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HAMSTR is a newly developed flow solver that utilizes Hamiltonian paths and strand grids for 

three-dimensional flows on overset and hybrid meshes. In order to use HAMSTR, it is required 

that one has a decent all-quad surface mesh; this is the motivation for the development of 

HAMSTRAN. It is an indirect method to create an unstructured all-quadrilateral 3D surface mesh 

and strand templates for each vertex. It transforms triangular as well as quad-dominant surface 

meshes into all-quad meshes, without any smoothing steps. The proposed method is fast and can 

work on highly complicated surfaces with lots of sharp features while producing a minimum 

number of irregular grids. HAMSTRAN is mostly based on the Q-Tran algorithm, but it has many 

advantages over Q-Tran. For example, HAMSTRAN is not only able to utilize an all-triangular 



mesh, but can also use quad-dominant and hybrid meshes as input and generate a decent all-quad 

mesh. After creating the surface mesh, HAMSTRAN proceeds to create the strand templates for 

each vertex. The strand templates are vectors extruding from the surface in the wall-normal 

direction without crossing each other. The direction of the vectors can be adjusted according to the 

3D volume mesh required for the future flow solving process. Several examples will be presented 

to demonstrate the efficiency of this method, such as for airfoils, wings, rotor blades and fuselage. 
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Chapter 1: Motivation 

1.1. Introduction to computational fluid dynamics 

With the advancement of aviation technology, new and better components are developed every 

day, ranging from airfoils, fuselage and rotor blades. Traditionally, whenever a new component is 

designed, its performance must be tested by experiments. However, some experiments can be very 

expensive or dangerous to carry out in the real world. As a result, combined with the development 

in computational technology, 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑙𝑢𝑖𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 (𝐶𝐹𝐷)[1]  is becoming an 

increasingly important design tool in engineering. This tool not only decreases the cost of 

development, but also allows the designer to simulate conditions that would be dangerous in the 

physical world. 

 

Computational fluid dynamics is concerned with the motion of the fluid as well as the interaction 

of the fluid with solid bodies. This method is usually based on the Navier-Stokes 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛[2]. 

These equations consist of the conservation of mass, momentum and energy and they are able to 

describe how the velocity, pressure, temperature, and density of a moving fluid are related. 

 

The conservation of mass: 

 

                                                        
∂ρ

∂t
+

𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0                                                            (1) 
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The conservation of momentum: 

 

                                                
∂(ρ𝑢𝑖)

∂t
+

𝜕(𝑢𝑗𝜌𝑢𝑖)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
                                                  (2) 

 

The conservation of energy: 

 

                                 
∂(ρE)

∂t
+

𝜕(𝑢𝑗𝜌𝐸)

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑖
(𝑘

𝜕𝑇

𝜕𝑥𝑖
) +

𝜕(𝑢𝑗𝑝)

𝜕𝑥𝑗
−

𝜕(𝜏𝑖𝑗𝑢𝑗)

𝜕𝑥𝑗
= 0                           (3) 

 

The greatest challenge of computational fluid dynamics is the fidelity. Since the CFD method is 

created to simulate flows in the real world, its correspondence with experimental data is very 

important. So a crucial part of developing a CFD method is to verify its accuracy with canonical 

experimental data. Only when the simulation results show good agreement with the experimental 

data can this simulation be considered successful. Another challenge is to reduce the time required 

for a simulation. Since one of the purposes of CFD is to decrease the cost of development, the time 

required for the simulation should also be as short as possible. The purpose of this research is to 

find ways to increase the accuracy of computational fluid dynamics and reduce the time required 

to run a simulation.   

 

The first step of CFD is the discretization of physical space, also known as the grid generation. In 

order to improve the fidelity of a computational simulation, grid generation schemes are becoming 

more and more complicated. The development started first with relatively simple structured  

𝑚𝑒𝑠ℎ[3] systems constructed either by algebraic methods or by using partial differential equations. 

But with increasing geometrical complexity of the configurations, the grids had to be broken into 
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a number of topologically simpler blocks (multiblock approach). This approach allows a structured 

mesh system to be built around a complicated geometry. However, the generation of a structured 

mesh around a complicated geometry may take weeks to complete. Therefore, this led to the 

development of unstructured mesh 𝑠𝑦𝑠𝑡𝑒𝑚[3], especially for complex geometries. 

 

An unstructured grid system[3]  is mainly comprised of triangular grids for surface mesh and 

tetrahedral grids for volume mesh. Since the triangular girds and tetrahedral grids can be generated 

automatically regardless of the complexity of the domain, this scheme is able to discretize a 

complex domain with minimum effort. However, traditional unstructured flow solvers have 

limited convergence and spatial accuracy of the solution primarily because of the difficulty in 

identifying “line-structures” in a purely unstructured grid system. As a result, unstructured solvers 

generally have a much higher computational cost and lower accuracy comparing to structured 

solver. Despite this shortcoming, they are still widely used for its fast and simple mesh generation 

schemes.  

 

As can be seen from the discussion above, the unstructured mesh generation scheme is faster than 

the structured mesh generation scheme while the structured flow solver is faster than unstructured 

flow solver. So in order to decrease the computational cost to its minimum, the current work  

decided to utilize a scheme that could employ unstructured mesh in a structure-based flow solver, 

known as the HAMSTR[4] flow solver.  
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1.2. The HAMSTR flow solver 

One way to exploit structure in an unstructured mesh is to utilize Hamiltonian 𝑝𝑎𝑡ℎ𝑠[4]. This is 

achieved by extracting ‘linelets’ in an unstructured grid system. Then stencil-based discretization 

schemes can be carried out along these ‘linelets’, similar to that of a structured flow solver. 

However, on a surface mesh, it is very hard to extract these lines in triangular grids while most 

unstructured mesh generators create triangular grids. As a result, there needs to be a way to 

transform these triangular grids into quadrilateral grids. Traditionally, this is done by Catmull-

Clark 𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛[5]. During this process, the midpoint of each edge in a polygon is connected 

to the centroid of said polygon, diving each triangle into three quadrilaterals and each quadrilateral 

into 4 smaller quadrilaterals, as is shown in Fig 1. Then ‘linelets’ can be created by linking the 

midpoint of opposite edges in a grid and the centroids of adjacent grids, creating structure in an 

unstructured surface mesh. 

 

 
                                                   

                                                     Fig1. Simple sketch of the HAMILTONAIN 𝑙𝑜𝑜𝑝𝑠[4] 
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In order to extend this formulation to 3D, strand grids have been employed. The role of strand 

grids is to provide structure in the wall normal direction, thus allowing the line-implicit methods 

to be carried out along these strands. In order to create strand 𝑔𝑖𝑟𝑑𝑠[4] from a surface mesh, one 

must first create strand templates. A strand template is a wall-normal direction vector originated 

from a vertex on the surface and a one-dimensional grid point distribution along this vector. As a 

result, layers of hexahedra are generated by extruding the surface grids into the 3D volume, as can 

be seen in Figure 2. The strand grids not only creates structure in the wall normal direction, but 

also preserves the connectivity of Hamiltonian paths in the surface direction. 

 

 
Fig 2. A sketch of the strand 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 [4] 

 

 

However, the Catmull-Clark subdivision algorithm has several problems. The biggest one is that 

this method creates a large number of irregular vertices, vertices with a valence not equal to 4. 

This is because the centroid of each triangle is connected to 3 midpoints on the edge, giving it a 

valence of 3. This nature of the Catmull-Clark subdivision will led to the creation of a huge number 

of irregular vertices. Apart from this, the method also dramatically increases the number of cells, 

leading to a higher computational cost. Although we can make the original background mesh 

coarser through a loss of resolution, this might change the feature of the mesh system and lead to 
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a loss of accuracy in the future flow solving process. So unless the original background mesh is 

comprised of very regular grids and the increased computational time is within an acceptable range, 

usually a more complicated method is preferred. Many methods have been developed for this 

purpose, this paper would like to introduce four of them in the next chapter.   

 

1.3. Previous work  

In order to use the HAMSTR flow solver, an all-quad surface mesh is required. The mesh should 

be able to represent the surface features of a geometry while having a minimum number of irregular 

vertices and most grid cells should resemble a rectangle. The schemes to generate an all-quad mesh 

system can be grouped into 2 categories, the indirect approach and the direct approach. The direct 

approach generates quad grids directly while an indirect approach transforms a background mesh 

into an all-quad mesh. For an indirect approach, the number of grid cells after the transformation 

should stay approximately the same as the input tessellation. The transformation process should 

be fast and automatic regardless of the complexity of the original input tessellation.  

 

1.3.1. Hypermesh commercial mesh generator 

𝐻𝑦𝑝𝑒𝑟𝑚𝑒𝑠ℎ[6] is a mesh generator that can generate unstructured all-quad mesh for complicated 

geometries, something a lot of commercial software cannot do. The biggest advantage of this 

software is its ability to generate quad grids directly with no background mesh system needed.  

However, there are several disadvantages regarding this method. First, the size of the grid cells 

generated by this software has to be approximately the same, making it unsuitable for a lot 

geometries. For example, in a wing mesh, the grid size at the leading edge should be very small in 

order to capture the high pressure gradient caused by its sharp curvature. However, larger grid 
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cells are required on the main body where the pressure gradient is low due to the smooth geometry, 

or else the number of grids will be overly high, increasing the computational cost. Second, in order 

to generate a mesh of good quality, one has to divide the surface into different domains. This 

subdivision process can be very time consuming for a complicated geometry. 

 

 

Fig 3. Example of mesh generated by the Hypermesh 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 [6] 

 

1.3.2. The Blossom method 

An indirect all-quad mesh generation method is the Blossom 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚[7], which creates quad 

grids by fusing two adjacent triangular cells into one quad cell. However, this method requires a 

smoothing process and a subdivision process, without which there will be many leftover triangles 

and poor quality quad grids. The smoothing process will change the coordinates of the original 

vertices on the background mesh. In a 2D surface, this is not a big problem, however, in a 

complicated 3D surface, this might lead to the loss of surface feature. The sequence of the merging 

process will also heavily affect the quality of the quad mesh, so a lot of work is required to 

determine the optimum sequence. The more complicated the mesh is, the harder it is to calculate 
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the optimum sequence. Since one may need an algorithm that is fast and automatic regardless of 

the complexity of the original input mesh, this algorithm is far from satisfactory.  

