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ABSTRACT

The thesis focuses on a mixed integer linear programming (MILP) formulation for a bi-level

mathematical program with equilibrium constraints (MPEC) considering chance constraints. The

particular MPEC problem relates to a power producer’s bidding strategy: maximize its total benefit

through determining bidding price and bidding power output while considering an electricity pool’s

operation and guessing the rival producer’s bidding price. The entire decision-making process

can be described by a bi-level optimization problem. The contribution of our thesis is the MILP

formulation of this problem considering the use of chance constrained mathematical program for

handling the uncertainties.

First, the lower-level poor operation problem is replaced by Karush-Kuhn-Tucker (KKT) opti-

mality condition, which is further converted to an MILP formulation except a bilinear item in the

objective function. Secondly, duality theory is implemented to replace the bilinear item by linear

items. Finally, two types of chance constraints are examined and modeled in MILP formulation.

With the MILP formulation, the entire MPEC problem considering randomness in price guessing

can be solved using off-shelf MIP solvers, e.g., Gurobi. A few examples and a case study is given

to illustrate the formulation and show the case study results.
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CHAPTER 1

INTRODUCTION

The electrical energy supply industry has gone through major restructuring process in many

countries. It is becoming deregulated and competition based industry. The details of restructuring

process and the framework for regulation can vary from country to country or from region to region.

However, the overall organization in majority of the cases are based on the same principle, which

is the generation part of the power system becomes separated and deregulated [1].

In this type of electricity market, the producers could either submit profit-maximizing bids to

a pool or optimality self-schedule its generation in response to prices [2]. The basic feature of the

deregulated market is the formation of wholesale energy market (WEM). All transactions related

to electric power purchase takes place in WEM [1].

Many problems arising from engineering and economics are mathematical problems with equi-

librium constraints (MPEC) [3]. In this thesis, a particular MPEC problem relates to a strategic

power producer trying to maximize its total benefit through determining bidding price and bidding

power output while considering an electricity pool’s operation and guessing the rival producer’s

bidding price. The entire decision-making process can be described by a bi-level optimization prob-

lem. The upper-level tries to maximize the power producer’s profit and minimize its cost while the

lower-level emulates the decision making of a pool: minimize the total operation cost considering

the bidding prices from the power producers while guaranteeing generation and load balance as

well as enforcing the network limits. Optimal bidding strategy problem formulations have been

seen in the literature, e.g., [4, 5, 6, 7, 8].
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There are fundamentally two approaches for solving an MPEC problem [3]: (i) nonlinear opti-

mization program solving techniques and (ii) MILP solving techniques.

The optimal bidding problem described by a bi-level program can be converted to a nonlinear

programming problem after the lower-level optimization problem is replaced by the KKT optimality

condition. Naturally, nonlinear program solving techniques, e.g., interior point method, can be

applied to solve the problem. Such approach can be found in the literature [9, 10].

On the other hand, in the second approach, the nonlinear programming problem should be

converted to an MILP first. MILP formulation has been adopted in [8] to express the complementary

slackness condition in the KKT optimality by introducing binary variables and adopting the Big-M

technique. Further, duality theory is used to linearize the objective function with a bilinear term

by an MILP formulation.

Uncertainty is also considered for the optimal bidding problem in [8] where a stochastic pro-

gramming problem is formulated and solved. [6] considers a similar problem with wind generation

included for both day-ahead and real-time market. [6] also incorporates risk management and the

uncertainty of other strategic power producers through stochastic programming approach.

The main idea is to provide a bidding strategy for the strategic power producer to be able to

exercise market power in contrast to price taking behaviour. It could set its production quantity

and/or prices at which it is willing to sell energy output in order to influence the market price [11].

By taking such actions, the firm risks selling less, but it raises the price it will get for all output

that it does sell [11]. This bring into picture the idea of embedding a risk factor into the handling

uncertainties approach such that the firm should be able to decide how far it is ready to go with

risks involved in exercising the market power.

The other scenario where the integration of a risk factor into uncertainty model can be handy is

when there is uncertainty in the total capacity of generation. This can be due to the combinational
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use of renewable energy sources and conventional sources or some issues technical issue that would

bring uncertainty to the total generation capacity of the bidding power producer.

Most recently, chance constrained mathematical program (CCMP) has found applications in

power market to capture the randomness. For example, [12] investigated chance constrained unit

commitment problems.

In this thesis, chance constrained optimal bidding strategy will be examined with chance con-

straints being modeled by MILP formulation using the method in [13]. The contribution of my

thesis is the MILP formulation of a chance constrained optimal bidding strategy problem. First,

the lower-level pool operation problem is replaced by Karush-Kuhn-Tucker (KKT) optimality con-

dition, which is further converted to an MILP formulation except a bilinear term in the objective

function. Secondly, duality theory is implemented to replace the bilinear term by its equivalent

linear terms. Finally, two cases of chance constraints are examined and modeled in MILP formula-

tion. The first case is for the bidding power producer that wants to exercise market power given the

risks, and the second case is for the second scenario where the total generation capacity is affected

by an uncertainty.

In the MILP formulation proposed, the entire MPEC problem considering randomness in price

guessing can be solved using off-shelf MIP solvers, e.g., Gurobi. A few examples are given to

illustrate the formulation and show the case study results.
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CHAPTER 2

THE OPTIMAL BIDDING STRATEGY PROBLEM

In this chapter, a simple two-generator system is used to explain the optimal bidding strategy

problem. The system is shown in Fig. 2.1. In this system, λs and λR are marginal costs of the two

generators and are given. PS , PR, λ1 and λ2 are to be determined by the proposed strategy.

PS PR 

PL2=20 MW

@ 20$/MWh 

PL1=20 MW

@ 20$/MWh 

PLine 
λ1 λ2

2

λS λR 

G1 G2 

Figure 2.1. A simple power system with two producers.

Gen S will carry out the optimal bidding strategy decision making process to determine its

bidding price αs and bidding power PS . Gen S will treat the marginal cost of the rival generator

Gen R (λR) as known.

2.1 Upper Level Problem

The upper level problem is to determine the bidding price αS and the power PS . The objective

is maximizing the total profit of the strategic producer, with the bidding price αS not appearing.

αS will appear in the objective function of the lower-level problem. αS will affect the bidding power

PS . min
αS ,PS

λSPS − λ1PS (2.1)
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where λS is the marginal cost of the strategic power producer, and PS is power produced by the

strategic power producer. The first term sums the total cost. In the second term λ1 is the locational

marginal price at bus 1. The second term is the total revenue generated. λ1 will be determined by

the pool or the lower-level problem. Therefore, the objective function maximizes the total profit by

minimizing the cost and maximizing the revenue. The generation PS belongs to the feasible region

defined by the lower level problem.

2.2 Lower Level Problem

The lower level problem is formulated to represent the market clearing process, and is shown

as follows along with their dual variables:

min
PS ,PR

αSPS + λRPR (2.2)

subject to PS − PL1 = PLine : λ1 (2.3)

PR − PL2 = −PLine : λ2 (2.4)

PLine ≤ PmaxLine : µLine (2.5)

0 ≤ PS ≤ PmaxS : µminS , µmaxS (2.6)

0 ≤ PR ≤ PmaxR : µminR , µmaxR (2.7)

where λR is the marginal cost of the rival power producer, PR is the power produced by the

rival power producer, PLine is the power flow in the Transmission line from bus 1 to bus 2, and

PL1 and PL2 are constant loads at buses 1 and 2, respectively. PmaxLine is the transmission capacity

of line 1-2, PmaxS is the upper limit of the strategic power producer and PmaxR is the upper limit of

the rival power producer. Constraints (2.3) and (2.4) enforce power balance in the network, and

constraints (2.5) - (2.7) are power bounds for their respective variables.
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2.3 Model Conversion to MPEC

We first replace the lower-level problem by the KKT conditions and convert the bi-level problem

to an MPEC problem.

The Lagrangian function of the lower-level problem is formulated as shown below:

L (PS , PR, λ1, λ2, µ
min
S , µmaxS , µminR , µmaxR , µLine) = ( αSPS + λRPR + λ1(PLine + PL1 − PS)

+λ2(PL2−PLine−PR) +µmaxS (PS −PmaxS )−µminS PS +µLine(PLine−PmaxLine) +µmaxR (PR−PmaxR )−

µminR PR)

The KKT conditions are as following:

αS − λ1 − µminS + µmaxS = 0 (2.8)

λR − λ2 − µminR + µmaxR = 0 (2.9)

PS − PL1 = PLine (2.10)

PR − PL2 = −PLine (2.11)

0 ≤ PmaxLine − PLine ⊥ µLine ≥ 0 (2.12)

0 ≤ PS ⊥ µminS ≥ 0 (2.13)

0 ≤ PR ⊥ µminR ≥ 0 (2.14)

0 ≤ PmaxS − PS ⊥ µmaxS ≥ 0 (2.15)

0 ≤ PmaxR − PR ⊥ µmaxR ≥ 0 (2.16)

Hence, the MPEC model for the optimal bidding strategy of the first generator in the 2-bus

problem becomes the constraints (2.8) to (2.16), and (2.1) as the objective function.
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CHAPTER 3

NONLINEAR SOLUTION TECHNIQUES FOR MPECS

Mathematical programs with equilibrium constraints (MPECs) form a relatively new and inter-

esting subclass of nonlinear programming problems [14]. Among the many techniques available for

the numerical solutions of Mathematical Programs with Equilibrium Constraints, the widely used

approaches are nonlinear programming approach and Mixed Integer Linear programming (MILP)

[3]. If a formulated within the accepted range of accuracy could be achieved, MILP formulation

remains the most preferred approach as it can be easily solved using the commercial sovers available

in the market. The MILP approach is discussed in detail in the following chapter. In nonlinear

programming approach, the equilibrium constraints are either converted to a smooth equation or

augmented to the objective via a suitable error bound [3].

There are a number of nonlinear programming approaches including the following three ap-

proaches, which are mostly adopted in the literature.

1. SQP Methods

2. Artificial Intelligence Approach

3. Interior Point Methods

In the following sections we breifly introduce the aforementioned methods for solving nonlinear

MPEC problems. In the available commercial ad non-commercial solvers, it is seen that the interior

point method is preferred approach for the nonlinear optimization problems. Therefore, We apply
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the the interior point method to our example problem and its MPEC formulation. We later examine

the result.

3.1 SQP Methods

Recently in some cases nonlinear programming solvers have been used to solve some MPEC

problems. In [15], the author claims that the sequential quadratic programming (SQP) methods

have been successful in solving nonlinear MPEC problems. [15] examines the local convergence

properties of SP methods it has applied to an MPEC problem. It shows that the SQP converges

super-linearly under reasonable assumptions near a strongly stationary points [15].

Suppose for a given nonlinear complementarity problem (NCP) shown below,

min
x≤0,y,s

f(x, y) (3.1)

subject to g(x, y) ≥ 0 (3.2)

h(x, y)− s = 0 (3.3)

0 ≤ y ⊥ s ≥ 0 (3.4)

The complementary constraint (3.4) can be replaced by a nonlinear inequality, the optimization

problem then becomes [3]:

min
x≤0,y,s

f(x, y) (3.5)

subject to g(x, y) ≥ 0 (3.6)

h(x, y)− s = 0 (3.7)

Y s ≤, y ≥ 0, s ≥ 0 (3.8)

where Y=diag(yi). The nonlinear equivalent of the MPEC problem can then be solved by applying

standard NLP solvers.
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3.2 Artificial Intelligence Approach

A number of algorithms have been developed that are also called as artificial intelligence ap-

proach. In this approach, an evolutionary algorithm is a subset of evolutionary computation, a

generic population-based meta-heuristic optimization algorithm. The well-known example fo this

approach is genetic algorithms (GAs).

