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Abstract

Digitisation of original document sources for the purpose of conservation, detailed study,

and facilitating access for a wider audience has been an increasing trend over recent years,

particularly with constantly improving imaging technology available at ever decreasing costs.

Many documents suffer from a wide variety of degradations that reduce their legibility and

usefulness as sources. With the increase in digitisation has also come an increase in image

processing based enhancement and restoration techniques. This thesis presents new approaches

to automatic restoration of one particular type of degradation - bleed-through, which occurs

when ink from one side of a page seeps through and interferes with the text on the other side,

reducing legibility. Previous approaches to bleed-through restoration struggle in severe cases,

when there is a significant overlap between bleed-through and foreground text intensities. There

are also relatively few methods that focus on preserving the document appearance in the output.

The first contribution of this thesis is an approach to automatic bleed-through restoration

where the observed degraded images are modelled as a per-pixel linear combination of the original

clean images, and some proportion of the reverse side, however, bleed-through is explicitly

constrained to non-foreground regions only. In order to preserve the document appearance,

the model parameters, including clean image intensities themselves, are estimated in a Bayesian

framework, with priors to ensure that restored regions are close in appearance to the background.

Though visual results show that this approach performs well on light to medium bleed-

through examples, it does not perform as well on more severely degraded cases. Therefore a sec-

ond approach for restoration is proposed where the bleed-through classification and restoration

stages are decoupled to focus more explicitly on bleed-through identification. In this approach

both sides of the page are classified jointly, resulting in a single label field which is then refined

using rule-based connected component analysis. To maintain the goal of preservation of the

document appearance, restoration is performed using exemplar based inpainting.

To overcome the issue of lack of access to high resolution image examples for testing, a

small database of bleed-through example image pairs with manually generated ground truth

foreground text masks, compiled for this work and made available for research purposes, is pre-

sented. A numerical evaluation methodology for bleed-through restoration based on the database

is also described. Numerical and visual comparisons of the proposed restoration methods with

existing techniques show that the second decoupled approach performs best overall.

In order to use information from both sides of the page in automatic bleed-through restoration

approaches, they must first be spatially registered to a high degree of accuracy so that bleed-

through on each side is aligned with its corresponding originating text. The final contribution

of this thesis is an automatic bleed-through document registration approach that uses the page

outline as the strongest matching feature between the two sides, rather than the bleed-through

and text. A local grid point displacement-based refinement similar to existing approaches is



then applied, however, the difference between both image intensity and gradient are used as

the similarity metric. A numerical evaluation approach for bleed-through registration is also

presented, and based on this the proposed method is shown to outperform previous works, and

the global outline warp stage is shown to improve the performance of previous approaches.
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1
Introduction

The written word is one of the most important inventions in human history; the development

of writing systems facilitated advances in civilization through the preservation of knowledge

beyond individual memory and the oral tradition [26]. From the first inventories on clay tablets,

through the development of literary traditions, complex legal systems, paper, and the printing

press, there exists a vast wealth of information preserved in written form, representing a large

part of modern cultural heritage. Original document sources are therefore often the first point

of reference for many researchers, including historians, linguists, palaeographers, musicologists,

and literary scholars to name a few.

One of the commonest problems encountered in the study of document sources, especially

historical, is the reduction in legibility due to degradation. There are many different types

and causes of degradation, with the severity affected by different factors such as the document

materials, storage conditions, and even document content. Some of the degradations and causes

of degradation that affect legibility include:

(i) ink fading due to excessive light exposure or water damage.

(ii) page ‘ink corrosion’ due to the acidic content of the ink used for writing.

(iii) ink bleed-through, often exacerbated by highly porous writing media, and damp storage

conditions.

(iv) deliberate damage or ink effacing from censorship or conflicting opinions.

1



2 Introduction

(v) earlier text occlusion as a results of reuse of the writing medium for more than one text -

referred to as palimpsests1.

(vi) acid migration from storage containers.

(vii) bacterial or fungal infection of the medium, often due to excessive storage humidity and

temperature.

(viii) warping of the medium due to variations in storage temperature and humidity.

(ix) holes in the medium from pest damage, such as book beetles, silverfish, or mice.

(x) accidental damage, for example due to flood, fire, or over-handling of the document.

Physical restoration of degraded documents is an expensive and time consuming process,

and can often result in unintended damage to the integrity of the original. For example, to

remedy the fading of iron based inks, it was common since the 17th Century to add gallic acid

to intensify the text. However, this restoration results in further degradation of the manuscripts

over subsequent years as the added solution browns the surrounding page regions, sometimes

rendering them illegible. In the 19th and early 20th Centuries other solutions were used for

the same purpose, such as tea or tanning acid, ammonia, ammonium sulphide and potassium

ferrocyanide, with similarly destructive properties [27, 36]. Another more famous example of

damage done during restoration is the Book of Kells. For one of its several rebindings, in the

early 19th Century, the entire book was heavily trimmed to make the edges more uniform,

and they were subsequently gilded. However, this also resulted in the indiscriminate cropping

of some of the rare illuminations that the book is most famous for [42]. The clear danger

with physical restoration is that any mistakes made are generally irreversible. In recent years,

due to the progress in digital capabilities amongst other reasons, it has been noted that the

trend in restoration has moved towards a less invasive approach, with the focus moving towards

preservation of original forms, and digitisation [36].

Digitisation of documents, and especially those that are degraded, has many benefits. As

degradation is a continuous process, the digitisation allows a snapshot in time to be taken for

future comparison and monitoring of the rate of decline. Also having a high quality copy reduces

the amount of interaction with the original, thus preventing further damage from excessive han-

dling. Though historical document imaging has been performed since the late 19th century [30],

the copies created were generally limited to grayscale only, and could never provide a substitute

for examining the physical document. With recent advances in digital imaging technology, the

representations of documents have become more faithful to the original, and can even provide a

1from the Greek πάλιν - again, and ψάω - rub or wipe. Because of the relative expense of writing materials,

the writing medium was often scraped clean of existing text that was deemed unnecessary, and reused for new

work, often leaving small visible traces of the scraped text. It is often the underlying text that is of greater

interest to researchers nowadays.



1.1. Bleed-Through 3

more detailed view than visible with the naked eye. The decrease in cost of sophisticated high

resolution imaging equipment has also made document imaging a much more common practice.

Furthermore, progress in online capabilities has made imaged documents previously accessible

only to a privileged few available to a much wider audience, notable examples being the Early

Manuscripts at Oxford University [4], and the Archimedes Palimpsest Project [1]. The avail-

ability of document images alongside modern scholarly editions now enriches the experience of

casual readers as well as researchers, who can browse and access source material to gauge its

usefulness before visiting and viewing the original, and can also refer back any number of times

to the digital copy [27].

With the increase in prevalence of digitisation, has come an increase of interest in auto-

matic document image analysis and restoration. Digital restoration of degraded documents has

many advantages over physical. Firstly, in the digital domain, any number of changes may be

made to the document appearance, whilst leaving the original intact - this allows for several

different restoration approaches to be tested without risking damage to the physical document.

Secondly, alongside high resolution imaging, digital analysis and restoration have the potential

to reveal information that could not possibly be recovered using manual techniques. One of

the more popular trends in recent times is the use of multispectral imaging to reveal hidden

text information, especially in the work associated with the Archimedes Palimpsest [1], though

this is not a recent innovation - in early 20th century the use of different artificial light filters,

as well as ultra violet and infra red light sources, for photographing and recovering obscured

or erased text, was developed [30]. However, the inclusion of image processing techniques and

improvement in control over the range of wavelengths used for imaging has increased the range

of degradations that can be restored. Even relatively simple image processing techniques such

as contrast enhancement can be used to recover erased or faded text that is almost invisible to

an impressive degree [2, 27].

1.1 Bleed-Through

This thesis is concerned with automatic restoration of a specific type of document degradation.

Bleed-through is a form of textual interference that occurs when ink from one side of a page

has seeped through and becomes visible on the other side, see Figure 1.1. This often results in

reduction of legibility of the foreground text for those viewing and studying the document, and

can also cause problems for automatic content based processing, such as binarisation, Optical

Character Recognition (OCR), or layout analysis. Bleed-through restoration is therefore an

important area of research, both in terms of improving the legibility of degraded images for

individual researchers examining original sources, and also for larger scale digitisation projects,

such as Google Books [5], that use automatic processing to make document collections searchable

online. Bleed-through restoration is a challenging problem for a number of reasons. Firstly, in

severe cases, there is a significant overlap between foreground, background, and bleed-through
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Figure 1.1: An example of a cropped recto (top) and verso image pair suffering from bleed-

through degradation, taken from Buaidh na Naomhchroiche, a 17th century Irish translation of

Girolamo Savonarola’s Triumphus Crucis, fol. 121r/v. M38.

intensities. Secondly, in order to use information from both sides of the page to guide restoration,

the two sides must first be spatially aligned, that is registered, to a high degree of accuracy, so

that bleed-through degradation on one side of the page aligns with its corresponding originating

text. Finally, as there is no one standard for document imaging, and as bleed-through can occur

in a wide variety of different document types to a lesser or greater extent, the properties of

bleed-through degradation can vary greatly between images.

Terminology

When referring to documents, especially historical, the following terminology is often used: Folio

from the Latin folium (‘leaf’) has several meanings, one of which refers to a single sheet of paper

or writing medium with two sides - recto and verso. The word folio can also refer to a sheet of

paper that is folded to make two leaves of a book, a specific size of manuscript, or to a whole

volume itself, made up of gathered pages [13]. The recto side of a page is the first side as

when viewing a book, and the corresponding verso side is on the back of the recto. Document

pages are often numbered therefore on the recto side of the folio only, and page referencing

is in terms of recto and verso, for example ‘pages 13v-15r’. In left-to-right languages, such as

Latin and English, the recto will always be on the right hand side. However, in right-to-left

languages, for example Arabic and Syriac, the recto will be on the left. In the case of rolled

scrolls, recto refers to the inside, and verso to the outside. The derivation of the terms recto and

verso originates from the process of making papyrus, where two layers of reeds stem strips were

pressed together in water at right angles, then dried and polished with pumice to form a smooth

writing surface [40]. In this case recto refers to the front side where the reeds run horizontally
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from the Latin rectus meaning straight, or ruled (this word has an alternative meaning ‘right’

hence recto folio - the page on the right - for Western books). verso is then the back side where

the reeds run vertically, from versus, meaning turned. In document image processing, and more

usually in blind bleed-through restoration, recto may often also refer to the side of the page

being processed and restored, regardless of its location within the document, and verso is the

source of the bleed-through degradation.

Current Issues

Previous work towards bleed-through restoration has struggled in more severely degraded exam-

ples, especially in regions where the foreground and bleed-through overlap, and in most cases, no

attempt is made to preserve the inherent document characteristics in the output restored results.

Access to high resolution, good quality bleed-through examples can be difficult unless connected

with a specific library or digitisation project. Also, due to copyright issues, even if access is

available, it can be difficult to publish results and make data available. As a result, there is a

lack of available bleed-through databases and a standard numerical evaluation methodology for

comparison of different bleed-through restoration approaches. Similar problems exist in the case

of recto-verso registration of bleed-through degraded documents. In previous registration ap-

proaches, the accuracy of the registration itself is generally not considered, with the focus being

on the performance of subsequent bleed-through restoration. The often required preprocessing

of document images prior to registration has also not been addressed.

Objectives

Following from the issues described, the main aims of this thesis are as follows:

� To develop new bleed-through registration and restoration techniques that can cope with

a wider range of degradations than previous approaches, whilst maintaining as much of

the original document appearance as possible.

� To provide access to images used for testing, in order to facilitate comparisons with other

works.

� To develop numerical evaluation approaches for both bleed-through restoration and regis-

tration results.

1.2 Thesis outline

The remainder of this thesis is organised as follows.

Chapter 2: Bleed-Through Removal: A Review

In this chapter the challenges associated with bleed-through removal are described, and a re-

view of previous approaches proposed for bleed-through restoration is presented. Bleed-through
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restoration approaches generally fall into one of two groups: blind or non-blind, depending on

whether they operate using one or both sides of the page. Different methods may be further

classified depending on whether they use intensity information only for restoration, or inten-

sity and spatial information, what type of output they generate, and the related motivation for

restoration.

Chapter 3: Model-Based Approach

This chapter presents an approach for non-blind bleed-through restoration that seeks to preserve

as much as possible of the character and content of the original document in the restored result,

with legibility improved in bleed-through regions. A linear generative model for the degradation

is used, where the observed degraded images are viewed as a per-pixel combination of the

original clean images and some proportion of the corresponding reverse sides. The proposed

model and solution are developed in a Bayesian dual-Markov Random Field (MRF) Maximum

a Posteriori (MAP) framework, solving for 6 unknown parameters per pixel, including the clean

image intensities themselves, and priors are included to ensure that the bleed-through restored

regions are as close in appearance as possible to the surrounding background.

Chapter 4: Non-Parametric Approach

In the approach described in Chapter 3, the aim is to try and perform classification and restora-

tion in the same step, focussing on the clean image intensity estimation, and it is heavily reliant

on good initial estimates to obtain good results. To improve performance on more severe cases

of bleed-through, this chapter presents a second framework for non-blind bleed-through restora-

tion, where the classification and restoration processes are decoupled in order to focus explicitly

on bleed-through region classification. Therefore the proposed framework contains several dis-

crete stages including image preprocessing to remove local intensity variations, joint pixel region

classification using a segmentation of the joint recto-verso intensity histogram followed by con-

nected component analysis on the corresponding joint image labelling, and finally restoration

using exemplar-based image inpainting to preserve the restored document character compared

to the original.

Chapter 5: Evaluation

This chapter presents the details of a small manuscript bleed-through image database with

ground truth foreground text masks and preregistered recto and verso sides, made available

for research purposes. A numerical evaluation approach for bleed-through removal, based on

the database, is then described, and the methods presented in Chapters 3 and 4 are compared

visually and numerically against three previous non-blind approaches, using both the proposed

evaluation and standard document binarisation evaluation metrics.
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Chapter 6: Registration

This chapter presents a framework for bleed-through document recto-verso registration that

consists of two distinct stages. Firstly, an initial global crop and alignment using binary page

outline images is performed, designed both to remove extraneous image information from the

registration, and to cope with examples where there is little or no bleed-through. Secondly,

following previous works, a local grid-based warp is applied, however, using both the sum of

squared differences (SSD) in image intensities and also gradient fields as a warp metric. An

approach for numerical evaluation of bleed-through registration itself is also presented, and

using this the results of the proposed approach is compared to previous methods.

Chapter 7: Conclusion

The final chapter summarises and assesses the contributions of this thesis, and outlines some

directions for future work.

1.3 Contributions

The new work described in this thesis can be summarised as follows:

Chapter 3:

� An explicitly constrained double sided per-pixel linear model for bleed-through degrada-

tion, incorporating the spatial variation in bleed-through properties across a page.

� Incorporation of the linear model into a Bayesian framework for bleed-through restoration,

where the clean image intensity itself is estimated in bleed-through regions.

Chapter 4:

� Joint intensity histogram domain classification of bleed-through degraded documents,

where the two sides are classified simultaneously into four joint classes, rather than in-

dependently.

� Rule based connected label component analysis to refine bleed-through classification.

� Use of exemplar based image inpainting to preserve the original document characteristics

in the restored result.

Chapter 5:

� A publicly available manuscript bleed-through document database with ground truth fore-

ground text masks, and preregistered recto-verso pairs.

� A numerical evaluation approach for comparing the performance of different bleed-through

restoration algorithms.
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Chapter 6:

� Automatic cropping and global registration of recto-verso image pairs based on the page

outline shape.

� Use of the difference between image gradient fields as well as intensity for a recto-verso

registration matching metric.

� A numerical evaluation approach for comparing the performance of different bleed-through

registration algorithms.

1.4 Publications

Portions of the work described in this thesis have appeared in the following publications:

Peer Reviewed Conference Papers

� Róiśın Rowley-Brooke and Anil Kokaram. Bleed-Through Removal in Degraded Manu-

scripts. In Proceedings of the Irish Signals and Systems Conference (ISSC ’11), pages

255-260, Dublin, Ireland, June 2011.

� Róiśın Rowley-Brooke and Anil Kokaram. Degraded Document Bleed-Through Removal.

In Proceedings of the Irish Machine Vision and Image Processing Conference (IMVIP ’11),

pages 70-75, Dublin, Ireland, September 2011.

� Róiśın Rowley-Brooke and Anil Kokaram. Bleed-Through Removal in Degraded Docu-

ments. In Proceedings of IS&T/SPIE Electronic Imaging Symposium, Document Recogni-

tion and Retrieval XIX (DRR ’12), Burlinghame, CA, USA, January 2012.

� Róiśın Rowley-Brooke, François Pitié, and Anil Kokaram. A Ground Truth Bleed-Through

Document Image Database. In Proceedings of the International Conference on Theory and

Practice of Digital Libraries (TPDL ’12), pages 185-196, Paphos, Cyprus, September 2012.

� Róiśın Rowley-Brooke, François Pitié, and Anil Kokaram. A Non-Parametric Framework

for Document Bleed-Through Removal. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR ’13), Portland, OR, USA, June 2013.

� Róiśın Rowley-Brooke, François Pitié, Anil Kokaram. Nonrigid Recto-Verso Registra-

tion Using Page Outline Structure and Content Preserving Warps. In Proceedings of the

2nd International Workshop on Historical Document Imaging and Processing (HIP ’13),

Washington DC, USA, August 2013.
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Presentation

� Oral presentation of paper - Degraded Manuscript Restoration: A Case Study. In Annual

Conference of the Society for Musicology in Ireland (SMI’13), Maynooth, Ireland, June

2013.
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2
A Review of Bleed-Through Restoration Techniques

The purpose of bleed-through restoration is to improve the legibility of affected documents,

either for the benefit of human readers, or to assist further automatic processing, or both. As

mentioned in the introduction to this thesis, previous approaches may be classified into one of

two groups, blind or non-blind, depending on whether they operate with one or both sides of the

document. Blind methods perform bleed-through restoration using one side of the page only,

whereas non-blind methods use both sides of the page, the advantage being that there is more

information available to work with. However, highly accurate registration of the two sides of

the page is an essential pre-processing step to ensure that bleed-through on each side is aligned

with its corresponding originating text - this is a non-trivial problem in itself (see Chapter 6).

Furthermore, in some cases there may only be an image of one side of the page available.

In bleed-through restoration the main source of information used to generate the restored

recto and verso images Yr, Yv , is the intensity of the observed images Ir, Iv , Most previous

approaches perform restoration based on the grayscale intensity alone, though some do use full

RGB colour. The intensity information alone however, is insufficient in severe bleed-through

cases to distinguish between foreground and bleed-through regions, as there is often a significant

overlap between the corresponding intensity profiles. Therefore some previous approaches also

incorporate spatial information in order to model the relationship between neighbouring regions

to improve restoration.

Previous approaches to restoration may also be grouped according to the final restored results

produced. There are three types of output generated:

(i) Binary - where all background and bleed-through information is replaced with a uniform

11
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Figure 2.1: Examples of the different bleed-through restoration outputs on a manuscript extract.

Top row: Original image (left) and binary output. Bottom row: Pseudo-binary (left), and

textured outputs. M25.

intensity, and foreground information is replaced with a contrasting uniform intensity.

(ii) Pseudo-Binary - where, again, all background and bleed-through information is replaced

with a uniform intensity, but varying foreground intensities are preserved.

(iii) Textured - where varying foreground and background intensities are preserved, and bleed-

through is replaced with an estimate of the background texture.

For modern printed documents, binary and pseudo-binary outputs will not affect the overall

appearance for human readers. However, as can be seen in Figure 2.1 when these outputs are

generated for historical documents on more textured writing media, though the legibility is

improved, the character of the document is destroyed with the removal of background texture.

A more visually pleasing output is one that preserves the texture of the page as much as possible.

A further advantage of preserving background and foreground texture is that this allows for some

ambiguity in classification of character edges, which in historical documents especially may not

be sharply defined. The disadvantage of preserving the texture is that the complexity of the

problem is increased by the need to estimate the background texture in bleed-through regions.
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This chapter presents a brief review of previous work towards bleed-through restoration,

examining the underlying intensity and spatial models used.

2.1 Intensity Information

As discussed above, the most common source of information is the intensity of the observed

degraded images. Intuitively, it is clear that in most cases the background will correspond to the

lightest regions of the document, the foreground will be the darkest, and the bleed-through can

be assumed to be somewhere in between. Most approaches that use only intensity information

exploit this, in general assuming that there is a clear distinction between the foreground and

bleed-through intensity profiles.

2.1.1 Thresholding

Thresholding is perhaps the simplest method of image segmentation that splits the image into

different regions based on one or more intensity threshold values. The most common use of

thresholding in document processing is for binarisation, where the document is split into fore-

ground and background. One of the most popular techniques that is often used as a benchmark

for other methods, is that of Otsu [50], where the optimal threshold is defined so as to max-

imise the variance between foreground and background intensities, and to minimise the vari-

ance within. As mentioned previously, binarisation is an important process in document image

analysis, and there have been numerous degraded document binarisation algorithms based on

thresholding proposed that aim to cope with various degradations such as non-uniform inten-

sity profiles, water and dirt stains, and poor contrast. However, most document binarisation

approaches do not deal explicitly with bleed-through degradation - only those that do are dis-

cussed here. For further discussion and comparison of document binarisation techniques the

reader is directed to [31,48,64,66], and also the results of the annual IEEE Document Binarisa-

tion Contest(DIBCO) [23,52–54], for more recent innovations.

The main drawback with use of thresholding for bleed-through removal, is that it assumes

that, globally or locally, the foreground text is always darker than surrounding bleed-through

degradations, and as a result will perform well on documents with light bleed-through only.

In cases where there is a significant overlap between foreground and bleed-through intensities

and text locations, thresholding alone produces poor results. A solution to this is proposed

in [22], where the observation is made that, though some foreground text strokes may be fainter

than bleed-through, they are very likely to be attached to foreground strokes that are darker.

Therefore it is proposed that two intensity thresholds should be defined, either globally or locally;

a high threshold, th, above which there will be negligible bleed-through, and a low threshold,

tl, below which there will be no foreground. The image is thresholded using th to remove

all bleed-through and background, and then oversegmented foreground characters are regrown,
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with tl as the limit for regrowth. To cope with regions where the recto text and bleed-through

overlap, further empirically defined thresholds are applied in the regrowth stage on the gradient

magnitude and direction, and maximum character size. This method produces some impressive

results, however still falls short in the cases where some bleed-through text is darker than or as

dark as the recto text, resulting in misclassification and regrowth of bleed-through interference.

The approach is parameter intensive, as the threshold levels need to be tuned per image to

obtain the best results.