 

                                                               

       The original triangular mesh                       The merging process                            The subdivision process         

                                                 Fig 4. An illustrative picture of the blossom 𝑚𝑒𝑡ℎ𝑜𝑑[7] 

 

 

1.3.3. The Q-Morph method 

𝑄 − 𝑀𝑜𝑟𝑝ℎ[8]  utilizes an advancing front algorithm to determine the sequence of triangle 

transformations. The process starts at the boundary and after each row of triangles are transformed 

into quadrilaterals, a smoothing process is performed before advancing the boundary. Although 

this method can make quad grids of decent quality, it has 2 major disadvantages. First of all, it 

requires a smoothing process that can change the coordinates of the vertices on the background 

mesh, which might destroy the surface feature. Second, the advancing front algorithm is very hard 

to implement in complicated meshes without clear boundaries. Third, the amount of work required 
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increases dramatically with the number of grids and the complexity of the geometry, making it 

unsuitable for complicated geometries, similar to the Blossom algorithm.   

 

 

                                        Fig 5. A plot to illustrate the advancing front process in Q-𝑀𝑜𝑟𝑝ℎ[8] 

 

 

1.3.4. The Q-Tran method 

𝑄 − 𝑇𝑟𝑎𝑛[9] is an indirect method to create an all-quad mesh system from a triangular input mesh. 

This method preserves the coordinates of original vertices on the background mesh, thus 

preserving the surface feature of the geometry. It can be carried out automatically regardless of the 

complexity of the domain. These two features make Q-Tran superior to Q-Morph and Blossom. 

Since the feature of the original mesh is well kept during the transformation process, as long as the 

input triangular mesh is able to cluster where it needs to be, so will the output mesh. Since most 

unstructured triangular mesh generators have the ability to cluster in places where the curvature is 

high, Q-Tran is also superior to Hypermesh in this regard. Additionally, the number of elements 

stays approximately the same after implementing the algorithm.  However, it also has some 
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limitations, it only deals with all triangular background mesh but doesn’t deal with unstructured 

quad-dominant mesh, or hybrid mesh comprised of unstructured triangular grids and structured 

quadrilateral grids. Some steps in the Q-Tran algorithm should also be modified to make the 

method easier for users to carry out.  

 

 

 

Fig 6. Example of the Q-Tran algorithm[9] 
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1.4. The purpose of this research 

Although the Q-Tran algorithm has many limitations, it is still more suitable for generating an all-

quad surface mesh comparing to all the other methods explained in this work. So the purpose of 

the current research is to create a new and better algorithm based on Q-Tran, but has more explicit 

steps to follow and can be implemented on a wider range of background meshes, called the 

HAMSTRAN. This method not only has all the advantages of the Q-Tran algorithm, but also has 

some unique advantages which will be explained in the next chapter. After implementing this mesh 

generation scheme in the HAMSTR flow solver, it should be tested to validate the improvement 

in the accuracy of results and savings in computational time. Thus this algorithm is implemented 

on several geometries, such as the NACA0012 𝑎𝑖𝑟𝑓𝑜𝑖𝑙[10] and the triangular wedge in 2D, the 

OneraM6 𝑤𝑖𝑛𝑔[10], the Caradonna Tung lifting 𝑟𝑜𝑡𝑜𝑟[11] and the robin 𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒[12] in 3D. The 

results are compared with that of the traditional subdivided mesh as well as the experimental results 

when available. 
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Chapter 2: Methodology 

2.1. An introduction to HAMSTRAN 

The HAMSTRAN algorithm has many unique advantages. For example, the output tessellation 

has a minimum number of irregular vertices. In this way, the HAMSTR flow solver will be able 

to extract long, smooth Hamiltonian paths from this mesh instead of short, curved ones from the 

subdivided mesh, leading to improved accuracy of computational results. The number of grids in 

the output mesh is approximately the same as that of the original mesh, which could save the 

computational cost considerably comparing to the subdivided mesh. Unlike Blossom and Q-Morph, 

this method also preserves all the coordinates on the background mesh, thus preserving the surface 

feature of the geometry.  

 

HAMSTRAN can be carried out in 5 steps, the initial clean-up process, the edge classification, the 

quad generation, the final merging process and the generation of strand templates for each vertex. 

Except for the first and last step, all the major steps share a lot of similarities with Q-Tran although 

there are many differences as well. Comparing to Q-Tran, this algorithm is able to deal with a 

wider variety of background mesh. Everything will be explained in detail in the current chapter.  

 

HAMSTRAN needs to be carried out according to the input tessellation. The input tessellation can 

be classified as all-triangular mesh, unstructured quad-dominant mesh and hybrid mesh comprised 

of unstructured triangles and structured quadrilaterals. First, this paper will introduce its 

implementation on an all-triangular background mesh.  
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2.1.1. Implementation on all triangular background mesh 

A. The initial clean-up process: Destroy the highly irregular gird cells 

Sometimes the original mesh may have some highly irregular grid cells that would affect the 

quality of the mesh, so a clean-up process is required to improve the quality of the background 

mesh, something that is absent from Q-Tran. A grid cell is classified into a highly irregular grid 

when its aspect ratio exceeds 4.0, the aspect ratio can be calculated by Equation 4.  

 

                                                    S = (a + b + c)/2                                    (4) 

                                                Aspect Ratio =
abc

8(S−a)(S−b)(S−c)
 

 

The details of this process is as follows.  

      1. Build the normal vectors of all the original triangles, make sure that all the  

      normal vectors point outwards away from the geometry. 

      2. A type 1 boundary edge is an edge adjacent to a single triangular face, as shown in Fig 7a. 

      3. A type 2 boundary edge is an edge adjacent to 2 triangular faces whose normal vectors has     

      an intersection angle bigger than a certain value, usually 30 to 60 degrees is recommended. It  

      can also be an edge associated with important features of the geometry, such as the camber line   

      of an airfoil, as can be seen in Figure 7b,c. 

      4. In areas associated with high curvature, any triangular face with all 3 vertices belonging to   

      a boundary edge is also classified as a type 3 boundary edge, as can be seen in Figure 7d. 

      5. Select the highly irregular grids. For each of them, select the vertex with the biggest angle,   
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       called the primary vertex. The primary vertex must not belong to a boundary edge. Among    

       the other two vertices in the triangle, the one closest to the primary vertex is classified as a   

       secondary vertex.   

       6. Any edge that is connected to the primary vertex is reconnected to the secondary vertex,    

       thus destroying the irregular grids, as shown in Fig 8. 

                                
            a. Type 1 boundary edge                                                           b. Type 2 boundary edge 

 

 

  
            c. Type 2 boundary edge                                                          d. Type 3 boundary edge 

                                             Fig 7. Examples of boundary edge 
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The primary vertex                     The secondary vertex 

Fig 8. An illustrative picture to show the clean-up process (The red triangle is the highly irregular grid) 

 

 

Under this method, the quality of the background mesh will improve. However, if there are too 

many highly irregular grids in the background mesh, then it is best to choose another background 

mesh with better quality. This process provides us with a better input tessellation, something that 

is absent from Q-Tran. Although this process takes some primary vertices off the mesh, it doesn’t 

change the coordinates of any remaining vertices. Not to mention highly irregular triangular grids 

are rare, thus the surface feature would usually be preserved after this process.  
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B. The initial edge classification 

In order to transform triangular grids into quadrilateral grids, each triangle must be treated 

differently according to the types of edges it possesses. So the first step is to classify the sides of 

each triangle into different types of edges. The details are shown in both the following paragraphs 

and Figure 9. 

       1. The boundary edge, BE, all the type 1, type 2 and type 3 boundary edges in the previous  

       section are all classified into boundary edges.     

       2. An anisotropic diagonal edge, ADE, is a non-boundary edge adjacent to two triangular.      

       faces with its length greater than the length of the remaining four edges and at least one of the  

       two triangles is anisotropic. A triangular face is considered anisotropic if its aspect ratio    

       exceeds 3.0. The aspect ratio can be calculated according to Equation 4. 

       3. An isotropic diagonal edge, IDE, is a non-boundary edge adjacent to two isotropic    

       triangular faces such that its length is greater than the length of the remaining four edges and    

       none of these edges is a boundary edge. 

       4. A regular edge, RE, is an edge that doesn’t belong to any of the above categories.  

       5. A special regular edge, SRE, is a regular edge with two adjacent triangles that contains   

       two aligned boundary edges (Two edges are considered to be aligned if their intersection    

       angle is bigger than a certain value, for example 150 degrees). 
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                                            Fig 9. An illustrative plot of the edge classification process[9] 

 

 

In this way, all the triangular edges are grouped into different types. However, if the quad grids 

are created according to these edges, a lot of irregular grids will occur. Here a grid is considered 

to be an irregular grid if it deviates too far from a rectangle, as shown in Fig 10.  

 

 

 

 

 

Fig 10. Examples of irregular grids 

 

C. The edge reclassification 

The purpose of this step is to regroup some edges into others, in this way, HAMSTRAN will be 

able to generate more regular grids.  

       1. A special regular edge is reclassified into a boundary edge. 

       2. A regular edge that shares a triangle with an anisotropic diagonal edge is reclassified as a    

       boundary edge.  
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      3. Any isotropic diagonal edge that shares a triangle with the newly generated boundary edge  

      is reclassified into a regular edge. 

       4. A regular edge is reclassified into a corner edge if one of its 2 adjacent triangles has   2 

       boundary edges.  

       5. A regular edge is reclassified into an anisotropic diagonal edge if both adjacent triangles   

       have 2 boundary edges and the length of the regular edge is greater than all 4 surrounding    

       edges,  If one of the 4 adjacent boundary edges is longer than the regular edge, then this  

       edge is reclassified into a boundary edge.  

       6. A corner edge with 2 adjacent angles whose sum is greater than 180 degrees is reclassified   

       into a boundary edge. 

