humidity Testing 

 In the previous section, PCB capacitor samples were measured for s-parameter data 

which was used to extract the dielectric properties of the material in the gap. As an added 

analysis, those samples are put through a long-term temperature and humidity test to observe the 

effect on the dielectric material and PCB characterization process. The environment inside the 

chamber is held at a constant 85ºC and 85% relative humidity. At certain checkpoints, the 

samples are removed and measured for s-parameter data which is used to perform the extraction 

process for dielectric permittivity and loss tangent demonstrated in the previous section. The test 

is performed in a CSV Micro Climate Temperature and Humidity Chamber for a duration of 

1000 hours. After 150 hours, the samples were removed and measured for S-parameters then 

placed back in the chamber to complete the 1000 hour cycle. The samples are measured again at 

the end of the 1000 hours. 

 After one week inside the temperature and humidity chamber, the samples were removed 

and measured for S-parameters. This s-parameter data is converted to admittance data and 

analyzed with equations (2.7)-(2.9) to extract the dielectric properties of the material in the gap. 

The resulting permittivity and loss tangent profiles are shown in figure 2.17 along with the 

Damaskos cavity data from Appendix A.  

 After 150 hours inside the testing chamber under the conditions described, the samples 

were removed and measured for S-parameters. This s-parameter data was used to extract the 

dielectric properties profile as previously demonstrated. As a result of this 150 hour testing 

process, the extracted permittivity profile of the samples decreased collectively as all of the 

samples now have permittivity profiles that fall below the Damaskos results 2-18 GHz. 
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Additionally, the extracted permittivity profiles of the samples do not have as much spread 

between them as they did before the 150 hour test.  

 When the samples were recovered from the chamber, there were small pools of standing 

water around the samples and the surrounding copper cladding was entirely oxidized. Some 

sanding was performed to eliminate the oxidation layer before proceeding with the s-parameter 

measurements of the samples. This sanding process could have resulted in unintentional sanding 

of the dielectric surface causing the level of the material surface to descend relative to the level 

of the copper cladding surface. Recalling the results of the material vs. cladding height analysis 

in section 2.7, the unintentional sanding of the dielectric material surface would lower the 

extracted permittivity. 

 

 
 

Figure 2.17 - Results of the 150 hour temperature and humidity test at 85ºC and 85% relative humidity. 

Initial PCB capacitor extraction results are included for reference. 

Initial Permittivity Initial Loss Tangent 

150-Hour Permittivity 150-Hour Loss Tangent 
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 After 1000 hours inside the chamber, the samples were removed and lightly sanded to 

eliminate the oxidation while trying to preserve the dielectric material height level. Upon 

examination of the samples, the dielectric in the gap appeared deformed. Under a microscope, 

there was a noticeable difference between the material and copper cladding height levels. To 

investigate, some profile measurements were taken of the samples which revealed that there was 

an additional micron or two of height difference between the dielectric material surface and 

cladding surface on average across all of the samples that was not present before the chamber 

testing. It is possible that the dielectric material suffered from some shrinkage as a result of the 

chamber environment. The extracted permittivity and loss tangent profiles of these samples after 

the 1000-hour test are shown in figure 2.18 along with the 150-hour test data for reference.  

  The extracted permittivity profiles of the samples further decreased collectively with 

respect to the results of the 150-hour test. This was expected, considering the observations made 

of the samples dielectric surface profile. The amount of deviation in permittivity is consistent 

with the results of the cladding vs material height analysis. Sample 1 had a dielectric surface 

which was roughly a micron below the cladding and resulted in about 9% permittivity deviation. 

Additionally, the loss tangent results are trending lower than before, especially at the high 

frequencies. Now the samples extracted loss tangent is closer to that measured by the Damaskos 

cavities from 10-16 GHz.  

It cannot be overlooked that the samples had to be sanded down each time they were 

measured due to the presence of oxidation on the cladding after each test. Each sanding attempt 

could have chipped away at the dielectric material surface, contributing to the difference between 

material and cladding height levels and lowering the extracted permittivity. This could also be 

the reason why the spread between the samples decreased after each trial. The repeated sanding 
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could have resulted in samples with dielectric heights at similar levels. After the 1000-hour test, 

it can be concluded that the samples suffered some sort of damage or deformation either from the 

environment or as a result of the sanding process, or both. 

 

 
 

Figure 2.18 - Results of the 1000-hour temperature and humidity test at 85ºC and 85% relative humidity. 

One-week extraction results are included for reference. 

 

2.10 PCB Capacitor Gap Length Analysis 

 Up to this point, only a particular set of PCB capacitors have been studied which have 

similar inner and outer radii dimensions. In this section, a set of PCB capacitors with larger gap 

sizes are utilized to perform the presented extraction method conducted in section 2.8. The goal 

is to observe how the increased gap size affects the results of the extraction of dielectric 

150-Hour Loss Tangent 150-Hour Permittivity 

1000-Hour Permittivity 1000-Hour Loss Tangent 
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properties. The samples that were chosen as for larger gap size analysis are shown in table 2-5. 

From the table, it can be noted that the samples have a very similar inner radii to the previously 

characterized smaller gap samples. However, these new samples have gap sizes that are 320 um 

on average. This is 52% larger than the previous samples which had an average gap size of 210 

um. 

 

Table 2-5 - Values of the inner and outer radii of the fixtures used in the larger gap analysis. 

Parameter Fixture 1  Fixture 2 Fixture 3 Fixture 4 

Rin  322.5 um 337.1 um 334.0 um 328.6 um 

Rout 639.3 um 664.3 um 658.5 um 644.4 um 

 

 

Figure 2.19 - Resulting permittivity and loss tangent profiles extracted using the PCB method on samples 

with a larger gap size.  
 

 The preparation of the samples and s-parameter measurement process performed to 

characterize these samples is identical to that which is detailed in section 2.8. The dielectric 

material dispensed in the gap of the samples is the same as used previously and was cured under 
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the same conditions. The resulting extracted of permittivity and loss tangent from the s-

parameter data of the measured larger gap samples are shown in figure 2.19. 

The PCB extraction method with the larger gap samples shows more spread in the 

permittivity results than the previously conducted extraction attempt with the smaller gap 

samples. Additionally, the larger gap PCB samples have extracted permittivity profiles that are 

larger on average than the smaller gap samples. The average of the extracted loss tangent of the 

larger gap samples at the lower frequencies is between 0.015-0.017. This is over 30% lower than 

the previously extracted average of 0.025 achieved with the smaller gap samples. The plots of 

the calculated average permittivity and loss tangent profiles for both sets of samples are shown in 

figure 2.20 compared against the Damaskos results. 

 

Figure 2.20 - Average extracted permittivity and loss tangent profiles through the PCB method with 

fixtures of different gap sizes. Results of the extraction are compared to results of 

characterization of the material with Damaskos cavity resonators. 
 

