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COMPUTATIONAL ANALYSIS OF A WING OSCILLATOR 

 

Ryne Derrick Radermacher, M.S.E. 

Western Michigan University, 2012 

 

An analysis of a newly proposed wind power extraction device called a wing oscillator 

was performed using computational fluid dynamics (CFD). A wing oscillator is a device that 

consists of two airfoils attached to a central pivot by means of a frame or shaft.  Oscillatory 

motion is produced by controlling the angle of attack of the airfoils as a fluid flow is passed over 

the device. A robust mathematical scheme was developed to investigate the performance of the 

wing oscillator and was hooked to the CFD software package FLUENT through User Defined 

Functions (UDFs). Using the dynamic meshing analysis methods available in FLUENT in 

conjunction with the developed mathematical scheme, a time accurate dynamic analysis of the 

wing oscillator was performed. Post processing of the various analyses was completed using the 

built in FLUENT post processing functions as well as reading the solution output data into a 

custom MATLAB code.  A parametric study was performed using a combination of different 

system variables such as maximum system angle, airfoil angle of attack, and spring constant. The 

aerodynamic characteristics of the various cases were analyzed and the system performance 

was compared to analyze the effect of the individual parameters.  
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CHAPTER 1 – INTRODUCTION AND BACKGROUND 

 The concept of extracting power from the wind has been around for hundreds of years 

in the various forms of windmills that have evolved throughout the years into highly engineered 

wind turbines. Recently, these wind turbines have been at the forefront of the green energy 

movement and have thus seen tremendous research and modern implementation. Current wind 

turbines can be found in two basic forms. The first form is the traditional windmill style that 

employs a horizontal rotational axis, which is commonly referred to as Horizontal Axis Wind 

Turbines (HAWT). The second form is a more modern design whereby the rotational axis is 

vertical (VAWT).  

 Although many recent research efforts have been focused on these existing wind 

turbine designs, there are still some inherent problems that have yet to be overcome (1). First, 

due to the rotational nature of the motion of the turbines there are many dynamic loads 

interacting with the blades and structure. These can come from the body weight of the blades 

themselves as the blades move through the rotation and the direction of the resolved force 

changes, or the dynamic centrifugal force caused by varying wind speeds. All of this dynamic 

loading can cause fatigue in the system, which could lead to failure of the wind turbine or power 

generation components.  

 Some wind turbines have the ability to control the pitch of the blades to adjust for 

varying wind speed, however, others do not offer this functionality and thus cannot be operated 

in all wind conditions. If the wind speed becomes too high, these static blade wind turbines 

could over-spin which could cause damage or failure to the system. Therefore, some wind 

turbines are equipped with a brake that can stop the rotational motion and subsequent power 

generation. This stoppage of power generation is inherently inefficient and a large problem if 

society would ever rely on these wind turbines for power generation.  

 An issue presented by Shimizu with these conventional wind turbines is the 

aerodynamic noise caused by the blades as they rotate through the air at high speed. This noise 

is especially problematic with large scale HAWT that can demonstrate very high blade tip 

speeds. Another issued Shimizu presented was that at low Reynolds numbers, the efficiency of 

these conventional designs can suffer due to the designs being susceptible to laminar 

separation. (2) 

The current research represents an attempt to overcome some of these issues with the 

traditional designs. The current design is based off the design that was proposed by Liu and 

consists of two NACA 0015 airfoils attached to a central pivot by means of a frame or shaft.  A 

spring used for system damping is attached to the frame at the central pivot. Rotation about this 

central pivot is achieved by controlling the angle of attack of the leading and trailing airfoils 

while airflow, wind, is passed over the device. When a maximum system angle is reached, the 

AoA of the airfoils is reversed and the device begins to rotate in the opposite direction. In this 

way, oscillatory motion is achieved and repeated to generate power. Some of the advantages of 
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this system are the simplicity, adaptability, and lack of significant differential loadings. The 

design is simple in that elaborately tuned airfoils are not needed; a symmetrical airfoil with a 

constant span wise chord is preferred.  The system is adaptable, meaning it will scale easily 

depending on the application, and could even potentially be used in rivers. The fact that there is 

no significant span wise differential loading and the two airfoils are countering each other 

means the frame support system can be simple.  (1) 

To extract power from this system, a transmission system that includes a linear gear 

crank, gearbox and generator is attached near the pivot point. The purpose of this linear gear 

system and gearbox is to convert the oscillator motion into rotational motion in one direction, 

which is a requirement for the generator. This transmission system will not be considered in this 

study, as it would introduce significantly more design questions that are beyond the scope of 

this study. Figure 1 below shows a conceptual mockup of the wing oscillator. 

 The concept of capturing wind energy by use of an oscillating airfoil has been explored 

by McKinney whose focus was a single airfoil oscillating vertically through a complex electro-

mechanical system. McKinney’s Wingmill design overcame some limitations of previous similar 

oscillating designs that focused more on flapping wing motion similar to a bird. The Wingmill 

employed rectangular planform that utilized whole wing motion to eliminate the need for any 

span wise twisting. These features minimized differential span loading and allowed for a more 

simplified analytical analysis approach before any experimentation was conducted. The 

experimental results provided an efficiency of 28.3% and concluded that the motion and power 

generation come mainly from the normal forces rather than the leading edge suction over the 

airfoil. McKinney used a NACA 0012 airfoil and kept the maximum angle of attack (AoA) at 15.5 

degrees, which is normally just beyond the static stall angle for the 0012. It was found, however, 

that there was a possibility of stall delay due to the dynamic motion of the airfoil. (3)    

 Shimizu used a multi-objective design study to analyze a large number of CFD 

simulations of an oscillating airfoil. This multidimensional analysis lead to the optimization of 

both power output and efficiency of what Shimizu referred to as a flapping wing power 

generator. The CFD was conducted using an unsteady compressible finite difference Navier- 

Figure 1- Wing Oscillator (1) 
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Stokes code. The two dimensional, ten chord far field computational domain captured the NACA 

0012 airfoil with a C- type grid of 280 by 80 points with 200 points residing on the airfoil. The 

study showed a tradeoff between power output and efficiency with a maximum efficiency 

shown to be 48.6%. The lower bound of the efficiency was 36.5% with values for different 

motions lying all throughout the bounds. The study also concluded that when efficiency was the 

emphasized design objective, the heaving or vertical translation should be small with a high 

oscillation frequency. (2) 

 Kinsey explored extracting wind power from an oscillating airfoil through a parametric 

study, which focused on the pitching amplitude and nondimensional frequency. The 

computational analysis was completed using a NACA 0015 airfoil with an unstructured, rotating, 

non- conformal mesh in FLUENT. This mesh did not have to deform through the analysis; 

instead, the mesh rotated along the non- conformal boundary to control the pitching while the 

heaving was controlled through dynamically changing the inlet velocity magnitude and 

direction. This dynamic scheme allowed for second order temporal discretization that helped 

decrease the numerical diffusion caused by larger time steps. The highest numerical efficiency 

was found to be approximately 34% at a nondimensional frequency of .15 and a pitching 

amplitude of 70-80 degrees. (4) 

Due to the wing oscillator having two airfoils in the flow, it is necessary to assume there 

will be an interaction between the wake from the leading airfoil and the trailing airfoil. Although 

Michelsen used steady positions, the observed effect was that lift and drag would both slightly 

decrease for the trailing airfoil with the greatest decrease being observed when the leading 

airfoil was slightly above the trailing airfoil.  The conclusion for the decreased forces was that 

the leading airfoil created a downwash that was experienced by the trailing airfoil. Michelsen 

also observed that the higher the AoA of the leading airfoil, the greater the effect on the trailing 

airfoil due to a larger wake being created. (5) 

 In the current research, a dynamic analysis of this wing oscillator is performed using the 

computational fluid dynamics software package FLUENT. The analysis is a two dimensional 

turbulent, transient, dynamic mesh analysis, with the mesh motion driven by a mathematical 

scheme which uses the calculated forces acting on the airfoils in the computational domain at 

every time step. User Defined Functions (UDFs), which are written in the C programming 

language and linked into FLUENT, perform the calculations that drive the motion and 

incorporate the mathematical scheme. By varying the system variables, many different cases 

were analyzed and compared.  

 The CFD solution setup and meshing parameters that were used for the dynamic 

analysis were validated through a steady state analysis and compared to published experimental 

data. The dynamic analysis scheme was verified using a combination of a MATLAB test program 

and a calculations test program written in the C programming language. All of the results 

presented in the current research were post processed using a custom written MATLAB code. 
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CHAPTER 2 – NACA 0012 VALIDATION 

2.1 – INTRODUCTION 

 The validation of a NACA 0012 airfoil was performed to show the computational setup 

and methodologies provided an accurate solution. These methodologies and settings could then 

be applied to other geometries with confidence in an accurate solution being calculated. The 

NACA 0012 was chosen for the initial validation due to the widely available experimental data to 

compare with the computational results and the similarity to the NACA 0015 airfoil that is used 

on the wing oscillator. A boundary layer validation was completed to show that the meshing 

scheme would resolve the boundary layer thoroughly as required by the turbulence model. The 

coefficient of lift (Cl) is compared to the airfoil AoA and the coefficient of drag (Cd) is compared 

to Cl. This data was available experimentally, thus it was convenient to reproduce these data 

sets computationally. The coefficient of pressure (Cp) at 5 degrees AoA was compared to 

experimental data. A grid independence study was also completed. 

2.2 – MESHING 

 The meshing scheme used for this validation was a two dimensional fully structured C-

type far field grid. The meshing software used was ICEM CFD, which provides extensive 

structured meshing controls. The first step in the meshing process is to import the curves that 

make up the top and bottom surfaces of the airfoil. The curves are created from a set of 

coordinate points. The coordinate point files for NACA airfoils were generated through an online 

application called JavaFoil, which generated the airfoil coordinate files for any number of 

specified points (6). A validation of the JavaFoil points was completed using MATLAB and the 

airfoil points generated through JavaFoil were compared to the airfoils calculated by the NACA 

equation. Equation 1 is shown below and has been modified from the original NACA equation to 

provide a closed trailing edge, by changing the fourth order coefficient such that all the 

coefficients sum to zero (7).  

� = 	±0.120.2 (0.2969√ − 0.126 − 0.35160� + 0.2843� − 0.1036�	 
Equation 1- 0012 Airfoil (7) 

 The results of the comparison are shown in the Figure 2 below. Note that the airfoil is 

distorted from its actual shape due to the scaling of the axes. The 300 point JavaFoil 

approximation matches the curve created by the NACA equation over the entirety of the chord 

length. Minimal error can be noticed along the top and bottom surfaces from the maximum 

thickness to just before the trailing edge. This error was concluded to be within the acceptable 

range and the 300 point coordinate file to be sufficient in approximating the airfoil shape. 

 It was found experimentally through a series of poor results that the internal ICEM 

formatted point data imported did not properly resolve the high curvature leading edge region 

of the airfoil. This error was present when coordinate files of 100 points to 10,000 points were 
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used. The fact that the error was present in such a wide range of coordinate file sizes lead to the 

conclusion that the error was coming from the way ICEM splined the curves through the points, 

rather than the coordinate files. To overcome the poor curves create by ICEM, the coordinate 

files were instead imported into SolidWorks. Solidworks was able to create curves without the 

spline error using the same 300-point coordinate file. These curves could then be exported by 

SolidWorks as IGES geometry files and imported into ICEM without the leading edge spline 

error. The airfoil curves were of unit length with the leading edge located at the origin and the 

trailing edge extending in the positive X direction.  

 The computational domain was a C-type far filed extending 12 chord lengths from the 

airfoil in all directions. The domain consists of four edges, a curved edge in front of the leading 

edge of the airfoil, top and bottom edges that are parallel to the chord line of the airfoil, and a 

vertical edge behind the trailing edge. The generation of these edges comes from first defining 

corner points and then connecting them with either an arc or straight edges. The top and 

bottom edges are combined with the curved edge to form an inlet part, and the vertical edge 

forms the outlet part. The grouping of these edges into parts is important for the boundary 

condition definition phase. A fluid surface part is created between the extents of the domain 

and overlaps the airfoil curves. 

 Once the geometry is created and grouped into the appropriate parts, the blocking 

meshing scheme can be implemented. ICEM uses a blocking scheme that breaks the domain into 

smaller blocks that are associated to the geometry and provide precise control of the mesh. The 

initial blocking is a large rectangle that encompasses the entire computational domain. The 

edges of this rectangle are associated to the edges of the domain. This association means the 

mesh definition of the block will be used on the associated edges. In this manner, a straight 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.08

-0.06

-0.04

-0.02

0
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c

 

 

300 Point Aprximation
NACA Equations

Figure 2- NACA 0012 Airfoil Validation 
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block edge can define the meshing parameters on a curved geometry edge and the generated 

mesh will follow the contour of the curve, not the block edge.  

 The initial block needs to be split into a number of smaller blocks in order to capture the 

airfoil geometry. The first split is called an orthogonal, or Ogrid, split and is used to define mesh 

orthogonally to the airfoil. This orthogonality to the airfoil is used to minimize mesh distortion 

and helps create a structured boundary layer with sufficient resolution. The Ogrid split creates  

multiple blocks, the most important of which is used to define the airfoil. Mesh is created 

through all blocked areas of the domain, so the block that defines the airfoil is deleted. The top 

and bottom edges of the deleted block are associated to the top and bottom of the airfoil 

respectively. The two block corner points near the trailing edge are combined and the resulting 

triangular block is collapsed such that all that remains is an edge extending from the trailing 

edge of the airfoil to the outlet domain edge.  Other, linear, splits were made in the blocks to 

create edges to control the mesh orientation and sizing in critical locations. The final blocked 

geometry is shown in Figure 3 below. 