Non-Blind Thresholding

Several methods have been proposed that seek to improve thresholding results by including in-

formation from the other side. Burgoyne et al. in [14] focus on music documents and propose

extensions to the symmetric and non-symmetric Kullback-Leibler (KL) thresholding algorithms

by adding in a second threshold level to distinguish between background and bleed-through, as

well as background and foreground, based on the assumption that bleed-through will always be

lighter than foreground text. They also propose a similar extension to the degraded document bi-

narisation algorithm of Gatos et al. [24] (see Section 5.2 for more information), where a binarised

version of the verso side is used to guide thresholding on the recto side, using foreground from

the verso to indicate possible locations of bleed-through. The incorporation of registered verso

information does not improve the results of the KL algorithm, but some minor improvements

are shown in the Gatos method on historical documents with severe bleed-through, however it is

concluded that these improvements are outweighed by the computational requirements of image

registration.

Dubois and Pathak [21] use rule based comparison between recto and registered verso inten-

sities to locate regions of bleed-through. In this approach a pixel is identified as bleed-through

if the recto intensity is darker than some user defined threshold AND if the ratio between recto

and verso intensities is less than a user defined ink attenuation coefficient. A similar comparison

method is used in [75], where it is assumed that recto pixels that are darker than corresponding

verso pixels are foreground text, and pixels that are lighter are bleed-through interference. These

approaches both rely on the same global illumination properties for both sides of the page.

The thresholding method in [21], is modified in [20], where they identify four regions in

each image to be segmented instead of locating bleed through only. The identified regions

are foreground only, bleed-through only, background, and foreground bleed-through overlap.

Firstly, the background threshold is set as 90% of the peak of the intensity histogram. Next

foreground regions are located by examining minimum filtered versions of the recto and verso.

The verso side is further brightened by an empirically chosen attenuation coefficient, and recto

foreground set as regions where the filtered recto is darker than the filtered, brightened verso.

The remaining pixels are identified as either bleed-through, or bleed-through and foreground,

by thresholding the cross-correlation of the recto and verso intensities over a small window, as

only bleed-through regions should have a high correlation between the two sides. The window
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size and correlation threshold are set empirically.

2.1.2 Clustering

Though clustering and thresholding techniques are often related, several restoration approaches

focus explicitly on the use of clustering as the basis for bleed-through removal.

A blind recursive unsupervised classification approach for RGB document images is proposed

in [19]. Firstly, PCA is applied to the input image to decorrelate and reduce the dimensions

of the data. Then K-means (K = 2) is applied to the intensities of the reduced data and the

two clusters back-projected to the original RGB colourspace in two new separate images. The

resultant image with the darker intensity profile is then retained, and the lighter discarded. This

process is iteratively applied until a visually acceptable result is obtained.

A non-blind clustering approach is proposed in [15] for restoration of early music documents.

Firstly the background information is located and removed using the adaptive degraded docu-

ment binarisation method of Sauvola and Pietikäinen [63], and the musical staff lines are also

detected and removed using the approach proposed in [51]. A set of candidate bleed-through

pixel locations are selected from the foreground layer where the recto intensity is lighter than

the corresponding verso intensity. From these candidate pixels locations four features are exam-

ined: the recto intensity, verso intensity, the difference between intensities, and the correlation

coefficient from a 9x9 region surrounding each candidate location on each side. Fuzzy c-means

clustering [10] on the features is then used to label each candidate as bleed-through or fore-

ground, and those labelled as bleed through removed.

Similarly to the thresholding approaches, these clustering methods assume that there is a

distinction between foreground and bleed-through intensities and will perform poorly on images

where this is not the case.

2.1.3 Blind Source Separation

There have been several works that treat bleed-through degradation as a blind source separation

(BSS) problem [11,69–71,73,74]. A noiseless instantaneous linear mixing model for the observed

intensity data generation process is adopted as follows.

Ii(x, y) = N∑
j=1

aijYj(x, y), i = 1,2, ... ,M

A =
⎡⎢⎢⎢⎢⎢⎢⎣

a11 ⋯ a1N

⋮ ⋮ ⋮
aM1 ⋯ aMN

⎤⎥⎥⎥⎥⎥⎥⎦
(2.1)

Where Ii(x, y) is the ith observed intensity data, Yj(x, y) is the jth intensity source, and A the

unknown mixing matrix. It is assumed that the number of observed and source signals is the

same, such that A is an N ×N square matrix.
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Sources

The number of sources used in the model depends on the amount of available data - approaches

for both blind and non-blind restoration have been developed. In [69, 74], a blind approach is

proposed where the observations are the red green and blue colour channels of the observed

degraded image, and the sources represent the foreground text, background, and bleed-through

degradation. In [11, 70, 73], the linear model is extended to non-blind bleed-through removal,

with the observed degraded grayscale recto and verso images used as the data observations, and

the original clean images as the sources. This is then extended further in [71,72] to cases where

multispectral images of both sides are available. A system of mixing equations is generated with

separate 2x2 mixing matrices for each image type, the observations and sources again being

corresponding degraded and clean recto and verso images respectively.

Solution

For all the BSS based approaches the assumption is made that the extent of bleed-through is

constant across the image. In the blind three source approach [69], Independent Component

Analysis is used to estimate the mixing matrix, and the source containing the most foreground

text visually chosen as the restored result. In [11], a non-blind approach, the results of a similar

ICA stage are then binarised with the adaptive degraded document binarisation algorithm of

Gatos et al. [24] to produce recto and verso foreground masks. The bleed-through regions are

then replaced with estimated mean background intensity. In other non-blind models [71,73] it is

assumed that the foreground and bleed-through strengths are the same on both sides of the page,

and therefore that the corresponding mixing matrix is symmetric and can be estimated using

symmetric orthogonalisation on the observed data. This is extended to noisy mixtures in [70],

where the problem is expressed in a dual MRF framework (see Section 2.2.1), however rather

than using the graphical model directly for classification, the MRF framework uses smoothness

priors to guide estimation of the inverse mixing matrix via an Expectation-Maximisation (EM)

algorithm. There are also no intra-field priors in this case.

Convolution Model

To account for the possible non-instantaneous effect of ink spreading out horizontally as it bleeds-

through the page, the framework in [70] is extended to noisy linear convolutive mixtures in [72]

for multispectral views of one or both sides of the page, resulting in the degradation model

Ii(x, y) = N∑
j=1

aij Ŷij(x, y) + ni(x, y) i = 1,2, ... ,M
Ŷij(x, y) =HijYj(x, y), (2.2)

where Ŷij(x, y) is the degraded source Yj(x, y) in observation Ii(x, y), and Hij is the blur matrix

that performs convolution between the corresponding source image Yj(x, y), and a blur kernel

Bij . This model may be a more realistic representation of the degradation process, however in
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this approach it is again assumed that the extent of bleed-through is constant across the image.

Also where non-blind restoration is performed, it is assumed again that the mixing matrix A is

symmetric, and that the convolution matrices to generate the observed images are the same for

both sides of the page.

As these approaches all rely on the assumption of uniform bleed-through across each page,

the number of documents that they can successfully be applied to is limited to those with very

light bleed-through.

2.1.4 Diffusion

The physical process of ink bleeding through the page may be considered to be diffusive. In [43],

bleed-through degraded documents are viewed as dynamic processes whose change over time is

directed by three diffusive components:

(i) The diffusion of the recto text as the ink spreads across and through the medium, and

fades over time.

(ii) The diffusion of the background medium; this models effects such as dust becoming at-

tached, the spread of mould or damp, and the increase in gaps in the medium.

(iii) The diffusion of the verso text as the ink bleeds through the page.

This model is expressed via the following equation:

∂Ir

∂t
= DIFF(Ir, Yr, cr)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

recto

+DIFF(Ir, Ibg, cbg)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

background

+DIFF(Ir, Iv , cv)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

verso

(2.3)

where Ir(t) is the observed image at artificial time t, Yr is the clean recto image, Ibg the estimated

background, and Iv the clean verso image. cx is the diffusion coefficient for the corresponding

source component Ix, and DIFF(I, Y, c) is a generalised diffusion operator, in order to maintain

the flexibility of the overall model, that describes the diffusion from Y onto I with coefficient c.

Under the assumption that the ideal background is a constant intensity, this model creates

good synthetic bleed-through documents and the following equation is proposed for restoration.

∂Ir

∂t
= DIFF(Ir, Ir, ci,r) +DIFF(Ir, Ii,bg, ci,bg) −DIFF(Ir, Iv , ci,v), (2.4)

where Ir and Iv are the recto and verso images (at time t = 0 they represent the observed degraded

images). The subscript index i on the diffusion coefficients, ci,x, is to differentiate between the

degraded document creation and restoration processes as the verso diffusion rate has a different

form for each case. Restoration of the degraded images is performed using finite-differences over

8 pixel neighbourhoods. This approach is very parameter intensive, with 5 empirically fixed

parameters for the restoration process, and relies on the assumption of a uniform background.

The model used also does not explicitly take into account regions of overlapping foreground and
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bleed-through - the synthetic images created do not ensure that the bleed-through is invisible

through the foreground text.

2.2 Spatial Information

As has been discussed previously, intensity information alone is insufficient for identifying bleed-

through in severely degraded cases, due to the overlap in intensity ranges between foreground,

bleed-through and background regions. Some form of prior knowledge and spatial dependency

needs to be introduced in order to improve the restoration. In what follows, an overview of

previous work that incorporates both spatial and intensity information into the restoration

process is presented

2.2.1 Dual-Layer MRF

Several methods have modelled the degraded images as a dual-layer MRF in order to capture the

intrinsic spatial correspondence between pixels. In these cases the bleed-through restoration is

formulated as a discrete labelling problem, where each pixel is assigned a label l from a predefined

set of labels that varies between approaches. The optimal labelling then can be defined as one

that minimises the following energy

E = Ed + λEs, (2.5)

where Ed at a pixel site represents the cost associated with assigning label l to that pixel, and

is based on the image intensity information. Es is a smoothness cost associated with assigning

different labels to neighbouring pixels, and the weight parameter λ balances the influence of the

two energies.

Wolf [78] Blind Method

A blind dual MRF based method is proposed by Wolf in [78], where the intensities of the ob-

served image foreground, bleed-through and background are modelled as Normal Distributions.

Two binary label fields, Lr,Lv , are introduced to control which distribution is represented in

different image regions, with L = 0 corresponding to background, and L = 1 corresponding to

foreground. These label fields are used to ensure that bleed-through degradation is only visi-

ble in non-foreground regions, thus enforcing the observed fact that foreground text is opaque,

that is, bleed-through strokes are not visible through the foreground text. With the inclu-

sion of the two label fields, the optimisation now is to maximise the posterior probability:

p(Lr,Lv ∣Ir). The smoothness energy Es, based on the two label fields, in this case describes the

prior knowledge about the clean document, and is expressed as the sum of two Potts models,

one corresponding to each label field. The motivation behind using the two fields is that the seg-

mentation process is more suited to the document bleed-through generation model. Wolf argues

that if a single label field were used, with a space of three or four labels (foreground/bleed-
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through/background/foreground&bleed-through overlap), the prior would be regularising a sin-

gle field created by two processes, that is the bleed-through from the two sides. Instead the

model uses two fields each chosen from a space of two labels (foreground/background) such

that the prior regularises these two fields, each corresponding to a single bleed-through pro-

cess. The two fields are assumed to be independent, and that allows for the factorisation of the

prior probability. This assumption of independence of the recto and verso writing is only made

on the prior in the absence of an observation. In other words the recto and verso text of the

clean segmented document have no influence over each other, but in the presence of degradation

due to bleed-through, there is interference and interaction between the two fields through the

observation field, and this interaction is described in the data model.

The label fields are initialised using k-means clustering (k = 3) on the intensities, however the

labels are not assigned based on the subsequent cluster intensity profiles. Instead the background

cluster is chosen as the one having most pixels, and the foreground and bleed-through are

assigned based on a connected component analysis of the remaining two; as foreground pixels

cover bleed-through pixels, the foreground cluster is chosen as that which has the least connected

components. The final labelling is obtained using graph cuts optimisation [37], and the final

restored result is obtained by replacing bleed-through pixels with a local mean background

intensity value - thus the document character in this technique is preserved.

This approach is shown to outperform other blind methods, however, it still relies on the

initial label field estimates using intensity based clustering, and so does not perform well where

there are large region of dark bleed-through. Furthermore, background replacement using local

mean intensities can leave visible artefacts in highly textured image examples.

Huang et al. [34, 35] Non-Blind Method

A non-blind dual MRF approach is proposed in [34,35], where in this case the label for each pixel

is taken from a set of three labels: foreground (fg), background (bg), or bleed-through (bl). The

data cost is based on initial K-Nearest Neighbour (KNN) and Support Vector Machine (SVM)

classification of the ratio of intensities between the two sides. Training data for the classifier

is obtained in the form of user drawn coloured strokes in regions of each pixel class on both

sides. Given the likelihood Sfg, Sbg, Sbl of each pixel to each class label l ∈ {fg, bg, bl}, obtained
at initialisation, the data cost is defined as

Ed(l = fg) = Sbl + Sbg

2(Sfg + Sbg + Sbl) (2.6)

Ed(l = bg) = Sfg + Sbg

2(Sfg + Sbg + Sbl)
Ed(l = bl) = Sbl + Sfg

2(Sfg + Sbg + Sbl)
The smoothness energy, Es, is defined with two components. An intra-field prior energy is

used to ensure spatial smoothness in the classification of each layer, with penalties for assigning
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different labels to neighbouring pixels, based on the ratio of intensities between the two sides. An

inter-field prior is also included to ensure that certain label combinations between layers cannot

occur, such as bleed-through in the same location on both sides. The energy is minimised again

using graph cuts [37], and areas classified as background or bleed-through are replaced with the

mean background intensity value.

Due to the interesting incorporation of user assistance, this approach is used for comparison

against the proposed methods in Chapter 5. The results presented show that this approach

relies on a good user markup to produce good results, and tends to oversegment the foreground

of one side in regions where foreground and bleed-through overlap.

2.2.2 Wavelet Enhancement

Wavelet transforms have been applied to many areas in image processing, including compression,

enhancement, de-noising, texture analysis and segmentation, and feature detection. The use of

wavelet transforms provides an alternative approach to modelling the spatial dependencies within

images, as they perform decomposition into the different high and low frequency components. In

bleed-through restoration they are useful for capturing the distinction between foreground and

bleed-through regions, as the foreground is often more sharply defined, with a higher frequency

profile than bleed-through, which is often blurred slightly due to the spread of ink across and

through the page.

In [67] a non-blind bleed-through removal method is proposed that iteratively sharpens fore-

ground text and smears bleed-through in the wavelet domain to improve the results of subsequent

binarisation. In the case of the recto, binary enhancement and smearing features are defined

based on an initial estimate of foreground text on the recto and verso sides respectively. This

estimate is obtained by performing Canny edge detection on a scaled intensity difference image

between the two sides, exploiting the fact that foreground text will be more sharply defined than

bleed-through text. The edge detection is further improved by incorporating constraints on the

stroke orientation - favouring slanted foreground strokes. The detected foreground edges are

then used as loci to obtain text strokes of a predetermined width. These recto and verso stroke

images are binarised using Niblack’s document binarisation method [47] to obtain the enhance-

ment and smearing features respectively. Iterative wavelet deconstruction and reconstruction

are then applied to each image, scaling up the foreground text components and shrinking the

bleed-through, guided by the enhancement and smearing features respectively. The enhanced

images are then binarised, using the Canny edge detection, stroke location and thresholding

approach used initially, to obtain the final output results.

A variation of this approach was proposed in [77] for blind bleed-through removal. In this

case the assumption of slanted text is more heavily relied upon, as a directional wavelet transform

is applied to the images, where the wavelet filters are convolved along directions of 45○ and 135○,

to capture foreground and bleed-through strokes in different components. The bleed-through is
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then reduced by iteratively enhancing one orientation component and smearing the other. The

final processing stage used in [67] is then applied to obtain the binarised output.

For both these approaches there are again several parameters which must be tuned to obtain

the best results per image, including the initial binarisation thresholds, the number of wavelet

levels, and the wavelet enhancing and smearing factors. Also, regions of foreground overlap-

ping on both sides of the page will both be enhanced and smeared, which could result in over

segmentation of the foreground text, depending on the enhancing and smearing factors chosen.

2.2.3 Variational Model

In [44], a variational denoising model for bleed-through correction, using wavelet shrinkage,

is proposed that includes models for both blind and non-blind restoration, incorporating the

reverse diffusion approach described in Section 2.1.4. The non-blind method uses a function of

the difference in intensity between the degraded recto and verso sides as an indicator of bleed-

through and foreground text regions, and spatial smoothness is enforced in the wavelet domain.

The variational model for each side consists of three terms:

(i) A ‘fidelity’ term ensures the restored image is close to the original in foreground regions.

This corresponds to the data cost Ed in Equation 2.5.

(ii) A ‘reverse diffusion’ term ensures the restored image is close to a uniform target background

in background and bleed-through regions. This is essentially an added prior on the clean

document appearance.

(iii) A smoothness term, corresponding to the energy Es in Equation 2.5, ensures that the

restored image does not contain harsh cut-off at character edges, and that fine details are

preserved.

The first two terms are weighted by a function of the intensity difference. The smoothness

term is defined on the wavelet coefficients of the restored image, and weighted with a smoothing

parameter λ chosen based on the estimated background of the degraded image. The model, for

the recto side only, is expressed via minimisation of the energy functional

E(dr) = ∣∣Yr − Ir ∣∣2w0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fidelity

+ ∣∣Yr − Yb∣∣2wrev´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reverse diffusion

+2λ∣∣dr ∣∣pbαp (lp)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
smoothness

, (2.7)

where dr is the corresponding wavelet coefficient sequence of the clean recto image Yr, Ir is the

observed degraded recto image, and Yb is the recto target background intensity. ∣∣Y ∣∣w represents

the L2 norm of Y weighted with function w. The reverse diffusion weight for the recto side wrev

is defined from the observed degraded images as follows

wrev(Ir) = 1

2
(1 + tanh(Iv − Ir − 2σrev

σrev
)), (2.8)



22 A Review of Bleed-Through Restoration Techniques

where σrev is a parameter controlling the degree of reverse diffusion. The fidelity weight w0 in

Equation 2.7 is defined as 1 − wrev. The solution of the model is obtained using hard wavelet

shrinkage.

The variational model proposed for blind bleed-through removal is similar, the only difference

being that the reverse diffusion weight function in Equation 2.7 is replaced with a background

diffusion weight function based on the difference between the estimated background, Ib and the

degraded image. This weight function (again for the recto side only) is expressed as follows:

wbkgd(Ir) = 1

2
(1 + tanh(Ib − Ir + 2σbkgd

σbkgd
)), (2.9)

where the parameter σbkgd represents the extent that gray values are affected by the background

diffusion. The solution to this model is reconstructed using the inverse wavelet transform.

The non-blind approach in this case is also selected for comparison with the proposed meth-

ods in Chapter 5, as it focuses on the preservation of fine foreground features. The results

presented show that this restoration approach is sensitive to the smoothness parameter chosen,

with better results obtained in some cases when this is manually tuned rather than set based

on the estimated background.

2.2.4 Active Contours

Active Contours is a shape based model driven segmentation approach, where the shape contour

is explicitly modelled, rather than implicitly at segmentation boundaries. The principle of Active

Contours is to search for a curve in the image where the weighted sum of internal energy and

potential energy is minimum. The internal energy is defined by the curve itself to keep the

model smooth during deformation, corresponding to Es in Equation 2.5. The potential energy

is computed from the image data to move the curve toward an object boundary or other desired

feature within the image, corresponding to Ed in Equation 2.5. The well known Chan-Vese

model [16] describes a method for region-based active contour segmentation using level set

functions. This approach does not depend on sharp image gradients at object edges but rather

obtains segmentation by minimising the intensity variance inside and outside the curves. This

is useful in the case of degraded documents as character edges often fall off gradually due to the

porosity of the writing medium or ink fading over time [29].

In [45] a framework for non-blind bleed-through removal based on the Chan-Vese method

is described, where an active contour, C(t), that approaches the segmented recto text as the

artificial time t → ∞, is located on the intersection between an evolving level-set function, or

surface, φ(x, y, t), and the xy plane. The level set function evolution in this is controlled by three

forces; a local thresholding force, FT , based on the difference between the recto intensity and a

selected threshold value, that raises the weight on pixels darker than the threshold, and reduces

that of lighter pixels; a reverse diffusion force FV , similar to Equation 2.8, again calculated

based on the difference between intensities on the recto and verso sides; and a regularising force,
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FREG, that favours smooth boundaries:

∂φ

∂t
= δφ(FT + νFREG + µFV ), (2.10)

where δφ controls the stability of the evolution as it limits change in the level set function to

regions close to the zero set (xy plane). Parameters µ and ν control the importance of the

diffusion force and smoothness of segmentation boundaries respectively, and as they must be

estimated and tuned based on degradation levels and document type, this is another parameter

intensive approach.

Another non-blind contour based method is proposed in [29], also based on the Chan-Vese

model, that defines the segmenting curve, C, by minimising over the energy functional

E = E1 + λE2, (2.11)

where

E1 = µ∣C ∣ + λ1∫
φ1

∣Ir(x, y) − c1∣2dxdy + λ2∫
φ2

∣Ir(x, y) − c2∣2dxdy (2.12)

is the original Chan-Vese functional with ∣C ∣ equal to the length of the curve, and c1 and c2 the

mean intensities for the domains φ1 and φ2, that is inside the curve, corresponding to foreground

text, and outside the curve respectively. µ,λ1, and λ2 are weighting parameters for each term, set

to 1. The second energy term E2 in Equation 2.11 is used to mitigate the under segmentation of

the foreground text from the bleed-through where their intensity ranges overlap, and is defined

based on the difference in intensity between the two sides as

E2 = ∫
φ1

∣Ir(x, y) − Iv(x, y) − c3∣2dxdy + ∫
φ2

∣Ir(x, y) − Iv(x, y)∣2dxdy, (2.13)

where c3 is the mean estimated foreground intensity inside the curve. This energy term is

based on the assumption that the intensity of the recto foreground pixels is typically lower

than corresponding bleed-through or background verso pixels, and so tends to over segment

the foreground text in regions where there is foreground on both sides of the page. Therefore

the combination of the two energies provides a balance between under segmentation where

bleed-through and foreground intensities are not distinct, and over segmentation where there is

foreground on both sides of the page. The parameter λ in Equation 2.11 balances the influence

of the two energies, and is tuned manually for each image pair.

A post-processing step is proposed for severely degraded examples, where there is a significant

overlap between bleed-through and foreground intensities. In these cases a high value for λ is

necessary to remove all of the bleed-through, and this results in over segmentation in overlapping

foreground regions. This stage attempts to complete broken characters using a modified Cahn-

Hilliard inpainting model for binary images [8], with the darkest pixels in the background domain

φ2 identified as the target candidate completion domain.

As this approach is shown to outperform the non-blind wavelet enhancement method [67],

and the user assisted dual-MRF approach [35], it is used for comparison with the proposed meth-

ods in Chapter 5. The results show that this method, with user tuned smoothness parameter,
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performs well on a range of different degradation types. However, the results still suffer when

bleed-through is very dark - the stroke completion repairs bleed-through regions, and where

there is significant foreground and bleed-through overlap - the gaps are too large for stroke

completion to work.

