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ABSTRACT 
 
 

Non-invasive side-channel attacks (SCAs) are potent attacks on a cryptographic circuit 

that can reveal its secret key without requiring lots of equipment. EM side-channel leakage is 

typically the derivative of the power consumption profile of a circuit. Since the fluctuations of the 

supply voltage strongly depend on the topology and features of the power distribution network 

(PDN), design of the PDN has a direct impact on EM side-channel leakage signature.  

In this thesis, we explore the security implications of distributed on-chip voltage regulators 

against EM side-channel attacks. Extensive HFSS simulations have demonstrated that the 

maximum EM radiation can be reduced by 33 dB and 11 dB, respectively, at the top and bottom 

sides of an integrated circuit through distributed on-chip voltage regulation. The primary reason 

is that the power is delivered locally through partially shorter and thinner metal lines as compared 

to off-chip implementation.
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CHAPTER 1: INTRODUCTION 
 
 

As data security becomes more and more important as a modern design metric, most 

systems these days make use of a cryptographic module for processing secure data. Although 

employing a dedicated cryptographic module does help to improve data security, it is still possible 

for an attacker to get through the security of the device by using passing and non-invasive attacks 

in order to extract the secret key used for encryption. These "side-channel" attacks use 

information that gets leaked from a device while it is processing secure data through observing it 

in real-time [34]. Side-channel attacks (SCA) are a major threat to the security of cryptographic 

devices. A significant amount of work has been performed on SCAs over the past two decades. 

One of the primary types of SCAs is the power analysis attack. While simple power analysis (SPA) 

obtains the data directly from power consumption, differential power analysis (DPA) attacks 

require certain statistical operations on numerous power traces to get relevant information [1,2]. 

Apart from the power consumption, other leakage information such as electromagnetic emission, 

computation time and temperature can also be used to attack a device [3,5]. SCAs attempt to 

define the correlation between any kind of side-channel information and the internal operations of 

the device. These attacks pose a threat to many modern-day devices, for example smart cards, 

that use cryptographic algorithms like the Data Encryption Standard (DES) or the more intricate 

Advanced Encryption Standard (AES) algorithm [34].  

While the popularity of power analysis attacks has risen, there are certain benefits 

attached with using EMA (Electro-Magnetic Analysis) for analyzing devices with unconventional 

interfaces, when a power tap is not easy to implement or when there are countermeasures in 

place for power analysis [32,33].  
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In circumstances where a power side channel is not possible or a non-contact type of 

attack needs to be implemented, electromagnetic (EM) attacks offer an advantage over 

conventional power analysis attacks. Additionally, Agrawal et al. [6], discussed how 

electromagnetic radiations can be modulated using an inner loop structure and also described 

how a suitable AM demodulator is useful in performing effective attacks even at a distance of 

some meters from the chip. They also showed that EM attacks can be used to nullify many of the 

countermeasures that are effective in the face of power analysis attacks. Just as in the case of 

SPA and DPA, EM side channel attacks can be used for both simple electromagnetic (SEMA) as 

well as differential electromagnetic (DEMA) attacks. The different surveillance methods that are 

practiced by the US National Security Agency (NSA) are all cited in a classified document the 

NSA advanced network technology (ANT) catalog, which was famously revealed by Edward 

Snowden in 2013. ANGRYNEIGHBOR was one of the technologies mentioned in that catalog. 

This technology and its many variants are attack techniques built on the RF retroreflector attack 

(RFRA) standard, an active EM side-channel attack [35]. Despite the gravity of this topic, very 

few publications have taken it upon themselves to discuss it. 

 

 

Figure 1.1 Side channel attack model [41] 
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Modern ICs have transistors and interconnections in the millions through which data-

dependent current flows. The amplitude of the EM radiation is proportional to the dimension of 

the current carrying conductor in the circuit under attack. Longer interconnect wires emit greater 

EM signals, resulting in a higher amount of leakage. As the conducting wires become shorter and 

narrower, the EM radiation reduces, making it more and more challenging for the assailant to 

obtain sufficient level of useful information from a distance to perform a successful EM attack. 

Therefore, utilizing shorter interconnect wires can help in minimizing the unintentional leakage of 

critical side channel information. While near-field probes could be used to detect emissions in the 

near field, larger antennas can be used to capture information bearing signals from a distance, 

making the EM attacks non-invasive. With these factors in mind, distributed on-chip voltage 

regulators may potentially provide certain inherent security benefits against EM attacks. Besides, 

tailoring the placement of capacitors in the power delivery network can further mitigate the EM 

side-channel leakage. In recent years, quite a few techniques have been suggested to implement 

voltage regulator fully on chip to obtain faster voltage scaling and multiple power islands [7,10]. 

In recent times, interest has been shifting towards leveraging power delivery network 

(PDN) as well as on-chip integrated voltage regulator (IVR) as a preventive measure against 

power analysis attacks. This thesis, for the first time ever, aims to analyze the implications of an 

on-chip power delivery network (PDN) on EM emissions. Utilizing on-chip voltage regulators 

enables the utilization of shorter and thinner interconnect wires to deliver power as compared to 

their off-chip counterparts.  

In addition, various design options such as placing voltage regulators close to the 

cryptographic module and locally delivering power to the crypto circuit through the bottom metal 

layers are examined in this thesis with the aim of making detection of EM radiation by any probe 

difficult [11]. 