  The blue lines in Figure 3 above represent block edges that are not associated to any 

geometry. The straight green lines near the inlet, the green curve, are also blocked edges, but 

are associated to the inlet geometry. This color scheme provides a visual representation of what 

edges are associated to geometry, which can be important if the geometry is complex. The 

outlet is represented by the vertical pink line and has blocked edges associated with it, but they 

are not visible due to overlapping. Care was taken to ensure the blocked edges extending from 

the airfoil to the edges of the domain were as perpendicular as possible to the airfoil surface to 

Figure 3- 0012 Blocking Scheme 
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ensure the cells in the near wall region are as rectangular as possible. Uniform and rectangular 

near wall cells are necessary to provide an accurate boundary layer computation.  

 Mesh sizing was then applied to the blocked edges. The most critical area for the mesh 

sizing is the near wall region of the airfoil. The turbulence model requires the nondimensional 

wall distance, y
+
, of the first cell to be on the order of 1 and the boundary layer must be resolved 

by at least 10-20 cells (8) (9). Meeting these requirements will be proven and validated later in 

this chapter, but the y
+
 requirement is heavily based off the initial cell height and the boundary 

layer resolution is based heavily off the growth rate of the near airfoil cells. Through 

experimentation, an initial cell height of 0.00015 meters allowed the solution to meet the y
+
 

requirement. The cell growth rate in the near wall region was set to 1.05, which was the 

smallest growth rate ICEM was capable of producing for this particular mesh. The total number 

of cells making up the airfoil surface was 235 for the base mesh and was varied for the grid 

independence study shown later in this chapter.  

 The rest of the mesh sizing came from attempting to create smooth transitions of mesh 

size between the blocks. Smooth transitions are required in order for the computation to 

provide accurate results. Having too fast of transitions or major discontinuities in cell size can 

introduce errors into the computation, such as numerical diffusion. One of the most important 

regions to have smooth transitions is, again, the near airfoil region and the vicinity moving away 

from the airfoil. This was accomplished by controlling the number of cells on the blocked edges 

moving away from the airfoil, as well as matching the cell sizes on adjacent block edges and 

using a growth rate of 1.1.  

Figure 4- 0012 Far- Field Mesh 
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 The mesh sizing in the wake region behind the airfoil is strongly influence by the 

boundary layer sizing. For computational validity, it is important for the wake region to be well 

resolved. The boundary layer spacing was slightly diffused to a uniform spacing on the outlet. 

This seemed to reduce computational errors that would occur by having so many high aspect 

ratio cells located in the wake, as well as allowing the ICEM smoothing algorithm to properly 

smooth the mesh, instead of tangling the cells when no diffusion was used.  

 The total number of cells created for the base validation mesh was 43,279. After the 

mesh was created, a Laplacian smoothing algorithm was employed for 10 iterations. This 

smoothing further assisted the smooth cell transitions and added some slight curvature to the 

mesh in regions when two blocks would come together at an angle.  The final base mesh and 

near airfoil region meshes are shown in Figure 4 and Figure 5 above respectively. 

2.3 – SOLUTION SETUP 

 The solution setup used in the validation is critical because a similar setup was used for 

the dynamic analysis. The validation cases were run using the steady, two dimensional, double 

precision, pressure based FLUENT solver. To decrease the computational time required for each 

case, parallel computation was used. Steady state was chosen over transient because the 

experimental data came from wind tunnel testing and was not presented as time dependent. 

Steady state calculations also reduce computational time. 

 One of the most important aspects of the computational setup is the choice in 

turbulence model. A turbulence model is required as it is unfeasible to resolve all of the true 

turbulent scales in space and time. A model is used to approximate, or filter out, parts of the 

turbulence. This is accomplished by using an averaging scheme called Reynolds Averaging, and 

when applied to the governing equations, is called the Reynolds Averaged Navier Stokes (RANS) 

Figure 5- 0012 Near- Airfoil Mesh 
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equations. RANS modeling eliminates the turbulent structures from the computation and 

averaged pressure and velocities can be obtained. The RANS model, however, adds unknown 

terms to the transport equations, which must be resolved by adding a turbulence model. This is 

generally referred to as turbulence closure.  

 The turbulence model used in the validation, and subsequently the dynamic analysis, 

was the k-omega shear- stress transport (SST) model. This robust model is actually a 

combination of the standard k-omega model and the k-epsilon model. This combination takes 

advantage of the strengths of both models. The standard k-omega model provides an accurate 

formulation in the near airfoil region, while the standard k-epsilon model is more accurate in the 

far field regions. This blending makes the k-omega SST model valid for a wide range of flows and 

is recommended for airfoils. The k-epsilon model must first be transformed into a k-omega 

formulation, and then a blending function is used to activate the k-omega model in the near wall 

region and the transformed k-epsilon in the far field region. When using this model, the flow is 

assumed to be turbulent everywhere, and does not provide a transition from laminar to 

turbulent flow. This assumption has the potential of causing some error between the 

computational and experimental data. A turbulent boundary layer plays a significant role in the 

formulation of drag, thus the error can be most noticed in the comparison of drag forces. (9) 

 The fluid was set to air with a density of 1.225 kilograms per meter cubed and a viscosity 

of 1.7894E
-5

 kilo grams per meter second. These values represent the FLUENT defaults and were 

used because the exact experimental conditions were unknown. The inlet of the computational 

domain was set to as a velocity inlet with a velocity magnitude of 2.485 meters per second. This 

velocity provided a chord based Reynolds number of approximately 170,000, which 

corresponded to the experimental data. To control the AoA of the validation cases, the velocity 

magnitude was split into the corresponding X and Y components. These components are shown 

in Table 1 below. The turbulent boundary conditions at the inlet were a turbulent intensity of 

2% and a turbulent viscosity ratio of 10. These values were within the reasonable range 

suggested by FLUENT and were not defined due to experimental data matching as the 

experimental conditions were not stated (8).  The outlet of the domain was set as a pressure 

outlet with default boundary conditions. The airfoil was set as a no- slip wall such that a 

boundary layer would form over the surface.  

In order for FLUENT to calculate the solution coefficients, the reference values used in 

the calculations must be properly set. FLUENT can compute these reference values by specifying 

the appropriate part from which to calculate and the reference zone to where the values should 

be applied.  The airfoil was the part selected, and the main reference value calculated from it 

was the reference, or chord, length. The fluid zone was specified as the reference zone, as this 

was the only zone created in the meshing scheme.  
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α Vx Vy 

-2 2.483486 -0.08673 

0 2.485 0 

2 2.483486 0.086725 

4 2.478947 0.173345 

5 2.475544 0.216582 

6 2.471387 0.259753 

8 2.460816 0.345845 

10 2.447247 0.431516 

12 2.430697 0.516661 

Table 1- 0012 Validation Velocity Components 

 The spatial discretization of all the transport equations was set to second order upwind 

scheme. FLUENT recommends this second order scheme to decrease the numerical diffusion 

error that is more likely to occur with a first order scheme. Additionally, the second order 

scheme was recommended for flows that are not aligned with the grid, which is the case for the 

higher angle of attack validation cases as well as the dynamic analysis where an unstructured 

mesh was used. The pressure- velocity coupling scheme was the FLUENT default SIMPLE 

scheme, and was recommended for steady state flows. (8) 

 The convergence criterion for all transport equation scaled residuals was set to 10
-4

 and 

was met by all of the equations for each validation case. This 10
-4

 is an order of magnitude lower 

than what was recommended by FLUENT for most cases (8). The solution was always initialized 

using the boundary conditions at the inlet. The solutions were iterated until convergence, with a 

maximum number of iterations set at 50,000, which was never reached. The number of iteration 

required for convergence varied by case, but generally fell below 10,000.  

2.4 – VALIDATION RESULTS 

 Resolving the boundary layer of the airfoil with 10 to 20 cells with an initial y
+
 on the 

order of 1 was a requirement of the k-omega SST turbulence model. The definition of y
+
 is given 

in Equation 2 below and represents the non-dimensional wall distance.  

�� = ��∗�  

Equation 2- Y Plus (10) 

 

�∗ = ����  

Equation 3- Friction Velocity (10) 
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 Where y is the cell wall distance, u* is the friction velocity, and ν is the dynamic 

viscosity. The τw is the wall shear stress and r  is the air density. Notice that the y
+
 quantity is not 

only based off the cell distribution, but it is also a function of the flow itself through the friction 

velocity. This function of the flow makes meshing for a specific y
+
 value somewhat of a guess 

and check process.  

 The validation of the boundary layer is accomplished by plotting the y
+
 value against the 

ratio of the free stream velocity, U, and the friction velocity. The results of the boundary layer 

validation are shown in Figure 6 below. The initial cell y
+
 is approximately 0.85, which is 

acceptably on the order of 1. Care was taken to select a region of the airfoil where there was not 

a significant velocity gradient and that the selection plane was perpendicular to the airfoil 

surface. The location of the boundary layer selection line is shown in Figure 7 below.  

At a y
+
 of approximately 100, the validation data can be seen to level out, which 

indicates the edge of the boundary layer, where the local velocity is nearly the same as the free 

stream velocity. There are approximately 24 cell data points before the leveling out of the data, 

which leads to the conclusion that the boundary layer is resolved with more than the required 

amount of points. The ample amount of boundary layer points combined with the initial y
+
 on 

the order of 1 allows for the conclusion that the meshing scheme used provides a sufficiently 

resolved and valid boundary layer. 

Figure 6- Boundary Layer Validation 
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 A grid independence study was completed to validate that the mesh sizing was not 

having an influence on the solution result. Three different mesh sizings were used, one more 

coarse and one more fine than the base, medium, mesh. The three meshes were run at an AoA 

of 5 degrees using the computational setup described earlier in this chapter. The only mesh 

sizings that were changed from mesh to mesh were the number of cells on the airfoil, which had 

an effect on the total number of cells. Table 2 outlines the different mesh sizings and the force 

results of the study is shown below.   

 Cells Airfoil Cells Cl Cd 

Coarse 25344 140 0.492876 0.016802 

Medium 43279 235 0.491980 0.016797 

Fine 68034 345 0.491528 0.016824 

Table 2- Grid Independence Validation 

 As Table 2 shows, the total number of cells ranged from 25,344 to 68,034 with the 

number of cells comprising the airfoil surface ranging from 140 to 345. The lift and drag 

coefficients did not vary any significant amount from the coarse to fine mesh cases. This lack of 

any variation allows for the conclusion that the solution result is independent of the mesh and 

that the medium base mesh and sizing methodology is acceptable.  

To further demonstrate grid independence, the pressure coefficient as a function of 

airfoil chord location has been plotted in Figure 8 below. Figure 8 is slightly ambiguous, but this 

is due to all of the validation data producing an identical pressure coefficient curve. This 

convergence of validation data further leads to the conclusion of grid independence. A further 

pressure curve validation is explored later in this chapter. 

Figure 7- Boundary Layer Selection Line 
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  Since the boundary layer requirements for the turbulence model have been validated 

and the base mesh has been shown to provide a mesh independent solution, the force and 

pressure validation data can be presented with confidence. The first validation is that of the lift 

coefficient. The validation data has been plotted against the experimental data and is shown in 

Figure 9below. 

 The validation solution matches well with the experimental data until approximately an 

AoA of 9 degrees. The error at the higher AoA is due to the CFD solution not properly predicting 

the separation that leads to the stalling of the airfoil. This could be due to a limitation in the 
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Figure 9- 0012 Lift Validation (16) 
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turbulence model not being accurate in the stall regime for steady state calculations. Although 

there is the discrepancy at higher AoA, the majority of the lift curve is shown to match the 

experimental data with very slight variations that could have been caused by the recording of 

the experimental data.  

The drag coefficient validation is shown in Figure 10. First, the fluctuations and poor 

resolution of the experimental data were present in the original data and is not an error 

attributed to the re-presenting of the data. Despite the fluctuations in the experimental data, 

the trend of validation data follows the experimental data until a Cl of proximately 0.7. The zero 

lift error in the drag values is approximately 10%, which is acceptable due to the challenges of 

accurately modeling drag through CFD. This discontinuity at the higher Cl values can be 

attributed to the CFD solution not being stalled because the error occurs in the same region as 

the error in the lift curve above.  

 By comparing the validation and experimental results for the force values through 

Figure 9 and Figure 10, it can be concluded that the CFD solution is providing sufficiently 

accurate results for a majority of the AoA range. The error at high AoA and Cl values comes from 

limitations in the turbulence model when dealing with separating flow and stall conditions.  

The final validation performed on the NACA 0012 airfoil was to compare the airfoil 

pressure coefficient from the CFD solution to that of the experimental data and is plotted in 

Figure 11. The AoA used in the Cp validation was 5 degrees so that there would be a 

distinguishable difference in the upper and lower surface pressures of the airfoil, as well as 

there being experimental data available for this AoA. 
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Figure 10- 0012 Drag Validation (16) 
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 It should be noted that the Y axis has been reversed, such that the negative pressures 

are on the top. This was done to better represent the physical nature of the pressure, because 

the upper surface of the airfoil experiences the lower pressure. One thing to notice in the figure 

above is the stagnation pressure coefficient has been modeled almost perfectly, as the highest 

possible pressure is the pressure at the stagnation point and has a coefficient value of 1.  This 

can be seen in the lower left corner of the graph where the validation solution maximizes at a 

Cp of 1. The location of the stagnation pressure is the lower, positive pressure side, leading edge 

which is expected from a positive AoA.  