As can be seen from above, the edge classification process is very similar to that of Q-Tran, 

however there are many differences as well. For example, in Q-Tran, the classification of corner 

edge is done during the initial edge classification, but here it is done in the edge reclassification 

process. The reason for this is that during the edge reclassification process, the special regular 

edges are transformed into boundary edges, so some triangles that originally have only 1 boundary 

edge will end up having 2. Thus it is better to start generating the corner edges after turning all the 

special regular edges into boundary edges.  

 

 

 D. Generation of new vertices 

In order to create quadrilateral grids, the vertices on the original background mesh aren’t enough, 

so one needs to generate additional vertices. The vertices can be generated according to the 

following steps.  
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     1. Create a vertex, the edge vertex, at the midpoint of each non-regular edge. The non-regular     

        edges include the boundary edge, the isotropic diagonal edge and the anisotropic diagonal    

        edge, but it doesn’t include the corner edge.  

2. Create a vertex, the face vertex, at the center of each triangular face. The coordinates of  

    this vertex is shown in Figure 11 and can be calculated by equation 5.  

 

                                                       

 

                   

Fig 11. A sketch of the face vertex 

 

𝑥4 =
𝑥2 + 𝑥3

2
 ;   𝑦4 =

𝑦2 + 𝑦3

2
 ;     𝑧4 =

𝑧2 + 𝑧3

2
 

x(O) = 𝑥4 +
1

3
(𝑥1 − 𝑥4) ;   y(O) = 𝑦4 +

1

3
(𝑦1 − 𝑦4) ;   z(O) = 𝑧4 +

1

3
(𝑧1 − 𝑧4)                    (5) 

The coordinate of face vertex O is (x(O), y(O), z(O) ) 

 

This step is also different from Q-Tran. In Q-Tran, the face vertices are classified into regular face 

vertices and boundary face vertices. However, for this work it seems to be unnecessary, simply 

having face vertices is enough for the quad generation process. 
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E. Generating the quadrilateral grids 

During this process, the quadrilateral grids are created according to the types of edges in the 

local triangles, the details are described in the following steps.   

      1. For each corner edge, generate quads as shown in Fig.12. 

      2. For each triangular face that has 3 boundary edges, split the triangle into 3 quadrilaterals. 

      3. For each anisotropic diagonal edge, transform the adjacent two triangular grids into 4  

      quadrilateral grids.  

       4. For each regular edge, select the 2 triangles adjacent to this edge. If a triangle contains a  

      non-regular edge, then its corresponding edge vertex is considered as a side vertex. If a    

      triangle doesn’t contain any non-regular edge, then the face vertex of that triangle is     

      classified as a side vertex. Use the two vertices of the regular edge as well as the    

      corresponding side vertices to create a new quadrilateral grid.  

The steps to generate quad grids can be summarized in Fig 12. After this process, an all-quad mesh 

system is finally created. However, this system contains many irregular vertices and irregular grids. 

A vertex is defined as a regular vertex if it has a valance of 4 (the valence should be 3 if it is on a 

type 1 boundary), or else it is defined as an irregular vertex. In order to improve the quality of the 

mesh system, a topological clean-up process, the merging process is introduced. This process is 

able to decrease the number of irregular vertices significantly.  
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Fig 12. A simple sketch showing the generation of quad 𝑔𝑟𝑖𝑑𝑠[9] 

 

 

 

 

 

F. The merging process 

The objective of this procedure is to reduce the number of irregular vertices as well as irregular 

grids. Different from other topological clean-up methods, this step does not change the coordinates 

of original vertices in the input tessellation. The merging process can be carried out by the 

following steps.  

     1. Select the vertices with a valence of 3, called the tri-valence vertices, a tri-valence vertex   

        must not be on the boundary.  

        2. Select the quad grids that contains 2 tri-valence vertices. 
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        3. Select the vertices that are adjacent to only 2 quads as well as the quad grids connected to    

        them.  

        4. The grids selected above are called the initial irregular grids.  

        5. Use the face collapse technique to destroy the selected irregular grids, the face collapse     

         technique is demonstrated in Figure 13. Keep repeating the above processes until   

         there are no initial irregular grids left.  

         6. After all the initial irregular grids are destroyed, select the grids that contain only one tri-  

          valence vertex, called the secondary irregular grids. The secondary irregular grids can also  

         be destroyed using the face collapse method.  Don’t carry out this step if it makes the  

         quality of the mesh even worse. 

The quality of the mesh system is improved dramatically after this process. The number of irregular 

grids and irregular vertices are reduced, as can be seen in Fig 13.  
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Fig 13. Illustration of the face collapse process 

 

 

2.1.2. Implementation on structure-unstructured hybrid mesh 

Sometimes the input tessellation consists of both unstructured triangular grids as well as structured 

quadrilateral grids. The unstructured part of the mesh can be dealt with according to the steps of 

the previous chapter. However, if we simply implement HAMSTRAN on the unstructured part, it 

would leave a lot of hanging vertices inside the mesh, as can be seen in Fig 14a. So there needs to 

be a way to make sure all these hanging vertices are also connected to an edge. Of course one can 

simply subdivide the structured part of the mesh, but that would dramatically increase the number 

of grid cells and sometimes modifying the structured mesh might lead to inaccuracies of the 

solution, so a new and better method is required, called the node capturing. 
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The steps of the node capturing process: 

       1. Select all the edges adjacent to both an unstructured grid and a structured grid; usually    

      these edges would form a smooth long loop, called the boundary loop, otherwise there is no  

      choice but to subdivide the structured mesh.  

     2. Select all the structured quad grids that share an edge with the boundary loop. 

     3. Split each surface grid into 3 new quadrilateral grids, just like in Fig 14b.  

     4. In this way, all the hanging vertices on the boundary would also be connected to a quad   

     grid. However, this process will only eliminate all hanging nodes if there are even number of  

     edges on each boundary loop. 

     5. If there are odd number of edges on the boundary layer, one needs to slightly change the  

      algorithm in order to get rid of all the hanging nodes, the specific method depends on the   

      geometry being implemented.  

 

After the node capturing process, all the hanging vertices are connected to the newly generated 

grids and only a small number of structured grids are modified. So after this process, the structured 

part of the mesh remains mostly untouched and the number of grids also stay approximately the 

same. Fig 15 provides an example of the node capturing process on a 3D hybrid mesh.  
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                            a. Hanging nodes                                            b. Hanging nodes fixed 

     The edge of quad grids                        The triangle edge                        The boundary edge 

                                                                                                                          

                                                      Fig 14. A sketch of the node capturing process  

 

 

 

                  

     Fig 15. An example of the node capturing process  
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2.1.3. Implementation on unstructured quad dominant mesh  

In this kind of input tessellation, the entire mesh is unstructured and the quadrilaterals and triangles 

are mixed together. The easiest way to transform it into an all-quad mesh, is of course to subdivide 

every quadrilateral into 2 triangles, and then implement the steps directed towards all-triangular 

input tessellation, also known as the multi-step method. However, this method doesn’t always 

generate good quality grid cells, so another faster and better algorithm is introduced. 

 

The steps to transform a quad-dominant mesh into an all-quad mesh: 

       1. An edge that is only adjacent to one grid face is classified as a type 1 boundary edge.  

       2. An edge adjacent to 2 grid faces and the intersection angle of their normal vectors exceeds   

       a certain value, this edge is classified into a type 2 boundary edge.  

      3. Any edge that isn’t a boundary edge is classified as a regular edge.   

      4. Generate a new vertex at the center of each grid face, the face vertex. Generate a new   

      vertex at the midpoint of each boundary edge, the edge vertex.  

      5. Generate the quad grids according to Fig 16.  

In this way, a quad-dominant mesh can be easily transformed into an all-quad mesh. Since most 

vertices generated by this method are regular vertices, a merging-process isn’t necessary. The 

downside of this process is that it will increase the number of grids by roughly twice, but it is still 

better than the Catmull-Clark subdivision process, which would increase the number of grids by 

approximately 4 times.  
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                                                         a. Quad transformation around regular edge 

 

 

                                 b. Quad transformation around type 1 boundary edges 

 

     

 

 

 

 

           

                   

                        Boundary edge                           Regular edge                                       Quad edge 

 

c. Quad transformation around type 2 boundary edges 

 

Fig16. The implementation of HAMSTRAN on quad-dominant mesh 
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2.1.4. Generate the strand templates 

In order to create 3D strand grids, simply having a surface mesh isn’t enough, strand templates 

extruding from the surface of the geometry are also required. The templates should be 

approximately normal to the geometry surface. They shouldn’t cross each other either, or else the 

resulting strand grids would overlap each other. Unfortunately, Q-Tran doesn’t provide us with 

any methods for the generation of strand templates. So HAMSTRAN developed the weighted 

average method.  

Steps for the weighted average method： 

     1. For each vertex, select all the edges connected to the said vertex.  

     2. Calculate the angles between the adjacent edges.  

     3. Calculate the normal vector of each angle by calculating the cross product of its two  

     corresponding edges, normalize the vectors, making sure its length equal to one.  

4. Calculate the weighted average of all the angle vectors, using equation 6, the resulting  

 vector is the strand template of this vertex, normalize this vector as well. This step can be  

 visualized in Fig 17, which uses the example of a regular vertex. The strand templates of the   

 irregular vertices can be calculated in the same way.  

