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ABSTRACT OF THESIS 

 

 

 

 

DETECTION OF ELECTRICAL ALTERNANS IN VENTRICULAR 

DEPOLARIZATION PHASE OF HUMAN ELECTROCARDIOGRAM. 

 

 

T-wave Alternans (TWA) in an electrocardiogram (ECG) has received considerable 

interest as a potential predictor of sudden cardiac death (SCD). However, large clinical 

trials have shown that while TWA has a very high negative predictive value, its positive 

predictive value is poor. Results of previous studies suggest that arrhythmia onset can be 

affected by the phase relationship of alternans of the depolarization and repolarization 

phase of the action potentials of the ventricles. To assess this relationship, one would first 

need to establish that depolarization alternans can be detected and then develop methods 

to determine its relationship with repolarization alternans, which is TWA. The objective 

of this thesis was to determine whether depolarization phase alternans can be detected in 

clinical grade ECGs. To accomplish this, an algorithm was developed to quantify R-

Wave alternans (RWA) in patients who display TWA in their ECGs. Using both the 

morphology and amplitude of the R-wave, our results show that RWA can be seen in 

clinical ECGs. This suggests that RWA has the potential to help quantify occurrence and 

incidence of depolarization alternans, and supports further exploration of the link 

between depolarization and repolarization alternans which has the potential to improve 

clinical utility of TWA.  
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Chapter 1 Introduction 

Sudden Cardiac Death (SCD) is a condition where unexpected natural death, from 

cardiac causes, occurs within a short period of time from the initial onset of symptoms 

[1]. It accounts for over 300,000 deaths in the United States each year [2, 3]. With the 

onset of death occurring quickly after the first symptom, research has looked for ways to 

predict if someone is at risk for SCD. One particular abnormality that has received 

attention in the past 30 years, is the detection of T-Wave Alternans (TWA) in an 

electrocardiogram (ECG) during a standard stress test [4]. TWA is a result of the action 

potential (AP) duration (APD) alternating in length from beat-to-beat during the 

repolarization phase. This phenomenon has been linked to electrical instability within in 

the heart and can contribute to ventricular arrhythmias.  

A recent meta-data study looked at over 2,600 subjects from 19 different studies and 

found that even though TWA test has a strong negative predictive value (NPV) (97.2%), 

its positive predictive value (PPV) (19.3%) is very weak [5].  This means that if the test is 

negative, the patient is unlikely to experience SCD within the next two years. Whereas if 

the test is positive, the patient’s certainty of having SCD in the next two years is 

unknown. This can result in unnecessary treatment, potentially costing the patient money, 

time, and unnecessary anxiety.  

One area of study that shows promise in improving the PPV of the TWA test is the 

relationship between alternans in the depolarization and repolarization phases of APs. A 

study from our laboratory reported in 2012 that when APD alternans was present in 

cardiac tissue, alternans in the max rate of repolarization (|dv/dt|max) was also present but 

the two were not always in phase [6]. Taking this knowledge and using a canine 

ventricular myocyte mathematical model, they investigated the effects of the phase 

between APD and |dv/dt|max alternans. In the model, if the two alternans were in-phase, 

the alternans of the cells became discordant, which is a phenomenon where short (long) 

activation of short-long sequence becomes long (short) as it travels spatially. However, if 

they were out-of-phase, no discord occurred. Indicating that when the APD and |dv/dt|max 

alternans are out-of-phase, it might have a stabilizing effect and affect discord incidence.  
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In looking for a marker that could be used to identify the presence of |dv/dt|max alternans 

in ECG, a dipole field potential spatial model was used (unpublished results by Drs. A.R 

Patwardhan and S. Wang). The results of the simulations showed that alternans of 

|dv/dt|max resulted in alternans of the R wave amplitude. The purpose of the present thesis 

is to determine whether beat-to-beat changes in morphology of the R-Wave are seen in 

clinical grade ECGs when TWA is also present. The results of prior studies from our 

group suggest that if such changes did occur, inclusion of these in future studies has the 

potential to improve the diagnostic value of TWA for SCD.  
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Chapter 2 Background 

2.1 Cardiac Cycle 

The main function of the heart is to pump blood throughout the body. The human heart is 

divided into two sides. The right side is responsible for collecting the oxygen-depleted 

blood from the body and sending it to the lungs. The left side is responsible for receiving 

oxygen rich blood from the lungs and pumping it throughout the body. Each side of the 

heart has two chambers, the upper chamber, called the atria, and the lower chamber, 

called the ventricle.  