 The lower surface Cp from the validation solution matches the experimental data well 

from the leading edge to the trailing edge. There is a slight error at an x/c of 0.2, but this 

appears to be an error in the experimental data because at an x/c of approximately 0.275 the 

validation and experimental data match again. The upper surface Cp values match well from an 

x/c of 0.3 to the trailing edge. From the leading edge to the x/c location 0.3, the validation 

solution seems to have slightly over predicted the negative Cp as compared to the experimental 

data. The resolution of the experimental data is such that the true extent of the over prediction 

cannot be fully realized. At an x/c of approximately 0.025, the maximum leading edge suction 

occurs and there is no experimental data in this region. It is entirely possible that if experimental 

data was available for this region it would show a similar spike, but there is just no way of 

knowing. Although the Cp is slightly over predicted on the upper surface just behind the leading 

edge, the error is small and with the rest of the validation Cp curve matching the experimental 

data, it can be concluded that the pressure prediction is sufficiently accurate in providing a valid 

solution.  
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Figure 11- 0012 Cp Validation (17) 
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 In conclusion, the boundary layer requirements from the turbulence model have been 

met, the solution has been shown to be independent of the grid, and the airfoil forces and 

pressure distribution have been validated against experimental data. Although there is some 

slight error in the force validations due to turbulence model behavior, the error occurs at the 

extremes of AoA and the majority of the lift and drag curves match the experimental data. 

Further, the error displayed by the Cp distribution at 5 degrees AoA is minimal and no 

discernable error is present in the lift curve at 5 degrees. This is an important validating fact for 

the Cp data, because the lift is mostly calculated by integrating the pressure distribution. Each of 

these individual validations helps lead to an overall conclusion that the meshing scheme derived 

for the NACA 0012 airfoil and the solution setup used in FLUENT provide an overall accurate and 

valid result. 
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CHAPTER 3 – NACA 0015 VALIDATION 

3.1 – INTRODUCTION 

 The NACA 0015 airfoil was selected for use in the wing oscillator due to its slightly larger 

thickness over the NACA 0012. This increased thickness was beneficial to the initial design 

prototype and will be discussed in chapter 4. The 0015 is not as widely used as the 0012 for 

research and thus there is a limited amount of experimental data available in a Reynolds 

number regime that is similar to the wing oscillator, and was the reason for the thorough 0012 

validation. The only experimental data available for the 0015 is the lift and drag curves at a 

Reynolds number of 166,000. 

 The meshing scheme used for the 0015 airfoil was identical to the 0012 scheme 

described in the previous chapter in every way, so much so that the 0012 ICEM file was 

converted to a 0015 by deleting the 0012 geometry and importing the 0015 airfoil curves. These 

0015 curves were then associated to the existing blocking and mesh sizing. Due to the increased 

thickness of the 0015, the mesh sizing of adjacent edges between the blocks on the upper and 

lower airfoil surfaces had to be re- matched slightly. The number of cells on the airfoil was 235 

and the total number of cells was 43,279. Both of these values are identical to the 0012 mesh.  

  The FLUENT solution setup was also identical, where by the 0012 case was loaded and 

the 0015 mesh imported into the case. Due to all of the boundaries being identically named, the 

0012 boundary conditions were read onto the 0015 boundaries without issue. Although the case 

was converted from the 0012 to the 0015 without error, all of the settings were checked 

manually. The only difference in the solution setups was that a different velocity magnitude was 

Figure 12- 0015 Far Field Mesh 
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required due to the slightly lower Reynolds number. To meet the 166,000 Reynolds number 

from the experimental data, the velocity magnitude was set to 2.425 meters per second. The X 

and Y velocity components used to control the angle of attack are given in Table 3 below. 

α Vx Vy 

-2 2.423523 -0.08463 

0 2.425 0 

2 2.423523 0.084631 

4 2.419093 0.169159 

6 2.411716 0.253482 

8 2.4014 0.337495 

10 2.388159 0.421097 

12 2.372008 0.504186 

Table 3- 0015 Validation Velocity Components  

 

3.2 – VALIDATION RESULTS 

 As mentioned above, the 0015 experimental data was limited to the lift and drag curves. 

The lift curve is given in the Figure 13 below. As with the 0012 airfoil, the validation data 

matches well with the experimental data for a majority of AoA. The discrepancy, again, is in the 

higher AoA region, however the error is smaller than the 0012 case. This is due to the 0015 not 

stalling until approximately 11 degrees and the CFD solution not stalling at all. Right until this 11 

degree stalling point, the validation data matches the experimental data almost perfectly. The 

only other error occurs at approximately 6 degrees and appears to be an error in the 
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Figure 13- 0015 Lift Validation (16) 
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experimental data as the experimental data point does not lie in a straight line with the previous 

and next points. Overall, the error is minimal and the error in the stalling AoA region can be 

attributed to a turbulence model limitation.  

 The drag validation curve is given in Figure 14 below. The 0015 drag validation matches 

the experimental data better than the 0012 drag validation. This is partially due to the lack of 

severe data fluctuations as seen in the 0012 data. The only peculiar experimental data point is 

the zero lift data point, which shows a dip from the smooth trend normally observed. Due to this 

dip the error at zero lift is approximately 67%. This error seems to over represent the overall 

error as the trend through most of the drag curve is decreasing error. At a Cl of 0.6 the error is 

approximately 19% and at the last data point, the highest Cl, there error is just under 1%. Due to 

the decreasing error through the curve, and the fact that properly modeling drag in CFD 

solutions is difficult, the error displayed is considered acceptable. 

  The 0015 validation data has been shown to match or follow the trend of the 

experimental data and has been concluded to be sufficiently accurate and valid. The lift 

validation is accurate for almost the entire lift curve, and the drag curve error decreases as the 

Cl increases. A larger area of error is the stalling AoA region, which was the same for the 0012 

validation, and has been attributed to a limitation in the turbulence model handling separated 

flow. Another large area of error is the drag at the zero lift condition. This error is suspected to 

be due to an error in the experimental data as that data point seems to be below the trend of 

the other points. The experimental data was also suspected to be slightly erroneous in the 0012 

validation, but the low zero lift drag data was not present in the 0012 validation.  
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CHAPTER 4 – DYNAMIC ANALYSIS 

4.1 - GEOMETRY 

 In order to predict the performance of the wing oscillator, a dynamic computational 

analysis was carried out. This analysis was modeled after a proposed prototype that was 

designed for wing tunnel testing in Western Michigan University’s Advanced Design Wind 

Tunnel.  Care was taken to ensure the computational analysis would model as closely as possible 

the wind tunnel testing conditions and geometry.  As with the validation cases, only two 

dimensional analyses were conducted due to the limited three dimensional aspects of the flow 

and lack of any major span wise varying geometry with regards to the wing oscillator. 

 The Advanced Design Wind Tunnel has a rectangular test section with a height of .812 

meters and a length of 2.438 meters. The depth of the wind tunnel is 1.143 meters, but is not 

used due to the two dimensional nature of the analysis. From the control room for the wind 

tunnel, the airflow travels from left to right, thus a convenient reference frame is that the X axis 

is positive to the right, which allows for an always positive value for velocity and the y axis is 

positive upwards towards the top of the test section.  This is also the same reference frame used 

by FLUENT, which is beneficial because no geometry transformation is necessary and the 

computational model can be easily related back to the real world wind tunnel. (11) 

 The wing oscillator prototype was designed specifically for use in the Advanced Design 

Wind Tunnel and has been scaled from the original conceptual design from Liu, which is shown 

in Figure 1 (1). The airfoils chosen for the design are designated as NACA 0015 with a chord 

length of .1524 meters.  The airfoil pivot points are located at the quarter chord, or .0381 

meters from the leading edge, and on the chord line through the middle of the airfoil thickness.  

The quarter chord was chosen because it is roughly the aerodynamic center of the airfoil and 

thus the pitching moment will remain the same as the angle of attack changes. This was a design 

feature used for convenience when implementing a control system for the angle of attack. The 

distance between the two airfoil pivot points on the ADWT wing oscillator prototype is 1.1473 

meters, giving each of the airfoils a moment arm of .7366 meters.  The prototype was designed 

to be centered in the wind tunnel such that the main system pivot point is located precisely in 

the middle of the test section. A frame consisting of metal or plastic tubing would be used to 

connect the airfoils to the pivot point, which would be located on a stationary frame with 

bearings to reduce frictional losses in the oscillatory motion. The airfoil angle of attack control 

system would consist of either electronically controlled servos or a mechanical system. The final 

design of the control system was not completed; however it is not critical to the computational 

analysis to have its design finalized as no part of that system is included in the analysis.  

The computational domain consists of four walls representing the wind tunnel test 

section and the two airfoils. All of the other components were excluded from the analysis 

because of the two dimensional nature of the analysis. Excluding the support frames also 
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reduces the computational cost as resolving the flow over the frame bodies is not necessary. For 

computational convenience, the main system pivot point was centered at the origin , (0,0), of 

the computational domain. Using the reference coordinate system above, the inlet and outlet of 

the test section were located at -1.219 and 1.219 meters respectively and aligned parallel to the 

y axis. The top and bottom of the wind tunnel, noted as walls in the computational domain, 

were located at .406 and -.406 meters respectively, and aligned parallel to the y axis. In this 

manner, the computational domain was completely restricted to the xy plane, thus satisfying 

the two dimensionality of the analysis. The airfoils were set in the domain such that the angle of 

attack pivot points for the leading and trailing airfoils are at -.7366 and .7366 meters. A diagram 

of the geometry is given in Figure 15 below where the blue lines represent the wing oscillator 

frame and airfoil chord lines and the black lines represent the wind tunnel boundaries.  

 

4.2 – MESHING 

 The meshing scheme implemented for the computational domain was a fully 

unstructured, triangle based mesh. This particular scheme was chosen for a number of reasons. 

First, due to the need for the airfoils to traverse the computational domain, a structured scheme 

such as that used in the validation cases was not convenient.  As the airfoils heave vertically, the 

domain between the airfoils would get significantly shifted at an angle due to the structured 

requirement of the cells to keep reference to the airfoils. The small boundary layer sized cells in 

this region would become ill aligned to the flow direction and could potentially cause numerical 

errors or convergence problems.  By using an unstructured triangular cell scheme, the cells in 

Figure 15- Wind Tunnel Model Geometry 
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this region do not need to deform themselves to stay referenced to the space between the 

airfoils and would only need to move or deform if a moving body came through the region. 

Second, the FLUENT dynamic meshing parameters are designed to be used on unstructured 

triangular meshes. This includes both the spring based smoothing deformation methods, as well 

as the dynamic re- meshing methods. These specific parameters are described further below.  

 One of the negatives of using this unstructured mesh scheme is that in the near wall 

region, the mesh quality is much harder to control. This control issue makes it more difficult to 

resolve the boundary layer as required by the turbulence models. In order to get an acceptable 

resolution of the flow structure in the boundary layer region, the number of cells on the airfoil 

region had to be increased significantly over the number used in the validation cases. This lack 

of cell control also comes from the fact that the cell spacing can only be defined at the 

boundaries. This limitation has the potential to leave parts of the domain less defined than 

desired due to the growth of the mesh away from the boundaries leaving too large of cells in 

certain flow regions. This is not as much of a problem when using structured meshes because 

artificial edges with spacing definition can be placed to control the mesh density in specific 

regions of the domain. 

 The meshing software used for the unstructured meshing was the ANSYS Workbench. 

Originally ICEM was used, however it was concluded that for two dimensional unstructured 

domains the Workbench approach allowed for more control of the growth parameters and 

overall higher quality meshes. The Workbench approach also allowed for better integration with 

FLUENT and testing of the meshes was faster as FLUENT could be started and the test mesh 

automatically imported through the Workbench software.  Also, the geometry described above 

was easily created through workbench, which allowed for easier modification to the base 

geometry airfoil angle of attacks which were used in different testing conditions.  

 The first step was to create the base computational domain using the Workbench 

Geometry modeler. As described above, the computational domain consisted of four walls 

defining the rectangular test section and the two airfoils. The four walls were simply created 

from straight edges connecting the corner points, which were defined from the known 

geometry points described above. The airfoils were imported in a similar fashion as the 

validation cases. The 0015 airfoil was imported as an IGES file that was created from a 

coordinates text file in Solidworks. Because the imported airfoil shape was of unit length, it 

needed to be appropriately scaled to the dimension of the prototype. In addition to the scaling, 

the airfoil needed to be translated into the base position and then copied so that two airfoils 

existed in the domain. The second airfoil shape then needed to be translated into position as 

well.  In addition to creating these parts in the Geometry Modeler, the airfoils were given an 

initial angle of attack by rotating the airfoils about the airfoil pivot points which again were 

located at the quarter chord. This was accomplished be creating local coordinate systems to use 

as the rotational axes of the airfoils. This initial angle of attack had to be changed at this level of 

the meshing scheme if different angle of attack parameters were desired for testing. The initial 

angle of attack chosen for initial mesh testing was set at negative and positive five degrees for 
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the leading and trailing airfoils respectively. The final geometry setup step was to create a 

surface for the fluid domain itself.  This surface included the rectangle formed by the free walls, 

inlet, and outlet with the airfoil sections cut out as these are represented as solids and do not 

need to be meshed. Figure 16 shows the geometry in Workbench, including the initial airfoil 

geometry before scaling, translation, and rotation. Note that although the initial airfoil 

geometry remains in the Workbench file, it has no effect on the meshing because it is not 

defining any cut outs of the fluid surface. 