𝜃1 = acos(
𝑂𝐵⃗⃗ ⃗⃗  ⃗. 𝑂𝐶⃗⃗⃗⃗  ⃗

|𝑂𝐵⃗⃗ ⃗⃗  ⃗||𝑂𝐶)⃗⃗ ⃗⃗ ⃗⃗  ⃗|
) , 𝜃2 = acos(

𝑂𝐴⃗⃗ ⃗⃗  ⃗. 𝑂𝐶⃗⃗⃗⃗  ⃗

|𝑂𝐵⃗⃗ ⃗⃗  ⃗||𝑂𝐶)⃗⃗ ⃗⃗ ⃗⃗  ⃗|
) , 𝜃3 = acos (

𝑂𝐴⃗⃗ ⃗⃗  ⃗. 𝑂𝐷⃗⃗⃗⃗⃗⃗ 

|𝑂𝐵⃗⃗ ⃗⃗  ⃗||𝑂𝐶)⃗⃗ ⃗⃗ ⃗⃗  ⃗|
) , 𝜃4 = acos(

𝑂𝐵⃗⃗ ⃗⃗  ⃗. 𝑂𝐷⃗⃗⃗⃗⃗⃗ 

|𝑂𝐵⃗⃗ ⃗⃗  ⃗||𝑂𝐶)⃗⃗ ⃗⃗ ⃗⃗  ⃗|
) 

                                                                         θ = 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4                                                                      (6) 

            Normal(O) = (𝑂𝐵⃗⃗ ⃗⃗  ⃗ × 𝑂𝐶⃗⃗⃗⃗  ⃗) × (
𝜃1

θ
) + (𝑂𝐶⃗⃗⃗⃗  ⃗ × 𝑂𝐴⃗⃗ ⃗⃗  ⃗) × (

𝜃2

θ
) + (𝑂𝐴⃗⃗ ⃗⃗  ⃗ × 𝑂𝐷⃗⃗⃗⃗⃗⃗ ) × (

𝜃3

θ
) + (𝑂𝐷⃗⃗⃗⃗⃗⃗ × 𝑂𝐵⃗⃗ ⃗⃗  ⃗) × (

𝜃4

θ
) 
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Fig 17. Generating the strand templates 

 

 

     5. For each vertex, select all the surrounding vertices which share a grid with the said vertex.  

 6. Calculate the average of all the templates of the selected vertices, using this newly   

 calculated vector to replace the original template. In this way, each template becomes more   

 parallel with its surrounding templates.  

7. Repeat steps 5 and 6 until the strands no longer cross each other. If this is impossible,  

 then repeat until a minimum number of strands cross each other. 

 

Of course, the weighted average method is just a general method, in order to generate strand 

templates of decent quality, some adjustments must be made according to each individual 

geometry. For example, in the concave regions of a wing mesh, all the strand templates should be 

made parallel to the template at the peak, as shown in Fig 18. This process is called the strand 

smoothing. 
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       a. Strands generated by the weighted average method                   b. Strands after the smoothing process 

                                                     Fig 18. Examples of the strand smoothing process 

 

 

 

As is shown in Fig 18, the strands generated by the weighted average method would cross each 

other in a very short distance at the trailing edge. After the strand smoothing process, those strands 

became parallel with each other, thus able to generate 3D strand grids in the future. Of course this 

is just one example, this smoothing process must be carried out according to each individual 

geometry. 
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2.2. Examples of the HAMSTRAN algorithm 

In order to test the efficiency of this method, the HAMSTRAN algorithm is implemented on 

several geometries. The criteria used to test the quality of the mesh includes the number of grids, 

the average skewness and the number of irregular vertices. The skewness is used to measure the 

shape of a quad cell. Ideally speaking, all cells should be rectangles and the skewness should be 0, 

however, in an unstructured mesh system, this is nearly impossible. Generally speaking, the 

smaller the skewness, the better the quality of the mesh. The skewness is calculated by equation 7. 

In order to make a comparison, the Catmull-Clark subdivision algorithm is also carried out on 

these geometries. The details will be explained in the next section.  

 

 

                                    Skewness=max[
𝜃𝑚𝑎𝑥−𝜃𝑒

180−𝜃𝑒
,
90−𝜃𝑚𝑖𝑛

90
]                            (7) 

𝜃𝑚𝑎𝑥: 𝑇ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑                               𝜃𝑚𝑖𝑛: 𝑇ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 

𝜃𝑒: 𝐹𝑜𝑟 𝑎 𝑞𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑔𝑟𝑖𝑑, 𝑡ℎ𝑖𝑠 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 90 
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2.2.1. The hexagon mesh 

Before moving to more complicated geometries, HAMSTRAN is first implemented on a simple 

2D mesh, the hexagon mesh. This mesh is comprised of uniform triangles representing internal 2D 

geometry. The details of this mesh can be seen in Figure 19. As is shown in this figure, the 

HAMSTRAN algorithm works well on meshes of various sizes.  

 

                        Fig 19. The implementation of HAMSTRAN on 2D hexagon mesh of varying size  

 

 

 

        

             a. The original background mesh                        b. Subdivision                                            c. HAMSTRAN 

Fig 20. Comparison between the subdivision algorithm and the HAMSTRAN algorithm 
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 Number of 
original 
triangles 

Number of 
original 
quads 

Number of 
final quad 

grids 

Average 
skewness 

Regular 
Vertices 

Irregular  
vertices 

Percentage 
of regular 
vertices 

Subdivision 384 0 1152 0.333 606 595 50.46% 

HAMSTRAN 384 0 384 0.042 426 7 98.38% 

Table 1. Quality comparison of the hexagon mesh  

 

As can be seen from Table 1, the mesh created by HAMSTRAN generates a far higher percentage 

of regular vertices comparing to the subdivision process. The average skewness is also much lower, 

indicating there are more regular grids in the mesh. The number of grids stayed approximately the 

same before and after the transformation process when using HAMSTRAN, but it increased by 

about 3 times when using the subdivision method. So from what one can see in this case, 

HAMSTRAN is overall superior to the Catmull-Clark subdivision algorithm. However, this mesh 

is too simple, one needs to implement it on more complicated mesh systems in order to test the 

efficiency of HAMSTRAN. 
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2.2.2. The 2D inviscid wedge mesh 

This mesh is an external all-triangular mesh around a triangular 𝑤𝑒𝑑𝑔𝑒[10[. As we know, the flow 

near the wedge is much more complicated than the flow in the far field, thus the velocity gradient 

is much higher in the near body region. As a result, smaller grid cells are required to capture the 

higher gradient, as can be seen in Fig 21.  

 

 

a. The original background mesh 

 

b. The mesh created by the subdivision algorithm 

 

C, The mesh created by HAMSTRAN 

                                     Fig 21. The 2D inviscid wedge mesh 
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        a. The background mesh                            b. Subdivision                                      c. HAMSTRAN 

                                                Fig 22. A blow up near the triangular wedge 

 

 Number of 
original 
triangles 

Number of 
original 
quads 

Number of 
final quad 

grids 

Average 
skewness 

Regular 
Vertices 

Irregular 
vertices 

Percentage 
of regular 
vertices 

Subdivision 2520 0 7560 0.4463 3936 3772 51.06% 

HAMSTRAN 2520 0 2583 0.3020 1939 792 71.00% 

Table 2. Quality comparison of the inviscid wedge mesh 

 

As can be seen from Table 2, the mesh created by HAMSTRAN generates a higher percentage of 

regular vertices comparing to the subdivision process. Although due to the complexity of this mesh, 

the percentage of regular vertices isn’t as high as in the first case, but overall, this is still a huge 

improvement. Some irregular vertices are required in order to allow for the varying size of the 

resulting quads. The average skewness is also lower, indicating there are more regular grids in this 

mesh comparing to the subdivided mesh. The reason the skewness is not as small as the first case 

is due to the complexity of this mesh. The number of grids stays approximately the same before 

and after the transformation process when using HAMSTRAN, but it increased by about 3 times 

when using the subdivision method. Generally speaking, HAMSTRAN works well for this more 

complicated mesh. 
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2.2.3. The 2D NACA0012 hybrid mesh 

The NACA0012 𝑎𝑖𝑟𝑓𝑜𝑖𝑙[10] is an airfoil shape applied in many wings and also used in a variety of 

experiments. Since this case studies a turbulent flow around the airfoil, very thin layers of 

structured grids are required around the airfoil to capture the complexity of the boundary layer, 

making this mesh a hybrid mesh.  

        

        a. The background mesh                           b. HAMSTRAN                                    c. Subdivision 

Fig 23. The 2D NACA0012 hybrid mesh 

 

 

Fig 24. A blow up to show the node capturing process  
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 Number of 
original 
triangles 

Number of 
original 
quads 

Number of 
final quad 

grids 

Average 
skewness 

Regular 
Vertices 

Irregular 
vertices 

Percentage 
of regular 
vertices 

Subdivision 10407 20740 114181 0.1397 98714 15802 86.20% 

HAMSTRAN 10407 20740 32559 0.1041 30046 2698 91.76% 

   Table 3. Quality comparison of the NACA0012 mesh 

 

As can be seen from Table 3, the skewness and the percentage of regular vertices aren’t very 

different for both methods. This is because the original mesh is comprised of mainly structured 

quad grids, so in order to make the advantages of HAMSTRAN more clear, another table is made 

only for the unstructured part of the mesh.  

 

 Number of 

original 

triangles 

Number 

of original 

quads 

Number 

of final 

quad 

grids 

Average 

skewness 

Regular 

Vertices 

Irregular 

vertices 

Percentage 

of regular 

vertices 

Subdivision 10407 0 31221 0.4238 15918 15800 50.19% 

HAMSTRAN 10407 0 10897 0.2087 9385 2009 82.37% 

Table 4. Quality comparison of the unstructured part of the mesh 

 

In this table, the advantage of HAMSTRAN becomes much more obvious. The average skewness 

is much lower, the percentage of regular vertices also becomes much higher. So as we can see, 

HAMSTRAN works well even for a hybrid mesh. Of course, up until now, all the test cases are in 

2D. In order to test the full capacity of HAMSTRAN, one would like to test some cases in 3D as 

well. 
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2.2.4. The robin fuselage surface mesh 

The robin 𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒[12] is a fuselage widely used by helicopters. It is also widely applied in both 

experimental and computational tests. This is an all-triangular mesh that covers the entire surface 

of the geometry.  

                                        

        a. The original background mesh                 b. The HAMSTRAN mesh                    c. the subdivdided mesh 

Fig 25. The robin fuselage surface mesh  

 

 Number of 
original 
triangles 

Number of 
original 
quads 

Number of 
final quad 

grids 

Average 
skewness 

Regular 
Vertices 

Irregular 
vertices 

Percentage 
of regular 
vertices 

Subdivision 2096 0 6288 0.3962 3147 3143 50.03% 

HAMSTRAN 2096 0 2180 0.1950 1754 428 80.38% 

Table 5. Quality comparison of the robin fuselage surface mesh 
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As can be seen from Table 5, HAMSTRAN also works well on 3D surface meshes. It has a much 

lower skewness and the percentage of regular vertices is much higher.  Of course, this is a relatively 

simple mesh and all grids have approximately equal sizes. In order to test the full capability of 

HAMSTRAN, it should be implemented on more complicated meshes. 