2.3 Summary

This chapter has presented an overview of previous approaches to bleed-through removal, fo-

cussing on the underlying image processing used. The limitations of the methods described, fall

into three categories: under segmentation of bleed-through due to overlapping bleed-through

and foreground intensity ranges, over segmentation of regions where there is foreground on both

sides of the page, and reliance on parameter tuning. Also, in many cases the assumptions

made about the degraded documents limit the scope of the algorithms significantly, such as

the BSS methods where uniform bleed-through is assumed across the images, and the wavelet

enhancement approaches, where the text is assumed to be highly slanted.

User Interaction

Many of the described restoration methods claim to be fully automatic, however in reality

there are often a number of parameters that need to be tuned on each image by a user before

optimal results can be achieved. There has therefore been an increasing trend in approaches

proposed that try to avoid parameter tuning and explicitly to make use of user interaction to

improve performance. For example user assisted degraded document binarisation methods have

been proposed in [18, 80]. Also the non-blind dual MRF based approach described in 2.2.1

incorporates user drawn strokes in regions of foreground, background, and bleed-through to use

as training data for the classifiers. This approach is extended in [79] to a directed assistance

framework, where the user is iteratively directed to regions of low confidence that may need

further input for an improved classification result. In the contour based approach [29], the

number of parameters required for tuning is limited to 1, and it is proposed to incorporate a

slider that the user can employ to tune this parameter in real time to obtain the optimal output.

The benefits of incorporation of user interaction will be discussed further in Chapter 5.

Restoration

As mentioned in the introduction to this chapter, there are three different types of restoration

output generated. Barring a few exceptions, all of the techniques described produce binary or

pseudo-binary output results. The approaches that preserve the background texture, replacing

bleed-through regions only, all use an estimate of the local mean background intensity ( [11,20,

78]). This is suitable for documents that have a reasonably uniform background, however, in

cases where the background medium is highly textured, this approach will leave visible artefacts.

There is clearly a lack of emphasis on preserving the true character of the document in the output
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results by trying to model the background texture as well as intensity. This problem will be

addressed in the proposed approaches in Chapters 3 and 4.
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3
Model-Based Approach

In Chapter 2, previous approaches to bleed-through removal were discussed, focussing on the use

of intensity and spatial information available and the different output types generated. It was

noted that bleed-through restoration approaches that produce binary or pseudo-binary outputs

can destroy the character of manuscript document images, and also may not perform well at

character edges where there is no clearly defined boundary - creating a harsh intensity cut-

off effect. For viewing purposes it is preferable to leave as much of the document intact and

unaltered as possible, so that the experience of studying the document image remains close to

that of studying the physical document. Modelling the degraded images as the result of bleed-

through degradation, and attempting to recover the original clean images allows for preservation

of the document character, focussing on removing bleed-through regions only and preserving the

background texture in those regions.

In this chapter therefore, an approach for bleed-through restoration is proposed that uses a

linear generative model, where the observed degraded images are viewed as a per-pixel combina-

tion of the original clean images and some proportion of the corresponding reverse sides. Use of

a strictly linear model however may not always accurately represent the bleed-through process,

and therefore it is necessary to add constraints to limit the presence of bleed-through to certain

locations only. The overlapping ink opacity constraint proposed in [78], where bleed-through

can only occur in non-foreground regions, is enforced explicitly to ensure that the bleed-through

process is accurately modelled. The proposed model and solution are developed in a Bayesian

dual-MRF MAP framework, solving for 6 unknown parameters per recto-verso pixel (including

the clean images themselves), and including both intra and inter-field priors to enforce spatial

27
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Figure 3.1: The strength of bleed-through cannot be assumed constant across a page: Recto and

verso manuscript extracts, with cropped sections highlighting the variations in bleed-through

strength. M14.

smoothness, and to ensure that the restored results appear realistic. It is assumed that registra-

tion has already been performed, and in the rest of this chapter ‘verso’ will refer to the flipped,

registered verso side. The aim of this approach therefore is to produce clean results that remain

as close to the original images as possible, but where legibility has been improved by the removal

of bleed-through regions1.

3.1 The Case for a Linear Model

As highlighted in Chapter 2, linear models have been used previously to model bleed-through

degradation, though the physical process itself is nonlinear [21, 69, 70, 73]. In [73] the observed

recto and verso images, [Ir(x, y), Iv(x, y)] at pixel location (x, y), are treated as linear mixtures

1Parts of this chapter are based on the work published in [57,58].
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Figure 3.2: Comparison of linear and constrained linear model synthesised bleed-through out-

puts. From left to right: Synthesised clean recto (top) and verso sample images. Degraded

images created using Equation 3.1, with A11 = A22 = 1, and A12 = A21 = 0.34. Degraded images

created using a constrained linear model and variable mixing parameters.

of the target clean recto and verso source images, [Yr(x, y), Yv(x, y)], as follows.
Ir(x, y) = A11Yr(x, y) +A12Yv(x, y)
Iv(x, y) = A21Yr(x, y) +A22Yv(x, y), (3.1)

where A =

⎡⎢⎢⎢⎢⎣
A11 A12

A21 A22

⎤⎥⎥⎥⎥⎦
is the unknown mixing matrix between sources to be estimated, and Aij

is the proportion of one source in a given observation. This model is unrealistic in that it assumes

that the degradation is uniform across the images, whereas this is often not the case, especially

for manuscripts, as can be seen in Figure 3.1. For example, the variable pressure used when

writing different characters, the size of character and amount/type of ink used, the potential

variability in the porosity or thickness of hand made writing media, and damage to the medium

due to water stains, are just a few factors that may affect the strength of bleed-through in local

regions across a page. Furthermore, constant mixing parameters do not account for the fact that

in regions where foreground and bleed-through overlap, the foreground is opaque and covers

the bleed-through [78]. In these regions, restoration based on the model in Equation 3.1 would

result in the foreground information being removed. It is more realistic therefore to have variable

mixing parameters across the images, and to limit the presence of bleed-through to regions where

there is no foreground text. As can be seen in Figure 3.2, a linear model modified by these

assumptions produces more realistic synthetic images. The model used therefore simulates the

physical degradation using a constrained per pixel linear model. In what follows, white pixels

are considered to have intensity of 0, and black pixels 255, such that text regions have higher

intensities than background regions.
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3.2 Degradation Model

In the proposed model, an observed degraded recto pixel intensity Ir(x, y), is a linear combina-

tion of the corresponding clean recto pixel Yr(x, y) and some proportion of the clean verso pixel

Yv(x, y). The proportion of bleed-through is controlled by bleed-through parameter αv(x, y),
(0 ≤ αv < 1), and also the binary masks defined on both sides Mr(x, y),Mv(x, y). Due to the

symmetrical nature of the problem, the formation of the observed verso pixel Iv(x, y) is similar.

The model for each side of the page therefore is as follows.

Ir(x, y) = Yr(x, y) +Mr(x, y)(1 −Mv(x, y))αv(x, y)Yv(x, y) + ǫr(x, y)
Iv(x, y) = Yv(x, y) +Mv(x, y)(1 −Mr(x, y))αr(x, y)Yr(x, y) + ǫv(x, y) (3.2)

The binary mask terms, Mr, Mv are defined to be 0 where the corresponding image is foreground

text, and 1 everywhere else. The combination of the mask terms explicitly ensures the opacity

of foreground text limiting the presence of the clean verso image, Yv in the observed recto image

to regions where Yr is background and Yv is foreground. It is also assumed that the document

image suffers from added noise due to physical degradation of the medium and the imaging

process. This noise is represented in the terms ǫr, ǫv, and is assumed to be zero mean and

Gaussian: N (0, σ2
ǫr
), N (0, σ2

ǫv
).

3.3 Bayesian Framework

The bleed-through removal method is formulated under a Bayesian Maximum a posteriori

(MAP) framework. From the degradation model in Equation 3.2 it is clear that the unknown

parameter vector for estimation contains six variables per pixel: θ = [αv , αr,Mv ,Mr, Yr, Yv]. Ap-
plying Bayes’ rule and discarding pixel coordinates (x, y) for clarity, the p.d.f. for the posterior

probability of θ given the observed data Ir, Iv, may be factorised as

p(θ∣Ir, Iv , M̃r, M̃v, α̃r, α̃v)∝ p(Ir, Iv ∣θ, M̃r, M̃v , α̃r, α̃v)p(θ∣M̃r, M̃v , α̃r, α̃v), (3.3)

where [M̃r, M̃v, α̃r, α̃v] represent the existing state of the estimated masks and bleed-through

parameters in the neighbourhood of the pixel site currently being considered. In what follows,

the case of the observed recto image only is considered as, again, due to the symmetrical nature

of the model, the formulation is similar for the verso side.
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3.3.1 Likelihood

Following the degradation model, the likelihood combines the influence of both the recto and

verso sides to yield a joint Gaussian distribution

p(Ir, Iv ∣θ, M̃r, M̃v , α̃r, α̃v)∝ exp−{ 1

2σ2
ǫr

[Ir − Yr −Mr(1 −Mv)αvYv]2

+ 1

2σ2
ǫv

[Iv − Yv −Mv(1 −Mr)αrYr]2}. (3.4)

Here it is assumed that the noise generating processes of the two sides are independent.

3.3.2 Priors

Prior models are defined for each of the unknown parameters to guide estimation as follows.

Masks

The mask variables Mr, Mv mark the estimated regions of foreground text, and should therefore

be smooth in local patches. A Gibbs energy prior for spatial smoothness makes sense in this

case. In regions where there is neither foreground text nor bleed-through degradation, there is

no ambiguity and it is clear that these variables should be 1. It is possible to estimate roughly

the regions of text, bleed-through and background (using K-means clustering on the degraded

image, with K=3). Using this rough estimate it is sensible then to include a prior constraining

the mask variables in the definite non-text, that is, background regions. Therefore the prior for

the masks is

p(Mr ∣M̃)∝ exp−{ ∑
i∈Nx,y

(Mr − M̃i)2λM + βr(1 −Mr)}. (3.5)

Here M̃ represents the current state of Mr in the 8-connected neighbourhood N of the current

site (x, y), and λM is a parameter to control the spatial smoothness (in essence an Ising model

in this case due to the binary nature of the masks). In the second term, βr represents a penalty

for setting M = 0 in the regions of definite non-text, and is estimated in the initialisation step

discussed in Section 3.4.4.

Mixing Parameters

Priors for the mixing parameters, αv, αr follow similar logic. Firstly, smoothness is encour-

aged with the Gibbs energy prior. Secondly, it is necessary when the mixing parameters are

present to constrain them to values that would yield material that is close in intensity to the

background regions in the clean image. Without this constraint there is nothing limiting the

mixing parameters to create useful images since the smoothness of itself does not constrain the

absolute value - see Figure 3.3. Finally to prevent the smoothness prior both from spreading the

mixing parameters into foreground regions, and also from creating the impossible scenario of

bleed-through on both sides in the same location, an intra-layer prior is used so that the mixing
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Figure 3.3: The constraining priors on the mixing parameters and clean image estimates ensure

that bleed-through restored regions are close in intensity to the estimated local mean background

intensity. Left to right: Original degraded recto (top) and verso sample images, restored without

constraining priors, and restored with constraining priors. In the results without constraining

priors there are visible artefacts in the bleed-through restored regions. M02.

parameters are constrained to the initial mask estimates, and against each other. Hence the

prior model is

p(αv ∣α̃, ᾱv , M̄v)∝ exp−{ ∑
i∈Nx,y

(αv − α̃i)2λα + (αv − ᾱv)2λc + (M̄vαrα
2
v)λc}, (3.6)

where α̃ are values of the αv in the 8-connected neighbourhood of the current site (x, y), ᾱv is a

rough estimate of αv, obtained during initialisation, M̄v is the initial estimate for the verso mask,

and λα, λc are parameters to control the degree of smoothness and constraint respectively. The

smoothness parameter is much higher for the mixing parameters than for the masks so as to

ensure that the final clean images retain as little trace of the bleed-through as possible, and

to avoid harsh intensity cut-off at character edges; the purpose of the mixing parameters is to

blend the bleed-through regions smoothly into the background. The final intra-layer term in

Equation 3.6 adds a penalty for αv defining bleed-through on the recto side in regions where
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the estimated verso mask is not foreground (M̄v = 1), and also in regions where αr defines that

there is bleed-through on the verso side, which must correspond with foreground text on the

recto.

Clean Images

A prior is used for the clean image data to encourage, as for the mixing parameters, that the

average brightness of the restored document in the bleed-through regions matches the average

brightness of the background. This is again a simple Gaussian prior with parameters derived at

initialisation.

p(Yr ∣Ȳb)∝ exp−{ 1

2σ2
ǫr

Mr(1 −Mv)αv(Yr − Ȳb)2}. (3.7)

Here Ȳb is an estimate of the mean local background intensity of the clean recto image, and

σ2
ǫr is the variance of the background noise term as defined in Section 3.2. The multiplier

Mr(1 −Mv)αv ensures that this constraint is restricted to bleed-through restored regions only,

and is proportional to the strength of bleed-through.

3.4 Solution

To solve for all the variables, a hybrid sampling scheme is applied that uses a combination of

Iterated Conditional Modes (ICM) optimisation [9], and Gibbs sampling [25]. In this case the

mode of the conditionals are selected for the masks and mixing parameters, while samples are

drawn for the underlying clean images Yr, Yv. The solution for each of the variables is presented

below for the case of the recto side only, as, again, the verso equations are similar.

3.4.1 Masks Estimate

As the masks are clearly present in both observations, the estimates for the masks are generated

using the conditional

p(Mr ∣αr, αv,Mv , Yr, Yv, Ir, Iv, M̃)∝ exp−{ 1

2σ2
ǫr

(Ir − Yr −Mr(1 −Mv)αvYv)2

+ 1

2σ2
ǫv

(Iv − Yv −Mv(1 −Mr)αrYr)2 + ∑
i∈Nx,y

(Mr − M̃i)2λM + βr(1 −Mr)}, (3.8)

where the terms are the same as for Equation 3.5. In this case the estimation is performed

numerically since Mr is binary: both Mr = 0 and Mr = 1 are substituted in the expression above,

and whichever yields the greater probability is selected.
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3.4.2 Mixing Parameters Estimate

Each mixing parameter is present in only one of the observation terms, therefore the conditional

probability at a site is

p(αv ∣Mv,Mr, Yr, Yv, Ir, Iv, α̃, ᾱv, αr, M̄v)∝ exp−{ 1

2σ2
ǫr

(Ir − Yr −Mr(1 −Mv)αvYv)2

+ ∑
i∈Nx,y

(αv − α̃i)2λα + (αv − ᾱv)2λc + (M̄vαrα
2
v)λc}, (3.9)

where the terms are the same as in Equation 3.6. The estimate of αv at each site is obtained

analytically since the expression is quadratic in αv. Hence

α̂v =
2σ2

ǫr
[∑i α̃iλα + ᾱvλc] + (Ir − Yr)Mr(1 −Mv)Yv

2σ2
ǫr
[∑i λα + λc(1 + M̄vαr)] + (Mr(1 −Mv)Yv)2 . (3.10)

3.4.3 Clean Images Estimate

The estimates for the clean images are generated with the conditional

p(Yr ∣αr, αv ,Mr,Mv , Yv, Ir, Iv)∝ exp−{ 1

2σ2
ǫr

(Ir − Yr −Mr(1 −Mv)αvYv)2

+ 1

2σ2
ǫv

(Iv − Yv −Mv(1 −Mr)αrYr)2 + 1

2σ2
ǫr

Mr(1 −Mv)αv(Yr − Ȳb)2}. (3.11)

Again, the terms here are the same as discussed for Equation 3.7. However, instead of maximising

the conditional following the ICM process, a sample is drawn from this distribution within ±T
standard deviations of the mean (T is set to 0.5 in what follows). This strategy has been

employed by other authors working in video and audio restoration [49]. The reasoning behind

this is that the mean tends to generate over smooth images, while using an unconstrained random

draw is visibly chaotic - see Figure 3.4. Therefore by drawing samples within some distance of

the mean, a textural component in the underlying signal is allowed for and the iterative process

performs better. The required draw is therefore Yr ∼ N (Ȳr, σ
2
Y ). By completing the square in

the conditional above the mean and variance are extracted:

Ȳr =
Ir +Mr(1 −Mv)αv(Ȳb − Yv) + σ2(Iv − Yv)Mv(1 −Mr)αr

1 + σ2(Mv(1 −Mr)αr)2 +Mr(1 −Mv)αv

, (3.12)

where σ2
= σ2

ǫr/σ2
ǫv

σ2
Y =

σ2
ǫrσ

2
ǫv

σ2
ǫv(1 +Mr(1 −Mv)αv) + (Mv(1 −Mr)αr)2σ2

ǫr

. (3.13)

The estimate for σ2
Y depends on estimates for σ2

ǫr
, σ2

ǫv
, in the proposed method these estimates

are obtained from the observed data using the initial mask estimates.
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Figure 3.4: Drawing samples to estimate the clean images produces better results visually. Left

to right: Original degraded recto (top) and verso sample images, clean image estimates (with

known foreground masks) using the mean, unconstrained random samples, and constrained

samples of the error distributions. M19.

A secondary estimation method for Yr, Yv, that is used every N iterations (N = 10 in this

case), is to maximise conditionals that ignore the mask terms and priors, hence

p(Yr∣αr, αv, Yv , Ir, Iv)∝ exp−{ 1

2σ2
ǫr

(Ir − Yr − αvYv)2 + 1

2σ2
ǫv

(Iv − Yv − αrYr)2}. (3.14)

Due to the quadratic nature of Equation 3.14 in Yr, an estimate of Yr at a site is obtained

analytically, giving

Ŷr =
Ir −αvYv + σ2(Iv − Yv)αr

1 + σ2α2
r

, (3.15)

where σ2 is defined as above. Periodically reverting to this unconstrained linear model allows

the heavily weighted smoothness priors on the mixing parameters to encourage reclassification

in the masks of bleed-through regions misclassified as foreground. Figure 3.5 highlights the

effectiveness of using the linear model to remove misclassified bleed-through regions showing

sample extracts of clean image and mask estimates over 35 iterations. Furthermore using the

secondary model for the final restored result ensures that resulting clean images appear smooth

with minimal visible bleed-through artefacts remaining.

3.4.4 Initialisation

In this work the masks are initialised using K-means clustering on the intensity of the observed

images, using 3 clusters. The lightest two clusters are considered to be background of the image
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Iteration Yr Mr αv Yv Mv
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Figure 3.5: Sample extracts of clean image and mask estimates over 35 iterations. The uncon-

strained linear model, substituted every 10 iterations and for the final clean results, encourages

reclassification of a dark bleed-through region on the recto side misclassified as foreground text,

and that the final restored result has minimal residual bleed-through degradation. M01.
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and the darkest cluster is then an estimate of the foreground text. This approach will create

conservative initial estimates - ensuring that no foreground will be misclassified as bleed-through

and removed erroneously. The mask penalties βr, βv are calculated in the same step by setting

recto and verso background variables Br,Bv = 1 in locations coincident with the brightest cluster

where there is no text or bleed-through. The constraint variables βr, βv are then configured as

βr = 100 × Br, and βv = 100 × Bv. The masks and observed images are used to estimate the

noise variance for both recto and verso sides, based on the variance of regions where Br = 0 and

Bv = 0. Also the estimates for local mean background intensity Ȳb (for each side as appropriate)

are generated using a Poisson diffusion process. The initial mixing parameters are then obtained

from the mask estimates and the observed images as follows (for αv).

αv =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Yr − Ȳb

Yv

, if(M̄r = 1) ∧ (M̄v = 0) ∧ (Yr > Ȳb)
0, else.

(3.16)

In this case (M̄r = 1)∧ (M̄v = 0)∧ (Yr > Ȳb) constitutes an initial estimate of recto bleed-through

in regions where the initial recto mask is background, the verso mask is foreground, and the

recto intensity is darker than the local mean background intensity. Finally, initial clean recto

and verso estimates are obtained by substituting the relevant initial estimates into Equation 3.2.

3.4.5 Algorithm

The overall algorithm may be enumerated as follows:

1. Initialise all variables as described above.

2. Using a checker-board visitation pattern for sites, repeat until convergence:

(a) Generate M̂v, M̂r, α̂r, α̂v using the expressions above, (across all sites in separate

image passes) updating in place.

(b) If mod(iteration,10) = 0, generate Yr, Yv without the masks as in Equation 3.15

Else, draw samples for Yr, Yv as described above in Section 3.4.

3.5 Discussion

Figures 3.6, 3.7, and 3.8 show sample results of the bleed-through removal approach on light,

medium, and severe bleed-through example image pairs respectively. In all the results the

character of the document is successfully preserved, and the algorithm removes the bleed-through

on the light and medium cases. However, in the severe bleed-through example in figure 3.8,

where there are large regions of bleed-through that overlap significantly in intensity with the

foreground, the algorithm does not perform as well, with bleed-through artefacts remaining on

the recto side. This highlights the dependence of the algorithm on a good initial estimate of
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Figure 3.6: An example of restoration on a sample image pair with light bleed-through degrada-

tion. Top row: degraded recto (right) and verso samples. Bottom row: corresponding restored

results, with the document character preserved and all of the bleed-through artefacts removed.

M02.

the limiting masks, and the fact that the substitution of the unconstrained linear model to

encourage reclassification of severe bleed-through regions misclassified as foreground only works

well if the misclassified regions are small. A further limitation of this per-pixel approach is

in cases where the bleed-through diffuses horizontally across the page, degrading a larger area

than the originating text, an example of which can be seen in the image pair in Figure 3.9.

In these cases the spread bleed-through pixels are not accounted for in the degradation model

and will not be removed, resulting in a halo effect around restored bleed-through regions. The

use of the unconstrained linear model for the final restored result can mitigate this effect when

the spread is small, as the mixing parameters will blend those regions into the background.

However, if the spread area is large, then the restored result will have artefacts remaining, as

in Figure 3.9. A more complete evaluation and comparison of results with previous non-blind

methods is presented in Chapter 5.
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Figure 3.7: An example of restoration on a sample image pair with medium bleed-through

degradation. Top row: degraded recto (right) and verso samples. Bottom row: corresponding

restored results, with the document character preserved and most of the bleed-through artefacts

removed. M35.

3.6 Colour Restoration

Where full colour images of the degraded pages are available, the results of the proposed method

may be modified to produce clean colour results. This is achieved simply by converting the input

RGB images to the Hue, Chroma, Luma (HCL) colourspace. The Luma channel is then replaced

with the clean grayscale result from the proposed approach, and in the Hue and Chroma channels

identified bleed-through regions are replaced with estimated local mean background values. An

example of the restoration results applied to colour images can be seen in Figure 3.10. This

simple approach works well in documents where the background colour is reasonably uniform.