GAs are a special sort of optimization algorithm as stated by [16]. It states that “all optimiza-

tion algorithms can be thought of as ways of exploring the space of possible solutions to a problem,

and selecting one (or several) possible solutions as being optimal. The GA uses a close analogy with

Darwinian evolutionary search to select possible solutions: a number of solutions are evaluated for

fitness, and the fitter solutions reproduce, recombine, and possibly mutate. The average fitness of

solutions tends to increase, and the algorithm stops searching either after a specified number of

generations, or once some other externally defined criterion is satisfied. Thus, GAs are a method

of optimization which use an evolutionary process to generate increasingly good solutions to the

problem posed. The driving idea behind their use is that natural evolution has solved some ex-

traordinarily complex design optimization problems; simulating this process may allow us also to

solve complex optimizations”.

Application of genetic algorithms in bilevel programming solution has been presented in [17, 18].

In [17], the upper level of the bilevel programming problem consists of the objective of the leader,

and the lower level problem consist of the follower. The KKT conditions are applied ot the lower

level program and thereby converting a bilevel programming problem was transformed into a one

level problem with complementary constraints. This is followed by the use of the genetic algorithm

to solve the single level problem. The work has presented the Numerical results of the proposed

GA against hybrid Tabu-ascent algorithm and showed its efficiency in terms of computation while

maintaining the quality of solutions same for the both compared methods [3].
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A good example of the application of co-evolutionary programming method can be found in [19].

This work has analyzed the supply function equilibrium (SFE) models of an oligopolistic electricity

market where the affine function model and the piecewise affine function model were considered.

The rapid convergence characteristics of the SFE in the affine function model is shown through the

simulation results, and hence the method method has the great potential to be used to solve the

real equilibrium problems of electricity markets [3].

3.3 Interior Point Methods

Interior point methods for nonlinear programs (NLP) are adapted for solution of mathematical

programs with complementarity constraints (MPCCs). The constraints of the MPCC are suitably

relaxed so as to guarantee a strictly feasible interior for the inequality constraints [20].

Interior-point methods solve this type of problems or their KKT conditions by applying Newtons

method to a sequence of equality constrained problems, or to a sequence of modified versions of

the KKT conditions [21].

As appeared in [20], let’s consider the formulation as shown below:

min
x≥0,w,y

f(x,w, y) (3.9)

subject to h(x,w, y) = 0 (3.10)

0 ≤ w ⊥ y ≥ 0 (3.11)

Equation (3.11) can also be written as wy = 0, which means either of the variables w or y must

be zero.

Let’s apply the interior point method to the example shown in 2.1. We use the MPEC model

represented by the single level objective function (2.1) and constraints as (2.8) to (2.16) that can

10



also be written in the form as shown in (3.12) - (3.13).

min
αS ,PS

λSPS − λ1PS (3.12)

subject to αS − λ1 − µminS + µmaxS = 0 (3.13)

λR − λ2 − µminR + µmaxR = 0 (3.14)

PS − PL1 = PLine (3.15)

PR − PL2 = −PLine (3.16)

µLine(P
max
Line − PLine) = 0 (3.17)

PS µ
min
S = 0 (3.18)

PR µminR = 0 (3.19)

µmaxS (PmaxS − PS) = 0 (3.20)

µmaxR (PmaxR − PR) = 0 (3.21)

11



CHAPTER 4

MILP FORMULATION

The MPEC problem will be formulated into an MILP problem. We carry out linearization in

the objective function as well as in the constraints. The MPEC model obtained after applying the

KKT conditions, includes the following nonlinearities:

1. The term λ1PS in the objective function.

2. The complementarity conditions in the constraints.

4.1 Bilinear Term in the Objective Function

To find a linear expression for λ1PS , we can use the strong duality condition and some of the

KKT equalities. The strong duality theorem says that if a problem is convex, the objective functions

of the primal and dual problems have the same value at the optimum. The complementarity

conditions in the constraints can be dealt with using the slack variables and the “big-M” method.

Thus, an MILP formulation is achieved [8].

According to the strong duality theorem, at optimal point Zprimal is equal to Zdual. Hence,

Zprimal = αSPS + λRPR (4.1)

Zdual = −µLinePmaxLine − µmaxS PmaxS − µmaxR PmaxR (4.2)

Zprimal = Zdual (4.3)

Let’s consider equation (2.8) and multiply it with PS

12



αSPS − λ1PS − µminS PS + µmaxS PS = 0 (4.4)

From equation (2.12), we have

µminS PS = 0 (4.5)

From equation (2.14), we have

µmaxS PS = µmaxS PmaxS (4.6)

Substituting equations (4.4) - (4.6) in (4.3),

λ1PS = −λRPR − µLinePmaxLine − µmaxR PmaxR (4.7)

The objective function becomes,

min λSPS + λRPR + µLineP
max
Line + µmaxR PmaxR (4.8)

and the linear constraints are (2.8)- (2.11).

4.2 Complementary Slackness

The complementary slackness conditions (12)-(16) can be converted to MILP formulations by

introducing a binary variable for each complementary slackness condition.

0 ≤ PmaxLine − PLine ≤ ωLinemaxM (4.9)

0 ≤ µLine ≤ (1− ωLinemax )M (4.10)

0 ≤ PS ≤ ωSminM (4.11)

0 ≤ µminS ≤ (1− ωSmin)M (4.12)

0 ≤ PR ≤ ωRminM (4.13)

0 ≤ µminR ≤ (1− ωRmin)M (4.14)

ωLinemax , ω
S
min, ω

R
min ∈ {0, 1} (4.15)

0 ≤ PmaxS − PS ≤ ωSmaxM (4.16)
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0 ≤ µmaxS ≤ (1− ωSmax)M (4.17)

0 ≤ PmaxR − PR ≤ ωRmaxM (4.18)

0 ≤ µmaxR ≤ (1− ωRmax)M (4.19)

ωSmax, ω
R
max ∈ {0, 1} (4.20)

For example, ωSmax is introduced to indicate if the generator’s upper bound is hit (ωSmax = 0 ) or

not (ωSmax = 1 ). M is a big number. When the limit is hit, 0 ≤ PmaxS −PS ≤ ωSmaxM is equivalent

to PS = PmaxS . When the limit is not hit, 0 ≤ µmaxS ≤ (1− ωSmax)M is equivalent to µmaxS = 0.

The model is now a mixed integer linear program (MILP), with (2.1) as objective function, and

(2.8)-(2.16), (4.9)-(4.20) as constraints.

4.3 Five Bus Example

Let’s consider the 5 bus system shown below in Fig. 4.1. The formulation that can identify

the best offering strategy for the strategic power producer can be stated using the following bilevel

model. For the simplicity we assume that the system is uncontested, no startup or shutdown costs,

and no ramp-up or ramp-down limitations.

min
ΓS
tib,P

S
tib,∀t,∀i,∀b

∑
tib

λStibP
S
tib −

∑
t(i∈Ψn)b

αtnP
S
tib = f(ΓStib, P

S
tib) (4.21)

subject to:

αtn = λtn, ∀t,∀n (4.22)

PStib ∈ arg min
PS
tib,P

R
tjb,P

D
tdk

∑
tib

ΓStibP
S
tib + λRtjbP

R
tjb −

∑
t(i∈Ψn)b

λDtdkP
D
tdk (4.23)

subject to:

λtn :
∑

(i∈Ψn)b

PStib +
∑

(j∈Ψn)b

PRtjb =
∑

(d∈Ψn)k

PDtdk ∀t,∀n (4.24)
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µS
min

tib , µS
max

tib : 0 ≤ PStib ≤ PS
max

tib ∀t,∀i,∀b (4.25)

µO
min

tjb , µO
max

tjb :0 ≤ PRtjb ≤ PO
max

tjb ∀t,∀j,∀b (4.26)

µD
min

tdk , µD
max

tdk :0 ≤ PDtdk ≤ PD
max

tdk ∀t,∀d,∀k (4.27)

 

Figure 4.1. A five-bus test system, where S generators are the strategic power producers, R are the
rival power producers and D are the demands in every bus.

4.3.1 MPEC Model

Converting the bilevel formulated model to mathematical program with equilibrium constraints

(MPEC) using Lagrangian duality and KKT conditions (i.e. A similar procedure as defined in [8]

is followed for a 5 bus system), we get:

min
ΓS
tib,P

S
tib,∀t,∀i,∀b

∑
tib

λStibP
S
tib −

∑
t(i∈Ψn)b

λtnP
S
tib (4.28)

subject to

ΓStib − λtn − µS
min

tib + µS
max

tib = 0 ∀t,∀i ∈ Ψn, ∀b

15



λRtjb − λtn − µR
min

tjb + µO
max

tjb = 0 ∀t,∀j ∈ Ψn,∀b (4.29)

− λDtdk + λtn − µD
min

tdk + µD
max

tdk = 0 ∀t,∀d ∈ Ψn,∀k (4.30)∑
(i∈Ψn)b

PSt(i∈Ψn)b +
∑

(j∈Ψn)b

POt(j∈Ψn)b =
∑

(d∈Ψn)k

PDt(d∈Ψn)k ∀t,∀n (4.31)

0 ≤ PStib ⊥ µS
min

tib ≥ 0, ∀t,∀i,∀b (4.32)

0 ≤ PRtjb ⊥ µO
min

tjb ≥ 0, ∀t,∀j,∀b (4.33)

0 ≤ PDtdk ⊥ µD
min

tdk ≥ 0, ∀t,∀d,∀k (4.34)

0 ≤ PSmax

tib − PStib ⊥ µS
max

tib ≥ 0, ∀t,∀i,∀b (4.35)

0 ≤ POmax

tjb − PRtjb ⊥ µO
max

tjb ≥ 0, ∀t,∀j,∀b (4.36)

0 ≤ PDmax

tdk − PDtdk ⊥ µD
max

tdk ≥ 0, ∀t,∀d,∀k (4.37)

4.3.2 Equivalent Linear Formulation

The MPEC model (4.29) to (4.37) includes the following nonlinearities:

1. The term λ1PS in the objective function.

2. The complementarity conditions in the constraints.

To find a linear expression for λtnP
S
tib, we use the strong duality condition and some of the KKT

equalities. The strong duality theorem says that if a problem is convex, the objective functions of

the primal and dual problems have the same value at the optimum [8]. The linearized form of the

model is as below:

min
∑
tib

λStibP
S
tib +

∑
tjb

λOtjbP
R
tjb −

∑
tdk

λDtdkP
D
tdk +

∑
tjb

PR
max

tjb µR
max

tjb +
∑
tdk

PD
max

tdk µD
max

tdk (4.38)

subject to

ΓStib − λtn − µS
min

tib + µS
max

tib = 0 ∀t,∀i ∈ Ψn, ∀b (4.39)
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λOtjb − λtn − µO
min

tjb + µO
max

tjb = 0 ∀t,∀j ∈ Ψn,∀b (4.40)