 

2.2.5. The OneraM6 wing unstructured mesh 

Figure 26 looks at surface meshes of the OnearM6 𝑤𝑖𝑛𝑔[10], which is a classic transonic test 

case for CFD. Different from the robin fuselage surface mesh, this mesh has clustering near the 

leading and trailing edge. This is to capture the high pressure gradient in those areas, making it a 

more complicated mesh.  

 

                            

a. The original background mesh            b. The HAMSTRAN mesh                          c. The subdivided mesh 

Fig 26. The OneraM6 wing surface mesh 
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 Number of 
original 
triangles 

Number of 
original 
quads 

Number of 
final quad 

grids 

Average 
skewness 

Regular 
Vertices 

Irregular  
vertices 

Percentage 
of regular 
vertices 

Subdivision 45310 0 135930 0.4361 68484 67448 50.38% 

HAMSTRAN 45310 0 49597 0.2876 34076 15523 68.70% 

Table 6. Quality comparison of the OneraM6 wing surface mesh 

 

Although this mesh is more complicated than the previous one, HAMSTRAN still performed quite 

well, as can be seen from Table 6. Comparing to the subdivision algorithm, HAMSTRAN is able 

to generate a mesh with much lower average skewness and a higher percentage of regular vertices, 

making it a better method. 

 

2.2.6. The OneraM6 wing structure-unstructured hybrid mesh  

This is another mesh for the OneraM6 wing. Since there is little change in flow across the span 

wise direction, except for near the tip, one could make a structured mesh for the main body of the 

wing while only the tip is comprised of unstructured grids. The tip of the wing is comprised of 

triangular grids while the main body is comprised of structured quadrilateral grids. Since 

HAMSTRAN is mainly implemented on the tip of the wing, Fig 27 doesn’t really show much 

information, thus another figure, Fig 28 is made only for the tip of the wing. Just like the 

NACA0012 mesh, two tables are also made here, one for the entire mesh system and one only for 

the unstructured part of the mesh. 
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a. The original background mesh                     b. HAMSTRAN                                   c. Subdivision 

Fig 27. The OneraM6 wing hybrid mesh 

 

 

Fig 28. A blow up around the tip of the wing 
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 Number 

of original 

triangles 

Number 

of original 

quads 

Number 

of final 

quad 

grids 

Average 

skewness 

Regular 

Vertices 

Irregular 

vertices 

Percentage 

of regular 

vertices 

Subdivision 4728 14508 72216 0.2877 64998 7220 90% 

HAMSTRAN 4728 14508 20400 0.2715 18148 2254 88.95% 

Table 7. Quality comparison of the OneraM6 hybrid wing mesh 

 

 Number 

of original 

triangles 

Number 

of original 

quads 

Number 

of final 

quad 

grids 

Average 

skewness 

Regular 

Vertices 

Irregular 

vertices 

Percentage 

of regular 

vertices 

Subdivision 4728 0 5148 0.4513 7406 7152 50.87% 

HAMSTRAN 4728 0 14184 0.2997 3826 1696 69.29% 

Table 8. Quality comparison at the tip of the wing 

 

As we can see from Tables 7 and 8, HAMSTRAN generates far fewer grids comparing to Catmull-

Clark subdivision, and the quality of the mesh improved, especially when one only compares the 

unstructured part of the mesh. Using HAMSTRAN, the average skewness is lower and the 

percentage of regular grids is much higher. 

 

2.2.7. The quad dominant x2 fuselage mesh  

The x2 fuselage is another fuselage used by helicopters. Different from the previous meshes, this 

input tessellation has a mixture of unstructured quadrilateral and triangular grids, as can be seen 

in Figure 29. In order to make a comparison, this work introduces the multi-step algorithm, which 

subdivides every quad grid into 2 triangles, and then implements the triangular HAMSTRAN 
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algorithm. The results from the quad-dominant HAMSTRAN (Figure 32) are compared with 

results from both the multi-step method (Figure 30) and the subdivision method (Figure 31).  

 

 

a. An overview of the entire mesh system  

 

 

 

 

 

b. A blow up of the details 

 

Fig 29. The original quad-dominant mesh for x2 fuselage 
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a. An overview of the entire mesh 

 

 

 

b. A blow up to show the details 

 

Fig 30. All-quad X2 fuselage mesh created by the multi-step method 
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                                                                  a. Overview of the entire mesh 

 

 

 

 

                                                       b. A blow up to show the details of the mesh 

 

Fig 31. All-quad x2 fuselage mesh created by the Catmull-Clark subdivision algorithm 
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                                                                 a. Overview of the entire mesh 

 

                           

    b. A blow-up to show the details of the mesh                

Fig 32. All-quad x2 fuselage mesh created by quad-dominant HAMSTRAN  
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 Number 

of original 

triangles 

Number 

of original 

quads 

Number 

of final 

quad 

grids 

Average 

skewness 

Regular 

Vertices 

Irregular  

vertices 

Percentage 

of regular 

vertices 

Multi-step 764 8250 17758 0.2130 14783 2977 83.24% 

HAMSTRAN 764 8250 17646 0.1890 15080 2568 85.46% 

Subdivision 764 8250 35292 0.1665 32726 2568 92.72% 

                                        Table 9.  Quality comparison of the quad-dominant x2 fuselage mesh 

 

As can be seen from Table 9, the results for the quad-dominant background mesh aren’t as good 

as those from the all-triangular meshes. This time the subdivision algorithm actually produces 

grids with the lowest skewness, but at the same time, the number of cells increased almost four 

times. Both the multi-step method and HAMSTRAN increase the number of grids by two times, 

but HAMSTRAN generates more regular vertices and has a lower skewness. So here the only 

advantage of the HAMSTRAN algorithm is producing fewer number of grids comparing to the 

subdivision method. 
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2.3. HAMSTRAN algorithm on more complicated geometries 

This is a helicopter hub used to connect the fuselage to the rotor blades. It is much more 

complicated than the all previous geometries in this paper. Figure 33 shows the original all-

triangular background mesh while Figure 34 shows the all-quad mesh created by HAMSTRAN. 

 
Fig 33. The original background mesh of the helicopter hub 

 

 

Fig 34. The HAMSTRAN mesh for the helicopter hub 



49 
 

This is the wing of fierce fighter jet Silent Viper, it has a very sharp point in the front, as is shown 

in Figure 35, but HAMSTRAN is still able to generate an all-quad mesh of decent quality, as can 

be seen in Figure 36. 

                         

Fig 35. The all triangular background mesh of a fighter wing 

  

Fig 36. The HAMSTRAN mesh for the fighter wing 
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This is a mesh of a propeller, it is the only geometry in this paper that is comprised of 3 separate 

geometries, as is shown in Figure 37, but the performance of HAMSTRAN is just fine, as can be 

seen in Figure 38. 

 

Fig 37. The triangular background mesh of a propeller 

 

 

Fig 38. The HAMSTRAN mesh of a propeller 
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Figure 39 shows the all-triangular surface mesh of the Lockheed blended wing body geometry, 

an airplane still under development. HAMSTRAN performed just fine despite its complicated 

geometry, as can be seen in Figure 40. 

 

Fig 39. Triangular background mesh of a Lockheed blended wing geometry 

 

 

Fig 40. The HAMSTRAN mesh for the Lockheed blended wing mesh 

All of the geometries in this section show that HAMSTRAN can work on almost any complicated 

geometries. However, since flow fields resulting from these meshes will not be discussed in this 

work, tables highlighting the quality of these meshes are not shown, rather the figures provide a 

visual overview of the HAMSTRAN process. 
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Chapter 3: Results and discussion 

The HAMSTRAN algorithm for all-quad mesh generation has been validated for various flow 

conditions on different types of geometries in both 2D and 3D. For 2D, this method is implemented 

and tested for both the NACA0012 airfoil in turbulent flow and a triangular wedge in inviscid flow. 

As for 3D cases, the HAMSTRAN algorithm is tested on the OneraM6 wing, the robin fuselage 

and the lifting rotor. The results are compared with those from simple Catmull-Clark subdivision 

method and verified by experimental results.  

 

In summary, the first step of this research is generating an unstructured surface mesh, all triangle, 

quad dominant or hybrid. Then in order to acquire an all-quad mesh, the HAMSTRAN algorithm 

is implemented. After that, for 3D cases, strand templates extruding from the surface of the mesh 

are generated as well before creating 3D volume grids. Finally, the volume mesh is implemented 

into the HAMSTR flow solver to run various simulations. In order to test the efficiency of this new 

algorithm, several parameters are calculated. They include the distribution of the pressure 

coefficient on the geometry, the cpu time required to reach convergence and the lift and drag 

coefficient. Due to the decreased grid number and higher quality Hamiltonian strands, the flow 

solver should be able to reach convergence in a much shorter time and the accuracy of results 

should improve. This will be verified in the following sections. 
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3.1. The triangular wedge in inviscid flow 

In this section, this work is going to validate the unsteady method by computing the inviscid flow 

past a triangular edge. The free stream Mach number is 0.5 and the angle of attack is 0°. The 

background mesh consists of 2583 triangular grids. Since this is an inviscid case and there is no 

boundary layer, near body strand grids aren’t required.  Due to the original mesh being too coarse, 

this mesh is subdivided again after implementing HAMSTRAN, creating 10,332 grids in total. In 

order to make a comparison, the original mesh is subdivided twice, resulting in 30,240 grids. This 

case is computed using 2 different schemes, scheme 1 uses BDF1 in time and 3rd order MUSCL 

in space, scheme 2 uses BDF2 in time and 3rd order MUSCL in space. Sadly, there is no reference 

for the inviscid case, but one can judge the accuracy of the simulation through the vortices.  

 

1. The Hamiltonian paths 

As can be seen in Figure 41, long and smooth Hamiltonian paths are extracted from the 

HAMSTRAN mesh, comparing to the short circles extracted from the subdivided mesh. This 

makes it easier for line-implicit methods to be carried out along these strands.  

