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SUMMARY 

 

This thesis (1) reports a new Dynamic Programming (DP) approach,  and (2) 

reports a Real Time Control strategy  to optimize the energy management of a Hybrid 

Electric Vehicle(HEV). Increasing environmental concerns and rise in fuel prices in 

recent years has escalated interest in fuel efficient vehicles from government, consumers 

and car manufacturers. Due to this, Hybrid electric vehicles (HEV) have gained 

popularity in recent years. HEV’s have two degrees of freedom for energy flow controls, 

and hence the performance of a HEV is strongly dependent on the control of the power 

split between thermal and electrical power sources. In this thesis backward-looking and 

forward-looking control strategies for two HEV architectures namely series and parallel 

HEV are developed.  

The new DP approach, in which the state variable is not discretized, is first 

introduced and a theoretical base is established. We then prove that the proposed DP 

produces globally optimal solution for a class of discrete systems. Then it is applied to 

optimize the fuel economy of HEV's. Simulations for the parallel and series HEV are 

then performed for multiple drive cycles and the improved fuel economy obtained by the 

new DP is compared to existing DP approaches. The results are then studied in detail and 

further improvements are suggested. 

A new Real Time Control Strategy (RTCS) based on the concept of preview 

control for online implementation is also developed in this thesis.   It is then compared to 

an existing Equivalent Cost Minimization Strategy (ECMS) which does not require data 



 xvi 

to be known apriori. The improved fuel economy results of the RTCS for the series and 

parallel HEV are obtained for standard drive cycles and compared with the ECMS results 

. 

 

 

 

 



 

1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 As modern society grows the need for transportation is on the rise. Automobiles 

have in this regard, made great contributions in satisfying many of these needs. With 

increasing number of people using their personal vehicles frequently, the ratio of 

automobiles to people has increased linearly for most part of the 20th and the 21st 

century. However, the large number of automobiles in use around the world has a 

detrimental effect in two ways a) Depleting crude oil reserves and b) Environmental 

effects such as air pollution and global warming. Hence, this has escalated interest from 

government, consumers and car manufacturers to find fuel efficient, clean, and safe 

vehicles. Despite research and development activities related to fuel efficient automobiles 

being increased, as illustrated in Figure 1.1 there has been increasing fuel consumed from 

automobiles [1]. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Passenger car fleet efficiency and gasoline consumption [1] 
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 2 

 Approximately a third of the energy consumed annually in the US is for 

transportation. This amounts to 27.5 Quadrillion BTU’s in 2010 and 97% of which is 

provided by petroleum [2]. The light duty fleet accounted for 60% of this energy use and 

45% of total US petroleum use in 2009 [3]. It is observed form Figure 1.2, which is 

produced with data from [4], that transportation will soon surpass the industrial sector as 

the largest energy consumer in the US . 

 

 

 

Figure 1.2: Energy consumption in the US by sector since 1999 [4] 
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 3 

and inflation adjusted prices in USD per barrel from 1999-2012. It is observed that the 

nominal crude oil prices has increased from USD16.5 in 1999 to USD 91.5 in 2013, 

seeing a sudden spike and an all time high of USD 99.06 in 2008.  The price of crude oil 

has thus increased more than five-fold in the 14 year period shown. 

 

 

Figure 1.3: Crude Oil nominal and inflation adjusted prices in USD since 1999 
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 4 

highly inflammable. Moreover the technology for these vehicles have not been developed 

completely, to totally replace conventional vehicles. Thus Hybrid Electric Vehicles 

(HEV) have become a promising technology to bridge the gap between conventional IC 

engine vehicles and alternative fuel vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Carbon Dioxide emissions in the US by sector since 1999 
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Figure 1.5: Total Car and HEV sales in the US from 1999 

 

1.2 HEV Configurations 

 Unlike a conventional ground vehicle which uses an internal combustion (IC) 

engine, a HEV uses both an IC engine and an electric motor powered by a battery as its 

power source.  Despite the fact that HEV’s use an electric motor, they do not require 

external charging, as do electric vehicles. The inclusion of the Electric motor (EM) helps 

the engine to run at its efficient operating conditions, especially during start up and 

sudden acceleration.  This also leads to engine downsizing and load leveling while 

maintaining performance as the EM can supplement the torque requested at the wheels 

from near zero speed. Further, due to the use of the EM the energy generated heat during 

deceleration and braking is recovered as electrical energy. This can then be used to 

charge the battery which can then be used to power the starter and the electric motor, thus 

increasing the overall efficiency of the HEV. The following are the three major types of 

HEV configurations being used in the hybrid vehicles which are currently on the market: 

1998 2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

300

350

400

H
y
b
ri

d
 E

le
ct

ri
c 

V
eh

ic
le

s 
S

al
es

 (
in

 T
h
o
u
sa

n
d
s)

1998 2000 2002 2004 2006 2008 2010 2012
1

1.2

1.4

1.6

1.8
x 10

4

Year

T
o
ta

l 
C

ar
 S

al
es

 (
in

 T
h
o
u
sa

n
d
s)

 

 

All Cars

Hybrid Electric Vehicles



 6 

series, parallel and series/parallel (powersplit), the following configurations are depicted 

in Figure 1.6 [8]. 
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c) power-split 

 

Figure 1.6: Three major types of HEV Configurations[8] 
 

 

 

 

 

We now elucidate each configuration in detail 

1.2.1 Series Configuration 

 This is called a series hybrid system because the power flows to the wheels in 

series, i.e., the engine power and the motor power are in series. In a series HEV there is 
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no mechanical connection between the hybrid powertrain unit and the wheels. Due to this 

the engine can run at its most efficient operating point.  When the battery charge is 

depleted the engine runs the generator that produces electricity and charges the battery. 

This in turn powers the motor, which supplies the requested torque to the wheels 

whenever possible, i.e when the battery is not completely depleted.  The power flow path 

can be described as the following energy conversion: chemical (IC engine) – mechanical 

(generator)-electrical (battery)- mechanical (electric motor/wheels).  

 Although the engine runs at its most efficient operating point, a series HEV 

requires a full sized engine, generator and traction motor, thus increasing the overall cost. 

Also it requires a large battery and a powerful motor increasing the overall mass of the 

vehicle and multiple energy conversions causing inefficiency. Since a series hybrid uses 

its engine to generate electricity for the motor to drive the wheels, the ratio of the amount 

of work done by engine and amount of work done by motor (ICwork/EMwork) is about one. 

A series HEV has superior Idling stop, excellent energy recovery, superior high 

efficiency operating control and total efficiency. It has somewhat unfavorable 

acceleration and continuous high output [8]. The most popularly used passenger vehicle 

is the Chevrolet volt and the Fisker Karma. This configuration is also used commonly in 

diesel-electric locomotives and ships [9, 10]. 

1.2.2 Parallel Configuration 

 In a parallel HEV the engine and the motor supply power to the wheels together 

or independently according to the prevailing conditions. This is called a parallel hybrid 

system because the power flows to the wheels in parallel.  Usually the engine drives the 

wheels most of the times until a power threshold is reached, when the EM aids the engine 

during high demand periods such as start ups and acceleration. The parallel HEV corrects 

the disadvantages of the series configuration. A parallel HEV has superior Idling stop, 

superior energy recovery, somewhat unfavorable high efficiency operating control and 
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superior total efficiency. It has superior acceleration and somewhat unfavorable 

continuous high output [8]. The ICwork/EMwork ratio is much greater than one for this 

configuration. 

 The two commonly used parallel HEV passenger automobiles manufacturers are 

the Honda and Hyundai. Honda has predominantly three models that uses parallel 

configuration namely Honda Insight, Civic Hybrid and the CR-Z. The EM used by 

Honda are relatively small and is primarily used to assist in periods of high power 

demand and to capture energy generated in braking. On the other hand Hyundai’s Sonata 

Hybrid has a much larger EM and can individually drive the wheels [11, 12].  

1.2.3  Series-Parallel Configuration 

 Since this configuration uses two EM’s along with an IC engine it combines the 

advantageous features of the series HEV and the parallel HEV. Depending on the power 

requested a the wheels it uses only the electric motor or the driving power from both the 

electric motor and the engine to achieve the highest efficiency level.  This configuration 

uses the planetary gear sets as the power-split device in order to allocate the energy at 

each instant between the two motors. This allows for the engine to operate at its most 

efficient operating point. Also the inclusion of the traction EM also leads to engine 

downsizing. This configuration has excellent idling stop, high efficiency operating 

control, total efficiency and energy recovery. It has superior acceleration and continuous 

high output. Although it has superior characteristics compared to a series or a parallel 

HEV the control logic is most complicated among all three. The ICwork/EMwork ratio is 

around one. One of the common examples of a power-split HEV is the Toyota Prius and 

has remained one of the best sellers of HEV models till date [13]. 

 Since the HEV’s have two degrees of freedom for energy flow controls [14], the 

performance of a HEV is strongly dependent on the control of this power split between 

thermal and electrical power sources. Thus various control algorithms have been 
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developed for HEV’s over the past decade to optimize their fuel efficiency and is 

discussed in the next section. 

1.3 Literature Review of Control Strategies for HEV’s 

 

 The control algorithms for HEV’s can be divided into two broad categories 

namely Rule Based (RB) algorithms and Optimization Based (OB) algorithms [14, 15].  

1.3.1 Rule Based 

 The main advantage of a rule-based energy management approach is its 

effectiveness in implementing it in real-time. The rules are designed without prior 

knowledge of any driving schedule and is based on heuristics, intuition or human 

expertise. The principal notion of rule-based strategies is that for a particular engine 

speed, to shift the IC Engine operating point towards the optimal point of efficiency, fuel 

economy, or emissions. These strategies can be classified into deterministic and fuzzy 

rule-based methods.   

 In Deterministic Rule-Based Methods, The rules are usually implemented using 

look up tables and the rules are determined based on human experience.  The primary 

types of this strategy are a) Thermostat (on/off) Control Strategy and b) Power Follower 

Control Strategy. An on/off) Control Strategy ensures that the battery state of charge 

(SOC) is always maintained between its upper and lower limits by turning the engine on 

or off.  However this simple control strategy cannot satisfy power demands by the vehicle 

at all operating conditions [15]. But this is best applicable for a series HEV’s which 

commutes in prescheduled routes. 

  In a Power Follower Control Strategy, primary source of power is the engine, and 

the EM is used to aid the engine during periods of high power requirement. Whilst  this is 

a popular control approach, the drawback of this strategy is that the efficiency of the 
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whole drivetrain is not optimized, and emissions improvement is not directly taken into 

account. This approach is used in  Toyota Prius and Honda Insight [17] . 

 The Next broad classification of RB methods are Fuzzy Rule-Based Methods. A 

fuzzy logic controller (FLC) can be viewed as an extension of the conventional rule-

based controller. The advantages of this method are that it is robust as it can handle 

inaccuracies in measurements, and the ease of tuning the rules of a FLC. Fuzzy Rule 

based methods can be divided into three main categories a) Conventional Fuzzy Strategy 

b) Fuzzy Adaptive Strategy c) Fuzzy Predictive Strategy. 

 One of the earliest work of using a Conventional FLC for HEV control was done 

by Lee et al [18] to control the NOx emissions, at the same time ensuring the battery SOC 

stays within the prescribed limits while acceding to the power demands from the driver. 

However this approach does not guarantee the charge sustenance of the batteries. A load 

leveling idea was used by Baumann et al. [19] to develop a FLC. This approach forces 

the IC Engine to operate at its best fuel efficient point and used an instantaneous SOC, 

engine torque, and requested torque estimator at each time step. The advantage of this 

solution is that the operating points for the EM, and battery can be shifted to 

corresponding optimum efficiency regions. However the emission minimization cannot 

be taken into account. 

 In a Fuzzy Adaptive Strategy the ideal operating point for a ICE can be calculated 

by optimization of a criterion of which weighted fuel economy and emissions are 

parameters such as NOx, CO, and HC emissions. The weights are adjusted according to 

requirements [20]. Whilst this method has the ability to control the parameters by 

adjustment of weights, the main drawback is it does not consider driveline efficiencies 

The next type of Fuzzy rule based strategy for a HEV is the Fuzzy Predictive Strategy, in 

which real-time control actions are taken, while accounting for situations in the future 

along a planned route using GPS data [20]. However the disadvantage is that future 

information needs to be known or obtained in order to reach optimal performance. 
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 Despite RB methods being easy to implement, they require extensive tuning and 

result in sub-optimal control strategies. To overcome these disadvantages OB Control 

Strategies are suitable. 

1.3.2 Optimization Based 

 Optimization based strategies seek to optimize a set of performance objectives as 

they attempt to find the global optimum results for a driving cycle known a-priori. In 

spite of the fact that OB strategies cannot be used for real-time energy management; 

however, it gives a good basis for designing control laws for online implementation for a 

HEV and provides a basis for comparison for evaluating the efficacy of other control 

strategies.  The prominent OB strategies are linear programming [21], optimal control 

theory [22], genetic algorithm [23] and stochastic and dynamic programming [24-29] 

which will be elucidated further. 

 In Linear Programming (LP) the fuel economy improvement of a HEV is 

formulated as a nonlinear convex optimization problem and is approximated by a large 

linear program by using piecewise-linear approximation.  In [21] a series architecture was 

used for the LP problem. The problem is to find the power of the engine such that the 

total fuel consumed from initial time to end time is minimized, subject to constraints on 

the Engine, motor and battery power. Even though this approach attempts to find the 

global minimum, it may not be applicable to sophisticated drivetrains.   