However in some illuminated manuscripts where background colouration is used to emphasise

certain words or characters, applying this colour restoration method may interfere with such

regions, negatively affecting the integrity of the clean document. An example of this effect can

be seen in Figure 3.11. In these cases, restoration based on gayscale intensity alone is insufficient,

and colour information needs to be taken into account.
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Figure 3.8: An example of restoration on a sample image pair with severe bleed-through degra-

dation. Top row: degraded recto (right) and verso samples. Bottom row: corresponding restored

results. In this case the model does not remove a large proportion of the bleed-through on the

recto side, due to the significant overlap in foreground and bleed-through intensities. However,

the legibility of the restored result is not affected detrimentally. M25.

Figure 3.9: An example of restoration on a sample image pair where the bleed-through has

spread horizontally across the page and has a larger area than its originating text. This effect is

not taken into account by the per-pixel model, and visible bleed-through halo artefacts remain.

M16.
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Figure 3.10: An example of colour restoration. Top to bottom: Original degraded recto (left)

and verso sample images, restored results using the proposed approach, original degraded colour

images, and clean colour images using the grayscale results. M39.

3.7 Summary

This chapter has presented a non-blind model-based approach to bleed-through restoration. The

observed degraded images are modelled as a constrained linear combination of the original clean

images, using binary foreground masks defined on both sides explicitly to limit the bleed-through

to regions that are not foreground text, enforcing the opacity of foreground text over bleed-

through. The intensity information on each side is used to define the masks initially, via K-means

clustering, with the darkest of three clusters representing an estimate of foreground text. Spatial
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Figure 3.11: The colour restoration approach will not perform well on illuminated manuscript

regions with background colouration. The colouration emphasis may not be translated to the

grayscale image, and so is partially removed in the restored result. Top to bottom: Original

degraded sample RGB image, grayscale image where colouration emphasis has been lost, and

clean restored colour result with some colouration removed as bleed-through degradation. M25.

smoothness is enforced in a dual-layer framework, similar to [78] and [34], but instead of solving

for a binary or ternary labelling, the model parameters including the clean image intensities are

estimated using the degradation model. Intra-layer smoothness priors are used for the masks and

mixing parameters on each side, and an inter-layer prior is also used for the mixing parameters to

ensure that bleed-through cannot occur at the same location on both sides. Priors on the mixing

parameters and clean images to ensure that restored regions are close to background intensity are

also used. Estimates for the model parameters are obtained via a mixture of ICM optimisation

and Gibbs sampling - drawing samples for the clean image estimates. A secondary linear model

without limiting masks is substituted every 10 iterations for the clean image estimates to improve

classification of bleed-through regions, and to ensure that the final estimates appear smooth with

minimal visible bleed-through degradation remaining. The approach performs well on images
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with relatively light bleed-through, preserving the character of the documents. In more severe

cases with large regions of relatively dark bleed-through, the method does not perform as well.

However, in such cases the character of the documents is still maintained, and the document

legibility is not affected detrimentally. In essence therefore this method is conservative, that is

legibility is always improved in the output, and true foreground preserved, but at the cost of also

preserving dark bleed-through in severe cases. Restoration results can also be extended to colour

images using a simple colourspace transformation, as long as the document background does

not include regions with added colouration that is not distinguishable in the grayscale domain.



44



4
Non-Parametric Approach

The previous chapter presented a conservative bleed-through removal method that produces

visually pleasing results, but performs poorly in severely degraded cases due to the reliance

on good initialisations. In order to improve performance on the severe cases it is necessary to

decouple the bleed-through identification and restoration processes that are performed jointly

in the previous approach, and to focus on explicit bleed-through classification rather than esti-

mation of the clean image intensity. A number of factors can be identified to further improve

performance as follows.

Firstly it is observed that the intensity distributions of foreground, background, and bleed-

through regions may not be uniform across a single image due to non-uniform lighting during

imaging, which is especially prevalent in photographed rather than scanned pages, or degradation

of the background medium for example due to water stains or page warping. Classification

based on global intensity properties will be detrimentally affected by these variations, as the

intensity distributions of each class will overlap more significantly. Classification performance

may be improved therefore either by examining local regions independently, or by removing any

variations in the global intensity properties as a preprocessing step.

The initialisation used in the previous method is based on the intensity information of recto

and verso sides independently, and the clean image intensities for each side are subsequently

estimated using the intensity information from both sides. As the output relies on a good ini-

tialisation, it is observed that use of intensity information independently is a limiting factor in

classification performance where foreground and bleed-through intensity distributions overlap

significantly. An improvement in severe case classification can therefore be obtained by exam-

45
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Figure 4.1: Highlighting the usefulness of a connected component based refinement to classifi-

cation. Left to right: Degraded recto extract, corresponding degraded verso extract, clean recto

output using the method from Chapter 3, and generated output labelling using the foreground

mask estimates, where green represents foreground, blue background, and red bleed-through.

The bleed-through regions that are not removed in the restored result are connected to correctly

identified regions. M38.

ining intensity information from both sides of the page jointly rather than independently. Use

of a joint intensity feature was first proposed in [33], where it is used to guide labelling of recto

and verso images separately, using a dual-MRF framework with two observation fields and one

label field.

A final observation is that the spatial information of a per-pixel based approach is not

powerful enough to reclassify dark bleed-through misclassified as foreground initially, as the

neighbourhood of foreground and bleed-through pixels will often be similar. However, examining

classification labelling output in Figure 4.1, generated using the final foreground mask estimates

from the approach in Chapter 3, it is clear that misclassified bleed-through regions are connected

to correctly classified regions, shown in red. This suggests that rather than a pixel based

refinement, a larger connected component based refinement will be more powerful in identifying

bleed-through misclassified as foreground.

Based on these observations, this chapter presents a second framework for non-blind docu-

ment bleed-through removal. This approach is designed to cope with a wider range of bleed-

through degradations than that proposed in Chapter 3, whilst maintaining the ultimate goal of

preserving as much of the original document appearance as possible. The proposed framework

includes image preprocessing to remove local intensity variations, pixel region classification based

on a segmentation of the joint recto-verso intensity histogram and connected component analysis

on the subsequent image labelling. Finally restoration of the degraded regions is performed us-

ing exemplar-based image inpainting1. Again, in this chapter it is assumed that the registration

stage has already been performed, and in what follows ‘verso’ will refer to the flipped, registered

verso side.

1Sections of this chapter are based on the work published in [60].
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Figure 4.2: An illustration of the preprocessing stage on a sample recto image, M21.

4.1 Preprocessing

As classification is performed using joint global intensity properties, this approach is sensitive

to local variations in intensity profile over the document image, for example due to reduced

lighting close to the binding, or water stains. Therefore prior to classification it is necessary

to compensate for any such variations. Since many document imaging projects perform little

or no image enhancement it cannot be assumed that the resultant images have uniform global

intensity properties. Any trends are removed by exploiting firstly the fact that the only constant

in most document images is the background medium; the presence and strength of any text or

other foreground information may change across a page, and secondly that the largest proportion

of pixels corresponds to background. Therefore the recto and verso images are adjusted sepa-

rately by applying local intensity offsets such that the peaks of the local intensity histograms,

corresponding roughly to mean local background intensities, are aligned. This is performed by

examining intensity histograms of overlapping blocks in the original image. An intensity value

for each block is stored that corresponds to the maximum peak in the block intensity histogram.

The mean of these intensity values is set as the target mean background intensity, and an offset
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Figure 4.3: An example of a severely degraded document recto-verso pair sample with signifi-

cant overlap between foreground, background, and bleed-through intensity distributions, and a

relatively large proportion of overlapping foreground text on both sides of the page. Top: recto

sample. Bottom: corresponding registered verso sample. M24.

matrix is defined from the difference between the target and stored local intensity values. The

block size is set empirically to 200 × 200 pixels with an overlap of 50. An illustration of this

stage is shown in Figure 4.2.

4.2 Classification

This proposed method aims to create a joint labelling of recto and verso images, from a set of

four ‘pair’ labels: background on both sides, bgbg, recto foreground and verso bleed-through, fgbl,

recto bleed-through and verso foreground, blfg, or foreground on both sides, fgfg. As discussed in

Chapter 2, the degree of intensity overlap between different labels can be reduced significantly by

combining intensity information from both sides of the page. In previous approaches, the ratio

and difference of intensities have been used [15,21,29,35,44,45,67]. Figure 4.4 shows a comparison

of both 1D and joint ground truth label distributions for the sample image pair in Figure 4.3,

using the recto intensity, intensity difference, and intensity ratio. For illustration purposes, the

sample image pair in Figure 4.3 used to obtain these distributions is severely degraded, with a

significant overlap between foreground, background, and bleed-through intensity distributions,

and a relatively large proportion of fgfg regions. As can be seen in Figure 4.4, the difference

and ratio measures do not distinguish between foreground on both sides of the page (fgfg),

and background on both sides (bgbg), which may result in important foreground information

being removed from one or both sides. Use of difference and ratio measures therefore requires

further information to preserve fgfg regions. There is also still a significant overlap between

bleed-through and foreground label distributions when using these features. Figure 4.5 shows

contour plots of joint intensity histograms of recto-verso pairwise intensities from the sample

in Figure 4.3 with 1D and joint ground truth labels. It is clear that using pairwise intensities

can reduce the label overlap regions and preserve the distinction between fgfg and bgbg labels.

Thus in this approach the recto and verso images Ir, Iv are treated as a joint image Ip, and each
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Figure 4.4: There is a significant overlap between 1D and joint label distributions in a severe

bleed-through example (shown in Figure 4.3) when using single intensity features. The left

column shows histograms of ground truth 1D labels for the recto side, the right column similar

histograms for 2D joint labels of both sides. Top to bottom: recto intensity (Ir), intensity

difference (Ir − Iv), intensity ratio (
Ir

Iv
)
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Figure 4.5: The overlap between 1D and 2D label distributions in a severe bleed-through example

can be reduced using the joint intensity feature. Top row: contour plots of joint intensity

histograms of recto-verso intensities, ([Ir, Iv]), from the sample in Figure 4.3, highlighted with

1D (left) and 2D (right) ground truth labels. Bottom row: 3D view of the contour plots.

pixel pair Ir(x, y), Iv(x, y) is treated as a single pixel Ip(x, y) with intensity pair i in the range

[0,255] × [0,255], where, as in Chapter 3, 0 corresponds to white, and 255 to black. Further

processing can then be performed in the spatial domain to correct any misclassifications due to

the remaining overlap regions.

There are therefore two stages to classification, firstly a joint histogram of intensity pairs

is segmented into four regions corresponding to the four labels using a MRF-based clustering

approach. This histogram labelling is then used as a look up table to obtain an initial image

labelling. Secondly, a set of rules governing connected label components in the image labelling

is applied to produce the final label field for the recto-verso image Ip.
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4.2.1 Joint Histogram Segmentation

Examining the joint intensity histograms in Figure 4.5, it is clear from the large peak in the points

with lighter intensity that the largest proportion of pixels in Ip will correspond to regions where

both recto and verso are background (bgbg). There are then three smaller peaks corresponding to

the three remaining labels. In this approach, labels are assigned based on the distance from these

maxima. However, it is necessary to ensure that the histogram segmentation maps to an image

segmentation that is spatially smooth. So the labelling is formulated as a MRF framework with

a spatial smoothness prior based in the recto-verso image domain rather than the joint histogram

domain. The energy E corresponding to a particular labelling l is defined as

E(l) =∑
i∈I
[βiUi(li) + αγi ∑

j∈Ni

V (li, lj)], (4.1)

where li ∈ {bgbg, fgbl, blfg, fgfg} is the label at point i in the joint histogram h, and I corresponds

to the set of non-zero histogram entries. The remaining terms in Equation. 4.1 are discussed

below.

Unary Terms

The unary energy Ui(li) represents the cost of a point i in the joint histogram being assigned

label li. In order to include the frequency distribution of intensity pairs in the classification of

each label, Ui(li) is defined as the mahalanobis distance between point i and the centre of the

label cluster corresponding to li.

Binary connections

The neighbourhood structure Ni of a point i is defined in the image domain as

Ni = {j ∣ j = Ip(x′, y′), i = Ip(x, y), (x′y′) ∈Nx,y}. (4.2)

So each instance of an intensity pair i is located in the recto-verso image Ip, then the correspond-

ing points in the joint histogram of the 4-connect neighbours in Ip of these instances are added

to the neighbourhood of i. This means that the size of the neighbourhood for each intensity

pair depends on the frequency of that point in the joint histogram.

Binary Terms

The pairwise energy V (li, lj) represents the cost of neighbouring points in the histogram being

assigned labels li and lj respectively. In order to obtain estimates for these energy terms, ground

truth joint image label fields were generated for a database of 25 preregistered recto-verso image

pairs with manually generated ground truth foreground text masks. This database is presented

with further details in Chapter 5. Examining a subset of the ground truth label fields, the

pairwise energies are set empirically as the negative log likelihood of co-occurrence of labels in

that subset (see Table 4.1).
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Table 4.1: Likelihood of co-occurrence of labels

li lj bgbg fgbl blfg fgfg

bgbg 0.66 0.00065 0.0069 0.00013

fgbl 0.0065 0.13 0.0001 0.0022

blfg 0.0069 0.0001 0.13 0.0021

fgfg 0.00013 0.0022 0.0021 0.046

Model Variations

The parameters βi and γi in Equation 4.1 represent the weighting applied to binary and unary

energies assigned to each intensity pair value. Three different variations of the general model in

Equation 4.1 are examined in this work:

1: [βi = h(i), γi = 1]. In this case the unary energy term for each intensity pair is weighted by the

corresponding histogram frequency, so each unary term depends on the number of instances

of its intensity in the recto-verso image. This model is therefore similar to the standard

dual-MRF used in [33,35], however classification is performed jointly, and the constraint that

each instance of an intensity pair must have the same label is explicitly enforced in this case

as the classification is performed in the joint histogram rather than the image domain.

2: [βi = 1, γi = 1

h(i)]. In this model it is the binary energy that is weighted by the inverse of

the histogram frequency, and the unary energy for each intensity pair has equal weight in

the overall energy. Essentially this means that the energy contribution for each intensity

pair becomes the corresponding unary energy plus an average of the pairwise energy for the

4-connect neighbourhoods of each instance of that intensity in the recto-verso image domain.

3: [βi = 1, γi = 1]. In this case neither of the model terms is weighted by the histogram frequency,

so the unary energy for each intensity is given equal weight in the overall energy, and the

pairwise energy amounts to a sum over all the 4-connect neighbourhoods of each instance in

the recto-verso image.

Smoothness Weight

A frequency independent smoothness weight, α, is applied to V (li, lj) to balance the global

influence of the binary and unary energies on the histogram label field. An unique value for each

model variation is chosen empirically by examining the output histogram label fields generated

using different smoothness weight values. Figure 4.6 shows the percentage histogram error for

each model on each image over a range of smoothness weight values, and the chosen minimum

error weights. Unsurprisingly the optimal range for Model 3 is much lower than Models 1 or 2,

as no frequency dependent weighting is applied for Model 3, and therefore the pairwise energy
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Table 4.2: Average proportions of each label as percentages of joint histogram intensity pairs

and joint image pixels.

bgbg fgbl blfg fgfg

Histogram area (%) 17.98 33.08 32.31 16.63

Image area (%) 65.48 14.16 14.95 5.39

is much higher than the unary energy due to the large neighbourhood. It is also interesting

to note that for three of the images in the database the corresponding minimum error weight

is extremely small compared to the average, which would indicate that none of the models

accurately captures the image properties in these cases. This could be due to the fact that the

images contain a higher proportion of fgfg than the average, or a higher text to background

ratio, and so the pairwise energy terms defined in Table 4.1 may not accurately represent the

particular image statistics.

Initialisation

In most bleed-through cases, the bgbg label accounts for the largest proportion of pixels in the

joint image, but as can be seen in Table 4.2, has a relatively low range of distinct intensities com-

pared to the fgbl and blfg labels. The fgfg label corresponds to the smallest proportion of pixels

in both the image and histogram label fields. The initialisation of the joint histogram labelling

is therefore designed to avoid over-classification of intensities as bgbg and under-classification of

fgfg. Initial estimates for the cluster centres are obtained as follows:

(i) Find the peak of the joint histogram and set as bgbg centre.

(ii) Set fgfg centre as [max(Ir),max(Iv)].
(iii) Obtain quadrants of joint histogram corresponding roughly to fgbl and blfg using centre

line defined by bgbg and fgfg centres.

(iv) Set peaks of quadrants as fgbl and blfg cluster centres.

(v) Update fgfg centre to [fgbl(1),blfg(2)].

(vi) Cluster intensity pairs using the minimum Euclidean distance to the estimated centres.

The clusters and centres are then updated once using the Mahalanobis distance for bgbg and

Euclidean distance for the remaining three labels. The use of the different distances initially

ensures that the strong bgbg distribution is not over-classified, and that the relatively weak fgfg

distribution is favoured in overlap regions.
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Figure 4.6: Percentage Histogram labelling error for ranges of different smoothness weights for

each model variation over the database (left), and average errors (right) with the empirically

chosen smoothness weights shown blue.
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Figure 4.7: This image illustrates the implementation of the connected component boundary

rules. Left to right: recto extract, verso extract, image labelling before rules applied, and image

labelling after rules applied. Row 1: Misclassified bgbg components (dark blue) are corrected,

M02. Row 2: fgfg components (pink) are replaced with fgbl (green), M01. Row 3: fgbl

components (green) connected to blfg (light blue), but not fgfg (pink) are replaced with blfg,

M39. Row 4: A blfg component is connected to fgfg, but not bgbg so is replaced with fgfg, M39.

Optimisation

Quadratic Pseudo-Boolean Optimization (QPBO) [56] is used to minimise the energy in Equa-

tion 4.1, repeatedly iterating through each of the four label options in the order [fgfg,blfg,fgbl,bgbg ]

until convergence. Different label permutations were tested and found to have little impact on

the subsequent results.

4.2.2 Image Segmentation

Following colour segmentation, the image labelling is initialised by using the histogram labelling

as a look up table for pixels in the recto-verso image Ip. A subset of pixels will inevitably

be misclassified due to the overlapping nature of the histogram label boundaries, however as

the pairwise energy used in the histogram segmentation is derived from neighbourhoods in the

image domain, spatial smoothness has already been enforced, which increases the likelihood

that misclassified pixels will be grouped together and connected to correctly classified groups.
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Therefore a full per-pixel analysis is not performed on the image labelling, and instead connected

components of each label are examined, and rules governing permitted neighbouring components

iteratively applied to correct misclassifications until convergence. The rules for each label are

as follows.

bgbg: This label covers the greatest proportion of the image, and so connected components

will mostly be larger than the average character size. Smaller components correspond either to

valid within character spaces, such as in ‘a’ and ‘o’, or to misclassifications. To avoid relabelling

valid within character spaces, only the connected components that are less than 10% of the

average character component size are analysed. Presumed to be mislabelled these components

are relabelled with the label corresponding to the largest proportion of their neighbours.

fgfg: Conversely, this label covers the smallest proportion of the image, and as very dark

bleed-through can often be mislabelled as fgfg, no assumptions can be made about the size of

components and all are examined. The outer edges of components with this label must contain

both fgbl and blfg labels, as overlapping text regions will originate from text alone on both sides.

If this is not the case the component is relabelled fgbl or blfg according to which is present in

the outer edge, or as bgbg if neither is present.

fgbl: For this label, again only components less than 10% of the average character size are

examined. The outer edges of these components must contain either fgfg and bgbg, or bgbg

only. If the outer edge of a component contains fgfg, but not bgbg also, then the component is

relabelled as fgfg. If the outer edge of a component contains the label blfg , but not fgfg, then it

is relabelled blfg.

blfg: Components labelled blfg are processed in exactly the same way as fgbl, with the two

labels interchanged. Example implementations of these rules are illustrated in Figure 4.7.

4.3 Restoration

As for the approach in Chapter 3, the aim of this method is to preserve as much of the document

as possible. The background texture is therefore again preserved to ensure that the experience

of studying the document image remains close to that of studying the physical document. The

restored recto and verso images Yr(x, y), Yv(x, y) are obtained by replacing identified bleed-

through regions, that is, where li = fgbl for Yr(x, y), and li = blfg for Yv(x, y), with background

texture from clean background images Br(x, y),Bv(x, y).

4.3.1 Clean Background

The background images are generated using the exemplar based inpainting algorithm of Criminisi

et al. [17], that uses small sampled patches of nearby texture to fill image holes. The images

Br(x, y),Bv(x, y) for recto and verso sides are generated using regions labelled as bgbg as the

texture source, and inpainting all other label regions. Problems may be encountered with this
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Figure 4.8: An example extract of an image where the gradient needs to be examined to improve

the background plate. Top row: left - degraded recto extract with faint ruled lines, right -

corresponding verso. Second row: left - image labelling (dark blue=texture source), right -

visible artefacts in the recto background plate. Bottom row: left - labelling with 10% of source

gradients removed (yellow), right - the improved background plate. M01.

approach in regions where faint foreground information might not have been identified during

classification (b3 errors as defined in Section 4.4), with the result that foreground patterns are

replicated in the background images. To mitigate this the gradients of the regions labelled as

bgbg are examined and the highest 10% of gradients removed from the inpainting source (see

Figure 4.8). The advantage of using exemplar-based inpainting rather than texture synthesis is

that no assumptions need to be made about the document background intensity distribution.

4.3.2 Blending

Using a per-pixel replacement of bleed-through pixels with corresponding clean background

pixels creates restored images with visible seams at the edges of replaced regions. These artefacts

are prevented by identifying the seam locations as the inner and outer edges of components

labelled fgbl or blfg, and then performing a weighted sum of the original and background images

across these edges to produce a smooth transition between original and replaced regions in the

final restored results. The effect of this stage is illustrated in Figure 4.9.

4.3.3 Colour Restoration

Similarly to the method presented in Chapter 3, where full colour images of the degraded pages

are available, the results of the proposed method may be reused to produce clean colour results,
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Figure 4.9: An example of blending the background image with the degraded image in bleed-

through boundary regions. Top row: left - original degraded image sample, right - corresponding

clean background. Bottom row: left - restored image with no blending, right - restored image

with blending. M37.

using the colour images to generate the clean background images. As identified bleed-through

regions are replaced with texture generated from background samples in this approach, rather

than estimated clean intensity combined with estimated mean background values for Hue and

Chroma channels, the colour restoration here is more robust to background colouration, as can

be seen in Figure 4.10

Further colour image results for the proposed Model 2 on images from outside the database

are shown in Figures 4.11-4.14. As these images, sourced from the Google Book Scanning

Project [5], are full page examples that have different characteristics from those contained in the

database, the restoration results show that this approach is potentially robust to a wider range of

document types than those on which it was developed. The examples contained in Figures 4.12

and 4.13, as well as bleed-through, also suffer from the related ‘press-on’ degradation. This occurs

when ink from the opposite page, rather than the reverse side of the same page, has migrated

to its corresponding facing page over time, and interferes similarly with the foreground text,

though in these examples the press-on is not severe. As this degradation is not included in the

restoration model, it is treated as faint foreground text and left untouched in the restored result.

