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SUMMARY

A hybrid stochastic-deterministic method, COMET-PE, is developed for dose cal-

culation in radiotherapy. Fast, accurate dose calculation is a key component of success-

ful radiotherapy treatment. To calculate dose, COMET-PE solves the coupled Boltzmann

Transport Equations for photons and electrons. The method uses a deterministic iteration to

compose response functions that are pre-computed using Monte Carlo. Thus, COMET-PE

takes advantage of Monte Carlo physics without incurring the computational costs typically

required for statistical convergence. This work extends the method to 3-D problems with

realistic source distributions. Additionally, the performance of the deterministic solver is

improved, taking advantage of both shared-memory and distributed-memory parallelism to

enhance efficiency. To verify the method’s accuracy, it is compared with the DOSXYZnrc

(Monte Carlo) method using three different benchmark problems: a heterogeneous slab

phantom, a water phantom, and a CT-based lung phantom. For the slab phantom, all er-

rors are less than 1.5% of the maximum dose or less than 3% of local dose. For both the

water phantom and the lung phantom, over 97% of voxels receiving greater than 10% of

the maximum dose pass a 2% (relative error) / 2 mm (distance-to-agreement) test. Timing

comparisons show that COMET-PE is roughly 10-30 times faster than DOSXYZnrc. Thus,

the new method provides a fast, accurate alternative to Monte Carlo for dose calculation in

radiotherapy treatment planning.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation

An ideal cancer therapy would target and kill cancerous cells perfectly, leaving normal

tissue unharmed. Unfortunately, such a therapy does not yet exist. While radiation therapy

is an effective means of killing cancerous cells, it can also harm normal tissue, producing

undesirable side effects. In fact, the radiation dose that can be delivered to a tumor is

limited by the dose that will be delivered to the surrounding healthy tissue. Ideally, all dose

would be deposited in the tumor itself, leaving surrounding tissue untouched, but this ideal

has not yet been realized. This presents at least two problems:

1. The location of the tumor must be known with high accuracy.

2. Dose must be delivered accurately to the tumor’s location.

There have been large advances in imaging technologies such as computed tomography

(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single

photon emission computed tomography (SPECT), and ultrasound. Furthermore, technol-

ogy such as image fusion allow multi-modality imaging. Put together, all of this allows

physicians to locate a tumor with greater accuracy than ever before.

These advances in imaging coupled with CT-based treatment planning and image-

guided radiation therapy (IGRT) have resulted in treatments that targets tumors with greater

accuracy and precision than ever before. The goal of escalating dose to the tumor while

sparing normal tissue thus leads to treatment plans with high dose gradients immediately

surrounding the tumor. Often this can be located in a region with highly heterogeneous

tissue composition such as the lung. These situations demand accurate dose calculation.
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Monte Carlo methods set the standard for accurate dose calculation [14]. This is be-

cause Monte Carlo methods can model particle transport with great detail, in terms of both

physics and geometry. This great accuracy, however, comes at the price of precision. Be-

cause Monte Carlo calculations are stochastic in nature, all of the results they produce have

inherent statistical uncertainty. The cost of reducing this uncertainty is increased computa-

tional effort. Unfortunately, the effort required for clinically acceptable precision is often

impractically large. This is especially true when one would like to calculate the dose for

a large irradiated volume or with high spatial resolution. Until computing power is cheap

enough to enable the clinical ubiquity of Monte Carlo, alternative methods for dose calcu-

lation are required.

1.2 Objectives

The goal of this work is to develop one such method. The Coarse Mesh Transport (COMET)

method has already been shown to be capable of Monte Carlo accuracy when applied to

problems in nuclear reactor physics [55]. A variant of the method known as COMET-PE

(for photon and electron transport) has also proven to be both accurate and efficient when

calculating energy deposition in 2-D for a restricted set of source distributions [9, 54].

This work extends COMET-PE to allow photon and electron transport calculations in 3-

D with realistic source distributions. This development includes a ground-up re-write of

the codebase that introduces explicit analytical transport for uncollided photons, a new

set of orthogonal basis functions to represent interface fluence, and improvements to the

efficiency of the deterministic solver, which can now take full advantage of both shared-

memory and distributed-memory parallel architectures. The newly implemented method

is benchmarked by comparison with a Monte Carlo method using three benchmark prob-

lems: a slab phantom containing water, aluminum, and lung; a water phantom typical of

accelerator calibration, and a phantom derived from CT data of a lung treatment.

2



CHAPTER II

LITERATURE REVIEW

Dose calculation methods can be divided into two broad categories: those that are based

on transport theory and those that are not. Methods based on transport theory, whether

stochastic or deterministic, provide a rigorous treatment of the underlying physics that

is valid regardless of the presence of material heterogeneity or strong fluence gradients.

The majority of methods in clinical use, however, are not based on transport theory. In-

stead these methods make empirically based approximations or simplifications in order to

achieve short calculation times. The most advanced of these methods are those based on

convolution and superposition.

2.1 Methods based on Convolution and Superposition

In the most general sense convolution-superposition methods calculate dose using a rela-

tionship of the form

D(r) =

∫
V

dr′
∫

4π
dΩ̂

∫ ∞

0
dE G(r, r′, Ω̂, E)ψ(r′, Ω̂, E) (1)

where

r, r′ = position vectors

Ω̂ = direction of primary photons

E = primary photon energy

V = the patient volume

D = dose

ψ = primary photon fluence.

3



The kernel G is a Green’s function derived from the transport equation that gives the dose

at a point r that results from a unit primary photon fluence at the phase space location

(r′, Ω̂, E). In theory, this relationship is exact. However, the Green’s function G is patient-

specific; it depends on the patient’s geometry and material composition. This means that G

cannot be pre-computed, yet evaluating G at a single phase space point (r′, Ω̂, E) requires

solving the transport equation. In other words, calculating dose using (1) is more diffi-

cult than solving the transport equation directly. In practice several different approximate

approaches are taken to overcome this difficulty. Most commonly [30, 11], the dose is

approximated by a superposition integral of the form

D(r) =

∫
V

dr′ ks(r, r′) Φ(r′) (2)

or by a convolution integral of the form

D(r) =

∫
V

dr′ kc(r − r′) Φ(r′). (3)

The superposition kernel ks is more general and requires fewer approximations than the

spatially invariant convolution kernel kc, but this comes at the cost of additional computa-

tion.

To derive a spatially invariant kernel kc for the convolution method, one must assume

that the spatial dependence of the fluence is separable from the energy-angle dependence,

so that ψ(r, Ω̂, E) = Φ(r) f (Ω̂, E). By additionally assuming a homogeneous phantom of

infinite extent, one can evaluate a convolution kernel or dose spread array kc such that

kc(r) =

∫
4π

dΩ̂

∫ ∞

0
dE G(r, 0, Ω̂, E) f (Ω̂, E).