 

 



 
 

4  

The remaining part of the thesis is organized as follows. EM attacks are explained in 

chapter 2 and the introduction to the on-chip power delivery and AES with the threat model is 

provided in chapter 3. The evaluation of the security implications is provided in chapter 4. The 

direction of future work is discussed in chapter 5 and finally the thesis is concluded in chapter 6. 
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CHAPTER 2: ELECTROMAGNETIC ATTACKS 
 
 
2.1 Magnetic Field and Electric Field - Revisited 

 
The power consumption of modern day cryptographic circuits is a function of the data that 

is being processed during encryption or decryption, contributing to the change of EM emanations 

from cryptographic engines. Today’s integrated systems potentially generate a greater level of 

side-channel leakage to such attacks due to the high operating frequency, more number of pins 

serving as external antennas, and higher voltage levels [13]. The variations in power consumption 

patterns due to switching operations in a crypto circuit lead to these unintentional radiations, which 

may aid an attacker in obtaining useful information about the encryption algorithm being executed 

within the target circuit. The radiations are also produced from the inadvertent electromagnetic 

coupling between different components on a chip [6, 14]. Due to the rapid changes in the current, 

the EM field surrounding the chip varies and can be monitored by sensitive probes [14]. However, 

these probes have to be placed in close proximity to the source as the signal is mixed with 

interference from the neighboring components. In the subsequent sections, we will demonstrate 

that incorporating on-chip voltage regulators significantly reduces these EM emanations. As the 

required power is delivered to from the voltage regulators to the load circuits through local, thinner 

metal lines, the detection of the corresponding EM emanations becomes difficult. 

Electromagnetic emanations, just like power signals carry certain information about the 

information being executed on the circuit.  Considering a wire of length L, carrying constant current 

I, as shown in Fig. 2.1, the magnetic field B is calculated at a point along the middle of the wire at 

a distance R, using Biot Savart's Law [12]. 
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Figure 2.1 Magnetic field of current and carrying conductor 
 

 

𝐵 =  
𝜇0𝐼

4𝜋𝑅
(

𝐿

√𝐿2
4⁄ +𝑅

)                                                          (1) 

 

where uo is the magnetic constant, R is the distance between the current and the field point while 

I is the current carried on a conductor of infinitesimal length. 

The electric field generated can be approximated to be a cylindrical Gaussian surface as 

shown in Fig. 2.2. The Gaussian cylindrical surface is assumed to be coaxial with the wire of 

radius R and length L. 

 

                                              ∅𝐸 = 𝐸 ∫ 𝑑𝐴 ≈ 𝐸(𝑅)(2𝜋𝑅𝐿)                                                  (2) 

 

where E ∫ dA = Qin/E0 and Qin is the new charge inside the Gaussian surface (λL). 

Additionally, according to Faraday’s law any variation in the surrounding of the loop probe 

will generate an induced voltage (emf) in the coil: 
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Figure 2.2 Electric field of current and carrying conductor. 

 

 

                                                       𝑒𝑚𝑓 =  −𝑁
𝑑∅

𝑑𝑡
                                                           (3) 

                                                   𝑑∅ =  ∫ 𝐵. 𝑑𝑆
𝑙

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
                                                       (4) 

 

where N is the number of turns in the coil and ∅ the magnetic flux.  

When the wire length is significantly greater than the distance, the magnetic field B can 

be simplified as: 

 

                                                         𝐵 =  
𝜇𝐼

2𝜋𝑑
𝛼∅                                                             (5) 

 

where d is the spacing between the wire and αØ is a unit vector which is azimuthally oriented with 

respect to the wire. As can be seen from the above equations, the electric and magnetic fields 

are inversely dependent on the distance among the surface and point of observation (what was 

observed in our simulation results as well). While these modest equations do not define the 
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precise conduct of the magnetic field, they highlight two noteworthy points, firstly that the field is 

dependent on data and the orientation of the field is dependent on current orientation [36].  

 

2.2 EM Attack Methods 

 

The side-channel information from each device can be retrieved via two methods which 

are classified based on their approach as: 

 

2.2.1 Active Attack 

 

For these attacks, probes are placed directly onto different parts of the device in order to 

collect information. These attacks tamper with the outer layer of the device and then analyze its 

behavior [40]. 

 

2.2.2 Passive Attack  

 

This means of attack involves observing leakages and radiations from the device without 

direct contact or any kind of tampering of the device in order to collect data which can be used to 

extract confidential information. The passive attack method is dealt with in this work from the EM 

SCA perspective. 

 
2.3 EM Side Channel Analysis Types 

 

Although they are considered extremely efficient, EM side-channel analyses require 

extensive technical familiarity of the inside operation of the system on which the cryptography is 
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executed. These side-channel analyses when classified based on their complexity comes under 

two broad categories:  

 

2.3.1 Simple Side-Channel Analysis 

 

This method of side-channel analysis involves retrieving the key of a cryptographic design 

by simply picking up a trace and pinpointing the operations and guessing the key based on clocks. 

This is done mainly through visual inspection. 