− λDtdk + λtn − µD
min

tdk + µD
max

tdk = 0 ∀t,∀d ∈ Ψn, ∀k (4.41)∑
(i∈Ψn)b

PSt(i∈Ψn)b +
∑

(j∈Ψn)b

POt(j∈Ψn)b =
∑

(d∈Ψn)k

PDt(d∈Ψn)k ∀t,∀n (4.42)

PStib ≥ 0 ∀t,∀i,∀b (4.43)

µS
min

tib ≥ 0 ∀t,∀i,∀b (4.44)

PStib ≤ (1− ωSmin

tib )MP , ∀t,∀i,∀b (4.45)

µS
min

tib ≤ ωSmin

tib MµP , ∀t,∀i,∀b (4.46)

PRtjb ≥ 0 ∀t,∀j,∀b (4.47)

µO
min

tjb ≥ 0 ∀t,∀j,∀b (4.48)

PRtjb ≤ (1− ωOmin

tjb )MP , ∀t,∀j,∀b (4.49)

µO
min

tjb ≤ ωOmin

tjb MµP , ∀t,∀j,∀b (4.50)

PDtdk ≥ 0 ∀t,∀d,∀k (4.51)

µD
min

tdk ≥ 0 ∀t,∀d,∀k (4.52)

PDtdk ≤ (1− ωDmin

tdk )MP , ∀t,∀d,∀k (4.53)

µD
min

tdk ≤ ωDmin

tdk MµP , ∀t,∀d,∀k (4.54)

ωS
min

tib , ωO
min

tjb , ωD
min

tdk ∈ {0, 1} (4.55)

PS
max

tib − PStib ≥ 0 ∀t,∀i,∀b (4.56)

µS
max

tib ≥ 0 ∀t,∀i,∀b (4.57)

PS
max

tib − PStib ≤ (1− ωSmax

tib )MP ∀t,∀i,∀b (4.58)

µS
max

tib ≤ ωSmax

tib MµP ∀t,∀i,∀b (4.59)
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PO
max

tjb − PRtjb ≥ 0 ∀t,∀j,∀b (4.60)

µO
max

tjb ≥ 0 ∀t,∀j,∀b (4.61)

PO
max

tjb − PRtjb ≤ (1− ωOmax

tjb )MP ∀t,∀j,∀b (4.62)

µO
max

tjb ≤ ωOmax

tjb MµP ∀t,∀j,∀b (4.63)

PD
max

tdk − PDtdk ≥ 0 ∀t,∀d,∀k (4.64)

µD
max

tdk ≥ 0 ∀t,∀d,∀k (4.65)

PD
max

tdk − PDtdk ≤ (1− ωDmax

tdk )MP ∀t,∀d,∀k (4.66)

µD
max

tdk ≤ ωDmax

tdk MµP ∀t,∀d,∀k (4.67)

ωS
max

tib , ωO
max

tjb , ωD
max

tdk ∈ {0, 1} (4.68)
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CHAPTER 5

UNCERTAINTIES IN THE POWER MARKET MODELS

5.1 Stochastic Programming

So far we have seen the conversion of a bilevel problem to an MPEC and then to a preferred

format, which is mixed integer linear programming (MILP). For any particular price path, this

solution is an upper bound of achievable profits given perfect information. Under particular market

structures it may be possible to come close to achieving this upper bound in day ahead markets

using MILPs on very accurate forecasts. However, in general, the real time price for the spot rate

of electricity exhibits significant volatility and is therefore difficult, if not impossible, to predict

accurately.

This motivates the use of probabilistic models for the derivation of arbitrage value, in particular

the use of dynamic programming and stochastic programming. The MILP approach can also be

used in a stochastic setting by setting the prices equal to the expected values of the price realizations

over time. This approach to the storage problem with uncertainty can be used to quickly find a

lower bound on profits, but otherwise it is unsophisticated and performs poorly relative to the

alternative techniques [22].

Let’s consider the example shown in Fig. 2.1. We incorporate the probabilities for the uncertain

parameters and by using the stochastic programming, the formulation becomes:

min
∑
υ

πυ(λSPSυ + λRPRυ − λL1υPL1υ − λL2υPL2υ + µLineυP
max
Lineυ + µmaxRυ PmaxRυ

+ µmaxL1υ P
max
L1υ + µmaxL2υ P

max
L2υ ) (5.1)
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The index υ is the value of the parameter in the scenario υ. The constraints are (2.8) - (2.16)

and (4.9) - (4.20) with the uncertain parameters and corresponding decision variable having an

additional index of υ.

Since in the stochastic programming we deal with different scenarios, additional constraints are

needed to ensure that the resulting offer curves are increasing in price [8]. The following equations

that higher productions correspond to higher prices while maintaining the linearity fo the model

[8].

(1− xυυ‘)M
x ≥ λ1υ − λ1υ′ ≤ xυυ‘M

x (5.2)

(1− yυυ‘)M
y ≥ PSυ − PSυ‘ ≤ yυυ‘M

y (5.3)

xυυ‘ + yυυ‘ = 2zυυ‘ (5.4)

ωSmax, ω
R
max, ω

L1
max, ω

L1
max, xυυ‘, yυυ‘, yυυ‘ ∈ {0, 1} (5.5)

5.2 Almost Robust Optimization

In this section we briefly discuss about the almost robust optimization model, which is one of

the effective approaches to address the uncertainty in data for discrete optimization models. It is

a trade-off between the objective function value with robustness, to find optimal solutions that are

almost robust (feasible under most realizations) [23]. The proposed model is attractive due to its

simple structure, its ability to model dependence among uncertain parameters, and its ability to

incorporate the decision makers attitude towards risk by controlling the degree of conservatism of

the optimal solution [23]. Specifically, the Robustness Index that enables the decision maker to

adjust the almost robust optimization to better suit his risk preference [23].
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5.3 Chance Constraints

In this section, we consider the uncertainty in λR, the guessed marginal cost of a rivalry gener-

ator. Two types of chance constraints will be examined. The first chance constraint is as follows.

Given the randomness of the marginal cost of Gen R, we would like to obtain the bidding price and

the bidding power that can represent more than 1 − ε chance. This condition can be represented

by chance constraints. The representation is not straightforward, though. The second chance con-

straint is more straightforward. Given the randomness of the marginal cost of Gen R, we would

like to obtain the bidding power that will be less than a certain value, say 22 MW with a chance

greater than or equal to 1− ε.

Both types of chance constraints can be modeled in MILP formulation by enumerating scenarios

and introducing a binary variable ϕυ [13] . ϕυ = 0 means that Scenario υ is included in the

representing scenarios. ϕυ = 1 means that this scenario is not a representative scenario that can

make the chance constraint be satisfied.

5.3.1 Case I

In Case 1, we use the chance constraint to represent the probability of the solution of the bidding

strategy is more than 1−ε. Since this probability is difficult to be written in a mathematical format,

we proceed to explain the MILP formulation.

We define auxiliary variables PCSυ for PSυ, PCRυ for PRυ, µCLine,υ for µLine,υ and µmaxCRυ for µmaxRυ

in chance constrained mathematical program (CCMP). The objective function (21) is now replaced

by the following objective function.

min
∑
υ

πυ(λSP
C
Sυ + λRP

C
Rυ + µCLineυP

max
Lineυ + µmaxCRυ PmaxRυ ) (5.6)

where πυ is the probability of scenario υ is happening.
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Note that this objective function already considers enumeration of all scenarios due to the

uncertainty of λR. The uncertainty of λR is represented by many scenarios, each with a probability.

The auxiliary variables will be 0 if this particular scenario is not a representing scenario. The

auxiliary variables will be the same as the variables if the particular scenario is a representing

scenario. This condition can then be expressed by MILP formulations with a binary variable ϕυ

introduced.

By using a binary controller variable and “Big-M” coefficient, the chance constrained problem

can be formulated with a set of linear constraints as shown in the following where M is a sufficiently

large number.∑
υ∈Υ

πυϕυ ≤ ε (5.7)

PCSυ ≥ PSυ − ϕυM (5.8)

PCRυ ≥ PRυ − ϕυM (5.9)

µCLineυ ≥ µLineυ − ϕυM (5.10)

µmaxCRυ ≥ µmaxRυ − ϕυM (5.11)

PCSυ, P
C
Rυ, µ

C
Lineυ, µ

maxC
Rυ ≥ 0 (5.12)

ϕυ ∈ {0, 1} (5.13)

(5.7) represents the total probability of the non-representing scenarios (when ϕυ = 1 ) should

be less than ε. (5.8) -(5.11) represent the relationships between the auxiliary variables and the

variables. For example, when ϕυ = 1, or Scenario υ is not a representing one, then PCSυ should be

greater than a large negative number. Since PSυ ≥ 0, this constraint (5.8) is basically a relaxed

one without imposing any constraint. Due to the minimization problem’s objective function which

includes a term λSP
C
Sυ, PCSυ will be 0.
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5.3.2 Case II

For the second type of chance constraint, it is easy to write a mathematical expression as:

Probability

{
PS(υ) ≤ P 0

S

}
≥ 1− ε

where P 0
S is a given value.

This constraint can be expressed in MILP formulation by enumeration of scenarios and intro-

ducing the binary variable ϕυ.∑
υ∈Υ

πυϕυ ≤ ε (5.14)

PSυ + ϕυM ≤ P 0
S (5.15)

ϕυ ∈ {0, 1} (5.16)

For this type of chance constraint, there is no need to introduce auxiliary variables.

Hence, our model for the mixed integer linear programming model with chance constrained

mathematical program has its objective function (34) and constraints (8)-(11),(22)-(33) for every

scenario υ, and the additional constraints (35)-(41) or (42-44) related to chance constraints.
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CHAPTER 6

ILLUSTRATIVE EXAMPLES

The Nonlinear IPOPT problems are solved using SCIP version 3.2.1 [24] and MILP problems

are solved using GUROBI 6.5 [25], interfaced with Python 2.7 on an Intel(R) Core(TM) i7-6700

with processors at 3.4 GHz and 16 GB RAM.

6.1 Two-Generator System: Nonlinear Interior Point Method

The parameters given in table 6.1 are used to examine the equations derived in section 3.3. The

results are tabulated in table 6.2. For the python code, please refer to the Appendix A.1.

Table 6.1. Parameters for two bus network shown in Fig. 2.1 for ipopt method

λS PmaxS λR PmaxR PL1 PL1 PmaxLine

($/MWh) (MW ) ($/MWh) (MW ) (MW ) (MW ) (MW )

12 25 13.25 25 18 30 10

Table 6.2. The solution for the nonlinear formulation using ipopt method

λ1 PS PR PLine
($/MWh) (MW ) (MWh) (MW )

13 25 23 7

6.2 Two-Generator System: Case I

Using the parameters given in Table 6.3, we will solve our model example described in Fig.

2.1, first with CCMP and then without CCMP. The probabilities and the corresponding values

for different scenarios are generated using the command uniform in python. Fig. 6.1 presents the

seven scenarios with different probabilities. The model is solved for a time horizon of 24 hours,
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considering different risk tolerance levels, and the results are tabulated in Table 6.4 and Table 6.5.