The kernel kc can be calculated analytically for low energy photon beams, where one can

assume that electrons deposit energy locally [11]. When this is not the case, kc can be eval-

uated using Monte Carlo methods [29] . Because (3) is a convolution, it can be evaluated

as a multiplication in Fourier space, specifically using a 3-D fast Fourier transform (FFT),

which is extremely efficient. For a phantom with N3 voxels, the calculation can be carried

4



out with O(N3 log N) arithmetic operations, compared with O(N6) for the general case.

Unfortunately, the assumptions involved in deriving the spatially invariant kernel limit its

accuracy. Specifically, the assumption of fluence separability means that pure convolution

methods cannot account for either the beam’s angular divergence or for variations in the

beam’s energy spectrum as the beam passes through matter. Since low energy photons

are attenuated more than high energy photons, the beam’s energy spectrum changes as a

function of depth due to the phantom itself, and the shape of the flattening filter causes

variation with lateral distance from the beam’s central axis. Perhaps more important than

the assumptions about separability, however, is the assumption that the phantom is both ho-

mogeneous and infinite. As a result of this assumption, the convolution method is invalid

near the phantom boundary or in the presence of material heterogeneities such as lung or

bone.

At the cost of an O(N6) calculation, one can gain increased accuracy by using a more

general superposition method. With a superposition method the separability constraints can

be relaxed. This allows the angular divergence of the source to be handled by tilting the ker-

nel as a function of position relative to the source. Similarly, the kernel can be made to vary

as a function of depth to account for hardening of the beam spectrum. The effect of het-

erogeneities on the transport of secondary particles can be approximated using O’Connor’s

theorem [35] and evaluating the kernels in terms of radiological coordinates–a product of

length and density (g/cm2)–rather than the usual spatial coordinates (cm). This correction

is based on the fact that interaction cross sections are directly proportional to density in

different media of the same atomic composition, such as lung and water. This correction

is not exact, but it provides an improvement over the assumption of homogeneous media.

For media which differ in effective atomic number, such as water and bone, electron den-

sity may be used instead of mass density to scale the superposition kernel [30]. Such a

correction provides only a crude approximation especially when photoelectric absorption,

pair production, and electron transport–all of which have significant dependence on atomic

5



number–are important. This limitation is common to all superposition-style methods.

To improve upon the O(N6) scaling of the methods described so far, Ahnesjö introduced

the Collapsed Cone Convolution (CCC) method [3] and the later the Pencil Beam Kernel

(PBK) method [5]. The Pencil Beam Kernel method uses a 2-D kernel of the form

kPBK(r, z) =
Aze−azr

r
+

Bze−bzr

r
(4)

where r is the cylindrical radius from the pencil beam axis, z is the depth, and Az, az,

Bz, and bz are z-dependent parameters found by fit to Monte Carlo calculation. Az and az

characterize the relatively long-range secondary photon transport while BZ and bz charac-

terize the transport of electrons and low-energy photons. This is a good approximation for

first-scatter photons, but difficult to justify theoretically for electrons or multiply scattered

photons. Furthermore, the Pencil Beam Kernel method does not accurately account for

lateral heterogeneity in the distribution of particles from the point of primary interaction.

The Collapsed Cone Convolution (CCC) is more sophisticated in this regard. Rather than

a 2-D pencil kernel, the method uses a 3-D kernel

kCCC(r, z,Θ) =
AzΘe−azΘr

r2 +
BzΘe−bzΘr

r2 (5)

where r is the spherical radius from the primary interaction point, z is depth, Θ is the scat-

tering angle, and AzΘ, azΘ, BzΘ, and bzΘ are parameters that depend on z and Θ. To avoid

the O(N6) scaling, dose is deposited along a set of discrete rays leaving each primary in-

teraction point. As with the discrete ordinates approximation in transport theory, this can

lead to ray effects at large distances from the point of primary interaction. However, ray

effects are not usually observed in practice thanks to the smoothness of the TERMA distri-

bution. Unlike the pencil beam method, CCC can approximate the effects of heterogeneity

on secondary particle transport by scaling its dose kernel in terms of radiological coordi-

nates. The main drawback associated with this method is similar to that of the pencil beam

kernel: The empirical approximation of electron “attenuation” is not rigorously justified.
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The Analytical Anisotropic Algorithm (AAA) is another superposition method that uses

a simplified kernel to achieve fast calculation times [48]. The kernel is separated into a 1-

D kernel that acts along the direction of incident fluence, and a set of 2-D kernels that

spread dose laterally, perpendicular to the direction of incident fluence. The cylindrical

geometry of the 2-D kernels is similar to that of the Pencil Beam Kernel method. Unlike

PBK however, the lateral kernels in the Analytical Anisotropic Algorithm are applied over

a set of discrete directions and scaled to account for lateral heterogeneity. As with CCC and

other methods that use kernels scaled by local electron density to correct for heterogeneity,

AAA cannot rigorously model the transport of secondary particles, especially electrons, in

heterogeneous media.

This fundamental limitation stems from the original formulation of these methods in

terms of transport theory Green’s functions. The exact Green’s function is inherently de-

pendent on the geometry and material composition of each unique patient. In order to make

superposition methods practical, however, dose kernels are pre-computed based on calcu-

lations in homogeneous media. When using kernels calculated this way, any correction for

heterogeneity is approximate at best.

Another limitation of the convolution-superposition methods is that they treat the an-

gular dependence of the primary fluence implicitly. This means that when a treatment

plan has multiple fields, the entire calculation must be repeated for each field. This can

lead to long calculation times for complicated plans with the extreme example being ro-

tational or arc therapy. Naqvi et al. have suggested that the superposition operation can

be implemented using a Monte Carlo method to avoid this problem [33]. While this does

prevent the calculation time from scaling with the number of fields, it introduces statistical

uncertainty on top of the systematic errors that are inherent in convolution-superposition

methods. Since the removal of this uncertainty is governed by the Central Limit Theorem,

long calculation times will result if high precision is required. Thus, this approach may be

impractical for the same reasons as pure Monte Carlo methods. For more on the class of
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superposition-convolution methods the reader is referred to the review by Ahnesjö [4] and

to the American Association of Physics in Medicine’s (AAPM) Report 85 [36].

2.2 Transport Theory Based Methods for Dose Calculation

Transport theory provides the most accurate way to calculate dose because it is formulated

in terms of the fundamental processes involved in the interaction of radiation with mat-

ter. Transport theory remains valid regardless of material heterogeneity or charged particle

equilibrium [17]. Stochastic (or Monte Carlo) methods are widely considered the “gold

standard” for accuracy in dose calculation. Deterministic methods, though less widely

used, provide an alternative for accurate dose calculations. Both deterministic and stochas-

tic methods yield the same solution in the asymptotic limit, but there are vast differences

between the two approaches. Stochastic methods simulate one particle at a time. By ob-

serving a large number of particle histories, one attempts to determine the average or ex-

pected behavior. The resulting computation is straightforward, but statistical uncertainty

pervades the results. Deterministic methods, on the other hand, attempt to solve for the

mean distribution of all particles directly. In some sense, this is equivalent to following

all possible particle histories simultaneously. This requires discretizing the particle phase

space. Instead of statistical uncertainty, deterministic methods suffer from systematic dis-

cretization errors. Using either approach, one can trade increased computational effort for

a higher quality solution. With stochastic methods, simulating more particle histories de-

creases statistical uncertainty. With deterministic methods, a finer discretization reduces

systematic errors.