 Once the geometry was finished being created with the Geometry Modeler, the ANSYS 

Meshing software is loaded and the geometry data is read. The first meshing step is to create 

named sections for the different geometry edges and boundaries. This naming helps perform 

two tasks. First, by giving the edges and boundaries names, specifying selections for meshing 

parameters is extremely simplified within the Meshing software itself. Second, by choosing 

appropriate names for the edges and boundaries FLUENT can automatically set boundary 

conditions. By default FLUENT uses the simple wall type boundary condition, but if the inlet and 

outlets have names similar to inlet and outlet FLUENT will set those edges to more appropriate 

boundary conditions. The naming process is accomplished in the Meshing software by selecting 

the desired edge and creating a named selection. The named selections used in the current 

meshing scheme are leading and trailing for the leading and trailing airfoils respectively, inlet 

and outlet for the inlet and outlet edges of the test section, and free walls for top and bottom 

edges of the test section. With the exception of the free walls, in which the top and bottom 

edge were grouped, all of the named selections consist of only one edge. The free walls could be 

grouped because the boundary conditions applied to both the top and the bottom are identical.  

 After naming the parts appropriately, the meshing parameters could be set and created. 

First, the unstructured meshing method must be set to all triangles, as opposed to triangle 

dominated or quadrilateral. The all triangles method was chosen because the FLUENT dynamic 

meshing is best suited to these types of unstructured meshed. FLUENT is capable of some 

dynamic meshing with quadrilateral cells, but the re-meshing scheme is only valid for triangular 

cells. Some of the parameters associated with the meshing type are general global parameters 

such as the maximum and minimum mesh sizes, the general transition and growth rate, and the 

Figure 16- Workbench Geometry 
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general amount of smoothing. For all of the unstructured meshes used in this current study, the 

maximum and minimum cell sizes were .02 and .0001 meters respectively. The general 

transition rule was set to slow with a default growth rate of 1.2. The mesh smoothing parameter 

was set to high, which was the maximum available through the Ansys Meshing software. 

 The specific meshing parameters used were edge sizing definitions on the airfoils and 

outlet as shown in Figure 17. All of the specifications used on these edges were defined by the 

number of divisions as opposed to specific sizing requirements like the global parameters. 

Besides defining the number of divisions on the edges other meshing options were selected, 

such as the behavior of the sizing definition and the local growth rate of the cells away from the 

edge. The behavior of the sizing is a parameter that can be set to either soft or hard. When soft 

is selected, the meshing algorithm has more control over the edge sizing depending on the 

proximity of that edge to other geometric and meshing features and definitions. When hard is 

selected, the number of divisions cannot be changed by the meshing algorithm. The hard 

parameter was only used on the outlet edge in order to ensure the mesh in the region behind 

the trailing airfoil was resolved well up to the outlet. The number of divisions on the outlet was 

defined as 50, which in combination of the small sizing on the trailing airfoil, gave sufficient 

mesh resolution, which can be seen in Figure 18 below. 

Figure 17- Edge Sizing Definitions 

Figure 18- Wind Tunnel Mesh 
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 The airfoils were technically defined as two separate edges that shared common leading 

and trailing edge points. It follows that, when defining the local meshing parameters on the 

airfoils each of the edges receives identical definitions. This means that the number of divisions 

specified for each of the airfoils is actually being defined for both the top and bottom surfaces of 

the airfoils. For the base cases used, the number of divisions used was 500 per airfoil side, giving 

a total of 1000 cells per airfoil. This number was determined though experimentation in order to 

get the airfoil y
+
 values to be on the order of 1, which was required by the turbulence model 

used (8). The cell growth rate used for the airfoil edges was 1.075, which was similar to the 

growth rate used in the validation cases, yet provided a reasonable number of total cells. The 

total number of cells used for the base meshes was approximately 80,000. This is an 

approximate number because although identical meshing parameters were used for the meshes 

with different initial angles of attack, the meshing algorithm might not grow the mesh in quite 

the same fashion and the total number of cells could vary slightly.  

 

4.3 - FLOW DRIVEN THEORY 

 There were two choices for driving the system motion for the dynamic analysis. The first 

would be to specify the airfoil motion as a function of time, and the second would be to have 

the flow over the airfoils drive the motion. While exploring the first option, immediate problems 

arose. By specifying the motion, the system output could already be calculated and there would 

be no point in performing a CFD analysis of the system. Another problem would be in 

determining an appropriate specified function. The best way would be to create a function from 

experimental data, but this again defeats the purpose of performing a CFD analysis. These 

problems quickly lead to the conclusion that a flow driven dynamic analysis should be explored 

and conducted if feasible. 

 Determining the feasibility of the flow driven solution was conducted by examining the 

computational tools available. FLUENT is capable of dynamic analyses through the use of its built 

in dynamic meshing tools and User Define Functions (UDFs). By linking UDFs that describe the 

desired motion to FLUENT and then defining the moving boundaries and the re-meshing 

parameters, an analysis with moving bodies can be performed. It became immediately clear that 

the UDF approach would be necessary. Simple UDFs were written to explore their use and 

implementation, as well as investigating the use of the dynamic mesh tools. After the initial 

exploration, it was determined that by implementing a mathematical scheme which describes 

the system motion in FLUENT through UDFs and the built in dynamic meshing tools, a flow 

driven dynamic analysis would be feasible.  
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4.3.1- MATHEMATICAL SCHEME 

 The mathematical scheme used to define the motion, which is passed to FLUENT 

through UDFs, is based upon rotational motion. The rotational motion scheme was used 

because the system as a whole is based on the airfoils, and other system components, rotating 

around a single pivot. The governing differential equation for rotational motion is given below in 

Equation 4.  

�� �!� = �"�! = �# 

Equation 4- Rotational Motion Governing Equation (12) 

 Where θ is the system angle, t is the time, ω is the angular velocity, τ is system torque, 

and I is the system moment of Inertia. The left hand side second order differential represents 

the angular acceleration of the system and is equivalent to the first derivative of the angular 

velocity. For the implementation of this math scheme, it is more important to calculate the 

angular velocity and use that value throughout the following calculations. First, however, it is 

necessary to linearize the differential equation. This can easily be accomplished using a first 

order approximation, which will be sufficient for the analysis. A derivation of this is given in the 

following equations. 

�" = �# �! 

∆" = �# ∆! 

"% = "%&' + �%# ∆! = "%&' + ∆"% 

Equation 5- Linearization of the Governing Equation 

 Where ∆ represents the change in a variable and n represents the current time step. 

This linear approximation simply states that the angular velocity at a given time step is equal to 

the angular velocity at the previous time step plus the current change in the angular velocity. In 

this fashion, the differential equation is calculating only the change in the angular velocity by 

knowing the torque produced by the system at the current time step and the moment of inertia 

of the system. The moment of inertia is constant and an approximate value of 1 was used after a 

rough estimation was completed for the wing oscillator prototype. The torque, however, is 

constantly changing as the flow over the airfoils change with the dynamic motion.  The torque at 

any given time is the sum of the reaction forces from the airfoils acting perpendicular to the 

frame connecting the airfoils and passing through the pivot point, multiplied by the distance 

from the airfoil pivot point to the central system pivot point. The airfoil angle of attack pivot 

point was chosen because it is at this point where the airfoils are connected to the system, thus 

the reaction forces must be resolved at this location.  
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To resolve the reaction forces such that they are parallel to the frame, trigonometric 

principles must be used on the two airfoil forces, lift and drag. The lift force is defined as the 

force acting perpendicular to the fluid flow and drag is defined as the force acting parallel to the 

fluid flow. For this dynamic case, these directions were simply resolved due to the geometry and 

reference frame chosen such that the fluid flow can only be in the X direction. This means that 

the lift force will always be acting in the Y direction and the drag force acting in the X direction.  

In addition to the forces on the airfoils, the model has been designed to have a torsional spring 

applied to the central system pivot for damping purposes. This spring adds a torque to the 

system proportionally with respect to the spring constant and system angle. A derivation of the 

torque from the airfoil forces follows.  

� = ()* − (+* + , 

Equation 6- System Torque 

() = -) 	cos(12 + 3) 	456(12 
Equation 7- Leading Airfoil Reaction Force 

(+ = -+ 	cos(12 + 3+	456(12 
Equation 8- Trailing Airfoil Reaction Force 

, = 78 ∗ 1 

Equation 9- Torsional Spring Torque 

 Where the subscripts l and t represent the leading and trailing airfoils respectively, r 

represents the distance from the airfoil angle of attack pivot point to the central system pivot 

point, β represents the system angle of attack, S is the spring torque, and Cs is the torsional 

spring constant. The subtraction in the first equation comes from the trailing airfoil having a 

negative moment arm with respect to the system, because to get from that airfoil pivot to the 

system pivot the distance would be in the negative X direction.  

 Although the system motion is based off these rotational principles, it was found to be 

more convenient to use Cartesian displacements to approximate the rotational motion. It was 

more convenient based on how the UDF macro passed information to FLUENT. The UDF 

principles will be explained later in this chapter; however, the Cartesian approximations will be 

derived here. The angular velocity, which is solved out of the linearized differential equation, 

needs to be resolved into the X and Y velocities for the airfoil as follows.   

9 = "* 

Equation 10- Tangential Velocity 

9: = 9 cos(12 
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9; = 9	456(12 
Equation 11- Velocity Components 

 Where V is the tangential velocity at the airfoil pivot point, and the X and Y subscripts 

represent the Cartesian velocity direction. These equations are valid for both the leading and 

trailing airfoils and the positive and negative portions get resolved through the signs of the 

tangential velocity and trigonometric functions.  These Cartesian approximations are similarly 

accurate to the linearized differential equation because the motion is again going to be based on 

the size of the time step.  This approximation will be shown to not introduce significant error 

into the system later in this chapter. 

 

4.3.2- USER DEFINED FUNCTIONS 

 As mentioned above, FLUENT requires UDFs that define the desired motion in order to 

drive the built in dynamic meshing capabilities and tools. FLUENT requires the UDFs to be 

written in the C programming language, and provides a significant amount of pre-written 

macros which can be linked to FLUENT to accomplish a number of common tasks. These C files, 

or source files, must be either compiled or interpreted before being linked to FLUENT in a 

functional manner. The choice of compilation or interpretation is based on the type of macro 

used and is specified in the supplied UDF manual. The dynamic meshing macros all require 

compiling, which can be accomplished through the FLUENT Graphical User Interface (GUI) 

menus. When compiling through the GUI, only the source files need to be specified as long as no 

proprietary header files are called in the source code. Additionally, a UDF library name can be 

specified if the default, LIBUDF, is not satisfactory. When the source files and library name are 

defined, the library can be built. This building process is the automated compiling of the source 

code files. It is imperative that the case, or mesh, file that will reference the UDF library be in 

the same directory as the library folder. Once the library is built, it can be loaded and the UDFs 

become available for use within FLUENT. It should be noted that once a UDF library is built, it 

can be loaded again at any time, thus it is not necessary to compile every time a UDF is to be 

used, provided that the library has been built with the current UDF source code. The UDF macro 

used for the flow driven dynamic scheme derived above is the DEFINE_CG_MOTION macro.  The 

macro has six arguments and is called as follows: 

DEFINE_CG_MOTION(name,dt,vel,omega,time,dtime)  

 The name argument is the name of the function which is specified by the user. The 

names used in the dynamic analysis were leading and trailing. The dt argument is a dynamic 

thread pointer which stores the dynamic meshing parameters. The vel and omega arguments 

specify the linear velocity and angular velocity arrays respectively. The arrays are zero based so 

0 represents the X direction, and 1 represents the Y direction. The time and dtime arguments 

are the current time and the time step respectively. Only the vel and omega arguments get 
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passed from the UDF to FLUENT at each time step, however the name gets passed to FLUENT by 

loading the UDF library. For this dynamic analysis, two UDF source codes were used, one for 

each of the leading and trailing airfoils, and was necessary due to the nature of the 

DEFINE_CG_MOTION macro only being able to define motion of one airfoil at a time. These UDF 

source codes are extremely similar and perform almost all of the same calculations, but are 

different in that they send opposite motion commands to FLUENT.  (13) 

 In addition to the macro, FLUENT allows access to many solution variables through the 

use of functions and looping. Using these functions and variables in combination with the basic 

mathematic functions common to C programming, almost any calculation can be carried out in 

the UDF and fed back into FLUENT. Recall from above that the goal of the governing 

mathematical scheme is to use the system torque to calculate the angular velocity, which is then 

converted to a Cartesian approximation of the rotational motion. The Cartesian velocity 

components are fed into FLUENT using the vel array in the dynamic mesh macro above. (13) 