                                                  

                                  a. Subdivision                                                         b. HAMSTRAN 

Fig 41. Hamiltonian loops around the wedge 
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2. The density contour around the wedge 

As can be seen from Figures 42 and 43, the mesh system successfully captured the vortices 

convecting downstream for both schemes. It showed that the mesh corresponds well with both 

time discretization methods. The higher order solution from BDF2 maintains the strength of 

vortices for longer distances comparing to lower order BDF1, as is shown in Figure 42 and 43.  

 

 

 

Fig 42. Density contour around the wedge for scheme 1 

 

 

 

  Fig 43. Density contour around the wedge for scheme 2 
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     3. The convergence history 

           

 Fig 44. Convergence of density residual for scheme 1         Fig 45. Convergence of density residual for scheme 2 

 

 

 

As can be seen from Figures 44 and 45, the density residual converged much more during each 

main iteration after implementing HAMSTRAN in the flow solver and it is able to successfully 

track the vortices in the flow. However, in the real world inviscid flow doesn’t really exist; so in 

order to test the fidelity of HAMSTRAN, one needs to use cases of turbulent flow, only in this 

way can the results be compared with real-life experimental results. One such case is the turbulent 

flow past a NACA0012 airfoil.  
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3.2. The NACA0012 airfoil in turbulent flow 

In order to test the fidelity of the HAMSTRAN algorithm, turbulent flow past a NACA0012 airfoil 

is computed at a freestream Mach number of 0.15, Reynolds number of 6 million and three angles 

of attack (0 ,10 and 15 degrees). The original mesh consists of 10,407 triangular grids and 20,740 

quad grids. Due to the original mesh being too coarse, a subdivision algorithm is carried out after 

implementing the HAMSTRAN algorithm, resulting in 128,394 grids in the mesh. The results are 

compared with the subdivided mesh of 114,181 grids and some reference data. The reference data 

include the Gregory data[13] and the results from the OVERTURNS[14] flow solver. 

 

 

1. The Hamiltonian paths 

As can be seen from Figures 46 and 47, the Hamiltonian paths generated from the HAMSTRAN 

algorithm are generally speaking much longer and smoother, instead of the small circles generated 

using the traditional subdivision algorithm. Since the stencil-based discretization is easier to carry 

out on smooth paths, it would increase the accuracy of the results. The following results can be 

used to verify this.   
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      A. Overview of the entire mesh                                                      b. A blow up near the airfoil 

Fig 46. The Hamiltonian loops extracted from the subdivided mesh (NACA0012) 

 

                              

 

                   A. Overview of the entire mesh                                              b. A blow up near the airfoil 

Fig 47. The Hamiltonian loops extracted from HAMSTRAN mesh (NACA0012) 

 

2. The properties of the flow field 

Figures 48-53 show the Mach number contours of the flow field and details of the boundary layer, 

indicating that this mesh is able to successfully capture the boundary layer of the flow.  
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               Fig 48. The Mach number contour (α = 0)                        Fig 49. Sketch of the boundary layer (α = 0)            

 

                    

        Fig 50. The Mach number contour (α = 10)                            Fig 51. Sketch of the boundary layer (α = 10)          

                           

         Fig 52. The Mach number contour (α = 15)                         Fig 53. Sketch of the boundary layer (α = 15)           
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3. The distribution of pressure coefficient along the airfoil  

Figures 54-56 show the pressure distribution results from using HAMSTRAN as compared with 

those from using the traditional subdivision algorithm as well as both the Gregory data and the 

results from the OVERTURNS flow solver. As can be seen from the plots, the results of 

HAMSTRAN correspond well with the Gregory data and the results from the OVERTURNS flow 

solver. Although the results from the subdivision algorithm is accurate as well, it has a lot of 

fluctuations, as can be seen in the following plots. The results from HAMSTRAN are much 

smoother.  

 

 

 

Fig 54. The pressure coefficient over NACA0012 airfoil (α = 0) 
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Fig 55. The pressure coefficient over NACA0012 airfoil (α = 10) 

 

 

 

  Fig 56. The pressure coefficient over NACA0012 airfoil (α = 15) 
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4. The convergence history 

As can be seen in Figure 57-59, the residual usually converges a little faster under HAMSTRAN 

comparing to the mesh created by Catmull-Clark subdivision, although not by a lot.  

 

             

                        a. The density residual                                                  b. The turbulent residual 

                          Fig 57. The convergence history of density and SA turbulence model at α = 0 

 

 

                

                                     a. The density residual                                                 b. The turbulent residual 

                     Fig 58. The convergence history of density and SA turbulence model at α = 10 
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                                a. The density residual                                              b. The turbulent residual 

Fig 59. The convergence history of density and SA turbulence model at α = 15 

 

 

5. The Simulation results 

In this section, the lift and drag coefficients are examined as well as the computational time 

required for both HAMSTRAN and the Catmull-Clark subdivision algorithm. The results are 

compared with that of OVERTURNS. Under this method, the lift and drag coefficient is 0 and 

0.0083 for 0 degrees angle of attack, 1.1000 and 0.0123 for 10 degrees angle of attack, 1.5642 and 

0.0214 for 15 degrees angle of attack. 

                        

                              a. The lift coefficient                                                    b. The drag coefficient 

Fig 60. The lift and drag coefficient for different angles of attack 
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 Angle of 

attack 

Iteration Density 

residual 

Turbulence 

residual 
Lift 

coefficient 

Drag 

coefficient 

cpu time 

Subdivision 0 10000 2.59 × 10−13 2.16 × 10−7 0.0001 0.0086 11597 

HAMSTRAN 0 10000 2.53 × 10−13 2.32 × 10−7 0.0008 0.0085 13109 

Table 10. The simulation results of NACA0012 airfoil at 0 degrees angle of attack 

 Angle of 

attack 

Iteration Density 

residual 

Turbulence 

residual 

Lift 

coefficient 

Drag 

coefficient 

cpu time 

Subdivision 10 10000 1.70 × 10−12 1.13 × 10−6 1.0770 0.0147 11615 

HAMSTRAN 10 10000 1.58 × 10−12 1.11 × 10−6 1.0800 0.0135 13259 

Table 11. The simulation results of NACA0012 airfoil at 10 degrees angle of attack 

 Angle of 

attack 

 

Iteration 

Density 

residual 

Turbulence 

residual 

Lift 

coefficient 

Drag 

coefficient 

 

cpu time 

Subdivision 15 10000 3.15 × 10−12 1.23 × 10−4 1.5346 0.0249 10395 

HAMSTRAN 15 10000 2.75 × 10−12 1.61 × 10−4 1.5329 0.0226 12399 

                               Table 12. The simulation results of NACA0012 airfoil at 15 degrees angle of attack 

 

As can be seen from Table 10-12, the lift and drag coefficients calculated by HAMSTRAN showed 

much better agreement with the reference data comparing to that of the subdivision algorithm. 

However, in order to further illustrate the advantage of HAMSTRAN, one can create a finer mesh 

using the subdivision process. After the initial subdivision, the unstructured part of the mesh is 

subdivided again, then a node capturing process is implemented to get rid of the hanging nodes, 

as shown in Fig 61. The reason for not subdividing the structured mesh twice is because it would 

make the surface grids overly thin, causing stiffness in the flow solving process.  
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             a. Overview of the mesh around the airfoil                    b. A blow up to show the node capturing process 

Fig 61. The finer subdivided mesh 

 

The finer subdivided mesh has a total of about 209,690 grids. This extra case was run with an 

angle of attack of 10 degrees, a Reynolds number of 6 million and a free stream Mach number of 

0.15. Although this mesh is finer than the HAMSTRAN mesh, the results are still slightly worse, 

as can be seen in Table 13.    

 Angle of 

attack 

Iteration Density 

residual 

Turbulence 

residual 

Lift 

coefficient 

Drag 

coefficient 

cpu time 

Subdivision 10 10000 1.70 × 10−12 1.13 × 10−6 1.0770 0.0147 11615 

HAMSTRAN 10 10000 1.58 × 10−12 1.11 × 10−6 1.0800 0.0135 13259 

The finer 

subdivded 

mesh 

10 10000 1.28 × 10−12 1.06 × 10−6 1.0763 0.0139 28895 

Table 13. Results of the finer subdivided mesh at 10 degrees angle of attack 

From this table we can see that the drag coefficient became more accurate than the original 

subdivision process, but it is still not as good as from HAMSTRAN. The lift coefficient became 

even worse, not to mention it takes twice as long to reach the same level of convergence. These 

results showed that HAMSTRAN is superior to the Catmull-Clark subdivision algorithm in 2D 

mesh transformation.  
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3.3. The OneraM6 wing hybrid mesh case 

All the previous cases study 2D meshes, in order to test the full capability of this method, one 

should implement HANSTRAN in 3D HAMSTR flow solver. The first case is to compute 

transonic flow past an OneraM6 wing at a Mach number of 0.8395, an angle of attack of 3.06 

degrees and a Reynolds number of 11.72 million. The input tessellation is a structure-unstructured 

hybrid mesh, with structured grids filling the main body and only the tip of the wing is comprised 

of unstructured triangular grids. After implementing HAMSTRAN, there are 20,380 grids on the 

surface. Then starting from an initial wall spacing of 1 × 10−5 chord length, 67 layers of strands 

extrude from the surface of the geometry, creating a volume mesh consisting of approximately 1.4 

million grids. The details of the mesh can be seen in Figure 62. To make a comparison, a 

subdivided mesh consisting of about 4 million grids is also created. Of course, the results are also 

compared with that of the 𝑊𝐼𝑁𝐷[15] solver and experimental data from Experimental data base 

for computer program 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡[16].  

 

1. The Hamiltonian loops on the surface of the OneraM6 wing 

Figures 62 and 63 visualize the Hamiltonian paths. Since 3D Hamiltonian loops are too messy to 

be seen, one might want to look at only the loops on the surface of the geometry. As can be seen 

from the plots, the Hamiltonian loops are about the same on the main body of the wing except 

there are fewer loops for the HAMSTRAN mesh. On the tip of the wing, the strands extracted from 

the HAMSTRAN mesh are much longer and smoother in general.  
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               a. An overview of the entire mesh                                        b. A blow up at the tip of the wing 

Fig 62. The Hamiltonian loops extracted from the subdivided mesh (OneraM6 hybrid) 

 

                           

               a. An overview of the entire mesh                                        b. A blow up at the tip of the wing 

Fig 63. The Hamiltonian loops extracted from the HAMSTRAN mesh (OneraM6 hybrid) 

 

 

 

2. The strand grids around the wing 

As is mentioned in the first chapter, the Hamiltonian paths only provide structure in the surface 

direction, in order to find structure in the wall normal direction, one needs to utilize strand grids. 