The cardiac cycle consists of two stages. First the diastole stage, where the heart is 

relaxed and the atria are filling with blood. Next, in the systole stage, the heart contracts 

in an organized manner to pump blood from ventricles out of the heart. The sinoatrial 

(SA) node located in the upper part of the right atrium controls this cycle. At the start of 

the systole stage, an AP is generated by a SA node, and propagated throughout both atria. 

This causes the atria to constrict, increasing pressure and pushing blood into the 

ventricles. Once the AP reaches the atrioventricular (AV) node, it is delayed shortly 

before continuing on to the ventricles. The AV node is a group of pacemaker cells located 

between the atrium and ventricles that allows the AP to pass through an otherwise 

electrically insulated wall. This short delay gives the atrium enough time to finish 

pumping blood into the ventricles and helps to prevent atrial arrhythmias from spreading 

to the ventricles. After the short delay, the AP continues down the Bundle of His to the 

left and right ventricle through the Purkinje fibers, for a rapid constriction of the 

ventricles, pushing blood out of the heart. 

2.2 Cardiac Action Potential 

A cardiac AP is a brief change in transmembrane potential (TMP) of muscle cells within 

the heart. This change is typically caused by the opening and closing of specific ion 

channels that cross a cell’s membrane. The cardiac AP consists of 5 phases typically 

labeled 0-4, beginning and ending with phase 4. 
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Figure 2.1 Cardiac Action Potential.  The numbers on the figure 0-4 represent when 

each phase occurs in the AP. 0 is for the depolarization phase; 1 is for the early 

repolarization phase; 2 is for the plateau phase; 3 is for the repolarization phase; and 4 is 

for the resting phase. 

Phase 4, referred to as the resting phase, is when the cardiac myocyte’s TMP remains 

steady at around -90mV. This potential is controlled by the permeability of the cell 

membrane to different ions, with the steady outward leak of K+ having the greatest effect. 

When an AP begins, phase 0 starts. Also known as the depolarization phase, phase 0 is 

when the TMP rapidly increases. This is typically caused by the adjacent cells electrically 

stimulating the cell through gap junctions. This triggers fast-type Na+ channels to open, 

causing a rapid influx of positive Na+ ions, with the TMP peaking around +25mV. Next 

in phase 1, referred to as early repolarization phase, is when the Na+ channels deactivate 

and the transient K+ channels open allowing K+ ions to leave the cell which brings the 

TMP back near 0mV. Then phase 2, described as the plateau phase, starts. Here is when 

Ca2+ enters the cell through long-type Ca2+ channels, which electrically balances out the 

efflux of K+ ions. This causes a plateau to form. Phase 3, known as the repolarization 

phase, is when more Ca2+ channels close and the steady outward flow of K+ slowly 

lowers the potential back to resting potential.  

 

4 4 

3 

2 

1 

0 

Time 
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2.3 Electrocardiogram 

An ECG is a surface measurement of the electrical activity of the heart. It is often used to 

detect cardiac abnormalities such as arrhythmias, myocardial infarction, and electrolyte 

imbalances. With each phase of the cardiac cycle, the electrical signals within the heart 

affect the electrical signal on the surface of the body. The three main events of each 

heartbeat correspond to the three main features of the ECG. The P-wave corresponds to 

atrial depolarization, the QRS complex corresponds to the ventricular depolarization, and 

the T-Wave corresponds to ventricular repolarization.  

2.4 Repolarization Alternans 

Repolarization alternans is defined as the beat-to-beat variation in APD and has been 

linked to ventricular fibrillation [7-9]. This phenomenon can be detected in an ECG as 

alternans in the morphology and/or amplitude of the T-Wave [10, 11].  

2.5 Depolarization Alternans 

Alternans are not only found in the repolarization phase of APs, but are also found in the 

depolarization phase [12, 13]. A study published in our laboratory in 2012 looked at the 

relationship between APD alternans and |dv/dt|max alternans [6]. They found that when 

APD alternans were detected, |dv/dt|max alternans were also always detected. Most of the 

time (96%-Swine, 74%-Canine) these two were in-phase with each other. However, some 

of the time they were not. They concluded that these two alternans can become 

independent of each other. The following figure shows the possible relationships between 

APD and |dv/dt|max alternans.  
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Figure 2.2 APD and |dv/dt|max In-Phase and Out-of-Phase relationship.  Both APD 

(A, D) and |dv/dt|max (B, E) traces display beat-to-beat alternating patterns. (C, F) Show 

overlays of APD alternans (open circle) and alternans of |dv/dt|max (closed diamonds). 

