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Summary

Conventional gearbox vibration monitoring techniques are based on the assumption that
changes in the measured structural response are caused by deterioration in the condition
of the gears in the gearbox. However, this assumption is not valid under fluctuating load
conditions, since the fluctuating load will amplitude modulate the measured vibration
signal and cause the rotational speed of the system to change. In general monitoring of
machines subject to fluctuating load conditions is dealt with by considering the constant

load conditions on gearboxes or during free rotational tests.

The need to monitor the condition of large gearboxes in mineral mining equipment has
attracted greater interest in order to improve asset management. An inherent need for
signal processing techniques, with the ability to indicate degradation in gear condition,
under fluctuating load conditions exist. Such techniques should enable the online
monitoring of gearboxes that operate under fluctuating load conditions. A continued flow
of up to date information should consequently be available for asset and production

management.

-1- Summary



Summary

With this research, a load demodulation normalisation procedure was developed to
remove the modulation caused by fluctuating load conditions, which obscures the

detection of an incipient gear fault conditions.

A rotation domain averaging technique is implemented which combines the ability of
computer order tracking and time domain averaging to suppress the spectral smearing
effect caused by the fluctuation in speed, as well as to suppress the amplitude of the

vibration which is not synchronous with the rotation of the gear shaft.

It is demonstrated that the instantaneous angular speed of a gearbox shaft can be utilised
to monitor the condition of the gear on the shaft. The instantaneous angular speed
response measurement is less susceptible to phase distortion introduced by the
transmission path when compared to conventional gearbox casing vibration

measurements.

A phase domain averaging approach was developed to overcome the phase distortion
effect of the transmission path under fluctuating load conditions. The load demodulation
normalisation and rotation domain averaging signal processing procedures were applied
to both the conventional gearbox casing vibration and instantaneous angular speed
measurements prior to the calculation of a smoothed pseudo Wigner-Ville distribution of
the data. Statistical parameters such as the energy ratio were calculated from the
distribution. These parameters could be monotonically trended under different load

conditions to indicate the degradation of gear conditions.

Keywords: Gearbox, condition monitoring, vibration, fluctuating load, modulation, order

tracking, rotation domain averaging and normalisation. .
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Nomenclature

Symbols

a Output vector

a(t) Real signal

a(t) Analytical signal

a() Hilbert transform of the real signal
a(t) Complex conjugate of the analytical signal
b Bias vector

C, Structural damping coefficient

C, Bearing damping coefficient

C, Gear mesh damping coefficient

c Damping coefficient of a SDOF system

d*(x,y) Mabhalanobis distance
E Energy of the PWV distribution
E, Energy in the order band in which the amplitude of the distribution

increases when gear damage is introduced

Ew Energy in the gear mesh order band, which is present when no gear fault

condition is induced

ER Energy ratio
e Complex exponential
f Low pass filter frequency or shaft order / frequency
GR Gear ratio
H Hilbert transform
h Frequency smoothing window
K, Structural stiffness
K, Bearing stiffness
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Gearwheel mass

Average mean value vector for the Mahalanobis distance
Mass of a SDOF system
Mean scalar value for the Mahalanobis distance

Rotation marginal of the PWV

Order marginal of the PWV

Number of load conditions / Number of values in a vector / Number of
gear teeth

Number of samples per shaft revolution

Normalised statistical parameter

Input to the hard limit transfer function

Objective function value
Pseudo Wigner-Ville function
Input vector

Reference parameter
Gearwheel base circle radius
Rotation number

Pinion base circle radius

Frequency ratio
Number of statistical parameters

Statistical parameter

Input torque
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Torque load
Time

Target vector
Weight matrix

Displacement of the translating mass
Velocity of the translating mass
Acceleration of the translating mass
Displacement of the input pinion
Velocity of the input pinion
Acceleration of the input pinion

Displacement of the gear wheel
Velocity of the gear wheel

Acceleration of the gear wheel

Mass displacement of a SDOF system
Vector to which the Mahalanobis distance is calculated

Mean reference vector for the Mahalanobis distance

Base displacement of a SDOF system
Constant modulation phase shift

Order

Angular increment

Mean value of the statistical parameter
Modulation phase shift per revolution / Phase of a SDOF system
Angle of shaft rotation

Angular rotation of the input pinion
Instantaneous angular speed of the input pinion
Angular acceleration of the input pinion
Angular rotation of the gear wheel

Instantaneous angular speed of the gear wheel
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52 Angular acceleration of the gear wheel
T Time delay

4 Damping ratio

Abbreviations

ANN Artificial Neural Network

COT Computer Order Tracking

ER Energy Ratio

FM Frequency Modulation

FRF Frequency Response Function

GMS Gear Mesh Signal

IAS Instantaneous Angular Speed

ICP Integrated Circuit Piezoelectric

LDN Load Demodulation Normalisation
LNA Load Normalised Acceleration

MAS Measured Acceleration Signal
NMGMS Narrowband Modulated Gear Mesh Signal
NRDV Normalised Relative Difference Value
NSP Normalised Statistical Parameter
OFV Objective Function Value

PDA Phase Domain Averaging

PWV Pseudo Wigner-Ville

RDA Rotation Domain Averaging

RMS Root Mean Square

RP Reference Parameter

SDOF Single Degree Of Freedom

SP Statistical Parameter

SPWV Smoothed pseudo Wigner-Ville

TDA Time Domain Averaging
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Chapter 1

Introduction and literature survey

1.1 Introduction

The condition monitoring of large gearboxes during operation in industry has attracted
greater interest in recent years, owing to the need to decrease the down time on
production machinery and to reduce the extent of the secondary damage caused by
failures. Effective condition monitoring systems and strategies will assist the scheduling
of optimal maintenance intervals and therefore minimise unnecessary down time of

production equipment.

The cutting head on a continuous mining machine consists of a rotating cylinder with
cutting bits mounted around the circumference as shown in figure 1.1 The cutting head is
driven through a gear transmission, which is subjected to variable loads as coal is sheared
from the coalface in the mining operation. During this process shock loads are induced

on to the transmission as the picks come into contact with the coalface.

The cutting head transmission is a critical component of the continuous coal miner and
the coal mining process since the entire mining process in the section of the mine is
aborted when it fails. Replacement costs range between R1100 000 and R1710 000,
depending on the model. The mining process induces high levels of operational vibration
onto the machine structure, which complicates the interpretation of the signals with

commercially available vibration monitoring software and techniques.
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Figure 1.1 Continuous mining machine

Therefore, the vibration monitoring is normally conducted during a free rotational test
with no load on the transmission. Figure 1.2 shows the acquisition of a typical vibration

monitoring measurement with conventional strategies.

Figure 1.2 Conventional monitoring of the continuous mining machine gearbox
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A dragline is used in opencast mining to move the overburden in order to expose the coal
layer, which is being mined in the mining operation. The loading device is controlled and
supported by cables which drags, hoists and tips its contents as shown in figures 1.3. A
human operator controls the process with two joysticks from the control room of the
dragline. The rate at which the cables are drawn in and out as well as the weight of the
load changes randomly between certain limits during operation. A random variation in

the tension of the cables is consequently obtained.

Figure 1.3 Marion 2 dragline Syferfontein mine SASOL Secunda

The cable length is controlled with cables drums, which in turn is rotated by so-called
drag motors and gearboxes. Figure 1.4 shows the cable drums, drag gearboxes and direct
current electric motors. The load on the gears fluctuates due to the fluctuation in the
tension of the cables. The typical life span of the pinion gear is in the range of six to
twelve months. Down time on the dragline is estimated at approximately R600 000.00
per hour. Early detection of incipient gear failure is therefore of paramount importance in
order to enable maintenance personnel to minimise the down time for gear pinion

replacement.
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Figure 1.4 Dragline drag motors and gearboxes

Trends in the coal mining industry are towards a situation where the equipment
manufacturers are introducing service contracts on their machinery. This implies that
manufacturers provide and maintain the machines for production and are remunerated per
tonnes of coal produced. Therefore, the optimal utilisation and management of the gear
transmission life is becoming a point of increased concern for manufacturers. The smaller
the number of replacement parts used by the manufacturers, the higher the profit margin.
However, the mines manage the production process and the mine personnel operate the
equipment.  Therefore, the manufacturers have to monitor the integrity of their
investment in terms of optimal life expectancy as well as mishandling by mine personnel

and management.

An on-line integrity monitoring system could be implemented to indicate periods of
equipment mishandling that accelerate degradation of equipment integrity. A real time or
on-line monitoring system that includes measurements under loaded conditions may
therefore render advantages in terms of normal predictive maintenance and the ability to

detect mishandling.
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Conventional vibration monitoring techniques are based on the assumption that changes
in the measured structural response are caused by deterioration in the condition of the
gearbox. However, this assumption is not valid under fluctuating load conditions, since
the fluctuating load will amplitude modulate the measured vibration signal and cause the
rotational speed of the system to change. The change in system speed results in a

frequency modulation of the gear mesh signal.

The development of on-line gear vibration monitoring systems therefore require signal
processing procedures that compensate for the fluctuation in the shaft speed as well as the
amplitude modulation caused by the varying load. Note that oil sampling and analysis
cannot detect certain failure modes in a gearbox such as a root crack at a gear tooth.
Hence, it is necessary to develop vibration signal processing procedures to monitor these

failure modes.

1.2 Literature survey

The literature survey was conducted over a variety of topic areas in order to assist the
development of vibration monitoring signal-processing procedures that compensates for
the effects of fluctuating load conditions on gears of which the condition is monitored

through vibration measurements.

1.2.1 Order tracking

If conventional spectrum analysis is applied to data that is measured under changing shaft
speed conditions, the harmonics of the shaft speed will smear the spectrum in the
frequency domain. This complicates the analyses of the spectrum. According to Randall
[1] order tracking is a process, which is utilised when applying spectral analysis to
vibration measurements, which are taken on machines of which the rotational speed
changes during measurements. A signal representing the rotational speed of the shaft is
measured in order to enable the spectral smearing compensation process known as order

tracking.
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Conventional or traditional order tracking is implemented in the hardware of the vibration
analysers which adapt the sampling frequency of the analogue to digital converter so that
the vibration signal may be sampled at constant increments of the shaft being analysed.
Due to processing time constraints, a time delay between the speed signal and sampling
rate adaptation occurs. Hence, conventional order tracking cannot compensate for rapidly

changing shaft speed situations.

Potter [2] as well as Potter and Gribler [3] presented the computed order tracking process
in which the vibration and speed data is sampled at a constant sampling rate. The
sampling is therefore conducted asynchronous to the rotation of the shaft being analysed.
Once the data is captured, the vibration signal is re-sampled at constant increments of the
shaft off-line. Due to the fact that the sampling is conducted off line with software much
more flexibility is available to manipulate the signal. The approach does not require
specialised hardware and results that are more accurate can be obtained when compared

with conventional methods.

Fyfe and Munck [4] investigated the factors, which have an effect on computer order
tracking. It was indicated that the method is extremely sensitive to the timing accuracy of
the key-phasor pulses representing the shaft speed. Higher order interpolation functions
were successfully utilized to estimate the rotational speed between key-phasor pulses in

order to improve the accuracy of the order tracking process.

Bossley et al. [5] evaluated various interpolation algorithms such as linear interpolation,
B-spline interpolation, Lagrange interpolation and Fourier series interpolation. A hybrid
computed order-tracking approach was proposed to overcome the key-phasor arrival time

sensitivity problem of conventional computer order tracking.
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1.2.2 Synchronous time domain averaging

The averaging of power spectra amplitudes in the frequency domain is conducted in order
to reduce variance in spectral analysis according to Randall [1]. Braun [6] states that time
domain averaging is a well-known process, which can be utilised to extract a periodic
signal from noise waveforms. The signal is averaged synchronously with a key-phasor
signal in the time domain in order to attenuate the signal content that is not periodic with

a key-phasor signal.

In simplistic terms, the signal is split up into intervals of the shaft rotation indicated by
the key-phasor pulse. The amplitude values of the signal are added chronologically over
time for each revolution of the shaft. Synchronous components in the signal will always
have the same sign, which may be positive or negative at a particular point of shaft
rotation. However, the non-synchronous components will not have the same sign at a
particular point of shaft rotation. Consequently, the addition of the signal will strengthen
the presence of the synchronous components in the signal and attenuate the non-

synchronous components resulting in the synchronous time domain average of the signal.

Time domain averaging can be modelled as the convolution of a signal with a finite train
of impulses of which the time duration between the impulses is equal to the period of the
so-called desired signal. The convolution process is equivalent to the multiplication of the
signal with a comb filter in the frequency domain. Only the fundamental and harmonic
frequency components of the desired signal will remain in the signal once the frequency
multiplication process or convolution has been completed. Braun [6] indicated that the
process is less sensitive to triggering errors when compared to conventional time domain
averaging. Braun and Seth [7] further investigated the extraction and filtering of signals
acquired from rotating machines through multiplication with windows in the frequency
domain. McFadden [8] revised the model of Braun [6], to only use a finite number of
samples from the signal to produce a result, which is periodic. The methodology involves
the application of a rectangular window to the signal in the time domain and sampling of

the signals Fourier transform in the frequency domain.
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In specialised gear monitoring applications, a rotating reference signal or key-phasor
signal is only available on the input shaft of the gearbox. Therefore, phase locked
frequency multipliers are used to calculate the time domain average signals for the gears
on the remaining shafts in the gearbox. McFadden [9] proposed a methodology where the
time domain average can be calculated off-line through interpolation on a digital
computer. The methodology provides an alternative way to a phase-locked frequency
multiplier, in order to calculate the time domain average when a rotational reference

signal or key-phasor signal on the gear of interest is not available.

Forrester [10] states that a discrepancy or confusion exists regarding the methodology
and terminology of time domain averaging. Braun [6] and McFadden [8] referred to the
concept as time domain averaging, however Stewart [11] referred to the concept as time
synchronous averaging. Furthermore Swanson et al. [12] referred to it as coherent
rotational signal averaging and Succi [13] as synchronous averaging. Forrester [10] states
that time domain averaging does include order tracking as a pre-processing technique
before the averaging in the time domain is performed. Stander et al. [14] distinguished
between time domain averaging where the signal is averaged without conducting any
form of order tracking, and rotation domain averaging where order tracking is conducted
before averaging the signal in the rotation domain which is expressed in degrees of shaft
rotation. The term rotation domain averaging is more appropriate since the signal cannot
be referred to in the time domain once order tracking is applied. The terms synchronous

averaging and rotation domain averaging will henceforth be used.

McFadden [15] employed a matched difference technique in order to adjust the
synchronous time domain average to minimise phase and amplitude differences between
consecutive signals. The differences were caused by variation in shaft speed and load as
well as alignment deviation due to the reassembling of the gearbox on which the
measurements where taken. Gearbox reassembly between measurements was necessary

since five different fault conditions were seeded for the investigation.
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The matched difference technique entailed subtracting the consecutive time domain
averages from one another and adjusting the amplitude and phase in order to reduce the

difference between the signals.

1.2.3 Adaptive noise cancellation

Chaturvedi and Thomas [16] stated that the objective of adaptive noise cancellation is to
reduce the signal to noise ratio of signals, which are measured for diagnostic purposes.
Time domain synchronous averaging is used for the same purpose however, it cannot be
applied in all situations since not all of the diagnostic signal content of interest is
synchronous with the rotation of the shafts in a rotating machine. A typical example is a
rolling element bearing where the rotation of the rolling elements is not synchronous with

the rotation of the shaft.

Bremer [17] applied adaptive noise cancellation on a bearing test rig to determine which
one of three bearings had a defect. Two transducers were used, one near the component
being monitored and the other at the noise source. The one transducer will therefore
measure the noise signal and the other the noise signal that is modified by the
transmission path plus the signal content that is generated by the interacting of the defect
with the other components in the machine. The signal of the noise source is filtered in
order to impose the transmission path effects on the signal, which is measured to
represent the noise content in the diagnostic signal. The filtered signal is subtracted from
the diagnostic signal in order to attenuate the noise content. The filter coefficients are

calculated through an optimisation process.

Blind source separation is a variation on the theme of adaptive noise cancellation. The
aim of blind source separation is to measure multiple signals and filter the influence of
the various signals from one another. Gelle et al. [18] applied blind source separation to
vibration signals measured on a test bench, which consisted of two direct current electric

machines running at different speeds.
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The authors where able to remove the running speed harmonics of the apposing machines

from the vibration spectra measured to a certain extent.

1.2.4 Amplitude and phase demodulation

Smith [19] states that the gear mesh vibration measured on the casing of a gearbox
descends from the fluctuation in gear meshing stiffness as the gears rotate in and out of
the gear mesh. If a time domain average or synchronous average of the vibration on the
gearbox casing is calculated and band pass filtered around the fundamental gear mesh
harmonic, the resulting signal will approximate a sinusoid where each peak in the
sinusoid represents the structural response due to a gear tooth entering the gear mesh.
According to Randall [1] the amplitude modulation of the time domain average signal
can be calculated by taking the absolute value of the signal’s analytical signal. The
analytical signal is a complex time signal of which the imaginary part is the Hilbert
transform of the real part. Note that the phase modulation can be calculated by

calculating the phase of the analytical signal.

McFadden and Smith [20] band pass filtered the time domain averaged signal around the
prominent gear-meshing harmonic and removed the gear mesh harmonic itself in order to
obtain what they referred to as a residual signal. The amplitude modulation of the
residual signal was analysed and statistical parameters of the residual signal modulations
were calculated. The methodology proved to be an effective way to detect local defects

on gears.

McFadden [21, 22 and 23] utilised the amplitude and phase modulation of the time
domain average which is band passed filtered around the prominent gear mesh harmonic
to detect fatigue cracks in the gears of a helicopter’s main rotor gearbox. Ma and Li [24]
extended the technique to incorporate all of the gear meshing harmonics and applied the
technique to torsional vibration measurements measured on an experimental test rig with
artificially seeded defects. They concluded that the technique is more sensitive in

detecting gear defects when compared to a narrow band-filtered approach.
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Brie et al. [25] developed an adaptive amplitude and phase demodulation approach,
which has lower numerical complexity when compared to the conventional route of
calculating the modulation using the Hilbert transform. The algorithm is sequential which

allows it to be implemented in real time.

Wang [26] applied a resonance demodulation technique common to rolling element
bearing defect detection and monitoring to detect incipient gear tooth cracks. The
methodology is based on the fact that a root crack will lower gear tooth stiffness in the
gear mesh resulting in impacts as the gear tooth after the damaged gear tooth enters the
gear mesh. This impacting will excite the structural resonance. A residual signal is
calculated from the time domain average and band pass filtered around the structural
resonance. The band passed filtered residual signal is then demodulated to detect sudden
changes in the modulation, which are related to the presence of fatigue cracks in the

gears.

1.2.5 Time domain analysis

The application of statistical analysis to measured diagnostic signals is as old as the
science of measuring the signals. A review of time domain analysis using statistical
methods forms part of virtually every PhD thesis and Masters dissertation conducted in
the field of vibration monitoring. Authors such as Forrester [10], Al-Balushi [27], Birch

[28], Engin [29] and Andrade [30] have compiled such literature surveys and reviews.

In general, time domain analysis entails calculating the root mean square, peak value,
crest factor and kurtosis values of a signal. The root mean square value gives an
indication of the continuous or steady state amplitude in a time varying signal. Peak level
or value is defined as half of the difference between the maximum and minimum values
in the signal. This is not a statistical value and it is known not to be a reliable indicator of
damage. The crest factor is defined as the ratio of the peak value divided by the root

mean square value of the signal. It gives an indication of impulsiveness in the signal.
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The kurtosis is the normalised fourth statistical moment of a signal. It also used to
indicate impulsiveness in the signal. The parameters defined above are also referred to as
overall vibration parameters. In general, they are calculated for each measurement and
trended over time to give an indication of machine condition, rather than the condition of
specific components in the machine. The parameter does not provide any diagnostic
information. However, the parameters are easy to implement in low cost online

monitoring equipment.

Komura et al. [31] developed a hand held vibration monitoring sensor which utilises the
root mean square, kurtosis and mutations thereof to classify a machines condition

according to three categories namely normal, warning and alert.

Martin et al. [32], Ismall et al. [33] and Oguamanam et al. [34] applied statistical
distributions to experimental data measured on gear and gear pump test rigs. A
synchronous or time domain average of the vibration signal was calculated before
applying the statistical distribution to segments of the time domain averaged signal. The
segmentation of the signal enables local fault detection on the gear teeth of the gears. A
beta distribution was fitted since the kurtosis of a normal distribution was to sensitive to
noise in the vibration data. It was indicated that the reciprocal of the beta kurtosis value

could indicate the presence of a local defect on a gear.

Howard [35] developed a composite signal averaging technique to overcome the
monitoring problems encountered when monitoring gears in an epicyclic gearbox.
Typical problems were the varying transmission path to the transducer and the fact that
multiple components mesh at the same frequency. Experimental tests where done with
progression in induced gear damage and vibration measurements where taken for the
various fault conditions in order to validate the technique. The composite signal
averaging technique was applied to the experimental data and the modulation of the

averaged signals was calculated.
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Kurtosis values for the modulation were estimated and it was shown that the kurtosis
increased as the extent of gear damage increased. The kurtosis value of the modulation
therefore proved to be an effective indication of gear condition once composite signal

averaging had been done.

The Kolmogorov-Smirmov test was applied by Andrade et al. [36] to detect early fatigue
cracks in gears. The test is a time domain signal processing technique that compares two
signals to indicate the likelihood that the two signals have the same probability density
function. In essence, the test determines whether two signals are similar or not.
Therefore, a fault condition can be indicated by comparing a signal with a number of
signal templates of known fault conditions. The technique was applied to experimental
data and it was indicated that the technique could successfully detect the presence of a

fatigue crack.

Baydar et al. [37] utilised multivariate statistics in combination with principal component
analysis to detect localised faults in a two stage helical gearbox. Principal component
analysis is utilised to reduce the dimension of a data set to fewer samples. In essence, it is
utilised for data compression. Vibration signals under different fault conditions where
measured. Principal components were calculated for the normal or no fault present
condition. These components where statistically represented and statistical techniques
such as square predictor error and T ? statistics were calculated for the new measurements
to observe any deviations form the normal condition. The square predictor error is the
sum of the squared difference between the data indicating the normal condition and the
measured data. The T ? value is merely the sum of the squared principal component

values. A deviation in the value will indicate a deviation in the condition of the machine.
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1.2.6 Spectrum analysis

Spectrum analysis entails the conversion of a time signal in to a frequency domain
representation through a discrete Fourier transform. The term spectrum is used for the
amplitude representation versus the positive frequency range of the time signal’s Fourier

transform.