 Optimization using Optimal Control Theory for HEV’s also exist in literature. 

Optimal control theory based on the calculus of variations approach was applied to find a 

global optimal solution for the energy management problem in a HEV. In [22] the 

problem was formulated to minimize the instantaneous fuel consumption which depended 

on the torque of the engine and gear ratio, over the entire drive cycle. The formulation 

also took into account inequality constraints in the engine torque and the gear ratio 

belonging to a set of feasible inputs, and the state equation was the battery SOC. The first 
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and second order conditions were calculated. Because of the analytical nature of this 

method it makes it superior compared to other global optimal solutions. However, if there 

is a variation in the drivetrain it becomes exceedingly difficult to find an analytical 

solution. 

 A constrained nonlinear programming problem which is constrained is hard to 

solve and can be solved by stochastic search based methods such as genetic algorithm 

(GA) [23].  Since a GA leads to a more accurate exploration of the solution space than a 

conventional gradient-based approach it is apt for complex nonlinear optimization 

problems such as optimizing the fuel economy of HEV’s. However a GA is not analytic 

and hence doesn’t give the designer the necessary view of the optimization process. 

 Since the drive cycle is assumed to be known apriori a Dynamic Programming 

(DP) approach is apt to find the global optimum for a HEV. Hence various researchers 

have applied DP for optimizing fuel efficiency for a HEV [24-29]. Lin et al. [24] used 

Stochastic DP to find an optimal control policy, in order to minimize the expected total 

cost over an infinite horizon. In this approach, the power management strategy is 

optimized over a family of random driving cycles. Although the control law derived from 

SDP may be for real-time implementation, it does not guarantee global optimal solutions. 

Wang et.al [25] used a forward DP approach as they considered the problem of 

optimizing fuel efficiency in a HEV to be deterministic finite state problem. However 

using forward DP increases the number of computations and hence is unnecessarily 

computationally expensive. In [26-28] a backward DP is used to solve the control 

problem for the HEV, however the state variable is discretized. This process increases the 

cumulative errors and leads to suboptimal results, as the next step cost is first evaluated 

using a state transition equation and a nearest neighbor interpolation and quantization is 

carried out to find the corresponding state point. To increase the accuracy of the solution 

obtained, the increment of state variables are made substantially small. However this 

further computationally burdens the overall control algorithm with DP already suffering 
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from the curse of dimensionality. Moreover the approach solves the problem only for a 

given initial state of the state variables. 

 The above global OB strategies are not applicable directly for real-time 

development, since they are casual solutions. Hence there has been increasing research in 

developing real time controllers for HEV fuel optimization predominantly the Equivalent 

Consumption minimization strategy (ECMS) [30-33]. In this method the instantaneous 

optimization function takes into account the variations of the stored electrical energy and 

the fuel consumption of the engine at each time step. Hence an equivalence or weighting 

factor is determined to guarantee electrical self- sustainability. This factor requires a lot 

of tuning and is drive cycle dependent. Some of the methods employed are brute force, 

using mean efficiencies of the electric motor, the battery and the engine, using the 

information from Dynamic Programming or using a separate factor for charging cycle 

and discharging cycle of the battery. Whilst this strategy has resulted in giving close to 

optimal solutions it is its dependence to determining the equivalence factor which is a 

hindrance. 

1.4 Organization and Contribution of the Thesis  

 This thesis (1) reports a new Dynamic Programming (DP) approach, and (2) 

reports a Real Time Control strategy  to optimize the energy management of a Hybrid 

Electric Vehicle(HEV). Increasing environmental concerns and rise in fuel prices in 

recent years has escalated interest in fuel efficient vehicles from government, consumers 

and car manufacturers. Due to this, Hybrid electric vehicles (HEV) have gained 

popularity in recent years. HEV’s have two degrees of freedom for energy flow controls, 

and hence the performance of a HEV is strongly dependent on the control of the power 

split between thermal and electrical power sources. In this thesis backward-looking and 

forward-looking control strategies for two HEV architectures namely series and parallel 

HEV are developed, and the modeling of these architectures are explained in Chapter 2. 
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 The new DP approach, in which the state variable is not discretized, is first 

introduced and a theoretical base is established in Chapter 3. Then it is applied to 

optimize the fuel economy of HEV's. Simulations for the parallel and series HEV are 

then performed for multiple drive cycles and the improved fuel economy obtained by the 

new DP is compared to existing DP approaches. The results are then studied in detail and 

further improvements are suggested. 

 A new Real Time Control Strategy (RTCS) based on the concept of preview 

control for online implementation is also developed in this thesis and is elucidated in 

Chapter 4.   It is then compared to an existing Equivalent Cost Minimization Strategy 

(ECMS) which does not require data to be known apriori. The improved fuel economy 

results of the RTCS for the series and parallel HEV are obtained for standard drive cycles 

and compared with the ECMS results. Conclusions and future work are made in Chapter 

5 
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CHAPTER 2 

MODELING OF THE HEV ARCHITECHTURES 

2.1 Introduction 

 In a HEV it is known that there are more electrical components compared to 

conventional vehicles, such as electrical motor, inverters and power electronics. Further a 

HEV needs to have advanced energy storage systems such as Li-Ion batteries and ultra 

capacitors to supplement the energy provided by the IC engine [34,35]. Apart from this in 

a HEV mechanical, thermal and hydraulic components are also present. Due to the 

complex nature of interaction between these multidisciplinary components it is difficult 

to analyze a HEV. Additionally the parameters of various components must be selected 

with care to ensure competitive performance compared to conventional vehicles and 

ensuring the vehicle cost is low.   

 To build a prototype for each component and analyze the interaction between 

them is costly, time consuming and inconvenient.  Furthermore since modern HEV 

design also depend on embedded software, increases the complexity in predicting 

interactions among various vehicle components and systems. Thus a modeling and 

simulation environment is an appropriate alternative. 

Modeling and simulation also play an important role in the HEV components diagnosis. 

To illustrate this, running a Lithium-Ion (Li-Ion) battery model and comparing the actual 

battery model operating variables with those obtained from the model can help fault 

diagnosis. A high fidelity simulation is also needed to quantify benefits, explore options 

and new configurations for a HEV. 

 In the aspect of modeling and simulation, the electronics industry has achieved 

high standards in terms of computing power and reduced costs. This is mainly due to 

advanced electronic design tools which have incorporated Moore’s Law. Unfortunately 
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modeling and simulation tools which have advanced power and sophistication are 

unavailable in the automotive domain [36,37]. Hence for modeling a HEV, we require 

models which capture the entire physics of a process and simultaneously ensuring the 

simulation is easy and time efficient. A HEV model can be categorized as steady state, 

quasi-steady, or dynamic [38]–[48].  

 A steady state model utilizes look up tables and efficiency maps. These have to be 

obtained by experimental data and applies only for a particular design of a component. 

To utilize these tables and maps simple scaling is used which is can be unreliable for 

optimization purposes. Hence these results may not be appropriate for vehicles operating 

under extreme conditions. However the main advantage of a steady-state model or quasi-

steady model is its fast computation.  A quasi-static model on the other hand utilizes 

simplified physics based modeling approach and can to some extent capture the physics 

similar to a dynamic model. However there are still in accuracies associated with it but 

like a steady state model has low simulation time. 

 However a physics-based model facilitates a high fidelity dynamic simulation for 

the HEV system at different time scales.  Hence dynamic models are modeled as a 

lumped-coefficient differential equation or a digital equivalent model that is tied closely 

to the underlying physics through a link. These kinds of models are useful for developing 

an effective powertrains [43]. Whilst these models take a long time to simulate and are 

not feasible for developing controllers which themselves be time consuming. The 

modeling and simulation of vehicle models can also be classified depending on the 

direction of calculation, namely forward looking models or backward facing models [38].  

Simulators that use a forward-facing approach consider the desired velocity and the 

present velocity of the Vehicle to develop appropriate throttle command to the IC engine, 

this is calculated using a simple limit PID controller. This throttle command is then used 

to find the corresponding engine torque. Based on the torque of the engine and the current 

velocity of the vehicle, suitable motor torque is generated and a brake torque is calculated 
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appropriately. The net torque (assuming a torque coupler is being used, which is usually 

the case for a HEV) is applied to the transmission model, which results in a transmission 

torque based on the transmission efficiency and gear ratio. This is then passed forward 

through the drivetrain, in the direction of the physical power flow in the vehicle, which 

results in a tractive force at the wheel interface of the HEV. Because of the torque applied 

at the wheels, the resultant vehicle acceleration/deceleration is computed which also takes 

into account the inertias of the drivetrain and hence the vehicle velocity is obtained at 

each time step. 

 This approach is advantageous for a detailed control simulation, for hardware 

development and is well-suited to the calculation of maximum effort accelerations.  

Additionally dynamic models can be included naturally in a forward-facing vehicle 

model.  Unfortunately this approach has slow simulation speed. This is due to higher 

order schemes of integration which have small time steps which are required to provide 

stable and accurate simulation results. A high order of integration is required as the 

drivetrain component speeds and power rely on the vehicle states. 

 The other approach for vehicle simulation is the backward approach. Here, based 

on the desired velocity of the vehicle the force required to decelerate/accelerate the 

vehicle is computed. The required torque is then computed based on the force required 

and a drivetrain efficiency. This torque is then translated to the amount of torque that 

needs to be produced by each component namely the IC engine and the EM based on the 

current vehicle velocity and gear ratio of the transmission. This can then be easily used to 

compute the fuel use or electrical energy use that would be necessary to match the 

desired vehicle velocity. Since automotive drivetrain components are tested to develop a 

map or table of efficiency or loss versus output torque and speed a backward looking 

simulation is appropriate. This enables a simple calculation to obtain the components 

efficiency during the simulation, which enables lower order integration routines such as 
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the Euler approach. Because of this larger time steps in the order of 1 second can be used, 

which help in executing the simulation at a faster pace.  

 In this thesis we use a steady state modeling approach for the IC engine and the 

electric motor. A quasi-static model of the battery and the vehicle dynamics is used. As 

this thesis investigates the Dynamic Programming Control strategy, which is time 

consuming, for obtaining the global optimum for the fuel efficiency of the HEV we 

utilize the backward looking simulation approach. The detailed modeling approach for 

the major components of the HEV namely the Engine, Vehicle dynamics, battery and the 

motor are elucidated in the subsequent sections. The case studies considered for the series 

and parallel HEV namely the Chevrolet Volt and the Honda Civic is also illustrated 

accordingly. 

2.2 Engine Model 

 The internal combustion (IC) engine is the most popular powerplant for motor 

vehicles and it promises to become the dominant vehicular powerplant in the near future 

[45]. An IC engine produces chemical energy by the process of combustion of a fossil 

fuel with an oxidizer (most commonly air) in the combustion chamber. This process 

produces a fuel air mixture of high temperatures and pressures which apply a direct force 

to the reciprocating pistons of the engine allowing the rotation of its shaft, transforming  

the chemical energy into mechanical energy.  IC engines have high fuel energy density 

along with high power to weight ratio which makes them an appropriate and convenient 

for mobile propulsion applications such as a HEV.  The working principle of an IC 

engine in a HEV and conventional vehicles is the same. However the IC engine in a HEV 

runs for a longer time at high power and does not require its power to be changed 

frequently. Further the engine can be designed to have lower displacement and 

dimensions due to the presence of the EM that generates additional energy and power. 

This leads to the engine being downsized.  
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 In this thesis the engine is modeled as a black box which takes in engine speed ω 

and engine torque T and outputs the fuel mass flow rate mḟ . This has been adopted from 

[49]. Since we want to minimize the fuel consumption of a HEV, one approach is to use 

mapped data. This method is an accurate approach however it requires detailed fuel 

consumption maps, which is hard to generate and inappropriate for applying control 

strategies where it is preferable to have closed form analytical expression. Hence here we 

use a polynomial candidate.  

 In order to realize the form of the polynomial an expression it is necessary to 

come up with appropriate conditions, this can be obtained using Pontryagin’s Minimum 

Principle (PMP) [50]. Consider the simplified fuel minimization problem 

𝑚𝑖𝑛
𝜔,𝑇,𝑡

∫ 𝑚𝑓̇  (𝜔(𝜏), 𝑇(𝜏))
𝑡

0
𝑑𝜏                                               (2.1) 

subject to 

𝑑𝜔(𝜏)

𝑑𝜏
=  

𝑇(𝜏)−𝑙(𝜔)

𝐼
 ∀ 𝑡 ∈ [0, 𝑡𝑓]                                             (2.2) 

𝑇𝑚𝑖𝑛(𝜔(𝜏)) ≤ 𝑇(𝜏) ≤ 𝑇𝑚𝑎𝑥(𝜔(𝜏))                                       (2.3) 

 

 Where l is a load function and I the rotational inertia. We can hence propose a 

fuel consumption polynomial: 

𝑚𝑓̇  (𝜔, 𝑇) =  𝑚𝑓0̇ (𝜔)  + 𝑒𝑠𝑓𝑐(𝜔, 𝑇) 𝜔𝑇                                    (2.4) 

where mf0̇  is the fuel mass flow rate at zero torque and esfc is the extra specific fuel 

consumption. Using the PMP, the Hamiltonian is given by 

ℋ =  𝑚𝑓0̇ (𝜔) −  
𝜆

𝐼
𝑙(𝜔) + (

𝜆

𝐼
+ 𝑒𝑠𝑓𝑐(𝜔, 𝑇) 𝜔)𝑇                                   (2.5) 

 Let the optimal torque T* be that which minimizes ℋ . If the esfc is independent 

of T, then T* = Tmin or T* = Tmax, depending on the sign of  
λ

I
+ esfc(ω, T) ω. This would 

lead to a result where the engine is always run at maximum throttle which is unrealistic 
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hence the first condition for an appropriate fuel consumption polynomial is that the esfc 

is a function of the torque T. 