 By increasing the gap size, the capacitance of the PCB capacitor structure is decreased 

which increases the input impedance seen in a measurement scenario. One possible reason for 

the increase in the spread between the extracted permittivity profiles with the larger gap samples 
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comes from the fact that the samples have a larger impedance seen in measurement. According 

to Agilent’s Impedance Measurement Handbook, s-parameter measurements should be made on 

fixtures with a magnitude of impedance that is within 1-200 Ω to guarantee results within 10% 

measurement accuracy [8]. Figure 2.21 shows the typical impedance magnitudes seen by PCB 

samples loaded with dielectric ink. From the figure, it can be observed that the increased gap size 

results in an increased measured impedance magnitude, drifting away from the desired range of 

impedance magnitude desired for s-parameter measurements. Thus, increasing the gap size of the 

fixture introduces the potential for larger measurement error. 

 

Figure 2.21 - Typical impedance magnitude seen from a material-filled PCB fixture in practice: red – 

smaller gap, blue – larger gap. The measured impedance magnitude should be within the 

1-200 Ω range for an effective s-parameter measurement. 
 

 Overall, the PCB extraction method is straightforward to perform, requiring a two sets of 

admittance data and a couple equations to reach a result. However, the fixtures must be prepared 

through an etching process resulting in fixtures of variable gap sizes, and thus, variable and 

uncontrollable impedances. Additionally, the capacitance of the structure was found to be as 

10% measurement 

accuracy cut-off 
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small as a few femtofarads which yields high magnitude input impedances seen by the 

measurement out to several gigahertz. This was found to be problematic for s-parameter 

measurements which require the measured impedance to fall within a particular range for reliable 

accuracy.  

Increasing the gap size of the fixture resulted in a wider spread of extracted permittivity 

results and lower than average loss tangent extraction. The smaller gap fixtures were found to be 

more effective for characterizing the dielectric material, showing ±8% difference in the 

permittivity results from the expected Damaskos results from 2-10 GHz, but still about 50% 

difference in loss tangent at low frequency. The lost tangent extraction was found to be effective 

out to about 10 GHz before deviating away from the Damaskos results.  
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CHAPTER 3: DPAM PARALLEL PLATE CHARACTERIZATION METHOD 

 

 

 

3.1 Introduction and Background 

 In the previous chapter, a method of dielectric characterization is introduced that is 

simple to perform, but has some drawbacks. One drawback is the fixture is prepared through a 

copper etching process which results in fixtures with variable gap sizes. Additionally, the 

impedance of the structure was found to be quite large which is problematic since reflection 

measurements have a limited impedance magnitude that can be measured effectively. The PCB 

method was able to extract a wide-band permittivity and loss tangent result, but the loss tangent 

result showed as much as 50% deviation from the expected value at low frequency. 

To work around some of the drawbacks experienced with the circular PCB fixture 

characterization method, a new method of dielectric characterization is presented by which the 

simplicity of parallel plate capacitor theory is exploited. With the proposed method, a parallel 

plate capacitor is fully printed in a three-dimensional fashion using DPAM methods where the 

dielectric to be characterized is sandwiched between two conductive layers. The proposed 

structure is printed through a three-step process which is exclusively built through micro-

dispensing material ink.  

The parallel plate capacitor is a structure that is understood well fundamentally; its 

simplicity is the key to the presented characterization method. A parallel plate capacitor consists 

of two conductor plates that are parallel to each other and at different voltage levels, resulting in 
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an electric field between the plates. Insertion of a dielectric material between the plates perturbs 

the electric field and the capacitance of the structure increases.  

3.2 Model Development 

 

 

 

 

Figure 3.1 - Depiction of a parallel plate capacitor and corresponding capacitance equation. 

 

The main parameters of interest in the design of a parallel plate capacitor are the area of 

the conductor plates (A) and the distance between them (d). A visual representation of an air-

filled parallel plate capacitor is shown in figure 3.1 along with the classical formula used to 

calculate the capacitance of the structure [3]. The perturbation of the electric field by an arbitrary 

dielectric is accounted for by the inclusion of the relative permittivity term (𝜀𝑟) in equation (3.1). 

 

 

Figure 3.2 - Schematic representation of the ideal parallel plate capacitor circuit model. 

 

𝐺𝑚𝑎𝑡 = 𝜔𝐶𝑚𝑎𝑡𝑡𝑎𝑛𝛿  𝐶𝑚𝑎𝑡 = 휀0휀𝑟
𝐴

𝑑
  

*Equation (2.3)* *Equation (3.1)* 

d A 
𝐶 = 휀0휀𝑟

𝐴

𝑑
                                    (3.1) 

𝐸   

Parallel Plate Capacitor 

Capacitance Equation 
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If such a structure could be printed, then theoretically the dielectric properties of the 

material between the plates could be characterized with a similar circuit analysis method used in 

the previous chapter. The model of a parallel plate capacitor is a capacitance (Cmat) and its 

corresponding loss (Gmat) expressed as a conductance like that show in figure 3.2. Embedded 

within the capacitance is the relative permittivity of the material between the plates, embedded 

within the conductance is the material’s loss tangent.  

3.3 DPAM Parallel Plate Capacitor Design 

With the presented circuit model, the dielectric characterization process through 

utilization of a parallel plate capacitor appears straightforward. To maintain this simplicity, the 

proposed parallel plate capacitor design should introduce as little parasitics as possible to ensure 

that the dielectric properties are effectively extracted. Additionally, the capacitor design should 

be measureable using only a single probe to be comparable to the PCB capacitor method of 

dielectric characterization.  

The proposed DPAM parallel plate capacitor that will be investigated and utilized to 

characterize dielectric inks is shown in figure 3.4. This parallel plate design features a top and 

bottom conductor plate that meet at a single probing area, providing the benefits of a 1-port 

measurement. The probing area is a set of coplanar waveguide pads where the signal pad is 

connected to the top plate via a printed bridge and the ground pads are connected to the bottom 

plate underneath the dielectric layer. 

The main parameters of interest when designing the DPAM parallel plate capacitor start 

with the parameters that control the parallel plate capacitance, the conductor plate area (A) and 

the distance between the plates (d). The other two parameters of interest are the pad width (W) 

and the gap length (G). These parameters control the dimensions of the probing area and are 



39 

 

important to consider because they determine the probe pitch required to effectively measure the 

capacitor in practice. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – The proposed DPAM parallel plate capacitor design with labeled parameters of interest. 

 

Printing the proposed parallel plate capacitor would be done as a three step process which 

is detail in figure 3.4. First, the ground plate would be printed along with the entire set of probe 

pads. Here the signal pad is an isolated conductor surrounded by the ground plane at a distance 

G. Then, the dielectric layer is printed down on top of the ground plate. Part of this dielectric 

layer extends out over the edge of the pads to create a ramp area in preparation for the future 

bridge connection. The final step involves dispensing the top conductor plate as well as a bridge 

down to the signal pad below via the ramp area created by the sloping dielectric. An important 

note is that the printing process requires each layer to be individually cured after printing in order 

to create a solid surface for the next layer to be printed upon. 

G W 
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Figure 3.4 - Details of the three-step printing process of the DPAM parallel plate capacitor. 