(Reproduced with permission from [6]) 
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2.6 Discordant Alternans 

Spatial discord of alternans is a phenomenon where short (long) activation of the short-

long sequence becomes long (short) as it travels spatially and has been linked to the onset 

of arrhythmia [14]. This discord can be affected by the phase between APD and |dv/dt|max 

alternans. One study used a canine ventricular myocyte model to show that by only 

changing the phase relationship between APD and |dv/dt|max alternans, discordance 

presence was affected [6]. When the two alternans were in-phase with each other, 

discordances among the cell occurred. However, when only the phase changed, 

discordance did not occur. This indicated that the phase might affect the occurrence of 

discordance.  

 

Figure 2.3 APD and |dv/dt|max In-Phase and Out-of-Phase Time-Space Plots. Time-

Space plots of simulated Out-of-Phase (A) and In-Phase (B) relationship between 

depolarization and repolarization alternans. (Reproduced with permission from [6]) 

 

2.7 Alternans in ECG 

Since it is not possible to measure |dv/dt|max from the ECG, a dipole field potential spatial 

model (described in the next section) created by Dr. Siqi Wang may provide a way to 

detect the effects of |dv/dt|max alternans from surface ECGs. To test this idea, a simulation 

was conducted using the model where every element in the model had the same |dv/dt|max 

alternans. The difference in |dv/dt|max between the beats showed up in the amplitude of 

the R-wave. The fallowing figure shows the difference between two beats with |dv/dt|max 

alternans in red at the peaks of the R-Wave. 
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Figure 2.4 12 Lead ECG Model Showing Depolarization Alternans. Each tracing 

contains two beats from an ECG signal generated from AP with depolarization alternans. 

The red shows the difference between the two beats (Results provided by Dr. Siqi Wang). 

 

2.8 Dipole Field Potential Spatial Model.  

The dipole field potentials spatial model was used to look at the effects that different AP 

can cause on a standard surface ECG. This model was made up of 129,826 time-varying 

current dipole elements in the shape of a cone comparable in size to adult’s ventricles. 

Each element had electrical properties that matched clinical and experimental data. For 

the torso, a homogenous volume conductor was used which matched the conduction 

properties and size of an adult human torso. The simulated ECG electrodes were 

positioned approximately the same distance and position of a traditional ECG’s 

electrodes. Using the standard clinical lead locations, RA, LA, LL, V1, V2, V3, V4, and 

V5 were the lead locations used to compute ECGs. 
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Figure 2.5 Dipole Field Potential Spatial Model. This figure shows a 3D view (A), 

front view (B) top view (C) and side view (D) of the model. The red dot represents the 

location of the different leads that would typically be used in an ECG.  (Results provided 

by Dr. Siqi Wang). 

 

In order to calculate the potential at the location for each ECG lead, first the model had to 

calculate the electrical field around each element. This was done by combining the 

intracellular potential, extracellular potential, and net membrane current per unit volume 

for each dipole element. Then integrating all those elements by knowing distance and 

direction for each ECG electrode, the body surface potential could be calculated.    

To save computing time, the action potentials were generated and saved in look up tables 

that each element could pull from.  The following figure compares a recorded 

intracellular AP and the modeled intracellular AP. 

A B 

C D 
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Figure 2.6 Actual AP vs Model AP. Shows a recorded intracellular human AP from our 

lab (A) vs a model Intracellular AP (B) (Results provided by Dr. Siqi Wang). 

 

 

A B 
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Chapter 3 Methods 

 For this study, 2 programs were created in MATLAB to detect alternans. The first 

program was used to detect TWA in the ECG. The second program looked at only the 

ECGs in which TWA were detected and analyzed RWA of the morphology and 

amplitude of the wave. Both programs used the same preprocessing and data reduction 

steps. Below is a flow chart of the process. 