 

2.3.2 Differential Side-Channel Analysis 

 

This is a more complex method and is used in cases where the direct relationship between 

the waveform and the key is unknown. This side-channel analysis involves extracting the key 

through repeated performance of a sequence of steps of statistical analysis. These days, with 

more sophisticated systems in place, nearly all attacks require this type of analysis [40]. 

 

2.4…..EM Emanation Types 

 

The examination of electromagnetic interferences (EMI) or Radio Frequency Interferences 

(RFI) in relation with electrical devices is known as Electromagnetic compatibility (EMC). There 

are generally two types of electromagnetic emissions distinguishable using EMC depending on 

the type of radiation source, the differential-mode and the common-mode. Differential-mode 

radiation is produced by loops created by printed circuit traces, components, cables, etc. These 

loops behave as small circular antennas and ultimately start producing radiations that are quite 

low and that neither disturb the entire system nor are influenced easily by outside radiations. They 

can also be avoided quite easily by system shielding [53]. Conversely, common-mode radiations 
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are generated as a consequence of undesired internal descents in voltage within the circuit which 

mostly appear in the ground loop. Currents in the ground loop arise due to the unpredictable 

characteristics of conventional transmitting and receiving circuits. So the outer cables that are 

contained within the ground loop start behaving as antennas that are energized by some internal 

voltage drops. Since these voltage drops are unintentional, it is often much harder to identify and 

control these radiations as compared to differential-mode radiations [37]. From the view point of 

attacker there are two major types of emanations, known as direct and indirect. 

 

2.4.1 Direct Emanations 

 
During the time taken for the transition among two states, digital devices eventually emit 

electromagnetic waves at a determined frequency related to the interval of the rise/fall time. These 

conceding radiations are called direct emanations owing to the fact that they are produced directly 

by the wire communicating sensitive data [58]. 

 

2.4.2 Indirect Emanations 

 
Sometimes new types of emanations are induced through the interaction of 

electromagnetic radiations and active electronic components.  These unintended emissions start 

appearing as modulations or inter-modulations (amplitude, phase or frequency) or as carrier 

signals. Oftentimes, conceding modulated emissions are produced by non-linear coupling 

between carrier signals and sensitive data signals like crosstalk, ground or power supply DC 

effluence. Compared to direct emanations, these indirect emanations often have better 

propagation and can thus be intercepted at a greater range. Predicting these emanations are 

immensely hard and they are usually exposed during compliance tests [37]. 
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2.5      Near-Field and Far-Field Approximations 

 
The electromagnetic behavior of EM emitting sources can be studied by defining near field 

and far field approximations. 

 
2.5.1   Near Field 

 

With the wave number of  𝑘 = 2𝜋 𝜆⁄ , the near field region is characterized by  kr << 1 

where r is the space between the source and the probe. This can be written as: 

 
 

                                                            𝑟 << 𝜆/2𝜋                                                          (6) 

 
 
which is typically the maximum distance to be considered in the near field region. Since the 

magnetic fields are more prominent in near field measurements, large magnetic probes are 

preferred 

 

 

Figure 2.3 Near field and far field illustration [42] 
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2.5.2   Far Field 

 

As opposed to the near field region, the far field boundary is specified by kr >> 1 which 

can be written as: 

                                                            𝑟 >> 𝜆/2𝜋                                                          (7)        

                                            
This area is controlled by radiated fields where the electric and magnetic fields are at right 

angle to each other. In far field measurements, both E and H fields can be measured and the 

larger amplitude of the field makes this measurement easier. A successful EM attack on a smart 

card from a far field distance of approximately 5 meters has been performed in [2]. Also in [38], 

authors were able to validate full extraction of ECDSA secret signing keys from OpenSSL and 

CoreBit coin executing on iOS devices. In these experiments, a shielded environment requires 

only a few hundred traces, which is analogous to a near field attack.   Alternatively, in an 

unshielded environment, the number of required measurements may increase to a few thousand. 

 
2.6 EM Propagation 

 
Electromagnetic emanations propagate from the source in four ways:  

i) Electromagnetic radiation. 

ii) Conduction. 

iii) Modulation of another signal.  

iv) Acoustic signals. 

 

Radiated EM emissions can be seized by using near field probes or antennas at a close 

proximity. If the amplitude is low, direct radiation should be computed in the near field. 

Cryptographic chip can be considered to contain multiple radiation sources in the form of current 

elements.  



 
 

13  

Accordingly, a cryptographic chip is modeled by replacing small current loops with 

magnetic dipoles and common mode currents with electric dipoles in [16], considering their very 

similar field characteristics. 

 

 

Figure 2.4 EM waves propagation [43] 

 

2.7 EM Probe 

 
A diverse range of EM probes is available to choose from for performing an EM side-

channel attack. A probe is usually a combination of an amplifier and a sensor. The most commonly 

used probe is the one with a coil as sensor. Picking a suitable EM probe has a large impact on 

the captured EM results. Different EM probes have different measured quantities (magnetic H- 

and B-fields), sensitivities, resolutions and frequency bandwidths. The orientation of this probe 

needs to equate the course of the originated EM field. Usually, B-field probes have a coil with 

several windings which provides a robust output signal while the H-field probes have a single 

winding coil that is electrically shielded. The exact placement of the EM probe above the chip 

exterior also matters. This is because several processes with different clock frequencies are 
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running simultaneously in a chip. Another thing that matters is the probe resolution. Probes which 

have a lesser resolution will pick up EM emanation of executions that are running in neighboring 

die areas, which will add more noise to the signal being picked. On the other hand, probes with a 

greater resolution will measure only a fragment of the process being surveyed. The transistor 

switching period is typically smaller than the clock cycle in most modern chips. In order to capture 

emissions, the probe bandwidth must be kept to be roughly five times the clock frequency [39]. 
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CHAPTER 3: LEVERAGING ON-CHIP POWER DELIVERY 

 
 

3.1…..Background 

 
In today’s hardware market, the demand for very efficient electronics in for all sort of 

purposes is increasing, different types of countermeasures are being proposed and developed. 