The advantage in using spectrum analysis lies in the fact that the amplitude at each
discrete frequency can be monitored in contrast to the overall amplitude monitoring
approach of time domain analysis. A log scale for the amplitude axes can be chosen to
improve the dynamic range of the representation. Defects that will cause a small change
in amplitude at a certain frequency with low amplitude will therefore be detected much

easier in comparison with time domain analysis.

The frequencies at which a certain defect on a particular component will cause an
increase in the amplitude of the spectrum are referred to as defect frequencies. Hence,
diagnostic capability can be obtained by relating amplitude growth at a certain frequency
to a particular component in the machine based on its physical parameters. This type of
analysis is conventionally used in practice to monitor plant equipment. Goldman [38],

Hunt [39], Rao [40] and Davis [41] have described spectral analysis in detail.

1.2.7 Cepstrum analysis

The term cepstrum analysis is used for a range of techniques in which the spectrum of a
logarithmic spectrum is calculated. In general terms, it is a frequency analysis of a
frequency analysis. It is utilised to detect a series of harmonics or sidebands and to
estimate their strength. The various harmonics in a conventional spectrum is reduced to
predominantly one peak in what is referred to as the quefrequency domain. Periodicity in

the conventional spectrum is therefore detected.
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Only a single peak needs to be detected to diagnose a fault condition. Logarithmic values
of the spectrum is utilised in the calculation of the cepstrum in order to improve the

dynamic range of the analysis.

The vibration spawning from the meshing of a gear pair in a gearbox has to be
transmitted through the shaft, roller element bearings and casing before being measured.
It is common knowledge that this transmission path has structural impedance
characteristics in terms of amplitude and phase. If the gears rotate at a certain frequency,
the forces being transmitting from the meshing gears will be subject to amplitude and
phase changes induced by the structural impedance at the particular frequencies.
However, if the rotational speed changes the forces being transmitted from the meshing
gears are subject to different amplitude and phase changes induced by the transmission
path impedance at the alternative frequencies. As a result, the amplitude and relative
phase of the measured structural response will be different depending on the structural

dynamic characteristics.

Randall [1, 43] and Angelo [42] stated that cepstrum analysis is insensitive to the phase
variations in the transmission path. The power spectrum of a signal measured at an
external point on the casing of a rotating machine such as a gearbox can be expressed as
the product of the power spectrum of the source function with the squared amplitude of
the frequency response of the transmission path. By taking the log of the transforms, the
multiplication turns into an addition of the logarithmic source function power spectrum
and the logarithmic frequency response function, to obtain the logarithmic spectrum of
the response. This implies that the source and transmission path effects are additive in the
cepstrum. The transmission path transfer function has low quefrequency components,
which will be well separated from the high quefrequency components representing the
source function. Randall [43] applied the cepstrum analysis to the vibration measured on
a gearbox at two different positions on the casing. He concluded that the spectra of the

two signals were different but the cepstra were almost identical.
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Forrester [10] however stated that cepstral analysis is not very useful in the analysis of
synchronously averaged signals, since the signal is not periodic in the so-called angle

domain and periodicity is lost when translated to the quefrequency domain.

A variety of expressions and forms of the cepstrum has been developed. Childers et al.
[44] described the relationships between the various forms. Wu and Crocker [45]
developed a modified cepstrum technique to determine the magnitude of a structure’s
frequency response function. The novelty of the technique is based on the fact that no
prior knowledge of the input force is required to calculate the magnitude of the structural
transfer function. Debao et al. [46] applied cepstrum analysis to detect misalignment,
unbalance and bearing damage in generators. Van Dyke and Watts [47] utilised the
cepstrum analyses as a data pre-processor for an expert system, which can detect rolling

element bearing deterioration and predict fault severity.

Badaoui et al. [48] proposed a moving cepstrum integral to detect and localise tooth
spalls in gears. The technique applies a moving window in order to isolate the gear tooth
faults. This enables the detection and localisation of local tooth spalls on gear teeth. The
technique was applied to numerical and experimental data and the authors where able to

detect light spalls on gear teeth.

1.2.8 Higher order spectral analysis

A spectrum is conventionally utilised to indicate the energy distribution of a signal in the
frequency domain. Note that a spectrum analysis is a linear analysis and it assumes that
all of the frequency components in a signal are uncorrelated which means that the phase
relationship between the frequency components is ignored. Higher order spectral analysis
is utilised to detect phase coupling due to non-linear interaction between the frequency

components.
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The most commonly used higher order spectral analysis technique is bispectral analysis,
which is utilised to detect quadratic phase coupling. Quadratic phase coupling is a
physical phenomenon, which occurs when two waves interact to generate a third wave
which has frequency and phase equal to the sum of the two source waves. Hence, all of
the signals are phase related. A bispectrum is calculated for a two-dimensional frequency
plane. The normalised bispectrum with amplitude values ranging between one and zero is
referred to as bicoherence. Amplitudes approximating the value of one will indicate that
the phase of the frequency components are correlated. A region in the bicoherence where
the amplitude approximates zero, indicates that the frequencies are uncorrelated and that
phase coupling between the frequencies do not exist. The concept is applied in gear
damage detection in order to detect the frequencies, which are modulated with a certain

frequency component.

Li et al. [49] utilised bispectrum analysis to diagnose localised defects in rolling element
bearings from experimental measurements.  Ning et al. [50] proposed a modified
bispectral analysis approach in order to detect distributed gear faults such as eccentricity
and shaft imbalance. Howard [51] determined that bispectral and trispectral analyses
techniques could detect amplitude and phase modulation in gear vibration signals. Parker
et al. [52] applied bispectrum analysis to synchronously sampled helicopter transmission
data. Statistical change detection was applied to the bispectrum in order to detect the
appearance of energy at known frequency pairs in the bispectral domain.  Kocur and
Stanko [53] proposed the order bispectrum to analyse the sound radiation from rotating
machines with non-stationary shaft speed such as a motorcar engine. A computer order
tracking approach is presented as a pre-processor prior to the calculation of the
bispectrum. Experimental results are shown with and without the computer order
tracking pre-processing which indicated an improvement in terms of the reduction in

bispectral smearing.
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1.2.9 Time frequency analysis

Conventional spectrum analysis assumes that the signals, which are analysed, are
stationary. It is therefore unsuitable for the analysis of non-stationary signals. Non-
stationary components in a vibration signal measured on a rotating machine may be
caused by defects. Time frequency analysis techniques can be utilised to conduct non-
stationary signal analysis on vibration measurements to detect defects. Time frequency
analysis is the three-dimensional time, frequency and amplitude representation of a

signal, which is inherently suited to indicating transient events in a signal.

The Fourier transform can be adapted to analyse only small sections of the vibration
signals in order to reduce the loss of transient or non-stationary time information. A
sequence of overlapped transforms is performed, by shifting a window function in time
over the whole signal. Transforms are arranged chronologically to construct the time-
frequency distribution of the signal. The approach is referred to as the short time Fourier

transform and provides information on the time and frequency at which events occur.

Information can however only be obtained with limited precision, which is determined by
the length and shape of the time window. A short time window will result in good time
resolution but poor frequency resolution and vice versa. Hence, either good time
resolution can be obtained or good frequency resolution. Consequently, additional

transforms were developed in order to improve the time frequency resolution.

The Wigner distribution and its various permutations is a time frequency technique,
which was developed to improve on the resolution constraints of the short time Fourier
transform. The Wigner distribution is derived through the generalization of the
relationship between the power spectrum and the autocorrelation function for non-
stationary time-variant processes. The amplitude of the negative frequencies in the
frequency domain is zero for an analytical signal. Therefore, the application of the

Wigner distribution to the analytical signal will account for all frequencies.
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The application is referred to as the Wigner-Ville distribution. However, the distribution
is influenced by what is referred to as cross-terms or interference terms. A frequency-
smoothing window is applied to the Wigner-Ville distribution in order to attenuate these
interference and cross-terms that are inherent to the distribution. The application of the

frequency-smoothing window results in a pseudo-Wigner-Ville distribution.

Cohen [54] as well as Qian and Chen [55] have documented various time frequency
analysis techniques. Forrester [10, 56, 57] applied the Wigner-Ville distribution to
synchronously averaged vibration measurement data from a Wessex helicopter main rotor
gearbox and an epicyclic gearbox test rig. He concluded that it was possible to detect,
classify and determine the extent of the damage by the patterns produced by the Wigner-
Ville distribution.

Staszewski [58, 59] and Tomlinson [59] applied a variation of the short time Fourier
transform referred to as the moving window approach to detect local defects in the
vibration measured on an experimental spur gear test rig. Fault conditions in the form of
tooth breakage and root cracks were seeded for their investigation. They concluded that
the success rate of the approach depends on the proper selection of the window
parameters. Staszewski [58, 60], Worden and Tomlinson [60] detected fault conditions
on a spur gear test rig by applying the Wigner-Ville distribution to vibration
measurements taken on the test rig. They concluded that the defect manifests as wideband
amplitude dispersion in the contour plot of the distribution. Hence, fault localisation in
the time domain is possible with the approach. Progression in the fault condition could be
observed by changes in the contour plot of the distribution. Statistical and neural network

pattern recognition techniques were applied to classify fault condition advancement.
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McFadden [61] investigated the failure of a military aircraft starter gearbox using cascade
plots of vibration measured on the power take off gearbox of the turbines. Measurements
were taken on more than 200 gearboxes. Discs were machined and fitted on the flange of
the power take off drive shaft in order to construct a shaft encoder to indicate the
rotational speed of the shaft. With this work, McFadden illustrated that both order
tracking and time frequency representation is required to conduct a comprehensive

investigation on gearboxes.

Wang [62] as well as Wang and McFadden [63, 64, 65, 66] applied the spectrogram for
early gear failure detection. They concluded that the Wigner-Ville distribution causes too
many cross in the time frequency distribution, which make the images difficult to
interpret. They applied the spectrogram to the vibration measured on an industrial
gearbox. However, the fundamental gear mesh frequency was removed before calculating
the spectrogram of the data in order to improve the sensitivity in the distribution. An
image processing technique was used to detect gear faults by extracting, comparing and

analysing patterns in the distribution.

Zheng and McFadden [67] introduced an alias-free exponential time-frequency
distribution referred to as the modified exponential distribution. They indicated
numerically and experimentally that the distribution is well suited to detect transient

signal components in the presence of steady components.

Yesilyurt ef al. [68] compared the efficiency of the pseudo-Wigner-Ville, Choi-Williams
and the instantaneous power spectrum distributions to detect local incipient tooth damage
on helical gears. Measurements were taken on a test rig with induced damage. It was
concluded that the pseudo Wigner-Ville distribution gave improved frequency resolution
in comparison with the instantaneous power spectrum. However, the interference terms in
the pseudo Wigner-Ville distribution made it difficult to detect incipient damage. Results
obtained from the application indicated that the Choi-Williams distribution was not suited
for incipient damage detection. The instantaneous power spectrum proved to be the most

sensitive to detect incipient gear damage.
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In the smoothed pseudo Wigner-Ville distribution, both time and frequency smoothing is
applied to attenuate interference terms, in contrast to the pseudo Wigner-Ville
distribution in which only frequency smoothing is applied. Thus, greater attenuation of
the interference terms is obtained by applying the smoothed pseudo Wigner-Ville
distribution. Baydar and Ball [69, 70] as well as Baydar [71] applied the smoothed
pseudo Wigner-Ville distribution to vibration and acoustic signals measured from a
helical gearbox test rig. It was concluded that the acoustic signals were influenced by
background noise. However, gear defects could be detected with both signals, by
monitoring the broadening of the frequency band outside the meshing frequency band in
the smoothed pseudo Wigner-Ville distribution. The sensitivity of the instantaneous
power spectrum was compared to the smoothed pseudo-Wigner-Ville distribution. In
terms of early fault detection capability, the performance of the instantaneous power

spectrum and the smoothed pseudo Wigner-Ville distribution were found to be similar.

Han and Lee [72] proposed a transient signal processing technique utilising the
directional Wigner distribution for accurate tracking. The technique reduces interference
terms by converting the original time signal sampled at uniform time intervals to a
regenerated signal sampled at uniform angular distances. The technique does not require
the measurement of a tacho pulse signal as long as the rotational speed can be well

estimated from the directional Wigner distribution itself.

Lee and White [73] investigated the use of the third and fourth order Wigner bi- and tri-
spectra to detect fault conditions on industrial gearboxes and internal combustion
engines. It was concluded that the Wigner tri-spectrum is more suitable to detected

impulses in signals compared to the conventional Wigner-Ville distribution.
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Various other authors have implemented time frequency techniques to detect defects in
rotating machinery, such as Oehlmann et al. [74] who detected gear and rolling element
bearing defects in motor vehicle gearboxes, Meng and Qu [75] who detected faults in
compressors and turbines, Rossano et al. [76] detected pump speed variation, Chiollaz
and Favre [77] who characterized engine noise, Choy ef al. [78] detected gear defects in
helicopter gear transmissions and Kim et al. [79] who also detected roller element bearing
defects. Auger et al. [80] developed a shareware Matlab toolbox in which a variety of
time frequency algorithms have been implemented. A comprehensive users guide and

tutorial manual is included in the share ware package.

1.2.10 Wavelet analysis

The drawback of the short time Fourier transform is the fact that the time frequency
resolution remains constant once the window length and shape has been chosen. A more
flexible approach is required where the window size can be varied in order to enhance the
accuracy of either the time or the frequency resolution. A wavelet is a waveform of
limited duration with an average value of zero. It is used to decompose a signal into
windowed basis functions with variable size regions. Wavelet analysis performs a
decomposition of the measured vibration signal into a weighted set of scaled wavelet
functions. The frequency variable is replaced by a scale variable. The wavelet transform
does not overcome the uncertainty principle but since the window lengths are variable,
there is variable resolution that can increase performance. Wavelet analysis allows long
time intervals where more precision is required for low frequency information and shorter
time intervals where high frequency information is required. The flexible scheme of time
and frequency localisation makes the wavelet transform attractive for the analysis of

signals involving discontinuities and transients.
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Wang and McFadden [81, 82, 83] applied the wavelet transform to analyse gear vibration
signals in order to detect early signs of incipient mechanical failure. In theory, the
wavelet transform can simultaneously display both the large and small-scale features
present in the signal. This enables the detection of localised as well as distributed fault
conditions. Orthogonal wavelets such as Daubechies 4 and harmonic wavelets were used
to transform the time synchronous gearbox vibration signal into the time-scale domain.
However, it was concluded that due to the limited number of scales, a single wavelet
amplitude map does not have enough scales to describe all details both large and small, of
the signal. Hence, small changes in the vibration signal could not be detected. This
problem can be overcome through the utilisation of non-orthogonal wavelets, which are
able to give finer steps of dilation and translation. It was found that a Gaussian-enveloped

oscillating wavelet is well suited to detect various sizes of gear faults.

Lin and McFadden [84] investigated the use of a linear wavelet transform to obtain the
time frequency spectrogram of a vibration signal. The linear wavelet transform is
calculated in the frequency domain by filtering the signal spectrum with wavelet filters,
and can be computed easily and efficiently by the fast Fourier transform. It is shown that
the linear wavelet transform can be used to detect a localized fatigue crack in a gear.
Wang [85] developed a joint time-frequency-scale distribution. The three variables, time,
frequency and scale increase the possibility of detecting fault conditions in a system

under inspection.

Staszewski and Tomlinson [86] applied the wavelet transform to detect damage on spur
gears. A fault detection algorithm was presented, based on similarity analysis of patterns
obtained from the modulus of the wavelet transform. Staszewski [87] reviewed wavelet
based compression methods for application in vibration analysis. It was concluded that
wavelet based compression is effective in compressing non-stationary data. The
compressed data can be used for feature selection and coefficient selection procedures are

proposed.
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Yesilyurt and Ball [88] applied the continuous wavelet transform to detect and locate
defects in gear teeth caused by bending fatigue. Experiments were conducted on a spur
gear test rig. Measurements were taken with accelerometers at the bearing housing
closest to the gear with the defect. The Morlet wavelet was used as the analysing wavelet.
It was concluded that for low levels of bending fatigue damage the presence of a

weakened gear tooth is not clearly revealed in the wavelet amplitude plot.

Boulahbal et al. [89] investigated the utilisation of amplitude and phase maps of the
wavelet transform to detect localised gear defects in gear trains. It was found that the
phase map displays distinctive features for data measured on a test rig with a cracked
gear tooth present. The amplitude wavelet map of the residual signal was found to be
more sensitive to detect gear damage in comparison to the amplitude map of the actual

signal. The work of Wang et al. [90] confirmed the findings of Boulahbal et al. [89].

Dalpiaz ef al. [91] compared the effectiveness of different diagnostic methods to detect
gear teeth cracks from experimentally measured data. It was concluded that the
application of the wavelet transform to the raw measured signals is insensitive to the
presence of gear tooth cracks. However, the application of the wavelet transform to the
synchronously averaged measured signal was able to indicate the presence of the gear

defect.

Peng & Chu [92] compiled a comprehensive review of the application of the wavelet
transform for condition monitoring and diagnostic purposes. Misiti ef al. [93] developed a
wavelet toolbox for use with Matlab incorporating several continuous and discrete

wavelet transform algorithms.

1.2.11 System identification

It is possible to fit a difference equation representing an autoregressive moving average

model if a system can approximately be represented by a linear differential equation.
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Wu et al. [94] utilised such a model to detect defects such as unbalance on an electric
motor through vibration measurements. The coefficients in the difference equation were
fitted sequentially on the observed data from the electrical machine and the spectrum of
the data can be estimated from the model coefficients. Note that the model coefficients
are fitted via a least squares estimate and therefore act as a filter to remove noise from the
spectrum of the signal. Less time data therefore has to be captured in order to, obtain a
repeatable spectrum when compared to conventional spectral analysis where a number of

averages have to be taken in order to smooth out the noise in the spectrum.

Zhuge ef al. [95] proposed the non-stationary analysis of the vibration signal measured on
a hydraulic piston pump through the utilisation of a time variant autoregressive model.
Power spectra were generated from the model. The amplitudes in the spectra at certain
frequencies were selected as features in a similarity analysis. Four different fault
conditions were imposed on the pump to generate data for the similarity analysis. The
Mahalanobis distance from the known feature, vectors were calculated in order to
conduct the similarity analysis. The approach was found to be very sensitive in detecting

the fault conditions.

Baillie and Mathew [96] diagnosed bearing fault conditions by utilising autoregressive
time series models. Vibration signals from rolling element bearings were measured to
compare the reliability and performance of three different autoregressive modelling
techniques. They concluded that back propagation neural networks outperformed radial
basis function neural networks and traditional linear autoregressive models when only
short time lengths are available. However, if there is no restriction on the length of the
time data, linear autoregressive models can be considered. The performance of radial

basis function neural networks was disappointing.
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Li and Yoo [97] evaluated several vibration based gear diagnostic algorithms to diagnose
gear tooth surface pitting and chipped gear teeth. Spectrum analysis, condition indices,
energy operator analysis, narrow band demodulation, wide band demodulation, time
frequency analysis and model prediction error methods utilising linear autoregressive
modelling and non-linear autoregressive modelling was considered. They concluded that
only the model prediction error methods could provide diagnostic information, which

increased consistently with an increase in the extent of gear pitting.

McCormick et al. [98] applied periodic time varying autoregressive models to diagnose
and detect fault conditions in rotating machinery through vibration measurement. The
approach does not require data from the machine when a fault condition is present in
order to diagnose the fault condition. Unexpected or unfamiliar failures, which cause
changes in the structural vibration, can therefore be detected. A comparison was made
between time varying and time invariant autoregressive models. The authors concluded
that the time varying autoregressive models performed better than the time invariant

models.

Wang and Wong [99] applied a linear prediction method to detect and diagnose gear
faults. They assumed that the vibration signal measured on a gearbox without any defects
could be modelled with a stationary linear autoregressive model. Local faults on a gear
will cause sharp spikes in the vibration signal measured on a gearbox. These faults are
non-stationary transient events and cannot be modelled by the linear autoregressive
model. Therefore, a deviance between the predicted linear model response and the
measured response will be obtained when a fault condition is present in the gear. This

deviance is utilised to diagnose and detect a gear fault condition.

1.2.12 Artificial intelligence

Research in the field of fault detection severity classification focuses on the utilisation of
artificial neural networks. Artificial neural networks are trained with feature sets, which

indicate typical failure or degradation stages.
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A large numbers of these data sets are required to successfully train a neural network.
However once trained, the network has the ability to generalise and correctly classify

inputs that was not seen during the training process.

The network also has the ability to deal with data that is corrupted or that has an added
noise component. These features make the use of artificial neural networks extremely
attractive in the field of condition monitoring. Artificial neural networks can be
classified in two classes, namely supervised and unsupervised learning. Supervised
learning refers to the instance when a network is trained with data sets in which condition
indication features as well as the physical condition of the component is available to train

the network in order to classify the condition.

Unsupervised learning is implemented in applications where no information regarding the
failure modes is available. The self-organising map is an example of such networks and
is used to monitor a deviance in the network-input data. Therefore, it is used as an alarm
indicator on new machinery where no service history exists. Artificial neural networks
are often used in co-operation with expert and rule based systems to form so-called
hybrid systems. The expert and rule based systems are used to generate the feature
spaces for the artificial neural networks. A hybrid system therefore combines the power
of expert and rule based systems with the generalisation and noise tolerant capabilities of

neural networks.

Monsen et al. [100] developed helicopter gearbox health monitoring systems based on
artificial neural networks. A discrete Fourier transform was used to pre-process the data
measured from a single accelerometer before inputting the data into the artificial neural
network. Three levels of fault characterisation were used and 100% fault detection and
classification was obtained for the experimental data set used. Both rolling element

bearing and gear tooth defects were investigated in an intermediate tail rotor gearbox.
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Worden et al. [101] confirmed the conclusion of Monsen et al. [100] by applying
artificial neural networks to detect local tooth faults on spur gears. Spectra of measured
acceleration data was used as input data to the networks and the gear faults could
successfully be diagnosed. Results improved when averaging the time data prior to the

calculation of the spectra.