 

Figure 3.1 Alternans Detection Flow Chart.  
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3.1 Preprocessing 

The first step of the preprocessing stage was to extract the ECG signal and sampling rate 

from the containing file. Then a zero-phase band pass digital filter was applied to the 

signal to remove excess noise. The filter was a second order Butterworth filter with cut 

off frequencies at 0.01 Hz and 60 Hz.   

After the signal was filtered, each R-Wave peak was detected using the algorithm laid out 

by Pan and Tomkins QRS detection algorithm [15]. To accomplish this, the program first 

normalized the filtered ECG. For each sample in the signal, the signal’s mean was 

subtracted and then divided by the signal’s absolute max. A second order bandpass filter 

was then applied to the normalized signal with cut off frequencies of 5 Hz and 12 Hz. A 

five-point derivative then differentiated the filtered signal and each sample was then 

squared. Next, the signal was integrated by using a moving square window of 150ms, 

which is the approximate width of a QRS complex. Each R-wave peak was then located 

using the signal’s mean as a threshold and minimum of 200ms between each peak.  

After each R-wave peak had been located, fiducial points for each beat were located 

using the methods laid out by Weiss et. al. [11]. First, the T-wave preliminary boundaries 

were located by using the R-to-R (RR) interval between the current and previous R-wave 

peaks. If the RR interval was greater than 770ms, the T-wave was considered to start at 

100ms after the R-peak. If the RR interval was between 770ms and 320ms, the T-wave 

was considered to start 40ms plus 7.8% of the RR interval and the R-peak. If the RR 

interval was less than 320ms, the T-wave was considered to start 65ms after the R-peak. 

The T-wave was considered to end 500ms after the R-peak if the RR interval was greater 

than 77ms or 65% of the interval after the R-peak if the RR interval was less than 77ms. 

The preliminary QRS complex start boundary was considered to start 50ms before the R-

wave peak. The preliminary QRS complex end boundary was considered to end by either 

80ms after the R-wave peak or the T-wave start boundary, whichever one was shortest. 

Then the final boundaries were located by first removing the linear baseline from each 

wave’s window, by subtracting the window’s mean from each sample. After squaring 

each sample, the cumulative summation of each sample was found. The final wave 

boundaries were located at 1% and 99% of the summation.  
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 After the fiducial points were located, the baseline wander was removed from the 

original filtered signals. This was done by using a cubic spline interpolation. The control 

points used for this interpolation were the QRS start boundary for each beat.  

3.2 Data Reduction 

In the data reduction section, all abnormal beats were detected and labeled using both the 

RR interval and R-wave correlation laid out by Weiss et. al. [11]. If either method 

flagged a beat as abnormal, then it was considered abnormal.  

The RR interval method flagged abnormal beats by taking the previous RR interval and 

comparing it to the mean of the preceding 7 RR intervals. If the previous RR interval was 

less than 90% of the mean, then the current, next, and previous beats were labeled 

abnormal.  

The R-wave correlation method compared the current beat’s R-wave to a median R-wave 

template generated from 127 beats. This was done by first normalizing each R-wave used 

in the template and the current R-wave. A 80ms window centered at each R-wave peak 

was used as the window for the wave.  Then the mean of the isoelectric segment, defined 

as 10ms before the start of each QRS complex, was subtracted from each sample to 

normalize each R-wave window. Then a median R-wave template was generated from 

the 127 normalized beats. Next, the current R-wave’s window and the median R-wave’s 

template were cross-correlated twice to insure proper alignment. After that, the 

correlation coefficient was calculated between the beats. If the coefficient was less than 

95%, then the tested beat was considered abnormal.   

3.3 Morphology Alternans Detection 

To quantify alternans in the morphology of an ECG, the spectral method laid out by 

Weiss et al was used [11]. This was done on a beat-by-beat basis by analyzing 128 beat 

sequence, then shifting the sequence one beat to the right. This was repeated until all the 

beats in the ECG were part of a sequence. 
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First, the beat sequence was tested to see if it was indeterminate. To do this, the number 

of normal beats was compared to the total number of beats. If there are less than 90% 

normal beats within the sequence, then that sequence was labeled indeterminate.  

The next step was to generate a cumulative power spectrum of the 128 beats in the 

sequence. This was done by first generating an even and an odd median template from 

the normal beats. Next, an array was created from all the beats. The rows contained the 

beats and the columns were the samples. If the beat was abnormal, a corresponding even 

or odd template replaced the row. Then, a Fast Fourier Transform (FFT) was calculated 

on each column and the rows were summed up to generate a cumulative power spectrum.  