Figure 4.14 shows an example where a modern library stamp imprinted on the blank verso side

has bled-through and damaged the foreground text on the recto side. The proposed approach

successfully removed the stamp interference in the restored result, however a small section of

foreground text in the bottom left hand corner of the recto has also been removed due to the

relatively low proportion of blfg in this example.
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Figure 4.10: The colour restoration approach is more robust to background colouration than

the method in Chapter 4. Top to bottom: Original degraded sample RGB image, generated

clean background image, restored colour result from the method presented in Chapter 3 with

some colouration removed as bleed-through degradation, and clean restored colour result from

the method proposed in this Chapter. M25.
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Figure 4.11: Colour bleed-through restoration results on a sample full document image from

outside the database, M04. Top row: degraded recto (left) and verso images. Bottom row:

corresponding restored recto (left) and verso images.
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Figure 4.12: Colour bleed-through restoration results on a sample full document image from

outside the database, M05. This example contains ‘press-on’ from the pages opposite the recto

and verso sides, which is not removed in the restored result. Top row: degraded recto (left) and

verso images. Bottom row: corresponding restored recto (left) and verso images.
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Figure 4.13: Colour bleed-through restoration results on a sample full document image from

outside the database, M06. This example contains ‘press-on’ from the pages opposite the recto

and verso sides, which is not removed in the restored result. Top row: degraded recto (left) and

verso images. Bottom row: corresponding restored recto (left) and verso images.
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Figure 4.14: Colour bleed-through restoration results on a sample full document image from

outside the database, M07. In this example, the bleed-through of the stamp from the verso

to the recto is successfully removed. Top row: degraded recto (left) and verso images. Bottom

row: corresponding restored recto (left) and verso images.
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4.4 Model Analysis

In this section, a comparative analysis of variations in the histogram segmentation stage, pre-

sented in Section 4.2.1, is performed. Since in previous works performance of bleed-through

removal is generally evaluated in terms of binary or pseudo-binary results, a set of evaluation

metrics specific to this 4-class classification approach is proposed and examined for each vari-

ation. For a more complete discussion on previous numerical evaluation approaches, and a

comparison of the proposed bleed-through removal approaches with other methods see Chap-

ter 5.

There are two main classification error types associated with bleed-through removal that

affect the legibility of the document. Firstly true foreground information may misclassified and

removed from the image (referred to here as b1), and secondly bleed-through may be misclassified

and left in the image (b2). Of the two, b1 errors will affect the integrity of the document more

seriously as the restored result will be reduced in legibility compared with the original degraded

image, whereas b2 errors result in reduced legibility compared with the optimal result. There are

two further error types, b3 and b4, associated with this particular approach, as can be seen in the

four label confusion matrix in Table 4.3. b3 errors represent foreground information being left

in the background texture source, thus potentially introducing artefacts into the restored result,

and b4 errors represent true background regions being replaced with synthesised background

texture - see Section 4.3 for further information. However, as b3 and b4 errors are not concerned

explicitly with legibility they are not examined in detail for model evaluation purposes.

These errors alone do not give a clear indication of the classification performance with respect

to each label individually. Therefore per-label F -scores are also examined:

Fβ =
(1 + β2) ⋅ precision ⋅ recall
(β2 ⋅ precision) + recall , (4.3)

where precision =
TP

TP + FP
, recall =

TP

TP + FN
, and TP , FP , FN are the True Positive, False

Positive, and False Negative values respectively. The standard F1-score is used to evaluate the

classification performance for fgbl and blfg, but as discussed in Section 4.2.1, it is preferable to

Table 4.3: Confusion matrix for the 4 class joint histogram labelling, highlighting the different

error types.

Ground Truth

bgbg fgbl blfg fgfg

Predicted

bgbg TP b2/b3 b2/b3 b3

fgbl b4 TP b1/b2 b1

blfg b4 b1/b2 TP b1

fgfg b4 b2 b2 TP
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Table 4.4: Comparison of average errors from different initialisation variations.

bgbgF0.5 fgblF1 blfgF1 fgfgF2 F1M b1 b2

Histogram

Labelling

No update 69.13 82.87 83.47 77.03 80.61 3.87 15.20

K-means 76.08 76.82 75.46 73.26 75.64 4.56 19.89

M 86.62 87.54 88.12 79.95 84.63 3.24 9.09

E+M 86.67 86.77 87.58 79.88 83.92 2.99 10.06

Refined

Image

Labelling

No update 91.52 80.15 79.45 61.46 78.15 2.24 7.77

K-means 93.13 78.73 78.28 60.00 79.94 2.29 7.85

M 93.01 84.36 81.71 62.88 83.32 2.27 6.35

E+M 93.02 84.44 81.90 64.00 83.51 2.17 6.35

avoid over-classification of bgbg and under-classification of fgfg so the F0.5-score is used for bgbg to

weight precision higher than recall, and the F2-score is used for fgfg to weight recall higher than

precision. An overall per image classification score is also evaluated using the macro-average of

F1-scores for each label:

F1M =
2 ⋅ precisionM ⋅ recallM
precisionM + recallM

, (4.4)

where

precisionM =
∑4

i=1
TPi

TPi+FPi

4
, recallM =

∑4
i=1

TPi

TPi+FNi

4
. (4.5)

The macro-average is used as it gives equal weight to each class rather than micro-average where

the performance of large classes tend to dominate the score [41,65].

Initialisation Comparison

Four variations of the initial cluster and centres update described in Section 4.2.1 were tested to

obtain the best input to the optimisation stages: ‘No update’ - the centres and clusters were left

as the original estimates; ‘K-means’ - the initial centre estimates were used as centroid starting

locations for K-means clustering; ‘M’ - the centres and clusters were updated once using the

minimum Mahalanobis distance to the initial centres for all labels, and the updated centres set

as the means of the updated clusters; ‘E+M’ - the centres and clusters were updated once as

described in Section 4.2.1 firstly using the minimum Mahalanobis distance to the initial centres

to obtain the bgbg label cluster, and then using the minimum Euclidean distance to the 3 initial

centres for the remaining labels, to obtain the corresponding clusters, and the updated centres

again set as the mean of the updated clusters. Table 4.4 shows average performance of the four

variations over all the measures described, evaluated compared to minimum error histogram

labellings and ground truth image labellings. It is clear that the ‘E+M’ approach performs best

overall, and especially in terms of fgfg F2 and b1 results, where the improvement over the other

variations is relatively large.
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Figure 4.15: bgbg F0.5 scores (top), and fgfg F2 scores (bottom) for the three model variations

on both histogram (left) and corresponding image (right) labellings.

Model Comparison

To evaluate the performance of the three model variations described in Section 4.2.1, again

both the histogram labelling and final image labelling results are examined. However, as can be

seen in Table 4.4, the histogram scores do not necessarily correlate with the image scores. This

would indicate that the minimum error histogram labelling generated using the ground truth

image labelling is not necessarily the optimal input to the image labelling refinement stage.

Therefore while both sets of results are examined, the image labelling results are used to define

the overall performance of each model.

Figure 4.15 shows bgbg F0.5 scores (top), and fgfg F2 scores (bottom) for the three model

variations on both histogram (left) and corresponding image (right) labellings. It is clear that the

performance varies widely depending on the input image pair, and that for bgbg F0.5 scores, each
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Figure 4.16: fgbl (top), and blfg (bottom) F1 scores for the three model variations on both

histogram (left) and corresponding image (right) labellings.

method performs better on different images. For fgfg F2 scores Model 3 performs significantly

better overall for both the histogram and image labellings.

Figure 4.16 shows the fgbl (top), and blfg (bottom) F1 scores for the three model variations

on both histogram (left) and corresponding image (right) labellings. Again, the performance

of each model varies widely depending on the input image pair. Model 3 performs worse over

both labels in the histogram labelling, this is likely related to the high performance in the fgfg

histogram results, as the overlap regions are segmented in favour of fgfg rather than fgbl or blfg.

However this poor performance is mitigated in most of the image labelling results, where the

performance of each model is similar overall.

Figure 4.17 shows F1M scores (top) and b1 vs b2 error distributions for the three model

variations, again on both histogram (left) and image (right) labellings. As macro averaged F1
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Figure 4.17: F1M scores (top) and b1 vs b2 error distributions for the three model variations on

both histogram (left) and image (right) labellings.

scores gives equal weight to each label, even though the fgfg may represent a small proportion of

the image, classification performance on this label is given equal weight, therefore the measure

favours conservative classification. The b1 vs b2 distributions highlight the performance of each

model with respect to foreground preservation and bleed-through removal explicitly - the target

for perfect restoration is [0,0]. Both the histogram and image results indicate that Model

3 performs best in terms of foreground preservation, but Model 2 performs best in terms of

bleed-through removal.

As the results vary widely per image pair, the performance of each model is further evaluated

by ranking the results measures for each image pair. Figure 4.18 shows the percentage of each

rank obtained for each error measure in both the histogram (top) and image (bottom) domains.

The ranking results correlate with observations already made - for the image labelling, Model 3
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Figure 4.18: Illustrations of the ranking of the performance of each model for different error

measures. Top: errors in histogram labelling, bottom: errors in final image labelling.
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Table 4.5: Comparison of average errors from different model variations.

βi γi bgbgF0.5 fgblF1 blfgF1 fgfgF2 F1M F -Rank b1 b2 b-Rank

Histogram

Labelling

1 h(i) 1 85.10 89.51 89.73 79.14 85.99 247 3.54 7.24 111

2 1 1
h(i) 85.48 89.50 90.07 79.42 85.66 233 3.52 6.05 90

3 1 1 87.30 87.79 88.64 81.35 84.78 270 2.67 8.65 99

Refined

Image

Labelling

1 h(i) 1 94.24 84.79 84.34 63.28 84.03 298 2.24 5.17 120

2 1 1
h(i) 94.73 84.49 84.28 63.47 83.93 239 2.32 4.44 92

3 1 1 94.53 84.83 84.63 66.84 84.30 213 2.07 5.20 88

is ranked 1st in 94% of the image pairs for fgfg F2, and 92% for b1, and Model 2 is ranked 1st in

80% of the image pairs for b2, and 60% for bgbg F0.5.

Finally Table 4.5 shows the average error measure values for each model, and also the total

accumulated rankings for each of the F -scores (F -rank), and b errors (b-rank). The F -scores

and b errors are ranked separately, as they are essentially different representations of the same

measures. The average F -score image results are very similar for each model, except in the case

of the fgfg label, where Model 3 has a significantly higher score. The average b-error values

again emphasise the foreground preservation strength of Model 3 and bleed-through removal

performance of Model 2. The total accumulated F -Score ranks and b-error ranks indicate that,

for the selected smoothness weights, Model 3 performs best overall. However, as mentioned

previously, both the F1M-score and fgfg F2-score favour conservative results. Therefore the F -

Score rank, whilst representing a measure of balanced label performance, does not necessarily

indicate the best Model in terms of visual results. In addition, as the b-rank difference between

Models 2 and 3 is minimal, and as these results are based on an empirically fixed smoothness

weight for each model for all image pairs, they are not definitive and further analysis is necessary.

Finally, as can be seen in Figure 4.6, the performance of all the model variations on some of

the test cases is highly sensitive to the smoothness weight chosen and this would indicate that a

better performance overall may be achieved by selecting a separate weight for each image pair.

A better choice of pairwise energy terms could also reduce the sensitivity of the model results

to the smoothness weight selected.

4.5 Summary

This chapter has presented a non-blind non-parametric framework for bleed-through removal

involving three stages: preprocessing, classification, and restoration. In the preprocessing stage

any intensity trends in the input images are removed using local offsets derived from the local

intensity histograms. In the classification stage the observed degraded images are treated jointly

as a single two dimensional image. Classification then proceeds in two steps, firstly by performing

a joint intensity histogram segmentation, then by applying rules to label connected components
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in the corresponding image labelling. Three model variations are examined for the histogram

segmentation. Finally, in the restoration stage, clean background images for both recto and

verso sides are generated using exemplar-based image inpainting. A blend between the clean

background images and original degraded images is then performed in identified bleed-through

regions to create the final restored results. A numerical comparison approach for evaluating

the performance of the model variations is then presented, and results indicate that the three

variations perform similarly, with the unweighted variation performing slightly better overall,

especially in terms of foreground preservation. However, the performance of this approach is

sensitive to the choice of smoothness weight in some image-pair examples; an individual weight

for each image pair may improve the output significantly. Further analysis is presented in

Chapter 5, where visual comparisons with the approach from Chapter 3 show that all three

proposed model variations perform significantly better on a wide range of degradations, whilst

maintaining the document character.
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5
Evaluation

There are two main challenges that face researchers working in the area of bleed-through restora-

tion. Firstly, it can be difficult to obtain access to high resolution and quality degraded image

examples unless connected with a specific library or digitisation project. Even when access to

images is available, it is often very difficult to publish results based on those images due to copy-

right issues. Secondly, as for all document restoration techniques, problems arise when trying to

analyse results quantitatively, as there is no actual ground truth available. This problem may

be overcome either by creating synthetic degraded images with known ground truth, [22, 35],

or by creating synthetic ground truth data for given real degraded images, [15]. Alternatively,

performance may be evaluated by quantifying how the restoration affects a secondary step, such

as the performance of an Optical Character Recognition (OCR) system on the document im-

age, [73, 78] (in which case ground truth information about the document content is required),

or visually counting bleed-through errors at a word level, [29, 35, 67, 76]. A further issue with

quantitative evaluations for performance comparison is the different formats of the results of

different methods, as described in Chapter 2; providing a fair comparison between binary or

pseudo-binary and textured results is a challenging problem. It is proposed that a fair quantita-

tive comparison between methods can only be achieved if they are converted to the same format

then compared to a ground truth that is also of the same format, and that the simplest way of

achieving this is to binarise all the results and compare them to a binary ground truth.

The first part of this chapter describes the details of a small bleed-through image database

with manually generated foreground text masks, made available for research purposes. Since

converting manuscript images to a suitable format for use in testing bleed-through restoration

73
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algorithms can be a time consuming process, it is hoped that this database, where all necessary

processing has been performed, will prove to be a useful resource.

The second part of the chapter describes the proposed evaluation approach, and compares

the performance of the bleed-through removal algorithms presented in Chapters 3 and 4 with

three non-blind removal approaches1.

5.1 Bleed-Through Database

A manuscript bleed-through document image database has been compiled, consisting of 25

registered recto/verso image pairs, taken as crops from larger manuscript images with varied

degrees of bleed-through degradation. The manuscripts selected range in date from 15th to

19th Century, and were either written on vellum or paper. The average crop size is roughly

570 × 2390 pixels. All images contained in the database are taken from the collections of the

Irish Script On Screen Project (ISOS) [6]. ISOS is a project of the School of Celtic Studies,

Dublin Institute for Advanced Studies, Dublin, Ireland, and is funded by the Dublin Institute

for Advanced Studies [3]. The object of ISOS is to create digital images of manuscripts written

in Irish, and to make these images accessible as an electronic resource for researchers. There are

no such bleed-through datasets with ground truth freely available for research purposes in the

public domain at the time of writing.

5.1.1 Image Capture

Image capture was performed by the individual libraries hosting the documents. Each manuscript

page was scanned at 600dpi, and also photographed. The images used for the database were

the photographs, taken using a 5×4 format viewing camera with a Phase One P45 digital back.

Both camera and manuscript were positioned on a specially adapted book-cradle. Each image

was then processed in Adobe Photoshop to crop to an optimum canvas size and superimpose a

text header and footer to distinguish individual pages. A ruler was also placed alongside each

image to indicate scale. Digital enhancement was not performed at this stage.

5.1.2 Crop Details

Some pre-processing was necessary to crop out binding, ruler markers, and digital labels that

could influence the performance of intensity based algorithms. Also, as the full high resolution

manuscript images are very large in size, it is not practical to use them for testing - smaller

sections are preferable. For the database, crops were taken from the larger images such that

they would contain a sentence or phrase of text on both the recto and verso sides. The reason

for this was to allow for the possibility of restoration evaluation using legibility improvement

as a metric. All the images were converted to grayscale and saved in tif format. File names

1Parts of this chapter are based on the work published in [59,60].
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in the database follow the format ‘lib’.‘MS’.‘fol’.tif. ‘lib’ represents the library from which the

manuscript contained in the image originates and can be one of eight labels:

(i) AC - The Allan and Maria Myers Academic Centre, University of Melbourne, Australia.

(ii) FH - The Benjamin Iveagh Library, Farmleigh House, Ireland.

(iii) NLI - The National Library of Ireland.

(iv) NUIG - The James Hardiman Library, National University of Ireland, Galway.

(v) NUIM - The Russell Library, National University of Ireland, Maynooth.

(vi) RIA - The Royal Irish Academy Library.

(vii) TCD - Trinity College Dublin Library.

(viii) UCD - University College Dublin Library.

‘MS’ refers to the manuscript number, and ‘fol’ refers to either the page number, or the folio num-

ber followed by ‘r’ or ‘v’ to denote the recto or verso side. For example, ‘RIA.MSCiii3.301v.tif’

is the crop of the verso side of folio 301 taken from Manuscript C iii 3 in the collections of the

Royal Irish Academy Library. The ground truth images are labelled as for the degraded images,

but with appended ‘gt.tif’ to differentiate between the two.

5.1.3 Registration

As mentioned in Chapter 2, to perform non-blind bleed-through restoration the recto and verso

sides must first be registered so that the bleed-through interference on each side is aligned with

its corresponding originating text from the opposite side. The registration method used for

the database involved three stages. Firstly a set of corresponding control points on both recto

and verso images were manually selected. These points indicated locations of the same textual

features on each side. A global affine warp model for the verso side of each image pair was then

derived from a least squares fit to the displacements between these locations. Secondly, this

affine model was used as an initialisation to the affine warp based bleed-through registration

method of Dubois et al. [21]. Finally, local adjustments were made to the registration manually,

using the ‘gridwarp’ function in NUKE2, that defines a Bezier grid over the source image and

allows the user to reposition the corners of squares in the grid, applying a nonrigid warping

to the local image region correspondingly. Some difficulties were encountered in registration of

images where the crops contained text close to the manuscript binding. In these regions the page

deformation is highly nonlinear and an affine model is unsuitable. This problem was overcome

by using manual registration only, with a very fine grid over the whole image.

2The Foundry’s node-based compositor, http://www.thefoundry.co.uk/products/nuke
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5.1.4 Ground Truth Creation

The ground truth foreground images were created manually, by drawing around the outline

of foreground text on both recto and registered verso sides. These outline layers were then

extracted from the images and filled in to create binary foreground text images, with black

representing text, and white representing background. In handwritten documents, the edges of

characters can often be blurred or gradually fade into the background due to ink absorption by

the medium, or due to the angle and pressure of the writing instrument. This makes marking

the precise location of the boundary between text and background a very subjective decision.

For all the images it was decided that the edge of characters would be defined where the last

traces of ink were visible when viewed in detail, as it was considered preferable to preserve as

much of the foreground text shape as possible. This results in foreground mask text that often

appears larger than the image text, however this is taken into account in the bleed-through

removal performance evaluation proposed in Section 5.2.

5.1.5 Access

The database has been made freely available online, and is hosted by ISOS at

http://www.isos.dias.ie/libraries/Sigmedia/english/index.html

along with a visual comparison of bleed-through removal results. However, as the copyright

on the image crops in the database rests with the individual institutions holding the original

documents, it is necessary to obtain a username and password from ISOS in order to download

the database.

5.2 Quantitative Analysis

As mentioned in the introduction to this chapter, it is difficult to perform objective evaluation

of bleed-through performance in the absence of ground truth, and to perform comparison be-

tween results of different methods that have different output formats. The quantitative analysis

approach used here is to binarise all the results and then compare the binary images with the

manually generated ground truth masks.

5.2.1 Binarisation Algorithm

The binarisation method selected to obtain the results for comparison with the ground truth

is the adaptive degraded document image binarisation algorithm of Gatos et al. [24]. This

method involves several distinct stages. Firstly the image is preprocessed using a low-pass

Wiener filter to reduce noise, smooth the background texture, and enhance the contrast between

foreground and background regions. Then a rough estimate of the foreground is obtained using

the adaptive thresholding method of Sauvola and Pietikäinen [63], and from this a background
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estimate is generated using interpolation of neighbouring identified background intensities. The

image is then thresholded by comparing the distance between the estimated background with

the original image, and a threshold image defined based on the background intensity. Finally

a post-processing step involving successive application of shrink and swell filtering is performed

in order to improve the quality of text regions and preserve stroke connectivity.

The use of binarisation on the clean image results is likely to favour the pseudo-binary and

binary over the textured results, especially in images where there are many faint text features,

the main text body is close in intensity to the background, or where the background medium

is highly textured. However, the binarisation output to a certain extent mirrors the impact

of different output formats on the visual appearance of the results. Faint foreground features

that are successfully preserved are more ‘noticeable’ visually when contrasted against a plain

background rather than textured, and the binarisation algorithm is more likely to classify them

correctly as foreground. Conversely, bleed-through artefacts left in error are also more noticeable

visually in contrast to a plain background, and are less likely to be missed by the binarisation

stage than if they are left against a textured background. However, in order to obtain a fair

comparison, the binarisation technique used here was selected in order to mitigate partially the

potential advantage to the outputs of certain methods, as it is designed to be robust to varying

background intensities and therefore is capable of obtaining good estimates of foreground text

from a noisy background.

5.2.2 Bleed-Through Error Metrics

As discussed in Chapter 4, there are two errors associated with bleed-through removal that

affect the legibility of the restored results - removing true foreground information, and failing to

remove bleed-through. However, as the comparison in this case is between binary per image label

fields and not 4-class joint label fields, the bleed-through error cannot be examined explicitly

and the results for recto and verso sides are evaluated individually. Three per pixel probability

error measures are used to compare the performance of each method: FgError, the probability

that a pixel in the foreground text was classified as background, or false negative rate, BgError,

the probability that either a background or bleed-through pixel was classified as foreground -

false positive rate, and TotError the probability that any pixel in the image was misclassified -

total error rate. These are defined for each image output as

FgError =
FN

FN + TP
(5.1)

BgError =
FP

FP + TN
(5.2)

TotError =
FP +FN

TP + TN + FP + FN
, (5.3)
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where TP , FP , TN , FN are the True Positive, False Positive, True Negative, and False Negative

values respectively. In order to account for the ambiguity of the character edges in the ground

truth, pixels on the inner and outer edges of characters are removed from the error calculations

using morphological dilation and erosion.

Comparisons of error values between different image examples can be misleading, as these

values depend on the relative size of the background and foreground regions in each image with

respect to the text character size. For example an image that is mostly background, with small

text, is likely to have a much smaller BgError value than an image with large text characters

covering most of the image and proportionally less background. Therefore, while examining

average error metrics per image can give a general indication of relative performance, it is

more useful to rank the performance of each method on each image separately, via the three

error metrics (least probability of error to greatest). Ranked Pairs Voting (RP) [68] is used to

obtain these ranks as this approach is based on pairwise comparisons between individual method

performances.