For python code of the problem, please refer to the Appendix B.1.

Table 6.3. Parameters for two bus network shown in Fig. 2.1

λs PmaxS PmaxR

($/MWh) (MW ) (MW )

12 22.8 22.8

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5
0

0.1

0.2

0.3

0.4
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R

 ($/MWh)
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6        7             2                      4       3                        1       5
scenario:

Figure 6.1. Generated λR ($/MWh) values for different scenarios.

Table 6.4. Result table for the solution of illustrative example case I

ε(%) 0% 8% 20% 30% 50%

profit ($) 7094 7318 7676 7997 8675

Table 6.4 shows that if ε = 0, that is, all seven scenarios are included as the representative

scenarios, the total profit is $7094. With ε increasing, that is, the chance of 1 − ε decreasing, the

worst scenarios will be excluded, which leads to the increase of the profit.

The scenario selection details are presented in Table 6.5. For example, where ε = 0, all scenarios

are selected. This problem is same as a stochastic programming problem. When ε = 0.08, scenario

6 with λR = 11.2 ($/MWh) is not selected. This exclusion leads to an increase of the rival’s

marginal cost on average. Therefore, the strategic power producer’s benefit will be improved.
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Table 6.5. Scenario selection for the 2-bus system with CCMP case 1, 1.0 stands for not selected

ε υ1 υ2 υ3 υ4 υ5 υ6 υ7

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.05 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.08 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.20 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.30 1.0 1.0 0.0 0.0 0.0 0.0 0.0
0.50 1.0 0.0 0.0 0.0 1.0 1.0 0.0

6.3 Two-Generator System: Case II

Using the parameters given in Table 6.6, we will solve our model example described in Fig.

2.1. The probabilities and the corresponding values for different scenarios are used from Fig. 6.1.

The model is solved for a time horizon of 24 hours, considering different risk tolerance levels, and

the results are tabulated in Table 6.7. Increasing ε means relaxing the constraint of PS ≤ P 0
S .

Therefore, the profit increases with ε increasing. For python code of the problem, please refer to

the Appendix B.2.

Table 6.6. Parameters for two bus network shown in Fig. 2.1

λs PmaxS PmaxR PS0
($/MWh) (MW ) (MW ) (MW )

12 40 40 30

Table 6.7. Result table for the solution of illustrative example case II

ε(%) 0% 8% 20% 30% 50%

profit ($) 7348 7571 7929 8277 8950

Table 6.8 presents the computed PSv values and Table 6.9 presents the selection of the repre-

sentative scenarios. Table 6.9 can be compared with Table 6.8. When PSv > 30, this scenario will

not be selected.
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Table 6.8. PSv in every scenario for case II

ε υ1 υ2 υ3 υ4 υ5 υ6 υ7

0.00 30.0 30.0 30.0 30.0 30.0 25.0 25.0
0.08 30.0 30.0 30.0 30.0 30.0 25.0 25.0
0.20 35.0 30.0 30.0 30.0 30.0 30.0 30.0
0.30 35.0 35.0 30.0 30.0 30.0 30.0 30.0
0.50 35.0 35.0 35.0 35.0 30.0 30.0 30.0

Table 6.9. Scenario selection for the 2-bus system with CCMP case 2, 1.0 stands for not selected

ε υ1 υ2 υ3 υ4 υ5 υ6 υ7

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.20 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.30 1.0 1.0 0.0 0.0 0.0 0.0 0.0
0.50 1.0 1.0 1.0 1.0 0.0 0.0 0.0

6.4 5-bus System 24-hour Example

This section presents the implementation of the model to network based on the fig. 4.1 and the

section 4.3. The parameters are based on the values given in [8]. For python code of the problem

and the output of it please refer to the Appendix B.3.

6.5 Six-bus System 24-hour Example

This section presents the implementation of the model to network based on the description

given in [8]. The model including the CCMP type 1 chance constraints is applied to the network,

considering the extensions such as, dc network model, unit ramp up and ramp down limits, different

consumer bids in different hours of the day and susceptance of the transmission lines. We consider

seven scenarios with different probabilities. The scenarios differ on rival producers offer λRυ, and on

consumer bids λLiυ for all i related to load buses. We can generate a set of scenarios by multiplying

the above two terms given in [2] by the entries of vector [1.15, 1.1, 1.092, 1, 1.05, 0.89, 0.69]. The

corresponding probabilities are assumed as [0.1, 0.2, 0.3, 0.1, 0.1, 0.1, 0.1]. Table 6.10 shows how
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different risk factors ε affects the selection of the scenarios during the solution of the optimization

CCMP model for the six-bus system.

Table 6.10. Scenario selection for the six-bus system, 1.0 stands for not selected

ε υ1 υ2 υ3 υ4 υ5 υ6 υ7

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.10 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.50 0.0 1.0 0.0 1.0 0.0 1.0 0.0

The sum of the profits for different hours corresponding to different scenarios is plotted in Fig.

6.2. It can be seen that some scenarios have been relaxed depending on the risk factor ε, and

thereby increasing the corresponding profit to that scenario.
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Figure 6.2. A comparison of profit contribution versus scenario for different risk tolerance levels

The sum of the profits for different hours and sum of the total generation with risk factor and

without risk factor corresponding to percentage of risk factors are plotted in Fig. 6.3. This figure
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is used to provide a visualized comparison of how increasing the risk factor can increase the market

power, and hence more profit corresponding to less generation or same generation.
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CHAPTER 7

CONCLUSION

The thesis presents a mixed integer linear programming (MILP) formulation for a bi-level

mathematical program with equilibrium constraints (MPEC) considering chance constraints.

The particular MPEC problem relates to a power producer’s bidding strategy: maximize its

total benefit through determining bidding price and bidding power output while considering an

electricity pool’s operation and guessing the rival producer’s bidding price.

The entire decision-making process can be described by a bi-level optimization problem. The

contribution of my thesis is the MILP with chance constraints formulation of this problem. First,

the lower-level poor operation problem is replaced by Karush-Kuhn-Tucker (KKT) optimality con-

dition, which is further converted to an MILP formulation except a bilinear item in the objective

function. Secondly, duality theory is implemented to replace the bilinear item by linear items.

Finally, two types of chance constraints are examined and modeled in MILP formulation. With

the MILP formulation, the entire MPEC problem considering randomness in price guessing can be

solved using off-shelf MIP solvers, e.g., Gurobi. An example is given to illustrate the formulation

and show the case study results.

For the future, the implementation of almost robust optimization technique on MPEC problems

can be further studied, which may handle the uncertainties more efficiently if a proper penalty value

could be calculated.
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APPENDIX A: PYTHON CODES FOR NONLINEAR FORMULATION

A.1 Python Code for the 2-bus System Using Ipopt Method

A.1.1 Code

1 from pysc ipopt import ∗
2 t= range ( 1 , 2 )
3 b= range ( 1 , 3 )
4 PLmax=10
5 P D=[18 , 30 ]
6 Lam D=18
7 Lam O=13.25
8 P Smax=25
9 Lam S=12

10 P Omax=25
11 model = Model ( )
12 A S , P S ,P O , Ltn ,mu Smax ,mu Omax,PL,mu L , om L , om Smax , om Omax , om Smin , mu Smin ,

om Omin ,mu Omin , om Lmin ,mu Lmin = [{} for i in range (17) ]
13 for T in t :
14 A S [T] = model . addVar ( ’A S ’ , vtype=’C ’ )
15 P S [T] = model . addVar ( ’ P S ’ , vtype=’C ’ )
16 mu Smax [T] = model . addVar ( ’mu Smax ’ , vtype=’C ’ )
17 om Smax [T] = model . addVar ( ’om Smax ’ , vtype=’B ’ )
18 P O [T] = model . addVar ( ’P O ’ , vtype=’C ’ )
19 mu Omax [T] = model . addVar ( ’mu Omax ’ , vtype=’C ’ )
20 om Omax [T] = model . addVar ( ’om Omax ’ , vtype=’B ’ )
21 PL[T] = model . addVar ( ’PL ’ , vtype=’C ’ )
22 mu L [T] = model . addVar ( ’mu L ’ , vtype=’C ’ )
23 om L [T] = model . addVar ( ’om L ’ , vtype=’B ’ )
24 mu Lmin [T] = model . addVar ( ’mu Lmin ’ , vtype=’C ’ )
25 om Lmin [T] = model . addVar ( ’ om Lmin ’ , vtype=’B ’ )
26 mu Omin [T] = model . addVar ( ’mu Omin ’ , vtype=’C ’ )
27 om Omin [T] = model . addVar ( ’om Omin ’ , vtype=’B ’ )
28 mu Smin [T] = model . addVar ( ’mu Smin ’ , vtype=’C ’ )
29 om Smin [T] = model . addVar ( ’ om Smin ’ , vtype=’B ’ )
30 for T in t :
31 for N in b :
32 Ltn [T, N] = model . addVar ( ’ Ltn ’ , vtype=’C ’ , lb=0)
33 for T in t :
34 model . addCons (P S [T]−P D [ 0 ] == PL[T] )
35 model . addCons (P O [T]−P D [ 1 ] == −PL[T] )
36 model . addCons ( (PLmax−PL[T] )<=om L [T]∗PLmax)
37 model . addCons (mu L [T] <=(1−om L [T] ) ∗PLmax)
38 model . addCons (PLmax−PL[T] >= 0)
39 model . addCons (PL[T]+PLmax >= 0)
40 model . addCons (A S [T]−Ltn [T, 1]+mu Smax [T] == 0)
41 model . addCons ( (P Smax−P S [T] ) >= 0)
42 model . addCons (P Smax−P S [T] <= (1−om Smax [T] ) ∗P Smax)
43 model . addCons (mu Smax [T] <= om Smax [T]∗P Smax)
44 model . addCons (Lam O−Ltn [T, 2]+mu Omax [T] == 0)
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45 model . addCons (P Omax−P O [T] <= (1−om Omax [T] ) ∗P Omax)
46 model . addCons (mu Omax [T] <= om Omax [T]∗P Omax)
47 model . addCons (P Omax−P O [T] >= 0)
48 obj = quicksum (Lam S∗P S [T]−Ltn [T, 1 ] ∗ P S [T] for T in t )
49 model . s e tOb j e c t i v e ( obj , ”MINIMIZE” )
50 model . opt imize ( )

A.1.2 Output

1 p r e s o l v i ng :
2 ( round 1 , f a s t ) 14 de l vars , 12 de l conss , 0 add conss , 8 chg bounds , 2

chg s ide s , 2 chg c o e f f s , 0 upgd conss , 1 impls , 1 c l q s
3 p r e s o l v i ng (2 rounds : 2 f a s t , 1 medium , 1 exhaust ive ) :
4 18 de l e t ed vars , 14 de l e t ed con s t r a i n t s , 0 added con s t r a i n t s , 8 t i ghtened

bounds , 0 added holes , 2 changed s ide s , 2 changed c o e f f i c i e n t s
5 1 imp l i c a t i on s , 0 c l i q u e s
6 pre so lved problem has 0 v a r i a b l e s (0 bin , 0 int , 0 impl , 0 cont ) and 0

c on s t r a i n t s
7 transformed ob j e c t i v e va lue i s always i n t e g r a l ( s c a l e : 1)
8 Pre so lv ing Time : 0 .00
9