2.2.1 Stochastic Methods for Dose Calculation

The Monte Carlo method is perhaps the most intuitive method for radiation transport. The

Monte Carlo method is a stochastic method because particle histories are simulated one at

a time using pseudo-random numbers to sample known statistical interaction probabilities.
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Thus each history follows a unique path through the problem phase space. By accumulat-

ing tally data from enough histories, one can estimate integral quantities, such as energy

deposition. The Monte Carlo method was originally invented to solve neutron transport

problems arising from work related to the Manhattan project, and it was one of the first

methods to be implemented on an electronic computer. Indeed the ENIAC, the world’s

first electronic computer, was programmed to run Monte Carlo simulations [32]. Stochas-

tic methods are unique in their ability to model complex geometries and detailed physics

without approximation. Recognizing the advantages of this approach, the medical physics

community has employed stochastic techniques for decades [37, 6, 38].

There are two main categories of Monte Carlo codes that are relevant to the present

work: general-purpose codes and treatment-planning codes. General purpose codes used

in Medical Physics include MCNP [47], GEANT [2], EGSnrc [24], and PENELOPE [40].

These codes focus on geometric flexibility and physical correctness, making them applica-

ble to the solution of many different transport problems. This class of Monte Carlo codes

is capable of achieving unparalleled accuracy in the transport of photons and electrons.

EGSnrc, in particular, is used throughout this work as a standard for accuracy. In contrast

to general-purpose codes, treatment-planning codes are aimed at making Monte Carlo com-

putations practical (i.e. fast enough) for routine clinical use. In order to accomplish this,

these codes make heavy use of variance reduction and of optimizations that trade generality

or physical detail for speed. Examples of such codes are VMC++ [23], PEREGRINE [20],

and DPM [41]. The report of AAPM Task Group 105 [14] provides extensive discussion

on the clinical use of Monte Carlo methods.

The precision of stochastic methods is governed by the central limit theorem, which

states that, given a large number of histories N, the standard error of an integral estimator

decreases as N−1/2 [44]. Thus, to reduce the error by one half, one must run four times as

many histories. When used for dose calculation, one must also pay a price for increased

dose resolution. This is because as the volume of each cell in the dose grid decreases, the
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probability that any given history will contribute to that cell decreases. Thus, to maintain

statistical precision while increasing resolution, one must also increase the number of his-

tories, and hence, the computational effort. Furthermore, it is difficult to be confident in the

dose at any single point. Indeed, clinicians implementing Monte Carlo treatment planning

systems are advised to modify routine clinical procedures, such as prescribing dose to a

single point, in order to avoid sensitivity to statistical fluctuations [14].

2.2.2 Deterministic Methods for Dose Calculation

Unlike stochastic methods, deterministic methods do not suffer from statistical uncertainty.

These methods, although widely used in the modeling of nuclear reactors, are relatively

new to the Medical Physics community. Deterministic methods solve for the fluence distri-

bution throughout the problem volume by discretizing the phase space. Since the transport

equation is linear, this discretization results in a system of linear equations that can be

solved to find the fluence. Typically the discretization involves the discrete ordinates ap-

proximation in the angular variable, the multigroup approximation in the energy variable,

and either a finite difference or a finite element discretization in the spatial variable. Fur-

thermore, the Boltzmann scattering operator is often approximated via a truncated expan-

sion in Legendre polynomials. [26]. The discrete ordinates approximation is equivalent to

requiring the transport equation to hold only for a finite set of discrete solid angles. When

the number of angles is too small, the error is manifest in the form of artificial oscillations,

called ray effects, in the spatial component of the solution. The most common approach to

mitigate ray effects, aside from increasing the number of discrete angles, is to use a first-

collision source. That is, primary particles are transported via ray-tracing to the point of

their first collision before the discrete ordinates approximation is applied.

Several deterministic transport theory methods have been applied to problems in Medi-

cal Physics although applications of coupled photon-electron transport for dose calculation

are rare. Daskalov et al. show that DANTSYS, a discrete ordinates method, can be used
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to calculate dose for 192Ir and 125I brachytherapy problems in 2-D cylindrical R-Z geom-

etry [16, 15]. Due to the presence of charged particle equilibrium, only photon transport

is required for these calculations. The method is accurate within 5% of the Monte Carlo

reference solutions except for a region near the z-axis, where ray effects occur. The method

is two orders of magnitude faster than a reference Monte Carlo calculation but the use of

a stochastic first-collision source limits performance. Williams et al. demonstrate a 3-D

photon transport method, based on the method of characteristics, with the geometric flex-

ibility to model both the accelerator head and patient/phantom geometry and to achieve

results within uncertainty of a Monte Carlo reference solution [52]. Lacking the capability

to perform electron transport however, the method is unable to calculate dose. Yuan et al.

also demonstrate KERMA calculation using a 3-D photon-only solver, resulting in good

agreement (within 2-3%) of EGSnrc except for errors of ∼30% along the beam edge [53].

Boman et al. use the finite element method (FEM) to discretize space, angle, and energy

variables for the coupled photon-electron transport equations, and they show that this can

be applied to solve a simple 2-D test problem [10]. Tervo et al. build on this work to

develop a method to solve the inverse treatment planning problem–calculating the source

distribution that produces a desired dose distribution [46]. They demonstrate the inverse

method using a small 2-D problem, but they state that solving a problem in 3-D would be

“too computationally expensive.”

Gifford et al. describe the use of a finite-element multigroup discrete-ordinates method,

called Attila, for dose calculation in radiotherapy applications [19]. Attila was originally

developed by Transpire Inc. for applications in nuclear engineering and solves the trans-

port equation over an unstructured tetrahedral mesh. For external beam photon problems,

Attila models electron transport with a Boltzmann-CSD equation. In this model, the con-

tinuous slowing down (CSD) operator is used to treat small frequent energy losses, and the

Boltzmann scattering operator is used to treat large-angle or large-energy-loss scattering

[25]. To mitigate ray effects, Attila employs a first-collision source method. Gifford et
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al.’s results show that Attila agrees within 5% of the Monte Carlo code MCNPX [21] for a

brachytherapy benchmark and within 2.2% of EGS4 [34] for the external beam benchmark

published by Rogers and Mohan [39]. Vassiliev et al. test Attila’s ability to calculate dose

for two CT-based benchmarks: a prostate case and a head and neck case [49]. To create

the benchmarks, each CT Hounsfield number is mapped to one of four materials with fixed

densities. Each phantom is illuminated with several open 6 MV fields. For the head and

neck case comparison with EGSnrc shows that of voxels receiving greater than 10% of the

maximum dose, 98.6% pass the 3%/3 mm criterion. For the head and neck case, 99% of

voxels passes the 3%/3 mm criterion. Calculation times for these cases are 16.1 minutes

and 19.6 minutes on a single 2.2 GHz AMD Opteron.