Xu et al. [102] indicated that artificial neural networks could be trained from raw time
domain vibration data to classify six different helicopter transmission fault conditions. No

form of pre-processing was performed.

McCormick and Nandi [103] investigated the utilisation of artificial neural networks to
detect rotor rub and unbalance. Higher order statistical analysis of the vibration
waveform, complex time series, radii distribution, spectrum analysis and time smoothing
methods were used to generate input features for the artificial neural networks. The
utilisation of the higher order statistics as input features allowed a classification success
rate of 70% and the complex time series analysis features allowed a classification success
rate of 80%. Features extracted from the higher order statistics and complex time series
analyses did not effectively detect rubbing. However, the features generated through the
application of the higher order statistics on the smoothed time series data could detect
rubbing effectively. The various features were combined to obtain a classification success

rate of 90%.

Jammu ef al. [104, 105] introduced a diagnostic method for helicopter gearboxes that
used knowledge of the gearbox structure and characteristics of the vibration features to
define the influences between the features and faults. This method brings together the
areas of dynamic modelling, fuzzy systems and neural networks to model the gearbox,
represent diagnostic knowledge and to perform diagnosis. A simplified multi degree of
freedom lumped parameter mass model of the gearbox and a procedure to obtain

diagnostic influences from the model is introduced.
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A structure based connectionist network using the influences as connection weights is
presented as a method to do diagnosis. The system was tested on data measured on a

helicopter gearbox and it was concluded that several gearbox faults could be diagnosed.

Paya et al. [106] investigated the condition of a model driveline consisting of a vehicle
gearbox, electrical motor, disc brake and bearing housings. Single and multiple faults
were introduced into the gearbox and bearing housing. The vibration signals were pre-
processed with wavelet transforms. It is shown that by using multiplayer artificial neural
networks the pre-processed wavelet transform data can be utilised to detect and classify
multiple fault condition in the model driveline. An overall classification rate of 96% was

achieved.

Essawy et al. [107, 108] developed a health monitoring system for the main power
transmission of a navy CH-46E helicopter. Vibration data was collected using eight
accelerometers mounted at different locations on the gearbox. Frequency domain and
wavelet analysis techniques were used to analyse the vibration data and to extract the
necessary fault features for neural network inputs. Self-organising map neural networks
were used to cluster the features from the different sensors to distinct locations on a two
dimensional map. Feed forward back propagation neural networks were used to identify
the different faults according to where they cluster on the two dimensional map. A fuzzy
sensor fusion algorithm was developed to process information from different neural
network based fault identifiers and to produce a unified decision about the health of the

monitored system. The fuzzy fusion sensor system had a classification rate of 100%.

Dellomo [109] investigated the use of artificial neural networks to detect and classify
fault conditions on the main gearbox of a helicopter. The measured data was order
tracked and the signal demodulated. A spectrum of the signal modulation was calculated
and features were extracted for input to the artificial neural network. It was concluded
that two layers in the network was sufficient to address the classification and detection
problem. Additional layers only improved the artificial neural network performance

slightly. A classification rate of approximately 100% was obtained.
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Demuth and M. Beale [110] developed an artificial neural network toolbox for use with

Matlab incorporating several artificial neural network architectures algorithms.

1.2.13 Chaos theory

Golnaraghi et al. [111] applied non-linear time series analysis to identify cracks in gear
teeth. The investigation showed that the measured vibration signal is chaotic. The crack
in the gear tooth alters the vibration response and hence the chaotic signature. Correlation
dimension and Lyapunov ¢xponents were used to quantify the change in the measured
vibration signal with and without the gear defect present. It was concluded that non-linear
time series analysis has great potential in the investigation of faulty gearboxes and other

rotating machines.

Lin ef al. [112] investigated a non-lincar dynamical system approach for crack detection
i a gearbox system. The study is based on the assumption that the modulation of the
narrow band enhanced vibration signal measured on a gearbox, describes some degree of
chaos in the gear mesh dynamics. It was concluded that it was possible to detect a 15 %

crack by making use of the dimensions approach.

1.2.14 Fault detection through instantaneous angular speed measurement

Smith and Echeverria-villagomez [113] measured the torsional vibration on the wheel of
a gearbox with an optical encoder on a free shaft end and with an accelerometer mounted
tangentially on an auxiliary flange. The results were compared and it was concluded that
there was good agreement between the results. The aim of the work was to investigate the
measurement of transmission error and no attempt at gear fault detection was made in the

investigation.
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Yang et al. [114] investigated the use of instantaneous angular speed measurements to
diagnose combustion related faults in a diesel engine. Typical fault conditions such as
fuel and valve leakage was considered. A dynamic model for simulating the
instantaneous angular speed of a four-cylinder diesel engine is presented. It is stated that
the gas pressure and vertical imbalance inertial force have a great influence on the
instantaneous angular speed. The simulation results were experimentally verified. It was
concluded that diesel engine faults related to gas pressure in the cylinders could be

detected through measurement of the instantaneous angular speed.

Sasi et al. [115] investigated the detection of cracked rotor bars in induction motors
through the measurement of instantaneous angular speed. An advantage of utilising the
instantaneous angular speed for fault diagnostic and detection purposes is the fact that in
many applications the instantaneous angular speed is measured for control purposes.
Furthermore, the instantaneous angular speed is less affected by the transmission path of
the torsional vibration in comparison with conventional vibration measurements on
machine casings. Two levels of broken rotor bar severity were seeded in an induction
motor. It was concluded that the broken rotor bar could be detected through measurement

of the instantaneous angular speed under load and no load operating conditions.

1.2.15 Gearbox fault detection under varying load conditions

Smith [116] states that gearboxes should not be monitored under conditions where the
angular acceleration multiplied by the effective moment of inertia of the system exceeds
the steady load torque. Randall [117] states that the amplitude of the vibration of the
gearbox casing, caused by the meshing of the gears, is modulated by the fluctuation in the
torque load. McFadden [21, 22] mentions that changing load conditions influenced the

results he obtained for his time domain synchronised averaged vibration.
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Bauer et al. [118] developed a vibration monitoring system to monitor large industrial
gearboxes in the mineral mining industry. Rotational speed and load was measured in
order to trigger the measurement of vibration signals at specific speed and load
conditions in order to ensure that measurements were taken under constant speed and

load conditions. Conventional fault detection techniques were used to analyse the data.

Wang and Wong [99] stated that the linear prediction method, which they developed,
could diagnose fault conditions independent of the load conditions, but the precise

influence that the load fluctuation has on the measured signal was not documented.

Baydar and Ball [119] showed that spectral analysis could not track the degradation in the
condition of the gear under different nominal load conditions. The spectral content
changes dramatically if the nominal load conditions change. Consequently, they
employed the instantaneous power spectrum to detect local faults on the teeth of a gear
under different nominal load conditions. The presence of the gear defect imposed could
be seen in the instantaneous power spectrum under different loading conditions.
However, the similarity between the instantaneous power spectrum plots under different

loading conditions could complicate diagnosis of a fault condition.

1.2.17 Dynamic modelling of gear systems

Ozguven and Houser [120] wrote a comprehensive review on dynamic gear models.
Publications over the last three decades were considered. The aim of the majority of the
publications were to investigate bending stresses, contact stresses, pitting, scoring,
transmission efficiency, radiated noise, estimation of loads exerted on other machine
elements such as bearings, vibration motion, whirling, reliability and life. The models
proposed by the investigators show considerable variation in the effects, which are
included in to the model and the basic assumptions made. Models were classified into
five groups namely simple dynamic factor models, models with tooth compliance,
models for gear dynamics, models for geared rotor dynamics and models for torsional

vibration.
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Most of the models reviewed are lumped parameter mass models and the dynamic gear

models include time varying mesh stiffness.

Howard et al. [121] developed a simplified dynamic gear model to explore the effect of
friction on the resultant gear case vibration. The model incorporates the effects of
variation in gear meshing stiffness. The meshing stiffness was calculated via finite
element analysis. A method to introduce the frictional forces between the teeth in to the
model is presented. Simulations were conducted with and without the frictional forces

between the gear teeth. The effect of a gear defect on the gear case vibration is shown.

Bartelmus [122] reviewed current possibilities of using mathematical models and
computer simulation to investigate the dynamic properties of gearbox systems. A model
of a single stage gearbox with torsional degrees of freedom was considered. It is stated
that the dynamics of the motor, couplings and driven machine has to be taken into
account when simulating the dynamics of the gearbox. The influence of cracked gear

teeth was investigated. Simulation results were compared with experimental results.

1.3 Research objectives

The first effect of fluctuating load conditions, which was observed, is the change in
rotational speed associated with the change in load. Most electrical motors and internal
combustion engines will rotate slower if the load on the motor or engine is increased. If
the load is decreases, the electric motor or internal combustion engine will rotate faster.
When a spectrum of a signal measured under changing speed conditions is calculated a
smearing of the frequency content in the spectrum is observed. The effect of spectral
smearing is perhaps the most detrimental and therefore it was the first issue addressed by
researchers. Hardware order tracking methods were consequently developed to avoid

spectral smearing under slowly varying speed conditions.
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Potter and Gribler [3], Fyfe and Munck [4] as well as Bossley et al. [5] developed
computed order tracking methods which was able to compensate for rapid speed
fluctuation conditions. However, various authors such as Randall [117], McFadden [21,
22], Bauer et al. [118], Wang and Wong [99] indicated that the amplitude of the
measured signal is influenced by fluctuating load conditions. Intuitively the measured
structural response should increase if the load increases and decrease as the load
decreases. Baydar and Ball [119] conducted the first experimental tests where vibration
measurements were taken under different nominal load conditions. Their work indicated
that spectral methods couldn’t be used to monitor deteriorating fault conditions under
fluctuating load conditions since the similarity between the spectra calculated under
different load conditions varied dramatically. They applied a time frequency technique
refereed to as the instantaneous power spectrum that indicated the presence of a fault
condition in the time frequency plot of the distributions. However, the similarity between
the plots under different loading conditions could complicate the diagnosis of a fault

condition under different loading conditions.

Baydar and Ball [119] stated in their publication that it appears that no work has been
done to evaluate how load conditions can effect the detection capability of vibration
monitoring techniques. This observation was confirmed by the literature survey. From the
literature survey, it can be concluded that order tracking should be applied to data
measured under fluctuating load conditions. Time frequency analysis techniques are
better suited to detect fault conditions under fluctuating load conditions. No

experimental work was conducted under rapidly fluctuating load conditions.

The first objective of the research was set to build an experimental test rig, which was
able to apply fluctuating load conditions to a spur gear test gearbox. Vibration
measurements were taken on the test rig under different fluctuating load conditions. With
this work, the effect of the fluctuating load on the measured acceleration could be
determined. The experimental work indicated that the measured acceleration is amplitude

modulated by the fluctuating load conditions.
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Consequently, a load normalisation procedure should to be developed in order to
compensate for the effect of the load without compromising diagnostic capability. A time
synchronous averaging program, which incorporates, computed order tracking had to be
programmed in order to eliminate spectral smearing and to reduce noise when analysing
experimental data. Based on the literature review the data should be analysed with a
pseudo Wigner-Ville distribution since it has good time frequency resolution. The
developed normalisation technique should be applied to the data prior to the calculation
of the pseudo Wigner-Ville distribution in order to improve the similarity between the
distributions under different loading conditions. A single parameter, which could indicate
deterioration in gear condition independent of the loading, should be extracted from the

pseudo Wigner-Ville distribution.

The effect of the vibration transmission path from the gear to the point of measurement
should be considered under fluctuating load conditions. However, it was postulated that
the effect could be greatly reduced by measuring the instantaneous angular speed directly
on the shaft with a shaft encoder. A simplified dynamic model of a gearbox should be
developed to indicate the validity to measure the instantaneous angular speed and to
simulate the effect of the fluctuating load conditions on the vibration measured on the
gearbox casing as well as the instantaneous angular speed. The instantaneous angular
speed and gearbox vibration should be measured experimentally on the same test gearbox
under the same fluctuating load conditions to validate the postulate that the instantaneous
angular speed is less influenced by the transmission path when compared to the vibration

measured on the gearbox casing.

The effect of the transmission path under fluctuating load conditions should be
investigated and a methodology should be developed to compensate for the transmission
path effects. The methodology should be implemented on experimentally measured data

to prove the efficiency of the developed methodology.
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1.4 Document overview

A literature survey on gear vibration monitoring is presented in Chapter 1 as well as the
objectives of the research conducted. In Chapter 2 the influence of load, fluctuation on
the amplitude of the measured vibration signal is experimentally established on a spur
gear test rig. Experimentally measured vibration waveforms measured under fluctuating
load conditions are shown. From theses figures it is clear that the measured vibration
waveform is amplitude modulated by the load on the gearbox. A load demodulation
normalisation approach is proposed which estimates the modulation of the signal. The
effect of the load on the modulation is estimated and the signal is then normalised by
dividing the signal with the load modulation in order to obtain a load normalised
acceleration signal. The signal is order tracked and synchronously averaged prior to the
load normalisation approach and therefore the pseudo Wigner-Ville distribution can be
calculated for the normalised data without being influenced by spectral smearing.
Several statistical parameters are extracted from the distributions, which indicate a

progression in gear damage under different load conditions.

A lumped parameter mass model of a simplified gear system is presented in Chapter 3 to
model the effect of fluctuating load conditions on the structural response and
instantaneous angular speed of a gear shaft. Simulation results indicate that the
instantaneous angular speed can be used to monitor gear condition. Both the
instantaneous angular speed and conventional gearbox casing vibration is amplitude
modulated by the fluctuation in the applied load. It is proved through experimental
measurements taken on a helical gear test rig that the instantaneous angular speed can be
utilised to monitor a deteriorating gear fault condition under different loading conditions.
The experimental results indicate that the instantaneous angular speed converges to a
stable synchronous average in a fewer amount of shaft rotations when compared to the
conventional vibration measurements measured on the gearbox casing. This phenomenon
indicates that the conventional vibration measurements measured on the gearbox casing
is influenced by the transmission path under fluctuating load conditions. A distinction is

however made between cyclic stationary and non-cyclic stationary load conditions.
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Chapter 4 introduces the phase smearing phenomenon, which occurs when applying
synchronous averaging under fluctuating load conditions. The phenomenon is discussed
and a phase domain averaging procedure is proposed to resolve the problem. Signal
amplitudes are plotted as a function of the phase of the analytical signal prior to
averaging in order to compensate for the phase shift induced by the transmission path
when the rotational speed of the gear changes. An average of the signal amplitudes as a
function of signal phase rather than degree of shaft rotation is calculated. A comparison is
made between the phase domain averaging technique and conventional synchronous
averaging combined with order tracking by applying the signal processing techniques to

experimental data measured on the helical gear test rig.

The work is concluded in Chapter 5 and recommendations for further research are
discussed. The experimental test rigs and measurement instrumentation utilised during

the research are described in the Appendix.
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Chapter 2

A load demodulation normalisation
approach for vibration monitoring of
gears operating under fluctuating load
conditions

2.1 Introduction

In this chapter the influence of load fluctuation on the amplitude of the measured
vibration signal is experimentally established through experiments conducted on a spur
gear test rig. Vibration waveforms were measured on the test rig that indicated that the
measured vibration waveform is amplitude modulated by the load on the gearbox. A
rotation domain averaging process is proposed which combines synchronous averaging
and order tracking to compensate for the fluctuation in rotational speed as well as to

reduce the noise content in the measured signal.

In order to resolve the load modulation issue a load demodulation normalisation
approach is proposed which estimates the modulation of the signal. The modulation of
the signal is calculated by taking the absolute value of the signal’s analytical signal. Load
modulation of the signal will occur at a narrower frequency band in the low frequency
region of the modulation when compared to the modulation caused by the presence of
defects, which induces a wider frequency band modulation. The load modulation
frequency band is obtained through an optimisation process described further on in the
chapter. Modulation caused by the load is consequently obtained by low pass filtering the
modulation of the signal. A load normalised acceleration signal is calculated by dividing

the measured signal with the load modulation.
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The literature survey indicated that the pseudo Wigner-Ville distribution has increased
time frequency resolution characteristics in comparison with other time frequency
techniques. Furthermore it was indicated that spectral analysis methods are unsuitable to
monitor deteriorating fault conditions under fluctuating load conditions. Therefore the
pseudo Wigner-Ville distribution was applied to the test data obtained from the spur gear
test rig, in order to determine whether a deteriorating fault condition could be monitored
with the distribution when calculating the distribution of the load normalised acceleration
signal. Contour plots of the pseudo Wigner-Ville distribution data are presented, which
indicate that the normalisation approach enables the detection of local gear tooth faults

under fluctuating load conditions.

Statistical parameters and various other features are extracted from the distribution to
indicate the linear separation of the values for the various fault conditions, once the
vibration waveform normalisation approach has been applied. Feature vectors were
compiled for the various fault and load conditions. Mahalanobis distances were
calculated between the various feature vectors and an average feature vector was
compiled from the data measured on the undamaged gearbox. The feature combination
approach gives a single parameter, which can readily be monotonically trended to

indicate the progression of a fault condition under fluctuating load conditions.

A single-layer perceptron network was trained by means of the perceptron-learning rule,
within a finite number of iterations. This endorses the fact that the data are linearly
separated between load conditions by the normalisation approach to vibration waveforms.
The trained network can distinguish between the fault severities of a load condition that

was not presented during the training of the network.

2.2 Experimental set-up

The experimental set-up consisted of a single-stage spur gearbox, driven by a 5 hp Dodge
silicon controlled rectifier motor. A 5.5 kVA Mecc alte spa three-phase alternator was

used for applying the load. Figure 2.1 illustrates the test rig.
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Elastic coupling

Accelerometer ]

Speed
measurement

Figure 2.1 Experimental set-up

The gears each had 69 teeth. The Alternating Current (AC) generated by the alternator
was rectified and dissipated over a large resistive load, which was kept constant during
the tests. The Direct Current (DC) fields of the alternator were powered by an external
DC supply in order to control the load that was applied to the gears. A single-phase
voltage feedback from the alternator was used in conjunction with Proportional Integral
(PI) compensation to regulate the torque applied by the alternator. A command signal
input was incorporated into the controller so that a signal generator could be used to

perform load control. Load fluctuation rates of up to 3 Hz could be applied.

The fluctuation in load changes the rotational speed of electrical motors. Therefore the
rotational speed of the system was measured with a Deuta-Werke magnetic speed sensor,
which was set on a gear with 50 teeth. The speed measurement gear was mounted on the
output shaft of the electric motor. Gear teeth counters were utilised since they present a
reliable and robust approach to speed measurement in practice. The average shaft speed

during experimentation was 13 Hz.
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A synchronising pulse was measured by means of a proximity switch on the key of the
shaft. Acceleration measurements were taken in the vertical direction with a 500 mV/g
PCB Integrated Circuit Piezoelectric (ICP) industrial accelerometer and a Siglab model
20-42 signal analyser. Vibration measurements were taken for five different load
conditions and three different levels of damage severity, in order to develop and evaluate
a signal-processing procedure that would be more sensitive to changes in the condition of

the gears than to fluctuations in the load conditions.

Table 2.1 lists the specifications for the loading conditions. A sinusoidal load was
selected to evaluate a slowly changing load condition, in contrast to the square load
condition that creates a rapid change in load. The chirp load condition refers to a
sinusoidal load condition where the frequency increases as time progresses. The chirp

load condition therefore represents a wider frequency band of the applied load.

TABLE 2.1 Load case specifications

Load Case |Load Function| Frequency Minimum Maximum
Load Load
1 Constant 0 Hz 14.4 Nm 14.4 Nm
2 Constant 0 Hz 15.9 Nm 15.9 Nm
3 Sine 0.5 Hz 6.6 Nm 18.6 Nm
4 Square 0.5 Hz 6.8 Nm 20.1 Nm
5 Chirp 0.1-2 Hz 10.3 Nm 17.3 Nm

The initial vibration measurements were taken without any induced damage. Then face
wear was induced on one of the gear teeth by artificially removing material from the gear
face. In addition, a crack was sawed on the opposite side of the gear. The damage details
are presented in Table 2.2. The fault severity conditions are expressed as the fraction of

the root crack length over the 4 mm tooth thickness.

For further information with regards to the experimental set-up and measurement

instrumentation refer to the appendix.
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TABLE 2.2 Induced damage specifications

Fault severity 25% | Fault severity 50%
Material removed from face 0.15 mm Nominally 0.3 mm Nominally
Crack length 1 mm 2 mm

2.3 Order tracking and synchronous averaging

Braun [6] introduced the use of time domain synchronised averaging on rotating
machinery to filter out the measured acceleration caused by machine components, which
are non-synchronous with the rotation of the shaft that is being analysed. McFadden [21,
22] employed the technique to monitor the condition of gears in helicopter gearboxes.
The technique is based on the fact that the signal is cyclic stationary, since the same
number of acceleration samples should be sampled during each revolution of the shaft to

calculate the average signal.

Order tracking is a signal-capturing or sampling procedure, which is used to sample a
vibration signal on rotating machinery with varying shaft speed. The sampling frequency
of the logger is changed in accordance with a tacho pulse signal that indicates the speed
of the shaft. A spectrum of the measured signal is calculated and expressed in terms of
the shaft rotations, which are called orders. The order spectrum is therefore calculated
independently of the shaft speed. In general the average of the order spectra is calculated

in the order domain.

Time domain order tracking and synchronous averaging are approaches where the shaft
speed, synchronising pulse and acceleration are measured at a constant sampling rate.
The acceleration is calculated at constant angular positions of the shaft through
interpolation. Several shaft rotation angles at constant increments of shaft rotation are
initially selected in order to obtain the same number of data points for each shaft

revolution.
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The angle of shaft rotation for the sampled vibration is determined through the
integration of the speed signal. A rotation-synchronised average is calculated from the
acceleration in the rotation domain. The rotation-synchronised average vibration
combines the properties of order tracking and synchronised averaging. The procedure
enforces a pseudo-cyclic stationary condition on the data. A spectrum of the data is
expressed in terms of shaft orders. The data were sampled at a high enough sampling
frequency in order to avoid aliasing during the interpolation. The procedure was
implemented in Matlab and 1 024 points were selected per revolution. Data from 276
shaft rotations were used to calculate the Rotation Domain Average (RDA) for each load

condition and damage severity condition.