 

3.4 DPAM Parallel Plate Capacitor 3D Modeling and Analysis 

 Following the three-step capacitor building methodology, a 3D simulation setup was built 

in ANSYS EDT which is shown in figure 3.5. This parallel plate model setup is utilized to 

generate 1-port S-parameters data files that are analyzed to extract the permittivity and loss 

tangent from the dielectric material in the middle layer. The initial assumption is that the circuit 
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model equivalent of the parallel plate structure is that of the ideal parallel plate model shown in 

figure 3.2. 

3.4.1 Model Construction 

When constructing the 3D model setup of the parallel plate capacitor, measures were 

taken to ensure the practicality of the simulation so that it can be comparable to measured data of 

an identically printed parallel plate capacitor in the future. The proposed parallel plate capacitor 

is modeled on top of 60mil Rogers RT/duroid 6010 substrate and was designed with a conductor 

cladding thickness of 25 um and a dielectric material thickness of 100 um. These values

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Simulation setup in ANSYS EDT of the DPAM parallel plate capacitor. The capacitor was 

modeled on top of 60mil Rogers RT/duroid 6010 substrate. The defined port is a wave port 

with the integration line shown. 

 

Integration Line 
60mil Rogers RT/Duroid 6010 

CPW Port Window 
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were selected by considering practical values for the thicknesses of the conductive and dielectric 

inks to be used in the practical implementation of the design. The pads were designed with a 600 

um width (W) and a 400 um gap length (G) between them to accommodate measurements with a 

1200-pitch GSG probe.  

The area of the top plate was chosen to be slightly smaller than the area of the bottom 

plate to help prevent shorting between the top and bottom layers when printing the structure in 

practice. The final design value for the width of top plate is 2.4 mm and the final value of top 

plate length is 1.8 mm. These values for the plate dimensions were selected to bring the 

magnitude of the impedance of the proposed parallel plate design within the 1-200 Ω impedance 

range that is desired for accurate reflection measurements. This direct control over the 

impedance of the structure highlights one of the benefits of the proposed extraction method. The 

defined port for the simulation is a wave port with an integration line from the center conductor 

to the outer conductor, parallel to the surface of the substrate. 

3.4.2 Ideal Model Assumption 

 With the constructed model of the parallel plate capacitor, a simulation is run from 0.1-10 

GHz to generate a set of 1-port s-parameter files to be converted to admittances and analyzed. 

With the assumption that the parallel plate structure presented possesses a model like that shown 

in figure 3.2, the dielectric parameters of interest can be extracted with an admittance analysis. 

By the equations shown in the figure, the material capacitance, Cmat, can be extracted from the 

imaginary part of the admittance, resulting in the extraction of the permittivity. The loss tangent 

can be extracted from the real part of the admittance: 

𝑅𝑒𝑎𝑙{𝑌𝑖𝑛} = 𝜔𝐶𝑚𝑎𝑡𝑡𝑎𝑛𝜕𝑚𝑎𝑡 

𝐼𝑚𝑎𝑔{𝑌𝑖𝑛} =  𝜔𝐶𝑚𝑎𝑡 
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𝐶𝑚𝑎𝑡 = 
𝐼𝑚𝑎𝑔{𝑌𝑖𝑛}

𝜔
                                                              (3.2) 

With the material capacitance, Cmat, the permittivity and loss tangent can be calculated as: 

𝜀𝑟 =
𝑑𝐶𝑚𝑎𝑡

𝜀0𝐴
                                                                    (3.3) 

𝑡𝑎𝑛𝜕𝑚𝑎𝑡 =
𝑅𝑒𝑎𝑙{𝑌𝑖𝑛}

𝜔𝐶𝑚𝑎𝑡
                                                           (3.4) 

where equation (3.3) is the rearranged form of equation (3.1) for ideal parallel plate capacitors. 

Equation (3.4) is the rearranged form of the equation that defines Gmat. 

To begin the simulation extraction process, the generated 1-port s-parameter data from 

the 3D model in figure 3.5 is ported to Keysight ADS. Using the tools available in the software, 

the S-parameters are converted to admittances and equations (3.2)-(3.4) are utilized to extract the 

dielectric properties of the material simulated between the plates. In this simulation, the 

dielectric material between the plates is a custom created material whose permittivity was 

specified in simulation to be 11.9 and the loss tangent was specified to be 0.025. These values 

were chosen based on the average values of the Damaskos characterization results of the 

dielectric ink in Appendix A. The results of the dielectric properties extraction are shown in 

figure 3.6. 

From the results of the extraction, it is clear that there are some lingering parasitics in the 

structure which are causing the extraction results to tend to infinity with increasing frequency. 

As a result, the extraction of permittivity has its lowest percent difference of roughly 15% 

between 0.1-1 GHz and from there increases exponentially with frequency. The loss tangent 

extraction hits the desired value of 0.025 at 100 MHz, but quickly rises to 0.028 at 200 MHz and 

continues to deviate with increasing frequency.  
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Figure 3.6 - Results of the permittivity and loss tangent extraction assuming the ideal parallel plate 

capacitor model. The dielectric material used in the simulation is s custom created material 

whose permittivity was specified as 11.9 and loss tangent specified as 0.025. 

 

One important consideration is that the assumed model in this extraction method is the 

ideal model of a parallel plate capacitor. In reality, the conductor plates introduce some 

inductance which would certainly affect the extraction results since both the permittivity and loss 

tangent depend on the material capacitance, Cmat, which is derived from the imaginary part of the 

input admittance. Any stray reactance such as the proposed parasitic inductance must be properly 

accounted for to ensure the best possible extraction results of the dielectric property extraction 

with this method. 

3.4.3 Improved Modeling Approach 

 To account for the parasitic behavior affecting the extraction results, a series inductor is 

added to the ideal parallel plate model to arrive at a revised model which is shown in figure 3.7. 

With this theoretical model as a foundation, a circuit model of the parallel plate capacitor can be 

constructed with the newly added parasitic inductance (Lpar) included. From there, the parasitic 

inductance can be de-embedded from the admittance data to improve the bandwidth of the 

extraction result for permittivity and loss tangent with the proposed method.  

Input Permittivity Profile 

Input Loss Tangent Profile 
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Figure 3.7 - Revised model of the proposed DPAM parallel plate capacitor. 

 

To generate the circuit model of the parallel plate capacitor, a schematic in ADS is 

constructed with the revised model in figure 3.7 which is fit to the data from the 3D simulation 

like that shown in figure 3.8. From here, a vector magnitude difference optimization is run to 

solve for the parameter of interest, Lpar. The permittivity and loss tangent of the dielectric 

material are entered as known information which means a ballpark figure for Cmat and Gmat can 

be calculated with the corresponding equations referenced in figure 3.2. The expected value for 

Cmat is about 4.8pF and the assumed loss tangent value for Gmat is 0.025. The variables Cmat and 

Gmat are given a ±5% degree of freedom in the optimization to help provide a better fit to the data 

presented.  