 Since a car always has the task to travel a certain distance, the fuel consumption 

per traveled distance is the primary objective. Considering a fixed gear, this translates 

into consumption per rotation (cpr) of the engine. In order to model the consumption per 

traveled distance of a car to a certain degree of accuracy, the cpr should at least be a 

quadratic function of the engine speed. Therefore, the fuel mass flow rate should be at 

least cubic in  𝜔. Thus the following polynomial approximation of the fuel consumption 

is developed. 

�̇�𝑓𝑢𝑒𝑙 = 𝑎1𝜔 + 𝑎2𝜔2 + 𝑎3𝜔3 + 𝑎4𝜔𝑇 + 𝑎5𝜔2𝑇 + 𝑎6𝜔𝑇2                 (2.6) 

And the maximum torque is given by 

𝑇(𝑚𝑎𝑥)(𝜔) =  𝑏1𝜔 + 𝑏2𝜔2 + 𝑏3𝜔3                                              (2.7) 

 The parameters of this model are determined by engine dynamometer 

measurements. Since in a series HEV the engine operates at its most optimal fuel 

efficiency given by the BSFC map a fixed torque w and fuel consumption is obtained. 

For the case study used in this thesis this is obtained from the Chevrolet engine map  

which uses the Otto Cycle. However for the parallel HEV where the engine operating 

points need to be determined by the control algorithm we use Eq. (2.6). And the constant 

engine parameters are summarized in Table 2.1. 

 

Table 2.1: Parameters of the engine model 

a1 1.1046×10−5 kg/rad 

a2 −7.7511×10−8 kg.s/rad2) 

a3 1.6958×10−10 kg·s2/rad3) 

a4 1.7363×10−8 kg/(rad·Nm) 

a5 6.4277×10−11 kg·s/(rad2·Nm) 

a6 1.6088×10−10 kg/(rad·Nm2) 

b1 1.5545 Nm·s/rad 

b2 −4.8907×10−3 Nm·s2/rad2 

b3 4.0442×10−6 Nm·s3/rad3 
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In the next section we discuss the modeling approach adopted for the Electric motor. 

2.3 Electric Motor 

 It is well known that a HEV performance can be greatly improved by the optimal 

use of and EM. In a HEV predominantly the brushless DC motor (BLDC) is used 

. This is because compared to a brushed DC motor a BLDC has higher torque output per 

weight, has better efficiency, increased reliability, reduced noise and longer lifetime. 

Further a BLDC can be entirely enclosed and protected from dirt or other foreign matter  

as they don’t require airflow inside the motor for cooling.  

 In a HEV the torque is a function of the motor angular velocity with a constant 

torque zone and constant power zone. In the constant torque zone the output torque 

remains constant up to the rated speed of the motor and once the speed increases beyond 

this point the motor torque start to decrease while the output power remains a constant at 

the rated power. Usually for a HEV system the EM is usually designed based on the 

required peak torque and the operating speed range. 

 The electric motor characteristics are based on the efficiency data obtained from 

[51]. The motor efficiency is a function of motor torque and speed. Due to the battery 

power and motor torque limit, the final motor torque used is  

𝑇𝑚 = {
𝑚𝑖𝑛 (𝑇𝑟𝑒𝑞 , 𝑇𝑚,𝑑𝑖𝑠(𝜔𝑚), 𝑇𝑏𝑎𝑡,𝑑𝑖𝑠(𝑆𝑂𝐶, 𝜔𝑚)) ,   𝑇𝑟𝑒𝑞 > 0

𝑚𝑎𝑥 (𝑇𝑟𝑒𝑞, 𝑇𝑚,𝑐ℎ𝑔(𝜔𝑚), 𝑇𝑏𝑎𝑡,𝑐ℎ𝑔(𝑆𝑂𝐶, 𝜔𝑚)) , 𝑇𝑟𝑒𝑞 < 0
                (2.8) 

 Where Tm,dis , Tm,chg  are the maximum torque in the charging and the 

discharging modes and  Tbat,dis, Tbat,chg are the torque bounds due to the battery current 

limit in the discharging and charging modes. SOC and Treq represents the state of charge 

of the battery and the torque requested from the HEV. We next discuss the modeling of 

the vehicle dynamics of the HEV. 
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2.4 Vehicle Dynamics 

 In this thesis we model only the longitudinal dynamics of a HEV as we assume 

that the vehicle travels in a straight path. When a HEV travels on a surface (like a tar 

road) there are predominantly four resistive forces impending the vehicle motion namely 

the Aerodynamic resistance, Rolling resistance and Grade resistance. These are discussed 

in the next sections 

2.4.1 Aerodynamic Resistance  

 This resistive force acts on a vehicle mainly due to the turbulent air flow around 

vehicle body. Further due to the shape of the vehicle, there is a downwash of trailing 

vortices behind the body, which causes a non uniform pressure distribution which 

produces an aerodynamical drag force. Additionally the Friction of air over vehicle body 

and the Vehicle component resistance, from radiators and air vents also contribute to the 

aerodynamic resistance on the HEV. 

 Since the aerodynamic drag force is very high compared to force produced by the 

surface friction [51] Therefore, only the aerodynamic drag force of the vehicle is 

considered in the vehicle dynamics of the HEV. This force varies with the current vehicle 

velocity, wind velocity acting on the vehicle, cross-sectional area and body geometry and 

can be expressed as 

𝐹𝑎 =  
𝜌

2
𝐴𝐶𝑑(𝑣𝑣𝑒𝑙 + 𝑣𝑤𝑖𝑛𝑑)2                                     (2.9) 

 Where ρ is the density of air, A is the effective cross-sectional area of the HEV, 

Cd is the aerodynamic drag coefficient of the vehicle, vveland vwind represent the current 

vehicle velocity of the HEV and the wind velocity respectively. 

2.4.2 Rolling resistance 

          This resistance force acts on a HEV mainly because of Resistance from tire 

deformation. In addition the tire penetration and surface compression,  tire slippage and 
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air circulation around wheel also constitute to the overall rolling resistance acting against 

the velocity of the HEV. This can be expressed as  

𝐹𝑟 =  𝑐𝑟𝑀𝑔 𝑐𝑜𝑠 𝜃                                                (2.10) 

 Where is cr is the coefficient of the rolling resistance, M is the mass of the HEV, 

g is the gravitational constant and θ is the slope of the road profile. 

2.4.3 Grade resistance  

 This is due to the gravitational force acting on the vehicle due to the slope of the 

driving surface. If the surface is uphill it results in a positive force while the downhill 

surface results in a negative force. This force can be expressed as  

𝐹𝑔 = 𝑀𝑔 𝑠𝑖𝑛 𝜃                                                    (2.11) 

 Based on Newton’s second law of motion we can now formulate the overall 

longitudinal dynamics as follows  

𝐹𝑟𝑒𝑞 −  ∑ 𝑅 =  𝛾𝑀𝑎                                                (2.12) 

 Where ∑ R represents the sum of the Aerodynamic resistance, Rolling resistance 

and Grade resistance. Freq is the force requested at the wheels and γ represents the mass 

factor which accounts for inertia of vehicle’s rotating parts and a represents the 

acceleration of the HEV. The longitudinal equation of the HEV can thus be represented 

by 

𝑇𝑐𝑖𝑛𝜂

𝑟𝑤
=  𝛾𝑀𝑎 +  𝑐𝑟𝑀𝑔 𝑐𝑜𝑠 𝜃 +

𝜌

2
𝐴𝐶𝑑(𝑣𝑣𝑒𝑙 + 𝑣𝑤𝑖𝑛𝑑)2 + 𝑀𝑔 𝑠𝑖𝑛 𝜃                 (2.13) 

 WhereFreq =  
Tcinifη

rw
. Tc represents the torque to be applied by each component of 

a HEV, IC engine and/or EM in a parallel HEV and only by the EM in the series 

HEV. rw is the radius of the wheels, in and η represent the gear ratio and the power 

transmission efficiency of the drive train. We next discuss the modellin gof the battery 

for a HEV. 
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2.5 Battery Model 

 In this thesis we use a simple static equivalent battery model as shown in Fig. 2.1 

 

 

 

 

 

 

 

Figure 2.1: Simple static equivalent battery model. 

 

 

 

 This model should track the state of charge (SOC) according to the current drawn 

from the battery. The SOC is the relative remaining battery capacity, Q, of the battery, 

expressed in %. This can be represented by  

𝑆𝑂𝐶 =  
∫ 𝑖𝑏𝑎𝑡𝑡

𝑡
0 𝑑𝜏

𝑄
                                                           (2.14) 

 Which in discrete time can be represented by  

𝑆𝑂𝐶 =  1 −  
𝑖𝑏𝑎𝑡𝑡𝜏𝑠

3600𝑄
                                                      (2.15) 

 Where ibatt represents the battery current and τs is the time step used in 

simulation. The effect of ambient temperature of the battery is not considered in this 

thesis. the open circuit voltage of the battery pack, Voc, and the internal resistance, Rbatt, 

both dependent on the current SOC. For a HEV the range of operation of the battery is 

between 0.4- 0.8 of SOC and it is seen that the Voc and Rbatt can be assumed to be a 

constant in this range [52]. As seen by Eq. (2.14) and Eq. (2.15) the available SOC of the 

battery changes as function of the discharge/charge current. The variation of the SOC as a 

function of ibatt is primarily based on the empirical law of Peukert [53] and is given by  

𝑄 =  𝑖𝑏𝑎𝑡𝑡
𝑘1𝒯                                                            (2.16) 

Voc(SOC) 

Rbatt 

Vbatt 
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 Where k1 represents the Peukert number which is a constant for a given battery 

and 𝒯 is the total charge time. A k1 value close to 1 indicates that the battery performs 

well. The higher k1, the more capacity is lost when the battery is discharged at high 

currents. When an n-h rate capacity, Cn, is given the Peukert expression can be used to 

calculate the capacity for any given current  

𝑄𝐼 =  𝑄𝑛(
𝐼𝑛

𝐼𝑏𝑎𝑡𝑡
)𝑘1−1                                                   (2.17) 

Substituting  of Eq. (2.18) in Eq. (2.16) gives: 

𝑆𝑂𝐶 = 1 −
𝑖𝑏𝑎𝑡𝑡𝜏𝑠

3600𝑄𝑛
(

𝐼𝑛

𝐼𝑏𝑎𝑡𝑡
)𝑘1−1                                          (2.18) 

 Eq. (2.18) can be transformed  which expresses the SOC increments, ΔSOC. This 

equation assumes that the current Ibatt remains constant during one step 𝒯 of the 

simulation and is given by 

𝛥𝑆𝑂𝐶 =  
𝜏𝑠

3600𝑄𝑛

𝑖𝑏𝑎𝑡𝑡
𝑘1

(
𝑄

𝑛
)𝑘1−1

                                                 (2.19) 

 To be able to implement Eq. (2.19) the knowledge of the battery current is 

required. Ibatt can be calculated based on the fundamental electric Eq. (2.20) and Eq. 

(2.21) which describe the simple battery model shown in Figure 2.1 

𝑉𝑏𝑎𝑡𝑡 = 𝑉𝑜𝑐 −  𝑅𝑏𝑎𝑡𝑡𝐼𝑏𝑎𝑡𝑡                                                (2.20) 

𝑃𝑏𝑎𝑡𝑡 =  𝑉𝑏𝑎𝑡𝑡𝐼𝑏𝑎𝑡𝑡                                                      (2.21) 

 Where Pbatt Vbatt and represents the battery power and battery voltage 

respectively. Using Eq. (2.20) and Eq. (2.21) we obtain Ibatt to be 

𝐼𝑏𝑎𝑡𝑡 =  
𝑉𝑜𝑐−√𝑉𝑜𝑐

2− 4𝑃𝑏𝑎𝑡𝑡𝑅𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡
                                                  (2.22) 

Substituting Eq. (2.22) in Eq. (2.19), choosing k1 = 1 and expressing Q in units of A-s we 

obtain  

𝛥𝑆𝑂𝐶 =
𝑉𝑜𝑐−√𝑉𝑜𝑐

2− 4𝑃𝑏𝑎𝑡𝑡𝑅𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡𝑄
                                                 (2.23) 
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 In this thesis Eq. (2.23) is used as the battery model. In the next section we 

describe the Modeling of the parallel and the series HEV based on the component models 

described thus far. 

2.6   Parallel HEV Modeling 

 For the parallel HEV a 5-speed automatic transmission is chosen. Figure 2.2 

depicts the parallel architecture along with the mechanical and electrical power flows. 