2.4 Load demodulation normalisation

The load variation manifests as a low-frequency band amplitude modulation on the
Measured Acceleration Signal (MAS). The effect is displayed in Figure 2.2(a). The
torque of an electrical machine decreases as the load frequency increases. Figures 2.3(a)
to (c) illustrate the concept on the MAS when a chirp load condition is imposed on the
system. The chirp load command signal, which is increased from 0.1 Hz to 2 Hz over a
period of 5 seconds, can clearly be distinguished in the amplitude modulation that is low-
pass filtered at 2Hz, as shown in Figure 2.3(c). The load modulation clearly indicates the
decrease in amplitude as the load frequency increases. However the interaction and
dynamic behaviour of the system due to the fluctuation in the load will modulate the

amplitudes at higher frequencies.

A Load Demodulation Normalisation (LDN) procedure was adopted to manipulate the
signal in order to reduce the effect of load fluctuation. A local defect on a gear tooth will
modulate the MAS for a short duration in time. Gear systems are designed with contact
ratios of more than 1.2 which means that more than one pair of teeth share the load

during operation [123].
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Gear systems that operate under fluctuating load conditions are generally designed with a
contact ratio of greater than two in order to reduce noise levels and the possibility that
teeth may impact on one another. Therefore the load will modulate the MAS for longer

durations than a local tooth defect on a gear.

Consequently local tooth defects manifest in a wider frequency band amplitude
modulation of the MAS with higher frequency content when compared with the smaller

frequency band amplitude modulation caused by the load variation.

A fundamental part of the LDN signal manipulation procedure is to remove the
modulation frequency band, which is influenced by the load variation, as will be
discussed further on in the chapter. The procedure is suited to monitoring gear systems
that operate under fluctuating load conditions and the results of experiments proved the

hypothesis was valid.
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Figure 2.2 Load Demodulation Normalisation procedure
(a) Measured Acceleration Signal (b) Low pass Filtered Modulation of the signal

(b) Load Normalised Acceleration
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Figure 2.3 (a) Measured Acceleration Signal during chirp load excitation (b) Signal
modulation low pass filtered at 10 Hz (c¢) Signal modulation low pass filtered at 2 Hz

The analytical signal of the MAS is calculated in order to obtain the amplitude
modulation of the MAS. An analytical signal is a complex time signal comprising a real
part equal to the real signal and the imaginary part is the Hilbert transform of the real
part. The signal is expressed in Equation (2.2)

a(t)=H{a(?)} (2.1)
a(t)=a(t)+ ja(r) (2.2)

where @(t) denotes the Hilbert transform of the real signal, @(¢) the analytical signal,

a(t) the real signal and j = V=1 The Hilbert transform can be obtained by multiplying
the positive frequency components of a signal's Fourier transform by —j (phase shift of
minus 90 degrees) and the negative frequency components by +j (phase shift of plus 90
degrees). It is similar to frequency domain integration except that scaling with the

frequency is not performed in the Hilbert transform.
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The absolute value of the analytical signal represents the amplitude modulation of the
signal. Randall [1] documents the procedure for retrieving the amplitude modulation. The
amplitude modulation signal is low pass filtered to obtain the modulation of the MAS,
which is influenced by the fluctuating load. The modulation frequency band, which is
influenced by the load variation, will be referred to as the load-modulating frequency
bandwidth. A Load Normalised Acceleration (LNA) signal is subsequently obtained by
dividing the original signal by the Filtered Modulation (FM) signal. The concept is
illustrated in Figures 2.2(a) to (c).

An optimisation procedure is followed to determine the load-modulating frequency
bandwidth. It entails the calculation of the deviation in statistical properties between
several LNA signals that were measured under different load conditions on an
undamaged gearbox. The objective function of the optimisation procedure is therefore
expressed as the sum of the relative differences between selections of statistical
parameters as a function of the load-modulating frequency bandwidth. The objective

function is shown in Equation (2.3)

OFV(f) =22 > ISP, (/)=SP, (/)] (2.3)

N
s=1 a=1 h=

=

where OFV denotes the objective function value, SP the statistical parameter, S the
number of statistical parameters, N the number of load conditions and /'the low pass filter

frequency or shaft order.

The time domain data are initially optimised by utilising the Root Mean Square (RMS)
and variance as statistical parameters. Multiple local optima can be found in the

Objective Function Values (OFV) for the load-modulating frequency bandwidth.
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The RDA is calculated for each of these local optima since the non-synchronous
components of the measured acceleration were present when the optimal load-modulating
frequency bandwidth was being estimated. A post-processing optimisation is performed
on the RDA signals once the non-synchronous components have been removed by means
of the averaging procedure. Thus the optimal load-modulating bandwidth of the shaft
order is determined. The statistical parameters used in the post-processing optimisation
are based on the Pseudo Wigner-Ville (PWYV) distribution of the rotation domain average
and will be discussed in the following section of the chapter. Figure 2.4 shows a flow

diagram of the optimisation procedure.

Measured Acceleration Signal

Hilbert Transform
Absolute Value
Increment Filter 1y, Low Pass Filter |4 Increment Filter
Order Frequency + Frequency
A
Normalise the
MAS by Division
Post processingis | T +
conducted once
the pre-processing Post-Processing Pre-Processing
cycle is
completed. + +
Calculate OFV Calculate OFV
Select Local
Minima
Calculate
Rotation
Domain
Average

v

Select Optimal Filter Order Frequency

Figure 2.4 Flow diagram of the optimisation of load demodulation normalisation
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Figure 2.5 presents the OFV for the pre-processing optimisation. The OFV and load-
modulating frequency bandwidth for the local optima are shown in Table 2.3 which
presents the post-optimisation results based on each of the local optima in the pre-
processing optimisation. Note that the lowest OFV for the pre-optimisation procedures do
not correlate with the lowest OFV obtained during the post-optimisation procedure. This
is why all the local optima obtained in the pre-processing optimisation were selected. The
local optima in the pre-processing optimisation do however indicate the load
normalisation frequency bandwidths, which render LNA signals with increased similarity
under different loading conditions. Therefore the best post-optimisation results will be

obtained with data pre-normalised at these frequency bandwidths.

0.2 T T T T T

01r
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0.05F

200 300 400
Normalisation frequency bandwidth

500
Figure 2.5 Objective function values for the various normalisation frequency bandwidths

TABLE 2.3 Results of optimal normalisation bandwidth

Frequency OFVv Shaft order OFV
bandwidth bandwidth
0-29 Hz 0.099 0-21 Orders 6.208
0-144 Hz 0.048 0-23 Orders 6.361
0-578 Hz 0.034 0-11 Orders 9.062
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The best optimisation result was obtained for a 21-order load modulating bandwidth,
which was processed on a 29 Hz load-modulating frequency bandwidth. Figure 2.6
presents the OFV as a function of the load modulating normalisation bandwidth of the
shaft order. The OFV was calculated for discrete steps of the shaft order. Note the steep
increase in the OFV for larger load modulating normalisation frequency bandwidths,
which indicates a decrease in statistical similarity for LNA signals with load-modulating

shaft order bandwidths that are too wide.
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Figure 2.6 Objective function values for the various normalisation shaft-order bandwidths

2.5 Pseudo Wigner-Ville Distribution

In the literature survey it is indicated that time frequency analysis is the three-
dimensional time, frequency and amplitude representation of a signal, which is inherently
suited to indicating transient events in a signal. The Wigner distribution and its various
permutations is such an analysis technique, and has been used by various authors to

detect the presence of local gear faults by means of vibration signal analysis.

The Wigner distribution is derived by generalising the relationship between the power
spectrum and the autocorrelation function for non-stationary time-variant processes. A
Wigner-Ville distribution is obtained by applying the Wigner distribution to an analytical
signal. This is done to account for all frequencies since the amplitudes of the negative

frequencies in the analytical signal are equal to zero.
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However the distribution is influenced by so-called cross-terms that are an inherent
property of the distribution. Therefore a frequency-smoothing window is applied which
relieves some of the interference and cross-term effects. The application of the
frequency-smoothing window results in a Pseudo Wigner-Ville (PWV) distribution and is

defined by Equation 2.4
PWV,(t, f) = j Woat+7/2)a (t—1/2)e” " dr (2.4)

where ¢ denotes the time, f'the frequency, 7 the time delay and % the frequency-

smoothing window.

Local gear fault conditions will cause an impact, which modulates the measured
acceleration signal. The transient signal modulation will be manifested as a dispersion of

energy in the frequency domain of the distribution.

The PWV distribution was calculated on RDA signals, which were not load-normalised.
The time domain component of the distributions indicates the degree of shaft rotation; the
frequency component is expressed in orders since the distributions are calculated on the
order-tracked data in the rotation domain. These distributions were normalised by using
the maximum value of the distribution, based on the fact that previous authors have done
this to detect the presence of gear defects in gearboxes through vibration monitoring.
Figures 2.7 and 2.8 display contours of the distributions for the 25% and 50% fault

severity situation without LDN.
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Figure 2.7. RDA PWYV distribution contour. The contour level is calculated at 17 times
the mean value of the distribution and represents the 25% fault severity condition.

(a) Load Case 1; (b) Load Case 2; (c) Load Case 3; (d) Load Case 4; (e) Load Case 5.
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Figure 2.8. RDA PWYV distribution contour. The contour level is calculated at 10 times
the mean value of the distribution and represents the 50% fault severity condition.

(a) Load Case 1; (b) Load Case 2; (c) Load Case 3; (d) Load Case 4; (¢) Load Case 5.

Contours for the PWYV distributions of the RDA LNA signals are displayed in Figures 2.9
and 2.10. The contours for the 25% and 50% fault severity condition are calculated at 17
and 10 times the mean value of the distribution. The fluctuation in the amplitude of the
gear mesh order without LDN can be clearly seen in Figure 2.7 when compared to Figure

2.9.

The contour plot of the maximum value of the normalised PWV distribution at 50% fault
severity indicates the inability of the distribution to detect the presence of the induced
flank wear without LDN. The deviation in the energy distribution between the different
load conditions of the mean normalised PWV distribution is more than the deviation in

the energy distribution of the PWYV distributions calculated from the LDN data.
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The PWV distributions of the RDA signals were calculated with the Time-Frequency
Toolbox for Matlab [80].
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Figure 2.9. LDN RDA PWYV distribution contour. The contour level is calculated at 17
times the mean value of the distribution and represents the 25% fault severity condition.
(a) Load Case 1; (b) Load Case 2; (¢) Load Case 3; (d) Load Case 4;

(e) Load Case 5.
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Figure 2.10. LDN RDA PWYV distribution contour. The contour level is calculated at 10

times the mean value of the distribution and represents the 50% fault severity condition.

(a) Load Case 1; (b) Load Case 2; (¢) Load Case 3; (d) Load Case 4;

(e) Load Case 5.

2.6 Statistical Features of the PWYV distribution

A selection of statistical parameters was calculated for the various PWV distributions

with and without load normalisation to indicate the effect of the LDN procedure under

varying load conditions.
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The rotation marginal of the PWV distribution is defined by Equation 2.5 and

corresponds to the instantaneous power of the signal [80]
my(0)= [PWV,(0,p)dp (2.5)
where [ denotes the order and & the angle of shaft rotation.

The mean, standard deviation, variance and maximum values of the rotation marginal of
the PWV distribution were calculated. A peak factor is defined as the ratio of the
maximum value to the mean value of the time marginal. Table 2.4 lists the statistical

parameters of the rotation marginal data.

Table 2.5 shows the energy of the various PWV distributions, calculated in accordance
with Equation 2.6.

+00+00

E= j jPWVa(e, B)dpdo (2.6)

—00—00

Table 2.5 also indicates the mean of the variance and the standard deviation of the
amplitude of the order domain of the distribution. An area level ratio is defined as the
area of the distribution that attains amplitudes higher than a specified contour level over
the entire area of the distribution. Table 2.5 gives the data on the area level ratio for the
distributions for a contour level that is ten times the mean value of the specific

distribution.

The values of the statistical parameters calculated on the LNA RDA signal PWV
distributions clearly indicate linear separation between the different levels of fault
severity. A monotonic increase in the values is obtained for each load condition as the

fault severity increases.
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There are slight variations in the values between each fault condition but, the deviation is
less than the deviation in the values caused by the increase in fault severity. The
statistical parameters that are calculated on the mean normalised distributions are not

linearly separated between the levels of fault severity.

This implies that the values of the parameters for a certain load condition at 0% fault
severity might be more or less than the value at 25 % fault severity for a different load

condition.

The order marginal of the PWV distribution is defined by Equation 2.7 and corresponds
to the spectral density of the energy of the signal [80].

my(B) = [PWV,(0,p)d0 (2.7)

Equation 2.8 defines an order spectral energy density ratio and values for the distributions

are given in Table 2.6.

D my(B)
ER =" (2.8)
D my(B)+ Y my(B)
B=30 B=80

Note that the value of the ER is linearly separated between the load conditions for both of
the normalised distribution cases. This is attributed to the fact that the ratio is inherently a
normalised value without any form of normalisation on the distribution. The ER is
defined over a wide range of orders to capture the dispersion of the energy due to a local

fault condition, as shown in Figures 2.8 and 2.10.
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TABLE 2.4 Results of rotation marginal feature anthology

Mean value of the LDN rotation marginal

Fault severity | Load Case1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.5301 0.5273 0.5280 0.5253 0.5234
25% 0.5485 0.5426 0.5442 0.5415 0.5448
50% 0.6028 0.6095 0.5821 0.5631 0.5778
Mean value of the rotation marginal without LDN
Fault severity | Load Casel | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.0119 0.0112 0.0122 0.0132 0.0127
25% 0.0101 0.0089 0.0085 0.0103 0.0139
50% 0.0076 0.0089 0.0083 0.0112 0.0100
Standard deviation of the LDN rotation marginal
Fault severity | Load Casel | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.4591 0.4350 0.4310 0.4174 0.4208
25% 0.5297 0.5070 0.5144 0.5081 0.5279
50% 0.7289 0.7673 0.6336 0.5914 0.6585
Standard deviation of the rotation marginal without LDN
Fault severity | Load Casel | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.0134 0.0120 0.0121 0.0120 0.0124
25% 0.0114 0.0096 0.0090 0.0110 0.0151
50% 0.0186 0.0215 0.0209 0.0208 0.0195
Variance of the LDN rotation marginal
Fault severity | Load Case 1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.2108 0.1893 0.1857 0.1742 0.1771
25% 0.2806 0.2571 0.2646 0.2581 0.2787
50% 0.5313 0.5887 0.4014 0.3497 0.4336
Variance of the rotation marginal without LDN
Fault severity | Load Case 1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.1787 0.1438 0.1453 0.1440 0.1530
25% 0.1293 0.0929 0.0817 0.1208 0.2290
50% 0.3454 0.4620 0.4385 0.4311 0.3806
Peak factor of the LDN rotational marginal
Fault severity | Load Case 1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 4.2060 3.9358 3.9776 4.6599 3.8781
25% 5.8597 5.6956 5.8928 5.8693 5.8376
50% 7.5768 10.5802 7.3114 9.8727 7.7656
Peak factor of the rotation marginal without LDN
Fault severity | Load Case 1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 5.8409 6.9789 5.6969 4.6595 4.6652
25% 6.3101 6.2674 6.4693 5.7591 7.0030
50% 30.5872 21.7874 30.3159 22.1108 27.0636
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TABLE 2.5 Results of the feature anthology

Energy of the LDN PWYV distribution

Fault severity | Load Casel | Loadcase2 | Loadcase3 | Load Case4 | Load case5
0 271.2579 269.7251 270.1939 268.8260 267.8423
25% 280.2933 277.0871 278.3292 276.9988 278.0602
50% 308.2603 311.7739 297.7140 287.3991 295.5083
Energy of the PWYV distribution
Fault severity | Loadcasel | Loadcase2 | Loadcase3 | Load Case4 | Load case 5
0 6.0722 5.7478 6.2340 6.7488 6.5051
25% 5.1930 4.5673 4.3602 5.2900 7.0978
50% 3.8644 4.5705 42295 5.7454 5.1043

Mean of the amplitude variance in the order domain of the LDN PWYV distribution

Fault severity | Load case 1 Loadcase2 | Load Case3 | Load Case4 | Load Case 5
0 13.1775 13.0785 13.1200 12.9960 12.8708
25% 14.0273 13.6992 13.8744 13.7449 13.8757
50% 17.0021 17.3222 15.8747 14.9313 15.6247

Mean of the amplitude variance in the order domain of the PWYV distribution

Fault severity | Load Case 1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.0066 0.0060 0.0069 0.0081 0.0075
25% 0.0055 0.0044 0.0040 0.0055 0.0098
50% 0.0038 0.0057 0.0047 0.0077 0.0063
Mean of the STD of the amplitude in the order domain of the LDN PWYV distribution
Fault severity | Load Case 1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 3.5449 3.5321 3.5383 3.5258 3.5082
25% 3.6546 3.6144 3.6344 3.6234 3.6340
50% 4.0181 4.0455 3.8983 3.7874 3.8570
Mean of the STD of the amplitude in the order domain of the PWYV distribution
Fault severity | Load Case1 | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 0.0760 0.0723 0.0793 0.0861 0.0828
25% 0.0679 0.0601 0.0568 0.0685 0.0929
50% 0.0460 0.0542 0.0509 0.0732 0.0635
Area level ratio of the LDN PWYV distribution
Fault severity | Load Casel | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 5.63% 5.24% 5.21% 5.14% 5.30%
25% 6.42% 5.99% 5.85% 6.30% 6.35%
50% 10.48% 10.68% 9.31% 8.62% 9.09%
Area level ratio of the PWYV distribution
Fault severity | Load Casel | Load Case2 | Load Case3 | Load Case4 | Load Case 5
0 5.62% 5.12% 5.42% 5.61% 5.72%
25% 4.78% 3.70% 3.54% 4.79% 7.28%
50% 3.41% 4.54% 3.99% 6.43% 5.41%
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TABLE 2.6 Results of the order spectral energy density ratio

ectral ener

Load Case 1
8.8791
5.2951
1.7644

Order s
Fault severity
0
25%
50%

y density ratio of the LDN PWYV distribution

Load Case 2 |Load Case 3| Load Case 4 |Load Case 5
10.9243 10.5386 11.8132 10.5999
6.0204 7.3664 6.2092 5.4004
1.7929 2.0292 2.7349 2.1879

Order spectral energy density ratio of the PWV distribution

Fault severity |Load Case 1|Load Case 2|Load Case 3 | Load Case 4 |Load Case 5
0 9.2313 10.5225 10.3497 12.4929 11.1083
25% 6.5704 7.8579 8.7667 7.2788 5.8564
50% 1.7224 1.4050 1.2697 2.2282 1.8890

2.7 Divergence analysis

Divergence analysis was performed on the data in order to obtain a single parameter,
which could be trended to indicate the degradation of the gears. To this end, feature

vectors of the statistical parameters of the distributions were compiled.

The Mahalanobis distance is the weighted distance between two vectors and is used as a
measure of the similarity between the vectors. The Mahalanobis distance is presented in

Equation 2.9

7@y =" [x- M) —sl— [x- ()] (2.9)
DS
m(y) = =N (2.10)

where X denotes the vector to which the distance is calculated, ¥ the mean reference
vector. An average mean value vector M (¥) of vectory is composed by inserting the
mean scalar value m(y) repetitively into the average mean value vector, in order to
create a vector the size of ). The distance between the two vectors are measured relative

to the standard deviation s of the mean reference vector.
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Weighting is performed in order to account for the scaling in the feature vectors. The
value N refers to the number of values in the various vectors. Staszewski et al. [58, 59]
used the weighted distance to indicate the degradation of gear integrity. The magnitude

of the weighted distance indicates the degree of divergence from the reference vector.

A mean reference vector is compiled from a selection of the statistical parameters for the
various load conditions at 0% fault severity. The weighted distance from the mean
reference vector is therefore calculated to indicate the condition of the analysed gear. The

weighted distance was calculated with the Statistical Toolbox of Matlab [124].

Table 2.7 shows the weighted distances for two selections of feature vectors, that was
calculated and is shown in Table 2.8. The data indicate that the weighted distance
procedure can readily show the monotonic trend of the condition of a gear under different
loading conditions with a single parameter, if the statistical parameters are calculated

from a PWYV distribution of an LDN RDA signal.
The divergence analysis of the combined statistical parameters in a feature vector did not
improve the linear separation between the load conditions for the parameters calculated

from the mean normalised distribution.

TABLE 2.7 Feature vector compilation used in calculating the Mahalanobis

distance
Feature Vector 1 Feature Vector 2
Area level ratio Area level ratio
Mean variance of the distribution Mean variance of the distribution
Mean value of the rotation marginal Mean standard deviation of the
distribution
Energy of the distribution Standard deviation of the rotation
marginal
Mean value of the rotation marginal
Peak factor of the rotation marginal
Energy of the distribution
Variance of the rotation marginal
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TABLE 2.8 Results of the Mahalanobis distance of the divergence analysis

Mahalanobis distance of the LDN data of Feature Vector Number 1

Fault severity |Load Case 1 |Load Case 2|Load Case 3| Load Case 4 |Load Case 5
0 3.04 3.00 3.01 2.98 2.96
25% 3.24 3.16 3.19 3.16 3.18
50% 3.90 3.99 3.64 3.39 3.58

Mahalanobis distance of the data without LDN for Feature Vector Number 1
Fault severity |Load Case 1|Load Case 2|Load Case 3| Load Case 4 |{Load Case 5

0 2.95 2.57 2.95 3.35 3.25
25% 2.22 1.77 1.69 2.26 4.59
50% 1.58 1.94 1.73 3.21 2.42

Mahalanobis distance of the LDN data of Feature Vector Number 2
Fault severity [Load Case 1|Load Case 2|Load Case 3| Load Case 4 |Load Case 5

0 7.08 7.01 7.03 6.96 6.91
25% 7.55 7.38 7.45 7.37 7.43
50% 9.12 9.31 8.5 7.9 8.37

Mahalanobis distance of the data without LDN for Feature Vector Number 2
Fault severity |Load Case 1|Load Case 2|Load Case 3| Load Case 4 |Load Case 5

0 7.14 7.59 7.02 6.96 6.8
25% 6.31 5.39 5.43 5.9 10.83
50% 93.59 46.99 92.22 50.59 74.17
2.8 Neural networks

Neural Networks are multidimensional curve-fitting algorithms that attempt to mimic the
structure of the brain and nervous systems of living creatures [125]. In general the fitted
curve is used to recognise certain conditions in the input data. The fitting procedure is
referred to as training. The perceptron network is an example of such a curve-fitting
procedure and was utilised by Staszewski ef al. [60] and many other authors to identify

from pre-processed acceleration signal data the increase in the severity of gear faults.
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The equations for a single-layer perceptron network are presented in Equations 2.11 and

2.12
n=Wp+b (2.11)
a=f Hard lim in}

Qif n<0
lif n>0

(2.12)
f Hardlim — {

where 7 denotes the input to the hard limit transfer function, /¥ the weight matrix, p the

input vector, b the bias vector and @ the output vector.