After performing the optimization process described, a value for the parasitic inductance 

is obtained. With the parasitic inductance value, a schematic is created which generates a 2-port 

dataset file of that inductance. The resulting dataset file is placed within a de-embedding block 

which is placed in front of a dataset block containing the simulation data from the 3D model 

simulation. As a result, the parasitic inductance is de-embedded from the 3D simulation data, 

leaving only Cmat and Gmat. The S-parameters of the de-embedded simulation data are converted 

Cmat Gmat 

Lpar 

Additional 

Parasitic 
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to admittance data which is analyzed with equations (3.2)-(3.4) to extract the permittivity and 

loss tangent profiles. The results of the dielectric properties extraction are shown in figure 3.9 

along with the schematic used to perform the de-embedding process. 

  

Figure 3.8 – Schematic in Keysight ADS that was used to build the circuit model of the DPAM parallel 

plate capacitor. A vector magnitude difference optimization was run to minimize the S-

parameters between ports 1 and 2. The main variable in the optimization is the parasitic 

inductance, Lpar. 

 

When the parasitic inductance is de-embedded from the simulation data, the resulting 

extraction of permittivity through the admittance analysis is effective over a wide bandwidth 

with an extracted permittivity profile that is within 5% of the expected value at from 2-8 GHz. 

The extracted permittivity does not show signs of an exponential deviation until about 7 GHz.  
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Figure 3.9 - Schematic setup used to de-embed the dielectric parameters (top) results of the dielectric 

properties extraction (bottom). 

   

The loss tangent still appears to have an exponential deviation starting at low frequency, 

but the de-embedding of the inductance did have a slight effect on the extraction results. 

Previously, the loss tangent reached a value of 0.05 at about 1.8 GHz. Now, that same value of 

0.05 is reached at 3.7 GHz signifying some improvement.  

The results of this extraction attempt signify that the parasitic inductance that arises from 

the conductors is definitely a crucial element to consider when performing the extraction process. 

However, there still appears to be lingering parasitics causing a situation with the loss tangent 

Dataset of Lpar 

Simulation Data 

Dielectric Properties Extraction Results (Refined Model) 

Input Permittivity Profile 
Input Loss Tangent Profile 
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extraction. The extraction results are still band-limited and exponentially deviate from the 

expected result with frequency. One thing that has not been considered yet, however, is the series 

loss introduced by the conductor plates.  

3.4.4 Full Circuit Model Development and Analysis 

To further develop the circuit model shown in figure 3.7, a frequency dependent series 

loss is added to effectively model the conductor losses in the parallel plate structure. By 

appropriately modeling the conductor losses, they can be de-embedded from the simulation data 

to improve the loss tangent extraction results. The series loss is specified was fit to a model like 

that shown below: 

𝑅𝑠 = 𝑎 + 𝑏√𝑓                                                                    (3.5) 

where a and b are major optimization parameters and f represents frequency (in GHz). By 

running a vector magnitude difference optimization, the values of a and b that represent the loss 

profile are solved for in a similar fashion to the parasitic inductance. The final values of the 

parasitic inductance along with the series loss parameters obtained through optimizations are 

shown in table 3-1.  

 
Table 3-1 - Final optimized values of the parasitics associated with the conductors of the capacitor. 

Parameter Lpar a b 

Value 387 pH 0.1353 0.0011 

 

With element values for the parasitic circuit elements Lpar and Rs, the de-embedding 

process outlined in figure 3.9 can now be performed again. This time, the dataset file within the 

de-embedding block contains circuit data for the newly added series loss, Rs, which is desired to 
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be removed from the admittance analysis. The results of the admittance based extraction of 

dielectric properties after de-embedding both conductor parasitics is shown in figure 3.10. 

 

 

Figure 3.10 - Results of dielectric properties extraction from the improved model that accounts for 

conductor losses.  
 

From the results in the figure, the extracted permittivity is seemingly unaffected from the 

previous extraction results. This is expected since the permittivity extraction only depends on the 

imaginary part of the admittance, adding a series loss to the model should have no effect. The 

resulting extracted loss tangent profile bounces between 0.023-0.027 within the band of 0.1-4 

GHz. This result calculates out to ±8% difference from the expected value of 0.025. This result is 

an appreciable improvement from the last result where only the parasitic inductance was 

considered in the model. After 3.5 GHz, however, the extracted loss tangent beings to deviate 

exponentially from the expected value resulting in a far more band-limited result than the 

permittivity extraction. It is clear from the results that the loss of the proposed parallel plate 

structure is not effectively modeled after 4 GHz.  

An additional possible loss mechanism not yet considered, however, is radiation loss. 

Given the size of the plates, there is a possibility that the structure begins to radiate and  

exponentially affect the loss tangent extraction results with increasing frequency. By modifying 

Input Permittivity Profile 
Input Loss Tangent Profile 
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the previously utilized 3D model of the parallel plate capacitor, the radiation loss, if present, can 

be revealed. By specifying the conductor plates to be a perfect electrical conductor and dielectric 

between the plates to be lossless, the only remaining loss of the simulated structure would be that 

of radiation.  

 

Figure 3.11 - Radiation loss of the parallel plate structure. Results were obtained through a simulation of 

the parallel plate in ANSYS EDT with PEC conductor plates and a lossless dielectric.  
 

Through this modified model investigation, it was found that the parallel plate capacitor 

structure does indeed radiate and has an associated radiation resistance that grows exponentially 

with frequency like that shown in figure 3.11. From the plot, it can be observed that the behavior 

follows a similar trend to that seen in the loss tangent extraction. This data obtained from the 

simulation is taken to ADS where an optimizer fits the loss profile to a frequency dependent loss 

like that shown by equation (3.6). Here, c is the optimized parameter and f represents frequency 

(in GHz). The value obtained for c through optimization was 0.0075. 

𝑅𝑟𝑎𝑑 = 𝑐𝑓2 = 0.075𝑓2                                                       (3.6) 
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Figure 3.12 - Full parasitic model of the DPAM parallel plate capacitor.  
 

By considering all of the mentioned parasitics of the parallel plate structure, the circuit 

equivalent model has evolved to the form shown in figure 3.12. With the three parasitic elements 

Lpar, Rs, and Rrad effectively modeled, they are collectively de-embedded from the original 

simulation data of the parallel plate structure like demonstrated in figure 3.9. The resulting data 

is analyzed using equations (3.3) and (3.4) to extract the permittivity and loss tangent profiles. 

The results of this fully de-embedded simulation extraction are shown in figure 3.13.The final 

optimization values for the parasitic elements are listed in table 3-2. 

 
Table 3-2 - Final optimized values of all of the parasitics of the DPAM parallel plate capacitor. 

Parameter Lpar a b c 

Value 387 pH 0.1353 0.0011 0.0075 
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Figure 3.13 - Extracted permittivity and loss tangent profiles of the fully de-embedded simulation data. 

The parasitic inductance, series conductor loss and radiation loss were de-embedded and 

the resulting admittance was analyzed.  
 