5.2.3 DIBCO Evaluation Metrics

In addition to the proposed metrics, standard binarisation evaluation metrics are also used to

evaluate the binarised results of each method tested. The DIBCO series [23,52–54] is an annual

competition for comparing recent advances in document image binarisation algorithms using

established objective evaluation performance measures.

In each competition, four measures are used to evaluate the binarised output of each ap-

proach: (i) F1-score; (ii) Pseudo F1-score; (iii) Peak signal-to-noise ratio (PSNR); (iv) Distance

Reciprocal Distortion Metric (DRD).

F1-score

The F1-score is the same as that used in Chapter 4, repeated here for clarity

F1 =
2 ⋅ precision ⋅ recall

precision + recall
, (5.4)

where precision =
TP

TP + FP
, recall =

TP

TP + FN
, and TP , FP , FN are again the True Positive,

False Positive, and False Negative values respectively.

Pseudo F1-score

This measure, proposed in [48], differs from the standard F1-score in the recall term used. A

pseudo-recall (recallps) is calculated based on a skeletonized binary ground truth image. The

motivation for this is that each character will have an unique silhouette that can be summarised

with its skeleton. A perfect recall can therefore be achieved in cases where the foreground regions

of binarised results include each skeleton component. The skeletonized ground truth is defined
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as

GTs(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, foreground.

0, background.
, (5.5)

then the pseudo recall is calculated as follows

recallps =
∑M

x=1∑N
y=1GTs(x, y) ⋅B(x, y)

∑M
x=1∑N

y=1GTs(x, y) , (5.6)

and the pseudo F1-score

F1ps =
2 ⋅ precision ⋅ recallps

precision + recallps
(5.7)

Peak Signal-to-Noise Ratio

The PSNR is a measure of the similarity between two images:

PSNR = 10 log ( P 2

MSE
), (5.8)

where P is the maximum intensity difference between images (P = 1 in this case), and

MSE =
∑M

x=1∑N
y=1(GT (x, y) −B(x, y))

M ⋅N
, (5.9)

with M ⋅N the number of pixels in each image.

Distance Reciprocal Distortion Metric

This measure was proposed in [39] as an alternative to the PSNR, which does not match well

with subjective visual binarisation performance evaluation, due to its point based nature. The

DRD is designed to correlate with human visual perception of document images, and calculates

the distortion of each misclassified pixel B(xk, yk), in a 5 × 5 window surrounding the pixel, as

the sum of ground truth pixels in that window that differ from the misclassified pixel value:

DRDk =

2

∑
i=−2

2

∑
j=−2
∣GT (xk + i, yk + j) −B(xk, yk)∣ ⋅Wn(3 − i,3 − j), (5.10)

where Wn is a normalised weight matrix, defined in [39] as

W (i, j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i = 3and j = 3.

1√
(i−3)2+(j−3)2 , otherwise.

, (5.11)

Wn(i, j) = W (i, j)
∑5

i=1∑5
j=1W (i, j) . (5.12)

The total DRD for all S misclassified pixels is then

DRD =
∑S

k=1DRDk

NUBN
, (5.13)

where NUBN is the number of non-uniform 8 × 8 blocks in the ground truth image.
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5.3 Results

5.3.1 Methods Selected for Comparison

Three non-blind techniques that use both spatial and intensity information were chosen for

comparison with the approaches proposed in Chapters 3 and 4. These methods were selected as

in previous works they have been shown to outperform other approaches discussed in Chapter 2.

A brief summary of each, along with implementation details for these and the proposed methods,

is contained in what follows.

Wavelet

The wavelet based bleed-through removal approach of Moghaddam and Cheriet in [44], referred

to as Method 1, uses a function of the difference in intensity between the degraded recto and

verso sides as an indicator of bleed-through and foreground text regions, with spatial smoothness

enforced in the wavelet domain. This approach was implemented as described in [44]. However,

the automatically generated results on some image pairs in the database were not optimal,

with large regions of background and bleed-through remaining; the automatically estimated

smoothing weight in these instances was too low. For these images therefore, the value of

smoothing weight was chosen manually to produce the best result visually.

User Assisted

The method proposed by Huang et al. in [34] and [35], referred to as Method 2 aims to classify

pixels from each side individually as foreground, background, or bleed-through based on the ratio

of intensities between the recto and verso sides, initialised based on user input training data, and

spatial smoothness is enforced in a dual-layer MRF framework. This approach was implemented

as described in [35]. The per image user markup consisted of 9−12 strokes drawn on both recto

and verso sides that attempted to capture any variations in foreground, background and bleed-

through profiles. For some image pairs the background and bleed-through were overclassified on

recto and verso sides, with foreground underclassified therefore reducing legibility significantly.

In these cases the user markup was repeated with a greater number of strokes highlighting the

foreground regions.

Active Contour

The approach proposed by Hanasusanto et al. in [29], referred to as Method 3, uses a mod-

ified Chan-Vese active contour model [16], with an additional energy functional based on the

difference in intensity between the degraded recto and verso sides, whose influence is controlled

by a difference weight parameter. A post-processing stage for broken stroke completion is also

included. The implementation was kindly provided by the authors. In this approach, the differ-

ence weight parameter is manually selected and critical to achieving good results. The weight

was chosen for each image individually based on the initial segmentation performance, and as



5.3. Results 81

there is often a balance to be struck between foreground preservation and bleed-through re-

moval, two sets of outputs were generated. For one set, referred to as Method 3.i, a conservative

difference weight was selected so as to preserve as much foreground as possible whilst still remov-

ing the most bleed-through. For the second set of results, referred to as Method 3.ii, a higher

difference weight was selected so as to remove as much bleed-through as possible, inevitably

resulting in a larger amount of broken foreground strokes than for the conservative weight. The

post-processing stroke completion stage was then applied to both sets.

Model-Based

For the implementation of the approach in Chapter 3, referred to as Model 4, the optimisation

was performed over 35 iterations for each image pair, with the alternative linear model for the

clean images substituted every 10 iterations and in the final iteration. The various parameters

were set empirically as: λM = 1, λα = 55, λc = 5.

Non-Parametric

Finally, this approach was implemented as described in Chapter 4, with fixed smoothness weights

for each model variation, referred to as Method 5.i, Method 5.ii, and Method 5.iii respectively.

As the performance on some images was sensitive to the weight chosen, a further set of results

was generated for the most conservative Model 3, using manually selected smoothness weights,

referred to as Method 5.iv.

Methods

For clarity and ease of reference, the method names and their corresponding references are listed

here as follows:

Method 1 - Wavelet based approach with some manually tuned results [44].

Method 2 - User assisted approach [35].

Method 3.i - Contour based method [29], with conservative manually selected difference

weight.

Method 3.ii - Contour based method [29], with high manually selective difference weight.

Method 4 - Proposed model-based approach from Chapter 3.

Method 5.i - Proposed approach from Chapter 4, Model 1 (frequency weighted Unary

Energy).

Method 5.ii - Proposed approach from Chapter 4, Model 2 (frequency weighted Pairwise

Energy).

Method 5.iii - Proposed approach from Chapter 4, Model 3 (no frequency weighting).

Method 5.iv - Proposed approach from Chapter 4, Model 3, with manually selected smooth-

ness weight.
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5.iv

Figure 5.1: Sample cropped restoration results from all methods on an image pair from the

database with light bleed-through. Left column: Original degraded recto and clean results.

Right column: corresponding degraded verso and clean results. M02.
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Figure 5.2: Sample cropped restoration results from all methods on an image pair from the

database. Left column: Original degraded recto and clean results. Right column: corresponding

degraded verso and clean results. M35.
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Figure 5.3: Sample cropped restoration results from all methods on an image pair from the

database. Left column: Original degraded recto and clean results. Right column: corresponding

degraded verso and clean results. M32.
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Figure 5.4: Sample cropped restoration results from all methods on an image pair from the

database. Left column: Original degraded recto and clean results. Right column: corresponding

degraded verso and clean results. M01.
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Figure 5.5: Sample cropped restoration results from all methods on an image pair from the

database. Left column: Original degraded recto and clean results. Right column: corresponding

degraded verso and clean results. M25.
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Figure 5.6: Sample cropped restoration results from all methods on an image pair from the

database. Left column: Original degraded recto and clean results. Right column: corresponding

degraded verso and clean results. M39.
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Figure 5.7: Sample cropped restoration results from all methods on an image pair from the

database. Left column: Original degraded recto and clean results. Right column: corresponding

degraded verso and clean results. M27.
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5.3.2 Visual Comparison

Figures 5.1-5.7 show a visual comparison of a selection of extracts of results from each method

tested. Visual comparison results on all full database images can be found in the accompanying

CD.

It is clear from the figures that the wavelet based Method 1, similarly to the proposed Method

4, is generally conservative - preserving the foreground in all examples and not performing as well

in more severe bleed-through cases. However, as mentioned earlier since the output background

texture is not preserved, bleed-through artefacts left by Method 1 become more noticeable

in the restored results due to the increase in contrast between background and bleed-through

intensities, thus reducing legibility compared to the original degraded images. This is especially

noticeable in the more severe bleed-through examples in Figures 5.3, 5.5, 5.6, and 5.7. In

comparison, the artefacts left by Method 4 appear unchanged from the original.

The user assisted Method 2 generally removes most bleed-through successfully, however also

removes some sections of true foreground information in each example, especially in regions of

overlapping foreground on both sides. This is undesirable as it clearly reduces the legibility of the

restored result in each case. This method also classifies some background regions as foreground

in the examples with more highly textured background in Figures 5.3, 5.5-5.7.

The active contour Methods 3.i and 3.ii perform well at preserving the foreground text in

most examples due to the broken stroke completion stage, however as can be seen in Figures 5.3

and 5.4 this results in some bleed-through artefacts also being completed. As expected, the

conservative difference weight used in Method 3.i results in less bleed-through removed in each

example, however in the severe cases shown in Figures 5.5 and 5.7, the foreground is better

preserved. In Figure 5.6, the recto results for both Method 3.i and 3.ii are not optimal. For

Method 3.i the difference weight was set to 0 in order to preserve the foreground, which resulted

in most of the bleed-through being preserved too, and in Method 3.ii, the background was

segmented as foreground, and all foreground strokes in overlapping regions removed as bleed-

through. This is most likely due to the fact that in this particular example the recto side is

much darker than the verso side, and this negates any assumptions made about the difference

between intensities in foreground, background and bleed-through regions. This method therefore

may not cope well with image examples where the global intensity properties between sides is

significantly different.

Comparing the performance of the two proposed approaches from Chapters 3 and 4, there

is little difference between the outputs of Method 4 and Methods 5.i-5.iv on the relatively light

and medium bleed-through examples in Figures 5.1 and 5.2 respectively. However as expected,

Methods 5.i-5.iv perform significantly better on the more severe cases. It is clear from all the

examples shown that both proposed approaches successfully preserve the document character in

each case.

Examining the different variations of the approach in Chapter 4, the performance of all
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the Methods 5.i-5.iv is similar in Figures 5.1-5.3, and 5.6, with only minor variations in the

outputs generated. The results for these cases appear less sensitive to the choice of smoothness

parameter. Figures 5.4 and 5.7 on the other hand show cases where the outputs of each model

variation are not similar. In Figure 5.4, Methods 5.i and 5.ii, generate near identical results,

only with 5.ii preserving the faint foreground accent in the recto image. Method 5.iii performs

worse than all the compared methods in this case, most noticeably in the recto image, with a

large proportion of the bleed-through left. The manually tuned Method 5.iv however performs

best in this case at removing bleed-through, though the recto accent is broken.

Figure 5.7 shows a sample extract where the fixed smoothing weight is insufficient for all

Methods 5.i, 5.ii, and 5.iii. with large sections of bleed-through left in both sides. Again, the

manually tuned Method 5.iv has a significantly better output in this case, however there is

some bleed-through left in both sides where there is overlapping foreground. The active contour

Method 3.ii performs better at removing bleed-through in this example, with only slightly more

broken strokes. The main strength of the Methods 5.i-5.iv is apparent in Figure 5.6, where

a large region of dark bleed-through left by most of the other methods is removed, while the

foreground text, including faint features are preserved.

It is clear from visual comparison of results that the most difficult regions to classify accu-

rately for all approaches are those where there is overlapping foreground on both sides combined

with severe bleed-through degradation. In these regions, there is often little or no distinction

between foreground and bleed-through intensities, and the character edges are often almost

indistinguishable.

5.3.3 Numerical Comparison

The error metrics described in Section 5.2, were evaluated for the results of each method on both

recto and verso sides of each image pair in the database and the results are discussed in what

follows. Figure 5.8, shows the BgError plotted against FgError for all images and each method,

with trend ellipses centred at the mean BgError and FgError values. This figure highlights

the performance of each method in terms of obtaining a balance between foreground preserva-

tion and bleed-through (and background in this case) removal, where the optimal restoration

target is at [0,0]. The user assisted Method 2 clearly stands out as having the lowest BgEr-

ror results, with highest FgError overall. This is due to the overclassification of background

and bleed-through, resulting in broken true foreground strokes. The wavelet Method 1 also

stands out as performing relatively poorly in terms of BgError results, highlighting the visual

observation that bleed-through and background artefacts left by this approach are much more

noticeable than in the original due to the increased contrast with the background. The two

active contour variations again compare as expected, with the conservative variation, Method

3.i (dark green), having lower FgError and higher BgError overall, and the approach with

stronger difference weight, Method 3.ii (pink), conversely performing much better in terms of
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Figure 5.8: BgError plotted against FgError for all 50 images restored with each method tested,

with trend ellipses centred at the mean BgError and FgError values.

BgError and worse in terms of FgError . The proposed methods, due to the similarity in output

format, have similar trend performance overall, with lower FgError on average than previous

works. Method 4 (light green) from Chapter 3 however, has more instances of high BgError

than the methods from Chapter 4, highlighting the relatively poor performance on images with

dark bleed-through. A clearer differentiation between the three models from Chapter 4 can be

seen in this evaluation than in Chapter 4; where the average FgError is similar for all three,

the models that include frequency weighting, Methods 5.i (light blue) and 5.ii (yellow) have

better bleed-through removal capability than the model with no weighting, Method 5.iii (red).

However, the un-weighted model performance is increased significantly with the manually tuned

smoothness weight, Method 5.iv (dark blue), performing best overall.

It is clear from Figure 5.8 that the performance of all methods varies significantly between

image examples due to the different properties of each image pair. Therefore rather than ex-
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Figure 5.9: Illustration of the ranking of the performance of each method for the bleed-through

error measures. Top left: FgError, right: BgError. Bottom: TotError.

amining per image results for all metrics to compare methods, the ranking performance of each

method for each metric is examined. For completeness full results for each metric are presented

in Appendix A. Figures 5.9, and 5.10 show illustrations of the ranking performance of each

method, with the percentage of each rank highlighted. The rank performances for FgError

and BgError shown in Figure 5.9 correlate with the observations already made. However, the

relative ranking performance of the methods from Chapter 4 emphasises the disparity between

ranking and mean error values, as the mean FgError for these methods is very similar, whereas

Method 5.iii performs significantly better in the rank results. The TotError ranks again confirm

the observations made about balancing between bleed-through removal and foreground preser-

vation, however as the background region generally constitutes a much larger proportion of the

image than the foreground, this metric is influenced more by BgError than FgError results. It



5.3. Results 93

Method

P
er

ce
nt

ag
e 

of
 e

ac
h 

ra
nk

F
1

 

 

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv
0

20

40

60

80

100 1

2

3

4

5

6

7

8

9

Method

P
er

ce
nt

ag
e 

of
 e

ac
h 

ra
nk

F
1ps

 

 

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv
0

20

40

60

80

100 1

2

3

4

5

6

7

8

9

Method

P
er

ce
nt

ag
e 

of
 e

ac
h 

ra
nk

PSNR

 

 

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv
0

20

40

60

80

100 1

2

3

4

5

6

7

8

9

Method

P
er

ce
nt

ag
e 

of
 e

ac
h 

ra
nk

DRD

 

 

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv
0

20

40

60

80

100 1

2

3

4

5

6

7

8

9

Figure 5.10: Illustration of the ranking of the performance of each method for the DIBCO error

measures. Top left: F1-Score, right: F1ps-Score. Bottom left: PSNR, right: DRD

is clear that the manually tuned proposed Method 5.iv performs best, with Methods 5.ii and 5.i

2nd and 3rd respectively. Though the active contour Method 3.ii is ranked 1st in more cases

than 5.i and 5.ii, it has comparatively more lower ranked results also. The method proposed in

Chapter 3 outperforms Methods 1, 2, and 3.i, however is again limited by poor performance on

severe cases.

The ranking performance for the DIBCO metrics, shown in Figure 5.10, again correlate

with observations already made, with all methods performing similarly for each metric. It is

interesting to note the improvement in ranking for the active contour methods between the F1-

score and F1ps-score results and between the PSNR and DRD results. As the F1ps and DRD

take into account stroke completeness and human visual perception of error, this improvement

shows the effect of the broken stroked completion stage on the final results appearance.



94 Evaluation

Table 5.1: Average errors, RP ranks, and cumulative rank scores for each method tested over

all 50 images.

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

FgError 7.46 21.79 7.82 9.32 8.16 7.05 6.99 7.02 7.01

RP Fg-Rank 5 9 6 8 7 4 3 1 2

BgError 1.48 0.14 1.12 0.55 0.92 0.89 0.87 1.01 0.79

RP Bg-Rank 9 1 8 2 3 5 6 7 4

TotError 2.44 3.95 2.32 2.18 2.20 1.98 1.96 2.08 1.90

RP Tot-Rank 8 9 7 4 6 3 2 5 1

Rank Score 902 941 884 720 778 629 610 725 561

F1 87.59 81.23 87.90 88.03 88.11 88.91 88.98 88.63 89.14

RP F1-Rank 8 9 7 6 5 3 2 4 1

F1ps 92.78 90.11 93.40 93.97 93.64 93.98 94.00 93.67 94.19

RP F1ps-Rank 8 9 7 2 5 4 3 6 1

PSNR 13.50 12.31 13.66 13.84 13.81 14.06 14.08 13.92 14.16

RP PSNR-Rank 8 9 7 6 5 3 2 4 1

DRD 9.15 12.87 8.66 8.23 8.46 7.80 7.75 8.09 7.58

RP DRD-Rank 8 9 7 5 6 3 2 4 1

DIBCO Rank Score 1199 1680 1172 910 1027 727 691 991 603

All the results discussed are summarised in Table 5.1, where average error values, per error

RP ranks, and Rank Scores for each method are shown. It is clear from the combination of all

the metrics that proposed manually adjusted Method 5.iv performs best overall, followed closely

by Method 5.ii. The approach proposed in Chapter 3, Method 4, is ranked 6th overall.

5.3.4 Discussion

Aside from bleed-through removal, subjectively it is easy to say that the proposed methods

produce visually ‘nicer’ results than previous approaches. However, an important factor to be

taken into account when comparing outputs visually is the use that the bleed-through removal

was intended for. Though the main goal of the proposed approaches is the preservation of

document character whilst improving legibility, this may not be important for approaches where

the main goal is accurate binarisation input for OCR, handwriting recognition or some other

processing stage. Therefore, whilst visual comparisons can give an idea as to performance, it is

very necessary to include a more objective analysis. A clear advantage of classification based

approaches is that the choice of output type is not fixed; binary and pseudo-binary outputs may

be generated directly from the image label fields, and textured outputs may be generated using

the restoration approach described in Section 4.3.
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From the results presented, in general the visual and numerical comparisons show that the

approach proposed in Chapter 4 performs best overall in terms of balancing bleed-through

removal and foreground preservation. The main drawback of this approach is that there is no

method for splitting component shapes in cases where they may contain both true foreground

and bleed-through. A direction for future work would be to incorporate contour based or gradient

information into the connected component analysis, so that component shapes could be modified

in cases where they contain an obvious character edge. The connected component rules could

also be modified to include this information. A further drawback of this method is that, like

Method 4, it has no way of dealing with bleed-through that spreads horizontally across the page.

The significant improvement that was achieved in the results for some of the image pairs

when using manually tuned smoothness weights in both the proposed approach from Chapter 4,

the wavelet based Method 1, and also the high performance of the manually tuned Method

3.ii, suggests that full automation with robustness to the wide variety of different bleed-through

document types, image resolutions, and degradation strengths may not be feasible, and that

incorporation of user assistance, as stated in [29, 35], is in fact the best way to achieve con-

sistently optimal results. A further observation that can be made from examining results over

the whole database is that, as severity of degradation increases, there is a point at which, even

with manually tuned parameters, no method will successfully remove all bleed-through without

further contextual content-based information.

A user interactive approach is most suited to the needs of individual researchers seeking to

restore a small number of documents to improve legibility, or for presentation purposes. However,

for large digitisation projects, any user interaction must necessarily be kept to a minimum. The

high performance of the proposed Methods 5, coupled with visual results presented in Chapter 4

on test images from outside of the database, show that this approach, with improved automatic

selection of smoothness weights, has the potential to improve the appearance of bleed-through

degraded documents, even if not to an optimal extent, and could easily be incorporated as part

of a larger framework of document analysis to improve the performance of subsequent stages.

To further test the robustness of the proposed approaches, the ground truth database would

need to be expanded to include a greater variety of different document types.

A key performance metric not addressed in detail in this work is that of computational

complexity, as the implementations for each approach were not optimised for speed.

5.4 Summary

This chapter has presented the details of a database of 25 registered recto-verso images with

manually generated ground truth foreground masks. An objective evaluation approach has also

been proposed that seeks to provide a fair comparison between results of different methods,

taking into account their different formats. Using the database and proposed evaluation, along

with standard binarisation evaluation metrics, the performance of the two proposed restoration
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approaches, detailed in Chapters 3 and 4, have been compared against 3 previous non-blind

approaches. The results showed that the method proposed in Chapter 4 performed best overall,

and that parameters manually selected per image can improve performance significantly over

automatically selected or fixed, leading to the conclusion that for any approach to be robust to

a wide variety of input degradations and formats, some form of user input is necessary.



6
Registration

The previous chapters have presented and evaluated two new approaches for non-blind bleed-

through restoration. However in both cases it was assumed that registration of recto and verso

sides had already been performed. Accurate registration of document recto and verso sides with

bleed-through degradation is essential for accurate automatic non-blind bleed-through restora-

tion - even relatively small misalignments will result in bleed-through artefacts remaining in the

restored result. Registration of document pages is a non-trivial task for a number of reasons.

Firstly the intensity profiles of corresponding ink and bleed-through regions are very different;

it may be difficult to find correspondences between faint bleed-through and its originating fore-

ground text. Secondly, bleed-through may only occur sparsely across a page, leading to the

chance of foreground text from both sides becoming warped to match. Furthermore, page to-

pography can cause problems for accurate registration, especially in manuscripts and printed

books with tight binding where the degree of curvature towards the spine can be very different

on recto and verso sides, or in documents on vellum or paper that have become warped due to

ageing or poor storage conditions.