Figure 3.2 Cumulative Power Spectrum. Alternans occur at the 0.5 cycle/beat and 

noise was between 0.43 and 0.46 cycles/beat.  (Signal from Physionet.org [16]) 
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This cumulative power spectrum was used to determine if the series of beats contained 

alternans. The following equations were used. 

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑠 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (µ𝑉) =  √𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑠 𝑝𝑒𝑎𝑘 − µ𝑛𝑜𝑖𝑠𝑒 

Equation 3.1 Alternans Voltage Equation. The 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑠 𝑝𝑒𝑎𝑘 was located at 0.5 

cycle/beat and µ𝑛𝑜𝑖𝑠𝑒is the mean of the noise window between 0.43 and 0.46 of the 

aggregated power spectrum. 

 

𝐾𝑠𝑐𝑜𝑟𝑒 = (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑠 𝑝𝑒𝑎𝑘 − µ𝑛𝑜𝑖𝑠𝑒)/𝜎𝑛𝑜𝑖𝑠𝑒 

Equation 3.2 Alternans Kscore Equation. The 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑠 𝑝𝑒𝑎𝑘 was located at 0.5 

cycle/beat and µ𝑛𝑜𝑖𝑠𝑒is the mean and 𝜎𝑛𝑜𝑖𝑠𝑒 was the standard deviation of the noise 

window between 0.43 and 0.46 of the aggregated power spectrum. 

 

The alternans voltage equation directly measures the magnitude of alternans within the 

series. The Kscore was the statistical significance of the alternans voltage.  To determine if 

alternans were present, the following criteria needed to be met: (1) alternans voltage > 

1.0 µ𝑉 and Kscore > 3 [11].  

The fiducial points located in the preprocessing defined the window for each wave. For 

the T-wave, the window was from the end of the QRS complex to the end of the T-wave. 

For the R-wave, the window was 80ms centered at the peak of the R-wave.  

3.4 R wave Amplitude Alternans Detection 

In this study, to classify a series of beats as containing R wave amplitude alternans, three 

criteria needed to be met. First, the peak height needed to alternate from beat to beat (i.e. 

tall-short-tall or short-tall-short) for 5 times or more, i.e. five sequential alternating 

changes in height. Second, the absolute difference between each beat’s amplitude and the 

previous must be greater than 5% of the mean of all the R-wave peak heights in the 

signal. Third, none of the beats in the series were labeled abnormal.   

3.5 Validation of TWA computation 

To ensure the TWA detection program was working properly, the program was validated 

using the challenge data and results from PhysioNet’s 2008 T-Wave Alternans Challenge 

[17]. This challenge asked participants to create an automated system that could rank 100 

two minute segments of ECG signals by the magnitude of T-Wave alternans from 1 to 
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100. Their rankings would then be compared to a reference ranking and scored. There 

were 56 human ECGs obtained from individuals at risk for SCD, 12 from healthy 

subjects and 6 from a normal sinus rhythm database. The other 32 ECGs were synthetic 

with known TWA magnitude.  The reference ranking was determined from the median 

participant’s rankings who could successfully distinguish between the high and low 

synthetic ECGs. Because PhysioNet’s challenge was over before the study started, we 

could compare the final reference ranking to our program’s ranking. The following chart 

shows the reference ranking vs the program’s ranking. 

 

Figure 3.3 Graph PhysioNet challenge rankings vs the programs rankings. The X-

axis is the reference ranking of each file in the challenge with 1 being the least TWA 

detected, and 100 being the most detected. The Y-axis is how our program ranked the 

files, with 1 being the least TWA detected and 100 being the most. The blue dots are 

synthetically generated ECG samples that have known TWA magnitudes. The Green dots 

are samples from various human ECG’s in the PhysioNet Library. 
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3.6 Statistical analysis of sequential changes in heights of R wave 

For this part of the study, the purpose was to determine the probability that a series of 

sign changes could have happened by chance. We chose an empirical method to 

determine the probability. To do this we first generated a sequence of 10,000 random 

binary numbers with equal probability of being 1 or 0. We then looked for how many 

times there were 5 number changes (i.e. 101010 or 010101). Then we calculated the 

probability by taking that number and dividing it by the number of samples tested. After 

repeating this 10,000 times and taking the average probability, we obtained that the 

probability that a sequence of 5 changes could occur is 3.1%, i.e. comparable to a P-value 

< 0.05. 
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Chapter 4 Data and Results 

4.1 Data Source  

The data used in this study came from 9 different databases on PhysioNet.org [16]. 