The weight matrix and bias vector of Equation 2.11 are updated during training, in

accordance with the perceptron learning rule presented in Equations 2.13 and 2.14

W =W +(t-a)p (2.13)
bnew — bold + (t_ _ E) (214)

where ¢ denotes the target vector that is defined for the training procedure to indicate a
certain level of fault severity. Input vectors that contain the feature data of the known
fault severity condition are presented with the target vector during training. The weight
matrix and bias vector will converge after a finite number of iterations with the learning
data if the data is linearly separated. The precision with which the trained network can
classify data is evaluated by simulating the network output for an input feature vector of

known fault severity that was not presented during the learning process.

A single-layered perceptron network with five input items and three output items was
trained to classify feature vectors according to fault severity, independently of the load
conditions. The standard deviation, peak factor and variance of the rotation marginal as
well as the energy ratio and area level values of the LDN PWYV distributions were used in

the input feature vectors.
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The statistical parameters were normalised according to Equation 2.15 in conjunction

with Equation 2.16 for those that increased with fault severity, and Equation 2.15 with

Equation 2.17 for those that decreased with fault severity

nsp = SEZRP (2.15)
RP

RP=s—u (2.16)

RP=s+pu 2.17)

- %gSP(n) (2.18)

( ﬁ:SP(n) u Jz (2.19)

where NSP denotes the normalised statistical parameter, RP the reference parameter,
4 the mean value of the statistical parameter under the various load conditions at 0%
fault severity and s the standard deviation of the statistical parameter under the various

load conditions at 0% fault severity.

The network was trained with the constant, sine and square load case excitation data. The
weight matrix and bias vector converged within 60 passes of the training data set,
confirming that the data are linearly separated. Table 2.9 lists the weight matrix and bias
vector of the trained network. The network was able to classify the data on chirp-loading
conditions according to fault severity. The results of the network evaluation on the chirp
load data are listed in Table 2.10. The network was trained and evaluated by means of the

Matlab Neural Network Toolbox [110].
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TABLE 2.9 Weight and bias values of the neural network

Neural Network Weight Matrix Bias Vector
Node Network input number
number
1 2 3 4 5
1 -3.7929 | -3.8994 | -2.8223 | -6.0797 | -7.5479 5
2 17.3752 | -16.0945 | 2.5477 0.6228 -2.9946 -3
3 -0.2203 3.6407 1.2032 2.0124 4.4466 -9
TABLE 2.10 A Load Case 5: simulation input data
Normalised Fault severity Fault severity Fault severity
feature 0% 25% 50%
Standard deviation
of the rotation 0.0874 0.5351 0.8116
marginal
Peak factor of the 0.0382 0.2423 0.7794
rotation marginal
Vanance of the 0.0110 0.2684 0.5822
rotation marginal
Energy ratio 0.0176 0.5318 1.0377
Area level ratio 0.0236 0.6112 1.5069

limit transfer function

TABLE 2.10 B Load Case 5: simulation output results before and after the hard

Fault severity 25 | Fault severity 50
Fault severity 0 % Y% Y%
n a n a n a
4.2033 1 -6.5786 0 -20.4439 0
-2.1274 0 1.5813 1 -3.8252 0
-8.7266 0 -4.1246 0 3.1483 1
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Chapter 3

Instantaneous angular speed monitoring
of gearboxes under non-cyclic stationary
and cyclic stationary load conditions

3.1 Introduction

A simplified mathematical model was developed to determine whether the Instantaneous
Angular Speed (IAS) of a shaft fitted with a gear would vary as the teeth meshed in and
out of the gear mesh, and whether it could be used for diagnostic purposes under
fluctuating load conditions. The model is based on the gear system modelling
methodologies of Howard ef al. [121] and Bartelmus [122]. Model simulations indicate
that the IAS varies as the gear teeth mesh in and out of the gear mesh and that a fault
condition in the form of reduced meshing stiffness can be detected by utilising the IAS.
The IAS is measured in order to compensate for the fluctuation in speed caused by the
varying load conditions. The vibration signal was previously measured on gearbox
casings for monitoring purposes, but the IAS signal can be used as a substitute because
the signal can reflect changes in the gear meshing stiffness for monitoring purposes. Gear
condition can therefore be monitoring without taking the conventional vibration signal
measured on the casing to indicate the deterioration in gear condition under fluctuating
load conditions. The IAS measurement can be used for both diagnostic and order tracking

purposes. Monitoring cost can therefore be reduced by utilising the IAS.
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Varying load conditions were applied to the gear model. Both the IAS and conventional
vibration measurements exhibited the modulation caused by the load fluctuation. A
distinction was made between cyclic stationary load conditions and non-cyclic stationary
load conditions. It was found that non-cyclic stationary load modulation could be
averaged out with RDA. Once the RDA had converged and the modulation effect of the
non-cyclic stationary load had been removed, the signal still had to be normalised in
order to compensate for the nominal difference in the load. The inherent advantage of
dealing with non-cyclic stationary load conditions is that the low pass filter frequency
does not have to be determined through an optimisation process. However, LDN has to
be applied to cyclic stationary load conditions to remove the modulation caused by the
load modulation, and a low pass filter frequency has to be determined to suppress the

load modulation effects.

A test rig was built to apply non-cyclic stationary load conditions to a test gearbox.
Measurements were taken with an accelerometer and a shaft encoder for three different
levels of induced flank wear on the gear wheel. Convergence studies were conducted
with both the accelerometer and shaft encoder data under different loading conditions.
The results indicated that the dissimilarity between rotation domain averaged data under
different non-cyclic stationary loading conditions decreased as the number of averages
increased. The postulate that the non-cyclic stationary load modulation is diminished with

an increase in the number of rotation domain averages was proven valid.

The convergence studies indicated that the IAS converge faster than normal vibration
measurements because the measurement is less susceptible to the transmission of forces
from surrounding rotating equipment, as these forces contribute to the response measured
with conventional vibration instrumentation. This aspect simplifies the diagnosis of gear
fault conditions and makes the utilisation of the IAS an attractive option for monitoring

the condition of gears.
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Smoothed Pseudo-Wigner-Ville (SPWV) distributions were calculated for the
experimental data to which the RDA process was applied for diagnostic purposes. An
energy ratio value was defined to obtain a single parameter to indicate the degradation in
the condition of the gear. Linear separation between the energy ratio values for the three

levels of gear damage severity was obtained under different loading conditions.

3.2 Dynamic gear model

Figure 3.1 is a diagram of a simplified dynamic gear model. The model comprises four
degrees of freedom and was developed to explore the utilisation of the IAS for the
purposes of monitoring the condition of gears. A unique feature of the model is the
incorporation of a translating mass. This degree of freedom is utilised to represent
conventional vibration monitoring on the gear-case, which is compared with IAS
monitoring.  The equations of motion describing the model are presented in Equations
3.1 to 3.4. The selected model parameters, which are representative of typical values for a

gearbox, are given in Table 3.1.
M, X, +(C, +C,)X, +(K, +K,)X, -C,X, -K,X, =0 3.1

M,X, +(C, +C,)X, +(K, +K,)X, -C,X, -K,X, - C:R,0, -K,R 0,

LC,R6,+K,R 6, =0 (32)
1,6, +R,’C,0,+R K 0, -R R ,C,0,-R R K,0,
+RPC3X2 +R,K,X, =T, (3.3)
I2é2 +Rg2C392 +Rg2K3‘92 _RngC391 _RngK3‘91
(3.4)

-R,C,X, -R,K,X, =-T,
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The gear mesh stiffness is approximated as a 2 % sinusoidal variation of the nominal
mesh stiffness in order to simulate the fundamental gear-meshing harmonic. The
percentage variation in gear meshing stiffness is adopted from the work of Howard et al.
[121]. Model damping is approximated as being viscous for simplification purposes. A

unity input torque T, is applied to the input pinion of the model with a 10 % variation in

time in order to simulate the fluctuating load conditions on the model.

Figure 3.1. Diagram of the dynamic gear model

The load on the system is set proportional to the square of the gearwheel speed, which
enables the system to accelerate up to a nominal speed during simulation. There is an
increase in the applied load as the rotational speed of the system increases. A

proportional constant K is selected to control the resultant nominal steady state

rotational speed of the system.
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The mathematical expression for the applied toque is presented in Equation 3.5 and the

proportional constant K_ was set equal to 16,2 in order to obtain a nominal system

rotational speed of 1 500 rpm for the simulation results shown.

T, =K, x6:; (3.5
TABLE 3.1 Model parameters
Mecdel parameter Description Value

M, Translating mass 0.05 kg

M, Pinion mass 0.05 kg

M, Gearwheel mass 0.05 kg

K, Structural stiffness 100 kN/m

K, Bearing stiffness 100 kN/m

K, Gear mesh stiffness 100x {1-0.01xsin(N x&,) kN/m
C, Structural damping 1.2 Ns/m

C, Bearing damping 1.2 Ns/m

C, Gear mesh damping 1.2 Ns/m

R, Pinion base circle radius 0.01 m

R, Gearwheel base circle radius 0.01 m

N Number of gear teeth 10
GR Gear ratio 1:1

I, Pinion inertia 0.5 MR’

I Wheel inertia 0.5 M3Rg2

A gear fault was introduced into the model by reducing the meshing stiffness K,to

99,7% of the nominal gear meshing stiffness for five degrees of the shaft rotation. The

model was written into state space format and implemented in MATLAB for simulation

purposes, with the ode45 differential equation solver.
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The fluctuation in loading causes a fluctuation in the IAS 6, of the model as indicated in
Figure 3.2. Note that the low frequency fluctuation can also be observed in the velocity

X, . A higher frequency band of activity caused by the fluctuation in the mesh stiffness is

present in both the velocity X, and the IAS 6,. The amplitude modulation caused by the

fluctuating load becomes visible in the time domain when the signals are high pass

filtered to remove frequencies below 200 Hz as shown in Figure 3.3.

Conventional vibration monitoring strategies rely on the amplitude ratio between the
fundamental gear mesh frequency and the sidebands surrounding the gear mesh
frequency to detect the modulation caused by a gear defect under constant load and
angular speed conditions. The spectra of the simulation results under fluctuating load
conditions are shown in Figures 3.3 (b) and (d). Multiple peaks are observed in the
frequency region around the nominal gear mesh frequency which should be at 250 Hz.
The phenomenon is known as spectral smearing and is due to the fluctuation in speed
caused by the fluctuation in load. Figures 3.4 (b) and 5(b) indicate that these peaks are
consolidated into a prominent peak at the gear meshing order once the COT process has

been applied to the data.

The velocity X, and the IAS 91 for one rotation of the shaft are shown in Figures 3.4 (a)

and 3.5 (a). A deviation from the gear mesh response behaviour caused by the defect can
be seen between 180 and 200 degrees of the shaft rotation. The results indicate that the
IAS can detect a gear defect if the gear defect reduces the stiffness in the gear meshing.

Note that the gear defect manifests as a modulation and the load modulates the velocity
X1 and the IAS 91 signals. Therefore the sidebands around the gear mesh order in
Figures 3.4 (b) and 3.5 (b) are caused by both the load and the defect modulation. LDN

was applied to the velocity X, and IAS 91 in order to obtain the load-normalised

velocity X, and IAS 6, signals.
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The LDN procedure reduces the amplitude of the low frequency modulation sidebands
close to the gear mesh order, relative to the amplitude of the gear mesh order. A
separation between the modulation caused by the load and the defect is obtained by

applying the LDN procedure. Figures 3.4 (d) and 3.5 (d) display the spectra of the load-

normalised velocity X, and IAS 6,.
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Figure 3.2. Gear model simulation results: (a) velocity time domain response; (b) velocity
frequency domain response; (c) IAS time domain response; (d) IAS frequency domain

response.
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Figure 3.3. High pass filtered gear model simulation results: (a) velocity time domain
response; (b) velocity frequency domain response; (c) IAS time domain response; (d) IAS

frequency domain response.
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Figure 3.4. Computer order tracked and high pass filtered gear model simulation results:
(a) rotation domain response; (b) order domain response; (c) load-normalised rotation

domain response; (d) load-normalised order domain response.
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Figure 3.5. Computer order tracked and high pass filtered gear model simulation results:
(a) rotation domain response; (b) order domain response; (c¢) load-normalised rotation

domain response; (d) load-normalised order domain response.

3.3 Cyclic stationary and non-cyclic stationary load conditions

Cyclic stationary load conditions refer to instances where the modulation caused by the
load fluctuation is stationary while the rotation of the gear is being monitored. In other
words there is no phase shift in the modulation relative to the rotation of the gear. The
phase of the modulation for non-cyclic stationary fluctuating load conditions will change

relative to the rotation of the gear being analysed.

The distinction between the two scenarios becomes relevant when the RDA process is
applied to data. Figures 3.6(a) and 3.6(b) display two signals where the phase of the
modulation between the two signals is 180 degrees out of phase. The addition of the two
signals in the rotation domain results in the signal shown in Figure 3.6(c) with reduced

amplitude modulation.
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Figure 3.6(f) displays the results of the addition of the two signals shown in Figures
3.6(d) and 6(e). Note that the modulation in Figure 3.6(f) is not reduced since there is no
difference in the phase of the signals shown in Figures 3.6(d) and 6(e).

The modulation caused by non-cyclic stationary load conditions can therefore be
averaged out with the RDA process, provided that enough averages are taken for the rate

at which the phase of the modulation changes relative to the rotation of the shaft.
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2 2 T
< 1 R O 1 4
g g
2 0H § 2 0 N
»n 2]
T} Y g1} Y
-2 - - . -2 . . .
0 100 200 300 0 100 200 300
2 T T T 2 T T .
m 1 g o1 J
. g
2 0f ¥ 2 0rf b
2} )
g-1p @1t !
2 . . N 2 . . .
0 100 200 300 0 100 200 300
— 4 T T T _ 4 T T T
g g
22 g %’ 2 1
(2] (]
2 ol i [ i
& 0 g’ 0
g) g
X -2f I -2t 1
s <
~ 4 L L " -4 L L L
0 100 200 300 0 100 200 300

Degrees of rotation Degrees of rotation

Figure 3.6. Comparison between cyclic stationary and non-cyclic stationary load
modulation for RDA: (a) signal A non-cyclic stationary modulation; (b) signal B non-
cyclic stationary modulation; (c) average of the non-cyclic stationary modulated signals;
(d) signal C cyclic stationary modulation; (e) signal D cyclic stationary modulation;

(f) average of the cyclic stationary modulated signals.

For cyclic stationary load conditions, the modulation of the signal being analysed is
calculated in the LDN process. A low pass filter is applied to the modulation data in order
to separate the modulation caused by the load from the modulation caused by the gear
defect. The filter frequency is calculated in an optimisation process where the similarity

between signals measured under different loading conditions is optimised.

_74 - Chapter 3



Chapter 3

A load-normalised signal is obtained by dividing the signal by the low pass filtered
modulation. The signal is band pass filtered before the modulation is calculated, to ensure
that there are no zero values in the filtered modulation signal, which would result in

division by zero.

The modulation caused by a gear defect will always be cyclic stationary with the rotation
of the shaft, and will not be suppressed by the RDA process. The RDA process provides a
means to separate the frequency content of the cyclic stationary modulation caused by the
gear defect from the frequency content of the modulation caused by the non-cyclic
stationary load modulation. The approach will allow overlapping in the frequency bands
of the load modulation and gear defect modulation, in contrast to the cyclic stationary
loading case where no overlapping is possible since the signal modulation is low pass

filtered in order to separate the modulation caused by the load and probable defects.

Note that RDA will suppress the non-cyclic stationary modulation and not the amplitude
of the resulting signal. Therefore the non-cyclic stationary signals will still have to be
normalised once the RDA process has been applied. However the low pass filter
frequency of the LDN process can be set at one shaft order, since no separation has to be
obtained between the modulation caused by the load and the modulation caused by the

gear defect.

The final drive gear of a continuous miner cutter head gearbox is a typical application of
cyclic stationary load condition. The rate at which the picks of the cutter head shear the
coal from the coalface remain constant relative to the meshing of the gears since no
relative movement between the picks and gear teeth will take place. Hence, if RDA is
applied the modulation caused by the coal shearing action of the picks will not be
averaged out since the modulation caused by the shearing of the coal from the coalface
will remain cyclic stationary. The load on the drag gearboxes of a dragline will however
change randomly since it depends on how the operator controls the dragline. For the
dragline, application the load will therefore be non-cyclic stationary and the modulation

caused by the load will be averaged out by the RDA process.
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3.4 Convergence of rotation domain averaging

The convergence of the RDA process under non-cyclic stationary load conditions was
investigated by applying the RDA process to two signals with different amplitude
modulation characteristics. A Normalised Relative Difference Value (NRDV) was
calculated according to Equation 3.6 in order to obtain a normalised comparison of the

similarity and deviation in amplitude between the two signals in the rotation domain:

2

Ny . - Q;
NRDV = E1_ Signall(6) Slgna12(5) <0 | (3.6)
- Ny s
s L \/LZ(Signau(e)er)z + \/LZ(Signalz(e)er)Z
2 Ns n=1 NS n=1

where Ng denotes the number of samples per shaft revolution, 6 the rotation of shaft in

degrees and A@the angular increment in degrees. The NRDV is essentially the Root
Mean Square (RMS) value of the difference between two signals normalised by the

average of their RMS amplitudes.

The NRDV was calculated as a function of the number of averages to indicate the
convergence behaviour of the RDA process for various non-cyclic load modulation
scenarios. Narrowband periodic, wideband periodic and random non-periodic modulation

scenarios as well as the influence of non-stationary random noise were investigated.

A Gear Mesh Signal (GMS) was simulated based on a sinusoidal approximation of the

gear meshing stiffness as indicated in Equation 3.7:
GMS(N,0) = sin(Nx6) (3.7)

where N represents the number of gear teeth and @ the degree of shaft rotation.
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The narrow band periodic modulation is generated according to Equation 3.8:
Modulation (L, Lo,R,0,4,0) =1+L, xsin(L, x0 ~Rxp—c) (3.8)

where L, denotes the load intensity, L, the load order, R the rotation number, ¢ the

modulation phase shift per revolution in degrees per rotation and « the constant
modulation phase shift in degrees. Load intensity is proportionally related to the
amplitude of the modulation. The load order represents the order-tracked frequency of the
modulation. The phase shift per revolution for the modulation is introduced in Equation
3.8 by multiplying the rotation number by the modulation phase shift per revolution of

the shaft ¢ in order to simulate the non-cyclic stationary load modulation effect.

A Narrowband Modulated Gear Mesh Signal (NMGMS) is obtained in Equation 3.9 by
multiplying the GMS in Equation 3.7 by the modulation in Equation 3.8.

NMGMS(L,,Lg,Ry,N,0,¢,a) = GMS(N,8) x Modulation(L,,L,,R ,N,6,4,x)(3.9)

The constant modulation phase shift will create a difference between the modulations of
the signals. The phase shift per revolution of the shaft was kept constant for both the
signals. Therefore the dissimilarity between the two signals can only be improved by the
non-cyclic stationary averaging effect, which will reduce the magnitude of the amplitude

modulation.

Two signals with a constant relative phase shift of 10 degrees in the modulation were
generated for the simulation. The order of the modulation was set at 4 orders and the load
intensity was set at 30 per cent of the peak value in the NMGMS. Fifteen gear teeth were

selected for the simulation.
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Convergence simulations were conducted for values of the modulation phase shift equal
to 15 and 30, and for 45 degrees per revolution. Figure 3.7 indicates the results of the
convergence simulation between two signals. It can be concluded from the simulation
results that the number of averages required to reduce the amplitude of the non-cyclic
stationary load modulation to zero is equal to 360 divided by the phase shift per shaft
revolution in degrees. However the conclusion is based on the assumptions that the load
modulation is periodic, that there is no non-synchronous noise present in the signal and

that the phase shift per revolution is constant.
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Figure 3.7. NRDV versus the number of rotation domain averages for a periodic load

with an order of 4: load intensity 30 %; no non-synchronous noise.

A signal with a 90-degree phase shift per revolution was generated to illustrate the
convergence process in the rotation domain within four averages. Figures 3.8 (a) to (d)
show the data. Figures 3.8 (e) to (h) indicate the reduction in the amplitude modulation as

the number of averages increases.
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Figure 3.8. RDA example under non-cyclic stationary fluctuation load conditions: load
intensity 30%; modulation order = 4; (a) rotation 1 with 0 degrees of phase change; (b)
rotation 2 with 90 degrees of phase change; (c) rotation 3 with 180 degrees of phase
change; (d) rotation 4 with 270 degrees of phase change; (e) one rotation domain average;
(f) two rotation domain averages; (g) three rotation domain averages; (h) four rotation

domain averages.

The influence of random non-synchronous noise on the convergence of the RDA process
was investigated by adding random noise to the narrowband periodic modulation
simulation. Noise was added, with a maximum amplitude of 25 % of the peak amplitude
value in the NMGMS. The results shown in Figure 3.9 indicate that absolute similarity
cannot be obtained between the signals by utilising the RDA process, once random non-
synchronous noise has been added to the individual signals within a finite number of
averages. In other words, the RDA process cannot completely attenuate or reduce the
effect of random noise on a measurement taken within an economically feasibly number

of shaft rotations.

-79 - Chapter 3



Chapter 3

0.7 T T T T T - — T T T
== 15 Degree per revolution phase change

0.6 == 30 Degree per revolution phase change
05 =« = 45 Degree per revolution phase change
> 041 a
g
=z 0.3+ 7
0.2 i
0.1 TNV e N -
0 ! 1 L 1 1 ] 1 | I
0 5 10 15 20 25 30 35 40 45 50
Number of averages

Figure 3.9. NRDV versus the number of rotation domain averages for a periodic load

with an order of 4: load intensity 30 %; non-synchronous noise level of 25%.