Whenever the vehicle runs in a parallel HEV, the engine is coupled to the wheels hence 

the total torque output at the wheels Tw is     

   𝑇𝑤 =  𝑖𝑓𝑖𝑔𝑇𝑒 + 𝑖𝑓𝑖𝑚𝑇𝑚                                             (2.24) 

and the speed constraint resulting from the torque coupling requirement is given by 

 
𝑤𝑒

𝑖𝑔𝑖𝑓
=

𝑤𝑚

𝑖𝑚𝑖𝑓
=

𝑣

𝑟𝑤
                                                  (2.25) 

 where Te, ωe, Tm, ωm,v , ig represent the engine torque, rotational speed, motor 

torque, rotational speed, vehicle speed and gear ratio. if  is the final drive gear ratio, im is 

the electric motor gear ratio in the torque coupling and rw is the rolling radius of the tire. 

Hence ωe and ωm can be taken as known variables by Eq. (2.25) as long as ig and v are 

given. 
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Figure 2.2: Schematic of the torque-coupled parallel architecture 

 

 

 The simplifications of the engine, vehicle dynamics and motor/battery are 

described below. 

2.6.1 Engine 

 The engine is modeled as a black box with �̇�𝐟 ,the mass fuel rate consumption, as 

the outputs and Te and ωe are the inputs as described earlier. The equations of the engine 

is given by 

 

�̇�𝑓 = 𝑎1𝜔𝑒 + 𝑎2𝜔𝑒
2 + 𝑎3𝜔𝑒

3 + 𝑎4𝜔𝑒𝑇𝑒 +  𝑎5𝜔𝑒
2𝑇𝑒 + 𝑎6𝜔𝑒𝑇𝑒

2              (2.26) 

 

           𝑇𝑒(𝑚𝑎𝑥)(𝜔𝑒) =  𝑏1𝜔𝑒 + 𝑏2𝜔2
𝑒 + 𝑏3𝜔𝑒

3                            (2.27) 
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    a1-a6 and b1-b3 are constants and are given by Table 2.1. The maximum torque and 

rotational speed that can be produced by the engine, for the parallel case is 105 Nm and 

3000 rpm respectively. And the minimum limits on these variables is 0 Nm and 0 rpm. 

2.6.2 Vehicle Dynamics 

 Since only the longitudinal dynamics of the vehicle was considered and is be 

modeled as a point mass. The discrete model for the vehicle for a simulation step of 1 

second is given by 

 
𝑇𝑟𝑒𝑞

𝑟𝑤
=  𝛾𝑀[𝑣(𝑘 + 1) − 𝑣(𝑘)] + 𝑐𝑟𝑀𝑔 𝑐𝑜𝑠 𝜃𝑘 + 𝐴𝑐𝑑𝜌𝑎

�̅�2

2
+ 𝑀𝑔 𝑠𝑖𝑛 𝜃𝑘           (2.28) 

       

where v̅ represents the average velocity at the k+1 and kth time steps. 

2.6.3   Motor/Battery 

 Due to the battery power and the motor torque limits, the final motor torque at 

discrete time steps is shown in Eq. (2.30) as elucidated in Section 2.3 

𝑇𝑚(𝑘) = {
𝑚𝑖𝑛 (𝑇𝑟𝑒𝑞 , 𝑇𝑚,𝑑𝑖𝑠(𝜔𝑚), 𝑇𝑏𝑎𝑡,𝑑𝑖𝑠(𝑆𝑂𝐶, 𝜔𝑚)) ,    𝑇𝑟𝑒𝑞 > 0

𝑚𝑎𝑥 (𝑇𝑟𝑒𝑞, 𝑇𝑚,𝑐ℎ𝑔(𝜔𝑚), 𝑇𝑏𝑎𝑡,𝑐ℎ𝑔(𝑆𝑂𝐶, 𝜔𝑚)) ,   𝑇𝑟𝑒𝑞 < 0
             (2.29) 

With the static equivalent battery model being used the discrete SOC equation is as given 

by Eq. (2.31)                                                                                             

     𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 −
𝑉𝑜𝑐−√𝑉𝑜𝑐

2−4𝑅𝑏𝑎𝑡𝑡𝑇𝑚𝜔𝑚𝜂𝑚
−𝑠𝑔𝑛(𝑇𝑚)

2𝑅𝑏𝑎𝑡𝑡𝑄
                       (2.30) 

The maximum torque and rotational speed that can be produced by the motor, for 

the parallel case is 137 Nm and 5500 rpm respectively. And the minimum limits on these 

variables is -137 Nm and 0 rpm. 
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2.7   Series HEV Modeling 

 For a series HEV Pe , the power of the engine, can be chosen to replace Te and 

ωein the parallel HEV case [21]. Figure 2.3 depicts the series architecture along with the 

mechanical and electrical power flows.  The simplified series HEV model can be 

described as below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic of the series architecture 
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2.7.1 Engine 

 For a series case since the engine is operated at its most efficient point the 

operating points of the engine can be reduced to a single point, which can be looked up in 

a BSFC map of the engine. Thus the control variable for a series HEV becomes binary 

i.e. whether the engine should be On/Off . The maximum and minimum power that can 

be produced by the engine is 62 KW and 0 KW respectively. 

2.7.2   Vehicle Dynamics 

 In the series case since total power demand is used instead of torque the vehicle 

dynamics in the discrete form is described as follows 

𝑃𝑑,𝑘 = (𝛾𝑀[𝑣𝑘+1 − 𝑣𝑘] + 𝑐𝑟𝑀𝑔 𝑐𝑜𝑠 𝜃𝑘 + 𝐴𝑐𝑑𝜌𝑎
�̅�2

2
+ 𝑀𝑔 𝑠𝑖𝑛 𝜃𝑘)�̅�                   (2.31)                                                                        

 

 Where Pd,k represents the demanded power of the drive cycle. 

2.7.3   Motor/Battery Model 

 The Motor model is similar to the parallel HEV case except that Pm is considered 

and Pm ϵ [Pm,min Pm,max], where Pm,max and  Pm,min are the maximum and minimum motor 

torque respectively. As power control is adopted, the battery model uses motor power Pm 

as input. Thus the battery model is as shown in Eq. (2.32). The maximum and minimum 

power that can be produced by the motor is 111 KW and -111 KW respectively.  

                    𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 −
𝑉𝑜𝑐−√𝑉𝑜𝑐

2−4𝑅𝑃𝑚

2𝑅𝑄𝑏
                                     (2.32) 
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CHAPTER 3 

DYNAMIC PROGRAMMING 

3.1 Introduction 

 Since the HEV’s have two degrees of freedom for energy flow controls [14], the 

performance of a HEV is strongly dependent on the control of this power split between 

thermal and electrical power sources. Thus various control algorithms have been 

developed for HEV’s over the past decade to optimize their fuel efficiency. 

 The control algorithms for HEV’s can be divided into two broad categories 

namely Rule Based (RB) algorithms and Optimization Based (OB) algorithms[15] as 

discussed in chapter 1.The popular type of RB algorithms for a HEV are  thermostat 

control strategy[16] and fuzzy rule based strategies[18].  Although RB methods are easy 

to implement, they require extensive tuning and result in sub-optimal control strategies.  

To overcome these disadvantages OB Control Strategies are suitable. Optimization based 

strategies seek to optimize a set of performance objectives. As they attempt to find the 

global optimum results for a driving cycle known a-priori, Dynamic Programming (DP) 

approach is apt.  

 Dynamic Programming was developed by Richard Bellman, and is a powerful 

method for optimization of trajectory of a system which can be broken into several stages 

[55]. A dynamical system defined by a corresponding performance function can be 

solved for optimality using either PMP or Bellman's DP [56]. In this chapter we focus on 

the DP technique that has the advantage of being applicable to both linear and nonlinear 

systems as well as constrained and unconstrained problems. DP is especially useful for 

solving multistage optimization problems in which there are a finite number of control 

inputs at each instant at each stage and in which no derivative information is available. 

The DP technique is primarily based on the principle of optimality. According to the 
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Bellman’s Principle of Optimality (BPO), an optimal control policy has the property that 

the optimality of the past action has no effect on the optimality of the future actions  

 Most systems that exist can be divided into subsystems such that that each one 

can be considered as a single or multi-stage system. Due to this one can apply Bellman’s 

Principle of Optimality to obtain an optimal solution for such problems by dividing a 

complex system into a number of sub-systems and solve the optimal control problem for 

each sub-system individually.  To illustrate the BPO, we consider a simple three stage 

optimization problem as shown in Figure 3.1 

 

 

 

 

 

 

 

Figure 3.1: Three stage optimization problem 

 

 

 Let the optimal path from A to C pass through B and consider the cost to go for 

path B to C is JBC and cost to go for path A to B be JAB. Then the optimal cost going from 

A to C is JAC = JAB +JBC. Thus if one has the optimal cost to go from B to C one can 

obtain the optimal cost to go from A to C by just adding it to the cost to go from A to B. 

This can easily be expanded to larger problems with many stages. In other words, if one 

can find the optimal solution for each sub-system, it will be possible to find the optimal 

solution to the whole complex system having all optimal solutions for each subsystem at 

hand. 
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 Since in a HEV the problem is to solve for the optimal control strategy to obtain 

the lowest fuel consumption over a predefined drive cycle, the BPO can be applied to this 

system by adding  the optimal solution obtained at each time step of the drive cycle such 

that the fuel consumption over the entire drive cycle is minimum. Because DP leads to 

global optimal solution various researchers have applied this technique for optimizing 

fuel efficiency for a HEV [28, 29]. 

 Lin et al. [13] used Stochastic DP to find an optimal control policy, in order to 

minimize the expected total cost over an infinite horizon. In this approach, the power 

management strategy is optimized over a family of random driving cycles.  Although the 

control law derived from SDP may be for real-time implementation, it does not guarantee 

global optimal solutions. Wang et.al [25] used a forward DP approach as they considered 

the problem of optimizing fuel efficiency in a HEV to be deterministic finite state 

problem. However using forward DP increases the number of computations and hence is 

unnecessarily computationally expensive.   

 In [14] a backward DP is used to solve the control problem for the HEV, however 

the state variable is discretized.   This process increases the cumulative errors and leads to 

suboptimal results, as the next step cost is first evaluated using a state transition equation 

and a nearest neighbor interpolation and quantization is carried out to find the 

corresponding state point. To increase the accuracy of the solution obtained, the 

increment of state variables are made substantially small. However this further 

computationally burdens the overall control algorithm with DP already suffering from the 

curse of dimensionality. Moreover the approach solves the problem only for a given 

initial state of the state variables. 

 Hence in this thesis we develop and present a new DP algorithm which 

overcomes the above problem by eliminating the need to discretize the state space by the 

use of sets. We show mathematically that the proposed DP leads to a globally optimal 

solution for a discrete time system by minimizing a cost function at each time step. To 
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show the efficacy of the proposed DP, we apply it to optimize the fuel economy of the 

series and parallel Hybrid Electric Vehicle architectures. The procedure for implementing 

DP to the HEV architectures are elucidated and a cost function for the proposed DP is 

discussed. The DP algorithm developed is discussed in the next section. 

 

3.2 Dynamic Programming Description 

 

 DP utilizes BPO by minimizing a cost function backward in time starting from the 

end time step. To minimize the total cost, the state-time space is space parameterized by 

the independent states and time; the goal of DP is to find the trajectory with the least cost 

through this space.  The DP algorithm developed in this thesis is for a class of discrete-time 

system given by Eq. (3.1) 

𝑥𝑘+1 =  𝐹𝑘(𝑥𝑘, 𝑢𝑘), 𝑘 = 0,1 … , 𝑁 − 1                                            (3.1)                                                                                                                         

 where k denotes the index of discretized time, xk ϵ ℝn is the state vector, uk is the control 

input belonging to a discrete set 𝔇 = {u1, … , ud} and Fk: ℝn × 𝔇 → ℝn is a function 

defining the state transition. Letting Xℝn be the set of admissible states, the objective 

of the DP algorithm to be presented is to seek the control policy π =  {u0, u1, … . uN−1} 

that minimizes the objective function 

 

 𝐽0,𝜋(𝑥0) =  𝑔𝑁(xN) + ∑ [𝛹𝑘(𝑥𝑘 , 𝑢𝑘)]𝑁−1
𝑘=0                                  (3.2) 

                  

 Subject to xk ∈ 𝒳k and uk ∈ 𝒰k, k=1,…,N where gN(xN) is a simple function 

having finitely many values on 𝒳N, Ψk(xk,uk) is the incremental cost of applying the 

control at time k, and 𝒳kℝn and 𝒰k𝔇 are the sets of admissible states and inputs, 

respectively, at time k. Each set 𝒳k is assumed to be a closed and bounded (i.e., compact) 

set. 

 The DP developed in this paper does not discretize the state variables, instead at 

each time step, an optimal input is assigned to each set of states that share the same 
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optimal input sequence going forward.  To illustrate this consider a scalar system with 

binary input as shown in Figure 3.2 and 𝒳k=[xmin ,xmax]. At step k=N applying the control 

input u =0 and u=1 backward, leads to two new intervals I1, I2 𝒳k respectively. 

Assuming u=0 produces an interval of smaller cost, the new interval states for k=N-1 are 

I1 and I2\I1. This is then repeated until k=1 as shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The concept of DP as applied in this thesis 

 

 To describe the DP Algorithm let 𝒮k
i  𝒳k, i=1,…,nk, denote mutually exclusive 

sets of states such that the states in each 𝒮k
i  can reach a feasible final state via the same 

input sequence state in k steps.  At the final step N, the sets 𝒮N
i  𝒳N, i=1,…,nN, are 

chosen such that ⋃i=1
nN 𝒮N

i = 𝒳N and gN is constant on each 𝒮N
i . 