PhysioNet’s website contains a large number of recorded human physiological signals 

that are freely available to the public under the ODC Public Domain Dedication and 

License v1.0 to be used for research. The National Institute of General Medical Science 

(NIGMS) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) 

supports this website. A description of each database used is in the following paragraphs. 

The European ST-T database (EDB) was assembled from subjects who were diagnosed 

or suspected to have myocardial ischemia and had ST and T-wave changes [16, 18]. 

There were 90 ECG recordings from 79 different subjects, each 2 hours long. Each 

recording was sampled at 250 Hz with 12-bit resolution over a 20mV input range.  

The Long-Term AF Database (LTAFDB) was assembled from subjects with paroxysmal 

or sustained atrial fibrillation [16, 19]. There were 84 long-term ECG recordings with 

lengths ranging from 24 to 25 hours. Each recording was sampled at 128 Hz with 12-bit 

resolution over 20 mV range.  

The MIT-BIH Long Term Database (LTDB) contains 7 long-term ECG recordings from 

14 to 22 hours [16]. Each record sampled at 250 Hz with 12-bit resolution over a 20mV 

range. 

The Long-Term ST Database (LTSTDB) was assembled from subjects that exhibit a 

variety of events in the ST segment portion [16, 20]. These include ischemic ST episodes, 

axis-related non-ischemic ST episodes, episodes of slow ST level drive, or a mixture of 

all 3. There were 86 ECG recordings from 80 subjects each ranging from 21 to 24 hours 

long. Each record was sampled at 250 Hz with 12-bit resolution of a ±10 mV range.  

The MIT-BIT arrhythmia database (MITDB) was comprised of ECG recordings that 

were used in the study of cardiac arrhythmias [16, 21]. There were 48 ECG recordings 

from 47 subjects each having a length of 30 minutes. Each recording was digitized at 360 

Hz with 11-bit resolution over a 10mV range.  
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The Sudden Cardiac Death Holter Database (SDDB) was made up from complete holster 

recordings from patients that had a sustained ventricular tachyarrhythmia with most 

having had actual cardiac arrest [16, 22]. There are 23 complete holter recordings, which 

include 18 subjects with underlying sinus rhythm, 1 who was continuously paced, and 4 

with atrial fibrillation. All patients had a sustained ventricular tachyarrhythmia, while 

most had experienced cardiac arrest. Each recording was recorded at 250 Hz with 12-bit 

resolution over a 20mV range.  

 The MIT-BIH ST Change Database (STDB) contained ECGs recordings that 

exhibit ST segment abnormalities [16, 23]. There are 28 recordings, with 23 of them 

recorded during an exercise stress test and showed transient ST depression. The other 5 

recordings were excerpts from long-term ECG recordings that exhibit ST elevation. Each 

recording was sampled at 360 Hz with 12-bit resolution over 20mV range.  

 The St.-Petersburg Institute of Cardiological Technics 12-lead arrhythmia 

database (INCARDTDB) contained ECGs from patients being tested for coronary artery 

disease [16].  It was comprised of 75 half-hour recordings from 32 holter recordings. 

None of the patients had pacemakers, while most of them had ventricular ectopic beats 

and displayed signs of ischemia, coronary artery disease, conduction abnormalities and 

arrhythmias. Each recording was sampled at 257 Hz with gains varying from 250 to 1100 

analog-to-digital converter units per millivolt.  
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4.2 Alternans Detection 

This study analyzed 441 ECGs that came from 8 different databases from PhysioNet.org. 

Of those 441 ECG, TWA was detected in 318 of them. Of the 318 files that TWA was 

detected, morphological RWA was detected in 309 and amplitude RWA was detected in 

287.   

Table 4.1 Number of Files in which Alternans Were Detected. This table shows how 

many files from each database were analyzed and TWA was detected. It also shows the 

percentage of files that RWA morphological and amplitude alternans were detected from 

the files TWA were detected.  