These measures will always require a power regulation system. This is because they are strongly 

dependent on power that is very specific with its behavior whatever type of prerequisite they 

require. The power density is becoming more challenging task for designers as we go down to 

smaller nodes of technology [64]. This is making the on-chip voltage regulation into a huge and 

hot research area so that it will be able to cater for small, fast, efficient, robust, and high power-

density voltage regulators which will be located very close to the on-die load circuits [9]. The main 

advantages they bring are faster voltage scaling, reduction in I/O pins of the chip, and improve 

fine-granularity power distribution techniques [9,19]. The design of voltage regulators on die also 

calls for new challenges on process and design technologies. On-chip integration of voltage 

regulators increases complexity and consequently and can take significant design efforts. On-

chip integration requires the same process technology as other chip components making it a 

difficult task as it requires to maintaining high efficiency and excellent performance. The level of 

integration also increases the chip size [20,52]. In order to have optimum level integration for 

power delivery, we require to decrease the total area under these devices and yet make sure to 

do that under acceptable range of power efficiency. The manufacturing cost is directly related to 

the area needed by the on-chip voltage converter also it is highly desirable to keep the regulator 

in close proximity of the load [60]. 
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Figure 3.1 Distributed on-chip power delivery network. 

 

In today’s modern circuits, we are mainly using three types of voltage regulators: low 

dropout regulators, switched capacitor also called charge pump and buck converters [21].  

 

3.1.1 Low Dropout Regulators 
 
 

The most common and simplest solution the power delivery problem is provided by Low 

Dropout Regulators (LDOs). The power transistor inside an LDO is dependent on a feedback loop 

that stabilizes its output voltage. These regulators provide a fast response as there is no limitation 

on the feedback loop other than the stable bandwidth of the error amplifier. The output power to 

the goes through the power transistor, the density of which is generally controlled by the current 

density of transistors fabricated in the used technology node. This current density is generally 

high enough to exceed the current density of the other widely applied topologies. As the 

differences between the output and input voltages gets higher, the LDO suffers from a significant 

drop in power efficiency. Thus the dependence of this type of regulator on the VOUT/VIN ratio 
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reduces its efficiency. LDOs are very useful in producing a cleaner output from a noisy power 

supply [60]. 

 

3.1.2 Switched Capacitor Converters 
 
 

These use capacitors in various configurations for delivering power to the output. These 

types of converters usually start from a charging phase during which capacitors are pumped to a 

voltage that is pre-determined, as well as a discharging phase when the charge accumulated by 

the capacitors is delivered to the output. The output voltage levels are regulated using frequency 

of operation and the duty cycle. In any given configuration, the capacitors charge to a certain 

voltage, so these converters generally have a distinct ideal conversion ratio which allows them to 

operate at 100% efficiency. The large size of the capacitor in this topology, which occupies a 

greater than desired area on the chip hinders the efficiency of on-chip implementation and is a 

significant disadvantage. If the capacitor size is reduced, less charge may be stored in it, and thus 

less charge is available to the load [60]. 

 

3.1.3 Buck Converters 
 

The inductor current and its direction in these inductance based converters can be 

adjusted to generate a precise output voltage. The standard method for regulating the current 

flow through the inductance employs a pair of power transistors. One is connected to the supply 

voltage while the other is connected to ground. In this topology, the output voltage is generated 

when the switching activity causes a changing current to flow through the inductance. This 

switching activity produces some ripple voltage in the output. There are also some serious 

concerns in the usage of this configuration in the case of on-chip implementation. The inductor in 

this topology occupies a large area, which is a major shortcoming. The size of all the filters needs 
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to be much reduced because the regulator is integrated on-chip, which results in higher switching 

frequencies, significantly reducing the efficiency of the regulator [60].  

IBM uses a distributed on-chip power delivery network in the POWER8 processor where 

the entire die has more than 750 ultra-small voltage regulators [24]. Intel utilizes a fully integrated 

voltage regulator (FIVR) architecture to adaptively change the number of active phases within a 

buck converter dependent on the workload to maximize power efficiency over a wide current 

range [25]. One of the properties of distributed on-chip power delivery that will be investigated in 

this thesis is that the distance between the voltage regulator and load circuit (i.e., cryptographic 

circuit) becomes significantly smaller. Alternatively, voltage regulator delivers the voltage closer 

to the point of load (i.e. in close proximity to the load circuits) [56]. Since the current does not 

travel long distances, the regulated power can be distributed using semi-global and partly local 

power grid lines to minimize the voltage drop across the metal vias, as illustrated in Fig. 3.1.  