 By incorporating a series loss to account for the radiation of the parallel plate capacitor, 

the loss tangent extraction dramatically improved, effectively doubling the extraction bandwidth 

from 4 GHz to 8 GHz. The largest deviation in the loss tangent extraction was roughly 16% 

occurring around 6 GHz where the extracted profile appears to begin to deviate exponentially. 

The extracted loss tangent profile is indicative of some radiation loss that still exists. A further 

investigation and improvement to the radiation loss model could extend the bandwidth of the loss 

tangent extraction out to even higher frequencies. The extracted permittivity profile in this case 

remains unchanged from the previous extraction attempt since the permittivity extraction 

depends only on the imaginary part of the admittance.  

3.5 Printing  

 In previous sections, the proposed parallel plate capacitor was introduced and designed 

considering some hurdles in practical implementation. Then, a 3D model of the structure was 

generated and analyzed using available CAD software in an attempt to characterize the dielectric 

material between the plates. Next, the proposed parallel plate capacitor design is printed using 

Input Permittivity Profile 
Input Loss Tangent Profile 
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DPAM methods with the goal of achieving a structure with similar dimensions to the design 

already proposed. 

 The capacitor will be printed on top of 60mil Rogers RT/duroid 6010 substrate, identical 

to the simulation model previously presented. The first main goal in the printing process is to 

obtain the proper thicknesses for each respective layer. To match the simulated design, the 

conductor thickness should be 25 um and dielectric thickness should be 100 um. Another goal is 

to ensure nice flat surfaces for each layer with as little roughness possible to be consistent with 

the simulation. 

 The parallel plate capacitor design is built in a three-step process like that shown in figure 

3.14. To start, the bottom ground layer is printed with conductive ink at a height of 40 um above 

the surface of the substrate. This print height was chosen to ensure that enough material is 

dispensed to obtain the desired thickness after curing the material. The chosen printed line width 

for this layer was around 300 um. The script to print the capacitor, however, was written with a 

line spacing of 200 um. The extra 100 um overlap can be helpful when trying to print smooth 

surfaces as the lines merge together and flatten. This is especially true when dealing with high 

viscosity materials. 

 After the first layer is dispensed and cured, dielectric layer is ready to be dispensed over 

the top of it. This dielectric layer is printed at a height of 150 um to ensure enough material is 

dispensed to achieve the desired plate spacing (d) post-cure. When the second layer is dispensed, 

some overlap is intentionally laid down over the side edges of the ground plate to prevent the 

possibility of creating a short circuit with the incoming top layer. Similarly to the 3D model, the 

dielectric layer partially extends over the signal pad in preparation for the bridge connection 

from the top plate. 
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Figure 3.14 - Printed stages of the DPAM parallel plate capacitor: (a) ground layer, (b) ground layer 

with a dielectric layer dispensed on top, (c) full DPAM parallel plate capacitor.   
 

 The last layer to be printed in the structure contains the top conductor plate and the bridge 

down to the signal pad. This final conductor layer is printed at the same height level as the first 

layer (40 um above the surface). The reference point for the printing height of this level is taken 

from the middle of the dielectric layer. Since the dielectric layer was printed in excess over the 

sides, the top plate can be aligned well with the bottom plate. To execute the bridge connection, 

an extra line of code was added to the script to sweep out the last line of the plate printing 

process towards the signal pad below. The quick sweep out to the side was found to create nice 

looking bridges like that seen in figure 3.14 (c).  

(a) 

(b) 

(c) 
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 After each layer was printed and appropriately cured, the result was taken to a Dektak 

3030ST Profiler to observe the surface characteristics of the resulting layer. From this analysis, it 

was found that the conductor levels had an average thickness of about 20 um, but also had some 

undesired roughness where the level would dip as low as 12 um in some cases. As for the 

dielectric, some mixed results were obtained with the thickness. Some of the prepared samples 

were found to have a thickness as low as 80 um and others were found to have a thickness as 

high as 120 um. 

 With some samples prepared, dimension measurements of samples are taken which are 

used in the extraction process. The average value for the top plate width of the samples was 

roughly 2.5 mm which is 0.1 mm larger than the simulated value. As for the plate length, the 

average value was about 1.8 mm which is the value simulated. With the dimensions of the 

conductor plates measured and the distance between plates known, the extraction process can be 

performed on the samples.  

3.6 Measurements 

 In this section, the prepared capacitor samples are measured for s-parameter data which is 

converted to admittance data and analyzed using the method presented in section 3.4.4. The 

VNA used to perform the measurements is a Keysight ENA Series Network Analyzer which was 

calibrated from 0.1-16 GHz. There are 401 points in the measurement and an averaging factor of 

16 was used. The probe used to measure the parallel plate capacitors is a 1200-pitch GGB 

Picoprobe which was calibrated out to the probe tips using a CS-10 substrate.  

With the measurement setup described, the parallel plate samples are measured for 1-port 

s-parameter data. The resulting s-parameter files are imported to an ADS schematic where they 

are fit to a model like that shown in figure 3.12. Initially, the model developed for the 3D 
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simulation data was used on the measured data in attempt to de-embed the dielectric properties. 

Although the developed loss model was sufficient for the measured data, the parasitic inductance 

model was not. The optimizer in ADS was utilized to run another vector magnitude difference 

optimization to generate a new value for the measured parallel plate parasitic inductance.  

The resulting parasitic inductance that provided the best fit for the measured data was 274 

pH which differs from the value found previously for the simulation data modeling. This 

difference in inductance values can be attributed to the difference between the probing position 

in the measurement and to the port definition in the simulation. To obtain a good measurement 

result, the capacitor had to be probed further down the pads where the conductor surfaces were 

more suitable for a probe landing.  

After a parasitic inductance value was obtained from the measured data of the parallel 

plate, a dataset file was created for the parasitic inductance and loss model which is de-

embedded from the measured data. After the parasitics are de-embedded from the measured data, 

the resulting admittance is analyzed to extract the dielectric properties of the material between 

the plates. The results of the dielectric properties extraction after this de-embedding process are 

shown in figure 3.15. 

Figure 3.15 shows a simulated vs. measured comparison of the measured s-parameter 

data along with the resulting dielectric properties extraction from that data compared against 

Damaskos results. The extracted permittivity profile of the de-embedded measured data from 

0.1-5 GHz shows a flat 16% difference from the Damaskos cavity results. After 5 GHz, the 

extracted permittivity from the de-embedded measured data deviates and tends to infinity. As for 

the loss tangent, the result was found to band-limited to about 6 GHz after which the extracted 



57 

 

profile beings to deviate exponentially. This is about 2 GHz less bandwidth than the simulated 

extraction attempt which accomplished a loss tangent extraction out to 8 GHz.  

 

 

 

Figure 3.15 - Measured vs. simulated comparison for the DPAM parallel plate capacitor. Measured vs. 

simulated S-parameters (top) De-embedded simulation data extraction vs de-embedded 

measured data extraction of dielectric properties (bottom). 