 

Algorithm 3.2.1: 

 

1. Starting at the final step with 𝒮N
i , i=1,…,nN, for k=N-1,N-2,…,1,0  obtain 𝒮k

i,j
from 

𝒮k+1
i  for the j-th admissible input uj ∈ 𝒰k according to 

    𝒮𝑘
𝑖,𝑗

=  {x ∈ 𝒳k: 𝐹𝑘(𝑥, 𝑢𝑗) ∈ 𝒮𝑘+1
𝑖  }                                  (3.3)                                                          
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2. Compute the cost-to-go  Jk
i,j

 associated with each 𝒮k
i,j

 using Eq. (3.3). 

3. Identify 𝒮k
i,j

 with the least cost-to-go and relabel it 𝒮k
1. Subtract 𝒮k

1 from the 

remaining sets and repeat the process for the resulting sets until mutually 

exclusive sets 𝒮k
2, 𝒮k

3…𝒮k
nk are obtained. 

4. Assign the cost-to-go Jk
i  and the optimal control input uk

i to each set 𝒮k
i  obtained in 

step 3. 

 

We now state Lemma 3.1 and then state the theorem for global optimality. 

Lemma 3.2.1: The following statements are equivalent 

𝒮𝑘 =  ⋃𝑖=1
𝑛𝑘 𝒮𝑘

𝑖                                                              (3.4) 

𝒮𝑘 = {x ∈ 𝒳k: 𝐹𝑘(𝑥, 𝑢) ∈ 𝒮𝑘+1, 𝑢 ∈ 𝒰𝑘}                              (3.5) 

 

Proof:  Considering Eq. (3.4), let ∀x ∈ 𝒳k choose a u ∈ 𝒰k such that the forward 

transition function Fk(x, u) ∈ 𝒮k+1, from Eq. (3.3) this then belongs to some set 𝒮k
i,j

 and 

by the construction of the algorithm leads to set 𝒮k
i , by repeating ∀u ∈ 𝒰k it is seen that 

we obtain Eq. (3.4) 

To prove the converse. If we obtain a set 𝒮k
i , this means that there exists a u ∈ 𝒰k such 

that ∀x ∈ 𝒳k Fk(x, uj) ∈ 𝒮k+1
i  hence by algorithm construction we will obtain Eq. (3.5) 

 

     

Theorem 3.2.1: Consider the discrete-time system described by (3.1). The DP Algorithm 

3.1 produces a globally optimal solution uk ∈ 𝒰𝑘 and 𝑥𝑘𝜖 𝒳𝑘,∀ 𝑥0𝜖 ⋃𝑖=1
𝑛0 𝒮0

𝑖, k=0,…,N-1 

minimizing the cost function (3.2). 

 

Proof: 

      We prove Theorem 3.2.1 using the principle of mathematical induction. 

 Let 𝒮k =  ⋃i=1
nk 𝒮k

i . We first show that x ∈ 𝒮k  if and only if x has a finite cost-to-

go (i.e., there exists an input sequence uk,uk+1,…,uN-1 ∈ 𝒟 that transfers x to 𝒳Nin N-k 
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steps). This claim obviously holds for 𝒮N = 𝒳N. To prove it inductively suppose that all 

members of 𝒮j have finite cost-to-go for k+1≤j≤N and let x ∈ 𝒮k. By the algorithm 

construction 𝒮k = {x ∈ 𝒳k: Fk(x, u) ∈ 𝒮k+1, u ∈ 𝒰k} implying that Fk(x,uk) ∈ 𝒮k+1 for 

some u ∈ 𝒰k. Thus x has a finite cost-to-go. Conversely if x ∈ 𝒳k has a finite cost-to-go 

then there exists u ∈ 𝒰k such that Fk(x,uk) has a finite cost-to-go and by the induction 

hypothesis, Fk(x,uk) ∈ 𝒮k+1, or equivalently x ∈ 𝒮k. 

 To prove global optimality, let x ∈ 𝒳k at step k. We shall use mathematical 

induction to show that the DP Algorithm 3.1 produces a globally optimal input sequence 

that transfers x to 𝒳N. The proof clearly holds for x ∈ 𝒳N at step N. Now suppose that it 

holds for all the members of 𝒳j, k+1≤j≤N and let x ∈ 𝒳k. If x ∉ 𝒮k then x has infinite 

cost-to-go and there is nothing to prove. For x ∈ 𝒮k let uk
j
 ∈ 𝒰k be the optimal input 

chosen by the DP Algorithm 3.1. Letting Jk+1
∗  denote the optimal cost-to-go at step k+1, 

then the cost-to-go resulting from uk
j
 and another input uk

j'
∈ 𝒰k for which Fk(x, uk

j'
) ∈

𝒮k+1, respectively, are given by 

 

Jk
j

=  𝐽𝑘+1
∗ +  𝛹𝑘(𝑥, uk

j
)                                                     (3.6) 

 

𝐽𝑘 =  𝐽𝑘+1
∗ +  𝛹𝑘(𝑥, uk

j'
)                                                          (3.7) 

 

 Letting yj =  Fk(x, uk

j
) ∈ 𝒮k+1 and yj' =  Fk(x, uk

j'
) ∈ 𝒮k+1 then there exist l,m ∈ 

{1,2,….nk} such that 𝒮k+1
l and 𝒮k+1

m  contain yj and yj', respectively. Thus 

𝑥 ∈  𝒮k

l,j
⋂𝒮k

m,j'
                                                             (3.8) 

 By construction of the algorithm it is observed that this state x is always assigned to the 

control input of lower cost implying that Jk
j

≤ Jk
j'
. Thus uk

j
 is the global optimal input 

from k to k+1 step, which completes the proof. In the next subsection we apply the 

proposed DP for the series and parallel HEV. 
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3.2.1   DP for Parallel and Series HEV 

 We now discuss the DP algorithm developed for the parallel and series HEV. In 

order for the HEV to be able to follow the specified vehicle velocity 𝑣𝑘 and deliver the 

corresponding requested torque  𝑇𝑤,𝑘 given by Eq. (2.24) at each time step, we constrain 

them to satisfy Eq. (3.9) and Eq. (3.10) 

𝑟𝑤𝜔𝑚,𝑚𝑖𝑛

𝑖𝑓𝑖𝑚
≤ 𝑣𝑘 ≤

𝑟𝑤

𝑖𝑓
min (𝜔𝑚,𝑚𝑎𝑥 ,

𝜔𝑒,𝑚𝑎𝑥

𝛼𝑖5
)                             (3.9) 

𝑇𝑤,𝑘  ≤ 𝑇𝑤,𝑘 ≤ 𝑇𝑤,𝑘                                              (3.10) 

where 

 𝑇𝑤,𝑘 = 𝑖𝑚𝑖𝑓𝑇𝑚,𝑚𝑎𝑥 + 𝛼 max
𝑖5≤𝑖𝑔≤min (𝑖1,

𝜔𝑒,𝑚𝑎𝑥 𝑟𝑤
𝑣𝑘𝑖𝑓

)
𝑇𝑒,𝑚𝑎𝑥 (

𝑣𝑘𝑖𝑓𝑖𝑔

𝑟𝑤
) 𝑖𝑔𝑖𝑓 and 

 𝑇𝑤,𝑘 =  𝑖𝑓𝑖𝑚𝑇𝑚,𝑚𝑖𝑛 

Where 𝛼 is 1 for a parallel HEV and 0 for series HEV. 

The state vector x for the DP control problem of the parallel and series HEV at instant k 

is defined to be xk=[SOCk uk-1]
T with the corresponding state transition 

 𝑥𝑘+1 = [
1 0
0 0

]  𝑥𝑘 + [-𝑓𝑘(uk)
uk

]                                                     (3.11)                                  

where SOC represents the state of charge of the battery, and u is a binary (on/off) 

engine status input (u=1 or 0), and 

 

f(u) =
𝑉𝑜𝑐−√𝑉𝑜𝑐

2−4𝑅𝑏𝑎𝑡𝑡𝑃𝑘(u)

2𝑅𝑏𝑎𝑡𝑡𝑄
                                               (3.12) 

 

with 𝑃𝑘(𝑢) representing the time varying battery power depending implicitly on u. Using 

(2.24)-(2.28) and (2.29)-(2.32) it can be seen that 
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𝑃𝑘(𝑢) =  𝜂𝑚
−𝑠𝑔𝑛(𝑃𝑚,𝑘(𝑢))𝑃𝑚,𝑘(𝑢)                              (3.13) 

 

𝑃𝑚,𝑘(𝑢) = 𝑃𝑑,𝑘 − 𝑢𝑃𝑒,𝑘                                        (3.14)  

 

where 𝑃𝑑,𝑘 = 𝑣𝑘 𝑇𝑤,𝑘 𝑟𝑤⁄  is the power demand from the HEV at the kth step and 𝑃𝑒,𝑘 is 

the net engine output power corresponding to the minimal BSFC. As discussed in 

Chapter 2, for a series HEV, 𝑃𝑒,𝑘 is a constant and by the well posedness assumption 

𝑃𝑚,𝑘 ∈ [𝑃𝑚,𝑚𝑖𝑛, 𝑃𝑚,𝑚𝑎𝑥]  k.  where 𝑃𝑚,𝑚𝑖𝑛 =  𝜔𝑚𝑖𝑛𝑇𝑚𝑖𝑛 and 𝑃𝑚,𝑚𝑎𝑥 =  𝜔𝑚𝑎𝑥𝑇𝑚𝑎𝑥. 

For a parallel HEV, 𝑃𝑒,𝑘 = 𝑇𝑒,𝑘𝜔𝑒,𝑘, and 𝜔𝑒,𝑘 = 𝑖𝑔,𝑘𝑣𝑘 𝑟𝑤⁄ , where (𝑇𝑒,𝑘, 𝑖𝑔,𝑘) is the 

engine torque and gear ratio pair that minimizes the BSFC (
 �̇�𝑓𝑢𝑒𝑙

𝑇𝑒𝜔𝑒
) at the k-th step subject 

to the following constraints: 

 

𝑇𝑒,𝑚𝑖𝑛 ≤ 𝑇𝑒 ≤ 𝑇𝑒,𝑚𝑎𝑥(𝜔𝑒), 𝜔𝑒,𝑚𝑖𝑛 ≤ 𝜔𝑒 ≤ 𝜔𝑒,𝑚𝑎𝑥, 𝑇𝑚,𝑚𝑖𝑛 ≤ 𝑇𝑚 ≤ 𝑇𝑚,𝑚𝑎𝑥, 𝑇𝑚 =

𝑇𝑤,𝑘−𝑖𝑓𝑖𝑔𝑇𝑒

 𝑖𝑓𝑖𝑚
,            𝜔𝑒 =

𝑣𝑘𝑖𝑓𝑖𝑔

𝑟𝑤
,  𝑖𝑔𝜖{𝑖1, … , 𝑖5}                                                              (3.15) 

 

Similarly to the series HEV, the well posedness assumption guarantees that an optimizing 

𝑇𝑒,𝑘 exists and  

𝜔𝑚,𝑚𝑖𝑛 ≤ 𝜔𝑚,𝑘 ≤ 𝜔𝑚,𝑚𝑎𝑥                                           (3.16) 

Where 𝜔𝑚,𝑘 is the resulting motor speed given by Eq. (2.25). 

 

We now make the following assumption when applying the DP proposed to a series and 

parallel HEV to ensure that all states can be reached at any step k. 

 

Assumption 3.1: Let 𝛿𝑚𝑎𝑥
𝑘 = max

u  ∈𝒰𝑘

f(𝑢) and 𝛿𝑚𝑖𝑛
𝑘 = 𝑚𝑖𝑛

𝑢 ∈𝒰𝑘

f(𝑢). Then, 𝛿𝑚𝑎𝑥
k ≥ 0, 𝛿𝑚𝑖𝑛

𝑘 ≤

0 and 𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛 >  𝛿𝑚𝑎𝑥
𝑘 − 𝛿𝑚𝑖𝑛

𝑘 ,   ∀ 𝑘.  
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  For a Hybrid Electric Vehicle this means that at any discrete time step k, a control 

option exists to prevent the battery from charging or discharging. It also means that the 

change in the SOC by applying any input uϵ 𝒰k will be sufficiently small. This can easily 

be satisfied by either considering reasonably sized time steps or ensuring the engine 

power is not exorbitantly high, which is usually the case. 

 The following Theorem shows that the DP algorithm satisfying Assumption 3.1 

produces a globally optimal control sequence for the Parallel and Series HEV starting 

from any admissible state of charge. To state the results, let 𝒮k = ⋃i=1
nk 𝒮k

i  be the set of 

states with a finite cost-to-go as before.  

 

Theorem 3.2: The DP Algorithm 3.1 applied to the Parallel and Series HEV system Eq. 

(3.9) produces a globally optimal solution as described in Theorem 3.1. In addition, if 

Assumption 3.1 holds we have 𝒮𝑘 = 𝒳global ≔ [𝑆𝑂𝐶𝑚𝑖𝑛, 𝑆𝑂𝐶𝑚𝑎𝑥] × {0,1}, ∀ 𝑘. 