There exist a number of previous approaches to recto-verso registration. In one of the earliest

methods, [21], the parameters of a global affine warp are optimised using the sum of squared

differences (SSD) in intensity between the two sides as the similarity metric. In [55] a global

method for printed documents is proposed that considers rotation and translation only, using a

layout analysis of verso foreground ink and recto bleed-through. The rotation angle is selected

based on an estimation of the bleed-through profile only, and then the vertical and horizontal

translations are selected using both the estimated ink and bleed-through profiles. These methods

97
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all perform global alignment only, but in many cases this is not sufficient to obtain the fine level

registration accuracy needed for bleed-through removal.

Previous local registration methods all consist of two warp stages: a coarse global registration

followed by local region alignment. The approach proposed in [75] performs global alignment

considering translational deformation only, under the assumption that the two images are of the

same spatial resolution. The translation is obtained by locating corresponding regions in areas

of heavy bleed-through on both sides, using Normalised Cross-Correlation (NCC) based block

matching over a fixed search window. Secondly, a finer alignment is performed by dividing the

recto and verso into small fixed blocks and using the same block matching over smaller windows,

in this case considering both translational and rotational deformations. In regions of warped

block overlap or divergence, radial basis function (RBF) interpolation [28] of the image intensity

is used. A similar local approach is used in [35], except that local translational deformation

only is considered, and the displacements for each block are interpolated over the whole image

using thin plate spline interpolation to obtain the final warp. These approaches both rely on

the images being of the same spatial resolution, which is often not the case, especially for large

volumes digitised with a fixed imaging rig. They also require the input images to be aligned

enough to within the initial global search window to perform accurate registration.

Another similar local registration method is proposed in [76], using a multiresolution ap-

proach. In this case the global warp stage considers full affine transformations, and the local

refinement is based on a coarse grid point deformation, rather than block based, using hierar-

chichal levels of B-spline warps [62] to obtain the full displacement field. The uniform spline grid

is defined based on detected corresponding control points on the recto and verso sides located

based on the assumption of slanted text, and to prevent overlapping points in the output. The

registration error metric used is the residual complexity [46], defined as the compression com-

plexity of the difference in intensity between the registered images, and evaluated as a function

of the Discrete Cosine Transform (DCT) of this difference, or residual image. A smoothness

constraint on the warp is also used to prevent excessive distortion in the registered result. As

this approach relies explicitly on locating correspondences between slanted bleed-through and

foreground text, the presence of strong bleed-through across a page is required for accurate

alignment. Furthermore all of these previous approaches do not take into account the prepro-

cessing necessary for registration if the document images contain sections of the opposite page

and binding.

This Chapter presents a registration framework that follows a similar approach to the pre-

vious local warp methods; it consists of two distinct warp stages1. However, the initial warp

stage is based on the fact that the page outline will be the same for both sides irrespective of

the strength or presence of bleed-through. The images of two sides are automatically cropped

to remove any binding or opposite page information, and then the outlines are registered using

a global similarity transformation. In the second stage a local grid-point based warp, similar

1Parts of this chapter are based on the work published in [61].
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to [76] is applied, however, rather than using the residual complexity which can be computation-

ally intensive especially for large images, the sums of the squared difference in image intensities

and also gradient fields are used as the error metric. To prevent excessive distortion of the

warped image, a ‘content-preserving’ smoothness term [38] is included in the warp estimation.

A numerical evaluation approach for bleed-through registration performance is also presented,

where the automatically generated warp displacement field results are compared against ground

truth displacement fields generated from manually registered images. The error for each im-

age pair is calculated in terms of the smallest bleed-through feature width so as to be able to

compare registration performance on images of different resolution, text size, and strength of

bleed-through degradation. Comparisons of the proposed approach with existing methods shows

improved registration performance.

6.1 Initial Global Warp

As it is difficult to calculate a priori how much bleed-through a page contains, and how strong

the degradation is, it is difficult to know if there is enough correspondence between the recto and

verso sides to produce a satisfactory registration result. Therefore for the initial global warp the

outline shape of the page itself and not the information on each side is used, as even on a page

with no bleed-through, the outline will be the same on the recto and verso sides. At present, it

is assumed that the image region surrounding the document is reasonably uniform and dark in

intensity, and that an interleaf has been placed behind the imaged page during image capture.

As the methods for document imaging vary widely between different projects, the use of an

interleaf is not standard - it can add time to the imaging process, and can risk causing damage

to more fragile documents. However, use of interleaves is not uncommon, and in some projects

the documents are even unbound to facilitate imaging, which results in the same effect.

To isolate the outline shape, both recto and verso sides are binarised globally using Otsu’s

thresholding method [50], and then large scale morphological opening and closing is performed

to the resultant binary images to remove all remaining text features, leaving the shape of the

pages only. An illustration of this stage is shown in Figure 6.1. In cases where the surrounding

image region is lighter than the writing medium, a simple inversion of the binarisation process

will achieve the same result.

These binary images are then automatically cropped on the left hand side to remove any

of the opposite page present, as this will be a different page in the recto and verso images and

also a different width thus affecting both the outline global, and subsequent local registration.

The crop width is obtained by observing that where the two pages meet the binding, there

is a sharp change in the outline edge gradient. So by performing Harris corner detection on

the top and bottom left quadrants of the binary images these points are located, and the crop

width is set as the minimum of the horizontal coordinates of the two (see Figure 6.2). A simple

adjustment of the search window for corner detection can be made for cases where the full two
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Figure 6.1: Illustration of the page outline extractions. Left to right: Manuscript page, binarised,

and after morphological opening and closing. M39.

pages are imaged together as there will still be a change in the outline edge gradient because of

the binding.

Following the binding crop stage, an initial global registration is performed between the two

binarised pages. To prevent any loss of resolution, the reference image J(x, y) is set as the side

with the larger area of the two binary images, and the warped image I(x, y) as the smaller. The

global warp Wg(x, y;pg) is a similarity transformation and is defined as

Wg(x, y;pg) =
⎡⎢⎢⎢⎢⎣
p1 −p2

p2 p1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x

y

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
p3

p4

⎤⎥⎥⎥⎥⎦
(6.1)

Uniform scaling is enforced as the visible width of the page may not be the same on both

sides due to the curvature of the binding, and this could lead to undesirable stretching of the

text; the height of the page is the most accurate measure of scale between the two images (see

Figures 6.11 and 6.12). The similarity metric used for the global warp is the SSD between the

two binarised images, and the warp parameters pg are optimized using multi-resolution gradient

descent optimisation, with three resolution levels, coarse to fine.

6.2 Local Grid Warp

Once the outer page edges are roughly aligned, only small adjustments should be necessary to

align accurately the bleed-through regions with their originating text. As the nature of the warp

required can vary widely across a single page, the warp used is a grid-point based deformation,

similarly to [76], and is obtained by minimising a function of two weighted energy terms: a data

term for each grid point displacement, and a similarity transform term to ensure that text and

bleed-through regions are not adversely distorted.



6.2. Local Grid Warp 101

Figure 6.2: Illustration of the automatic crop stage. From left to right: Recto (top) and flipped

verso images with located binding corners, and corresponding cropped images. M31.

6.2.1 Data Term

The sum of squared intensity difference is again used as the error metric between the two images.

However, as the foreground and corresponding bleed-through intensity profiles are often very

different, use of intensity information alone may lead to foreground text on one side erroneously

aligning with foreground text on the other. Thus the difference in the gradient fields of the two

images is also used, and the full data energy term may be expressed as

Ed=∑
x,y

{(I(x+u, y+v) − J(x, y))2
+ λ[(Ix(x+u, y+v)−Jx(x, y))2

+ (Iy(x+u, y+v)−Jy(x, y))2]}, (6.2)
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where I(x, y) is the globally warped warped image, λ is a weight parameter to control the influ-

ence of the gradient difference term, and the displacement fields u(x, y), v(x, y) are controlled

by a smaller number of displacement estimates lying on a coarse rectilinear grid over the image:

u(x, y) = nx

∑
i=1

ny

∑
j=1

wij(x, y)uij (6.3)

v(x, y) = nx

∑
i=1

ny

∑
j=1

wij(x, y)vij , (6.4)

where uij, vij are the horizontal and vertical displacements respectively of the set of nx×ny grid

points (xi, yj), and wij are bilinear weights controlling the influence of the grid displacements on

pixel displacements. The advantage of choosing bilinear interpolation is that the local control is

smaller than for B-Spline, thus reducing the computational load. However the trade-off is that

the resultant interpolated warp fields are not as smooth.

6.2.2 Similarity Term

To ensure that the document text and bleed-through regions do not become adversely distorted

during registration, a constraint on the warp parameters is included. Content-preserving warps

[38] are employed for this purpose. In this approach each grid cell is split into two triangles and a

similarity term measures the deviation of each output triangle from a similarity transformation

of its corresponding input triangle. Each point of a triangle may be represented in a local

coordinate system defined by the vector between the other two points, and the 90 degree rotation

of that vector, see Figure 6.3. For example, one point P0 =

⎡⎢⎢⎢⎢⎣
x0

y0

⎤⎥⎥⎥⎥⎦
of a triangle {P0, P1, P2} may

be expressed as follows.

P0 = P1 + p(P2 − P1) + qR90(P2 − P1), R90 =

⎡⎢⎢⎢⎢⎣
0 1

−1 0

⎤⎥⎥⎥⎥⎦
, (6.5)

where (p, q) are the known local coordinates. If the corresponding warped output triangle

{P ′0, P ′1, P ′2} has not undergone a similarity transformation, P ′0 will not correspond with the

warped location calculated with P ′1, P
′
2, and (p, q). Therefore the smoothness energy for this

point is derived from the distance between P ′0 and its desired location under a similarity trans-

formation:

Es(P ′0) = ∥P ′0 − (P ′1 + p(P ′2 −P ′1) + qR90(P ′2 −P ′1))∥2 (6.6)

The energy for the warped output triangle is therefore the sum of the energy of each point:

Es({P ′0, P ′1, P ′2}) = ws(Es(P ′0) +Es(P ′1) +Es(P ′2)), (6.7)

where ws is a saliency weight for each triangle set to the intensity variance of the corresponding

enclosing grid cell. The variance is used to ensure that the similarity constraint is high in regions
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Figure 6.3: Left: Six triangle neighbourhood structure of a grid point. Right: each point in

a triangle may be represented in a local coordinate system defined by the vector between the

other two points, and the 90 degree rotation of that vector, with known local coordinates p, q.

with foreground text or bleed-through, where non-similar warps are most undesirable, and low

in background regions where registration accuracy is not so crucial for accurate bleed-through

removal. In this work there are six triangles connected to each point in the grid, excluding

boundaries (see Figure 6.3), and therefore similarity energy for a single point is obtained by

summing Equation 6.7 for each triangle, and the total similarity energy Es of a warped grid is

the sum of that energy for each point.

6.2.3 Optimisation

The full energy equation for the grid warp is defined as follows:

E = Ed +αEs, (6.8)

with parameter α controlling the influence of the similarity term, set to 1 in what follows. By

letting W(x, y;p) represent the grid warp, where p = [u11, ...unxny
, v11, ...vnxny

]⊺, and assuming

that an estimate for p is known, Equation 6.8 can be minimised iteratively with respect to

increments in the warp parameters, p̂, until convergence:

Ed=∑
x,y

{(I(W(x, y;p+p̂)) − J(x, y))2
+ λ[(Ix(W(x, y;p+p̂)) − Jx(x, y))2

+ (Iy(W(x, y;p+p̂)) − Jy(x, y))2]} (6.9)

To facilitate minimisation, this expression is linearised using a 1st order Taylor Series expansion

of the warped image intensity and gradient fields [7]: I(W(x, y;p+p̂)),Ix(W(x, y;p+p̂)), and
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Iy(W(x, y;p+p̂)):
Ed=∑

x,y

{(I(W(x, y;p)) +∇I ∂W
∂p

p̂ − J(x, y))2+
λ[(Ix(W(x, y;p)) +∇Ix∂W

∂p
p̂ − Jx(x, y))2

+ (Iy(W(x, y;p)) +∇Iy ∂W
∂p

p̂ − Jy(x, y))2]} (6.10)

Substituting Equation 6.10 into Equation 6.8, the resulting energy expression is quadratic in p̂,

and is iteratively minimised by solving a sparse linear system using the method of least squares.

To improve the computation time, the optimisation is again performed at three resolution levels,

coarse to fine.

6.3 Quantitative Analysis

Similarly to the case of bleed-through removal, objective evaluation of registration accuracy is

difficult in the absence of ground truth. In previous approaches the accuracy of the registration

stage itself is generally not considered, but instead the focus of performance evaluation is on

subsequent bleed-through restoration, [21, 35, 75, 76]. In [55] manual rigid registration on a

number of bleed-through images is performed and the parameters of the manual warp compared

with the automatically generated parameters - a similar approach is proposed here. 24 full

manuscript image pairs from 15 different manuscripts on paper and vellum, varying in the

amount of warping required and severity of bleed-through, have been manually registered using

the same Bezier grid-based warp as used for the final registration stage of the bleed-through

database in Chapter 5. By convention the verso side of each example is flipped, however as

described in Section 6.1, to prevent any loss of resolution, the side with the smaller page area was

registered to the larger. The images range in size from approximately 1800×1900 to 5000×8000

pixels, with average resolution of 300dpi. All examples barring one were imaged with interleaves

(see Figure 6.13), and most of the images were again taken from the collections of Irish Script On

Screen Project [6], with two exceptions. Firstly, in order to include an example of vellum pages

with interleaves, one image pair was taken from the Early Manuscripts at Oxford University [4],

and secondly, the example image pair without interleaves was obtained from the Google Books

collections [5], however without any processing applied for online display purposes. Following

registration, for each registered image pair, a mask of the text and bleed-through regions was

created, and a ground truth two dimensional displacement field extracted from the masked

region. Performance evaluation is based on the error between this displacement field and a

similar field generated from the automatic registration method.

As bleed-through document images can vary widely in terms of resolution, text size, and

bleed-through strength, comparing the mean displacement errors between images alone does not

give any idea as to how much any subsequent bleed-through restoration method will be affected.
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A misalignment of a few pixels will affect restoration of low resolution images, where characters

may only be a few pixels wide, much more severely than high resolution images with much larger

characters. This also means that taking average displacement error values between images, will

not necessarily provide an accurate representation of registration performance. Therefore the

registration error is evaluated in terms of text feature size. In the test images, the smallest

features generating bleed-through were generally between 5 and 15 pixels across the narrowest

point (referred to in what follows as ‘x’); a misalignment of more a quarter of this width would

be visibly noticeable, and more than half would cause serious problems for accurate bleed-

through restoration. Therefore the proposed measures of accuracy are the percentage of pixel

displacement errors less than half the width of the smallest bleed-through feature, 0.5x error,

the percentage less than a quarter of the width, 0.25x error, and also the mean displacement

error. Each metric is further ranked, similarly to the bleed-through metrics in Chapter 5, using

Ranked Pairs (RP) voting [68].

6.3.1 Local warp parameter variations

A number of variations in the local warp parameters were tested in order to examine the effect

that changes in each parameter has on the registration results. Firstly, the number of grid points

was set to be the same for both horizontal and vertical axes, nx = ny = n, and evenly spaced over

the page region in the image only, defined from the bounding box of the binarised outline from

the initial global warp. The numbers of grid points examined were 10, 15, 20, 25, 30, and 50.

Secondly the gradient difference weight, λ, was varied over 0.1, 1, 10, and 100. Finally, three

variations of the content preserving energy were tested. Though the content preserving weight,

α was fixed at 1, the influence of the weight selection for each triangle, ws was examined, with

variations chosen as (i) the variance of the enclosing grid cell, as described above in section 6.2;

(ii) fixed at 0.5; (iii) fixed at 1. The latter two cases essentially represent a variation in the

content preserving parameter.

Figure 6.4 shows average displacement error results over all the images tested for increasing

gradient difference weights, λ, with each colour representing a different number of grid points n,

and each shape representing a different triangle weight, ws, variant. Full per image results are

shown in Appendix B for completeness. There is a clear discrepancy between the 0.5x and 0.25x

error and the mean displacement error results; As λ increases from 0.1-10 in general the 0.5x

and 0.25x error results improve, however the mean error worsens. This highlights the problem

with comparing mean error values over all images between variations, as the results for λ = 10

are skewed by poor performance on one image. In general there is little difference between the

results where ws is set as the variance (σ2,× markers), and ws = 0.5 (circle markers), with the

ws = 0.5 variations performing slightly better when λ = 0.1, and slightly worse when λ = 100.

The results for ws = 1 variations (triangle markers) are significantly worse than the others when

λ = 0.1,1,10, but better when λ = 100. This is likely due to the fact that when λ is high, this
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Figure 6.4: The effect of increasing λ with different fixed grid size (colour variations) and triangle

weights (shape variations). Average errors over all 24 registered results. Top left: 0.5x error,

right: 0.25x error, bottom right: mean displacement error.

disproportionately weights the data energy, and a higher ws balances this out to a certain extent.

Figure 6.5 shows similar results for increasing number of grid points, n, with each colour

representing a different gradient weight, λ, and each shape again representing a different triangle

weight, ws, variant. For λ = 0.1,1 and all ws variations the results improve with increasing n up

to 20, with only minor variations for higher values. The performance for λ = 10, however, with

ws = σ
2, or fixed at 0.5 has a clear peak at n = 20 for the 0.5x and 0.25x errors, and a minimum

for the mean error values. The performance for λ = 100 decreases with increasing n. Again the

discrepancy between 0.5x and 0.25x and mean errors is clear. Though this analysis is by no

means exhaustive, using these results and ranking the performance of each variation per image,

the following parameters were empirically selected for comparison with previous approaches:

λ = 10, n = 20,ws = σ
2
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Figure 6.5: The effect of increasing n with different fixed λ (colour variations) and triangle

weights (shape variations). Average errors over all 24 registered results. Top left: 0.5x error,

right: 0.25x error, bottom right: mean displacement error.

6.4 Results & Discussion

To compare the performance of the proposed approach, the global affine method with SSD

metric, in [21], and also the non-rigid method, with residual complexity metric in [76], were

implemented. For the non-rigid method implementation [76], the initial results were poor due

to mismatches or too few points in the corresponding control point selection. This is due to the

fact that correspondences are based on the assumption of slanted text, which most of the test

image pairs do not contain, and information from the binding on the opposite page also adversely

affecting point selection. So instead of defining the uniform B-Spline grid from corresponding

control points, it was generated automatically based on the image dimensions, with the resolution

of the control mesh increasing with each image resolution level. This approach was also tested



108 Registration

0 5 10 15 20 25
0

20

40

60

80

100

Image Number

D
is

pl
ac

em
en

t E
rr

or
 <

 0
.5

x 
(%

)

 

 

Method
1
2
3
4
5

0 5 10 15 20 25
0

20

40

60

80

100

Image Number

D
is

pl
ac

em
en

t E
rr

or
 <

 0
.2

5x
 (

%
)

0 5 10 15 20 25

1

10

50

100

150
200
250
300350

Image Number

M
ea

n 
D

is
pl

ac
em

en
t E

rr
or

 

 

Method
1
2
3
4
5

Figure 6.6: Comparison of the performance of each registration method on all 24 images. Top

left: 0.5x error, right: 0.25x error, bottom: mean displacement error. There is a clear improve-

ment in the performance of the nonrigid Method 2 ( [76]) after the initial crop, Method 3 and

outline warp, Method 4. The proposed Method 5 (pink) performs best in most cases.

on the images after the proposed automatic crop and outline alignment were performed. The

comparison methods are each referred to as follows:

Method 1 - Global affine SSD-based approach [21].

Method 2 - Local nonrigid residual complexity based approach [76].

Method 3 - Method 2, following the proposed automatic crop stage.

Method 4 - Method 2, following the proposed automatic crop and global alignment stages.

Method 5 - The proposed approach.

Numerical Comparison

Figure 6.6 shows the 0.5x errors, 0.25x errors, and mean displacement errors for each method on
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Table 6.1: Summary of displacement error with respect to ground truth

Method 1 2 3 4 5

Mean 41.47 74.89 9.09 1.98 1.75

Rank 4 5 3 2 1

< 0.5x

Min 0 0 0 83.62 74.41

Max 100 99.71 100 100 100

Mean 64.67 45.86 89.84 96.20 97.84

SD 41.14 45.07 22.60 4.91 5.26

Rank 4 5 3 2 1

< 0.25x

Min 0 0 0 63.37 65.91

Max 100 96.92 99.87 99.87 100

Mean 50.37 38.36 79.04 85.08 93.70

SD 35.63 40.21 22.10 10.87 7.27

Rank 4 5 3 2 1

each image tested, and these results are summarised in Table 6.1 with RP ranks for each metric

shown. As expected, the the performance of the global SSD based Method 1 [21] (blue) on

the full images is highly varied depending on the amount of local warping required, though it is

clear that for some images the global affine model is sufficient. The nonrigid residual complexity

based Method 2 [76] (red) in most cases performs worse than the global affine Method 1, and

fails in two examples. As the initial warp used for Method 2 is also affine, this suggests that the

use of residual complexity as an error metric for the initial alignment stage in some cases may

be detrimental to the performance of the subsequent local refinement. The results for Methods

3 and 4 (green and black) on the cropped, and cropped+outline warped images respectively

show a significant improvement over Method 2, highlighting the performance of the proposed

initial crop and outline warp. The proposed Method 5 (pink) performs best in most cases,

this is most noticeably shown in the 0.25x error results - Method 5 is on average 8.6% higher

than Method 4. The summary of results in Table 6.1 again show that the proposed Method 5

performs best overall, and that there is a large improvement in the performance of the previous

nonrigid approach following the proposed initial processing and warp stages.

Visual Comparison

Figures 6.7-6.10 show a visual comparison of sample results of each method, with both output

registered images and displacement errors shown for each example. Again, full results may be

found in the accompanying CD. For many of the images tested, the largest registration errors

for each method were near the binding, due to the page curvature. Figures 6.7 and 6.8 show

the results for an example image pair where this is the case. As the uncropped warped image

contains textual information from the opposite page, but the reference image opposite page is
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blank, this causes a large registration error for Method 2 near the binding. Methods 3, 4, and 5

perform better, as the opposite page information has been mostly removed. However, there are

still large regions of high error close to the binding. As a similar result was achieved with the

densest grid tested (n = 50), this suggests that in some images, where the use of a regular grid

over the entire image can not achieve optimal results, the binding region needs to be treated

separately, either in an initial page flattening stage, or with added constraints in the local warp

refinement.

Figures 6.9 and 6.10 show results for an example image pair where the proposed local refine-

ment stage does not perform well. In this example, there is a large region of background only in

the bottom half of both images, and faint bleed-through in the reference image. The proposed

crop and outline warp both perform reasonably well, as can be seen in the improvement in results

from Method 2 to Methods 3 and 4, though with some larger errors close to the binding. The

poor performance of the proposed method is likely due to the large background region - in this

area the content preserving triangle weights are relatively low due to the low intensity variance,

and as a relatively high weighting is given to the data term in the selected warp parameters, this

region has no constraint to prevent large warp displacements, which then affect the connected

text regions which have higher content preserving weight due to the higher variance. Increasing

the number of grid divisions, and decreasing the gradient difference weight improves the result

on the image, and as this effectively increases the influence of the content preserving energy over

the whole image, it suggests that the content preserving weight may need to be modified in such

cases with large regions of background.