 It is immediately imperative then, that the system torque must be calculated first. Recall 

that the torque on each airfoil is a trigonometric combination of the lift and drag forces which 

are in themselves a combination of pressure and viscous forces. Both the pressure and viscous 

forces must be calculated in order to properly resolve the total system torque. These can be 

calculated by performing summation loops over the cell faces making up the airfoils. Within the 

summation loops, solution variables on the airfoil faces can be called and calculated upon. The 

pressure force can be calculated, in both the lift and drag directions, by calling the pressure on 

the cell face and multiplying by the face projected area in either the Y for lift, or X for drag 

directions. The viscous forces can be calculated by calling the wall shear stress force acting in 

either the X or Y directions. These two forces can then be added to calculate the total force in 

either direction.  The function that calculates calls the cell face pressure is: 

F_P(f,t1) * A[0] 

 Where F_P is the face pressure variable with the f denoting a face pointer to the surface 

zone with the t1 pointer. The A[0] is the projected area in the 0 or X direction with is multiplied 

by the face pressure to give the pressure force. (13) The viscous force is called through the 

following function: 

F_STORAGE_R_N3V(f,t1,SV_WALL_SHEAR)[0] 

 This function is not defined in the FLUENT UDF manual and was only referenced through 

an online CFD forum, thus the way this particular function calls the wall shear stress is 

somewhat speculative. The F_STORAGE_R_N3V is presumably a variable storage array in which 

the shear stress is called out through the SV_WALL_SHEAR. The rest of the arguments are the 

same as the pressure calculation. Both of these functions are looped over all of the faces of the 

airfoil zones, which were defined through the t1 pointer. These pointers, defined as t1 and t2 for 

the leading and trailing airfoils respectively, are defined at the mesh generation level and can be 
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found in the boundary conditions definition screen in the FLUENT GUI under zone ID and are set 

through the following: 

Domain *d = Get_Domain(1); 

Thread *t1 = Lookup_Thread(d,5); 

Thread *t2 = Lookup_Thread(d,6); 

 The first function sets the domain pointer, d, which was simply 1 because there was only 

one fluid domain. The next two functions set the t1 and t2 thread pointers by defining the zone 

ID, 5 and 6, of the leading and trailing airfoils respectively. These zone values can be found in the 

boundary conditions definition page in the FLUENT GUI. In the UDFs these threads need to be 

defined before the looping summations of the airfoil forces. Two summation loops were needed 

in the UDFs, one for each airfoil because they have different zone pointers and the loops can 

only accept one pointer at a time.  Once the forces are summed into the total lift and drag 

forces for each airfoil the perpendicular resultant force can be calculated using Equation 7 and 

Equation 8. Now the torque can be calculated and fed into the linearized differential equation 

and the new angular velocity is calculated and can be converted to the tangential velocity. Recall 

that it is from this tangential velocity the Cartesian velocity approximations are calculated and 

fed into FLUENT to move the airfoils. (13) 

 In addition to the governing mathematical scheme calculations there are many other 

necessary calculations. These included the tracking of variables for the output data files and 

conditions that control the airfoils’ angle of attack. The most crucial of these variables is the 

system angle of attack, β. This quantity is used significantly throughout the mathematical 

scheme and needs to be updated at every time step as the system angle will change every time 

there is a vertical displacement. The calculation is based off the vertical, Yl, position of the 

leading airfoil and the distance from the airfoil pivot to the system pivot point through Equation 

12. 

1 = sin&' >?)* @ 

Equation 12- System Angle of Attack 

 In order to perform this calculation, the Yl value must be calculated. The positions of the 

airfoils are tracked by adding the displacements at each time step to the location at the previous 

time step. The current displacement is found by multiplying the Cartesian velocity components 

by the time step size, which results in a distance and is demonstrated in the following example 

given in Equation 13. 

A% = A%&' + �A%�! ∗ Δ! 
Equation 13- Variable Tracking 
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 Where ∅represents any of the four position variables and the differential represents the 

Cartesian velocity. For both the system angle and the position variables, an initial value must be 

supplied to the UDF at the source code level. Care was taken to ensure that these values were 

consistent with the mesh that would be used. It was found that an initial system angle of zero 

was ideal because it simplified both the meshing scheme and the initial variable values specified 

in the UDF. 

 One of the most important features of the UDFs is the portion that controls the airfoils’ 

angle of attack. If this portion is not included, the analysis would just drive the airfoils in one 

direction until they overlapped with the top and bottom boundaries of the domain, which would 

cause the analysis to fail. The point at which to begin changing the angle of attack of the airfoils 

comes from selecting a maximum, or minimum, vertical limit. Although this location can be 

chosen as any vertical location, for this analysis it was chosen based off a maximum desired 

system angle. If the airfoil passes this maximum, the angle of attack will begin to reverse until it 

has reached the specified angle. This process repeats when the airfoil reaches the other 

maximum on the other side of the X axis, and the desired oscillatory motion is produced. This 

process is accomplished in the UDF source code using two if statements, one for the upper limit 

and one for the lower limit. The actual angle of attack change velocity is sent to FLUENT using 

the omega[2] array in the dynamic mesh macro. This angular velocity will act about the center 

of gravity which is specified in the dynamic mesh GUI screen and is tracked by FLUENT as the 

airfoils translate through the domain. The 2 index specifies that the rotation will be about the Z, 

or out of plane, axis. (13) 

  In order to be able to post process the analysis, data files from each of the UDFs were 

written to the FLUENT working folder as the analysis progressed. The data files, named data.txt 

and data2.txt for the leading and trailing airfoils respectively, are tab delimited text files that 

were appended with the current time step variable values after every time step.  Some of the 

variable outputs included in both of the data files were the current solution time, the airfoil 

force breakdowns and totals, the system angle of attack, and the system angular velocity. Each 

data file also included the velocity and position of the airfoil that corresponded to that data file, 

as well as the tracking of the angle of attack and the rate of change of that angle of attack. The 

only variables exclusive to one data file were the torque, power, and spring torque outputs and 

were included only in the data.txt leading airfoil file. These were only added to the leading 

airfoil output file because they were not originally included and it had already been determined 

that the two UDFs were performing and outputting identical calculations. The actual post 

processing of these data files will be discussed later in this chapter..  

 The last consideration that went into writing the UDFs comes from the necessity of the 

analysis to be performed using parallel computation. In parallel computation, the computational 

domain is split into a certain number of partitions and FLUENT performs the computations on 

these partitions simultaneously, thus reducing the computational time required to get a 

solution. The number of partitions used is based off the number of parallel computing processes 

used by FLUENT. Parallel computing was required in order to minimize the amount of computing 
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time required for each analysis. By reducing the amount of computing time used for each 

analysis, more cases with varying parameters could be run, thus providing a wider range of test 

data for comparison.  

 Before explaining the parallel considerations needed in the UDFs, it is important to have 

at least a brief understanding of how FLUENT handles the parallel calculations. Each of the 

aforementioned domain partitions gets loaded into a different compute process called a 

compute node. These nodes perform the same calculations simultaneously on the different 

partitions. There is also a host process, which acts as the interface between the FLUENT GUI and 

the compute nodes. The host sends the commands it receives from FLUENT to one of the 

compute nodes, which in turn passes the commands to the rest of the nodes. The nodes are 

connected virtually through a communication, or message passing system that is used to pass 

overlapping data and synchronization information. (13) 

 Problems arise for UDFs in parallel processing because both the host and node can 

execute commands and calculations as specified by the UDF. An example of this being a problem 

is the printing of messages. If the UDF is not written to specify that only the host should print 

messages to the FLUENT console, the message will print as many times as there are nodes. To 

overcome this FLUENT provides special macros and compiler directives in order to parallelize 

the UDFs. These compiler directives specify whether a section of code should be executed by a 

serial process, a host process, or nodal processes. By properly implementing these directives, 

the UDF can be run in serial or parallel mode.  Specifying what directive to use for each part of 

the UDF code is challenging and takes considerable understanding of the both the desired 

calculations and how FLUENT will execute those calculations. (13) 

 One of the main areas of the UDF codes used in this implementation is the calculation of 

the airfoil forces. Recall that these calculations were based on an integration of the force values 

on the surface of the airfoils, and that with parallel processing the domain is split into partitions, 

each being calculated by a different compute node. If parts of the airfoil reside in different 

partitions, the force integration has to get the force integrations from all of the partitions and 

add them together in order to have the entire force represented. This can be accomplished 

relatively easily by taking advantage of the compiler directives and special parallel macros. (13) 

 First, the compiler directive that states the code should be ignored by the host process 

is called as shown below. The ! is the C programming directive for not, which in this instance will 

direct the code to be executed by anything but the host process, leaving only serial and node 

processes as desired. This directive acts as a special type of if statement, such that it needs 

termination at the end of the code. 

#if !RP_HOST 

Code to be executed by either the serial or node processes 

#endif 
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Within the cell face integration loops, a parallel macro is called to check if the node is 

the principle compute node for each particular face. This is important because the cells at the 

boundaries of the partitions would be integrated twice if the primary node check was not 

implemented. It should be noted that this principle face check is acceptable for use by a serial 

process because it always returns a value of true as there is only one mesh partition. The macro 

is given below where f is a face pointer and t1 is again the surface zone pointer. This macro acts 

exactly like a normal if statement in that the brackets around the conditional code are required. 

(13) 

if PRINCIPAL_FACE_P(f,t1)  

{    

Force summation code 

} 

At this point in the UDF, each node has a force value from the integration loop and 

these individual forces need to be summed to get the total force acting on the airfoil. This is 

accomplished by using a global summation macro within a compiler directive that only executes 

on nodes. An example of this code is given below where the TotalVairable is being computed 

through the sum of the variable across all compute nodes through the PRF_GRSUM1 macro. (13) 

# if RP_NODE 

 TotalVarable = PRF_GRSUM1(variable) 

 # endif 

Because all of these calculations have be executed by compute nodes, the force data 

needs to be sent to the host to be used in the calculation of the mathematical scheme, and is 

accomplished using another parallel macro designed to transfer data between the nodes and 

host. An example of this data passing is given below where double is the type of data and N is 

the number of variables to be passed. It should be noted that when running serial calculations, 

this part of the code is ignored by FLUENT. The host process then performs all of the calculations 

necessary to get the Cartesian velocities and sends those values back to the nodes to move the 

airfoils for each time step. The host process also handles the writing of the output data files. (13) 

 node_to_host_double_N(N variables); 

 By implementing the mathematical scheme into the UDFs using the above 

methodologies, the leading and trailing airfoil UDFs can be used on either Windows or Linux and 

be run in either serial or parallel. The system parameters can be easily changed at the beginning 

of the UDFs to allow different cases to be created and run efficiently.  
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4.4 – VERIFICATION 

 Ideally, the verification of the CFD solutions and implemented mathematical scheme 

would be conducted by comparing solution output, both steady state and dynamic, to 

experimental data. Unfortunately, there is no experimental data to compare the CFD output to, 

even for the steady state case. All of the published experimental data for tandem airfoil setups 

were too dissimilar to the current research to be able to make a proper verification. Due to the 

unknown effect of the wind tunnel walls in the CFD solution, verifying a single airfoil in the 

dynamic computational domain would not be a valid comparison.  The dynamic CFD solution 

setup and mesh sizing are very similar to that of the validation cases presented in the previous 

two chapters, which helps substantiate the validity of the dynamic solutions.  

In order to ensure the math scheme derived above would provide the desired motion of 

the system, and subsequently be properly implemented within the FLUENT UDFs, verification 

codes were written. The first code was a MATLAB code that implemented the mathematical 

scheme and provided some sample system outputs. The goal of this code was to show that for a 

given constant torque and moment of inertia, the scheme would provide rotational motion and 

constant angular acceleration. The goal of the second code, which was written in C, was to 

ensure the implementation and calculation of the linearized governing differential equation in 

the programming language required for UDFs would provide the same outputs as the MATLAB 

verification code.  The comparison parameters between the MATLAB and C codes are shown in 

Table 4 below, where I is the moment of inertia, τ is the torque, dt is the time step, and N is the 

number of time steps.  

Parameter Value 

I 1 

τ 3.2 

dt 0.1 

N 5 

Table 4- Verification Parameters 

The first verification output is the position plot of the airfoil pivot points and can be 

seen in Figure 19 below. By examining the movements of the airfoils, it is qualitatively suggested 

that the mathematical scheme is producing rotational motion about the origin. The rotation is in 

the positive direction, which is correct based on the positive constant inputs. The leading airfoil 

is moving upward, while the trailing airfoil is seemingly moving completely opposite, as it 

should. The positions seem to be moving farther apart increasingly fast, which is what is 

expected from a constant angular acceleration. 
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The constant angular acceleration is supported in Figure 20, which depicts the system 

angle, β as a function of time step. This same trend of increasingly larger changes in system 

angle is much more clearly visible in Figure 20 than Figure 19. Qualitatively, by comparing the 

final system angle to the angle between the leading airfoil and the X axis at the final time step in 

the previous figure, the 28°  calculated value seems accurate.    

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Positions

X

Y

Figure 19- Position Verification 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30
Beta vs. Time Step

Time Step

B
et

a

Figure 20- System Angle Verification 



36 

 

Due to the rotational motion being approximated by the Cartesian displacements, it was 

important to measure the error introduced into the system by this approximation. This was 

accomplished by looking at the distance between the airfoil pivot points which, again, are the 

center of gravity points of which FLUENT will move the airfoils. If the motion was purely 

rotational, the distance between these points would remain constant because the points would 

remain equidistant from the origin. The percent error of the current pivot point distance with 

respect to the starting distance was calculated and plotted in Figure 21 below.  