Already some work has been published regarding utilization of on chip voltage regulators as an 

effective countermeasure against power side channel attack [44 - 50] however, to the best of our 

knowledge, we are the first one to investigate it from the EM SCA perspective. 

 

 

Figure 3.2 Leveraging local power delivery reduces EM emanations  
originating from the power delivery network.  
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When the power is delivered through thinner metal lines as shown in figure 3.2 at 

significantly closer distances, our hypothesis is that the EM emanations are expected to be 

significantly mitigated. There are four intuitive explanations [54]: 

i) The amount of current will be significantly smaller. 

ii) The cross-section of the wires carrying current will be thinner. 

iii) The local metal lines may be farther from the probe.  

iv) The higher metal layer may partially act as a shield to reduce the EM radiation from 

the lower metal lines. 

 
In this thesis, we validate our hypothesis with extensive HFSS simulations, as explained 

in next chapters. The simulation of EM SCA attacks on crypto-circuits requires certain number of 

EM traces to be observed easily by a nearby placed EM field probe, which needs to be further 

analyzed during perilous execution cycles of different encryptions. Once the attacker captures the 

traces, the susceptibility of the hardware design to different EM SCA attacks can be explored.  

 

3.2 Working of AES 
 
 

AES has been in widespread use since 1999 for symmetric cryptography. It is a substitution-

permutation network, has a fixed block size of 128 bits and uses 128, 192 or 256- bit keys [59]. The 

number of transformation rounds that the unencrypted text undergoes in order to produce the cipher 

depends upon the key size. AES has a well-known flaw in that there is side-channel leakage at the 

final transformation round. In ASIC operation, a register is utilized for the AES state to be kept in at the 

end of each round; consequently, the round key which is used in the last round can be inferred by 

working the side-channel leaks when this register is updated. It is assumed in this work that the EM 

emission produced by the AES circuit depends on how many transitions there are at the state register 

and at the same time, the hamming distance between the values on the state register.  
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This model is valid since the amount of current that is drawn by the AES circuit is dependent 

on the number of CMOS logic gate transitions [61]. 

 

 

Figure 3.3 AES flow chart [61] 

 

 
3.3 Threat Model 
 

A threat is defined as a situation or occurrence with the likely to reason harm to a system 

in the form of obliteration, disclosure, modification of data, and/or denial of service [55]. In our 

threat model, the targets are cryptographic circuits, which are running confidential information on 

the chip. The goal of the attacker is to learn information that s/he normally has no valid access to, 

e.g., the secret keys. For the EM side channel attacks, the attacker typically needs little 

capabilities [57]. The measurement setup for EM attacks consists of a sensor or antenna, analog 

preprocessing equipment, analog to digital converter, and a cable connection. 
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Many near field probes such as integrated inductors, hard disk heads, magnetic probes, 

and solenoids have been described in literature. The use of far field antennas like biconical 

antennas, discone antennas, and the folded dipole antennas have also been mentioned [14]. We 

assume that the secret keys are stored in the device and the attacker does not physically invade 

the device by decapsulation or touching the chip with the probe. The attacker can achieve his 

objectives without necessarily finding or exploiting system faults, but rather just running the 

normal process and performing reasonable operations. We also assume that the target device is 

at the disposal of attacker, and will like to operate it for multiple times, possibly with input values 

of his likeness. In addition, during the processing, the attacker will be able to extract the device's 

electromagnetic field pattern [18]. 

 

 

Figure 3.4 Measurement setup [62] 
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CHAPTER 4: EVALUATION MODEL 
 
 
4.1 Simulation Setup 

 
 

The implications of delivering power through the off-chip and on-chip voltage regulators 

on the amplitude of EM emissions are presented with extensive simulations in HFSS [26]. Driven 

Modal type simulation is selected in the HFSS to compute the modal-based S parameters in terms 

of power. The S matrix solutions are articulated in terms of the incident and reflected powers of 

the waveguide modes. An excitation port permits energy to in and out of the structure. For this 

model, a lumped port is chosen as the excitation port. The local/global power grids are modeled 

based on the metal layer parameters in [27]. The solution frequency is chosen as 1 GHz. The 

frequency is swept from 400 MHz to 6 GHz with the step size of 0.1 GHz, where the rest of the 

data at intermediate frequencies is interpolated. The maximum number of adaptive passes 

allowed is 20 and the extreme change in the scale of S parameters between two successive 

passes (Delta S) is 0.02. The S parameters are plotted in the 2D Cartesian plane. The antenna 

used as a near field probe is a loop antenna with a circumference of 600 um. 

 

Table 4.1 Simulation parameters  

Simulator High Frequency Electromagnetic Field Simulation 

Incident and reflected power S matrix solution 

Solution frequency 1 GHz 

Range 400 MHz – 6 GHz 

Step size 0.1 GHz 

Near field probe model Loop antenna 

Circumference 600 um 
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Figure 4.1 EM emissions from local grid at varying probe distances. 

 

 

4.2 Effects of the Size of the Power Grid and Distance from the Probe 
 
 

While the highest two metal layers (eighth and ninth) are considered to form the global 

power grid, the lower metal layers (third and fourth) are considered to form the local power grid. 