Figures 6.11 and 6.12 show results for an example image pair where the visible width of

both sides of the page is different. In this example the global Method 1 performs well - the

global affine model is sufficient for the required warp. Method 3 performs worse than Method

2, due to the fact that in this case the crop stage actually reduces the alignment between the

two sides compared to the original uncropped images. The initial affine warp stage of Method

3 then results in undesirable text stretching and large misalignment and the local refinement

stage is unable to recover the original text proportions. This highlights the fact that local warp

refinement methods rely on good initial global warps. In most cases the crop stage actually

results in a rough alignment between the two pages, but where this is not the case, as discussed

in Section 6.1, an initial global warp constrained to uniform scaling will produce better results

than a full affine warp.

This dependence of local refinement methods on good initial warps is further emphasised in

Figures 6.13 and 6.14, which show results for the example image pair without interleaves (number

31), and which contain large amounts of binding information, non-uniform page surroundings

and some non-textual interference on the pages themselves. The outline warp still performs well

in this case as the surrounding region is mostly darker than the page background, with brighter

regions small enough to be removed by the morphological opening and closing. This is evident

in the improvement in results between Method 3, with no outline warp, and Method 4 after
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Figure 6.7: Comparison of registered results for image 1, M39, where the curvature at the

binding leads to registration errors in each method. Top row left to right: Original reference

image J , original warped image I, manually registered image. Middle row left to right: results

for Methods 1, 2, and 3. Bottom row: Results for Methods 4 and 5.
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Figure 6.8: Comparison of displacement errors corresponding to the results in Figure 6.7. Top

row left to right: displacement errors for Methods 1, 2, and 3 Bottom row: Displacement errors

for Methods 4 and 5, and manually registered warped image for reference. M39.
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Figure 6.9: Comparison of registered results for image 8, M32, where the proposed Method 5

performs poorly. Top row left to right: Static image J , warped image I, manually registered

image. Middle row left to right: Results for Methods 1, 2, and 3. Bottom row: Results for

Methods 4 and 5.
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Figure 6.10: Comparison of displacement errors corresponding to the results in Figure 6.9. Top

row left to right: Displacement errors for Methods 1, 2, and 3 Bottom row: Displacement errors

for Methods 4 and 5, and manually registered warped image for reference. M32.
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Figure 6.11: Comparison of registered results for image 21, M02, where the visible width of

each side of the page is different. Top row: reference image J (left), warped image I. 2nd row:

manually registered image(left), result for Method 1. 3rd row: Results for Methods 2 (left) and

3. Bottom row: Results for Methods 4 and 5.
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Figure 6.12: Comparison of displacement errors corresponding to the results in Figure 6.11.

Top row: manually registered warped image(left), displacement error for Method 1. Middle

row: Displacement errors for Methods 2 (left) and 3. Bottom row: Displacement errors for

Methods 4 and 5. M02.
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the outline warp, and also the results of the proposed method. This result is promising as it

suggests that the proposed outline warp method is robust to a larger number of document types

than only those imaged with interleaves.

Though the implementation of each approach was not optimised for speed, it was noted that

the optimisation of Methods 2, 3, and 4 converge extremely slowly due to the evaluation of

the DCT of the difference in intensities between reference and warped image at each iteration

in order to calculate the residual complexity. In contrast, the proposed approach converged

significantly faster.

6.5 Summary

This chapter has presented an automatic two stage registration method for recto-verso images

of documents suffering from bleed-through degradation. In the initial stage binarised images

of two sides are automatically cropped to remove any binding or opposite page information,

and then the outlines are registered using a global similarity transformation. In the second

stage a local grid-based warp is applied, using both the sum of the squared difference in image

intensities and also gradient fields as a warp metric, with a content preserving smoothness

penalty. A numerical evaluation approach for bleed-through registration results has also been

presented, using manually registered manuscript images for ground truth. Test results show

that the proposed initial page outline registration can improve the robustness and performance

of previous approaches, and that the proposed local refinement stage is significantly faster and

achieves better registration accuracy in most cases.

In order to further test the robustness of the proposed approach, as for bleed-through re-

moval, the ground truth test set would need to be increased to include a greater variety of

different document types based on size, writing media, and image capture, focussing especially

on documents without interleaves.

A further application of the initial outline crop and warp stage, unrelated to bleed-through

restoration, has been found in automatically creating browsable ‘flipbook’ display copies of

imaged documents. The binding crop stage allows adjacent pages to be joined correctly at the

binding, and the outline warp can be used firstly to align all corresponding recto and verso

images, and then to resize all of the pages to one template page size rather than cropping all of

the images and risk losing some page information.
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Figure 6.13: Compar-

ison of registered re-

sults for image 24, M08,

where there is no inter-

leaf and outside informa-

tion causes registration

errors.

Top row: reference im-

age J (left), warped im-

age I.

2nd row: manually regis-

tered image(left), result

for Method 1.

3rd row: Results for

Methods 2 (left) and 3.

Bottom row: Results for

Methods 4 and 5.
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Figure 6.14: Comparison of displacement errors corresponding to the results in Figure 6.13. Top

row: Manually registered warped image (left), displacement error for Method 1. Middle row:

Displacement errors for Methods 2 (left) and 3. Bottom row: Displacement errors for Methods

4 and 5. M08.
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7
Conclusion

This thesis has focused on automatic degraded document bleed-through restoration. In what fol-

lows, a brief review of the work presented in this thesis is provided, and some possible directions

for future work are discussed.

7.1 Restoration

Chapter 2 presented a review of previous work towards bleed-through restoration. The different

approaches were classified based on the intensity and spatial models used, whether they operate

on one or both sides of the pages, and the type of output that they generate. The most

challenging aspects of bleed-through restoration were shown to be the overlapping bleed-through

and foreground intensity ranges, and overlapping regions of foreground on both sides of the page.

It was further noted that very little emphasis has been placed on preservation of the document

appearance.

Chapter 3 introduced a linear model based approach to bleed-through restoration that aims

to improve legibility whilst maintaining the document appearance. The observed degraded

images are modelled as a per pixel linear combination of the original clean pages, plus some

proportion of the corresponding reverse side, and bleed-through explicitly constrained to non-

foreground regions only. Visual results showed that this approach performs well on images with

relatively light bleed-through degradation, preserving the character of the documents whilst

improving legibility. However, in more severe cases, with large regions of dark bleed-through,

the approach can not work as well, though legibility is not affected detrimentally - the foreground

121
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text is preserved. This highlights the dependence on good initialisations, but also the limitations

of per pixel based spatial models in removing large regions of severe bleed-through.

For these reasons, a second bleed-through restoration approach was presented in Chapter 4,

in which the classification and restoration stages are decoupled to focus explicitly on bleed-

through identification. In this approach classification is performed jointly on both sides of the

page by performing joint intensity histogram segmentation, followed by connected component

based refinement on the corresponding image labelling. Restoration then follows, using exemplar

based inpainting in order to preserve the document appearance. This approach is more powerful

at removing severe bleed-through than the previous work mainly due to the connected component

approach to label field refinement, which avoids the limitations of pixel based spatial information

by extending the neighbourhood over a larger region. The use of exemplar-based inpainting for

the restoration has the advantage over the estimation based approach firstly as no assumption

needs to be made about the distribution of the background medium, and secondly, as the

inpainted regions are samples of background texture this adds a further level of document

appearance preservation.

A database of 25 registered recto-verso pairs with ground truth binary foreground text masks

was presented in Chapter 5, which, at the time of writing, is the only such database freely

available in the public domain. A numerical evaluation approach was proposed based on the

database to provide a fair comparison between different output types from different method,

where all output result images were binarised and subsequently compared to the ground truth.

The two proposed approaches from Chapters 3 and 4, were evaluated visually and numerically in

comparison with three previous non-blind methods [29,35,44], using the database and evaluation

methodology. The results showed that overall the approach from Chapter 4 performs best in

terms of obtaining a balance between bleed-through removal and foreground text conservation.

It was further noted that the classification based approach has the advantage over model based

in that it can be modified to produce binary, pseudo-binary, and textured outputs, using the

generated label fields, depending on the required output.

User Assisted vs Automatic

In Chapter 5, it was noted that a significant improvement in the results for some image pair

examples could be achieved with manually tuned parameters. The user assisted paradigm is a

common theme in many document analysis and restoration areas, as an interactive approach

to restoration can potentially guarantee optimal results within the bounds of what is feasible

with the technology available. However, as previously discussed, two distinct end user groups

can be identified for use of document restoration techniques: those pursuing individual study or

working on relatively small imaging projects, and large scale digitisation projects. It is clear that

large scale projects, such as Google Books [5], necessarily require efficient and fully automated

restoration procedures, as per-image tuning is simply infeasible due to the quantity of documents

that are processed. In smaller scale projects, for example digitisation of a single collection for
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a new scholarly edition, or simply for people studying individual documents, full automation is

not an absolute requirement, and a better approach would be a semi automated system, where

the user is free to select certain parameters and inputs, and to interact with the output in order

to achieve the optimal results for their own purposes.

7.2 Registration

Chapter 6 presented a framework for full page recto-verso registration including initial coarse

global alignment using the page outline, followed by local grid point based refinement using

the sum of squared differences (SSD) between image intensities and gradients as a similarity

measure. The most significant contribution of this approach is the use of the page outline and

uniform scaling for the initial global alignment stage, as this is more robust to examples with

little or no bleed-through degradation than previous methods. A numerical evaluation approach

specifically for bleed-through registration was also presented, where the estimated displacement

fields are compared against manually generated ground truth displacement fields. The proposed

error measure was calculated in terms of the smallest bleed-through feature width in order

to be able to compare performance over a range of different image resolutions and document

types. Comparisons against previous methods showed that the proposed approach is more robust

to a variety of different document types, and that the initial binding crop and outline global

registration can improve the performance of previous approaches by providing a good initial

alignment.

7.3 Future work

Database and Evaluation

The database described in Chapter 5 was designed to overcome the obstacle of obtaining ac-

cess to good quality bleed-through example images, and to be of use in the initial testing and

development of bleed-through removal approaches. However, though the database does contain

a variety of degradation strengths, and script styles/sizes, all the images are of the same reso-

lution, and manuscript only, on paper or vellum. As bleed-through degradation is a common

problem in a wide range of documents, and as new approaches to restoration are continually

being developed, the best way forward for objective evaluation would be to expand the current

database into a larger benchmarking dataset that is representative of the full range of different

document types that suffer from bleed-through. The benefit of this would be to test the robust-

ness of proposed approaches to a larger range of documents. Extension to full colour images

would also be beneficial. Further evaluation methodologies could then be developed to take

into account the different motivations and goals of restoration, in order to create a standard

similar to the DIBCO series for binarisation evaluation. There would need to be collaboration

between different research groups in order to make this feasible, as this would provide a better
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perspective on the different motivations for performing bleed-through restoration, and ensure

that the database and evaluation would be relevant to each of these.

Restoration

Following the previous discussion, to proceed in the direction of full automation, it is necessary

for the proposed approaches to be tested on a wider range of images in order to develop a more

robust content based parameter selection. As discussed in Chapter 5, gradient information

could be incorporated to the framework in Chapter 4 to improve the connected component

refinement stage, enabling the splitting components at obvious character edges in one or both

images, where they may contain both true foreground and dark bleed-through. The gradient

information could further be incorporated to counter the ‘halo’ effect in textured restored results

where bleed-through has spread horizontally; examining the gradient of restored images at the

edge of bleed-through regions could give an indication of this effect. A further direction would be

the use of full colour information in the classification stage - many manuscripts use colouration

to emphasise certain words or phrases, and this information is often lost in the conversion to

grayscale.

An interesting application of the framework presented in Chapter 4 that could be explored,

is extracting high quality images of watermarks as they are found in old paper. Collections of

watermarks are very important for studying the history of paper manufacture, and for dating

old documents. A common digitisation approach to highlight watermarks is to image the page

both normally and with back-lighting. The two images are then registered and foreground

information removed to reveal the watermark [12, 32]. There are obvious parallels with bleed-

through restoration, and as verso information is often made visible on the recto side as a result

of back-lighting, the framework presented in Chapter 4 could be extended to incorporate two

further back-lit images for watermark extraction. The registration approach proposed would

also be useful in this instance for registering all four images based on the paper outline.

Registration

Similarly to the case of bleed-through registration, approaches need to be robust to a wide va-

riety of different document types. The main limitation of the approach proposed in Chapter 6

is the assumption that the document pages have been imaged with interleaves. This precludes

the necessity of detecting the page outline as the contrast with the interleaf makes it distinct.

In the absence of interleaves, there are potential sources of interference that could result in the

binarised image and page outlines not coinciding, for example the edges of other pages under-

neath. Though the test images did contain an example pair without interleaves on which the

proposed approach performed well, further testing would be required to determine the robust-

ness to the method to such cases, and whether a page outline detection step would be necessary.

It may be the case that the top and bottom edges only are required for the global registration

due to the enforcement of uniform scaling. The dataset used for testing therefore needs to be
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expanded to include a wider variety of document image types. A further direction identified for

improvement of the local refinement stage would be to consider separate treatment for regions

close to the binding, especially where there is a high degree of curvature. These regions could

be automatically detected based on the curvature of the page outline.

As mentioned in Chapter 6, an application of the outline warp approach that could be

explored is in improving the digital ‘flipbook’ representations of documents by warping all of

the pages to a set template. A further application in a more closely related area is that of

multispectral document image registration. In order to perform analysis of images taken at

different wavelengths, they must first be registered. This is, to a certain extent, simpler than

bleed-through registration as the images to be registered are of the same side of the page, however

different information is often visible under different wavelengths, especially in palimpsest images,

so the proposed outline warp stage and local refinement could be more robust than a feature

based approach in such cases.

7.4 Final Remark

Image based document enhancement and restoration is a thriving area of research. As the

prevalence of digitisation of archive and library materials increases, so too does the demand for

image processing based tools with which to analyse the resulting digital resources. However,

the number of researchers studying original sources who could benefit from such techniques far

outweighs the number who know that they could exist. Though this situation is improving [27],

it is important to raise the profile of the potential of image processing based document enhance-

ment and restoration techniques amongst the ‘non-technical’ research community, encouraging

collaboration so that subsequent developments can be more end user driven.
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A
Full Results for Chapter 5

Results for the comparative analysis of different bleed-through methods were presented in Sec-

tion 5.3. Comparison of BgError and FgError results over all images in the database were shown

in Figure 5.8. Due to the variation in results per image, the remaining metrics were compared

via ranking performance in Figures 5.9, and 5.10. Full results of the TotError and DIBCO

metrics are included here for completeness. Figure A.1 shows the TotError results, Figure A.2

shows the F1-score and F1ps-score results, and Figure A.3 shows the PSNR and DRD results.

To summarise the comparative results between methods, the overall performance of each

method was ranked for each metric using Ranked Pairs Voting (RP) shown in Table 5.1. The

pairwise ranking results used to obtain the RP ranks for each metric are shown in Tables A.1

and A.2, where each entry represents the percentage of images that the method listed vertically

was ranked higher than the method listed horizontally.
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Figure A.1: TotError for all 50 images restored with each method.
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Figure A.2: F1-Score (top) and F1ps-score (bottom) for all 50 images in the database restored

with each method.
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each method.
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Table A.1: Pairwise method rank comparison (%) for the bleed-through error metrics.

FgError

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

1 0 98 54 68 52 48 46 48 46

2 2 0 0 0 0 0 0 0 0

3.i 46 100 0 94 58 30 24 24 18

3.ii 32 100 6 0 40 16 14 14 12

4 48 100 42 60 0 8 6 8 12

5.i 52 100 70 84 92 0 38 12 48

5.ii 54 100 76 86 92 62 0 18 48

5.iii 52 100 76 86 92 86 82 0 76

5.iv 54 100 82 88 88 52 52 24 0

BgError

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

1 0 4 28 12 14 22 18 24 20

2 96 0 100 94 96 96 96 96 96

3.i 72 0 0 2 28 26 28 48 22

3.ii 88 6 98 0 68 74 76 82 70

4 86 4 72 32 0 74 70 82 66

5.i 78 4 74 26 26 0 58 94 42

5.ii 82 4 72 24 30 40 0 88 38

5.iii 76 4 52 18 18 6 12 0 14

5.iv 80 4 78 30 34 58 62 84 0

TotError

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

1 0 84 34 28 30 28 28 34 28

2 16 0 6 2 6 4 4 4 4

3.i 66 94 0 30 36 24 22 26 14

3.ii 72 98 70 0 54 42 40 54 34

4 70 94 64 46 0 24 22 36 16

5.i 72 96 76 58 76 0 40 84 38

5.ii 72 96 78 60 78 60 0 82 40

5.iii 66 96 74 46 64 16 18 0 18

5.iv 72 96 86 66 84 62 60 82 0
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Table A.2: Pairwise method rank comparison (%) for the DIBCO error metrics.

F1

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

1 0 92 42 46 34 32 30 34 30

2 8 0 6 4 6 2 2 2 2

3.i 58 94 0 42 38 24 18 22 12

3.ii 54 96 58 0 46 30 30 40 28

4 66 94 62 54 0 20 20 28 14

5.i 68 98 76 70 80 0 42 72 40

5.ii 70 98 82 70 80 58 0 74 40

5.iii 66 98 78 60 72 28 26 0 24

5.iv 70 98 88 72 86 60 60 76 0

F1ps

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

1 0 76 30 26 22 22 24 28 22

2 24 0 16 4 14 10 8 14 8

3.i 70 84 0 24 36 30 32 40 24

3.ii 74 96 76 0 58 54 54 64 42

4 78 86 64 42 0 46 42 52 36

5.i 78 90 70 46 54 0 46 86 42

5.ii 76 92 68 46 58 54 0 86 44

5.iii 72 86 60 36 48 14 14 0 16

5.iv 78 92 76 58 64 58 56 84 0

PSNR

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

1 0 86 36 32 30 30 30 36 30

2 14 0 8 4 6 6 6 8 4

3.i 64 92 0 30 34 22 20 22 10

3.ii 68 96 70 0 44 38 34 44 32

4 70 94 66 56 0 20 22 34 14

5.i 70 94 78 62 80 0 44 82 38

5.ii 70 94 80 66 78 56 0 78 40

5.iii 64 92 78 56 66 18 22 0 18

5.iv 70 96 90 68 86 62 60 82 0

DRD

1 2 3.i 3.ii 4 5.i 5.ii 5.iii 5.iv

1 0 84 34 30 30 30 30 34 30

2 16 0 6 4 6 6 6 6 4

3.i 66 94 0 30 38 26 22 24 14

3.ii 70 96 70 0 54 42 40 48 34

4 70 94 62 46 0 22 22 34 16

5.i 70 94 74 58 78 0 42 84 40

5.ii 70 94 78 60 78 58 0 82 40

5.iii 66 94 76 52 66 16 18 0 18

5.iv 70 96 86 66 84 60 60 82 0



B
Full Results for Chapter 6

Results for the comparative analysis of different warp parameter variations were presented in

Section 6.4. Comparison of results averaged over all images tested were shown in Figures 6.5

and 6.4. Full results of all parameter variations on all images are included here for completeness.

Figures B.1 and B.2 show the percentage displacement error < 0.5x, with each plot displaying

results for a fixed gradient error weight λ, and fixed content preserving triangle weight varia-

tion wL. Similarly, Figures B.3 and B.4 show the percentage displacement error < 0.25x, and

Figures B.5 and B.6 show the mean pixel displacement error.

Results for the comparative analysis of different registration methods were also presented

in Section 6.4. To summarise these comparative results, the performance of each method was

ranked for each error metric examined using Ranked Pairs Voting (RP) shown in Table 6.1. The

pairwise ranking results used to obtain the RP ranks for each metric are shown in Table B.1,

where each entry represents the percentage of images that the method listed vertically was

ranked higher than the method listed horizontally.
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Figure B.1: Percentage displacement error < 0.5x for all 24 image registration results using the

method proposed in Chapter 6, with each plot showing different gradient error weight, λ, and

content preserving triangle weight, wL, combinations. Left column: λ = 0.1. Right column:

λ = 1. Top row: wL = σ
2. Middle row: wL = 0.5. Bottom row: wL = 1.
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Figure B.2: Percentage displacement error < 0.5x for all 24 image registration results using the

method proposed in Chapter 6, with each plot showing different gradient error weight, λ, and

content preserving triangle weight, wL, combinations. Left column: λ = 10. Right column:

λ = 100. Top row: wL = σ
2. Middle row: wL = 0.5. Bottom row: wL = 1.
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Figure B.3: Percentage displacement error < 0.25x for all 24 image registration results using

the method proposed in Chapter 6, with each plot showing different gradient error weight, λ,

and content preserving triangle weight, wL, combinations. Left column: λ = 0.1. Right column:

λ = 1. Top row: wL = σ
2. Middle row: wL = 0.5. Bottom row: wL = 1.
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Figure B.4: Percentage displacement error < 0.25x for all 24 image registration results using

the method proposed in Chapter 6, with each plot showing different gradient error weight, λ,

and content preserving triangle weight, wL, combinations. Left column: λ = 10. Right column:

λ = 100. Top row: wL = σ
2. Middle row: wL = 0.5. Bottom row: wL = 1.
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Figure B.5: Mean pixel displacement error for all 24 image registration results using the method

proposed in Chapter 6, with each plot showing different gradient error weight, λ, and content

preserving triangle weight, wL, combinations. Left column: λ = 0.1. Right column: λ = 1. Top

row: wL = σ
2. Middle row: wL = 0.5. Bottom row: wL = 1.
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Figure B.6: Mean pixel displacement error for all 24 image registration results using the method

proposed in Chapter 6, with each plot showing different gradient error weight, λ, and content

preserving triangle weight, wL, combinations. Left column: λ = 10. Right column: λ = 100. Top

row: wL = σ
2. Middle row: wL = 0.5. Bottom row: wL = 1.
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Table B.1: Pairwise method rank comparison (%) for the registration error metrics.

< 0.5x 1 2 3 4 5

1 0 50 12.5 12.5 4.17

2 33.33 0 12.5 8.33 0

3 87.5 87.5 0 16.67 20.83

4 87.5 91.67 66.67 0 25

5 91.67 100 79.17 75 0

< 0.25x 1 2 3 4 5

1 0 45.83 12.5 16.67 0

2 37.5 0 8.33 4.17 0

3 87.5 91.67 0 37.5 12.5

4 83.33 95.83 58.33 0 20.83

5 95.83 100 87.5 79.17 0

Mean 1 2 3 4 5

1 0 66.67 16.67 16.67 4.17

2 33.33 0 16.67 12.5 0

3 83.33 83.33 0 37.5 8.33

4 83.33 87.5 62.5 0 8.33

5 95.83 100 91.67 91.67 40
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