The accumulated error over the .5 seconds was less than 3%, which was due to the 

rather large time step chosen for this verification. The expected behavior of this approximation, 

however, is that the error should decrease when the time step is decreased. This is because the 

Cartesian approximation is based heavily on the time step, much like the linearized governing 

differential equation. This behavior is further explored in Table 5 below.  

dt N % Error 

0.1 5 2.6794 

0.01 50 0.2096 

0.001 500 0.0204 

Table 5-Error Verification 

As expected, the percent error decreased as the time step was decreased. The decrease 

in percent error was approximately an order of magnitude for every order of magnitude 

decrease in time step. From this investigation, it was concluded that the error introduced by the 

Cartesian approximation was small and should not introduce any noticeable motion degradation 

in the dynamic solution if the time step was kept small. 
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The final output was the angular velocity, ω, and was plotted with the output from the C 

verification code. As shown in Figure 22 below, the angular velocity increases linearly and the 

outputs from both the MATLAB and C codes match perfectly. The constant angular velocity that 

was suspected in the previous figures is clearly shown here through the linearly increasing 

angular velocity. The fact that the C code provides identical output as MATLAB gives confidence 

to the calculations being performed by FLUENT through the UDFs. 

One of the most crucial calculations performed by the UDFs is the calculation of the 

forces acting on the airfoils. The entire mathematical scheme is based off these forces creating 

the driving torque on the system. Due to this importance, it was crucial to verify the UDF force 

calculations and compare those forces to the ones FLUENT can provide through the GUI (8). 

Table 6 below shows the UDF forces compared to the FLUENT forces taken from the last time 

step of a sample case. 

Force FLUENT  UDF Abs Error % Error 

X Pressure 0.13865 0.13724 0.00141 1.01954 

X Viscous 0.03435 0.03405 0.00030 0.87384 

X Total 0.17300 0.17129 0.00171 0.99061 

Y Pressure -0.80052 -0.78885 0.01167 -1.45764 

Y Viscous 0.00162 0.00148 0.00014 8.56002 

Y Total -0.79890 -0.78737 0.01153 -1.44324 

Table 6- Force Verification 

The highest percent error of approximately 8.6% comes from the smallest valued force, 

which was the Y direction viscous force.  This force also had the smallest absolute error, which 
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leads to the conclusion that although this force had the highest percent error the calculation is 

sufficiently accurate. One of the sources in error for these calculations could be rounding error 

through the UDF integration loops and secondary additions. In addition, the method FLUENT 

used to calculate the forces is unknown and the method used internally could differ from the 

UDF implementation.  

It has been shown that the derived mathematical scheme provides the desired 

rotational motion through an approximate Cartesian displacement method. This approximation 

introduces sufficiently minimal error into the motion provided a time step is small. Both the 

MATLAB and C verification codes provide an identical and accurate calculation of angular 

velocity through the linearized differential equation. The force calculation from the UDFs has 

been verified against the built in force reporting from FLUENT by showing the percent error 

between the two values is minimal. All of these factors contribute to the conclusion that the 

mathematical scheme and implementation within FLUENT are valid. 

 

4.5- DYNAMIC SOLUTION SETUP 

 The solution setup for the dynamic analysis was very similar to that of the validation 

cases as suggested to keep the CFD solutions as valid as possible. The main difference is the 

addition of the top and bottom wind tunnel walls and the dynamic meshing parameters as well 

as the transient formulation.  FLUENT version 14 was used for the dynamic analysis and was 

loaded using the two dimensional, double precision, pressure solver. After loading, or compiling, 

the desired UDF library the mesh file can be read into FLUENT. The only major difference in the 

mesh files used for the various cases was the initial airfoil AoA. Care was taken to ensure the 

AoA coded into the UDF was the same as that of the mesh file. The mesh was checked for errors 

and the domain was reordered to optimize the computational performance. This reordering 

process rearranges the cell locations in the memory such that neighboring cells are near each 

other, which decreases the bandwidth of the mesh in memory and allows for a more efficient 

computation. The turbulence model used was again the k-omega SST model that was explained 

in detail in the validation section above.  

 The boundary conditions were kept constant through all of the test cases to keep the 

predicted performance focus on the system parameters. The wind tunnel inlet was set as a 

velocity inlet with a 5 meters per second airflow in the positive X direction. This velocity was 

chosen to reflect the most probable experimental wind tunnel velocity and represented a 

Reynolds number of approximately 52,000. The turbulent boundary conditions at the inlet were 

the same as the ones used in the validation case, whereby the turbulent intensity was set at 2% 

and the turbulent viscosity ratio was set at 10. These values again came from the FLUENT user’s 

guide, as no experimental values had been determined due to the lack of wind tunnel testing. If 

experimental data was ever collected, the turbulent parameters of the flow should be 

implemented in the CFD analysis. The wind tunnel outlet was set as a pressure outlet. The top 



39 

 

and bottom wind tunnel walls were set as slip walls such that no boundary layer would build 

near them. This was accomplished by setting the specified shear pressure to 0. This slip wall 

condition was done to minimize computational cost as the near wall mesh would not have to be 

refined to meet the requirements for the turbulence model and resolve a boundary layer. The 

airfoils were set as no slip walls because the boundary layer is important in resolving the viscous 

forces acting on the airfoil. (8) 

 Some of the exact values of the dynamic meshing parameters were dependent on the 

mesh sizing and scale information of the individual meshes used, however, the methodologies 

used to set these parameters applied generally to all of the meshes. These values also did not 

vary a great deal due to the identical sizing parameters used in the mesh generation. The two 

dynamic mesh methods employed were the smoothing and remeshing schemes. The smoothing 

scheme idealizes the cells between moving boundaries as springs. The cell movement is based 

on how much displacement force is applied through a spring constant and boundary 

displacement. The spring constant used in the dynamic analysis was set to 0.0001, which 

represents a strong spring and helps the boundary nodes keep their shape. In order to prevent 

negative cells due to the mesh folding onto itself, the boundary node relaxation was kept at the 

default value of 1. Through experimentation, better quality meshes were created if the 

convergence tolerance was decreased an order of magnitude to 0.0001 and the number of 

iterations was increased to 150. (8) 

 The local cell remeshing method was also used at every time step. The default mesh 

scale values were used as a starting point for the remeshing parameters. The maximum size was 

decreased by an order of magnitude and the cell skewness was set to 0.4 because the default 

values for these parameters resulted in poor mesh quality. The sizing function was used in 

addition to the remeshing size parameters. The sizing function is used to assist remeshing by 

adding cell size distribution criteria to the remeshing parameters. The default resolution of 3 

was used and the maximum variation and rate values of -1 and 0.99 respectively were used. The 

variation parameter is how large the cells can be with respect to the closest boundary cell, so by 

setting it at -1 the size of the cells was minimized. The rate parameter controls how rapidly the 

cells grow away from the boundary and the 0.99 setting used leads to the slowest transition. 

These sizing function parameters helped minimize the amount of mesh degradation as the 

airfoils oscillate and the solution progresses. (8) 

 The last dynamic mesh setting was creating the appropriate zone conditions. For the 

leading and trailing airfoils, the motion type was set to rigid body and the movements were 

hooked to appropriate UDFs.  The initial center of gravity locations were set to an X value of -

0.7366 and 0.7366 meters for the leading and trailing airfoils respectively. These values were 

based off the geometric locations of the airfoil pivot points at a 0 AoA. The adjacent cell size was 

specified as 0.0001 as this value was close to the near wall cell size, if not smaller. The fluid zone 

was set to be deforming and used similar size parameters to what was used in the local cell 

remeshing method. The deforming zone was selected to have both the spring based smoothing 

and remeshing applied. (8)  
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 All of the spatial discretization schemes were set to second order, as was used in the 

validation cases. The pressure- velocity coupling scheme was changed to the Pressure-Implicit 

with Splitting of Operators (PISO) scheme as was recommended by FLUENT for all transient 

analyses. The PISO scheme is stable over a larger range of time steps for both pressure and 

momentum than the SIMPLE scheme used in the validation cases. The transient discretization 

used was a first order implicit scheme. The solution was initialized from the velocity inlet, which 

gave the flow field an initial velocity of 5 meters per second. This simulates the wing oscillator 

being released from a locked position after the flow is up to a steady speed. (8) 

 

4.6 – RESULTS 

 All cases presented in this section were run for 500 time steps using a step size of .01 

seconds, which gave an ending analysis time of 5 seconds. This total time was generally 

sufficient to allow the system to oscillate at least twice and settle into a more steady state 

oscillation, which was desired in order to obtain proper data. This time step was chosen to both 

provide significant analysis resolution as the system oscillates, as well as to avoid any re-

meshing errors due to large body displacements. There was no stability requirement for the 

time step size due to FLUENT using a fully implicit computational scheme (8).  

The absolute convergence criterion for the scaled residuals at every time step was set to 

10
-4

 and was met at almost every time step. This convergence value is an order of magnitude 

lower than what FLUENT recommended for most computations (8). While monitoring the 

convergence it was noticed that at a couple seemingly random time steps, the solution would 

not converge to the desired criterion. Generally, when this non- convergence occurred, the 

turbulence production residual, k, would converge to a value just decimal places above the 

criteria and the analysis would run to the designated maximum number of iterations per time 

step, which was set at 500. Due to the randomness of the non- convergence and the residual 

value of the variable converging so close to the desired criteria, it was determined that this non- 

convergence had a negligible effect of the solution. Typically, convergence occurred at each 

time step after less than 100 iterations.  

 

4.6.1 – BASE CASE RESULTS 

 A base case was run with general parameters to show that the FLUENT and UDF setups 

and computations were providing the desired solution output, as up to this point the 

verifications were completed separately. These parameters used can be found in the Table 7 

below, where AoA is the absolute AoA of the airfoils, β is the system angle at which the airfoils 

begins to reverse AoA, S  is the spring constant, and dA is the number of seconds used to reverse 

the airfoil AoA. The first indication of the successful completion of the analysis was that the 

solution ran for all 500 time steps without error. Although a positive sign, completion of all the 
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desired time steps does not positively ensure the system worked as desired. For example, all 

time steps could be completed and the motion could be wrong and the airfoils could not move 

at all or move incorrectly. The second indication of successful completion is if the position of the 

airfoils after the final time step is different from the initial position. If calculation time permits, 

FLUENT allows for the recording of animations. These animations can be of any of the graphical 

outputs available in FLUENT, including pressure, velocity, or mesh.  Further, partial solution case 

files can be saved at a desired interval of time steps and the airfoil positions at these intervals 

can be referenced. Figure 23 and Figure 24 show the movement of the airfoils at different time 

steps for the base case. Recall that the system pivot point was located in the center of the 

computation domain and that the airfoils should pivot about this point. By examining Figure 23 

and Figure 24 qualitatively, the airfoils appear to be rotating about center of the computational 

domain.  

AoA   β S dA 

12 10 0.2 0.05 

Table 7- Base Case System Parameters 

If the time resolution of the saved intermediate case files is sufficient, or if animations 

are available, the aerodynamic characteristics of the flow can be examined. One of the more 

interesting characteristics of the flow is the interaction of the wake from the leading airfoil with 

the trailing airfoil and can be explored by analyzing the velocity magnitude contours. In general, 

the large distance between the leading and trailing airfoils has minimized the flow interaction, 

as the wake from the leading airfoil tends to dissipate and become less intense by the time the 

wake reaches the trailing airfoil. Alternatively, the large distance can have the opposite effect 

because it limits the vertical travel due to the wind tunnel walls keep the trailing airfoil in the 

vertical vicinity of the leading wake. If the airfoils were closer together, a larger system angle 

could be achieved, putting the trailing airfoil more out of the way of the intense wake at the 

extremes of vertical travel. 

Figure 23- Airfoil Movement t=1s 
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   For the base case, the wake interaction for a steady, not the initial transient 

movement, period of oscillation starts with the leading airfoil moving downward and the trailing 

airfoil moving upward with both passing through the X axis.  At this point in the oscillation, the 

wake extending from the leading airfoil is small and the trailing airfoil is slightly interacting with 

an area of higher velocity in the near wall region. Additionally, the computational solution shows 

a higher velocity of the flow on the side of the airfoil in the direction of the vertical movement.  

It should be noted that the true interaction of the airfoils with the near wall region is not 

modeled accurately due to the slip wall boundary condition on the top and bottom walls of the 

wind tunnel, which prevents a boundary layer from building up to save computational time.   

When the system reaches the maximum desired angle, the AoA of the airfoils reverse in 

0.05 seconds as specified by the case parameter. This rapid change causes the area of high 

velocity that was on the movement side of the airfoil to be shed from the airfoils and propagate 

in the flow direction along the wind tunnel wall. While the high velocity is shed from the 

movement side, a lower velocity area is shed from the opposite side of the airfoil at 

approximately the same time the AoA change is completed. The low velocity wake shed from 

the leading airfoil travels in the flow direction where it dissipates and appears to have little 

Figure 24- Airfoil Movement t=2.5s 

Figure 25- Base Case Wake Shedding After AoA Change 
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interaction with the trailing airfoil. Figure 25 shows the high and low velocity wakes being shed 

from the airfoils. 