We first analyze the emanations when a probe is placed at the top of the circuit. The emanations 

from the local and global power grid lines are extracted when the distance of the near field probe 

to the chip is swept from 25 um to 150 um, as shown respectively, in Figs. 4.1 and 4.2. The lengths 

of the local and global power grid lines are, respectively, 100 um and 250 um. The amplitude of 

the EM emissions from both the global and local grids to the probe increases with frequency and 

with a reduction in the distance from the probe.  

 

Table 4.2 EM Emanations from local vs global grid at  
varying probe distance. 

Distance from probe (um) Local grid (dB) Global grid (dB) 

25 -104.4053 -70.4994 

50 -122.6810 -79.5490 

100 -132.9984 -95.3681 

150 -144.0217 -108.4753 
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Figure 4.2 EM emissions from global grid at varying probe distances. 

 

 

The EM emanations from the global power grid lines are, however, more than 25 dB (up 

to 34 dB) greater than the EM emanations from the local power grid lines, as summarized in Table 

4.2. The primary reason is that the thinner interconnect wires cause lower EM emanations as 

compared to the thicker global lines.  

 

 

Figure 4.3 EM emissions from local grid at varying wire lengths. 

 
 

Next, the EM emanations from the local and global power grid lines with various lengths 

have been simulated. For the same probe distance of 50 um, the EM emanations from the local 

grid are reduced by almost 40 dB as compared to the global grids, as seen from Figs. 4.3 and 
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4.4, due to shorter wire lengths. For the same interconnect length of 85 um, the emission from 

the local grid is almost 35 dB lower than the emanations from the global grid due to thinner 

dimensions of the wires. Typically, the length of the global interconnect is roughly equivalent to 

the size of the die (1-2 mm). As seen from Table 4.3, even for an interconnect length of 250 um, 

the EM emission is approximately -79.5490 dB, which is significantly larger than that from the 

local grid which are of much smaller lengths. 

 

 
Figure 4.4 EM emissions from global grid at varying wire lengths. 

 

So far, we assumed that the attack is performed from the top of the chip as the signal 

strength in this case is significantly higher and the attacker would require less post processing 

elaboration. To verify this assumption the probe was moved to the bottom of the chip to capture 

and compare the electromagnetic traces. The probe was placed at a distance of 100 um from 

both the local and global interconnects. The simulation were rerun and we get the results 

mentioned on next page. The captured EM emanations are shown in Fig. 4.5, which confirms our 

above mentioned hypothesis.  
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Table 4.3 EM emanations from the local and global power grids to  

a probe for different wire lengths 

Wire length (um) Local grid emissions (dB) Global grid emissions (dB) 

55 -127.1706 - 

70 -125.6433 - 

85 -123.8549 -88.4574 

100 - -86.4093 

125  -84.0472 

250  -79.5490 

 

When capturing the EM emanations from the bottom, there is a decrease of 8 dB in 

emissions from global interconnect wires. The increased distance and shielding from the 

substrate are the two main reasons for this drop. The emissions from the local wires however are 

increased. This is because the probe is now relatively closer to the wires as compared to the 

previous case when the probe was placed at the top of the chip. The emanations from the global 

wires can still be seen to be higher than the emanations from the local wires, which supports our 

claim that on chip regulation will significantly improve the security. 

 

 
Figure 4.5 EM emissions comparison of local and global grids at 100 um. 
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The comparison can also be seen in Table 4.4, for the interconnect length of 100 um, the 

EM emission from global grid is -103.4635 dB, which is significantly higher than the local grid of 

the same length. 

 

Table 4.4 EM emanations from the local and global power grids to a probe placed at 100 um. 

Probe position Local grid (dB) Global grid (dB) 

Top -132.9984 -95.3681 

Bottom -114.6810 -103.4635 

 

 
4.3 Security Implication of the Implemented Design 
 
 

Although we have discussed the reduction in the signal strength in the previous sections, 

the security implications as a function of the signal strength are explained in this section. This 

section validates our discussion with mathematical calculations performed under the same 

scenarios stated in the previous sections.  

Assuming that PS1 is the power of the EM signal without the proposed countermeasure, 

PN is the measured power noise, and PS is the power of the signal with countermeasure, 

 

10𝐿𝑜𝑔 
𝑃𝑆1

𝑃𝑁
− 10𝐿𝑜𝑔 

𝑃𝑆2

𝑃𝑁
= 33 

10 (𝐿𝑜𝑔𝑃𝑆1 − 𝐿𝑜𝑔 𝑃𝑁 − 𝐿𝑜𝑔 𝑃𝑆2 + 𝐿𝑜𝑔 𝑃𝑁) = 33 

10𝐿𝑜𝑔
𝑃𝑆1

𝑃𝑆2
= 33 

𝑃𝑆1

𝑃𝑆2
= 1995                                                    

 

Signal to noise ratio (SNR) is a degree of how much useful information there is in a system. 
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𝑆𝑁𝑅1 = 𝑉𝑎𝑟
𝑃𝑆1

𝑃𝑁
                             𝑊𝑖𝑡ℎ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒  

𝑆𝑁𝑅2 = 𝑉𝑎𝑟
𝑃𝑆2

𝑃𝑁
                             𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

𝑆𝑁𝑅2 =  𝑆𝑁𝑅1

𝑉𝑎𝑟 (𝑃𝑆2)

𝑉𝑎𝑟 (𝑃𝑆1)
= 𝑆𝑁𝑅

1

1995
 

 

SNR has a relationship with the correlation coefficient given by the following equation: 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝛾 =  
1

√1 +
1

𝑆𝑁𝑅

  

 

From the security perspective, we are interested in computing the number of plaintexts 

that are mandatory to have a fruitful attack with a success rate of 0.9 as a function of the 

correlation coefficient value [28]. We witnessed that the quantity of plaintexts with a success rate 

of N0.9 required to perform a correlation analysis attack can be expected with [28]. 