Based on the success of Attila, Transpire Inc. developed Acuros, a re-write of Attila

designed specifically for radiotherapy dose calculation [50]. One of the biggest differences

between Attila and Acuros is that Acuros uses discontinuous finite elements defined on a

cartesian grid rather than the unstructured tetrahedral elements employed by Attila. Vas-

siliev et al. evaluate Acuros using a benchmark similar to the Rogers and Mohan slab

phantom although bone (ρ =1.85 g/cm3) was substituted for aluminum (ρ =2.7 g/cm3), and

larger field sizes (≥ 2.5 x 2.5 cm2 compared to the original 1.5 x 1.5 cm2) were used. They

find that Acuros agrees with EGSnrc to within 2.3% when excluding the initial 2 cm build-

up region, where distance-to-agreement is reported as less than 0.3 mm. Using a breast

treatment plan with an anthropomorphic phantom, they find that, among voxels receiving

greater than 10% of the maximum dose, 98.7% of voxels pass the 2%/1 mm criterion and

that 99.9% of voxels pass the 2%/2 mm criterion. Bush et al. provide further comparison

between Acuros and Monte Carlo [12]. They report larger discrepancies than in previous

work, but it is difficult to determine the exact cause since the Acuros and Monte Carlo

calculations differ in both the source model and in the CT-to-material assignment.

In general, the accuracy and efficiency of deterministic methods depends on the dis-

cretization employed and–in the case of charged particle transport–on the physical model
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used. A finer discretization provides a better approximation, but it also increases the size

of the linear system, which requires more computational effort to solve. Thus, as with

stochastic methods, there is a trade-off between the quality of the result and the required

computational resources. While the multigroup Boltzmann-CSD and Boltzmann-Fokker-

Plank equations can be used to model electron transport [27, 25], they cannot provide

physical detail at the level of a continuous-energy condensed-history Monte Carlo method

such as EGSnrc [24].

2.3 The Coarse Mesh Transport Method (COMET)

COMET combines the accuracy and physical detail of Monte Carlo with the precision

of deterministic transport theory. The method solves the transport equation by coupling

together stochastically generated response functions using a deterministic solver. While

this idea is relatively new to medical physics, it has been extensively validated for neutron

transport in nuclear reactor physics [55]. Zhang and Rahnema extended the method to

handle coupled photon and electron transport in 2-D [54], and showed that it can achieve

efficiency nearly three orders of magnitude higher than Monte Carlo when tested on stylized

benchmark problems. The method was extensively benchmarked by Blackburn [9] for a

large variety of test cases.

While accurate and efficient, the 2-D version of COMET-PE was limited to solve only

a small class of problems. Aside from restriction to 2 spatial dimensions, the implemen-

tation was based around a simplistic source model that was difficult to adapt for realistic

cases. The source was required to be mono-energetic, mono-directional, and spatially flat.

The method did treat uncollided and collided photon fluence separately, however the im-

plementation relied on response functions to transport the uncollided fluence, an approach

that cannot be easily extended to more general source models. Additionally, Blackburn

reported long calculation times for problems with a large number of meshes [9], a prob-

lem that is worse in 3 dimensions. This work addresses all of these issues and shows that
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COMET-PE can attain accuracy comparable to Monte Carlo for strongly heterogeneous

benchmarks with realistic source distributions in 3-D.
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CHAPTER III

METHOD OVERVIEW

3.1 Introduction to COMET

The key idea underlying the COMET method is that of the response function. A response

function describes how a single mesh responds to internal and external source distributions.

A mesh is just a small (local) piece of a larger (global) problem. Response functions are

general in the sense that they can be applied even when the source distributions are not

known ahead of time. This is depicted in figure 1.

(a) (b)

Figure 1: The action of a response function. Part (a) illustrates source distributions; the
wireframe depicts an internal (volumetric) source, and the four solid curves on each side
depict external (surface) sources. Part (b) shows the response to these sources. Contour
lines within the mesh represent energy deposition, and the solid curves on each side repre-
sent outgoing fluence.

Each response function is a combination of solutions to many simpler problems. These

simpler problems fall into two categories: surface-to-volume responses and volume-to-

volume responses. Surface-to-volume responses are the result of imposing a unit incoming

fluence (or surface source) on a single surface of a mesh. This process is repeated for

each member of a set of basis functions as depicted in figure 2 on the next page. Similarly

volume-to-volume responses are computed from a set of basis functions that correspond to

volumetric source distributions as in figure 3 on page 17. In both the surface-to-volume
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Figure 2: Surface-to-volume responses. The column on the left depicts surface sources
(incoming fluence distributions) chosen from a basis set. The right column depicts the
corresponding responses. Contour lines within the mesh represent energy deposition, and
the solid curves represent outgoing fluence.
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Figure 3: Volume-to-volume responses. The column on the left depicts volumetric sources
chosen from a basis set. The right column depicts the corresponding responses. The con-
tour lines within each mesh represent energy deposition, and the solid curves represent
outgoing fluence.
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(a) (b)

Figure 4: The response function as a superposition. Part (a) shows the expansion of each
surface and volume source from figure 1(a). Part (b) shows the response; contour lines
represent energy deposition, and the three solid curves on each side represent an expansion
of the outgoing fluence (shown originally in figure 1(b)).

and volume-to-volume response problems, the sources are known ahead of time since they

correspond to a fixed basis set. This allows the solutions to be pre-computed and stored in

a library. Once pre-computation is complete, the response to arbitrary surface and volume

sources can be found by superposition of the pre-computed responses as shown in figure 4.

The same basis functions are used to expand both incoming and outgoing fluence on the

mesh surfaces. This allows response functions to be easily connected to one another. By

connecting response functions, one can solve larger (global) problems.

The first step in solving a global problem is calculating the response to the fixed source.

In general, the source distribution may consist of an external source (as in external beam

radiotherapy), an internal source (as in brachytherapy), or both. Furthermore, any external

source distribution can be represented directly, as an incoming fluence, or indirectly, as

the source resulting from the distribution of first-collisions. These options are depicted in

figure 5 on the following page.

Once the source response has been computed, the global solution is found by iteratively

refining the fluence distributions that connect the meshes. Initially, the fluence distributions

18



(a) (b)

Figure 5: Possible source distributions for a hypothetical 9-mesh problem. An external
source can be represented by (a) an incoming fluence distribution on an external surface or
by (b) the volumetric distribution of first-collisions.

Figure 6: The fluence distribution is determined by iteratively applying the response func-
tions to update the interface conditions. This diagram depicts a red-black Gauss-Seidel
iteration in which the fluence updates occur in an alternating checkerboard pattern.

are discontinuous at the mesh interfaces. As the iteration (depicted in figure 6) progresses,

the interface fluences converge to a continuous distribution. Once the solution is converged,

the resulting energy distribution can be computed almost instantaneously. Given this con-

ceptual basis, a more detailed mathematical description is now presented.