Proof: 

The global optimality of the DP algorithm has already been established by Theorem 3.1. 

To prove that  𝒮k = 𝒳global, we use mathematical induction. By the hypothesis  𝒮N =

𝒳global. Now suppose that at step k+1, 𝒮k+1 = 𝒳global. As in the proof of Theorem 3.1, 

𝒮k = {xϵ𝒳global: F(x,u)ϵ𝒮k+1,  uϵ𝒰k} with F(x,u) given by Eq. (3.9). Letting 

x=[s e]
Tϵ 𝒳global, and denoting SOCmin and SOCmax by smin and smax, respectively, there 

are 3 possible cases for s: (i)  s∈ [smin,xmin+δmax
k

], (ii) s∈ [smin+δmax
k ,smax+δmin

k
], and (iii) 

s∈ [smax+δmin
k ,smax] since by Assumption 3.1 sminsmin+δmax

k
< smax+δmin

k
 smax. If s∈

[smin,smin+δmax
k

], then choosing  uϵ𝒰k such that f(u)= δmin
k

0 guarantees that s-

f(u) ϵ[smin, smax], and consequently F(x,u)ϵ𝒳global, by Assumption 3.1. Similarly, if s∈

[smax+δmin
k ,smax], then choosing  uϵ𝒰k such that f(u)= δmax

k
0 implies that F(x,u)ϵ𝒳global. 
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Finally, for case (ii) any  uϵ𝒰k guarantees that F(x,u)ϵ𝒳global. Thus xϵ𝒮k proving that 

𝒮k = 𝒳global since obviously 𝒮k ⊂ 𝒳global and the proof is complete. 

In order to facilitate comparison the DP algorithm proposed in section 3.2 is compared to 

earlier proposed DP algorithms in which the state is discretized. We now discuss one 

such approach, this has been adopted from [2]. 

3.3 Discrete Dynamic Programming 

 

 The Discrete DP  algorithm (DPdes) is developed for a class of discrete-time 

models as shown in Eq (3.1). In addition, both the state and control variables have to be 

discretized for applying the DPdes algorithm. The total cost of using the control strategy 

Γ = {u0, u1, … . uN−1} with the initial state x0 is 

 

𝒥0,𝛤(𝑥0) =  𝜍𝑁(𝑥𝑁) + 𝜙𝑁(𝑥𝑁) +  ∑ [ℎ𝑘(𝑥𝑘 , 𝑢𝑘) + 𝜙𝑘(𝑥𝑘, 𝑢𝑘)]𝑁−1
𝑘=0         (3.17) 

 

 where 𝒥0,Γ(x0) denotes the total cost, ς
N

(xN) the final cost, ϕk(xk, uk)the penalty 

function enforcing the constraints on the state and control variables and  hk(xk,uk) the 

incremental cost of applying the control at time k. The optimal control policy is one that 

minimizes the total cost represented in Eq. (3.17). The DPdes technique utilizes the 

principle of BPO by minimizing the cost in Eq. (3.17) backward in time. In the DPdes 

technique the state variable is discretized. Let xk
i  represents a point in the discrete state-

time space. Working backwards, the cost for each state value at the final time step is first 

evaluated and at intermediate time steps, the cost at each state point is obtained using  Eq. 

(3.18) 

𝒥𝑘(𝑥𝑘
𝑖 ) =  𝑚𝑖𝑛 [𝒥𝑘+1(𝑥𝑘+1

𝑖 ) + ℎ𝑘(𝑥𝑘
𝑖 , 𝑢𝑘) + 𝜙𝑘(𝑥𝑘

𝑖 , 𝑢𝑘)]              (3.18) 
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which implies an optimal path is taken forward of xk
i  Using the state transition Eq. (3.3) 

xk+1
i is obtained from which the next step cost 𝒥k+1(xk+1

i ) is  computed from Eq. (3.17).  

As the state vector is discretized a nearest neighbor interpolation is carried out to find the 

corresponding state point xk+1
i  at the k+1 time step.  

 By repeating the process from Eq. (3.17) backward in time to the initial time step, 

the total minimum cost at each state point is obtained. Finally, the global minimum of the 

cost function is obtained by selecting the state point with lowest total minimum cost at 

the initial time step. Using the next time step states and the optimal control uk stored for 

each point of the state-time space, the optimal state trajectory X∗ = {x0
∗ , x1

∗ , … . xN−1
∗ , } and 

the optimal control trajectory U∗ = {u0
∗ , u1

∗ , … . uN−1
∗ , } can be recovered in a forward 

sense from the global minimum solution. We next discuss the application of DPdes to the 

series and parallel HEV. 

 The DPdes algorithm is implemented with backward-looking simulation, in which 

the vehicle is assumed to follow a drive cycle and the steady state kinematic and torque 

relationships are used to compute component operation states. The DP control problem of 

the parallel HEV is characterized as 

𝑥 = (𝑆𝑂𝐶, 𝑣, 𝑇𝑟𝑒𝑞)                                                       (3.19) 

                       𝑢 = (𝑇𝑒 , 𝜔𝑒 , 𝑇𝑚, 𝜔𝑚, 𝑖𝑛)                                                 (3.20) 

                             ℎ𝑘 = �̇�𝑓𝑢𝑒𝑙(𝑥, 𝑢)                                                       (3.21) 

 

 The DP algorithm, applied to HEVs, seeks to minimize the forward fuel 

consumption at any point of discretized state-time space. This minimizing operation can 

be summarized by Eq. (3.22) 

     𝐽𝑘(𝑆𝑂𝐶𝑘
𝑖 ) =  𝑚𝑖𝑛 [𝐽𝑘(𝑆𝑂𝐶𝑘+1

𝑖 ) + �̇�𝑓𝑢𝑒𝑙(. ) + 𝜙𝑘(. ) + 𝛽. 𝛥𝐸𝑛𝑔𝑖𝑛𝑒 𝑜𝑛/𝑜𝑓𝑓]      (3.22)                           

The constraints on the components’ capabilities for a parallel HEV are 

summarized by Eq.(3.15) 
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 These constraints are enforced through the penalty terms ϕk(. ) and  g0(. ) 

described earlier and β is the weight for the difference between the previous and current 

engine state. The cost function also includes penalty terms for engine on/off and the 

brake energy is fully regenerated. The control problem of the parallel HEV can be 

simplified by the following assumptions. In a backward-looking simulation, the vehicle 

has to follow the drive cycle exactly; therefore the drive cycle prescribes v and Treq, 

making SOC the only independent state variable. Furthermore, one can express Tm and 

ωm in terms of Treq, Te and ωe. Also since ωe can be computed using in, the independent 

control variables reduces to u = (Te, ig). Essentially, the control candidates will be 

constrained to the set meeting the speed and torque requirements at the wheels. It is  

noted that the number of feasible choices is limited to at most the number of gear ratios in 

the transmission due the kinematic constraints. Further,  ṁfuel  is assumed to be only a 

function of engine operation points characterized by Te and ωe. 

 In a series HEV, the engine does not directly drive the wheels. Hence, both Te and 

ωe can to be controlled at each step, and given a power requirement, the best operation 

point can be found out to minimizeṁfuel. Thus, engine power Pe, can be selected as the 

control variable . Therefore the constraints for a series HEV are summarized in Eq (3.14). 

Furthermore, ṁfuel can also be expressed as a function of Pe. The DP algorithm for a 

series HEV is similar to the parallel HEV except for the modified constraints.  In the next 

section we discuss the results for the series and parallel HEV, by considering the case 

studies of the Chevrolet Volt and the Honda Civic HEV respectively. 

3.4 Results and Discussion for DP algorithm 

 In order to test the DP algorithm proposed in this thesis, the simulations are 

carried out on different drive cycles for the Honda Civic and Chevrolet Volt which 

represent the Parallel and Series HEV architectures [57]. The specifications of these 

vehicles are obtained from FASTSim [58] and [59, 60]. 
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 The vehicle parameters for Honda Civic 2012 and Chevrolet Volt 2012 are shown 

in Table 3.1 and Table 3.2.An important factor to be considered while obtaining the fuel 

efficiency is the initial SOC of the battery. For a HEV the range of operation of the 

battery is between 0.4- 0.8[56] of SOC. In order to truly test the performance of the DP 

algorithm we start at the lowest initial SOC i.e. 0.4. As it is obvious that any higher initial 

SOC would lead to a better fuel economy as the drive cycles considered are of finite 

length. 

 The engine of the vehicle for both the series and the parallel is modeled as a static 

map, where the inputs are Te and ωe, and the output is ṁfuel. Similarly the motor is 

modeled as a static map with Tm and ωm as the inputs and efficiency as the output. The 

battery is modeled as discussed in the previous section for the vehicles considered.  

 Taking vehicle model of FASTSim as reference we compare the simplified 

vehicle model which we have developed in the following way, 1) run the HEV models of 

FASTSim for the UDDS cycle 2)obtain points of operation in each step 3) implement the 

same operating points in the simplified vehicle models and compare the results. 

 The fuel consumption of the vehicle over the drive cycle for Honda Civic  is 

430.74g(48.7 MPG) compared to 444(47.2 MPG) as given by FASTSim and the fuel 

consumption for Chevrolet Volt is 243.076 g(86.3 MPG) compared to 245.064 g(85.6 

MPG) as given by FASTSim. The error can be attributed to the fact that FASTSim also 

considers the losses associated with the generator which is not accounted for here. Since 

the error is small we are confident that the two models are comparable. 
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Table 3.1: Vehicle model parameters for parallel HEV 

Parameter Value Units 

M 1305 kg 

𝛾 1.2 - 

rw 0.317 m 

cr 0.015 - 

A*Cd 2.005*0.26 m2 

ρa 1.2 kg/m3 

if 3.93  

ig [3.17,1.87,1.24,.91,.52]  

Engine   

Max Torque 105 Nm 

Max Speed 3000 rpm 

Motor   

Max Torque 137 Nm 

Max Speed 5500 rpm 

Battery   

Voltage 144 V 

Capacity 6 Ah 

 

 

 

 

 

 

Table 3.2: Vehicle model parameters for series HEV 

Parameter Value Unit 

M 1305 kg 

𝛾 1.2 - 

rw 0.334 m 

cr 0.015 - 

A*Cd 2.06*0.29 m2 

ρa 1.2 kg/m3 

Engine   

Max. Power 62 KW 

Motor   

Max. Power 111 KW 

Battery   

Voltage 355 V 

Capacity 6.5 Ah 
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3.4.1   Simulation Results 

 In order to test the DP algorithm proposed in this thesis the simulations are carried 

out on six different drive cycles namely the Urban Dynamometer Driving Schedule 

(UDDS), New York City Cycle (NYCC), Highway Fuel Economy Driving Schedule 

(HWFET) , New European Driving Cycle (NEDC), US06 and LA92. We now briefly 

discuss these drive cycles. 

 Urban Dynamometer Driving Schedule: this cycle was developed to represernt the 

city driving conditions of fossil fueled vehicles, which is used for light duty vehicle 

testing and is an United States Environmental Protection Agency 

(EPA)mandated dynamometer test. The total length of the cycle is 1369 seconds and its 

distance is 7.45 miles, with an average speed of 19.59 (miles per hour) MPH  

 New York City Cycle: this cycle features a  low speed stop-and-go traffic 

conditions with a total length of the cycle being 598 seconds and its distance is 1.18 

miles, with an average speed of 7.1MPH 

 Highway Fuel Economy Driving Schedule: this cycle represents highway driving 

conditions under 60 mph. The total length of the cycle is 765 seconds and its distance is 

10.26 miles, with an average speed of 48.3 MPH 

 New European Driving Cycle: this driving cycle is developed to assess the 

emission levels of car engines and fuel economy in passenger cars (excluding light 

trucks and commercial vehicles).  The NEDC to represents the typical usage of a car in 

Europe. It consists of four repeated ECE-15 Urban Driving Cycles (UDC) and an Extra-

Urban driving cycle (EUDC). However this cycle is criticized for not representing real 

world driving conditions. The total length of the cycle is 1180 seconds and its distance is 

11.023 kms, with an average speed of 33 kmph. 

http://www.epa.gov/nvfel/methods/hwfetdds.gif
http://www.epa.gov/nvfel/methods/hwfetdds.gif
http://en.wikipedia.org/wiki/New_European_Driving_Cycle
http://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency
http://en.wikipedia.org/wiki/Dynamometer
http://en.wikipedia.org/wiki/New_European_Driving_Cycle
http://en.wikipedia.org/wiki/Driving_cycle
http://en.wikipedia.org/wiki/Fuel_economy_in_automobiles#Europe
http://en.wikipedia.org/wiki/Automobile
http://en.wikipedia.org/wiki/Light_truck
http://en.wikipedia.org/wiki/Light_truck
http://en.wikipedia.org/wiki/Europe
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 US06: is a high acceleration aggressive driving schedule that is often identified as 

the "Supplemental FTP" driving schedule. The total length of the cycle is 596 seconds 

and its distance is 8.01 miles, with an average speed of 48.37 MPH  

 LA92: this EPA Dynamometer Driving Schedule is often called the Unified 

driving schedule. It was developed as an emission inventory improvement tool. 

Compared to the  Federal Test Procedure(FTP), the LA92 has a higher top speed, a 

higher average speed, less idle time, fewer stops per mile, and a higher maximum rate of 

acceleration. This cycle represents a mix of urban and highway driving. The total length 

of the cycle is 1435 seconds and its distance is 9.82 miles, with an average speed of 24.61 

MPH . 