 

𝑁0.9 ≈ 𝐶 × 
1

𝛾2
= 𝐶 (1 + 

1

𝑆𝑁𝑅2
) 

≈  
𝐶

𝑆𝑁𝑅2
=  

𝐶

𝑆𝑁𝑅1
 × (1995)2 

 
 
where C is a constant reliant on the numeral of key guesses considered and the necessary 

success rate. The enhancement in the measurement to disclosure (MTD) value comes out to be 

(1995)2 which is considered a significant improvement. Similarly, from Table 4.4 it can be 

observed that the EM emanations from the global interconnect is approximately 11 dB higher than 

that captured from the local grid. Using this result and following the same procedure: 

 

10 𝐿𝑜𝑔
𝑃𝑆1

𝑃𝑆2
= 11 

𝑃𝑆1

𝑃𝑆2
= 13 

𝑁0.9  ≈ 𝐶 ×
1

𝛾2
=  

𝐶

𝑆𝑁𝑅1
×  (13)2 
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It is observed that the MTD enhancement ratio is not decreased significantly if the attack 

is performed from the bottom. This is primarily because when captured from the bottom, the EM 

emanations by the global grid is decreased but increased by the local grid, due to the close 

proximity to the measuring probe. 

Although the MTD enhancement ratio is significantly larger for the attacks that are 

performed from the top side, the EM signal strength is still larger when the attack is performed 

from the top side as compared to the bottom side. The focus of this thesis is to reduce the 

emanations from the top side to make the EM side channel attack difficult to perform. We have 

shown that using on-chip voltage regulators, EM emissions are reduced by 33 dB and the MTD 

enhancement ratio is increased by a factor of (1995)2. In the following sections, two techniques 

will be discussed which will further reduce the EM emissions from the top probe, making the attack 

even more difficult to perform. 

 

4.4 Shielding with MIM Capacitor 

 
Sheet metal is typically used for shielding EM radiation. Copper absorbs radio and 

magnetic waves and is used for RF shielding [29,51]. The electric field in EM radiation produces 

forces on the electrons in the conductor, which causes displacement of charges inside the 

conductor and cancels the applied field. Similarly, magnetic fields produce eddy currents inside 

the conductor which reflect the electromagnetic radiation from the surface. 

However, due to the electrical resistivity of the conductor, the excited field does not 

completely cancels the applied field. Any holes in the shield must be significantly smaller than the 

wavelength of the radiation that is trying to be kept out. Holes bigger than the wavelength allow 

the current to flow around them so the incident wave does not excite the opposing electromagnetic 

fields [30]. High frequencies (100MHz- 40 GHz) are extremely sensitive to gaps in the shielding 

enclosure. Also, due to the ferromagnetic response of the conductors to low frequency magnetic 
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field, these fields are not completely mitigated by the conductor. All these factors reduce the 

shielding capability of a conductor [30]. 

EM shielding also occurs due to absorption. The loss due to absorption is proportional to 

the thickness of the shield, and is because of the presence of electric or magnetic dipoles, which 

interact with the fields in the incident radiation. Shielding can also occur due to multiple reflections 

from the conductor surface. The loss due to multiple reflections is directly related to the surface 

area of the shield where a larger interface area increases the radiation loss. At higher frequencies, 

electromagnetic radiation penetrates only the near surface of an electrical conductor which is 

known as skin effect [31,59]. 

 

 

Figure 4.6 Using MIM capacitor as a shield. 

 

Accordingly, we experimented with MIM capacitors and investigated the effectiveness of 

MIM capacitors on minimizing the EM emanations from the local power grids, as illustrated in Fig. 

4.6. MIM capacitors are typically implemented between the fifth and sixth metal layers, making 

them physically appropriate to shield the local power grid lines which use the third and fourth 

metal layers in our simulations. Fig. 4.7 shows the effect of using an MIM capacitor to shield the 

local power grid. As tabulated in Table 4.5, the MIM shielding leads to a reduction in the EM 
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emission by almost 3 dB at the solution frequency of 1 GHz. The MIM shielding therefore does 

not significantly reduce the EM emanations from the local power grid lines. The primary reason is 

that the MIM shield, while blocking some of the radiation, may boost the emanations by creating 

a certain amount of current due to the inductive coupling form the local power grid. The generated 

inductive current therefore negates the shielding effects of the MIM capacitors. 

 

 
Figure 4.7 Reduction in EM emission due to shielding effect of the MIM capacitor. 

 

 

Table 4.5 EM comparison with MIM shielding. 