10 time | node | l e f t |LP i t e r |LP i t /n | mem |mdpt | f r a c | vars | cons | c o l s | rows
| cuts | con f s | s t r b r | dualbound | primalbound | gap

11 t 0 .0 s | 1 | 0 | 0 | − | 224k | 0 | − | 0 | 0 | 0 | 0
| 0 | 0 | 0 | −− | −2.500000 e+01 | I n f

12 0 .0 s | 1 | 0 | 0 | − | 223k | 0 | − | 0 | 0 | 0 | 0
| 0 | 0 | 0 | −2.500000 e+01 | −2.500000 e+01 | 0.00%

13
14 SCIP Status : problem i s so lved [ opt imal s o l u t i o n found ]
15 So lv ing Time ( sec ) : 0 .00
16 So lv ing Nodes : 1
17 Primal Bound : −2.50000000000000 e+01 (1 s o l u t i o n s )
18 Dual Bound : −2.50000000000000 e+01
19 Gap : 0 .00 %
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APPENDIX B: PYTHON CODES FOR MILP

B.1 Python Code for the 2-bus System Using CCMP Case 1

B.1.1 Code

1 from gurobipy import ∗
2 import numpy as np
3 import math as ma
4 import matp lo t l i b
5 import matp lo t l i b . pyplot as p l t
6 import matp lo t l i b . patches as mpatches
7 import random as ran
8 Lam D=[[19 .802116822458622 , 19.944456674560165 , 19.813855317207416 ,

17.823159917070598 , 19.268975905242996 , 18.85125499680762 ,
17 .925725187657715 ] ,

9 [19 .54706548020172 , 17.697666942797742 , 17.559463082394245 ,
18.423892092263987 , 18.845296754034834 , 18.621628541265412 ,
18 .743515087182733 ] ]

10 Lam O=[14.747034109908812 , 12.235933384118333 , 13.558811420161696 ,
13.247795352289096 , 14.998683190872775 , 11.246644280930704 ,
11 .643163301063465 ]

11 t= range (1 , 25 )
12 i=range ( 1 , 3 )
13 pik = [ 0 . 1 , 0 . 2 , 0 . 0 5 , 0 . 1 4 , 0 . 3 2 , 0 . 0 8 , 0 . 1 1 ]
14 w=range ( 1 , 8 )
15 P mline=10
16 M=10
17 ep=0.5
18 P Dmax=[22 , 23 ]
19 P Smax=22.8
20 Lam S=12
21 P Rmax=22.8
22 model = Model ( )
23 G S , P S , P SC ,P R ,P RC,P D ,P DC, Lam tn , Lam tnC ,mu Smin ,mu Smax ,mu Rmin ,mu Rmax ,

mu RmaxC,mu Dmin ,mu Dmax=[{} for x in range (16) ]
24 mu DmaxC, om Rmin , om Smax , om Smin , om Dmax , om Dmin , om Rmax , X S , Y S , Z SS , Z S , Pl ine ,

om line , mu line , mu lineC=[{} for x in range (15) ]
25 for W in w:
26 for T in t :
27 G S [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”G S {} {}” .

format (W, T) )
28 P S [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P S {} {}” .

format (W, T) )
29 P SC [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P SC {} {}” .

format (W, T) )
30 mu Smin [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Smin

{} {}” . format (W, T) )
31 mu Smax [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Smax

{} {}” . format (W, T) )
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32 om Smin [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Smin {} {}
” . format (W, T) )

33 om Smax [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Smax {} {}
” . format (W, T) )

34 Z S [W] = model . addVar ( vtype=GRB.BINARY, name=”Z S {}” . format (W) )
35 for W in w:
36 for W1 in w:
37 for T in t :
38 X S [W, W1, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”X S {} {}

{}” . format (W, W1, T) )
39 Y S [W, W1, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”Y S {} {}

{}” . format (W, W1, T) )
40 Z SS [W, W1, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”Z S {}

{} {}” . format (W, W1, T) )
41 for W in w:
42 for T in t :
43 P R [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P R {} {}” .

format (W, T) )
44 P RC[W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P RC {} {}” .

format (W, T) )
45 mu Rmin [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Rmin

{} {}” . format (W, T) )
46 mu Rmax [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Rmax

{} {}” . format (W, T) )
47 mu RmaxC[W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu RmaxC {} {}” . format (W, T) )
48 om Rmin [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Rmin {} {}

” . format (W, T) )
49 om Rmax [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Rmax {} {}

” . format (W, T) )
50 Pl ine [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, name=” P l i n e {} {}” .

format (W, T) )
51 om l ine [W, T] = model . addVar ( vtype=GRB.BINARY, name=” om l ine {} {}” .

format (W, T) )
52 mu l ine [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu l ine

{} {}” . format (W, T) )
53 mu lineC [W, T]= model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu lineC

{} {}” . format (W, T) )
54 for W in w:
55 for T in t :
56 for D in i :
57 P D [W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P D {}

{} {}” . format (W, T, D) )
58 P DC[W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P DC

{} {} {}” . format (W, T, D) )
59 mu Dmin [W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu Dmin {} {} {}” . format (W, T, D) )
60 mu Dmax [W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu Dmax {} {} {}” . format (W, T, D) )
61 mu DmaxC[W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu DmaxC {} {} {}” . format (W, T, D) )
62 om Dmin [W, T, D] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”

om Dmin {} {} {}” . format (W, T, D) )
63 om Dmax [W, T, D] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”

om Dmax {} {} {}” . format (W, T, D) )
64 for W in w:
65 for T in t :
66 for N in i :
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67 Lam tn [W, T, N] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”
Lam tn {} {} {}” . format (W, T, N) )

68 Lam tnC [W, T, N] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”
Lam tnC {} {} {}” . format (W, T, N) )

69 model . update ( )
70 for W in w:
71 for T in t :
72 model . addConstr (P S [W, T]−P D [W, T, 1 ] == Pl ine [W, T] )
73 model . addConstr (P R [W, T]−P D [W, T, 2 ] == −Pl ine [W, T] )
74 model . addConstr ( P mline−Pl ine [W, T] <= om l ine [W,T]∗2∗ P mline )
75 model . addConstr ( mu l ine [W,T] <= (1−om l ine [W,T] ) ∗2∗P mline )
76 for W in w:
77 for T in t :
78 model . addConstr (G S [W, T]−Lam tn [W, T, 1]−mu Smin [W, T]+mu Smax [W, T] ==

0)
79 model . addConstr (P S [W, T] <= (1−om Smin [W, T] ) ∗P Smax)
80 model . addConstr (mu Smin [W, T] <= om Smin [W, T]∗P Smax)
81 model . addConstr (P Smax−P S [W, T] >= 0)
82 model . addConstr (P Smax−P S [W, T] <= (1−om Smax [W, T] ) ∗P Smax)
83 model . addConstr (mu Smax [W, T] <= om Smax [W, T]∗P Smax)
84 for W in w:
85 for T in t :
86 model . addConstr (Lam R [W−1]−Lam tn [W, T, 2]−mu Rmin [W, T]+mu Rmax [W, T]

== 0)
87 model . addConstr (P R [W, T] <= (1−om Rmin [W, T] ) ∗P Rmax)
88 model . addConstr (mu Rmin [W, T] <= om Rmin [W, T]∗P Rmax)
89 model . addConstr (P Rmax−P R [W, T] >= 0)
90 model . addConstr (P Rmax−P R [W, T] <= (1−om Rmax [W, T] ) ∗P Rmax)
91 model . addConstr (mu Rmax [W, T] <= om Rmax [W, T]∗P Rmax)
92 for W in w:
93 for T in t :
94 for D in i :
95 model . addConstr (Lam tn [W, T, D]−Lam D[D−1] [W−1]−mu Dmin [W, T, D]+

mu Dmax [W, T, D] == 0)
96 model . addConstr (P D [W, T, D] <= (1−om Dmin [W, T, D] ) ∗P Dmax [D−1])
97 model . addConstr (mu Dmin [W, T, D] <= om Dmin [W, T, D]∗P Dmax [D−1])
98 model . addConstr (P Dmax [D−1]−P D [W, T, D] >= 0)
99 model . addConstr (P Dmax [D−1]−P D [W, T, D] <= (1−om Dmax [W, T, D] ) ∗

P Dmax [D−1])
100 model . addConstr (mu Dmax [W, T, D] <= om Dmax [W, T, D]∗P Dmax [D−1])
101 for W in w:
102 for T in t :
103 model . addConstr (P S [W, T] + P R [W, T] − quicksum (P D [W,T,D] for D in i )

==0)
104 for W in w:
105 for W1 in w:
106 i f W1>W:
107 for T in t :
108 model . addConstr (Lam tn [W, T, 1]−Lam tn [W1, T, 1]<=X S [W, W1, T]∗

M)
109 model . addConstr (Lam tn [W, T, 1]−Lam tn [W1, T, 1]>=(1−X S [W, W1,

T] ) ∗M)
110 model . addConstr (P S [W, T]−P S [W1, T] <=Y S [W, W1, T]∗M)
111 model . addConstr (P S [W, T]−P S [W1, T]>=(1−Y S [W, W1, T] ) ∗M)
112 model . addConstr (X S [W, W1, T]+Y S [W, W1, T] == 2∗Z SS [W, W1, T] )
113 model . addConstr ( quicksum ( pik [W−1]∗Z S [W] for W in w) <= ep , ” chance Constra int ” )
114 for W in w:
115 for T in t :
116 model . addConstr (Lam tnC [W, T, 1]>=Lam tn [W, T, 1]−Z S [W]∗M)
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117 for W in w:
118 for T in t :
119 for I in i :
120 model . addConstr (P DC[W, T, I ] <=P D [W, T, I ]−Z S [W]∗M)
121 model . addConstr (mu DmaxC[W, T, I ] >=mu Dmax [W, T, I ]−Z S [W]∗M)
122 model . addConstr (P SC [W, T]>=P S [W, T]−Z S [W]∗M)
123 model . addConstr (P RC[W, T]>=P R [W, T]−Z S [W]∗M)
124 model . addConstr (mu RmaxC[W, T]>=mu Rmax [W, T]−Z S [W]∗M)
125 model . addConstr ( mu lineC [W, T]>=mu line [W, T]−Z S [W]∗M)
126 obj = ( quicksum (Lam S∗P SC [W, T]∗ pik [W−1] for T in t for W in w)
127 + quicksum (Lam O[W−1]∗P RC[W, T]∗ pik [W−1] for T in t for W in w)
128 − quicksum (Lam D[D−1] [W−1]∗P DC[W, T, D]∗ pik [W−1] for D in i for T in t

for W in w)
129 + quicksum (P Rmax∗mu RmaxC[W, T]∗ pik [W−1] for T in t for W in w)
130 + quicksum (P Dmax [D−1]∗mu DmaxC[W, T, D]∗ pik [W−1] for D in i for T in t

for W in w)
131 + quicksum ( pik [W−1]∗mu lineC [W, T]∗ P mline for T in t for W in w) )
132 model . s e tOb j e c t i v e ( obj , GRB.MINIMIZE)
133 model . opt imize ( )