Additional simulations were conducted in which the maximum amplitude of the non-
synchronous noise was increased from 20 % to 100 %. The convergence simulations
indicate that reduced similarity is obtained between two signals after a finite number of
averages when the maximum amplitude of the non-synchronous noise is increased. The

simulation results are shown in Figure 3.10.
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Figure 3.10. NRDV versus the number of rotation domain averages for a periodic load

with an order of 4: load intensity 30 %; fifteen degrees of phase change per revolution.

Most of the fluctuating load scenarios found in practice inflict wideband modulation on
the GMS. These modulations may or may not be periodic, depending on the particular
situation. Simulation data for the periodic wideband scenario were generated by

multiplying the GMS signal in Equation 3.6 by the same random modulation signal.
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The modulation signal had a bandwidth of 1 to 7 orders and the phase of the signal was
shifted for each revolution of the shaft. A constant modulation phase shift of 10 degrees
was kept between the two signals used in the comparison studies. The convergence
simulation results shown in Figure 3.11 indicate that the dissimilarity between the two
wideband modulated signals can be reduced to zero within a finite number of averages,
provided that there is no non-synchronous noise present in the signals, the modulation is

periodic and that a sufficient number of averages are taken.

01 T T T T T I T T
«== 10 Degree per revolution phase change
0081 == 20 Degree per revolution phase change
. [ N It 30 Degree per revolution phase change
> 006
[a]
x
Z .04t
Q.02
0 - S :
4] 5 10 15 20 25 30 35 40 45 50

Number of averages

Figure 3.11. NRDV versus the number of rotation domain averages for a periodic load

with an order bandwidth of 1 to 7 orders: load intensity 30%; no non-synchronous noise.

The rotation domain simulation results for a periodic wideband modulation scenario are
shown in Figures 3.12 (a) to (h). A constant phase shift of 90 degrees per shaft revolution
was chosen in order to obtain zero amplitude modulation after 4 averages. The results
shown in Figure 3.12 (h) indicate that the modulation amplitude was reduced but not
averaged out completely by applying the RDA process. Periodic wideband amplitude
modulation will therefore not be averaged out to zero amplitude modulation if the phase

shift per revolution is too large.
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Figure 3.12. RDA example under non-cyclic stationary fluctuation load conditions: load
mtensity 30%; modulation band 1 to 7 orders; (a) rotation 1 with 0 degrees of phase
change; (b) rotation 2 with 90 degrees of phase change; (c) rotation 3 with 180 degrees of
phase change; (d) rotation 4 with 270 degrees of phase change; (¢) one rotation domain
average; (f) two rotation domain averages; (g) three rotation domain averages; (h) four

rotation domain averages.

The GMS signal in Equation 3.6 was multiplied by different random noise signals in
order to investigate the random non-periodic modulation scenario. New random
modulation signals were generated for each revolution and the maximum amplitude of
the modulation was 30% of the maximum GMS amplitude. The simulation results shown
in Figure 13 indicate that the amplitude of a random non-periodic amplitude modulation
cannot be reduced to zero within a finite number of averages by applying the RDA

process.
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Figure 3.13. NRDV versus the number of rotation domain averages for a random load

with an order bandwidth of 1 to 7 orders: load intensity 30%; no non-synchronous noise.
3.5 Implementation of the techniques on the gear model

Simulations were conducted on the dynamic gear model under sinusoidal cyclic
stationary and non-cyclic stationary loading conditions. The load fluctuation frequency
was set at 25 Hz for the non-cyclic stationary loading conditions and at 1 order for the

cyclic loading condition. A 20 % variation in the load was applied.

RDA was applied to the simulation results to verify that RDA would suppress the
modulation caused by non-cyclic stationary loading but not the modulation caused by
cyclic loading. The simulation results for 4 averages are shown in Figures 3.14 (a) to (d).
Note that the modulation caused by the load fluctuation can be observed for both the
cyclic stationary and non-cyclic stationary loading conditions. Figures 3.15 (a) to (d)
indicate the rotation domain results for 20 averages. The load modulation caused by the
cyclic stationary load is not suppressed by an increase in the number of averages in the
RDA process. Figures 3.15 (a) and (d) indicate that the modulation caused by the non-

cyclic stationary load is suppressed by the increase in the number of averages in the RDA

process for both the velocity at X, and the IAS at 6, .
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Figure 3.14. RDA results after 4 averages at 20 % variation in load: (a) non-cyclic

stationary loading at 25 Hz; (b) cyclic stationary loading at 1 order; (c) non-cyclic

stationary loading at 25 Hz; (d) cyclic stationary loading at 1 order.
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Figure 3.15. RDA results after 20 averages at 20 % variation in load: (a) non-cyclic

stationary loading at 25 Hz; (b) cyclic stationary loading at 1 order; (c) non-cyclic

stationary loading at 25 Hz; (d) cyclic stationary loading at 1 order.
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3.6 Experimental set-up

The experimental set-up consisted of three Flender Himmel Motox helical gearboxes,
driven by a 5,5 kW three-phase four-pole Weg squirrel cage electrical motor. A 5,5 kVA
Mecc alte spa three-phase alternator was used for applying the load. Figure 3.16
illustrates the test rig. The gearbox test rig was designed to conduct accelerated gear life

tests on the Flender E20A gearbox under varying load conditions.

Alternator 5.5 kVA

Flender E 20 A Gearbox

Flender E 60 A Gearbox

Figure 3.16. Experimental set-up.

Two additional Flender E60A gearboxes were incorporated into the design in order to
increase the torque applied to the small Flender E20A gearbox. The rated load of the
gears in the Flender E20A gearbox was 20 Nm. The same gear train loading system

explained in paragraph 2.2 was utilised in the experimental set-up.

A Hengstler R176T01 1024ED 4A20KF shaft encoder, producing 1024 pulses per
revolution in the form of an analogue push-pull signal, was used for measuring the shaft
speed. The reference point for the synchronous averaging was measured as a single pulse
from the shaft encoder. Acceleration was measured in the vertical direction on the gear
casing, by means of a 10 V/g PCB integrated circuit piezoelectric industrial

accelerometer.
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The measurements were taken with a Siglab model 20-42 signal analyser for five
different load conditions and three different levels of damage severity. The specifications
for the loading conditions are given in Table 3.2. During the experimentation, flank wear

was progressively induced on one of the gear teeth in the gearwheel of the gearbox.

Details of the amount of wear are presented in Table 3.3.

TABLE 3.2 Load case specifications

Load Case | Load Function | Frequency | Minimum Load | Maximum Load
1 Constant 0 Hz 10.7 Nm 10.7 Nm
2 Sine 1 Hz 7.4 Nm 14.7 Nm
3 Square 0.3 Hz 7.4 Nm 14.7 Nm
4 Chirp 0.1-2 Hz 7.4 Nm 14.7 Nm
5 Random 0.1-2 Hz 7.4 Nm 14.7 Nm

TABLE 3.3 Induced tooth face damage specifications

Fault condition Tooth face removal
1 100 um
2 200 um
3 300 um

The gearwheel of the test gearbox is the slowest rotating component in the test rig and
has the lowest inertia, resulting in a relatively low gear mesh frequency amplitude

compared with the overall vibration levels.

The anti-aliasing filter of the Siglab analyser has a constant cut-off frequency of 20 kHz.
Therefore, an eighth-order analogue Butterworth filter with a cut-off frequency at 270 Hz
was used as an analogue low pass filter. The high amplitude vibration in the higher
frequency range was filtered out in this way, improving the digitisation range of the gear

mesh signal.

For further information with regards to the experimental set-up and measurement

instrumentation, refer to the appendix.

- 86 - Chapter 3



Chapter 3

3.7 Experimental verification under non-cyclic stationary load

conditions

A convergence study of the RDA process was conducted on the experimental data
obtained from the test rig. Comparisons were made between the constant, random, chirp

and sinusoidal non-cyclic stationary loading conditions.

The results are shown in Figure 3.17. Note that the signals measured under different
loading conditions become more similar as the number of averages increases. The RDA
process suppresses both the modulation caused by the varying load conditions and the
non-synchronous noise. Figure 3.17 indicates that there is less similarity between the
velocity measurements on the gear-case than between the IAS measurements for a low
number of averages. This can be attributed to the fact that the velocity measurements are
contaminated by more non-synchronous noise sources, because of the dispersion of
forces through the structure from other rotating components in the system and the
vibration must pass through a transmission path before being measured with the

accelerometer.

The shaft encoder signal is measured as a push-pull signal and post-processed to obtain

the IAS and will therefore only reflect the IAS associated with the rotation of the shaft

under consideration.
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Figure 3.17. NRDV versus the number of rotation domain averages for the experimental
data under constant, random, chirp and sinusoidal excitation: (a) velocity measured on the

gearbox casing; (b) IAS.

The Smoothed Pseudo-Wigner-Ville (SPWV) algorithm proposed by Wang [62] was
utilised to analyse the signals to which the RDA process was applied. Both time and
frequency smoothing is utilised in the SPWV in contrast to the PWV in which only
frequency smoothing is applied to attenuate the interference and cross terms. Thus better
attenuation of the interference and cross terms will be obtained by utilising the SPWV
distribution in comparison with the PWV distribution. Details of the number of data
points used are presented in Table 3.4. Figures 3.18 and 3.19 indicate the SPWV
distributions of the IAS signals for one rotation under the different loading conditions and
levels of damage severity. No similarity was found between the distributions. However,
the SPWV distributions of the IAS shown in figures 3.20 and 3.21 indicate similarity
between the various distributions for the different loading cases when a rotation domain
average from 160 rotations is calculated. The flank wear was induced between 50° and

100° of shaft rotation.
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Note that the flank wear is indicated by increased amplitude levels that spread out over
the order bandwidth at the position of the gear damage in the distribution of the IAS to
which the RDA was applied.

TABLE 3.4 SPWYV distribution specifications

Signal data point length 1024 data points
Pseudo window length 32 data points
Smoothing window length 4 data points

An energy ratio parameter was defined according to Equation 3.10 to exploit the

phenomenon to trend the degradation of the gear condition as a single numerical value:

E
Energy Ratio = = D (3.10)

ND

where E[, represents the sum of the energy in the order band of the time frequency
distribution in which the amplitude of the distribution increases when gear damage is
introduced over 360° of the shaft rotation; and E, the energy in the gear mesh order
band of the time frequency distribution, which is present when no gear fault condition is

induced over 360° of the shaft rotation.

Energy ratio values were calculated from the SPWV distributions under the five different

loading conditions and three different levels of damage severity.
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Figure 3.18. SPWV distributions for a single rotation of the experimental IAS
measurements at damage level 2: (a) constant load; (b) random load; (¢) chirp load; (d)

sinusoidal load; (e) square load.

A linear separation between the energy ratio values for different levels of damage
severity, under the various non-cyclic stationary loading conditions, was obtained for the
measurements to which the RDA process was applied, as shown in Tables 3.5 A and B.
The deterioration in gear condition can therefore be readily trended monotonically to
indicate the progression of a gear fault condition under non-cyclic stationary varying load
conditions by applying the SPWV distribution to the rotation domain averaged gear-case
velocity and IAS measurements. The energy ratio values for the SPWV distributions
calculated for a single shaft rotation are indicated in Tables 3.5 C and D. Note that no
linear separation between the damage severity cases was obtained for the values under
the different loading conditions when the computed order tracking (COT) process is

applied.
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Figure 3.19. SPWV distributions for a single rotation of the experimental IAS
measurements at damage level 3: (a) constant load; (b) random load; (c) chirp load; (d)

sinusoidal load; (e) square load.

TABLE 3.5A Energy ratio of the rotation domain averaged gear-case velocity

Damage | Constant | Sine |Square| Chirp | Random
Level 1 0.1213  ]0.2256| 0.2597 | 0.1365 | 0.1426
Level 2 0.8988 10.8232| 0.8705 | 1.0649 | 0.9343
Level 3 1.1992 11.3697| 1.2330 | 1.1691 | 1.2440

TABLE 3.5B Energy ratio of the rotation domain averaged IAS

Damage| Constant | Sine |Square| Chirp |Random
Level 1 0.0548 10.0622| 0.0675 | 0.0593 | 0.0586
Level 2 0.0727 10.0793| 0.0778 | 0.0722 | 0.0853
Level 3 0.1069 10.1089| 0.1166 | 0.1223 | 0.1231
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Figure 3.20. SPWYV distributions for the experimental IAS rotation domain averaged
measurements at damage level 2: (a) constant load; (b) random load; (c) chirp load; (d)

sinusoidal load; (e) square load.

TABLE 3.5C Energy ratio of the gear-case velocity for a single rotation

Damage | Constant | Sine |Square| Chirp |[Random
Level 1 0.3304 ]0.2331| 0.3616 | 0.3176| 0.3237
Level 2 0.5536 [0.4452] 0.4564 | 0.3572| 0.5650
Level 3 0.7920 10.5827] 0.4170 [ 0.7233 | 0.7988

TABLE 3. 5D Energy ratio of the IAS for a single rotation

Damage| Constant | Sine |Square| Chirp |Random
Level 1 0.2728 |0.2715] 0.1741 | 0.3494 | 0.3235
Level 2 0.2519 |0.2540| 0.4351 [ 0.2713 | 0.3145
Level 3 0.3120 |0.2976] 0.3294 | 0.3758 | 0.2954
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Figure 3.21. SPWV distributions for the experimental IAS rotation domain averaged
measurements at damage level 3: (a) constant load; (b) random load; (c) chirp load; (d)

sinusoidal load; (e) square load.
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Chapter 4

Transmission path phase compensation
for gear monitoring under fluctuating
load conditions

4.1 Introduction

In chapter 3 it was established that the instantaneous angular speed measured by means of
a shaft encoder with sufficient resolution, could be used to monitor a deteriorating fault
condition on a gear under fluctuating load conditions. The results indicated much faster
convergence of the rotation domain average, compared to the vibration measured with an
accelerometer on the casing of the gearbox, due to the fact that the vibration must pass
through a transmission path before being measured with the accelerometer. Various

authors have investigated the problem of signal distortion due to transmission paths.

Powel [126] developed an inverse filtering technique to predict input forces acting on a
component, from the vibration response measurements. This requires the Frequency
Response Function (FRF) of the structure between the point of excitation and the
response measurement point to be available. In most vibration monitoring applications it

is either not financially viable or practically impossible to measure the required FRFs.

Kim [127] consequently considered the scenario where the required FRFs of the structure
are not available. Cepstrum analysis was used to estimate an initial input. However the
estimated signal was not accurate enough to diagnose a fault condition. Therefore a
parameter modification process that utilises optimisation was applied to minimise the

difference between the measured and estimated response.
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Once the parameter modification process was applied a diagnosis of the fault condition
could be made. Kim however concludes that the estimated and measured FRFs of the
structure differed from one another by as much as 6 dB in magnitude and 20 radians in

phase.

Consequently a method to reduce the effect of the transmission path phase on the
measured response, was developed in order to improve the repeatability and diagnostic
capability of the RDA and LDN methods currently used to conduct vibration monitoring
under fluctuating load conditions. The LDN methodology will remove the amplitude
modulation inflicted on the measured vibration signal by the transmission path at the
rotational speed of the gear shaft. Hence, a methodology to compensate only for the
phase distortion inflicted by the transmission path on the vibration measured signal, is

required.

The proposed method entails representing the signal as a function of its phase rather than
the angle of shaft rotation. Once the signal has been order tracked, the phase of the signal
for each rotation of the shaft is calculated. The amplitudes of the signal are then sampled
through an interpolation process at predetermined intervals of the phase. After the phase
representation is calculated an average of the amplitudes in the pseudo phase
representation is calculated. It is shown that this process is much more efficient and less
data is required to obtain a converged synchronised average representation of the signal

that can be utilised for diagnostic purposes.

4.2 Transmission path phase distortion

The transmission of excitation to response in a physical structure is always subjected to
relative phase variation as well as amplification or attenuation depending on the structural
mass, stiffness and damping characteristics. In general an averaged spectrum is
calculated for condition monitoring purposes. Hence, the phase relationships in the

signals are ignored and the magnitude of the amplitudes is monitored.
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RDA is applied in gear monitoring applications where noise attenuation is required. A
signal, which is synchronous with the rotation of the shaft of the gear being monitored, is
measured in order to obtain a synchronising reference that is synchronous with the
rotation of the shaft. Hence the synchronising reference signal remains synchronous with
the excitation when the excitation frequency or shaft speed changes. However the
response is not synchronous with the reference signal, due to the phase change imposed
by the transmission path if the rotational speed of the machine changes. It is however
only practically feasible to measure a reference signal which is synchronous with the

excitation and shaft rotation.

The phase shift phenomena can be illustrated by means of a lumped parameter mass
model with base excitation as described by Rao [128]. A diagram of the system is shown

in figure 4.1. The equation of motion for the system is shown in equation 4.1

mx+cx+kx = Fy
(4.1)

mx+cx+kx=cy+ky
where x denotes the displacement of the mass m, cthe viscous damping, & the stiffness,

F the force applied with the base and y the displacement of the base.

Equation 4.1 can be mathematically manipulated in order to obtain the amplitude of the
displacement transmissibility shown in equation 4.2 and the phase of the displacement

transmissibility shown in equation 4.3

L{ 1+(Q¢ 1)’ }/ -

Y |(1-r)+Q2¢r)°

ool @y
¢ =tan [1+(4§ 2-1)#} (4.3)

where r denotes the ratio of the excitation frequency relative to the natural frequency of

the system and ¢ the damping ratio.
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Figure 4.2(a) illustrates the graphical representation of equation 4.2 and figure 4.2(b) the

graphical illustration of equation 4.3, for damping ratios of 10% and 20 %. From the

graphical illustrations, it is clear that the transmission path will induce amplitude

amplification and attenuation as well as relative phase variation of the response, as

functions of the frequency ratio.
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Figure 4.2. Transmissibility function of a lumped parameter mass model with base

excitation: (a) Amplitude ratio of the displacement transmissibility; (b) Phase angle of the

displacement transmissibility.
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The concern with regards to phase shifting becomes apparent when RDA is performed. In
the RDA process a constant number of samples are interpolated from the measured
vibration signal for predetermined angles of shaft rotation. The angle of shaft rotation is
calculated from the reference signal, which is synchronous with the shaft rotation. If the
rotational speed of a gear being monitored changes, the RDA process will ensure that the

order content in the signal remains correct but the phase shift will be neglected.

Figure 4.3(a) depicts two signals with amplitude modulation that are the same, except for
the phase shift of ninety degrees relative to one another. The addition of the signals
shown in figure 4.3(b) leads to the attenuation of the amplitude modulation. It can
therefore be concluded that the possibility exists that modulation which is synchronous
with excitation can be attenuated by the phase shifting effect of the transmission path.
The phase shifting effect can furthermore lead to a total distortion of the RDA vibration
signal that should represent the gear meshing stiffness for diagnostic purposes. Such

distortions will affect repeatability and diagnostic capability.

(a) Amplitude

(b) Amplitude

L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Figure 4.3. Phase effect on the addition of the same signal with a relative phase shift: (a)
Signals 90 degrees out of phase; (b) Average of the out of phase signals.
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4.3 Phase compensation methodology

In order to overcome the phase shift effect due to the transmission path, the real response

signal a(#)is transformed from the rotation domain in to the phase domain of the signal.

This is accomplished by calculating the analytical signal as discussed in paragraph 2.4.
An analytical signal can be visualized as a vector rotating in a complex plane over time.
The absolute value of the analytical signal represents the amplitude modulation of the

signal and the angle of vector rotation represents the phase of the signal.

Two signals are shown in Figure 4.4(a). The phase of the one signal is constant and the
phase of the other signal changes with time. Figure 4.4(b) shows the amplitude of the
two signals plotted as a function of each signal’s phase, which was calculated from its
analytical signal. It is clear that the signals are overlaid and that the phase shift is no
longer visible. Consequently the effect of the transmission path phase distortion can be

overcome by expressing the COT data in terms of the phase domain.
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Figure 4.4. Amplitude representation of sinusoidal signals: (a) Amplitude versus time

plot of the sinusoidal signals; (b) Amplitude phase plot of the sinusoidal signals.
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The phase domain averaging process is described by the flow diagram in figure 4.5.
Initially the data is measured and the conventional COT process is applied. The analytical
signal of the COT signals for each rotation of the shaft is then calculated. From the
analytical signal the corresponding phase of the signal is calculated. Unfortunately the
scenarto where the vector in the analytical signal counter-rotates does occur, which
means that the phase of the signal reverses. This effect is eliminated through a process of
narrowband enhancement. In other words, the signal is band-pass filtered around the
fundamental gear-meshing harmonic of interest. The frequency band around the
fundamental gear-meshing harmonic is narrowed until a sufficient number of shaft

rotations are available from the COT data wherein phase reversal does not occur.

A minimum frequency bandwidth is set in order to avoid the scenario where too many
gear-meshing sidebands are filtered from the signals. In general some 90 % of the
captured data can be utilised once the data has been narrow band enhanced. The

remaining data is discarded.

Once the phase for each signal has been calculated, the maximum and minimum phase
value for the ensemble of signals is determined to establish the phase envelope. A
number of points are selected at constant angle of phase over the phase envelope and the
amplitudes of the signals are sampled through interpolation at the selected phase interval
points. This is done in order to enable the averaging process for the shaft rotations over
the phase envelope. The average signal is referred to as the Phase Domain Average

(PDA). The phase envelope is normalised between zero and one for ease of use.
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Measure the accelerometer signal, the synchronizing pulse
signal and the multiple pulses per revolution signal.

v

Perform computed order tracking.

v

Brake up the computed order tracked signal in to the
partitions that represents each shaft rotation.

v

Band pass filter the signals around the
fundamental gear-meshing harmonic

v

Calculate the analytical signal for each of the
signals representing one rotation of the shaft

v

Calculate the phase of the analytical
signals for each shaft rotation.

v

Construct the phase envelope by determining the
minimum and maximum phase values of all the signals.

v

Resample the signal amplitudes for each shaft rotation
at constant angle of the constructed phase envelope.

v

Calculate the average of the amplitudes over
the phase envelope in order to obtain the phase
domain average.

Figure 4.5. Phase domain-averaging flow diagram

4.4 Experimental investigation

Experimental measurements taken with the test set-up in paragraph 3.6 was utilised in the
investigation. Measurements taken under a sinusoidal load condition where the load
varied from 7.4 Nm to 14.7 Nm at a frequency of 1 Hz were utilised. The phase

compensation methodology described in the previous paragraph of the chapter was

-101 - Chapter 4



Chapter 4

applied to the experimental measurements taken on the test rig, for three levels of damage
severity. The accelerometer measurements where computer order tracked and band pass
filtered to avoid counter-rotation of the analytical signal vector. The band pass order
range was determined to be between 33 and 53 shaft orders, since the gearwheel had 43
teeth. Hence, sufficient bandwidth was available to incorporate the modulation of the

fundamental gear-meshing harmonic representing the gear meshing stiffness.