The strands cannot cross each other nor can there be any sudden, abrupt changes in the volume of 

adjacent grids. The details of the strand grids can be seen in Figure 64.  
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     a. The strand grids in the main plane                                        b. A Blow up near the wing 

 

                       

   c. The strand grids at the wing tip                                      d. A Blow up around the tip of the wing 

Fig 64. An overview of the strand grids around the OneraM6 wing 

 

 

3. The pressure distribution at different areas of the surface 

As can be seen from Figure 65, the pressure distribution shows good agreement with both 

experimental data and the WIND solver. In Figure 65 a, b, there are clear pressure jumps on the 

plot, indicating a shock. This mesh successfully captured the local shocks. This shows that 

HAMSTRAN not only works well in 2D, but also works well combined with 3D strand grids. 
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                                              a. y/l=0.20                                                                      b. y/l=0.44 

 

                                                

                   

                                         c. y/l=0.65                                                                             d. y/l=0.80 

Fig 65. The pressure distribution on different areas of the wing (OneraM6 hybrid) 
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4. The simulation results  

As can be seen from plot 66, the density residual converged faster after adding the HAMSTRAN 

algorithm to the flow solver. Due to having less number of grids, the time required for each time 

step also decreased. As can be seen in Table 14, it only requires 16216 cpu seconds to complete 

the calculation, about 1/3rd of the time it used to take. The best thing is that the accuracy of results 

didn’t change due to having less number of grids, as can be seen in the time history of lift and drag 

coefficients in plots 67 and 68, HAMSTRAN converged a little faster but eventually they both 

reached the same results.  

 

 

Fig 66. The convergence history of density residual (OneraM6 hybrid) 
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Fig 67. The convergence history of lift coefficient (OneraM6 hybrid) 

 

 

Fig 68. The convergence history of drag coefficient (OneraM6 hybrid) 

 

 Number of 

iterations 

Lift coefficient Drag 

coefficient 

cputime 

subdivision 

method 

18000 0.5098 0.0339 52958 

HAMSTRAN 18000 0.5037 0.0330 16216 

                                

                                       Table 14. Simulation results of OneraM6 wing hybrid mesh case 
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3.4. Low Mach number flow around a robin fuselage 

This case computes a low Mach number flow past a robin fuselage at 0 degrees angle of attack. 

The original surface mesh consists of 2096 triangles, making it a coarse mesh. In order to improve 

the accuracy of results, another subdivision process is carried out after implementing 

HAMSTRAN. In the end, the surface mesh consists of 8720 grids. In order to test the performance 

of the mesh in various flow conditions, laminar flow, inviscid flow and turbulent flow are 

simulated in this case.  

 

The mesh for inviscid and laminar flow has an initial wall spacing of 0.1% of the fuselage length. 

54 layers of strands extrude from the surface of the robin fuselage, giving the 3D volume mesh 0.5 

million grids. For the laminar case, the Reynolds number is 5000 and the Mach number is 0.3. Due 

to the complexity of the boundary layer in a turbulent mesh, finer grids are required. So the initial 

wall spacing is 1 × 10−5 of the fuselage length, 75 layers of strands extrude from the surface, 

creating about 0.6 million grids. The Reynolds number for the turbulent case is 1.6 million with a 

Mach number of 0.1. The results are compared with experimental data from Fundamental 

aeronautics 𝑝𝑟𝑜𝑔𝑟𝑎𝑚[12] and 𝑂𝑉𝐸𝑅𝐹𝐿𝑂𝑊[12] results. 

 

1. The Hamiltonian paths on the surface of the robin fuselage 

As one can see in Figure 69, long and smooth Hamiltonian loops are extracted from the 

HAMSTRAN mesh, unlike the subdivided mesh where the loops are small circles. This makes it 
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much easier for line-implicit methods to be implemented on these paths, increasing the accuracy 

and convergence of the results.  

 

          

                        a. The subdivided mesh                                                      b. The HAMSTRAN mesh 

Fig 69. The Hamiltonian loops extracted on the surface of the robin fuselage 

 

 

 

 

2. The strand grids around the robin fuselage  

 

Different from the previous geometry, this one has a large concave region, as can be seen in Figure 

70b. In order to make sure the strand grids don’t overlap each other, curved strands are utilized in 

this case, the details can be seen in Figure 70. In this way, the strands can still represent the wall-

normal direction in the near-body region without crossing each other in the far field, the details of 

the curved strands are shown in Figure 71.  
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                      a. The overview of the entire mesh                             b. A blow-up around the robin fuselage          

                                               Fig 70. The strand grids around the robin fuselage 

 

 

                                                                                                                                                

              

                                               

                                                          

Fig 71. A blow-up to show the curved strands 

  

3. The flow field around the robin fuselage 

Figure 72 shows the variation of Mach number over the surface of the fuselage and in the 

longitudinal plane for inviscid flows. Stagnation points were observed at the nose of the fuselage 

just as expected. The flow was also noted to accelerate and decelerate over the concave section of 

the fuselage. In Fig 73, the flow solution captures the features of the turbulent flow qualitatively. 
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There is a substantial amount of turbulence in the flow past the concave section on the underside 

of the fuselage, which is carried over to the tail boom region as well. The flow separation and a 

recirculation zone were observed past the concave region of the fuselage for turbulent flow. 

Generally speaking, this mesh system is able to capture all the critical features in the flow. 

 

 

Fig 72. The Mach number contour of inviscid flow around the robin fuselage 

 

 

Fig 73. The Mach number contour of turbulent flow around the robin fuselage 
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4. The pressure distribution along the centerline of the robin fuselage  

In this section, the turbulent pressure distribution is compared with the results from the 

𝑂𝑉𝐸𝑅𝐹𝐿𝑂𝑊[12]  solver, experimental results from NASA and the results from subdivision 

algorithm. Sadly, there is no experimental data for laminar and inviscid flow, so the results are 

only compared with the results from OVERTURNS solver. The subdivision algorithm creates 

6288 grids on the surface of the geometry. For the laminar and inviscid case, 54 layers of strands 

extrude from the surface of the geometry, creating about 330,000 grids in the 3D volume. For the 

turbulent case, 75 layers of strands extrude from the surface of the geometry, creating about 470, 

000 grid cells. Since the HAMSTRAN mesh is also subdivided once, both meshes have 

approximately same number of grid cells. As one can see in Figure 74, in the laminar and inviscid 

case, the results from both HAMSTRAN and subdivision showed good agreement with the results 

from OVERTURNS. However, in the turbulent case, results from HAMSTRAN showed much 

better agreement with experimental data. 

     

                              a. Laminar and inviscid flow                                                     b. Turbulent flow 

                Figure 74. Pressure coefficient along the centerline of the robin fuselage 



76 
 

As is known, inviscid and laminar flow doesn’t exist in the real world. So HAMSTRAN has much 

better fidelity comparing to the subdivision algorithm. In order to further illustrate the superiority 

of HAMSTRAN, this work decided to subdivide the original mesh twice, creating a finer 

subdivided mesh. As can be seen from Figure 75, the results from the finer subdivided mesh shows 

much better agreement with the reference data, but still slightly worse than HAMSTRAN.  

 

Fig 75. The turbulent pressure coefficient along the centerline of the robin fuselage 

 

 

                        Fig 76. The laminar and inviscid pressure coefficient along the centerline of the robin fuselage 
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5. The simulation results 

As can be seen from Fig 77, after implementing HAMSTRAN in the HAMSTR flow solver, the 

density residual converged faster, especially in laminar and inviscid flow. Figure 77 shows the 

centerline boundary layer profile obtained on the underside of the fuselage just before the concave 

region when x =0.9. The experiments were performed using a particle image velocimetry 

(PIV) [17]. As can be seen in the plot, the simulation results match well with the experimental data. 

The subdivision in this part refers to the finer subdivided mesh.  

         

                     Fig 77. The convergence history of density (Left: Turbulent, Right: laminar and inviscid) 

 

 

Fig 78. Velocity profile at the centerline boundary layer at x=0.9 (turbulent) 
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Table 15. Simulation results of the robin fuselage case 

 

As can be seen from Table 15, HAMSTRAN is able to reach the same level of accuracy using only 

roughly 1/3rd of the time required for the subdivided mesh. This case tells us that HAMSTRAN 

works well not only with normal strand grids, but also with curved strand grids.  

 

3.5. The OneraM6 wing overset mesh case 

All the above cases only utilize the strand grids. In order to test the combination of HAMSTRAN 

and overset grid, this case reruns the OneraM6 wing case, but with overset mesh. This time the 

original input tessellation is an all-triangular mesh on the entire surface of the wing made of about 

44,000 grids. After implementing HAMSTRAN, there are about 50,000 quad grids on the wing 

surface. First, 54 layers of strand extrude from the surface of the geometry, creating around 2.7 

million grids in the near body strand mesh. The background Cartesian mesh consists of around 2.4 

million grids. The details of the overset mesh can be seen in Fig 80 and 81. 

 

 Flow 

condition 

Number of 

iterations 

cputime 

subdivision  Turbulent 20000 55056 

HAMSTRAN Turbulent 20000 16667 

Subdivision inviscid 1500 2085 

HAMSTRAN inviscid 1500 622 

Subdivision laminar 1500 2245 

HAMSTRAN laminar 1500 694 
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1. Hamiltonian paths at the tip of the wing 

As can be seen in Figures 78 and 79, long and smooth Hamiltonian loops are extracted from the 

HAMSTRAN mesh, unlike the subdivided mesh where the loops are small circles. This makes it 

much easier for line-implicit methods to be implemented on these paths, increasing the accuracy 

of the result.  