B.1.2 Output

1 Optimize a model with 7561 rows , 9583 columns and 18487 nonzeros
2 Co e f f i c i e n t s t a t i s t i c s :
3 Matrix range [ 5 e−02, 4e+01]
4 Object ive range [ 5 e−01, 1e+01]
5 Bounds range [ 1 e+00, 1e+00]
6 RHS range [ 5 e−01, 4e+01]
7 Found h e u r i s t i c s o l u t i o n : o b j e c t i v e −3637.6
8 Preso lve removed 4608 rows and 8400 columns
9 Preso lve time : 0 .03 s

10 Preso lved : 2953 rows , 1183 columns , 6487 nonzeros
11 Var iab le types : 840 continuous , 343 i n t e g e r (343 binary )
12
13 Root r e l a x a t i o n : o b j e c t i v e −6.667364 e+03, 552 i t e r a t i o n s , 0 .01 seconds
14
15 Nodes | Current Node | Object ive Bounds | Work
16 Expl Unexpl | Obj Depth I n t I n f | Incumbent BestBd Gap | I t /Node Time
17
18 ∗ 0 0 0 −6667.364361 −6667.3644 0.00% − 0 s
19
20 Explored 0 nodes (552 s implex i t e r a t i o n s ) in 0 .05 seconds
21 Thread count was 8 ( o f 8 a v a i l a b l e p r o c e s s o r s )
22
23 Optimal s o l u t i o n found ( t o l e r an c e 1 .00 e−04)
24 Best ob j e c t i v e −6.667364361278 e+03, best bound −6.667364361278 e+03, gap 0.0%

B.2 Python Code for the 2-bus System Using CCMP Case 2

B.2.1 Code

1 from gurobipy import ∗
2 Lam R=[14.747034109908812 , 12.235933384118333 , 13.558811420161696 ,

13.247795352289096 , 14.998683190872775 , 11.246644280930704 ,
11 .643163301063465 ]

3 Lam D=[[19 .802116822458622 , 19.944456674560165 , 19.813855317207416 ,
17.823159917070598 , 19.268975905242996 , 18.85125499680762 ,
17 .925725187657715 ] ,
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4 [19 .54706548020172 , 17.697666942797742 , 17.559463082394245 ,
18.423892092263987 , 18.845296754034834 , 18.621628541265412 ,
18 .743515087182733 ] ]

5 t= range (1 , 25 )
6 i=range ( 1 , 3 )
7 pik = [ 0 . 1 , 0 . 2 , 0 . 0 5 , 0 . 1 4 , 0 . 3 2 , 0 . 0 8 , 0 . 1 1 ]
8 w=range ( 1 , 8 )
9 P mline=10

10 M=5
11 ep=0.50
12 P Dmax=[22 , 23 ]
13 P Smax=40
14 Lam S=12
15 P Rmax=40
16 model = Model ( )
17 G S , P S , P SC ,P R ,P RC,P D ,P DC, Lam tn , Lam tnC ,mu Smin ,mu Smax ,mu Rmin ,mu Rmax ,

mu RmaxC,mu Dmin ,mu Dmax=[{} for x in range (16) ]
18 mu DmaxC, om Rmin , om Smax , om Smin , om Dmax , om Dmin , om Rmax , X S , Y S , Z SS , Z S , Pl ine ,

om line , mu line , mu lineC=[{} for x in range (15) ]
19 for W in w:
20 for T in t :
21 G S [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”G S {} {}” .

format (W, T) )
22 P S [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P S {} {}” .

format (W, T) )
23 P SC [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P SC {} {}” .

format (W, T) )
24 mu Smin [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Smin

{} {}” . format (W, T) )
25 mu Smax [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Smax

{} {}” . format (W, T) )
26 om Smin [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Smin {} {}

” . format (W, T) )
27 om Smax [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Smax {} {}

” . format (W, T) )
28 Z S [W] = model . addVar ( vtype=GRB.BINARY, name=”Z S {}” . format (W) )
29 for W in w:
30 for W1 in w:
31 for T in t :
32 X S [W, W1, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”X S {} {}

{}” . format (W, W1, T) )
33 Y S [W, W1, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”Y S {} {}

{}” . format (W, W1, T) )
34 Z SS [W, W1, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”Z S {}

{} {}” . format (W, W1, T) )
35 for W in w:
36 for T in t :
37 P R [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P R {} {}” .

format (W, T) )
38 P RC[W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P RC {} {}” .

format (W, T) )
39 mu Rmin [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Rmin

{} {}” . format (W, T) )
40 mu Rmax [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu Rmax

{} {}” . format (W, T) )
41 mu RmaxC[W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu RmaxC {} {}” . format (W, T) )
42 om Rmin [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Rmin {} {}

” . format (W, T) )
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43 om Rmax [W, T] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”om Rmax {} {}
” . format (W, T) )

44 Pl ine [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, name=” P l i n e {} {}” .
format (W, T) )

45 om l ine [W, T] = model . addVar ( vtype=GRB.BINARY, name=” om l ine {} {}” .
format (W, T) )

46 mu l ine [W, T] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu l ine
{} {}” . format (W, T) )

47 mu lineC [W, T]= model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”mu lineC
{} {}” . format (W, T) )

48 for W in w:
49 for T in t :
50 for D in i :
51 P D [W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P D {}

{} {}” . format (W, T, D) )
52 P DC[W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P DC

{} {} {}” . format (W, T, D) )
53 mu Dmin [W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu Dmin {} {} {}” . format (W, T, D) )
54 mu Dmax [W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu Dmax {} {} {}” . format (W, T, D) )
55 mu DmaxC[W, T, D] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu DmaxC {} {} {}” . format (W, T, D) )
56 om Dmin [W, T, D] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”

om Dmin {} {} {}” . format (W, T, D) )
57 om Dmax [W, T, D] = model . addVar ( vtype=GRB.BINARY, lb=0, name=”

om Dmax {} {} {}” . format (W, T, D) )
58 for W in w:
59 for T in t :
60 for N in i :
61 Lam tn [W, T, N] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

Lam tn {} {} {}” . format (W, T, N) )
62 Lam tnC [W, T, N] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

Lam tnC {} {} {}” . format (W, T, N) )
63 model . update ( )
64 for W in w:
65 for T in t :
66 model . addConstr (P S [W, T]−P D [W, T, 1 ] == Pl ine [W, T] )
67 model . addConstr (P R [W, T]−P D [W, T, 2 ] == −Pl ine [W, T] )
68 model . addConstr ( P mline−Pl ine [W, T] <= om l ine [W,T]∗2∗ P mline )
69 model . addConstr ( mu l ine [W,T] <= (1−om l ine [W,T] ) ∗2∗P mline )
70 for W in w:
71 for T in t :
72 model . addConstr (G S [W, T]−Lam tn [W, T, 1]−mu Smin [W, T]+mu Smax [W, T] ==

0)
73 model . addConstr (P S [W, T] <= (1−om Smin [W, T] ) ∗P Smax)
74 model . addConstr (mu Smin [W, T] <= om Smin [W, T]∗P Smax)
75 model . addConstr (P Smax−P S [W, T] >= 0)
76 model . addConstr (P Smax−P S [W, T] <= (1−om Smax [W, T] ) ∗P Smax)
77 model . addConstr (mu Smax [W, T] <= om Smax [W, T]∗P Smax)
78 for W in w:
79 for T in t :
80 model . addConstr (Lam R [W−1]−Lam tn [W, T, 2]−mu Rmin [W, T]+mu Rmax [W, T]

== 0)
81 model . addConstr (P R [W, T] <= (1−om Rmin [W, T] ) ∗P Rmax)
82 model . addConstr (mu Rmin [W, T] <= om Rmin [W, T]∗P Rmax)
83 model . addConstr (P Rmax−P R [W, T] >= 0)
84 model . addConstr (P Rmax−P R [W, T] <= (1−om Rmax [W, T] ) ∗P Rmax)
85 model . addConstr (mu Rmax [W, T] <= om Rmax [W, T]∗P Rmax)
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86 for W in w:
87 for T in t :
88 for D in i :
89 model . addConstr (Lam tn [W, T, D]−Lam D[D−1] [W−1]−mu Dmin [W, T, D]+

mu Dmax [W, T, D] == 0)
90 model . addConstr (P D [W, T, D] <= (1−om Dmin [W, T, D] ) ∗P Dmax [D−1])
91 model . addConstr (mu Dmin [W, T, D] <= om Dmin [W, T, D]∗P Dmax [D−1])
92 model . addConstr (P Dmax [D−1]−P D [W, T, D] >= 0)
93 model . addConstr (P Dmax [D−1]−P D [W, T, D] <= (1−om Dmax [W, T, D] ) ∗

P Dmax [D−1])
94 model . addConstr (mu Dmax [W, T, D] <= om Dmax [W, T, D]∗P Dmax [D−1])
95 for W in w:
96 for T in t :
97 model . addConstr (P S [W, T] + P R [W, T] − quicksum (P D [W,T,D] for D in i )

==0)
98 for W in w:
99 for W1 in w:

100 i f W1>W:
101 for T in t :
102 model . addConstr (Lam tn [W, T, 1]−Lam tn [W1, T, 1]<=X S [W, W1, T]∗

M)
103 model . addConstr (Lam tn [W, T, 1]−Lam tn [W1, T, 1]>=(1−X S [W, W1,

T] ) ∗M)
104 model . addConstr (P S [W, T]−P S [W1, T] <=Y S [W, W1, T]∗M)
105 model . addConstr (P S [W, T]−P S [W1, T]>=(1−Y S [W, W1, T] ) ∗M)
106 model . addConstr (X S [W, W1, T]+Y S [W, W1, T] == 2∗Z SS [W, W1, T] )
107 model . addConstr ( quicksum ( pik [W−1]∗Z S [W] for W in w) <= ep , ” chance Constra int ” )
108 for W in w:
109 for T in t :
110 model . addConstr (P S [W, T]<=23.0+Z S [W]∗M)
111 obj = ( quicksum (Lam S∗P S [W, T]∗ pik [W−1] for T in t for W in w)
112 + quicksum (Lam R [W−1]∗P R [W, T]∗ pik [W−1] for T in t for W in w)
113 − quicksum (Lam D[D−1] [W−1]∗P D [W, T, D]∗ pik [W−1] for D in i for T in t

for W in w)
114 + quicksum (P Rmax∗mu Rmax [W, T]∗ pik [W−1] for T in t for W in w)
115 + quicksum ( pik [W−1]∗mu line [W, T]∗ P mline for T in t for W in w) )
116 model . s e tOb j e c t i v e ( obj , GRB.MINIMIZE)
117 model . opt imize ( )

B.2.2 Output

1 r e c t ang l e (1 . 873 |2 . 1 2 9 0 .316 0 . 316 )
2 r e c t ang l e (4 . 402 |2 . 1 2 9 0 .316 0 . 316 )
3 r e c t ang l e ( 3 . 23 |4 . 1 7 7 0 .316 0 . 316 )
4 r e c t ang l e (2 . 914 |6 . 5 2 4 0 .316 0 . 316 )
5 r e c t ang l e (4 . 521 |9 . 1 1 6 0 .316 0 . 316 )
6 r e c t ang l e (1 . 848 |4 . 2 0 2 0 .316 0 . 316 )
7 r e c t ang l e (4 . 903 |4 . 5 0 2 0 .316 0 . 316 )
8 r e c t ang l e (4 . 402 |2 . 1 2 5 0 .316 0 . 316 )
9 r e c t ang l e (4 . 402 |2 . 1 2 5 0 .316 0 . 316 )