After the angle of attack changes, the system continues to rotate in the negative 

direction due to inertia. This opposite movement with respect to the absolute angle of attack 

causes the airflow to separate for approximately 0.2 seconds while the system changes the 

direction of rotation. Although separation generally means an airfoil is stalled and losing lift, the 

highest lift forces are experienced during this time. The peaks shown in Figure 26 correspond to 

the beginning of the separation, with the small minima peak immediately after occurring at the 

reattachment point. The somewhat flat areas after these peaks represent the general vertical 

travel of the airfoils. Because the highest lift force was experienced during the separation, the 

conclusion was drawn that there must be some dynamic stalling effects occurring, which 

prevents the significant loss of force normally attributed to a statically stalled airfoil. This 

conclusion is supported by the fact that Lee found similar phenomena when investigating the 

flow over oscillating airfoils (14). Dynamic stalling is a phenomena experienced by oscillating 

airfoils during a rapid AoA change. It is characterized by a vortex formed from the leading edge 

and causing a brief increase in lift (15). The lift increase generally lasts until the leading edge 

vortex is shed from the trailing edge. After the vortex is shed, the lift significantly decreases and 

the airfoil experience normal stalling characteristics.  

The dynamic stall effect conclusion is supported by examining the effective AoA of the 

airfoils. The effective AoA is the true local AoA experienced by the airfoil and is the vector 

subtraction of the airfoil velocity from the flow velocity. The effective AoA for the leading airfoil 

is shown in Figure 27. 
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 Only the leading airfoil data is shown as the trailing airfoil has an identical, but 

opposite, effective AoA. At the time of the highest lift force, which was also the time of the 

separation, the effective AoA is at its maximum. For the base case, the maximum effective AoA 

is approximately 18 degrees. The static stall angle of attack for a NACA 0015 at a similar 

Reynolds number is approximately 13 degrees and marked by a significant drop in lift (16). This 

initial peak is caused by the continuation of the system rotation after the airfoil AoA has been 

changed. After the initial peak, the effective AoA decreases as the vertical velocity of the airfoil 

increases in the same direction of the lift force. The effective AoA continues to decrease until 
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right before the airfoil AoA changes, where it actually increases slightly. This slight increase 

comes from the system torque no longer acting in the direction of rotation. This reversal in 

torque direction can be seen in Figure 28 and is the product of the system nearing its maximum 

travel, which causes the component of airfoil lift force, which is dominant over drag, acting 

perpendicular to the system to decrease and the spring force increasing as the system angle 

increases. In the base case, this area of torque reversal is small and seems to act as a damper as 

per the design inclusion of the spring.  

The last aerodynamic effect of this separation is due to the low velocity created by the 

separated flow. Some of this low velocity area is shed into the wake during the flow 

reattachment process. This creates a second low velocity wake that interacts with the trailing 

airfoil slightly before the local AoA change occurs. By examining Figure 26 and Figure 29 the 

conclusion can be made that the wake interaction is minimal because generally no significant 

difference in whether the lift or drag forces is experienced. The largest difference can be seen in 

Figure 29 during the peaks in the drag force where the trailing airfoil tends to encounter a lower 

drag. This lower drag could possibly be attributed to the wake of the leading airfoil causing the 

trailing airfoil to experience a slightly lower flow velocity. This lower velocity has the potential 

for causing a slightly less severe separation, although this separation difference is not 

significantly pronounced qualitatively.  

The peaks in drag coincide with the separation and are not consistent through every 

oscillation. This lack of consistency has two clear potential causes. First, because the separation 

is a very turbulent phenomenon, the randomness of the turbulence may be causing the 

separation to occur differently at the various oscillations. Additionally, the calculation could be 

running into some of the limitations of the turbulence model used, as the validation did not 
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cover separated flow. The second cause of the inconsistency could be due to the unknown flow 

interaction with the wind tunnel walls. Due to the movement of the airfoils, the proximity of the 

airfoils to the wind tunnel wall is at a maximum during the changing of the airfoil angle of attack. 

Without a rigorous experimental procedure and coupled with the exclusion of the wind tunnel 

wall boundary layer, the true effect of the near wall flow interaction is unknown.  

One of the last interesting results from the base case is the behavior of the mesh 

throughout the analysis. Despite best efforts to control the mesh sizing and to keep the mesh 

resolution as close to the original mesh as possible, the mesh tends to degrade somewhat as the 

analysis progresses. The dynamic meshing parameters were selected to minimize the 

degradation and were chosen from experimentation and mostly qualitatively comparing the 

mesh resolution at the completion of the analysis.  This degradation might be attributed to the 

near airfoil region coming in close proximity to the wind tunnel near wall region and the 

dynamic meshing parameters struggling to blend the mesh between the boundaries. Once the 

airfoils move away from the wall and back towards the center of the domain, the meshing 

parameters are unable to recapture the initial resolution of the near airfoil region. An example 

of the degraded mesh is shown in Figure 30 and can be compared to the initial mesh shown in 

Figure 18. The number of cells in the final mesh is approximately 30,000 compared to the 80,000 

cells in the original mesh.  

 Although the mesh does degrade, the solution converges at all the time steps and there 

does not appear to be any significant discontinuities when graphically plotting solution 

variables. Figure 31 shows the velocity magnitude contours that correspond to the degraded 

mesh shown in Figure 30. There is some slight jaggedness to the contour in front of the trailing 

airfoil, which corresponds to where the mesh is coarse. Although the degradation has been 

shown to not introduce significant error both qualitatively and quantitatively, the possibility still 

exists that there is some numerical diffusion occurring in the computational solution. However, 

without an experimental flow field to compare to, the full extent of the error is unknown. 

 

Figure 30- Degraded Mesh 
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4.6.2 – PARAMETRIC STUDY 

 A parametric study was performed to examine impact on performance of the various 

system parameters. Each of the parameters was changed for one case and the results were 

compared. Including the base case, five cases were run using the parameters in the table below. 

The AoA case used a smaller absolute AoA  and required a different mesh from the other cases 

as the absolute AoA can only be changed at the mesh generation level.  Other than the one 

different mesh, all of the cases were set up identically to the base case and just used different 

UDF libraries that were compiled from UDF source codes employing the desired system 

parameters.  

Case Name AoA   β S dA 

Base 12 10 0.2 0.05 

AoA 8 10 0.2 0.05 

Beta 12 15 0.2 0.05 

Spring 12 10 0 0.05 

dA 12 10 0.2 0.1 

Table 8- Parametric Study System Parameters 

To give a general idea of how these system parameters affect the system performance, 

the period and frequency of the cases were examined first. Table 9 below shows the data for all 

of the cases. Without examining any graphical output data, the results shown in Table 9 are 

what were expected. The AoA case had a longer period than the Base case due to the lower 

airfoil forces causing a slower system rotation.  In fact, the base case had the highest frequency 

of all the cases, which happened to be a completely unintended consequence of the parameter 

choices. The beta case had a longer period due to the system having a larger allowed rotation 

before the reversal of the airfoil AoA’s were reversed. Without a spring constant providing 

Figure 31- Base Case Final Velocity Magnitude 
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dampening, the spring case had the longest observed period and was almost twice as long as 

the base case. The dA case had a very similar period to that of the AoA and beta cases. It should 

be noted that both the period and frequency are calculated from the last complete oscillation in 

an attempt to sample the most steady state data. 

Case Name Period Frequency 

Base 1.1934 0.8380 

AoA 1.4033 0.7126 

Beta 1.4999 0.6667 

Spring 2.3769 0.4207 

dA 1.4209 0.7038 

Table 9- Parametric Study Period and Frequency 

 The period and frequency data can easily be supported by examining the plot of the 

system angle as shown in Figure 32 below. First, all of the 12 degree AoA cases exhibit identical 

initial behavior due to the spring effect near the 0 degree system angle being negligible. The 

spring cases begin to diverge from the other 12 degree AoA cases as the spring torque builds. 

The AoA case, with an 8 degree absolute AoA, initially starts slower than the other cases due to 

a lower system torque that will be shown later. This lower torque can be attributed to the lower 

airfoil force due to the reduced AoA.  

 The AoA cases takes the longest to reach the AoA reversal angle, which again is 

attributed to the lower force. This case also has the lowest maximum system angle and reaches 

just past the designated reversal angle of 10 degrees. Inertial effects account for the system 

angle minima, as the vertical velocity achieved with this case is smaller compared to the other 
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cases. This allows the system to reverse its rotation direction faster than other cases as the 

inertia is not as strong due to the lower vertical velocity.  

 The beta case, by parameter definition, had a larger maximum system angle. 

Interestingly, the overshoot of the reversal angle is less for the beta case compared to the base 

case, and exhibited an overshoot of approximately 4 degrees compared to the 4.5 degrees of 

the base case. It would be expected that the beta case would have a larger overshoot as the 

system would have more time to build angular velocity. Factors that could case this lessened 

overshoot could be the effects of the effective airfoil AoA, reduced force projection acting in the 

torque direction, or higher spring torque dampening. 

 The spring case had the most interesting behavior and had a similar maximum angle as 

the beta case although the AoA reversal parameter was the same as the base case. As stated 

above, initially this case accelerated faster due to not having to fight the torque of the spring. 

When the reversal angle is reached, the spring case takes the longest out of all the cases to 

reverse the rotation direction. This behavior is characterized by a much shallower peak in 

system angle as well as a very high overshoot of approximately 9 degrees. The shallow peak and 

large overshoot are a direct result of not having the built up opposite torque dampening that is 

supplied in the other cases by the spring.  

 The dA case has a very similar behavior to the base case even though the airfoils reverse 

AoA in twice the time. This added time increased the maximum angle the system reached by 

approximately 1.25 degrees. The most effect this has was to give the dA case a phase offset 

from the base case, whereby the base case leads the dA case in time. This phase shift is 

increased every time an AoA reversal occurs.  
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  The identical initial behavior of the 12 degree AoA cases is again found in Figure 33, 

which depicts the system angular velocity as a function of time. Again, the spring case is the first 

to deviate from the other cases due to the lack of the restrictive spring torque. The remaining 12 

degree cases maintain identical behavior until their respective AoA reversals, which occur at 

different times due to the parameter definition. In general, very similar behavior for all cases is 

realized in the angular velocity plot with respect to the system angle plot, due to the quantities 

being related. Equation 4 shows the relation as the velocity being the derivative of the system 

angle.  

 As with the system angle from Figure 32, the AoA case demonstrates the lowest angular 

velocity. This behavior was speculated previously and its confirmation gives merit to the 

behavioral conclusions listed above. Additionally, this supports the inertial effects minimizing 

the reversal angle overshoot because a lower rotational velocity would conclude a lower vertical 

velocity experienced by the airfoil. The beta case is another example of the similar velocity 

behavior with respect to the system angle. The increased rotational travel allows the system to 

accelerate to a slightly higher angular velocity than the base case. The same trends are displayed 

by the dA case as the beta case, although slightly less pronounced. 

 Besides diverging first from the other 12 degree cases, the spring case again exhibited 

interesting behavior. Instead of having smooth transitions at the velocity extremes like the other 

cases, the spring case had abrupt changes. These sharp peaks occur at the same time as the AoA 

reversal. The lack of any spring dampening means that the only torque available to drive the 

system comes from the airfoils. When the airfoils reverse AoA, the force provided by the airfoils 

abruptly changes and is the only contribution to the torque. This abrupt change in force is 

exaggerated by the effective angle of attack, which will be discussed later in this section. This 

rapid change is the reason for the shallow system angle peaks. Instead of gradually slowing the 

rotational acceleration, the spring case displays a rapid change in acceleration that has the 

effect of drawing out the maximum system angle. 

The system torque plot, shown in Figure 34 below, clearly displays some of the 

phenomena discussed in the previous plots. Again, the initial transient torque region for the 12 

degree cases remains identical until the first AoA reversal point. The phase shift with respect to 

the base case is easily demonstrated here for all of the cases. All of the cases with the exception 

of the spring case follow very similar trends throughout the oscillations. The maximum torque 

comes immediately after the AoA change as discussed earlier for the base case. The fluctuations 

in the torque after the maximums are likely due to the unsteady flow separation that is 

occurring due to the high effective AoA. This is supported by the fact that the AoA case does not 

have the last fluctuation dip as seen in the base, beta, and dA cases, and is a product of the AoA 

case experiencing lower separation than the other cases. 
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After the AoA reversal and the torque fluctuations, the system torque steadily decreases 

and even reaches negative values before the next airfoil AoA change. This steady decline is due 

to the spring using its built up torque, energy, to help reverse the rotational motion of the 

system, and the spring torque value going to zero when system passes through the X axis. The 

spring torque then begins to build its stored torque back up while resisting the system rotation 

and the torque supplied by the airfoils. The torque supplied from the airfoils also decreases 

through the oscillation due to the reduced effective AoA caused by the vertical velocity of the 

airfoil. 

 The torque fluctuations caused by the separation are also present for the spring case. 

What is not present is the steady decline in the torque after the fluctuations. As was suspected 

above, the declining torque was a product of the spring. This suspicion can clearly be concluded 

due to the lack of any significant decline when the spring is removed. The spring case does still 

display a slight decline, which is likely due to reduced airfoil force caused by a declining effective 

AoA.  
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Figure 34- Parametric Torque 
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 Figure 35 above shoes the effective AoA for all of the parametric cases. With the 

exception of the spring case, all of the cases follow the trend discussed for the base case. 