Database Total # of 

ECG 

# of ECG that 

TWA was  

Detected 

% of TWA 

ECG that 

Morphological 

RWA was 

Detected 

% of TWA 

ECG that 

Amplitude 

RWA was 

Detected 

edb 90 84 100% 90.4% 

ltafdb 84 41 100% 100% 

ltdb 7 6 83.3% 83.3% 

ltstdb 86 65 100% 100% 

mitdb 48 33 90.9% 72.7% 

sddb 23 21 100% 100% 

stdb 28 23 95.7% 78.3% 

incartdb 75 45 91.1% 82.2% 

All ECG’s 441 318 97.2% 90.3% 

 

4.3 Morphological RWA 

After TWA was detected in each ECG, the next step was to look for alternans in the 

morphology of the R-wave. The program looks at 128 beat sequences and flags them 

positive if alternans was found or negative if not, based on the description in chapter 3. 

Then the number of positive sequences was divided by the number of positive and 

negative sequences to find the percentage of positive morphological RWA sequences 

within in the ECG. The table below shows the average and standard deviation of the 

percentages of positive sequences from all the files in each database. In addition, it shows 

the percentage from the ECG that had the highest positive percentage within that 

database.  
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Table 4.2 Morphological RWA. The percentage of positive morphological RWA was 

calculated by finding the percentage of positively flagged alternans sequences of the total 

of all positive and negative flagged alternans sequences. 

Database % of Positive 

Morphology 

RWA (Avg±Std) 

% of Positive 

Morphology 

RWA (Max) 

edb 3.20% ± 1.90% 12.90% 

ltafdb 6.36% ± 3.08% 18.79% 

ltdb 8.76% ± 1.84% 10.94% 

ltstdb 3.28% ± 1.40% 9.16% 

mitdb 5.93% ± 9.08% 46.32% 

sddb 4.19% ± 2.20% 9.72% 

stdb 3.71% ± 4.54% 20.36% 

incartdb 6.12% ± 7.52% 44.23% 

All ECG’s 4.48% ± 4.65% 46.32% 

 

4.3 Amplitude RWA 

The second part of this project was to look for amplitude RWA. Here we looked for a 

series of 6 normal beats or more, the height of these beats to alternate and if the absolute 

change from peak to peak was greater than 5% of the mean of all the peaks. Table 4.3 

shows the average, standard deviation, and max percentage of beats that are part of one of 

these sequences for each database. Table 4.4 shows the duration of each sequence.  

Table 4.3 Amplitude RWA Number of Beats. Percentage of beats that are part of a 

RWA sequence.  

Database % of Beats part of 

an amplitude  

RWA sequence 

(Avg±Std) 

% of Beats part of 

an amplitude  

RWA sequence 

(Max) 

edb 3.23% ± 3.25% 13.33% 

ltafdb 2.31% ± 2.58% 10.77% 

ltdb 1.73% ± 1.88% 4.79% 

ltstdb 3.32% ± 3.28% 10.14% 

mitdb 5.76% ± 7.83% 38.27% 

sddb 3.98% ± 5.11% 19.08% 

stdb 2.96% ± 2.26% 9.15% 

incartdb 2.75% ± 2.38% 10.02% 

All ECG’s 3.28% ± 3.84% 38.27% 
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Table 4.4 Amplitude RWA Durations. The duration was how many sign changes occur 

in a sequence. 

Database Mean 

Duration 

Length 

(Avg±Std) 

Median 

Duration 

Length 

(Avg±Std) 

Max 

Duration 

Length (Max) 

Number of  

Durations 

(Avg±Std) 

edb 5.69 ± 0.39 5.37 ± 0.54 20 39.08 ± 42.99 

ltafdb 5.66 ± 0.29 5.21 ± 0.41 25 228.63 ± 296.09 

ltdb 5.46 ± 0.31 5.14 ± 0.35 14 128.40 ± 118.49 

ltstdb 5.83 ± 0.60 5.36 ± 0.53 133 492.74 ± 509.48 

mitdb 5.74 ± 0.62 5.44 ± 0.52 15 15.54 ± 19.83 

sddb 5.95 ± 0.54 5.37 ± 0.65 32 221.57 ± 236.59 

stdb 5.82 ± 0.51 5.36 ± 0.52 21 11.00 ± 8.56 

incartdb 5.78 ± 0.93 5.34 ± 0.53 19 7.59 ± 7.32 

All ECG’s 5.76 ± 0.56 5.33 ± 0.52 133 176.02 ± 333.02 
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Chapter 5 Discussion 

Researchers have studied TWA as a predictor for SCD [1, 4]. With its very strong 

negative predictive value, it is a very appealing test that could potentially weed out 

patients who are not at risk for SCD. However, with its weak PPV, it can cause people 

who are falsely flagged for SCD to waste time and money on treatment that they do not 

need. The overall goal of our laboratory is to investigate potentially complementary tests 

in order to improve the PPV of the TWA test. One potential feature of electrical function 

that has shown promise in recent years was alternans in the depolarization phase of APs 

and its relationship with alternans of APD. 