10 r e c t ang l e (4 . 402 |2 . 1 2 5 0 .316 0 . 316 )
11 r e c t ang l e (4 . 402 |2 . 1 2 5 0 .316 0 . 316 )
12 r e c t ang l e (4 . 402 |2 . 1 2 5 0 .316 0 . 316 )
13 r e c t ang l e (4 . 558 |7 . 6 7 4 0 .316 0 . 316 )
14 r e c t ang l e ( 2 . 25 |7 . 5 9 5 0 .316 0 . 316 )
15 r e c t ang l e (1 . 552 |4 . 3 7 5 0 .316 0 . 316 )
16 r e c t ang l e (2 . 193 |9 . 0 6 3 0 .316 0 . 316 )
17 r e c t ang l e (1 . 552 |4 . 3 7 5 0 .316 0 . 316 )
18 r e c t ang l e ( 3 . 23 |4 . 1 7 7 0 .316 0 . 316 )
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19 r e c t ang l e (4 . 629 |4 . 2 1 7 0 .316 0 . 316 )
20 r e c t ang l e ( 3 . 23 |4 . 1 7 7 0 .316 0 . 316 )
21 r e c t ang l e ( 4 . 7 3 8 | 4 . 1 7 7 0 .316 0 . 316 )
22 r e c t ang l e (|−5 6 3 ,5)
23 r e c t ang l e (|−5 6 3 ,5)
24 r e c t ang l e (|−5 6 3 ,5)
25 r e c t ang l e (|−5 6 3 ,5)
26 r e c t ang l e (|−5 6 3 ,5)

B.3 Python Code for the 5-bus System

B.3.1 Code

1 from gurobipy import ∗
2 t= range (1 , 25 )
3 t1=range (1 , 24 )
4 i= range ( 1 , 4 )
5 s i S= [ 1 , 4 , 5 ]
6 s i R= [ 1 , 3 , 4 ]
7 s i D= [ 2 , 3 , 4 , 5 ]
8 j= range ( 1 , 4 )
9 d= range ( 1 , 5 )

10 b= range ( 1 , 5 )
11 k= l i s t ( range ( 1 , 6 ) )
12 n= l i s t ( range ( 1 , 6 ) )
13 Lam D =[ [ [ 1 7 . 4 3 0 , 17 .250 , 17 .216 , 16 .886 , 1 6 . 7 9 0 ] , [ 1 7 . 4 3 0 , 17 .250 , 17 .216 ,

16 .886 , 1 6 . 7 9 0 ] , [ 1 7 . 4 3 0 , 17 .250 , 17 .216 , 16 .886 , 1 6 . 7 9 0 ] , [ 1 7 . 4 3 0 , 17 .250 ,
17 .216 , 16 .886 , 1 6 . 7 9 0 ] ] ,

14 [ [ 1 7 . 2 5 0 , 17 .216 , 16 .886 , 16 .790 , 1 6 . 3 8 0 ] , [ 1 7 . 2 5 0 , 17 .216 , 16 .886 ,
16 .790 , 1 6 . 3 8 0 ] , [ 1 7 . 2 5 0 , 17 .216 , 16 .886 , 16 .790 , 1 6 . 3 8 0 ] , [ 1 7 . 2 5 0 , 17 .216 ,
16 .886 , 16 .790 , 1 6 . 3 8 0 ] ] ,

15 [ [ 1 7 . 2 1 6 , 16 .886 , 16 .790 , 16 .380 , 1 6 . 3 2 0 ] , [ 1 7 . 2 1 6 , 16 .886 , 16 .790 ,
16 .380 , 1 6 . 3 2 0 ] , [ 1 7 . 2 1 6 , 16 .886 , 16 .790 , 16 .380 , 1 6 . 3 2 0 ] , [ 1 7 . 2 1 6 , 16 .886 ,
16 .790 , 16 .380 , 1 6 . 3 2 0 ] ] ,

16 [ [ 1 7 . 2 1 6 , 16 .886 , 16 .790 , 16 .380 , 1 6 . 3 2 0 ] , [ 1 7 . 2 1 6 , 16 .886 , 16 .790 ,
16 .380 , 1 6 . 3 2 0 ] , [ 1 7 . 2 1 6 , 16 .886 , 16 .790 , 16 .380 , 1 6 . 3 2 0 ] , [ 1 7 . 2 1 6 , 16 .886 ,
16 .790 , 16 .380 , 1 6 . 3 2 0 ] ] ,

17 [ [ 1 6 . 8 8 6 , 16 .790 , 16 .380 , 16 .320 , 1 6 . 1 3 0 ] , [ 1 6 . 8 8 6 , 16 .790 , 16 .380 ,
16 .320 , 1 6 . 1 3 0 ] , [ 1 6 . 8 8 6 , 16 .790 , 16 .380 , 16 .320 , 1 6 . 1 3 0 ] , [ 1 6 . 8 8 6 , 16 .790 ,
16 .380 , 16 .320 , 1 6 . 1 3 0 ] ] ,

18 [ [ 1 6 . 8 8 6 , 16 .790 , 16 .380 , 16 .320 , 1 6 . 1 3 0 ] , [ 1 6 . 8 8 6 , 16 .790 , 16 .380 ,
16 .320 , 1 6 . 1 3 0 ] , [ 1 6 . 8 8 6 , 16 .790 , 16 .380 , 16 .320 , 1 6 . 1 3 0 ] , [ 1 6 . 8 8 6 , 16 .790 ,
16 .380 , 16 .320 , 1 6 . 1 3 0 ] ] ,

19 [ [ 1 7 . 2 5 0 , 17 .216 , 16 .886 , 16 .790 , 1 6 . 3 8 0 ] , [ 1 7 . 2 5 0 , 17 .216 , 16 .886 ,
16 .790 , 1 6 . 3 8 0 ] , [ 1 7 . 2 5 0 , 17 .216 , 16 .886 , 16 .790 , 1 6 . 3 8 0 ] , [ 1 7 . 2 5 0 , 17 .216 ,
16 .886 , 16 .790 , 1 6 . 3 8 0 ] ] ,

20 [ [ 1 7 . 9 4 0 , 17 .612 , 17 .430 , 17 .250 , 1 7 . 2 1 6 ] , [ 1 7 . 9 4 0 , 17 .612 , 17 .430 ,
17 .250 , 1 7 . 2 1 6 ] , [ 1 7 . 9 4 0 , 17 .612 , 17 .430 , 17 .250 , 1 7 . 2 1 6 ] , [ 1 7 . 9 4 0 , 17 .612 ,
17 .430 , 17 .250 , 1 7 . 2 1 6 ] ] ,

21 [ [ 1 9 . 2 3 2 , 18 .932 , 18 .806 , 19 .344 , 1 8 . 1 5 2 ] , [ 1 9 . 2 3 2 , 18 .932 , 18 .806 ,
19 .344 , 1 8 . 1 5 2 ] , [ 1 9 . 2 3 2 , 18 .932 , 18 .806 , 19 .344 , 1 8 . 1 5 2 ] , [ 1 9 . 2 3 2 , 18 .932 ,
18 .806 , 19 .344 , 1 8 . 1 5 2 ] ] ,

22 [ [ 2 0 . 3 7 8 , 19 .922 , 19 .532 , 19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 , 19 .532 ,
19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 , 19 .532 , 19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 ,
19 .532 , 19 .232 , 1 8 . 9 3 2 ] ] ,

23 [ [ 2 4 . 9 6 8 , 22 .628 , 20 .876 , 20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 , 20 .876 ,
20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 , 20 .876 , 20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 ,
20 .876 , 20 .606 , 2 0 . 3 7 8 ] ] ,
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24 [ [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 ,
20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 ,
22 .628 , 20 .876 , 2 0 . 6 0 6 ] ] ,

25 [ [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 ,
20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 ,
22 .628 , 20 .876 , 2 0 . 6 0 6 ] ] ,

26 [ [ 2 4 . 9 6 8 , 22 .628 , 20 .876 , 20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 , 20 .876 ,
20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 , 20 .876 , 20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 ,
20 .876 , 20 .606 , 2 0 . 3 7 8 ] ] ,

27 [ [ 2 0 . 3 7 8 , 19 .922 , 19 .532 , 19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 , 19 .532 ,
19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 , 19 .532 , 19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 ,
19 .532 , 19 .232 , 1 8 . 9 3 2 ] ] ,

28 [ [ 2 0 . 3 7 8 , 19 .922 , 19 .532 , 19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 , 19 .532 ,
19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 , 19 .532 , 19 .232 , 1 8 . 9 3 2 ] , [ 2 0 . 3 7 8 , 19 .922 ,
19 .532 , 19 .232 , 1 8 . 9 3 2 ] ] ,

29 [ [ 2 0 . 8 7 6 , 20 .606 , 20 .378 , 19 .922 , 1 9 . 5 3 2 ] , [ 2 0 . 8 7 6 , 20 .606 , 20 .378 ,
19 .922 , 1 9 . 5 3 2 ] , [ 2 0 . 8 7 6 , 20 .606 , 20 .378 , 19 .922 , 1 9 . 5 3 2 ] , [ 2 0 . 8 7 6 , 20 .606 ,
20 .378 , 19 .922 , 1 9 . 5 3 2 ] ] ,

30 [ [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 ,
20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 ,
22 .628 , 20 .876 , 2 0 . 6 0 6 ] ] ,

31 [ [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 ,
20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 ,
22 .628 , 20 .876 , 2 0 . 6 0 6 ] ] ,

32 [ [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 ,
20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 ,
22 .628 , 20 .876 , 2 0 . 6 0 6 ] ] ,

33 [ [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 ,
20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 , 22 .628 , 20 .876 , 2 0 . 6 0 6 ] , [ 2 5 . 0 0 0 , 24 .968 ,
22 .628 , 20 .876 , 2 0 . 6 0 6 ] ] ,

34 [ [ 2 4 . 9 6 8 , 22 .628 , 20 .876 , 20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 , 20 .876 ,
20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 , 20 .876 , 20 .606 , 2 0 . 3 7 8 ] , [ 2 4 . 9 6 8 , 22 .628 ,
20 .876 , 20 .606 , 2 0 . 3 7 8 ] ] ,

35 [ [ 1 9 . 5 3 2 , 19 .232 , 18 .932 , 18 .806 , 1 8 . 3 4 4 ] , [ 1 9 . 5 3 2 , 19 .232 , 18 .932 ,
18 .806 , 1 8 . 3 4 4 ] , [ 1 9 . 5 3 2 , 19 .232 , 18 .932 , 18 .806 , 1 8 . 3 4 4 ] , [ 1 9 . 5 3 2 , 19 .232 ,
18 .932 , 18 .806 , 1 8 . 3 4 4 ] ] ,

36 [ [ 1 7 . 9 4 0 , 17 .612 , 17 .430 , 17 .250 , 1 7 . 2 1 6 ] , [ 1 7 . 9 4 0 , 17 .612 , 17 .430 ,
17 .250 , 1 7 . 2 1 6 ] , [ 1 7 . 9 4 0 , 17 .612 , 17 .430 , 17 .250 , 1 7 . 2 1 6 ] , [ 1 7 . 9 4 0 , 17 .612 ,
17 .430 , 17 .250 , 1 7 . 2 1 6 ] ] ]