 Since these drive cycles are of limited length, obtaining the fuel efficiency with an 

initial condition of higher starting SOC doesn’t truly test the efficacy of the control 

algorithm. Hence the initial SOC of battery is kept at 0.4 which is the minimum in the 

range. Figure 3.3 shows the UDDS drive cycle used for simulation in this paper and plots 

of this drive cycle is shown and discussed. Figure 3.4 shows the simulation results of the 

parallel HEV over the UDDS cycle for the proposed DP algorithm and the descretized 

DP algorithm.  

 

 

 

 

 

 

 

 

Figure 3.3: UDDS drive cycle 
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Figure 3.4: DP results for parallel HEV over UDDS cycle  

 

 

 It is observed that there is a difference in the optimal path between the two 

algorithms i.e DP and DPdes. Starting at the final step although both the algorithms 

produce similar optimal paths , the major difference occurs at 156 seconds when there is 

a sudden acceleration of the HEV. At this point the DPdes algorithm discharges the battery 

while the DP algorithm charges the depleted battery.  

 When going forward the optimal control inputs are thus different for the two 

algorithms. For the DP algorithm this leads to the engine not having to switch on for the 

rest of the drive cycle differing from the DPdes algorithm. This difference may be 

attributed to the fact that next step cost is first evaluated using a state transition equation 

and a nearest neighbor interpolation and quantization is carried out to find the 

corresponding state point in the DPdes algorithm, which leads to cumulative errors. Table 

3.3 summarizes the optimal fuel economy results from the DPdes and the proposed DP 

algorithm for the driving schedules considered for the parallel HEV. It is observed that 

there is an overall improvement of 21.29% over the various cycles considered. The 

normalized plot of the fuel economy results obtained are also plotted in Figure 3.5 for the 

0 200 400 600 800 1000 1200 1400
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time (s)

S
O

C

 

 

DP

DP
des



 49 

sake of clarity for the parallel HEV case over the different drive cycles. By construction 

of algorithm 3.1 it may be argued that  the number of sets may increase exponentially as 

the number of time steps increases. However, when the DP proposed was applied to 

solving the HEV optimization problem it was observed that the number of sets was 

manageable. Table 3.4 summarizes the maximum number of sets for each drive cycle for 

the parallel HEV. It is observed that for all the drive cycles the maximum total sets at any 

time step is less than 175. It is also observed that for the NYCC drive cycle the sets are 

approximately one order of magnitude less than the other drive cycles. This is due the 

length of the cycle and the power demand being comparatively smaller. 

 

 

Table 3.3: Optimal fuel-economy results from the discretized (DPdes) and present DP 

algorithms for various driving schedules for parallel HEV 

Cycle Name DPDes (MPG) DP (MPG) 

UDDS 77.7226 110.1828 

NYCC 87.7961 112.1867 

HWFET 67.4112 76.9755 

NEDC 59.4121 64.6503 

US06 51.3525 56.8851 

LA92 68.1685 84.8497 

 

 

 

 

Table 3.4: Maximum numbers of sets for each drive cycle for the parallel HEV 

Cycle Name Maximum Number 

of Sets 

UDDS 104 

NYCC 17 

HWFET 131 

NEDC 150 

US06 91 

LA92 133 
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Figure 3.5: Normalized fuel economy results comparison for the parallel HEV over 

different drive cycles. 

 

 

Figure 3.6: DP Results for the series HEV over the UDDS cycle 
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Table 3.5: Optimal fuel-economy results from the discretized (DPdes) and present DP 

algorithms for various driving schedules for series HEV 

 

Cycle Name DPdes (MPG) DP (MPG) 

UDDS 104.1518 109.3766 

NYCC 101.58 101.9367 

HWFET 67.1429 71.7179 

NEDC 69.3618 70.8325 

US06 114.12 114.5534 

LA92 78.7530 78.887 

 

 

Table 3.6: Maximum numbers of sets for each drive cycle for the series HEV 

Cycle Name Maximum Number 

of Sets 

UDDS 115 

NYCC 27 

HWFET 107 

NEDC 144 

US06 181 

LA92 201 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Normalized fuel economy results comparison for the series HEV over 

different drive cycles. 
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 Figure 3.6 shows the simulation results of the Series HEV over the UDDS cycle 

for the proposed DP algorithm and the discretized DP algorithm. Here too it is observed 

that the proposed DP algorithm starts to charge the battery from the start and which 

enables the engine to remain switched off for the rest of the drive cycle. Thus the optimal 

control is smooth i.e. the controller does not switch on and off the engine frequently. 

Table 3.5 summarizes the optimal fuel economy results from the DPdes and the proposed 

DP algorithm for the driving schedules considered for the Series HEV. It is observed that 

there is an overall improvement of 2.45% over the various cycles considered. It can be 

seen that there is not a significant improvement as compared to the parallel HEV, this can 

be attributed to the fact that at each instant of time there are only two control options 

available for the controller and whenever the engine is switched on it always runs at its 

optimal point. However the DP algorithm does not switch on and off the engine often and 

hence is beneficial to the working of the engine. The normalized plot of the fuel economy 

results obtained are also plotted in Figure 3.7 for the sake of clarity for the series HEV 

case over the different drive cycles. Table 3.6 summarizes the maximum number of sets 

for each drive cycle for the series HEV. It is also observed that for the NYCC drive cycle 

the sets are approximately one order of magnitude less than the other drive cycles. This is 

due the length of the cycle and the power demand being comparatively smaller. In the 

next section we discuss the real time control strategy for the series and parallel HEV. 
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CHAPTER 4 

REAL TIME CONTROL STRATEGY 

4.1 Introduction 

 Compared to a Conventional IC Engine operated vehicle it is known that today’s 

hybrid electric vehicles (HEVs) have higher fuel economy. This can be predominantly 

attributed to the inclusion of an energy storage system (ESS) and one or more Electric 

Motors. These components along with other power electronic components like the 

generator and inverters assist the combustion engine by providing additional power 

during times of high power demand and at startup, thus enabling the IC engine to operate 

at its optimal fuel efficient conditions. Further due to the use of the battery ESS, the 

kinetic energy obtained from decelerating the vehicle, which is usually dissipated as heat 

can be captured and stored for operating the EM. However the extra degree of freedom in 

energy flow i.e. the electrical energy along with the thermal energy flow coming from the 

IC engine necessitates the need for a superior power-management strategy (PMS), to 

optimally decide the amount of power to be drawn from either the IC engine, the EM or 

the combination of both at each instant of time during the operation of the HEV.  

 In practice, there are two main methods of optimization have been applied to a 

HEV namely optimization based strategies and rule based strategies. In OB strategies 

predominantly use the Bellman’s principle of Optimality i.e. Dynamic Programming 

technique as was elucidated and discussed in detail in Chapter 3. Although this strategy 

gives a global optimal solution, this strategy is time consuming and hence is difficult to 

implement online since they are casual solutions. Hence various researchers have 

presented instantaneous optimization strategies [15]. Predominant among these strategies 

are the Equivalent Cost Minimization Strategy (ECMS) [30-33]. In this method the 

instantaneous optimization function takes into account the variations of the stored 



 54 

electrical energy and the fuel consumption of the engine at each time step. Hence an 

equivalence or weighting factor (𝓈) is determined to guarantee electrical self- 

sustainability. 

 In literature the definition of equivalence factor varies greatly. In [61-62] 𝓈 is 

obtained by the equivalent amount of fossil fuel to represent a given amount of electrical 

energy, by considering the average efficiency of converting fuel to electrical energy. Two 

equivalence factors can also be used to represent the charging and the discharging cycles 

of the battery. The advantage of doing this is that it accounts for the non-constant electric 

efficiency of the battery. However in this approach the operating points of the engine, and 

thus engine thermal efficiency differs from what is predicted.  In order to ensure battery 

life an equivalence factor needs to be developed which depends on the state of charge 

(SOC) of the battery i.e. 𝓈(SOC) .  The approach to this can be conceived by defining a 

reference value for the SOC of the battery and increase the equivalence factor when the  

battery SOC is lower than the reference value, and vice-versa.  

 In [63] two equivalence factors were defined and a linear function or an inverse-

tangent function was used to obtain𝓈(SOC). In [64] a tangent type function resulting in an 

equivalence factor that stays nearly constant until close to the limits of SOC operation 

range was developed.  In [65] a probability factor based on current electrical energy 

usage and predicted future energy usage was defined, and this probability factor was used 

to weight between the charging and discharging equivalence factors.  

 Despite the ECMS being implementable in real time the equivalence factor 𝓈 is 

drive cycle dependent. If 𝓈 is high the powertrain will not take full advantage of the 

electrical power. On the other hand, if 𝓈 is low, controller will tend to use the EM more 

than required thus draining the battery at a faster pace. Thus in this chapter we present a 

real time control strategy (RTCS) which is does not depend on the drive cycle at the same 

time applicable to online applications. 

 



 55 

4.2 Real Time Control Strategy Description 

 Since the DP is not implementable in real time, we propose and implement a Real 

Time Control Algorithm based on the concept of Preview Control [66]. Preview Controls 

strategy is based on the principle that if the future information of reference signal is 

known then the system response can be improved. To further elucidate the concept of 

preview control we now consider an example which utilizes a finite future information of 

a reference signal.  

 Consider the task of driving a HEV along a winding road. It is obvious that the 

driver cannot have complete information of the road profile and traffic conditions from 

the point of start to the destination. If a short range of information is available to the 

driver, at the point of the curve the driver maneuvers the vehicle after the curve is 

recognized. This however, will deviate the car from the road/lane and may cause mishaps 

to occur. To overcome this, the driver usually endeavors to look as far ahead especially 

during the wind so that he can steer the vehicle onto the correct lane. This amounts to the 

driver unconsciously doing the control with previewed reference signal, since the lane 

can be treated as a reference signal or a reference trajectory which the vehicle should be 

track. This future signal information can be used to design a controller which stays on the 

correct lane at all times will be helpful for the design of an automatic driving system.  

 In order to implement such a controller for a HEV it is thus necessary to have 

future information that provides the driving conditions like the road profile, possible 

traffic information and the desired velocity of the vehicle. Previous researchers have 

addressed this problem and currently various Original Equipment Manufacturers (OEM) 

utilize this approach.  The ‘RunSmart Predictive Cruise’ program developed by Daimler 

[67] uses GPS and road slopes from digital maps to optimize truck speed during a hill and 

has already been commercialized. The Sentience project [68], funded by the UK 

government has been incorporated by Ricardo/Ford and has been optimized for the Ford 

Escape HEV using maps and GPS. Using basic future horizon information [69]   Nissan 
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demonstrated up to 8% fuel savings for a Tino HEV. The Chrysler PHEV has some level 

of route-based control and the series HEV and Chevrolet Volt has a mountain mode to 

optimize the fuel economy of the vehicle. 

 We now elucidate briefly the two major techniques for recognizing the current 

and predicting the future driving conditions namely the : Global Positioning System 

(GPS) or the Intelligent Transportation Systems (ITS) and the statistics based techniques. 

4.2.1 Global Positioning System based prediction technique 

 The present driving can be obtained taking advantage of GPS this includes data 

such as vehicle acceleration, deceleration, road profile and distance. Moreover  the traffic 

conditions, speed limits and traffic lights  distribution  can be obtained with high 

accuracy from the ITS. Hence using the GPS coupled with the ITS one can forecast the 

future driving profile with a low uncertainty [70-72]. Moreover if the start and end point 

of a trip are known before hand, utilizing the terrain information provided by GPS an 

optimal control strategy can be obtained. For example if the vehicle needs to go uphill for 

some time and then downhill , the controller can actually charge the battery of the vehicle 

before it goes uphill and charging the battery rather than discharging it during periods of 

small uphill intervals is an optimal solution. This is because due to higher torque 

demands the engine can operate at its efficient points.  

4.2.2 Statistic based prediction technique  

 For commuters who travel on a fixed path frequently (such as going from home to 

office and back), it does not make sense to use GPS data as the destination is familiar.  

Moreover the ITS signal are available only on some of freeways. Hence it is preferable to 

record trip information over a period of time and use this data available on board to 

predict the future information. For these situations statistic and clustering methods are 

preferable. The principle of this technique is to store the historical and current driving 

http://en.wikipedia.org/wiki/Global_Positioning_System
http://www.its.dot.gov/
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cycle parameters to analyze it and assume the driving conditions in the future, for a 

period of 1-2 minutes, are relatively consistent and has been dealt with by various 

researchers in the past [73-78]. 