 

 To improve the permittivity extraction, Palmer’s rectangular parallel plate capacitance 

formula can be utilized which accounts for the fringing fields of the structure [9]: 
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𝐺

𝜋𝐿
+

𝐺

𝜋𝐿
ln (

2𝜋𝑊

𝐺
))                (3.7) 

where the original capacitance equation is multiplied by correction terms for the length and 

width dimensions. The dimension corrections are with respect to the gap length and result in 

Magnitude (dB) Phase (deg) 

Permittivity 

Extraction 

Loss Tangent 

Extraction

Fringing Field 
Correction 
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enlarging the dimensions of the plate which lowers the extracted permittivity (see equation 3.3). 

The result of applying Palmer’s formula to the measured data is shown as the red trace in figure 

3.15 which is a downward shifted version of the original measured data.  By applying the 

fringing field correction, the extracted permittivity profile traces the Damaskos data from 1.5-5.5 

GHz where only 2-3% is observed, a dramatic improvement from 16%. Shortly after 5.5 GHz, 

the extracted permittivity begins to deviate exponentially towards infinity. 

 Although the dielectric properties were effectively extracted, the results were band-

limited and have a tendency to deviate exponentially after 5-6 GHz. The loss tangent extraction 

was improved appreciably by effectively modeling the radiation resistance and the permittivity 

was improved through implementation of Palmer’s formula to account for the fringing effects of 

the parallel plate. There is still an apparent exponential deviation of the extracted dielectric 

properties profiles which could likely be attributed to the 1200-pitch probes used to make the 

measurement which are not suitable for high frequencies.  

There were numerous challenges to overcome in development of the parallel plate 

method. Many hours were devoted to learning about the conductive and dielectric inks that were 

used to print the structure as well as developing the printing scripts which are included in 

Appendix C. However, once the process was laid out and the printing process was understood, 

the dielectric characterization process with the parallel plate became much quicker to perform 

with highly accurate results up to 5 GHz. The PCB method was found to be material limited, any 

material than cannot be sanded down cannot be characterized. If you can print the material, you 

can characterize it with the parallel plate method. The parallel plate method takes a bit longer to 

establish, but it can be trusted to produce accurate results.  
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CHAPTER 4: CONCLUSIONS  

 

 

 

 Two methods of dielectric characterization have been proposed, both of which utilize 

direct-print additive manufacturing as part of the extraction process. Both methods presented 

have simple fixtures used to perform their respective extraction process. An analysis was 

conducted for each fixture starting with basic modeling and simulation based extractions, then 

moving on to measurements and practical extractions.  

 The first method shown was a circular capacitor etched in PCB substrate where the 

dielectric to be characterized is dispensed in the gap left behind by the etching process. This 

extraction method relies on a two-measurement based extraction where the combination of data 

files can be used to effectively subtract out the parasitics of the structure, leaving an RC circuit 

with the dielectric properties of interest. With an admittance analysis of the de-embedded result, 

the desired dielectric properties can be extracted. 

When this method was conducted in practice, the results of the extraction for permittivity 

were within ±8% of the expected value from 1-12 GHz. The best loss tangent extraction results 

were between 2-8 GHz where there was about 50% difference from the expected value. The 

results obtained with the fixture suggest that the proposed method would be valuable as a quick 

screening method of dielectric properties.  

 Some advanced modeling of the PCB capacitor fixture was conducted to draw some 

additional conclusions about the effectiveness of the extraction method. A study was conducted 

on the effects of having a dielectric surface level that differs from the conductor cladding height. 
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From this analysis, it was concluded that the extraction method is very sensitive to deviations 

from the ideal scenario where the dielectric surface is perfectly flush with the conductor cladding 

height. As a result, the material should be sanded down to the height of the cladding before the 

measurements of the material filled fixtures is performed in practice. This highlights a key 

material limitation argument surrounding this method, as this sanding process must be performed 

to generate effective extraction results. A slight difference of 1 um between the dielectric surface 

level and conductor cladding height results in about 8% difference in extracted permittivity and 

as much as 15% difference in extracted loss tangent at some frequencies. 

Then, a second method of dielectric characterization is proposed by which a parallel plate 

capacitor is printed exclusively through micro-dispensing conductive and dielectric inks. The 

capacitor is built in a step-by-step process where three layers are stacked on top of each other. 

An analysis was conducted on the proposed parallel plate structure in which a circuit model was 

constructed from 3D model simulation data. Through this analysis, the parasitics of the structure 

were identified and modeled accordingly. With the fully developed model, an extraction of 

dielectric properties from simulated data was conducted which was shown to be effective from 1-

8 GHz for permittivity and loss tangent. 

Then, the parallel plate capacitor method was demonstrated in practice as samples were 

printed by executing the same three-step building process laid out for the simulation. The 

samples were measured for s-parameter data that was ported to ADS where a measured data 

model of the parallel plate capacitor was constructed. By performing a similar de-embedded 

admittance analysis method as the PCB capacitor, the dielectric properties were extracted from 

the measured data. Some additional modeling was performed as a follow up to the initial 

extraction attempt with the goal of improving the results of the extraction. By appropriately 
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modeling the parasitic inductance and loss parasitics, the permittivity extraction and loss tangent 

were effective out to 5 or 6 GHz.  

 The results of the parallel plate extraction of dielectric properties proved to be more 

band-limited than the results obtained with the PCB capacitor method. However, the parallel 

plate method generated results with much higher accuracy within its effective bandwidth than the 

PCB method. One downside of the parallel plate method is that it required a printing process 

foundation to be established which was time consuming to develop. However, after this process 

was put in place, the characterization process became much quicker and more effective.  

The PCB capacitor method was straightforward to perform in practice, but required 

fixtures to be etched in substrate. Additionally, the fixtures were found to have large impedance 

magnitudes, an undesirable characteristic for s-parameter measurements. Additionally, the PCB 

method is limited to materials that can be sanded down post-cure. Any material overflow or 

underflow in the fixture would result in undesired dielectric properties extraction error. The 

parallel plate method can be used to characterize any material that can be printed and the 

impedance of the structure can be controlled.   

4.1 Future Work 

 The two dielectric characterization methods presented were performed on a single 

dielectric ink. Additional investigations could be made to explore the extraction performance of 

the proposed methods with a variety dielectric inks that cover an array of material profiles. In 

regards to the PCB fixture, care should be taken to select dielectric materials that are capable of 

being characterized with both methods. An ideal material would be printable and able to be 

sanded after the material has properly cured.  
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 Some additional investigations can be conducted on the parallel plate capacitor such as 

improving the parasitic model. From the results of the parallel plate extraction, it is apparent that 

some parasitics still exist which are causing the extracted permittivity and loss tangent to tend to 

infinity. The radiation loss model could potentially be improved to extend the loss tangent 

extraction further. Some investigations into printing different sized parallel plates can be 

conducted to observe if a better extraction result can be achieved. 

  



63 

 

 

 

 

 

 

REFERENCES 

 

 

 

[1] S. Zistl (2017). “3D Printing: Facts & Forecasts.” Pictures of the Future. [Online]. 

Siemens.com. Available: https://www.siemens.com/innovation/en/home/pictures-of-the-

future/industry-and-automation/Additive-manufacturing-facts-and-forecasts.html.   