3.2 The Boltzmann Transport Equation

The COMET method solves the Boltzmann transport equation

Ω̂ · ∇ψ + σt(r, E)ψ −

∞∫
0

dE′
∫
4π

dΩ̂′σs(r, Ω̂, E; Ω̂′, E′)ψ = q(r, Ω̂, E), r ∈ V (6)
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with boundary condition

ψ(r, Ω̂, E) = γ(r, Ω̂, E), r ∈ ∂V and n̂ · Ω̂ < 0. (7)

where ψ(r, Ω̂, E) is the differential energy fluence (cm−2), which is a function of position r

(cm), angle Ω̂, and energy E (MeV). Hereinafter, fluence shall be used to mean differential

energy fluence unless otherwise noted. The spatial domain is a volume V , which has a

boundary ∂V with outward unit normal vector n̂. Fluence originates from either a source

internal to V or from a source external to V . Internal sources are represented by a term on

the right hand side of the transport equation q (with units of cm−3), and external sources

are represented by the boundary condition γ (cm−2). The Boltzmann transport equation is

a balance equation. The first term Ω̂ · ∇ gives the net energy of particles streaming out of

the differential phase space drdΩ̂dE. The second term describes the removal of particles

from the phase space due to collision interactions, and σt (cm−1) is the total cross section.

The third term describes the distribution of particles emerging from scattering interactions,

and σs (cm−1MeV−1) is the double differential scattering cross section. Equation (6) is a

balance of energy sources and sinks within the differential phase space volume. The fluence

in a given volume is uniquely determined by the material properties, which are given by σt

and σs, and by the source distributions q and γ.

3.3 Spatial Decomposition and Orthogonal Function Expansion

The COMET method employs a divide-and-conquer approach to solve (6) and (7). This

strategy is based on the idea that solutions of several small problems, called response func-

tions, can be combined to solve a larger problem. Assume that volume V has been divided

into non-overlapping meshes Vi such that
⋃

i
Vi = V . Let ∂Vi denote the boundary of mesh

Vi, and let ∂Vis denote surface s of mesh i. Let n̂i denote the outward unit normal on ∂Vi

and let n̂is denote the outward unit normal on ∂Vis. For simulating patient geometry, these

meshes correspond to cubes arranged in a Cartesian grid. Let {Qm} be a set of orthogonal

basis functions that can be used to represent an internal source within the volume Vi, and let
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{Γm} be a set of orthogonal basis functions that can be used to represent an external source

impinging on the surface ∂Vis. Each member of each basis corresponds to a response func-

tion. The volume-to-volume response function Rm
i is the fluence distribution within mesh

Vi that results from the internal source Qm. Thus it satisfies

Ω̂ · ∇Rm
i + σt(r, E) Rm

i −

∞∫
0

dE′
∫
4π

dΩ̂′σs(r, Ω̂, E; Ω̂′, E′) Rm
i = Qm(r, Ω̂, E), r ∈ Vi (8)

with the vacuum boundary condition

Rm
i (r, Ω̂, E) = 0, r ∈ ∂Vi and n̂i · Ω̂ < 0. (9)

Similarly, the surface-to-volume response function Rm
is is the fluence distribution within

mesh Vi that results from the external source Γm impinging on surface s. Thus it satisfies

Ω̂ · ∇Rm
is + σt(r, E) Rm

is −

∞∫
0

dE′
∫
4π

dΩ̂′σs(r, Ω̂, E; Ω̂′, E′) Rm
is = 0, r ∈ Vi (10)

with boundary condition

Rm
is(r, Ω̂, E) =


Γm(r, Ω̂, E), r ∈ ∂Vis and n̂is · Ω̂ < 0

0, r ∈ (∂Vi − ∂Vis) and n̂i · Ω̂ < 0.
(11)

Both types of response functions are defined as if mesh i exists in a vacuum so that:

1. the only way a particle can enter the mesh is to be emitted by the source, and

2. once a particle leaves the mesh it cannot return.

Using the linearity of the transport equation, these response functions can be superimposed

to reconstruct the solution

ψ =

∞∑
m

hm
i Rm

i +
∑

s

∞∑
m

jm−
is Rm

is (12)

hm
i = 〈Qm, q〉i, jm−

is = 〈Γm, ψ〉−is , r ∈ Vi. (13)
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Here, the volume and surface inner products are defined

〈 f , g〉i =

∫
Vi

dr
∫
4π

dΩ̂

∞∫
0

dE f (r, Ω̂, E)g(r, Ω̂, E) (14)

〈 f , g〉±is =

∫
∂Vis

dr
∫

±n̂is·Ω̂>0

dΩ̂

∞∫
0

dE
∣∣∣n̂is · Ω̂

∣∣∣ f (r, Ω̂, E)g(r, Ω̂, E). (15)

The − superscript indicates incoming fluence and the + superscript, outgoing fluence. The

coefficients hi
m and jm−

is are referred to as expansion coefficients. When the basis sets {Qm}

and {Γm} are complete, equations (12) and (13) provide an exact solution to (6) and (7). For

a practical implementation, however, at least two changes are required. First, the infinite

series expansions in (12) must be truncated at finite order. Second, the incoming fluence

expansion coefficients jm−
is must be found using a method other than the relation given by

(13) since the fluence ψ is not know a priori.

3.4 Solving for the Interface Fluence Expansion Coefficients

The fluence expansion coefficients can be computed by solving a linear system that arises

from a fluence continuity constraint between neighboring meshes. If s is an external surface

(∂Vis ⊂ ∂V), the external boundary condition γ in (7) gives the incoming fluence. Otherwise

s must be an internal surface (∂Vis  ∂V), and the continuity condition in (16) determines

the incoming fluence

ψ−is(r, Ω̂, E) = ψ+

ĩs
(r, Ω̂, E), r ∈ ∂Vis and n̂is · Ω̂ < 0 (16)

where the + and − superscripts denote incoming and outgoing fluence respectively. The

mesh index ĩ and the surface index s̃ define neighbors to surface s of mesh i such that

∂Vis = ∂Vĩs = (∂Vi ∩ ∂Vĩ). Equation (16) simply states that energy flows directly from one

mesh into its neighbor. So that both the incoming fluence and the outgoing fluence have

the same form, the outgoing fluence is expanded in terms of the same basis used for the

incoming fluence. This yields outgoing fluence expansion coefficients jm+
is . With interface
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fluence defined this way, the interface continuity condition given by (16) is satisfied if and

only if the coefficients satisfy

jm−
is = jm+

ĩs
. (17)

Using this relationship, one can write the outgoing fluence expansion coefficients jm+
is as a

sum of contributions from the source, from the boundary condition, and from neighboring

meshes

jm+
is =

∑
m′

hm′
i Rm′→m

i→s +
∑
m′,s′

∂Vis′⊂∂V

γm′
is′R

m′→m
is′→s +

∑
m′, s′

∂Vis′ ∂V

jm′+
ĩs′

Rm′→m
is′→s . (18)

Where the volume-to-surface and surface-to-surface response coefficients are defined

Rm′→m
i→s =

〈
Γm,Rm′

i

〉+

is

Rm′→m
is′→s =

〈
Γm,Rm′

is′
〉+

is
,

(19)

and where the external boundary condition has also been expanded in coefficients γm′
is′ =〈

Γm′ , γ
〉−

is′
. Equation(18) can be written in matrix form as

j = Rhh + Rγg + Rj. (20)

Because the vectors h and g are computed directly from the given source and external

boundary conditions, the vector b = Rhh+Rγg is defined to represent the sum of all (fixed)

source contributions to the interface fluence. By grouping the terms involving j on the left

hand side and defining A = I − R, one finds the canonical linear system

Aj = b.