Solution frequency (GHz) EM without shielding (dB) EM with shielding (dB) 

1 -104.4053 -107.7182 

 
 

4.5 Effect of Upper Metal Layers on the EM Emanations from Lower Layers 
 
 

The effects of higher metal layers on the EM emanations from the lower metal layers to a 

probe are investigated. As shown in Fig. 4.8, due to the inductive coupling between the different 

metal layers located close to each other, the EM radiation emitted by the lower metal layer 

increased by a small amount (~2.7 dB) at the solution frequency of 1 GHz as shown in Table 4.6.  

 

 



 
 

32  

Table 4.6 EM comparison with upper layer 

Solution frequency (GHz) 
EM without upper metal layer 

(dB) 

EM with upper metal layer 

(dB) 

1 -104.4053 -101.4948 

 

Due to the presence of gaps in the upper metal layers which are almost as large as the 

wavelength of the incoming radiation, the upper layers do not act as an effective shield and fail in 

attenuating the incident radiation. Instead, because of the magnetic field generated in the lower 

layer, a small current is induced in the upper layer, which further creates an additional 

electromagnetic field that is coupled with the one generated by the lower metal layer. As a result, 

the upper metal layers, if no intentional current is flowing, would even boost the EM emanations 

form the local power grids by a small amount (i.e. ~2.7 dB). 

 

.  

Figure 4.8 Effect of the global grid on the emanations from the local power grid. 

 

4.6 Discussion 
 

The primary issue of delivering power through the local interconnect lines is the increased 

impedance of the local interconnect as their cross-sectional area is lower than that of the global 

power interconnect lines. The physical distance from a local voltage regulator to a load circuit is 

considerably reduced as associated to the distance from an on-chip regulator to an on-chip load 

circuit. Additionally, the power provided by an on-chip voltage regulator also needs to go through 
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the package and/or board level interconnects as well as the pad/pin parasitic impedance. As 

compared to going through all of these parasitic impedances, the output power of a localized on-

chip voltage regulator only needs to travel small distances. Considering these differences 

between the on-chip voltage regulators and distributed on-chip voltage regulators, delivering the 

required power through lower metal lines to the circuits at close proximity would not cause 

significant amount of noise. Additionally, the power output of each individual distributed voltage 

regulator is considerably smaller than that of the on-chip regulators, making it possible for the 

localized regulated power to be delivered through the local power grid lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

34  

 
 
 
 
 

CHAPTER 5: FUTURE WORK 
 

 

So far we have mainly utilized on-chip voltage regulators to counter the actual EM 

emanations of the cryptographic circuit from a malicious attacker. However, as mentioned before, 

some of the assumption made were over simplified. We plan to address them in our future work. 

We will do so by simulating all the scenarios from the bottom side in order to have a better 

understanding about the protection level of on-chip voltage regulators. Also since this type of 

attack is non-invasive, post looking at the chip package dimensions, we will redo the simulations 

sweeping around 1 mm probe distance.  

 

 
Figure 6.1 EM emanations captured from 1 mm distance 

 

We also plan to sweep certain parameters like MIM capacitor dimensions along all three 

axis, try different type of material types for the capacitor/dielectric and also sweep the capacitor 

distance from the local/global grids. We also plan to stack multiple capacitors on top of each other 

and get an idea about the improvement in shielding. We will look into how changing one or more 
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than one of the above mentioned parameters change the shielding effectiveness of the MIM 

capacitor. The shielding effectiveness (SE) is equal to ratio quantities at the receptor without the 

shield and with shield: 

 

SEdB = 20Log
EM1

EM2
 

 
where, EM1 represents emanation at the receptor without shielding body, EM2 denote the 

emanations at the receptor with a shielding barrier (MIM) between the emitter and receptor. This 

formula is valid as long as the thickness of the shield is much less than a skin depth, δ, where the 

skin depth is defined as follows: 

 

σ =  √
2

ωμσ
 

 
 We also plan to sweep the local/global grid dimensions for more accurate and realistic 

assumptions. Right now the dimensions used were from [27] which is around a decade old 

technology standards. Since then, with the rapid development of nanoscale integrated circuits 

(ICs), the thickness of interconnects has been decreased dramatically. Moving forward we will 

model our local and global grids according to the information provided in [63]. This will provide us 

more accurate and realistic results. 

Lastly we plan to replace MIM capacitor with other available on chip passive devices like 

inductor and see what impact they create on the captured EM emanations by the attacker. 
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CHAPTER 6: CONCLUSION 
 
 

In this work, the implications of distributed on-chip power delivery on EM side channel 

attacks are investigated. The key idea is the observation that on-chip voltage regulators can utilize 

shorter and thinner local interconnect wires, and the EM emissions from the circuit would be 

considerably lower than those from circuits using on-chip voltage regulators which have to utilize 

thicker global wires. A 33 and 11 dB reduction in the EM emanations from top and bottom can be 

achieved, respectively, when distributed on-chip voltage regulators are utilized instead of on-chip 

voltage regulators. In the analysis, we are able to simulate global grid up to 0.25 mm length due 

to computational complexity of the simulation with longer wires. With typical global grids having 

lengths of 1-2 mm, the EM radiation will be significantly higher than local grids when captured 

from either top or bottom. We also demonstrate that shielding a cryptographic circuit with MIM 

capacitors can further decrease the emission of EM side channel information by less than 3 dB. 
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