The NRDV was calculated as a function of the number of averages to indicate the
convergence behaviour of the RDA and PDA processes. An averaging process will
converge faster if the order bandwidth is decreased by band pass filtering or narrow band
enhancement. Therefore the signals that were used for the RDA process were band-pass
filtered between 33 and 53 shaft orders, in order to make a fair comparison between the
RDA and PDA approaches. Figures 4.7 (a) and (b) indicate the convergence behaviour
for the processes applied to the experimental measurements for damage levels 1 and 2. It
is evident that PDA process converges much faster with much less erratic behaviour,

compared to the RDA process.
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Figure 4.7. NRDV versus the number of averages for the RDA and PDA process:
(a) Damage level 1; (b) Damage level 2.
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It can furthermore be concluded that the PDA process requires much less data to
converge to a stable average. The erratic convergence of the RDA process can be
attributed to the inability of the RDA process to deal with the phase changes in the

response measurements, due to the fluctuating speed conditions.

Figures 4.8 (a) and (b) indicate the averaged signals for damage levels 2 and 3 obtained
through the RDA process and figures 4.8 (c) and (d) show the signals obtained through
the PDA process. The induced damage is indicated by the severe modulation at
approximately ninety degrees of the shaft rotation and twenty five percent of the phase
envelope. This is evident for the averaged signals obtained through RDA and PDA.
However the averaged signals obtained through the RDA process shows increased
modulation activity compared to the signals obtained through the PDA process, which

may complicate fault detection and prognosis when detecting incipient gear damage.
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Figure 4.8. Synchronously averaged vibration signals measured on the test rig: (a) RDA
at damage level 2; (b) RDA at damage level 3; (c) PDA at damage level 2; (d) PDA at

damage level 3.
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The SPWV algorithm proposed by Wang [62] was applied to the averaged signals
obtained by utilising the RDA and PDA processes. Details of the number of data points
used are presented in Table 4.1. Figures 4.9 (a) to (c) and 4.10 (a) to (c) indicate the
contour plots of the SPWV distributions at the same amplitude level for the three levels
of damage severity. The distributions calculated from the PDA signals produce smoother
contours compared to the distributions calculated from the RDA signals. It can therefore
be concluded that it is easier to diagnose and trend a deteriorating fault condition by

utilising signals obtained from the PDA process.

TABLE 4.1 SPWYV distribution specifications

Signal data point length

512 data points

Pseudo window length

32 data points

Smoothing window length

4 data points
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Figure 4.9. Smoothed Pseudo Wigner Ville contour piot of the RDA signals: (a) Damage
level 1; (b) Damage level 2; (c) Damage level 3.
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Chapter 5

Conclusion and recommendations for
further research

5.1 Conclusion

A signal-processing approach to load demodulation normalisation was devised to monitor
the condition of gears operating under fluctuating load conditions. The procedure was
tested on experimental data measured during constant, sinusoidal, step and chirp load
fluctuations for different levels of damage severity. Statistical parameters were
calculated from the pseudo-Wigner-Ville distributions, which had been calculated for the
load-normalised acceleration signals averaged in the rotation domain. These parameters
were linearly separated between the fault severity levels under different loading
conditions. It was indicated that the Mahalanobis distance could be utilised to combine
the parameters into a single-value parameter, which can readily be monotonically trended
to indicate the progression of fault severity. A neural network could also be trained on the
parameters to classify the severity of faults, on data of a load condition, which had not

been used during training.

A simplified mathematical model was developed to simulate the structural response and
the instantaneous angular speed of a gear system under cyclic stationary and non-cyclic
stationary load fluctuation. The instantaneous angular speed will change as the gear teeth
mesh in and out of the gear mesh, owing to the fluctuation in meshing stiffness. A fault
condition of reduced gear meshing stiffness was considered, resulting in a change in the
instantaneous angular speed, which indicated that the instantaneous angular speed could

be used to detect and monitor the presence of a gear defect.
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The amplitude of both the gearbox casing vibration and the instantaneous angular speed
will be modulated by the fluctuating load conditions. However, if the modulation is non-
cyclic stationary it will be suppressed if a sufficient number of averages are taken when
applying the rotation domain averaging process. Once the signal has been rotation
domain averaged, it will still have to be normalised in order to compensate for the
variation in nominal load. The rotation domain averaging process will not remove the
load modulation effect if the load is cyclic stationary with the rotation of the shaft.
Therefore, a load demodulation normalisation approach should be followed to remove the

effect of cyclic stationary load modulation.

There are two inherent advantages of non-cyclic stationary load fluctuation. The first is
that an optimal load normalisation frequency does not have to be determined and the
second is that an overlap in the frequency band of the gear defect modulation and the load
modulation can be tolerated. Experimental results were obtained from a test rig built to
apply non-cyclic stationary load fluctuation to a test gearbox. The experimental results
confirmed the conclusions made regarding the instantaneous angular speed monitoring
and the non-cyclic stationary load modulation, which are suppressed through the process

of rotation domain averaging.

The effect of the transmission path phase characteristics on synchronous averaging was
explained under fluctuating load and speed conditions. It is indicated that the effect
cannot be neglected when conducting synchronised averaging in the rotation or time
domain. A methodology is proposed to eliminate the effect of the phase variation by
calculating an, amplitude versus signal phase representation of the computer order
tracked signal. It is indicated that the average of the amplitude versus phase
representation converges with fewer shaft rotations compared to conventional rotation
domain averaging. Consequently, less data needs to be captured for monitoring purposes
when applying the amplitude versus phase representation of the signal. It is shown that
the amplitude versus phase representation of the signal can be utilised for diagnostic

purposes.
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It is indicated that the average amplitude versus phase representation has less abrupt
modulation compared to the conventional rotation domain averaging. The abrupt
modulation is caused by the effect of the phase variation in the transmission path, which

reduces repeatability and complicates the diagnosis of a fault condition.

5.2 Recommendations for further research

Currently very little to no research has been conducted to establish criteria that will
indicate the required accuracy and resolution with which the instantaneous angular speed
has to be measured for diagnostic purposes. The criteria should enable the specification
of shaft encoder resolution or the number of pulses per revolution that it will produce.
Shaft encoder resolution should be specified for a range of rotational speed conditions as
well as the frequency at which the measured signal should be digitised for post

processing purposes.

The reason for the phase reversal in the phase of the analytical signal obtained through
the utilisation of the Hilbert Transform is unknown. The phenomenon needs to be
investigated. Reasons for the occurrence need to be established in order to enable further

research in resolving the phase reversal phenomenon.

It is postulated that the phase of the signal can be used for order tracking purposes and
that the accurate measurement of the instantaneous angular speed is not necessary. Only
the synchronising pulse can be measured and the phase of the analytical signal can be

used to estimate the speed fluctuation between the pulses.

It is envisaged that the moving windows utilised in most time frequency techniques can
be modified in order to incorporate normalisation in the window. This will reduce pre and

post processing and might increase defect detection sensitivity.

- 108 - Chapter 5



References

References

10.

11.

12.

13.

R.B. Randall 1987 K. Larsen and Son, Denmark. Frequency Analysis.

R. Potter 1990 Sound and Vibration 24. 30-34 A new order tracking method for
rotating machinery.

R. Potter and M. Gribler 1989 SAE Noise and Vibration Conference. 63-67.
Computer order tracking methods obsoletes older methods.

K.R. Fyfe and E.D.S. Munck 1997 Mechanical Systems and Signal Processing 11(2),
187-205. Analysis of computed order tracking.

K.M. Bossley, R.J. Mckendrick, C.J. Harris and C. Mercer 1999 Mechanical Systems
and Signal Processing 13(4), 627-641. Hybrid computed order tracking.

S.G. Braun 1975 Acustica 32(2), 69-77. The extraction of periodic waveforms by
time domain averaging.

S.G. Braun and B.B. Seth 1979 Journal of Sound and Vibration 65(1), 37-50. On the
extraction and filtering of signals acquired from rotating machines.

P.D. Mcfadden 1987 Mechanical Systems and Signal Processing 1(1), 83-95. A
revised model for the extraction of periodic waveforms by time domain averaging.
P.D. Mcfadden 1989 Mechanical Systems and Signal Processing 3(1), 87-97.
Interpolation techniques for time domain averaging of gear vibration.

B.D. Forrester 1996 A4 thesis submitted for the examination for the degree Doctor of
Philosophy, University of Melbourne, Australia. ~Advanced vibration analysis
techniques for fault detection and diagnosis in geared transmission systems.

R.M. Stewart 1977 University of Southampton Report MHM/R/10/77. Some useful
data analysis techniques for gearbox diagnostics.

N.S. Swanson, B.D. Forrester and .M. Howard 1989 Proceedings of the Australian
Aeronautical Conference, Melbourne, October 1989. Fault detection in helicopter
transmissions: Trends in health and usage monitoring.

G.P. Succi 1991 Supplemental contract report R9110-001-RD Technology

Integration Incorporated. Synchronous averaging for gearbox vibration monitoring.

-109 - References



References

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24,

C.J. Stander, P.S. Heyns and W. Schoombie 2002 Mechanical Systems and Signal
Processing 16(6), 1005-1024. Using vibration monitoring for local fault detection on
gears operating under fluctuating load conditions.

P.D. McFadden 2000 Mechanical Systems and Signal Processing 14(5), 805-817.
Detection of gear faults by decomposition of matched differences of vibration signals.
G.K. Chaturvedi and D.W. Thomas 1981 Journal of Sound and Vibration 76(3), 391-
405. Adaptive noise cancellation and condition monitoring.

P.G. Bremer 1990 A4 thesis submitted for the examination for the degree master of
science in engineering, University of Cape Town, South Africa. Adaptive noise
cancellation applied to machine condition monitoring.

G. Gelle, M. Colas and G. Delaunay 2000 Mechanical Systems and Signal Processing
14(3), 427-442. Blind source separation applied to rotating machines monitoring by
acoustical and vibrations analysis.

J.D. Smith 1999 Marcel Dekker Inc., New York. Gear noise and vibration.

P.D. McFadden and J.D. Smith 1985 Proceedings of the Institute for Mechanical
Engineers 199(C4), 287-292. A signal processing technique for detecting local
defects in a gear from the signal average of the vibration.

P.D. McFadden April 1986 Journal of vibration, Acoustics, Stress and Reliability in
Design 108, 165-170. Detecting fatigue cracks in gears by amplitude and phase
demodulation of the meshing vibration.

P.D. McFadden 1987 Mechanical Systems and Signal Processing 1(2), 173-183.
Examination of a technique for the early detection of failures in gears by signal
processing of the time domain average of the meshing vibration.

P.D. McFadden 1988 Mechanical Systems and Signal Processing 2(4), 403-409.
Determining the location of a fatigue crack in a gear from the phase of the change in
the meshing vibration.

J. Ma and C.J. Li 1994 Manufacturing Science and Engineering ASME PED 68(1),
299-306. A new approach to gear vibration demodulation and its application to defect

detection.

-110 - References



References

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

D. Brie, M Tomczak, H. Oehlmann and A. Richard 1997 Mechanical Systems and
Signal Processing 11(1), 149-167. Gear crack detection by adaptive amplitude and
phase demodulation.

W. Wang 2001 Mechanical Systems and Signal Processing 15(5), 887-903. Early
detection of gear tooth cracking using the resonance demodulation technique.

K. R. N. Al-Balushi 1995 4 thesis submitted for the examination for the degree
Doctor of Philosophy, Cranfield University, United Kingdom. The use of high
frequency stress waves for monitoring gears.

D. Birch 1994 A4 thesis submitted for the examination for the degree master of science
in engineering, University of Cape Town, South Africa. A review of vibration signal
processing techniques for use in a real time condition monitoring system.

S.N. Engin 1998 4 thesis submitted for the examination for the degree Doctor of
Philosophy, University of Hertfordshire, United Kingdom. Condition monitoring of
rotating machinery using wavelets as a preprocessor to artificial neural networks.
F.A.R. Andrade 1999 4 thesis submitted for the examination for the degree Doctor of
Philosophy, Brunel University, United Kingdom. New techniques for vibration
condition monitoring: Volterra kernel and Kolmogorov-smirnov.

H. Komura, K. Shibata, K Shimomura, Y. Kawabe and T. Toyota 2000 Proceedings
of the 13" International Congress on Condition Monitoring and Diagnostic
Engineering Management Houston Texas 3-8 December, 165-174. New technology
of machine diagnosis without using the trend data.

H.R. Martin, F. Ismall and F. Omar 1992 Mechanical Systems and Signal Processing
6(4), 317-327. Algorithms for statistical moment evaluation for machine health
monitoring.

F. Ismall, H.R. Martin and F. Omar 1995 Proceedings of the ASME Design and
Technical Conferences Boston USA 17-20 September, 1413-1418. Statistical index
for monitoring tooth cracks in a gearbox.

D.C.D. Oguamanam, H.R. Martin and J.P. Huissoon 1995 Applied Acoustics 45, 247-
261. On the application of the beta distribution to gear damage analysis.

-111 - References



References

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

L.M. Howard 1990 Proceedings of the Institute of Engineers Australia Vibration and
Noise Conference Melbourne 18-20 September, 171-178. Epicyclic Transmission
Fault Detection by Vibration Analysis.

F.A. Andrade, I. Esat and M.N.M. Badi 2001 Journal of Sound and Vibration 240(5),
909-919. A new approach to time domain vibration condition monitoring: Gear tooth
fatigue crack detection and identification by the Kolmogorov-smirnov tests.

N. Baydar, Q. Chen, A. Ball, U. Kruger 2001 Mechanical Systems and Signal
Processing 15(2), 303-321. Detection of incipient tooth defect in helical gears using

multivariate statistics.

S. Goldman 1999 Industrial Press, New York. Vibration spectrum analysis second
edition.
T.M. Hunt 1996 Chapman and Hall, London UK. Condition Monitoring of

Mechanical and Hydraulic Plant: A Concise Introduction and Guide.

B.K.N. Rao 1996 Elsevier Science Ltd. Handbook of Condition Monitoring First
Edition.

A. Davis 1998 Chapman and Hall, London UK. Handbook of Condition Monitoring:
Techniques and Methodology.

M. Angelo 1987 Naerum Offset, Denmark. Bruel and Kjaer Technical Review
Vibration Monitoring of Machines.

R.B. Randall 1980 Proceedings of the 2" International Conference on Rotating
Machinery Cambridge UK, 169-174. Advances in the application of cepstrum
analysis to gearbox diagnosis.

D.G. Childers, D.P. Skinner and R.C. Kemerait 1977 Proceedings of the IEEE Vol 65
Number 10, 1428-1443. The cepstrum a guide to processing.

M.Q. Wu and M.J. Crocker 1989 Proceedings of the 1* International Machinery
Monitoring and Diagnostics Conference Las Vegas Nevada USA, 79-85. The
modified cepstrum for machinery monitoring.

L. Debao, Z. Hongcheng, Z. Yuanyun, W. Bo, L. Lingsheng and L. Jing 1989
Proceedings of the 1" International Machinery Monitoring and Diagnostics
Conference Las Vegas Nevada USA, 596-598. Cepstrum analysis and the fault

diagnosis of rotating machine.

-112 - References



References

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

D.J. Van Dyke and W.A. Watts 1990 Proceedings of the 2" International Machinery
Monitoring and Diagnostics Conference Los Angeles USA, 554-559. Automated
rolling contact bearing fault detection using cepstrum analysis.

M. El Badaoui, J. Antoni, F. Guillet, J. Daniére and P. Velex 2001 Mechanical
Systems and Signal Processing 15(5), 873-885. Use of the moving cepstrum integral
to detect and localize tooth spalls in gears.

C.J. Li, J. Ma, Bhwang and GW Nickerson 1991 Proceedings of the 3 International
Machinery Monitoring and Diagnostics Conference Las Vegas Nevada USA, 225-
231. Bispectral analysis of vibration for bearing condition monitoring.

T. Ning, Y.S. Kung and F.S. Wei 1996 Proceedings of the International Conference
on Industrial Electronics, Control and Instrumentation New York USA, 1960-1965.
Detection of distributed gear faults with a new bispectral analysis.

LM. Howard 1997 Journal of Aerospace Engineering 211(G4), 211-219. Higher
order spectral techniques for machine vibration condition monitoring.

B.E. Parker, H.A. Ware, D.P. Wipf, W.R. Tompkins, B.R. Clark and E.C. Larson.
2000 Mechanical Systems and Signal Processing 14(4), 561-570. Fault diagnosis
using statistical change detection in the bispectral domain.

D. Kocur and R Stanko 2000 Mechanical Systems and Signal Processing 14(6), 871-
890. Order bispectrum: a new tool for reciprocated machine condition monitoring.

L. Cohen 1995 Prentice Hall, New Jersey USA. Time frequency analysis.

S. Qian and D. Chen 1996 Prentice Hall, New Jersey USA. Joint time frequency
analysis methods and applications.

B.D. Forrester 1989 Proceedings of the ASSPA 89 Signal Processing, Theories,
Implementations and Applications Conference Adelaide Australia 17-19 April, 78-82.
Use of the Wigner-Ville distribution in helicopter fault detection.

B.D. Forrester 1990 Proceedings of the 44" Meeting of the Mechanical Failures
Prevention Group Virginia Beach USA 3-5 April, 225-234. Analysis of gear vibration
in the time frequency domain.

W.J. Staszewski 1994 Department of Engineering, Manchester University, PhD

thesis. The application of time variant analysis to gearbox fault detection.

-113 - References



References

59.

60.

61.

62.

63.

64.

65.

66.

67.

W.J. Staszeweski and G.R. Tomlinson 1997 Mechanical Systems and Signal
Processing 11(3), 331-350. Local fault detection in gearboxes using a moving
window procedure.

W.J. Staszewski, K.Worden and G.R. Tomlinson 1997 Mechanical Systems and
Signal Processing 11(5), 673-692. Time-frequency analysis in gearbox fault detection
using the Wigner-Ville distribution and pattern recognition.

P.D. McFadden 1981 Proceedings of the fifth international symposium on air
breathing engines Bangalore India 16 —21 February 10-1 — 10-10. Investigation into
the vibration of the starter gearbox of an aircraft turbine engine.

W.J. Wang 1993 Department of Engineering Science, Oxford University, PhD thesis.
Gearbox condition monitoring and early damage diagnosis by two and three
dimensional vibration analysis.

W.J. Wang and P.D. McFadden 1993 Mechanical Systems and Signal Processing
7(3), 193-203. Early detection of gear failure by vibration analysis — 1. Calculation of
the time frequency distribution.

W.J. Wang and P.D. McFadden 1993 Mechanical Systems and Signal Processing
7(3), 205-215. Early detection of gear failure by vibration analysis — 2. Interpretation
of the time frequency distribution using image-processing techniques.

W.J. Wang and P.D. McFadden 1993 Proceedings of the 1 6" Annual Energy-Sources
Technology Conference and Exhibition, Structural Dynamics and Vibration PD-52,
Houston Texas 31 January — 4 February, 91-99. Analysis of gear motion excitation
by kinematic modeling and three —dimensional energy spectrum of structural
responses.

W.J. Wang and P.D. McFadden 1993 Proceedings of the5™ International Congress
on Condition Monitoring and Diagnostic Engineering Management Bristol UK July,
79-84. Gear diagnostics by interpreting images of time-frequency energy distribution
of vibration signals.

G.T. Zheng and P.D. McFadden 1999 Journal of Vibration and Acoustics 121, 328-
333. A time frequency distribution for analysis of signals with transient components

and its application to vibration analysis.

-114 - References



References

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

I. Yesilyurt, P.J. Jacob and A.D. Ball 1996 Proceedings of the 9" International
Congress on Condition Monitoring and Diagnostic Engineering Management
Sheffield UK, 477-486. Fault detection in helical gears using Pseudo Wigner-Ville,
instantaneous power spectrum and Choi-Williams distributions. Part 1: Performance
comparison of time frequency distributions.

N. Baydar, F. Gu and A. Ball 1999 Proceedings of the first International Conference
on the Integration of Dynamics, Monitoring and Control Manchester UK 1-3
September, 109-115. Helical gear fault detection and diagnosis using a varying-time
frequency distribution.

N. Baydar and A. Ball 2001 Mechanical Systems and Signal Processing 15(6), 1091-
1107. A comparison study of acoustic and vibration signals in detection of gear
failures using Wigner-Ville distributions.

N. Baydar 2000 Department of Mechanical Engineering, University of Manchester,
PhD thesis. The vibro-acoustic monitoring of gearboxes.

Y.S. Han and C.W. Lee 1999 Mechanical Systems and Signal Processing 13(5), 723-
737. Directional Wigner distribution for order analysis in rotating / reciprocating
machines.

S.K. Lee and P.R. White 1997 Mechanical Systems and Signal Processing 11(4),
637-650. Higher order time frequency analysis and its application to fault detection in
rotating machinery.

H. Oehlmann, D. Brie, M. Tomczak and A. Richard 1997 Mechanical Systems and
Signal Processing 11(4), 529-545. A method for analyzing gearbox faults using time-
frequency representation.

Q. Meng and L. Qu 1991 Mechanical Systems and Signal Processing 5(3), 155-166.
Rotating machinery fault diagnosis using Wigner distributions.

G.W. Rossano, J.F. Hamilton and Y.S. Shin 1990 Proceedings of the 2™
International Machinery Monitoring and Diagnostics Conference Las Angeles USA,
167-173. The Pseudo Wigner-Ville distribution as a method for machinery condition
monitoring of transient phenomena.

M. Chiollaz and B. Favre 1993 Mechanical Systems and Signal Processing 7(5), 375-

400. Engine noise characterization with Wigner-Ville time frequency analysis.

-115- References



References

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

F.K. Choy, S. Huang, J.J. Zakrajsek, R.F. Handschuh and D.P. Townsend 1996
Journal of Propulsion and Power 12(2), 289-295. Vibration signature analysis of a
faulted transmission system.