                         

  a. An overview of the entire wing                                                   b. A blow up near the tip of the wing 

              Fig 79. The Hamiltonian loops extracted from the HAMSTRAN mesh (OneraM6 overset) 

 

                                 

              a. An overview of the entire wing                                         b. A blow up near the tip of the wing  

                      Fig 80. The Hamiltonian loops extracted from the subdivided mesh (OneraM6 overset) 
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2. The overset grids around the wing 

As can be seen in Figure 80, the background Cartesian mesh system is made of a small box and a 

big box. In the small box, all the grids are the same size, with a side length of 0.05 chord length. 

Then the mesh is stretched in all 3 directions with a stretching ratio of 1.2. The small box should 

be able to cover the entire strand grid system, as is shown in Fig 81. 

           

             a. The mesh around the wing body                                        b. The mesh around the tip of the wing 

Fig 81. A cutaway view of the overset mesh around the OneraM6 wing 

 

 

3. The pressure distribution at different areas of the airfoil 

As can be seen in Figure 82, the pressure coefficient distribution calculated by both HAMSTRAN 

and the subdivision mesh match well with the experimental results, but not as good as the case 

using the hybrid mesh, this is probably due to the lack of structure in the main body, but overall 

speaking, HAMSTRAN and overset grids is a good combination.   
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                                      a. y/l=0.44                                                                        b. y/l=0.65 

       

                        

                                    c. y/l=0.95                                                                          d. y/l=0.99                 

Fig 82. The pressure distribution on different areas of the wing (OneraM6 overset) 
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4. The simulation results 

As can be seen from Figure 83, the results from the HAMSTRAN mesh converged a little faster 

comparing to the subdivided mesh. However, due to having fewer number of grids, it takes a much 

shorter time to reach the same level of convergence, as is shown in Table 16. Figures 84 and 85 

show that the convergence of the lift and drag coefficient time histories are similar in terms of 

iterations.  

 

Fig 83. The convergence history of density residual (OneraM6 overset) 

 

 

Fig 84. The convergence history of lift coefficient (OneraM6 overset) 
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Fig 85. The convergence history of drag coefficient (OneraM6 overset) 

 

 

 

 

 Number of 

iterations 

Lift 

coefficient 

Drag 

coefficient 

cputime 

subdivision method 15000 0.4830 0.0338 87035 

HAMSTRAN 15000 0.4707 0.0335 36483 

                                   Table 16. Simulation results for OneraM6 wing overset case 

 

As can be seen from the above results, generally speaking, HAMSTRAN works well with overset 

grids. The mesh is able to successfully capture the pressure distribution at different areas of the 

wing in a much shorter time.  
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3.6. Overset lifting rotor 

All the above cases tested are implemented on immobile mesh with no grid motion. So in order to 

test how HAMSTRAN works with moving grids, flow solutions around the Caradonna-Tang 

𝑟𝑜𝑡𝑜𝑟[11]  were computed using overset grids. This geometry is a lifting rotor consisting of 2 

identical blades. Due to the periodic nature of flow around the lifting rotor, the flow around one 

blade is the same as the other one, so calculations were performed only for a single blade. In this 

case, the rotor rotates at a tip Mach number of 0.866 in a turbulent flow with a Reynolds number 

of 3.93 million. The blade also has a collective angle of 8 degrees. In this mesh, the near body 

strand grids move along with the rotor blade while the background Cartesian grids are static. The 

rotational speed of the rotor is 0.5°  per iteration so it takes 720 iterations to complete a full 

revolution cycle. The simulation results are compared with the experimental 𝑑𝑎𝑡𝑎[18] and results 

from HELIOS[19]. 

 

1. The overset mesh system  

The input tessellation has 14,000 quad grids in the main body and 2100 triangular grids on the tip 

of the blade. The near body domain has 54 strand layers with an initial wall-spacing of 1 × 10−5 

chord length and a stretching ratio of 1.2, resulting in 0.87 million grids in total.  The background 

Cartesian mesh has about 4.6 million grid cells. The mesh can be seen in Figure 86. In the 

background Cartesian mesh, the length of a grid is 0.1 chord length in the small box and the mesh 

is stretched far into the outer boundary in an effort to capture the wake. 
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  a. Overview of the overset mesh                                                    b. A blow up near the rotor blade 

                Fig 86. An overview of the overset mesh for the lifting rotor in the x plane 

 

 

 

       

       a. Overview of the entire mesh                                     b. A blow up near the rotor blade 

                   Fig 87. An overview of the overset mesh for the lifting rotor in the y plane 
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2. The pressure distribution  

As can be seen in Figure 87, the results from HAMSTRAN are very similar to that of the 

subdivision algorithm, and both of them showed good agreement with experimental data. There is 

an obvious pressure jump in Figure 87d, indicating the mesh system successfully captured the 

shock at the tip of the rotor blade.  The results show that HAMSTRAN works well when combined 

with moving grids.  

         

                                  a. y/l=0.50                                                                                b. y/l=0.68 

                                

                                       c. y/l=0.80                                                                             d. y/l=0.89 

Fig 88. Pressure distribution on different areas of the lifting rotor 
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3. The simulation results  

 

              

Fig 89. The convergence history of density residual (overset rotor) 

 

 

 

 

Fig 90. The convergence history of thrust coefficient (overset rotor) 
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 Number of 

iterations 

Thrust 

coefficient 

Experiment 

𝑪𝑻 

cputime 

subdivision 

method 

4320 0.00534 0.00473 198373 

HAMSTRAN 4320 0.00538 0.00473 67637 

Table 17 .Simulation results for the overset lifting rotor case 

 

As can be seen from Figure 88, unsteady density residual dropped by 1-2 orders during the 8 sub-

iterations. The rate of convergence is approximately the same for HAMSTRAN and subdivision 

algorithm. In this unsteady case, the density residual didn’t give out much information, so this 

paper also plotted the convergence history of thrust coefficient, Figure 89. As can be seen in this 

plot, the thrust value appears converged after 3-4 rotor revolutions. As is shown in Table 17, after 

6 revolutions, CT reached a value of 0.00538 for HAMSTRAN and 0.00534 using the subdivided 

mesh. Both are significantly different from the experimental value but are more in line with the 

𝐻𝐸𝐿𝐼𝑂𝑆[18] results, which is 0.0052. So in this case, HAMSTRAN didn’t improve the final results 

but at least it reduced the time it takes to reach convergence.  
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Chapter 4: Conclusion 

The HAMSTRAN algorithm is an indirect algorithm to generate an all-quad surface mesh for both 

2D and 3D geometries. In order to explain this new algorithm, this work is divided into 3 parts. 

The first part introduces the motivation of this entire research as well as the unique advantages of 

this method comparing to all the other methods. The second part explains the methodology in close 

details. Then this algorithm is implemented on several different geometries in both 2D and 3D to 

show the improvement in the mesh quality.  

 

The third part is created to test the effectiveness of the newly generated mesh in the flow solving 

process. The results are compared with that of the subdivided mesh which was traditionally used. 

It was run on 6 cases: the triangular wedge in inviscid flow, the NACA0012 hybrid mesh in 

turbulent flow, the robin fuselage in low Mach-number flow, the lifting rotor case and 2 cases of 

OneraM6 wing transonic flow. The triangular wedge case is the simplest case of all, it is used to 

test the performance of the newly generated mesh in unsteady inviscid flow. Then the NACA0012 

case is computed to test the application of HAMSTRAN in hybrid background meshes in turbulent 

flows. One of the OneraM6 wing case is built to test the combination of HAMSTRAN with strand 

grids and the other is built to test its combination with overset mesh. The robin fuselage case is 

built to test the combination of HAMSTRAN with curved strands. The last case, the lifting rotor 

case is built to test how HAMSTRAN corresponds with a moving mesh system.  
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The HAMSTRAN algorithm is mostly based on Q-Tran but also has a lot of advantages that is 

absent from Q-Tran, such as the ability to work on a wider range of background mesh, having 

more explicit steps to follow and adding a scheme to generate strand templates for each vertex. 

Comparing to the simple Catmull-Clark subdivision algorithm, HAMSTRAN is able to generate a 

mesh with far fewer irregular vertices and a much lower average skewness, not to mention it 

generates considerably fewer grids. One of the unique characteristics of this work is that the newly 

generated mesh is tested in the flow solver, unlike many other papers that only introduce the mesh 

generation scheme. After implementing HAMSTRAN, the computational cost reduced by almost 

1/3rd without reducing the accuracy of the simulation.  Especially in the 2D NACA0012 case, even 

a coarser HAMSTRAN mesh produced more accurate results comparing to a finer Catmull-Clark 

subdivision mesh.  

 

As can be seen in the previous chapter, all six cases can be considered as a success. The 

Hamiltonian loops became much longer and smoother after implementing HAMSTRAN into the 

flow solver. This makes it easier for line-implicit methods to be carried out along these strands, 

increasing the accuracy of the HAMSTR flow solver. The most successful case is the NACA0012 

case. After implementing HAMSTRAN, not only was lift and drag coefficient showed much better 

agreement with the OVERTURNS results, the pressure plot also became much smoother, 

indicating there is less fluctuation in the pressure distribution along the NACA0012 airfoil. Even 

when the background mesh is subdivided twice, the results are still less accurate comparing to the 

HAMSTRAN algorithm.  
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The least successful cases are the overset cases. As can be seen in case 5 and 6, although the 

pressure distribution of the simulation results showed decent agreement with experimental data, it 

isn’t as good as the cases implemented purely on strand grids. This can be studied more thoroughly 

in the future.  

 

Although HAMSTRAN increased the quality of the mesh significantly, there is still room for 

improvement in the future. First, simulations on even more complicated geometries should be 

tested in the future, such as the hub or wing-body geometry. Second, one can work on building 

schemes to further reduce the number of irregular grids, increasing the quality of the mesh even 

further. Third, the way HAMSTRAN deals with quad-dominant mesh isn’t as good as it could be, 

it still increased the number of grids by twice and the quality of the output tessellation isn’t 

satisfying enough. Finally, in this research, all the newly generated vertices are generated linearly 

without using higher order schemes. On a very fine mesh, this isn’t much of a problem. However, 

if the mesh is coarse, then schemes that are able to flush the vertices to the surface of the geometry 

are required.  
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