Using mathematical models and tissue level microelectrode recordings, the relationship 

between |dv/dt|max alternans and APD alternans affects if discordant alternans can occur 

in tissue [12, 24]. Until now, |dv/dt|max alternans have only been detected using 

microelectrodes. However, using a dipole field potential spatial model, the effect of 

|dv/dt|max alternans may be detectible in the R-wave of ECGs. 

The purpose of this study was to determine if alternans of the R-wave amplitude and 

morphology are detectable in clinical grade ECGs. 

5.1 TWA Detection Program 

For this project, the purpose was to determine if RWA occurs in ECGs that already have 

TWA. We decided to use the spectral method to detect TWA because it was well 

established as a detector of TWA [11].  

To verify that our TWA detection program was accurate, we used the 2008 PhysioNet’s 

TWA challenge as our testing standard. We had our program rank the dataset provided in 

the challenge and compared our results to its final rankings. Figure 3.4 shows that even 

through our program did not detect TWA in every ECG from the PhysioNet’s challenge, 

the ECGs that it did detect, were among the highest rankings. Also, the program validated 

well with synthetic ECGs (with known TWA) than the clinical ECGs with unknown 

TWA. This indicates that our program had a conservative, but accurate approach when 

detecting TWA. 
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The program was conservative because each ECG from the PhyioNet’s challenge was 2 

minutes long. Our program looked at sequences that are 128 beats long, which was often 

longer than half the total ECG length. If the signal was noisy and not enough beats were 

normal in the ECG, all of the sequences were labeled indeterminate. This would cause the 

program to say there was no TWA present in the ECG. Because the objective at this stage 

was not looking at the frequency of occurrence of RWA, but looking for its presence, the 

conservative nature of the program was not a major concern.  

5.2 Morphological RWA 

For this study, we used a method similar to that used for TWA detection to determine if 

alternans in the morphology of the R-wave does occur. When looking for morphological 

RWA, we used the same logic used to locate TWA, because this method was already 

shown to detect alternans of the T wave. 

Table 4.1 shows that of the 318 files in which TWA was detected, 309 of those files 

contained morphological RWA. We can also see that within the ECG, morphological 

RWA was present on average in 5% of the signal (table 4.2), although it can reach as 

high as 46%. This indicates that not only does morphological RWA occur in ECGs when 

TWA was detected, it could be a common occurrence. Further research is required to 

better estimate the frequency of occurrence of this phenomenon. 

5.3 Amplitude RWA 

The dipole field potentials spatial model that Dr. Siqi Wang developed showed that 

|dv/dt|max alternans appeared as alternans in the amplitude of the R-wave. For this study, 

we wanted to see if the amplitude of the R-wave had alternans when TWA was present. 

We discovered that the average percentage of beats that were part of an amplitude RWA 

sequence was 3.2%. We also saw this percentage to be as high as 38.27%. These results 

supports the possibility of using RWA as a means to look at the relationship between 

depolarization alternans and TWA.  
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In table 4.4, we see that the average length of the amplitude RWA duration was around 

5.7, which was just slightly larger than the minimum length for a sequence. But we did 

see duration lengths as long as 133 beats. This leads us to conclude that we can 

potentially use the relationship between amplitude RWA and TWA, to look at the 

relationship of the depolarization and repolarization phase of AP alternans.  

 5.3 Conclusion 

In Conclusion, this study determined that in clinical grade ECGs, where TWA can be 

detected, RWA was detectable. This observation supports further exploration of whether 

the RWA has the potential be used as a complementary test to TWA for prediction of 

SCD. This use has the potential to improve the PPV of the TWA. Improving the PPV 

value will greatly reduce unnecessary treatment and excessive spending for SCD.   
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