 

[2] R. Sorrentino, P. Martin-Iglesias, O. Peverini, T. Weller (2017, Apr.). “Additive 

Manufacturing of Radio-Frequency Components.” Proceedings of the IEEE. vol. 105. no. 

4. pp. 589-592.  

 
[3] Kasap, S. O. Electronic Materials and Devices. 3rd ed., McGraw-Hill, 2006. 

 
[4] Haghzadeh, Mahdi, and Alkim Akyurtlu. “RF Measurement Technique for 

Characterizing Printed Ferroelectric Dielectrics.” Antenna Measurement Techniques 

Association (AMTA) 37th Annual Meeting & Symposium, Nov. 2015. University of 

Massachusetts Lowell. 

 

[5] Harper, Elicia, et al. “Broadband Microwave Dielectric Characterization Method for 

Printable Dielectric Inks - IEEE Conference Publication.” Design and Implementation of 

Autonomous Vehicle Valet Parking System - IEEE Conference Publication, Wiley-IEEE 

Press, ieeexplore.ieee.org/document/8000849/. 

 

[6] Pozar, David M. Microwave Engineering. 4th ed., Wiley, 2012. 

 

[7] Haghzadeh, Mahdi. “Ferroelectric Nanocomposite Based Dielectric Inks for 

Reconfigurable RF and Microwave Applications.” Research Gate, 13 Feb. 2017, 

www.researchgate.net/publication/313691953_All-

Printed_Flexible_Microwave_Varactors_and_Phase_Shifters_Based_on_a_Tunable_BST

Polymer. 

 

[8] “Agilent Technologies Impedance Measurement Handbook.” Keysight, Keysight 

Technologies, Dec. 2003, literature.cdn.keysight.com/litweb/pdf/5950-3000.pdf. 

 

[9] Hosseini, Mehran, et al. “A New Model of Fringing Field Capacitance and Its 

Application to the Control of Parallel-Plate Electrostatic Micro Actuators.” Cornell 

University Library, Apr. 2006, arxiv.org/ftp/arxiv/papers/0711/0711.3335.pdf. 

 

  

https://www.siemens.com/innovation/en/home/pictures-of-the-future/industry-and-
https://www.siemens.com/innovation/en/home/pictures-of-the-future/industry-and-
http://www.researchgate.net/publication/313691953_All-Printed_Flexible_Microwave_Varactors_and_Phase_Shifters_Based_on_a_Tunable_BSTPolymer
http://www.researchgate.net/publication/313691953_All-Printed_Flexible_Microwave_Varactors_and_Phase_Shifters_Based_on_a_Tunable_BSTPolymer
http://www.researchgate.net/publication/313691953_All-Printed_Flexible_Microwave_Varactors_and_Phase_Shifters_Based_on_a_Tunable_BSTPolymer


64 

 

 

 

 

 

 

APPENDIX A: DIELECTRIC CHARACTERIZATION WITH DAMASKOS CAVITIES 

 

 

 

 The dielectric ink used in the experiments throughout this work did not have its dielectric 

properties specified on its datasheet from the manufacturer. In order to confirm the results of the 

methods presented in this paper, some reliable dielectric property information is required to 

compare the results against. To get the reliable data that would be used as the “golden standard” 

for the experiments conducted in this work, two Damaskos cavities were used that cover two 

different bandwidths that overlap conveniently around 4 GHz. The cavities use software to 

calculate the resonance frequencies at which the material will be characterized. Each cavity has 

at least 5 resonances that are calculated within its bandwidth. 

 

 

 

Figure A.1 – The Damaskos 125HC Measurement Fixture used to characterize dielectric inks from 0.4-

4.3 GHz at six resonance frequencies 
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Table A-1 - Results from the dielectric properties measurement of the ink with the Damaskos 125HC 

Measurement Fixture.  

 

 

 

The first cavity is the Model 125HC and can be seen in figure A.1. This cavity was used 

to cover the frequency band: 0.4–4.3 GHz. This Damaskos cavity measures the dielectric 

properties of the material at six different resonance frequencies. The results of the dielectric 

properties measurement of ink 1 with the 125HC cavity are shown in table A-1. 

 The second cavity used to characterize dielectric inks is the Damaskos 015 Measurement 

Fixture which is shown in figure A.2. This cavity measures the dielectric properties at five 

 

 

Figure A.2 - The Damaskos Model 015 Measurement Fixture used to characterize dielectric inks from 

4.2-16.8 GHz at five resonance frequencies 
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Table A-2 - Results from the dielectric properties measurement of the ink with the Damaskos Model 015 

Measurement Fixture  

 

 
 

resonance frequencies, one less than the 125HC. For this application, the five resonance 

frequencies covered the band: 4.2-16.8 GHz. The results of the dielectric properties 

characterization in this frequency band for ink 1 are shown in table A-2. 

 The two Damaskos cavities conveniently overlap around 4.3 GHz. The lower frequency 

cavity (125HC) has its highest resonance at 4.37 GHz while the higher frequency cavity (Model 

015) has its lowest resonance at 4.25 GHz. This overlap was exploited to get a wide-band 

characterization that can be used as a standard for future measurements. 
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APPENDIX B: MATLAB SCRIPTS 

 

 

 

 Throughout the experiments performed in this work, Matlab was relied on to perform 

calculations with the scripts shown in this section. The first script shown in figure B.1 extracts 

the permittivity and loss tangent profile from a set of s-parameter measurements or simulations 

of the circular PCB capacitor using the method described in section 2.3.  

 

r_in = 400; 
r_out = r_in + 200; 
h = 35e-6; 

  

  
perm = 8.85418782e-12; 
c_air = (2*pi*perm)*(h/(log(r_out/r_in))); 

  

  

  
data_air = read(rfdata.data, empty.s1p'); 
freq = data_air.Freq; 
s_air = extract(data_air, 'S_PARAMETERS', 50); 

  
data_mut = read(rfdata.data, 'filled.s1p'); 
freq2 = data_mut.Freq; 
s_mut = extract(data_mut, 'S_PARAMETERS', 50); 

  

  
a = size(freq); 
b = a - [0 1]; 
limit1 = norm(b); 

  
a2 = size(freq2); 
b2 = a2 - [0 1]; 
limit2 = norm(b2); 

  

  
for i = 1 : limit2; 

     
   w(i,1) = (2*pi)*(freq(i,1)); 



68 

 

    
   z_air(i,1) = 50*((1 + s_air(1,1,i))/(1 - s_air(1,1,i))); 
   z_mut(i,1) = 50*((1 + s_mut(1,1,i))/(1 - s_mut(1,1,i))); 
   w_imag_air(i,1) = (1/(w(i,1)*imag(z_air(i,1)))); 
   w_imag_mut(i,1) = (1/(w(i,1)*imag(z_mut(i,1)))); 

    
   c_d(i,1) = w_imag_air(i,1) - w_imag_mut(i,1) + c_air; 

    
   epsilon(i,1) = c_d(i,1)/((2*pi*perm)*(h/(log(r_out/r_in)))); 
   tan_d(i,1) = (c_d(i,1)*w(i,1))*(real(z_mut(i,1)) - real(z_air(i,1))); 