37 P Dmax=[ [ [ 9 00 , 25 , 25 , 25 , 2 5 ] ] ∗ 4 ] ∗ 2 4
38 P Smax= [ [ [ 5 4 . 2 5 , 38 .75 , 31 . 00 , 3 1 . 0 0 ] , [ 2 5 . 0 0 , 25 .00 , 20 .00 , 2 0 . 0 0 ] , [ 5 4 . 2 5 ,

38 .75 , 31 . 00 , 3 1 . 0 0 ] , [ 6 8 . 9 5 , 49 .25 , 39 .40 , 3 9 . 4 0 ] ] ] ∗ 2 4
39 Lam S = [ [ [ 9 . 9 2 , 10 .25 , 10 .68 , 1 1 . 2 6 ] , [ 1 8 . 6 0 , 20 .03 , 21 .67 , 2 2 . 7 2 ] , [ 9 . 9 2 ,

10 .25 , 10 . 68 , 1 1 . 2 6 ] , [ 1 0 . 0 8 , 10 .66 , 11 .09 , 1 1 . 7 2 ] ] ] ∗ 2 4
40 P Rmax= [ [ [ 1 4 0 . 0 0 , 97 .50 , 52 .50 , 7 0 . 0 0 ] , [ 6 8 . 9 5 , 49 .25 , 39 .40 , 3 9 . 4 0 ] , [ 6 8 . 9 5 ,

49 .25 , 39 . 40 , 3 9 . 4 0 ] , [ 5 4 . 2 5 , 38 .75 , 31 .00 , 3 1 . 0 0 ] ] ] ∗ 2 4
41 Lam R = [ [ [ 1 9 . 2 0 , 20 . 32 , 21 . 22 , 2 2 . 1 3 ] , [ 1 0 . 0 8 , 10 .66 , 11 .09 , 1 1 . 7 2 ] , [ 1 0 . 0 8 ,

10 .66 , 11 . 09 , 1 1 . 7 2 ] , [ 9 . 9 2 , 10 .25 , 10 .68 , 1 1 . 2 6 ] ] ] ∗ 2 4
42 model = Model ( )
43 G S , P S , P R ,P D , Lam tn ,mu Smax ,mu Rmax ,mu Dmax, om Smax , om Rmax , om Dmax ,mu Dmin ,

om Dmin , mu Smin , om Smin ,mu Rmin , om Rmin = [{} for x in range (17) ]
44 for T in t :
45 for I in i :
46 for B in b :
47 G S [T, I , B] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”G S {}

{} {}” . format (T, I , B) )
48 P S [T, I , B] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P S {}

{} {}” . format (T, I , B) )
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49 mu Smax [T, I , B] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”
mu Smax {} {} {}” . format (T, I , B) )

50 om Smax [T, I , B] = model . addVar ( vtype=GRB.BINARY, name=”om Smax {}
{} {}” . format (T, I , B) )

51 mu Smin [T, I , B] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”
mu Smin {} {} {}” . format (T, I , B) )

52 om Smin [T, I , B] = model . addVar ( vtype=GRB.BINARY, name=”om Smin {}
{} {}” . format (T, I , B) )

53 for T in t :
54 for J in j :
55 for B in b :
56 P R [T, J , B] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P R {}

{} {}” . format (T, J , B) )
57 mu Rmax [T, J , B] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu Rmax {} {} {}” . format (T, J , B) )
58 om Rmax [T, J , B] = model . addVar ( vtype=GRB.BINARY, name=”om Rmax {}

{} {}” . format (T, J , B) )
59 mu Rmin [T, J , B] = model . addVar ( vtype=GRB.CONTINUOUS, name=”mu Rmin

{} {} {}” . format (T, J , B) )
60 om Rmin [T, J , B] = model . addVar ( vtype=GRB.BINARY, name=”om Rmin {}

{} {}” . format (T, J , B) )
61 for T in t :
62 for D in d :
63 for K in k :
64 P D [T, D, K] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”P D {}

{} {}” . format (T, D, K) )
65 mu Dmax [T, D, K] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu Dmax {} {} {}” . format (T, D, K) )
66 om Dmax [T, D, K] = model . addVar ( vtype=GRB.BINARY, name=”om Dmax {}

{} {}” . format (T, D, K) )
67 om Dmin [T, D, K] = model . addVar ( vtype=GRB.BINARY, name=”om Dmin {}

{} {}” . format (T, D, K) )
68 mu Dmin [T, D, K] = model . addVar ( vtype=GRB.CONTINUOUS, lb=0, name=”

mu Dmin {} {} {}” . format (T, D, K) )
69 for T in t :
70 for N in n :
71 Lam tn [T, N] = model . addVar ( vtype=GRB.CONTINUOUS, name=”Lam tn {} {}” .

format (T, N) )
72 model . update ( )
73 for T in t :
74 for I in i :
75 for B in b :
76 model . addConstr (G S [T, I , B]−Lam tn [T, s i S [ I−1]]+mu Smax [T, I , B]−

mu Smin [T, I , B] == 0)
77 model . addConstr (P Smax [T−1] [ I −1] [B−1]−P S [T, I , B] >= 0)
78 model . addConstr (P Smax [T−1] [ I −1] [B−1]−P S [T, I , B] <= (1−om Smax [T,

I , B ] ) ∗P Smax [T−1] [ I −1] [B−1])
79 model . addConstr (mu Smax [T, I , B] <= om Smax [T, I , B]∗P Smax [T−1] [ I

−1] [B−1])
80 model . addConstr (P S [T, I , B] <= (1−om Smin [T, I , B ] ) ∗P Smax [T−1] [ I

−1] [B−1])
81 model . addConstr (mu Smin [T, I , B] <= om Smin [T, I , B]∗P Smax [T−1] [ I

−1] [B−1])
82 for T in t :
83 for J in j :
84 for B in b :
85 model . addConstr (Lam R [T−1] [ J−1] [B−1]−Lam tn [T, s i R [ J−1]]+mu Rmax [T,

J , B]−mu Rmin [T, J , B] == 0)
86 model . addConstr (P Rmax [T−1] [ J−1] [B−1]−P R [T, J , B] >= 0)
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87 model . addConstr (P Rmax [T−1] [ J−1] [B−1]−P R [T, J , B] <= (1−om Rmax [T,
J , B ] ) ∗P Rmax [T−1] [ J−1] [B−1])

88 model . addConstr (mu Rmax [T, J , B] <= om Rmax [T, J , B]∗P Rmax [T−1] [ J
−1] [B−1])

89 model . addConstr (P R [T, J , B] <= (1−om Rmin [T, J , B ] ) ∗P Rmax [T−1] [ J
−1] [B−1])

90 model . addConstr (mu Rmin [T, J , B] <= om Rmin [T, J , B]∗P Rmax [T−1] [ J
−1] [B−1])

91 for T in t :
92 for D in d :
93 for K in k :
94 model . addConstr (Lam tn [T, s i D [D−1]]−Lam D[T−1] [D−1] [K−1]+mu Dmax [T,

D, K]−mu Dmin [T,D,K] == 0)
95 model . addConstr (P Dmax [T−1] [D−1] [K−1]−P D [T, D, K] >= 0)
96 model . addConstr (P Dmax [T−1] [D−1] [K−1]−P D [T, D, K] <= (1−om Dmax [T,

D, K] ) ∗P Dmax [T−1] [D−1] [K−1])
97 model . addConstr (mu Dmax [T, D, K] <= om Dmax [T, D, K]∗P Dmax [T−1] [D

−1] [K−1])
98 model . addConstr (mu Dmin [T,D,K] <= om Dmin [T, D, K]∗P Dmax [T−1] [D−1] [

K−1]∗1000000)
99 model . addConstr (P D [T, D, K] <= (1−om Dmin [T, D, K] ) ∗P Dmax [T−1] [D

−1] [K−1])
100 for T in t :
101 model . addConstr ( quicksum (P D [T, 1 , K] for K in k )==0.19∗quicksum (P D [T, D, K

] for K in k for D in d) )
102 model . addConstr ( quicksum (P D [T, 2 , K] for K in k )==0.27∗quicksum (P D [T, D, K

] for K in k for D in d) )
103 model . addConstr ( quicksum (P D [T, 4 , K] for K in k )==0.27∗quicksum (P D [T, D, K

] for K in k for D in d) )
104 for T in t :
105 for N in n :
106 model . addConstr ( quicksum (P S [T, I , B] for B in b for I in i )+quicksum (

P R [T, J , B] for B in b for J in j )==quicksum (P D [T, D, K] for K in k for D
in d) )

107 obj = ( quicksum (Lam S [T−1] [ I −1] [B−1]∗P S [T, I , B] for B in b for I in i for T in
t )

108 +quicksum (Lam R [T−1] [ J−1] [B−1]∗P R [T, J , B] for B in b for J in j for T
in t )

109 −quicksum (Lam D[T−1] [D−1] [K−1]∗P D [T, D, K] for K in k for D in d for T
in t )

110 +quicksum (P Rmax [T−1] [ J−1] [B−1]∗mu Rmax [T, J , B] for B in b for J in j
for T in t )

111 +quicksum (P Dmax [T−1] [D−1] [K−1]∗mu Dmax [T, D, K] for K in k for D in d
for T in t ) )

112 model . s e tOb j e c t i v e ( obj , GRB.MINIMIZE)
113 model . opt imize ( )

B.3.2 Output

1 Optimize a model with 6528 rows , 5688 columns and 19680 nonzeros
2 Co e f f i c i e n t s t a t i s t i c s :
3 Matrix range [ 2 e−01, 9e+08]
4 Object ive range [ 1 e+01, 9e+02]
5 Bounds range [ 1 e+00, 1e+00]
6 RHS range [ 1 e+01, 9e+02]
7 Warning : Model conta in s l a r g e matrix c o e f f i c i e n t s
8 Consider r e f o rmu la t ing model or s e t t i n g NumericFocus parameter
9 to avoid numerica l i s s u e s .

10 Preso lve removed 6517 rows and 5676 columns
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11 Preso lve time : 0 .03 s
12 Preso lved : 11 rows , 12 columns , 28 nonzeros
13 Var iab le types : 8 continuous , 4 i n t e g e r (4 binary )
14
15 Root r e l a x a t i o n : o b j e c t i v e −9.257819 e+04, 0 i t e r a t i o n s , 0 .00 seconds
16
17 Nodes | Current Node | Object ive Bounds | Work
18 Expl Unexpl | Obj Depth I n t I n f | Incumbent BestBd Gap | I t /Node Time
19
20 ∗ 0 0 0 −92578.19000 −92578.190 0.00% − 0 s
21
22 Explored 0 nodes (0 s implex i t e r a t i o n s ) in 0 .06 seconds
23 Thread count was 8 ( o f 8 a v a i l a b l e p r o c e s s o r s )
24
25 Optimal s o l u t i o n found ( t o l e r an c e 1 .00 e−04)
26 Best ob j e c t i v e −9.257819000000 e+04, best bound −9.257819000000 e+04, gap 0.0000%
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