This system has a block-sparse structure, and by taking advantage of this, a careful imple-

mentation of the COMET matrix-vector product has speedup that scales linearly with the

number of processors in a distributed-memory computer. In this work, the linear system is

solved using a red-black Gauss-Seidel iteration [7].
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3.5 Energy Deposition

Once the interface fluence is known, dose calculation is straightforward. As with the outgo-

ing angular fluence, the distribution of energy deposited Di(r) can be written as a response

to contributions from the source and from the incoming fluence

Di(r) =
∑

m

hm
i Rm

i→D(r) +
∑
m, s

jm−
is Rm

is→D(r). (21)

Here the energy deposition response coefficients are defined

Rm
i→D(r) =

∞∫
0

dE
∫
4π

dΩ̂
σED(r, E)
ρ(r)

Rm
i (r, Ω̂, E)

Rm
is→D(r) =

∞∫
0

dE
∫
4π

dΩ̂
σED(r, E)
ρ(r)

Rm
is(r, Ω̂, E)

(22)

where σED is an energy deposition cross section (cm−1) and ρ is the material density

(g/cm3). The spatial dependence of Di(r) could be represented by expansion in a con-

tinuous basis, but in this work, a discrete basis is used. For example, the method is tested

using mesh sizes of 5 mm and 10 mm, but in both cases, energy deposition is calculated at

a resolution of 1 mm. COMET-PE provides a detailed distribution of the energy deposition

within each mesh, whether using a continuous or a discrete basis.

3.6 Coupled Transport

The method works just as well for photons as it does for electrons and neutrons, or theoreti-

cally, for protons or heavy ions. Because the method constructs solutions via superposition,

the only requirement is a linear transport process. This linearity can also be used to gener-

alize the method for multi-species transport. Instead of solving a single transport equation,

one must solve a system of transport equations: one for each particle type. These transport

equations are coupled to one another through their source terms. For a given species ν, the

source term can be written

qν = qν0 +
∑
ν′

qνν′
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where qν0 is the primary source of particles of type ν, and qνν′ is the secondary source that

results from collisions made by particles of type ν′. To accommodate this generalization,

only a small change in notation is required: replace all occurrences of the index m with

the pair of indices mν. For example, the surface-to-surface response coefficient Rm′→m
is′→s

becomes Rm′ν′→mν
is′→s . In other words, adding multi-species transport is equivalent to adding

an extra dimension to the expansion bases. For megavoltage photon therapy, the index

ν will take on one of two values corresponding to either photons or electrons. Although

positrons are also generated by pair production, explicit positron transport is not essential

for dose calculation. Instead of including a transport equation for positrons, pair production

and annihilation are replaced with a single interaction that results in two photons and two

electrons. Since human tissue is composed of materials with relatively low atomic number,

this approximation does not significantly perturb the dose distribution.
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CHAPTER IV

ANALYTICAL FIRST COLLISION SOURCE

4.1 Analytical First-Collision Source

The highly anisotropic photon sources typical of medical physics applications–specifically

external beam radiotherapy–necessitate high expansion orders. To overcome this challenge,

the source term can be treated analytically. Let us decompose the fluence into an uncollided

component ψu and a collided component ψc such that ψ = ψu + ψc. The uncollided fluence

represents particles that have not experienced any collisions since being emitted from the

source; the collided fluence represents everything else. Because the transport equation in ψu

lacks scattering, it can be solved analytically using an integrating factor τ(r, r′, E), known

as the optical depth, that gives the distance between points r and r′ in mean free paths. The

uncollided fluence can be written

ψu(r, Ω̂, E) =

∫
V

dr′
q(r′, Ω̂, E)
4π|r − r′|2

exp
[
−τ(r, r′, E)

]
δ

(
Ω̂ −

r − r′

|r − r′|

)
(23)

where δ is the Dirac delta. The transport equation in ψc is identical to (6) except that the

original source q is replaced by the first scatter source

qc(r, Ω̂, E) =

∞∫
0

dE′
∫
4π

dΩ̂′σs(r, Ω̂, E; Ω̂′, E′)ψu(r, Ω̂′, E′). (24)

The combination of (23) and (24) acts as a low pass filter, so that the first scatter source

qc has a broader distribution in space and angle than the original source q. This means it

can be better approximated by a low order expansion. In the case of a point source, the

uncollided fluence can be evaluated by ray-tracing. To use this technique more generally,

an arbitrary source can be approximated by a sum of point sources; this is analogous to

evaluating the integral in (23) via quadrature. To incorporate the new analytical source into
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the COMET method, let us expand ψu in an orthogonal basis {Q̃m} such that

ψu =

∞∑
m

h̃m
i Q̃m with h̃m

i =
〈
Q̃m, ψu

〉
i
, r ∈ Vi. (25)

By combining (24) and (25) one can derive the form of the first-scatter distribution Qm that

results from the uncollided fluence Q̃m

Qm(r, Ω̂, E) =

∞∫
0

dE′
∫
4π

dΩ̂′σs(r, Ω̂′, E′; Ω̂, E) Q̃m(r, Ω̂′, E′).

The resulting basis {Qm} is not orthogonal, so the coefficients hm
i cannot be used as they are

defined in (13). Instead, they are replaced with the coefficients h̃m
i as defined in (25). These

new coefficients can be used to synthesize the first-scatter source

qc =

∞∑
m

h̃m
i Qm.

The inner product in (25) implies that a 6-dimensional integral must be evaluated for

each coefficient h̃m
i . The space-angle delta in (23) obviates the angular integral, and the

multigroup method [26] is used to handle the energy dependence of the uncollided fluence.

More detail on the multigroup method is provided in the next section. This leaves a triple

integral in the spatial coordinate over the mesh volume. These remaining integrals are

evaluated using a purpose-built adaptive cubature. The cubature algorithm is inspired by

the work of Berntsen et al. [8], but it is designed specifically to meet the requirements

of the COMET-PE method in evaluating integrals given by the inner product in (25). The

optical depth τ is evaluated using a variant of the Siddon algorithm [42].