Initially, the cases being at their static AoA, but the effective AoA rapidly decreases due to the 

vertical motion induced by the rotation of the system. For the first time, the effect of the dA 

cases is noticeable through the reduced slope compared to the other cases just before the 

peaks. This indicates that the dA case took longer to reverse the airfoil AoA, which by the 

parameter definition is expected. The difference in the maximum peaks of the various 12 degree 

cases is due to the varying vertical velocity of the airfoils at the time of AoA reversal. Having a 

higher vertical velocity at the time of the AoA change causes the airfoils to experience a higher 

AoA because the vertical velocity is opposite the direction the airfoil wants to go with the new 

AoA. This conclusion is supported by examining Figure 33 and noticing the spring case has the 

highest system angular velocity at the time of airfoil AoA change and that it has the highest 

effective AoA. This trend remains consistent for all cases throughout the analysis. Naturally, the 

AoA cases have the lowest effective AoA, which is due to both having a lower absolute AoA as 

well as having the lowest vertical velocity at the time of AoA change. 

 The spring case is again the outlier in terms of trend consistency. After the AoA reversal, 

the spring case displays a more linear decline in effective AoA compared to the other cases. This 

can be attributed to there being no built up spring torque to help reverse the rotational motion 

immediately after the AoA reversal. This built up torque allows the other cases to have a higher 

initial vertical velocity and thus a lower effective AoA. Interestingly, the ending effective AoA 

before the airfoil AoA change is very similar for all of the cases, even though the system 

parameters varied widely. This ending value was also near 0, which would be very inefficient for 

the symmetrical NACA 0015 airfoils. This low effective AoA is part of the reason the torque goes 

negative before the AoA reversal, because the forces from the airfoils do not produce enough 

torque to overcome the spring torque. 
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Figure 35- Parametric Effective AoA 
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 The plot of the spring torque is as expected for all cases and is shown in Figure 36. The 

torque supplied by the spring has been defined to have a linear relationship with the system 

angle, β. The torque should be opposite in direction from the system angle deflection and 

should have a value of zero Newton meters when the system is parallel to the X axis. All of the 

cases, with the exception of the spring case due to the absence of a spring, show behavior that 

is consistent with the definition as identical spring constants were used. The only variations in 

the cases are from the various maximum system angles achieved, thus a higher spring torque, 

and the phase shifting from the base case due to the various behaviors of the cases.  

 In order to show that the mathematical scheme was not introducing significant error 

into the computation, an error was calculated. This error was calculated in the same manner as 

in the verification section above, such that the distance between the airfoil AoA pivot points 

should remain the same throughout the computation if true rotational motion is achieved and 

the computational distance is compared to the known original distance.  Figure 37 below shows 

the percent error of the cases and follows the same trend predicted by the verification code 

presented in Figure 21 above. The error grows as the calculation progresses because the 

Cartesian velocity approximations continue to pull the airfoils away from each other slightly at 

every time step. Due to this growth, the largest error is displayed by every case at the final time 

step. The highest error of all the cases was just over 2% by the beta case. This error in the beta 

case is suspected to be due to having the most extreme movements out of all the cases. Due to 

the first order linear approximation for the Cartesian velocities, a larger velocity for a given time 

step would cause a large linear movement. Large linear movements naturally do not 

approximate rotational motion well, thus giving the beta case the largest error out of all the 

cases presented. The spring case has the lowest error of the parametric study cases, which is 
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likely due to the maximum system angular velocities being experienced for the shortest amount 

of time. Recall from Figure 33 above that the spring case demonstrated sharp peaks instead of 

gradual changes in velocity like those displayed in all of the other cases. In addition to the 

normal parametric study cases, an additional base case was run using a smaller time step to 

demonstrate the ability to minimize error. The time step for the base error case was half of the 

time step size used in the standard base case with a value of 0.005 seconds. This reduction in 

time step size naturally increased the number of time steps required to achieve the 5 second 

total analysis time. Reducing the time step in the computational analysis confirms the results 

shown in Table 5, such that by reducing the time step by half reduces the accumulated error by 

approximately half. 

 In general, the error introduced in all of the cases is minimal and could potentially be 

reduced by reducing the time step size. The time step size used in this parametric study was 

chosen for computational time convenience as well as eliminating dynamic meshing errors, and 

the low error presented support the validity of the results obtained. 

 The aerodynamic characteristics of the cases presented in the parametric study are for 

the most part very similar to the base case. The AoA and the spring cases were the most varied 

and the differences will be discussed here. The other cases have very similar flow interactions 

between the leading and trailing airfoils. The largest difference is the larger vertical 

displacement seen in the beta and dA cases. This does help slightly minimize the wake 

interaction with the trailing airfoil, however, the difference is mostly negligible. The similarity 

does not come as a surprise after examining the above plots. The trends throughout all of the 

plots show very similar system response with the base, beta, and dA cases.  
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The AoA case is different from the base case in that all of the aerodynamic 

characteristics are lessened. First, the initial shedding of the high and low velocity wakes during 

the AoA reversal is much smaller and thus dissipates much quicker. The high velocity wake that 

travels along the wall is still present however. The separation seen in the AoA case is much less 

severe than the base case, due to both the lower vertical velocity of the airfoil at the time of the 

change and the lower airfoil AoA. The base separation is shown in Figure 38 and the AoA case 

separation is shown in Figure 39. 

 Care was taken to ensure the separation presented in Figure 38 and Figure 39 was 

captured at roughly the same time in the separation development, whereby the separation was 

approximately at its maximum and had not yet begun to shed off the trailing edge. In the base 

Figure 38- Base Separation 

Figure 39- AoA Separation 
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separation, the computation predicts a very large vortex accompanied by two smaller vortices 

further towards the leading edge. The computation of the AoA case has predicated only one 

vortex, which happens to be much smaller and flatter than the base case. This smaller 

separation causes a much smaller wake to be created which happens to dissipate rather quickly.  

 Figure 40 shows the AoA case drag forces for the leading and trailing airfoils. Similar to 

the base case, the trailing airfoil experiences a slightly lower drag peak, although the difference 

between the two is smaller. Unlike the base case, the drag force is not symmetrical for the 

oscillation because during the upstroke, both airfoils experience a lower drag. This could be due 

to some wind tunnel wall interaction, or even some flow interaction that is not discernable 

qualitatively. The variation is quite small and suspected to be negligible due to the effect not 

being seen in the other results figures above. 

 The spring case had a very similar initial wake during the AoA reversal, such that both 

the low and high velocity regions reacted very similar to the base case. This similarity is likely 

caused by the cases have identical airfoil AoA change parameters, which explains the similarity 

in the other 12 degree AoA cases as well.  Because there is no spring constant that builds up 

opposite torque to help reverse the system rotation, the airfoils continue to travel in the original 

rotational direction for longer than the base case. This phenomenon was well documented in 

the result figures above. This continuation of motion while having an opposite AoA causes a 

large separation to occur. Figure 41 shows the spring case separation.  This separation is 

computationally predicted with a large vortex and one or two smaller vortices towards the 

leading edge of the airfoil like the base case. This separation, however, also has another vortex 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
AoA Drag Force vs. Time

Time (s)

Fo
rc

e 
(N

)

 

 

Leading
Trailing

Figure 40- AoA Drag Force 



57 

 

near the trailing edge. The velocity magnitudes of these larger vortices are larger than the base 

case, thus helping validate the larger separation conclusion.  

  

Figure 41- Spring Separation 
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CHAPTER 5- CONCLUSIONS 

 In conclusion, a computational solution setup using FLUENT has been developed and 

validated for NACA 0012 and NACA 0015 airfoils. The validation for both airfoils has shown 

grievance to published airfoil lift and drag data. Additionally, the pressure coefficient over the 

surface of the NACA 0012 airfoil has been validated against published pressure data. Similar 

meshing sizing schemes were used to create a scale wind tunnel based mesh for the wing 

oscillator prototype. A mathematical scheme was developed from the equations governing 

rotational motion to drive the wing oscillator motion in the computation. This mathematical 

scheme used the computed airfoil forces from the computational analysis to drive the motion. 

In this manner, the analysis was derived to provide a performance prediction that would be able 

to be compared to experimental data. The mathematical scheme was verified using both a 

MATLAB code and a C code to ensure the integrity of the calculation.  

 The mathematical scheme was hooked into FLUENT using UDFs that were written to 

accommodate parallel computation. The built in dynamic meshing parameters provided by 

FLUENT were used in conjunction with the UDFs to allow for the dynamic analysis of the wing 

oscillator. Numerous test cases were run to ensure correct performance of the computational 

analysis. Result cases were run using parallel computation with up to 16 partitions to reduce the 

computational time required for each case. Animation files were saved and rendered for each 

result case, as well as the saving intermittent case and data files for later static reference. With 

the completion of the aforementioned tasks, all of the project goals have been met.  

 The base results from the dynamic analysis were analyzed for aerodynamic 

characteristics. The base case demonstrated significant separation immediately after the airfoil 

AoA reversed direction near the extremes of travel. This separation caused a large wake to 

traverse the wind tunnel and interact with the trailing airfoil. Although somewhat dissipated, 

the leading airfoil wake had a small effect on the drag force experienced by the trailing airfoil. 

The conclusion of the wake interaction was that the effect was negligible for most of the 

oscillation period. This was likely due to the rather large distance between the leading and 

trailing airfoils. The possibility of some numerical diffusion occurring due to poor mesh 

resolution was considered. It was found that as the solution progressed, the mesh would 

degrade slightly despite the dynamic meshing parameters being selected to minimize cell 

growth and dissipation. The separation caused the forces on the airfoil to fluctuate as the flow 

separated and reattached while shedding the developed vortices. The effective AoA of the 

airfoils also had an effect on the forces produced by the airfoils. As the airfoils traversed the 

wind tunnel vertically, the vertical velocity reduced the effective angle of attack of the airfoils. 

This reduction in AoA reduced the amount of force produced by the airfoils. Aerodynamic 

characteristics that reduce the airfoil forces or system torque would have a negative effect on 

the power generation potential of the wing oscillator. Thus, tuning the system parameters to 

minimize the negative aerodynamic characteristics would be useful, which could include tuning 

the system to have the leading airfoil wake pass the trailing airfoil without causing an 

aerodynamic interaction. 
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 A parametric study was conducted to investigate the effect on performance by the 

various system parameters. Most of the parameters seem to have an effect on the rotational 

travel of the system. The spring constant seemed to have a significant impact on the 

performance of the systems. At this point, it would be difficult to conclude whether these 

effects had a positive or negative effect on the system performance. In one aspect, the lack of a 

spring keeps the torque positive for the entire oscillation stroke, compared to the other cases 

that dipped into a negative torque region before the AoA reversal. Another aspect, however is 

that there is no built up opposite torque after the AoA reversal so the system continues to travel 

opposite of the airfoil direction. This causes a large separation of the flow from the airfoil 

surface, which causes large fluctuations in the airfoil forces.  

 The final conclusion of the computational analysis of a wing oscillator is that there is 

potential for power generation. The system has been shown to be self-driving though the above 

computational analysis. By modifying the system parameters, it may be feasible to tune the 

system to meet the needs of various flow conditions. It would be recommended to build a cost 

efficient prototype, similar to the geometry used in the dynamic case above, and perform some 

initial experimental analysis.  

 

5.1 – RECOMMENDATIONS AND FUTURE WORK  

 One of the first recommendations for the current analysis would be to work on the 

mesh resolution and degradation issue. This recommendation might be limited by the tools 

available in FLUENT, however, there are some tools that exist that were not fully explored. The 

first tool would be the new diffusion dynamic meshing scheme found in FLUENT version 14. This 

method has not been explored due to it not being available in earlier FLUENT versions that were 

used to develop the dynamic meshing schemed used in this study. Secondly, the dynamic mesh 

adaptation functions have not been fully explored due to project time constraints. The goal of 

implementing these features would be to keep the mesh resolution similar to the initial mesh, 

as well as better capturing critical areas of the flow field like in the vicinity of the separation.  

 In the future, having experimental data to compare some of the dynamic results to 

would be imperative. Having experimental data to compare to would hopefully validate the 

numerical scheme as well as verify the results of the dynamic computation. At minimum, some 

steady state experimental data should be collected and compared with a steady state analysis 

using the wind tunnel based mesh. If a fully dynamic experimental setup was to be designed, the 

specific geometry should be used to create the mesh for the dynamic computation. The specific 

turbulent boundary conditions of the wind tunnel should also be added to the computational 

model. With or without a full experimental analysis, the transmission system to convert the 

oscillatory motion to pure rotational motion should be developed. A mathematical model of this 

transmission system should then be added to the calculations so that the power and efficiency 

of the wing oscillator could be predicted.  
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 An active AoA control method should be developed to allow the wing oscillator to have 

more control over the effective AoA. This would more than likely greatly improve the 

performance of the wing oscillator by being able to produce a high torque throughout the entire 

oscillation. This method would also have the potential of being able to reduce the separation, 

which would reduce the force fluctuations. Implementing this active control would be a great 

task, as a full control system would have to be developed and subsequently implemented into 

the UDF code. This type of control would include a number of new tuning parameters, that 

coupled with a transmission system scheme would allow for the full investigation of maximizing 

power and efficiency.  

 Lastly, the UDF code should be modified to allow for even easier manipulation of the 

system parameters. This means that some of the calculations conducted externally of the UDF 

should be included such that the specific values of the variables can be calculated internally. This 

would greatly enhance both the usability and the efficiency of changing the parameters for 

various cases.   
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