    

    
end 

  
plot(freq2,epsilon), title('\fontsize{18}Permittivity Extraction'),  
xlabel('\fontsize{14}Frequency (GHz)'),  
ylabel('\fontsize{14}Epsilon'); 
axis([0.1e9 18e9 5 20]); 
grid on; 

  
figure 
plot(freq2,tan_d), title('\fontsize{18}Loss Tangent Extraction'),  
xlabel('\fontsize{14}Frequency (GHz)'),  
ylabel('\fontsize{14}Epsilon'); 
axis([0.1e9 18e9 -0.1 0.1]); 
grid on; 

  
csvwrite('LOSS_SIM',tan_d); 
csvwrite('PERM_SIM',epsilon); 

 
csvwrite('freq',freq);  
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APPENDIX C: PRINTER SCRIPTS 

 

 

 

 In this section, the scripts used to perform the printing tasks on the nScrypt printer are 

included for reference. All of the scripts in this section were written by hand by a combination of 

Matlab and Excel. To create the script that prints inside the PCB capacitor, first a circle was 

parameterized in Matlab. From there, a differential vector was created between the successive 

points to generate a format suitable for a printer. Then, excel was used to generate the repetitive 

“MOVE” commands and structure the code. The script generated that prints a circle suitable for  

 
speed 1 

 

move 0.45 0 0 

 

trigvalverel 0.15 8 

trigwait 0.01 

 

move -0.004 0.056 0 

move -0.011 0.056 0 

move -0.017 0.054 0 

move -0.024 0.051 0 

move -0.030 0.048 0 

move -0.036 0.044 0 

move -0.041 0.039 0 

move -0.046 0.033 0 

move -0.050 0.027 0 

move -0.053 0.021 0 

move -0.055 0.014 0 

move -0.056 0.007 0 

move -0.057 0.000 0 

move -0.056 -0.007 0 

move -0.055 -0.014 0 

move -0.053 -0.021 0 

move -0.050 -0.027 0 

move -0.046 -0.033 0 

move -0.041 -0.039 0 

move -0.036 -0.044 0 

move -0.030 -0.048 0 

move -0.024 -0.051 0 

move -0.017 -0.054 0 

move -0.011 -0.056 0 

move -0.004 -0.056 0 

move 0.004 -0.056 0 

move 0.011 -0.056 0 

move 0.017 -0.054 0 

move 0.024 -0.051 0 

move 0.030 -0.048 0 

move 0.036 -0.044 0 

move 0.041 -0.039 0 

move 0.046 -0.033 0 

move 0.050 -0.027 0 

move 0.053 -0.021 0 

move 0.055 -0.014 0 

move 0.056 -0.007 0 

move 0.057 0.000 0 

move 0.056 0.007 0 

move 0.055 0.014 0 

move 0.053 0.021 0 

move 0.050 0.027 0 

move 0.046 0.033 0 

move 0.041 0.039 0 

move 0.036 0.044 0 

move 0.030 0.048 0 

move 0.024 0.051 0 

move 0.017 0.054 0 

move 0.011 0.056 0 

move 0.004 0.056 0 

 

valverel 0 5 

speed 50 

 

move 0 0 5 

 

Figure C.1 – Script that prints the circle required for the PCB characterization method. 
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the characterization method described in chapter 2 is shown in figure C.1. This script was 

designed to print a circle that has a radius around 450 um since this was determined to be a good 

average value for the fixtures prepared. 

The combination of scripts used to print the DPAM parallel plate capacitor are shown in 

the next series of figures C.2-C.4. Each script represents a layer of the capacitor starting from the 

first layer. The scripts were written with the intention of matching the 3D simulation model in 

chapter 3 where the line thickness was chosen to be 200 um.  

 

speed 3   

    

trigvalverel 0.10 0.1

  

trigwait 0.01   

move 0 1.5 0 

move 2.5 0 0 

move 0 -1.5 0 

move -2.40 0 0 

move 0 1.45 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

 

valverel 0 5  

speed 5   

    

move 0 0 5 

move -2.45 -1.45 0 

move 0 0 -5 

wait 0.001   

    

speed 0.5   

    

trigvalverel 0.09 0.5

  

trigwait 0.01   

move 0 -1 0 

move 0.5 0 0 

move 0 0.95 0 

move -0.45 0 0 

move 0 -0.9 0 

move 0.2 0 0 

move 0 0.9 0 

move 0.2 0 0 

move 0 -0.9 0 

valverel 0 5  

speed 5   

    

move 0 0 5 

move 1.55 0.95 0 

move 0 0 -5 

wait 0.001   

    

speed 0.5   

    

trigvalverel 0.09 0.5

  

trigwait 0.01   

move 0 -1 0 

move 0.5 0 0 

move 0 0.95 0 

move -0.45 0 0 

move 0 -0.9 0 

move 0.2 0 0 

move 0 0.9 0 

move 0.2 0 0 

move 0 -0.9 0 

valverel 0 5  

speed 5 

    

move 0 0 5 

move -1.45 0 0 

move 0 0 -5 

wait 0.001   

    

speed 0.5   

    

trigvalverel 0.09 0.5

  

trigwait 0.01   

move 0 0.5 0 

move 0.5 0 0 

move 0 -0.5 0 

move -0.5 0 0 

move 0.25 0.25 0 

valverel 0 5  

speed 5   

 

 

Figure C.2 - Script that prints the first layer of the DPAM parallel plate capacitor. 
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speed 3   

    

trigvalverel 0.34 1

  

trigwait 0.01   

move 0 1.5 0 

move 2.5 0 0 

move 0 -1.6 0 

move -2.40 0 0 

move 0 1.55 0 

move 0.2 0 0 

move 0 -1.5 0 

move 0.2 0 0 

move 0 1.5 0 

move 0.2 0 0 

move 0 -1.5 0 

move 0.2 0 0 

move 0 1.5 0 

move 0.2 0 0 

move 0 -1.5 0 

move 0.2 0 0 

move 0 1.5 0 

move 0.2 0 0 

move 0 -1.5 0 

move 0.2 0 0 

move 0 1.5 0 

move 0.2 0 0 

move 0 -1.5 0 

move 0.2 0 0 

move 0 1.5 0 

move 0.2 0 0 

move 0 -1.5 0 

move 0.2 0 0 

move 0 1.5 0 

 

valverel 0 5  

speed 5 

  

 

Figure C.3 - Script that prints the dielectric layer of the DPAM parallel plate capacitor. 
 

 

speed 3 

  

    

trigvalverel 0.1 0.3

  

trigwait 0.01 

  

move 0 1.4 0 

move 2.4 0 0 

move 0 -1.4 0 

move -2.30 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

move 0.2 0 0 

move 0 -1.4 0 

move 0.2 0 0 

move 0 1.4 0 

 

valverel 0 5

  

speed 5 

  

 

 

Figure C.4 - Script that prints the third layer of the DPAM parallel plate capacitor. 
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