Y.H. Kim 1991 Mechanical Systems and Signal Processing 5(6), 461-473. Fault
detection in a ball bearing system using a moving window

F. Auger, P Flandrin, P. Goncalves and O. Lemoine 1996 CNRS France and Rice
University USA. Time-frequency toolbox for use with Matlab.

W.J. Wang and P.D. McFadden 1993 ASME Structural Dynamics and Vibration Vol.
52, 13-20. Application of the wavelet transform to gearbox vibration analysis.

W.J. Wang and P.D. McFadden 1995 Mechanical Systems and Signal Processing
9(5), 497-507. Application of orthogonal wavelets to early gear damage detection.
W.J. Wang and P.D. McFadden 1996 Journal of Sound and Vibration 192(5), 927-
939. Application of wavelets to gearbox vibration signals for fault detection.

S.T. Lin and P.D. McFadden 1997 Mechanical Systems and Signal Processing 11(4),
603-609. Gear vibration analysis by B-spline wavelet-based linear wavelet transform.
W.J. Wang 2001 Mechanical Systems and Signal Processing 15(4), 685-696.
Wavelets for detecting mechanical faults with high sensitivity.

W.J. Staszewski and G.R. Tomlinson 1994 Mechanical Systems and Signal
Processing. 8(3), 289-307. Application of the wavelet transform to fault detection in a
spur gear.

W.J. Staszewski 1998 Journal of Sound and Vibration 211(5), 735-760. Wavelet
based compression and feature selection for vibration analysis.

L. Yesilyurt and A.D. Ball 1997 Maintenance and Asset Management 12(4), 28-32.
An advanced approach to the detection of bending fatigue in spur gears.

D. Boulahbal, M.F. Golnaraghi and F. Ismail 1999 Mechanical Systems and Signal
Processing 13(3), 423-436. Amplitude and phase wavelet maps for the detection of
cracks in geared systems.

W.Q. Wang, F. Ismail and M.F. Golnaraghi 2001 Mechanical Systems and Signal
Processing 15(5), 905-922. Assessment of gear damage monitoring techniques using

vibration measurements.

-116 - References



References

91

92.

93.

94.

95.

96.

97.

98.

99.

10

. G. Dalpiaz, A. Rivola and R. Rubini 2000 Mechanical Systems and Signal Processing
14(3), 387-412. Effectiveness and sensitivity of vibration processing techniques for

local fault detection in gears.

Z.K. Peng and F.L. Chu 2004 Mechanical Systems and Signal Processing 18(2), 199-

221. Application of the wavelet transform in machine monitoring and fault

diagnostics: a review bibliography.

M Miisiti, Y. Misiti, G. Oppenheim and J.M. Poggi 1997 User guide MathWorks Inc.,
1.3-1.13. Wavelet toolbox for use with MATLAB.

S.M. Wu, T.H. Tobin and M.C. Chow 1980 Journal of Mechanical Design 102, 217-

221. Signature analysis for mechanical systems via dynamic data systems monitoring

technique.

Q. Zhuge, Y. Lu and S Yang 1990 Mechanical Systems and Signal Processing 4(5),

355-365. Non-stationary modeling of vibration signals for monitoring the condition

of machinery.

D.C. Baillie and J. Mathew 1996 Mechanical Systems and Signal Processing 10(1),
1-17. A comparison of autoregressive modeling techniques for fault diagnosis of

rolling element bearings.

C.J. Li, J Limmer and J. Yoo 1996 Manufacturing Science and Engineering ASME

MED 4, 595-603. Gear pitting and chipping assessment via model based algorithms-

A case study.

A.C. McCormick, A.K. Nandi and L.B. Jack 1998 Journal of Mechanical

Engineering Science 212(C6), 417- 428. Application of time varying autoregressive

models to the detection of bearing faults.

W. Wang and A.K. Wong 2000 Proceedings of the 13" International Congress on

Condition Monitoring and Diagnostic Engineering Management Houston Texas 3-8

December, 797-807. Linear prediction and gear fault diagnosis.

0. P.T. Monsen, E.S. Manolakos and M. Dzwonczyk 1993 Proceedings of the 27"
Asilomar Conference on Signals, Systems and Computers Pacific Grove USA, 381-
385. Helicopter gearbox fault detection and diagnosis using analogue neural

networks.

-117 - References



References

101. K. Worden, W.J. Staszewski and A.G. Star 1994 Proceedings of the 8"
International Congress on Condition Monitoring and Diagnostic Engineering
Management, 418-426. Gear fault detection and severity classification using neural
networks.

102.  X. Xu, H. Vanderveldt and R. Allen 1997 [EEE International Conference on
Neural Networks San Diego USA, Volume 4 Number 4, 2434-2438. An ANS
helicopter transmission diagnostic system.

103.  A.C. McCormick and A.K. Nandi 1997 Proceedings of the Institute for
Mechanical Engineering, Volume 12 Part C, 439-450. Classification of the rotating
machine condition using artificial neural networks.

104. V.B Jammu, K. Danai and D.G. Lewicki 1995 Proceedings of the ASME
International Mechanical Engineering Congress and Exposition Part 2, San
Francisco US4, 12 — 17 November, 747-757. Fuzzy connectionist network for fault
diagnosis of helicopter gearboxes.

105.  V.B Jammu, K. Danai and D.G. Lewicki 1997 Proceedings of the 53" annual
forum of AHS Part 2 Virginia Beach USA, 29 April — 1 May, 1297-1307.
Unsupervised connectionist network for fault diagnosis of helicopter gearboxes.

106.  B.A. Paya, 1I. Esat and M.N.M. Badi 1997 Mechanical Systems and Signal
Processing 11(5), 751-765. Arttificial neural network based fault diagnostics of
rotating machinery using wavelet transform as a pre processor.

107.  M.A. Essawy, S. Diwakar, S. Zein-Sabbato and M. Bodruzzaman 1997 Intelligent
Engineering Systems through Artificial Neural Networks, Volume 7, 661-666.
Helicopter transmission fault diagnosis using neuro-fuzzy techniques.

108.  M.A. Essawy, S. Diwakar and S. Zein-Sabbato 1998 Proceedings of the Artificial
Neural Networks in Engineering Conference, St. Louis Missouri USA, 1-4 November,
767-772. Wavelet versus Fourier pre processing for neuro-fuzzy systems for fault
diagnosis in helicopter gearboxes.

109. M.R. Dellomo 1999 Journal of Vibration and Acoustics Volume 121, 265-272.

Helicopter gearbox fault detection: A neural network based approach.

-118 - References



References

110. H. Demuth and M. Beale 1998 Math Works Inc. Neural network toolbox for use
with Matlab.

111. M. F. Golnaraghi, D. Lin and P. Fromme 1995 Proceedings of the ASME Design
and Technical Conferences, Boston USA, 17-20 September, 121-127. Gear damage
detection using chaotic dynamics techniques: A preliminary study.

112.  D.C. Lin, M.F. Golnaraghi and F Ismail 1997 Journal of Sound and Vibration
208(4), 664-670. The dimension of the gearbox signal.

113. J. D. Smith and J. S. Echeverria-villagomez 1990 Proceeding of the First
International Conference on Gear Noise and Vibration, 43-49. Comparing encoder
and accelerometer measurement of transmission error or torsional vibration.

114. J. Yang, L. Pu, Z. Wang, Y Zhou and X. Yan 2001 Mechanical Systems and
Signal Processing 15, 549-564. Fault detection in a diesel engine by anélysing the
instantaneous angular speed.

115.  A.B. Sasi, B. Payne, F. Gu and A. Ball 2001 Proceedings of the 1 4" International
Congress on Condition Monitoring and Diagnostic Engineering Management
Manchester UK 4-6 September, 311-318. The exploitation of instantaneous angular
speed for condition monitoring of electric motors.

116. J.D. Smith 1999 Gear Noise and Vibration, 143-150. New York: Marcel Dekker
Inc.

117.  R.B. Randall 1982 Journal of Mechanical Design 104, 259-267. A new method of
modelling gear faults.

118.  B. Bauer, B. Geropp and A Seeliger 1997 Proceedings of IFAC Symposium on
Fault Detection, Supervision and Safety for Technical Processes, Kingston upon Hull
UK, 26- 28 August. Condition monitoring and predictive maintenance in mining
industry using vibration analysis for diagnosis of gearboxes.

119.  N. Baydar and A. Ball 2000 Mechanical Systems and Signal Processing 14(6),
907-921. Detection of gear deterioration under varying load conditions by using the
instantaneous power spectrum.

120.  H. N. Ozguven and D. R. Houser 1988 Journal of Sound and Vibration 121(3),

383-411. Mathematical models used in gear dynamics —a review.

119 - References



References

121. 1. Howard, S. Jia and J. Wang 2001 Mechanical Systems and Signal Processing
15(5), 831-853. The dynamic modelling of a spur gear in mesh including friction and
a crack.

122. W. Bartelmus 2001 Mechanical Systems and Signal Processing 15(5), 855-871.
Mathematical modelling and computer simulation as an aid to gearbox diagnostics.
123.  J.E. Shigley 1986 Mechanical Engineering Design, pp. 478-479 New York:

McGraw-Hill Book Company.

124.  B. Jones 1999 Statistical toolbox for use with Matlab, The Math Works Inc.

125.  A. Cichocki and R. Unbehauen 1994 Neural Networks for Optimisation and
Signal Processing, 38. Stuttgart: John Wiley and Sons Ltd and B.G. Teubner.

126.  R.E. Powel 1982 A4 thesis submitted for the examination for the degree Doctor of
Science, Massachusetts Institute of Technology. Multi-channel inverse filtering of
machinery vibration signals.

127. J.T. Kim 1987 A thesis submitted for the examination for the degree Doctor of
Philosophy, Massachusetts Institute of Technology. Source and path recovery from
vibration response recovery.

128.  S.S. Rao 1995 Addison —Wesley Publishing Company, USA. Mechanical
Vibrations Third Edition.

-120 - References



Appendix

Appendix

Experimental test rigs and measurement
instrumentation

A.1 Introduction

Two experimental test rigs where developed to determine the influence of fluctuating
load conditions on structural response measurements. Spur gears and helical gears were
considered in the test rigs. Different levels of gear damage were induced onto the gears of
the rigs in order to generate measurement data under different loading conditions, to

validate the signal processing procedures presented in chapters 2, 3 and 4.

A.2 Load control

The load on the gearbox test rigs were applied with a 5.5 kVA Mecc alte spa three-phase
alternator. An analogue controller was designed to manipulate the electromagnetic field
strength in the alternator in order to change the load, which was applied to the system.

Figure A.1 shows a schematic diagram of the loading system.

The Alternating Current generated by the alternator is rectified and dissipated over a
large resistive load, which is kept constant during tests. A single-phase voltage feedback
from the alternator is measured in order to give an indication of the current, which is
drawn from the alternator since the resistance was kept constant. The current drawn from
the alternator is related to the torque applied by the alternator onto the system. Hence, the

voltage feedback serves as an indication of the torque applied by the alternator.
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A reference or command torque signal is used as an input to the controller, which
manipulates the electromagnetic field strength in the alternator by switching the current
flow to the DC field coils of the alternator with a transistor in order to follow the
command signal. An external Direct Current (DC) power supply is utilised to provide the
power for the DC field coils of the alternator. The controller utilises Proportional Integral
(PI) compensation. Figure A.2 shows the load controller and DC rectification circuits.

The resistive bank and external DC power supply is shown in figure A.3.

Note that the amplitude of load fluctuation decreases as the loading frequency or rate of
load change increases due to the inertia and inductance in the system. The excitation
frequencies during experiments were therefore kept below 3 Hz in order to obtain

maximum load fluctuation amplitudes.

External DC power
supply 50 V

I

PI field voltage . .
— p g
controller Load input signal

I

Single-phase Synchronous machine
voltage feedback (Alternator) < Input shaft torque

;

AC to DC rectifier

;

Resistive load 1.5 kW

Figure A.1 Schematic diagram of the gearbox test rig loading system.
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AC rectifiers [ | Feedback voltage
and heat sink reduction

transformer

Current switching
. transistor and heat

Resistive sink

load circuit

breaker

PI load controller

" p—— ) N2

Resistive load elements

External DC
power supply

Figure A.3 Resistive load
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A.3 Measurement system and instrumentation

The measurements were taken with a Siglab model 20-42 signal analyser and a Pentium
200 MMX Personal Computer (PC) with 64MB of Random Access Memory (RAM)
shown in figure A.4. Four Analogue to Digital (A/D) channels where used to measure
the key phasor, gearbox casing vibration, shaft speed and electric motor current signals.
The virtual function generator was used to generate the load command signals for the

load controlling system on the test rigs.

Integrated Circuit Piezo (ICP) accelerometers with a signal conditioner unit was utilised
to measure the gearbox casing vibration. An accelerometer with higher sensitivity was
utilised for measurements on the helical gearbox test rig due to the low amplitude

response of the test gearbox casing vibration,

A magnetic speed sensor was user to measure the speed on the spur gear test rig. The
shaft encoder was introduced in the helical gear test rig in order to improve the accuracy
of the speed measurement from 50 pulses per revolution to 1024 pulses per revolution,

which enabled the use of the IAS as a diagnostic measurement.

A schematic diagram of the measurement and load control system is shown in figure A.5.
Table A.1 presents a table of the instrumentation with the specifications, which were used

during experimentation on the two test rigs.
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PC Intel Pentium
200 MMX 64 MB
RAM

I

DSP Siglab model
20-42 signal
analyser

fA
L A/D Channel 1

A/D Channel 2

A/D Channel 3

Figure A.4 Measurement system

Accelerometer ICP unit

DSP Siglab
analyser

D/A Channel 1 load control with VFG

ICP signal
conditioner model
482A22

ICP
accelerometer

v

Analogue low pass filter on the helical gear
test rig. Cut frequency 270 Hz

Key phasor signal.
One pulse per revolution.

Magnetic speed sensor for the spur
gear test rig and a shaft encoder for
the helical gear test rig.

A/D Channel 4

<

Magnetic flux current
transducer LEM model

LA 55-P

Figure A.5 Schematic diagram of the measurement and control system
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Table A.1 Instrumentation

Instrument Specification Test rig

Signal analyser DSP Siglab model 20-42

Personal Computer Intel Pentium 200 MMX Helical & spur gear test rig

ICP Signal conditioner | PCB model 482A22

Current transducer LEM model LA 55-P

Accelerometer 1 Entek 500 mV/g Spur gear test rig
model E326A02

Accelerometer 2 PCB 10 V/g Helical gear test rig
model U393B12

Magnetic speed sensor | Deuta-Werke model BM1/1A Spur gear test rig
M14x1x50mm

Shaft encoder Hengstler model R176T01 Helical gear test rig
1024ED 4A20KF

Low pass filter 8" Order Butterworth Helical gear test rig

A.4 Low pass filter

The gear wheel of the test gearbox in the helical gear test rig is the slowest rotating
component in the test rig with the lowest inertia which resulted in a relatively low gear
mesh frequency amplitude when compared to the overall vibration levels. The anti-
aliasing filter of the Siglab analyser has a constant cut off frequency of 20 kHz. An eighth
order analogue Butterworth filter with a cut off frequency at 270 Hz was therefore
designed and implemented as an analogue low pass filter. The high amplitude vibration in
the frequency range above 270 Hz was therefore filtered out and the digitisation range of

the gear mesh signal was improved.

The filter was designed with Microchip Filter Lab version 1.0.40. A frequency response
function of the filter is shown in figure A.6. The schematic diagram of the filter with the
component specifications is shown in figure A.7 and the physical hardware is shown in
figure A.8. Two 9 Volt batteries was used to power the operational amplifiers of the

active filter.
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Figure A.6 Eighth-order Butterworth filter frequency response function

0.047 uF 0.068 uF

c2
0.033uF

L

.

Figure A.8 Hardware implementation of the eighth-order Butterworth filter
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The Butterworth filter phase distorts the measured data according to the frequency
response function diagram shown in figure A.6. A reverse filtration scheme was
developed to rectify the unwanted effect of phase distortion once the signals had been
digitised. A random input filter signal was generated with the virtual function generator
of the DSP Siglab in order to obtain input-output data from the analogue Butterworth
filter, for the estimation of a system identification model. Measurements where taken
with the DSP Siglab. An Auto Regressive model with eXternal input (ARX) was fitted on
the data. A schematic diagram of the process is shown in figure A.9. The order of the
measured data is reversed and re-filtered through the ARX model to remove the phase
distortion. Once the data is re-filtered, the order of the data is reversed in order to restore
the original sequence of the data. Only the phase of the data is effected by the reverse

filtration procedure.

Random input signal 8™ Order analogue Filter
from the DSP Siglab , Butterworth filter ’ response
Input data for the Output data for
ARX model the ARX model

‘ I Digital ARX

model of the filter

Figure A.9 Phase correction digital filter diagram

A.S Spur gear test rig

The experimental set-up consisted of a single-stage gearbox, driven by a 5 hp Dodge
silicon controlled rectifier motor. Load was applied with the system described in section
A.2. The spur gear specifications are tabulated in Table A.2 and the test rig is illustrated

in figure A.10.
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Table A.2 Spur gear specifications.

Manufacturing standard DIN3961, Quality 3
Number of teeth on each gear | 69
Rated load 20 Nm

Accelerometer

Figure A.10 Experimental set-up of the spur gear test rig

Tyre couplings were fitted between the electrical machines and the gearbox so that the
backlash in the system would be restricted to the gears. The rotational speed of the
system was measured with a Deuta-Werke magnetic speed sensor, which was set on a
gear with 50 teeth as shown in figure A.11. The speed measurement gear was mounted on
the output shaft of the electric motor. The magnetic speed sensor was utilised since it
present a reliable and robust approach to speed measurement in practice. The average

shaft speed during experimentation was 13 Hz.
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Figure A.11 Gear teeth counter in the spur gear experimental set-up

A synchronising pulse was measured by means of a proximity switch on the key of the
shaft. Acceleration measurements were taken in the vertical direction with a 500 mV/g
ENTEK ICP industrial accelerometer and the DSP Siglab analyser. Vibration
measurements were taken for five different load conditions and three different levels of

damage severity in order to evaluate the signal-processing procedures.

Table A.3 lists the specifications for the loading conditions. A sinusoidal load was
selected to evaluate a slowly changing load condition, in contrast to the square load
condition that creates a rapid change in load. The chirp load condition refers to a
sinusoidal load condition where the frequency increases as time progresses. The chirp

load condition represents a wider frequency band of the applied load.

The initial vibration measurements were taken without any induced damage. Then face
wear was induced on one of the gear teeth by artificially removing material from the gear
face. In addition, a crack was induced on the opposite side of the gear. Table A.4 presents

the damage details and the induced damage is shown in figures A.12 and A.13.
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The fault severity conditions are expressed as the fraction of the root crack length over

the 4 mm tooth thickness.

Table A.3 Load case specifications

Load Case Load Function| Frequency Minimum Maximum
Load Load
1 Constant 0 Hz 14.4 Nm 14.4 Nm
2 Constant 0 Hz 15.9 Nm 15.9 Nm
3 Sine 0.5Hz 6.6 Nm 18.6 Nm
4 Square 0.5 Hz 6.8 Nm 20.1 Nm
5 Chirp 0.1-2 Hz 10.3 Nm 17.3 Nm
Table A.4 Induced damage specifications
Fault severity 25% | Fault severity 50%
Material removed from face 0.15 mm Nominally 0.3 mm Nominally
Crack length 1 mm 2 mm

Figure A.12 Sawed crack
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R\ 2
-t

Flank wear obtained
through grinding

Figure A.13 Flank wear obtained through grinding

A.6 Helical gear test rig

The experimental set-up consisted of three Flender Himmel Motox helical gearboxes,
driven by a 5.5 kW three phase four-pole Weg squirrel cage electrical motor. Load was
applied with the system described in section A.2. Figures A.14 and A.15 illustrate the
test rig. The gearbox test rig was designed to conduct accelerated gear life tests on the
Flender E20A gearbox under varying load conditions. Two additional Flender E60A
gearboxes were incorporated into the design in order to increase the torque that is applied
to the small Flender E20A gearbox. The rated load of the gears in the Flender E20A

gearbox was 20 Nm.
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! Induction motor

Gea

E20A Test gearbox

Figure A.15 Experimental set-up of the helical gear test rig

A Hengstler R176T01 1024ED 4A20KF shaft encoder, which produces 1024 pulses per
revolution in the form of an analogue push-pull signal was used to measure the IAS for
order tracking and condition monitoring purposes. The reference point for the

synchronous averaging is measured as a single pulse from the shaft encoder.
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Acceleration was measured in the vertical direction on the gear casing with a 10 V/g PCB

ICP industrial accelerometer. The instrumentation is shown in figure A.16.

Accelerometer

Shaft encoder

’

Figure A.16 Accelerometer and shaft encoder mounting positions

Reinforced concrete was cast into the base of the test rig in order to increase the damping
levels in the supporting structure. This feature attenuated the response amplitude due to
the transmission of reaction forces from the various rotating components. Concrete was
cast into the supporting upright pillars in order to increase their stiffness as well as the
damping levels. The mounting plate of the test rig was bolted on to the concrete in order

to improve the damping effect. A base view of the test rig is shown in figure A.17.
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Figure A.17 Concrete reinforcing of the test bench

A variable speed frequency drive shown in figure A.18 was incorporated to control the
speed of the induction motor during start up since the initial start up torque produced by
the motor will damage the gearwheel in the test gearbox. The rotational speed of the

motor is increased from 0 to 25 Hz over a period of 30 s during start up.

Figure A.18 Variable frequency speed control drive
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The specifications for the loading conditions are tabulated in Table A.S. Flank wear was
progressively induced on to one of the gear teeth on the gear wheel of the gearbox during
experimentation. Details on the amount of wear are presented in Table A.6. The

gearwheel of the test gearbox is shown in figure A.19.

Table A.5 Load case specifications

Load Case | Load Function | Frequency | Minimum Load | Maximum Load
1 Constant 0Hz 10.7 Nm 10.7 Nm
2 Sine 1 Hz 7.4 Nm 14.7 Nm
3 Square 0.3 Hz 7.4 Nm 14.7 Nm
4 Chirp 0.1-2 Hz 7.4 Nm 14.7 Nm
5 Random 0.1-2 Hz 7.4 Nm 14.7 Nm

Table A.6 Induced damage specifications

Fault condition Fault severity
1 100 u m Tooth face removal
2 200 u m Tooth face removal
3 300 u m Tooth face removal

Figure A.19 Gearwheel of the E20A gearbox
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