4.2 Multigroup Transport Theory

In the case of a photon point source q(r, Ω̂, E) = δ(r − r0)q0(Ω̂, E), (23) becomes

ψu(r, Ω̂, E) =
q0(Ω̂, E)

4π|r − r0|
2 exp [−τ(r, r0, E)] δ

(
Ω̂ −

r − r0

|r − r0|

)
. (26)

in continuous energy. The multigroup energy approximation is introduced by integrating

the uncollided fluence

ψu
g(r, Ω̂) =

Eg∫
Eg+1

dE ψu(r, Ω̂, E)
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over some energy group structure E1 > E2 > · · · > EG+1. The result, ψu
g, is called the

multigroup energy fluence. Integrating the right hand side of (26) gives

ψu
g(r, Ω̂) =

q0g(Ω̂)

4π|r − r0|
2 exp

[
−τg(r, r0)

]
δ

(
Ω̂ −

r − r0

|r − r0|

)
. (27)

The corresponding multigroup source, total cross section, and optical depth are defined

q0g(Ω̂) =

Eg∫
Eg+1

dE q0(Ω̂, E)

σtg(r) =

Eg∫
Eg+1

dE
∫
4π

dΩ̂σt(r, E) f (r, Ω̂, E)

Eg∫
Eg+1

dE
∫
4π

dΩ̂ f (r, Ω̂, E)

τg(r, r0) =

|r−r0 |∫
0

dsσtg

(
r0 + s

r − r0

|r − r0|

)
.

When the spectral weighting function f (r, Ω̂, E) = ψu(r, Ω̂, E) is used, equation (27) is

exact. Because the uncollided fluence is not known a priori, the problem-independent, flat

energy spectrum f (r, Ω̂, E) = E is used.

The degree of approximation introduced by using multigroup cross sections can be

controlled by selecting an appropriate group structure. A finer group structure will result in

a more accurate calculation, but computational cost increases when the number of groups

G increases. One would like to use the coarsest group structure that preserves accuracy. In

general some sort of analysis or sensitivity study is required to choose an optimal group

structure. Such an analysis is performed in section 6.5.1.

4.2.1 Cross Section Evaluation

A user code, called getxs, is developed to extract continuous energy photon cross sections

from EGSnrc. This ensures the consistency with response coefficients, which are also

generated using an EGSnrc user code. Additionally, this procedure eliminates a possible

source of discrepancy between COMET-PE and DOSXYZnrc, which is yet another user

code of EGSnrc.
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CHAPTER V

EXPANSION BASES AND PRE-COMPUTATION

5.1 Response Pre-computation

So far only the deterministic solution method has been discussed, but this method presup-

poses the existence of response functions. One would like to have these functions readily

available for each mesh in the problem, so that the solution can be synthesized quickly.

This implies that the response functions must be generated using only patient-independent

knowledge. To accomplish this, a homogeneous material distribution is assumed within

each mesh. Although COMET can handle mesh heterogeneity without approximation, the

number of possible coarse mesh configurations is unmanageably large. It would be difficult

to compute a library with response functions covering an exhaustive set of heterogeneous

meshes. Homogeneous meshes, however, allow one to construct a patient volume one ma-

terial at a time. Additionally, the use of homogenous meshes allows one to take advantage

of the cube’s symmetry, which increases the efficiency of both the response function gener-

ation and the iterative solution. One must pre-compute response functions for each unique

material that it to be modeled. Voxel phantoms derived from computed tomography re-

quire a continuum of materials. Although such phantoms are not studied here, one should

note that COMET can effectively represent a continuous variation in material density ρ by

interpolation between response functions

Rm′→m
is′→s (ρ) =

ρ − ρ1

ρ2 − ρ1
Rm′→m

is′→s (ρ1) +
ρ2 − ρ

ρ2 − ρ1
Rm′→m

is′→s (ρ2)

that have been pre-computed for a set of fixed densities {ρ1, ρ2, . . .}. This type of interpola-

tion is used routinely and effectively for nuclear reactor calculations [55].

The use of a pre-computed response library enables COMET-PE to be both accurate and

efficient. The accuracy comes from the fact that pre-computation can take advantage of the
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best transport theory methods available, whether stochastic or deterministic. The efficiency

comes from the fact that this pre-computation need only be performed once. Since a single

library can be used for all patients, the amortized cost is practically negligible. When Monte

Carlo is used for response generation, this allows much higher precision than is practical in

patient-specific calculations. Even without amortization, the pre-computations are efficient

because the small–in terms of mean free path–meshes combined with vacuum boundary

conditions result in problems that converge quickly (i.e. small number of histories for a

stochastic method or small number of iterations for a deterministic method). Furthermore

the pre-computation is trivially parallelizable.

5.2 Orthonormal Surface Basis

The choice of response basis {Γm} is key to both the accuracy and the efficiency of the

method. The only approximation that has been made so far is the replacement of infinite

series by their partial sums. The method’s accuracy is therefore closely tied to the ability of

each basis to provide a good approximation with only a small number of terms. The choice

of basis also determines the efficiency of the method. Assuming that the problem contains

N meshes, the interface fluence expansion contains M terms, and the method requires K

iterations for convergence, the number of floating point operations will be O
(
M2NK

)
.

Based on her experience with COMET-PE in 2-D, Blackburn [9] suggested that the sur-

face expansion should be improved for both energy and angular variables. For the original

2-D implementation of COMET-PE, each phase space variable on the mesh surface–one

spatial dimension, the cosine of the polar angle, the azimuthal angle, and energy–were all

expanded in Legendre Polynomials [9]. In further development by Zhang and Rahnema,

the azimuthal angle expansion was replaced with a double Legendre polynomial to allow

a discontinuity between fluence traveling in the forward and backward directions, which

enabled improved treatment of problems with forwardly peaked angular distributions [54].

Since the original development of COMET-PE, Zhang and Rahnema [55] have developed
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an improved orthogonality condition:

〈 f , g〉±is =

∫
∂Vis

dr
∫

±n̂is·Ω̂>0

dΩ̂

∞∫
0

dE
∣∣∣n̂is · Ω̂

∣∣∣ f (r, Ω̂, E)g(r, Ω̂, E) (28)

= δmm′ (29)

where δmm′ is the Kronecker delta. A basis that satisfies this condition conserves planar flu-

ence (i.e. the net flow of energy across mesh interfaces) exactly regardless of truncation or-

der. Additionally, when the 0th order function is a constant, isotropic fluence is represented

exactly by the 0th order expansion. Neither of the expansions previously used for COMET-

PE satisfy the new orthogonality condition. The basis used by Zhang and Rahnema for

neutron transport [55] is a product of Legendre polynomials and Chebyshev polynomials.