 In this thesis to realize the RTCS the future driving profile data should be 

acquired online in a certain time window. The data obtained may not truly reflect the 

correct driving conditions if the time window is too small, on the other hand if we make 

the time window large it may be computationally cumbersome to handle for online 

implementation.  Here, we use a fixed time window, based on the assumption that the 

traffic condition remains the same in this window while the data is processed. This is a 

reasonable assumption if we consider the time taken to process the data is small, 

moreover this method is easy to implement 

 The RTCS implemented in this thesis is summarized and given by Eq. (4.1) and 

Eq. (4.2) 

ℰ⃗(𝑘) =  𝒻(�⃗�(𝑡)|𝑡 𝜖 [𝑘, 𝑘 + 𝛥𝑤])                                             (4.1) 

�⃗⃗�(𝑡|𝑡 𝜖 [𝑘, 𝑘 + 𝛥𝑡]) =  𝒢(ℰ⃗(𝑘))                                             (4.2) 

 Where ℰ⃗ represents the vector of parameters to be used in driving  cycle, �⃗� is the  

data collected, such as velocity, at each time step k, 𝒻 is a vector  of functions, such as 

max, min, and average, to process the  data, Δw is the time window for data collection, 

Δt is the time period for current control  strategy to last 𝒢 is a set of functions to decide 

the current  vector of control parameters �⃗⃗�. If Δw =  Δt, then this represents the data 

collection and processing method in [74] and [76] and if  Δw ≠  Δt (Δw ≫  Δt ) it 

represents the data collection and processing method in [73] and [77]. 

 In this thesis the Δw is chosen to be 8 steps of driving data , where each step is of 

length 1 second and  Δt is 1 step. Here we assume that the vectors ℰ⃗, 𝒻,⃗⃗⃗⃗  and �⃗� are 

available at each instant of time. The function 𝒢 in this thesis is the Dynamic 

Programming Algorithm proposed and presented in Chapter 3. Thus using this we obtain 
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the optimal control strategy vector �⃗⃗� that represents the ig, Te, Tm, ωm and ωe for the 

parallel HEV. For the series HEV the vector �⃗⃗� represents the Pe. It is observed that a 

longer window for data collection and a shorter updation of the control strategy is 

advantageous. In the subsequent sections this is studied for the case of the parallel and the 

series HEV over the UDDS drive cycle. In the next section we briefly discuss the ECMS 

control strategy implemented in this thesis. 

4.3 Equivalent Cost Minimization Strategy 

 The aim of the ECMS control strategy is to minimize a cost function 𝒞 as given 

by Eq. (4.3) at each time step for a given drive cycle. This is achieved using an 

equivalence factor 𝓈 that represents the battery power’s equivalent fossil fuel usage.  In 

Eq. (4.3) the constraints for a HEV are imposed by the function ϕ(. ).  

𝒞 =  𝑚𝑓̇ + 𝓈𝑃𝑏𝑎𝑡𝑡 + 𝜙𝑘(. )                                     (4.3) 

 For a series HEV ϕ(.) is represented by Eq. (3.13) and for a parallel HEV this is 

represented by Eq. (3.12). Since the ECMS minimizes the instantaneous cost function it 

is not possible to enforce the final SOC hence only the initial SOC is specified.  Equation 

(4.3)  is applied directly to both the parallel and series HEV with proper  definition of the 

penalty term for component constraints discussed in the Chapter 3.  The ECMS control 

strategy must be designed in a way that the engine always operates at its optimal 

operation line thus maximizing the fuel economy of the HEV. This can be achieved by 

optimal tuning of the factor 𝓈. Incorrect values for s will cause the powertrain to overuse 

or underuse the battery. This will lead to inefficient use of the electric machines, and 

ultimately lead to poor fuel economy for the HEV. Since the ECMS strategy minimizes 

the instantaneous cost function only local optimal results can be obtained. In the next 

section we discuss the results obtained for the series and parallel HEV using the RTCS 

algorithm developed. These results are then compared to the ECMS results for the same 

HEV configurations. 
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4.4 Results and Discussion 

 In this section we discuss the results of the real time control strategy with the  

ECMS results for the two HEV architectures considered in this thesis namely, the series 

and parallel. 

4.4.1 Case Study 1- Series HEV 

 A case study is first presented for the series HEV which is the simpler of the 

two HEV architectures. The simulation parameters for this HEV are the same as was 

presented in Table 3.2. Simulations of the series HEV using RTCS and ECMS were 

performed for the six different drive cycles i.e. the UDDS, NYCC, HWFET, NEDC, 

US06 and the LA92. Table 4.1 summarizes the results of the fuel economy obtained for 

the two control strategies. It is observed that the RTCS algorithm proposed gives better 

results than the ECMS. It is to be noted that the equivalence factor for these cycles are 

obtained from [56]. It is also observed that the results for the RTCS and the ECMS don’t 

differ much. This is due to the fact that every time the engine runs the mass fuel rate 

consumption is a constant and thus the controllers only take a decision whether to run on 

the battery power or not. Because of this limited control decision variables the RTCS 

shows an improvement of 4.4384 % over the ECMS. Figure 4.1 shows the Normalized 

fuel economy results comparison for the series HEV for the different drive cycles.  

 

 

Table 4.1: Optimal fuel-economy results For the RTCS and ECMS for the series HEV 

Cycle Name Real 

Time(MPG) 

ECMS(MPG) 

UDDS 96.7064 92.8132 

NYCC 100.1985 96.62 

HWFET 66.5952 62.6676 

NEDC 68.5476 66.2346 

US06 113.5169 107.8422 

LA92 78.2212 74.4960 
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Figure 4.1: Normalized fuel economy results comparison for the series HEV over 

different drive cycles for RTCS and ECMS 

4.4.2 Case Study 2- Parallel HEV 

 In this case study the results of the parallel HEV architecture is discussed 

which is the more complex of the two HEV architectures. The simulation parameters for 

this HEV are the same as was presented in Table 3.1. Simulations of the series HEV 

using RTCS and ECMS are performed for the six different drive cycles described earlier. 

These drive cycles are chosen so that they adequately represent both urban and highway 

driving conditions, thus providing a good platform for testing of the controllers 

developed.  Table 4.2 summarizes the results of the fuel economy obtained for the two 

control strategies. It is observed that the RTCS algorithm  proposed gives better results 

than the ECMS. It is also observed that the results for the RTCS and the ECMS vary 

greatly. This is due to fact that at each instant of time the controller should decide not 

only whether to run the engine or not but also the engine state i.e. the Te and the ωe. 

Hence the RTCS can compute the optimal strategy for a longer period of time using DP , 
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however since the ECMS does only instantaneous minimization the solution obtained is 

only locally optimal. 

 It is also observed that the RTCS outperforms the ECMS for the city driving 

drive cycles namely the UDDS and the NYCC compared to the highway drive cycles 

such as the HWFET. This can be attributed to the fact that there are a higher number of 

occasions for regenerative braking in the urban drive cycles. On the other hand for the 

highway drive cycle since the power demand is high most of the time once the battery 

SOC reaches the minimum the only option left for the controller is to turn on the engine 

such that the requested power demand is satisfied. The RTCS shows an overall 

improvement of 20.338 % over the ECMS for the drive cycles considered. Figure 4.2 

shows the Normalized fuel economy results comparison for the parallel HEV over 

different drive cycles for RTCS and ECMS. 

 

 

Table 4.2: Optimal fuel-economy results For the RTCS and ECMS for the parallel HEV 

Cycle Name Real Time(MPG) ECMS(MPG) 

UDDS 72.9765 53.8853 

NYCC 73.9578 44.8570 

HWFET 53.2451 50.4108 

NEDC 62.6397 44.606 

US06 28.5647 22.8869 

LA92 54.6589 53.2768 
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Figure 4.2: Normalized fuel economy results comparison for the parallel HEV over 

different drive cycles for RTCS and ECMS 

 We now discuss the effect of the length of the updation period Δt and the window 

length Δw for collection of data for the parallel HEV. Figure 4.3 shows the plot of fuel 

economy for the parallel HEV versus updation time. The window length is fixed at 8 time 

steps. It is observed that with increase in updation period the fuel economy decreases. 

This is due to the fact that for the period in between updates the RTCS uses the optimal 

control strategy obtained from the DP algorithm. It is known that the lowest cost for the 

given period of the drive cycle is obtained when the battery is discharged completely. 

Thus at the start of the next update the current state of the battery will be minimum , 

therefore unless there is an opportunity to use the regenerative braking the engine is 

forced to turn on. This leads to lower fuel economy with higher updation time intervals. 

Thus in this thesis the control is updated at every instant of time. 
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Figure 4.3: Plot of fuel economy for the parallel HEV versus updation time 

 

 

 

Figure 4.4: Plot of fuel economy for the parallel HEV versus window length  
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 Figure 4.4. shows the plot of fuel economy for the parallel HEV versus the 

window length. The updation time is 1 second for these simulations. It is observed that 

with increase in window length the fuel economy increases. Since the RTCS uses the 

information provided by the DP, it is advantageous for the DP to have a longer time 

period of driving cycle information so that an optimal control strategy can be obtained. 

However one cannot increase this window without restriction, this is due to the fact that 

obtaining accurate information for long periods of time is challenging as discussed in 

section 4.1. Moreover if the time window is further increased from 30 to 40 seconds, the 

fuel economy will only slightly increase with a much higher cost on computation time.  
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CHAPTER 5 

CONCLUSIONS 

 This thesis presents the Development of Optimization Based Control Strategies to 

improve the Fuel Economy of Hybrid Electric Vehicles (HEV). It focuses on the two 

predominant HEV architectures namely the series and the parallel and simulation and 

control strategies are developed for the same. This chapter will provide concluding 

remarks for the thesis and suggest possible future work. 

5.1 Dynamic Programming Control Strategies for HEV 

 

 In chapter 2, the modeling techniques for the series and parallel HEV are 

discussed. This thesis uses a steady state modeling approach for the IC engine and the 

electric motor. For the battery and the vehicle dynamics a quasi-static model is used. The 

HEV modeled is simulated using a backward looking simulation approach as it is 

computationally less expensive. In chapter 3 a new Dynamic Programming (DP) 

approach is proposed and developed. The DP proposed eliminates the need of 

discretization of the state space. This approach thus eliminates the cumulative errors that 

are obtained if the state variables are discretized. These errors occur due to the fact that 

the next step cost is first evaluated using a state transition equation and a nearest neighbor 

interpolation and quantization being carried out to find the corresponding state point at 

each time step, which leads to a suboptimal solution. 

 The principle behind the proposed DP is the use of sets to track the state space 

rather than discrete points. The algorithm for the proposed DP is then presented and 

elucidated in detail. We then prove by the principle of mathematical induction that the 

proposed DP algorithm produces a global optimal solution for a class of discrete systems. 

This approach is then applied to optimize the fuel economy for the series and parallel 

HEV and we show based on the assumption that a control option exists to prevent the 
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battery from charging or discharging, that the DP algorithm produces global optimal 

results by minimizing a cost function at each time step. A DP based on discretization of 

the state space is also discussed and presented in Chapter 3, which facilitates for 

comparison of the results with the proposed DP. 

 The procedure for implementing  DP to the HEV architectures are elucidated and 

a cost function for the proposed DP is discussed .The case study of Chevrolet Volt and 

the Honda Civic for the series and parallel HEV’s respectively are considered and a 

simplified vehicle model is then presented and validated.  The DP proposed is then 

applied to this model and the effect of cost function on fuel economy is discussed. 

Simulations are performed over six predefined urban and highway drive cycles and the 

results of the proposed DP is compared to previous DP algorithm (DPdes) where the state 

variables are discretized. The proposed DP showed an average improvement of 2.45% 

and 21.29% over the DPdes algorithm for the series and the parallel HEV case 

respectively over the drive cycles. The obtained results are then discussed. 

5.2 Real Time Control Strategies for a HEV 

 

 Since computation time of DP exponentially increases with increase in time steps 

it cannot be implemented in real time. Hence, in chapter 4 we propose a Real-Time 

Control Strategy (RTCS) for online implementation. This strategy is based on the 

principle of preview controls. Preview Controls strategy is based on the principle that if 

the future information of reference signal is known then the system response can be 

improved. Thus the proposed RTCS makes use of future driving conditions to effectively 

obtain an optimal control strategy. The theory for the RTCS is elucidated in chapter 4 and 

the techniques for obtaining future driving conditions are discussed. In order to facilitate 

comparison with the RTCS an Equivalent Cost Minimization strategy (ECMS) is 

presented. These controllers developed are then applied to optimize the fuel economy of 

the series and parallel HEV and simulations are performed for six urban and highway 
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drive cycles. The optimal solution of a RTCS depends on two parameters namely the 

updation time of the controller and the window length in which the future driving profile 

data should be acquired online. The data obtained may not truly reflect the correct driving 

conditions if the time window is too small, on the other hand if we make the time window 

large it may be computationally cumbersome to handle for online implementation.  Here, 

we use a fixed time window, based on the assumption that the traffic condition remains 

the same in this window while the data is processed. Moreover we show by simulations 

that the updation time should be small to obtain high fuel economy. The proposed RTCS 

showed an average improvement of 4.4384% and 20.338 % over the ECMS algorithm for 

the series and the parallel HEV case respectively over the drive cycles. The obtained 

results are then discussed. 

 In this thesis the control strategies proposed i.e. the Dynamic Programming and 

the Real Time Control Strategy is applied to optimize on the fuel economy of HEV’s. 

Since this is only one of the performance metrics of the HEV, one area for future work 

would be to apply the proposed controllers to multiple performance objectives such as 

simultaneously reduce the emissions and increase fuel economy. The proposed DP can 

also be extended to the power-split hybrid electric vehicle, which is currently 

commercially popular HEV architecture. 

 In the DP algorithm proposed, a limit on the number of sets obtained at each time 

step needs to be derived and shown mathematically. By obtaining necessary and 

sufficient conditions that prove convergence on the number of sets the proposed DP 

algorithm can be used for various other systems which are discrete. This could also be a 

potential area for future work. 
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