While this basis meets the new orthogonality requirement, it is not symmetric. Use of this

basis in COMET-PE would prevent the underlying symmetry of a homogeneous mesh from

being fully exploited. Instead, the following basis is used for the suface fluence expansion

Γixiy`kg(r, Ω̂, E) = Pix(x)Piy(y) H`k(Ω̂) χg(E)

where Pix and Piy are Legendre polynomials of order ix and iy, and H`k is the hemispherical

harmonic function of degree ` and order k with |k| < `. The hemispherical harmonic

expansion allows the basis to satisfy the new orthonormality condition, and it is rotationally

invariant about the surface normal. Thus, it does not break any of the symmetries of the

cube. More detail on the hemispherical harmonics, including a novel recurrence relation,

can be found in section 5.3. Equation (30) defines the energy binning function χg

χg(E) =


E, Eg+1 ≤ E < Eg

0, otherwise,

g ∈ {1, . . . ,G}, E1 > E2 > · · · > EG+1.

(30)

This is distinct from the multigroup approximation because all interactions within the mesh

occur in continuous energy; particles are only “binned” as they cross a surface. Compared

31



with the Legendre Polynomial expansion, energy bins have the advantage of allowing the

same library to be used for several beam energies without the artifacts induced by fitting a

polynomial to a discontinuous function. The truncation of the series is specified by maxi-

mum expansion orders in space Mr and angle MΩ̂ such that ix + iy ≤ Mr and ` ≤ MΩ̂. The

additional requirement that ix + iy + ` ≤ max(Mr,MΩ̂) removes high order cross terms.

5.3 Hemispherical Harmonics

Hemispherical harmonics presented here are due to Makhotkin [31]. (Note that this basis

is distinct from that of Gautron et al. [18], which does not have the same orthonormality

relation.) As defined here, the hemispherical harmonics differ only from Makhotkin’s by a

constant normalization factor. The basis is both orthonormal (see 5.3.1) and complete (see

5.3.2). Let the hemispherical harmonics be defined as

H`k(θ, φ) =


2
√
π
J(−k)
` (2 cos θ − 1) sin(−kφ), k < 0

√
2
√
π
J(0)
` (2 cos θ − 1), k = 0

2
√
π
J(k)
` (2 cos θ − 1) cos(kφ), k > 0

(31)

for ` ≥ 0 and |k| ≤ ` where J(k)
` (x) is a normalized adjoint Jacobi function. The adjoint

Jacobi functions play a role analogous to that of the associated Legendre polynomials used

to define the spherical harmonics. The adjoint Jacobi functions can be defined by

J(k)
` (x) = c`k(1 − x2)k/2 dk

dxk P(0,1)
` (x). (32)

where c`k is a constant factor chosen so that∫ 1

−1
dx (1 + x)

(
J(k)
` (x)

)2
= 1. (33)

In (32), P(0,1)
` (x) is a Jacobi polynomial. The Jacobi polynomials are orthogonal on the

interval [-1,1] with respect to the weighting function w(α,β)(x) = (1− x)α(1+ x)β. The Jacobi

polynomials generalize both the Legendre polynomials and the Chebyshev polynomials

[45]. They can be defined by

P(α,β)
n (x) =

(−1)n

2nn! w(α,β)(x)
dn

dxn

[
w(α,β)(x)(1 − x2)n

]
.
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5.3.1 Orthonormality

As defined above, the hemispherical harmonics are orthonormal:∫
H

dΩ̂ (n̂ · Ω̂)H`k(Ω̂)H`′k′(Ω̂) = δ``′δkk′ (34)

where H denotes the hemisphere (angular half-space) such that n̂ · Ω̂ > 0 for some unit

normal n̂, and δ is the Kronecker delta. Here the angular coordinates are chosen such that∫
H

dΩ̂ =

∫ 2π

0
dφ

∫ π/2

0
dθ sin(θ)

n̂ · Ω̂ = cos(θ).

Note that this system is rotated 90 degrees relative to the coordinates used by Zhang and

Rahnema.

5.3.2 Completeness

One can see that the functions defined in (31) and (32) differ only by a constant factor from

those defined in equations 1 and 2 in reference [43]. Thus, Smelov’s proof of complete-

ness applies, and H`k provide an orthonormal basis for space L2
(
H , (n̂ · Ω̂) dΩ̂

)
of square

integrable functions on the hemisphereH with weight (n̂ · Ω̂).

5.4 A Recursion for the Adjoint Jacobi Functions

One can derive a three-term recursion relation that can be used to efficiently evaluate the ad-

joint Jacobi functions J(k)
` (x). The following relation regarding Jacobi polynomials comes

from reference [45]

d
dx

P(α,β)
n (x) =

1
2

(α + β + n + 1)P(α+1,β+1)
n−1 (x). (35)

By applying (35) k times one can rewrite (32) as

J(k)
` (x) = c′`k(1 − x2)k/2P(k,k+1)

`−k (x) (36)
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where c′`k is another constant factor. This transformation permits the use of several existing

results for Jacobi polynomials [45]. The normalization for Jacobi polynomials is such that

h(α,β)
n =

∫ 1

−1
dx w(α,β)(x)

(
P(α,β)

n (x)
)2

=
2α+β+1

2n + α + β + 1
Υ(n + α + 1)Υ(n + β + 1)
Υ(n + 1)Υ(n + α + β + 1)

where Υ is the gamma function, a generalization of the factorial. (The greek upsilon (Υ)

is used here to avoid conflict with the notation for the surface expansion basis.) By the

definition in (33)

1 =

∫ 1

−1
dx (1 + x)

(
J(k)
` (x)

)2

= (c′`k)
2
∫ 1

−1
dx (1 + x)(1 − x2)k

(
P(k,k+1)
`−k (x)

)2

= (c′`k)
2
∫ 1

−1
dx w(k,k+1)(x)

(
P(k,k+1)

n (x)
)2

= (c′`k)
2 h(k,k+1)

`−k .

Solving for c′`k yields

c′`k =

√
2` + 2
22k+2

Υ(` − k + 1)Υ(` + k + 2)
Υ(` + 1)Υ(` + 2)

. (37)

The Jacobi polynomials have a 3-term recurrence of the form

P(α,β)
n (x) = (a(α,β)

n,0 x + a(α,β)
n,1 )P(α,β)

n−1 (x) + a(α,β)
n,2 P(α,β)

n−2 (x) (38)

with coefficients

a(α,β)
n,0 =

(2n + α + β − 1)(2n + α + β)
2n(n + α + β)

(39)

a(α,β)
n,1 =

(α2 − β2)(2n + α + β − 1)
2n(n + α + β)(2n + α + β − 2)

(40)

a(α,β)
n,2 = −

(n + α − 1)(n + β − 1)(2n + α + β)
n(n + α + β)(2n + α + β − 2)

. (41)
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Using equations (36) to (41) one can derive a new 3-term recurrence for the orthonormal

adjoint Jacobi functions

J(k)
k (x) =

√
(2k + 1)!!

2(2k)!!
(1 − x2)k/2 (42)

J(k)
k+1(x) =

(
â(k)

k+1,0x + â(k)
k+1,1

)
J(k)

k (x) (43)

J(k)
` (x) =

(
â(k)
`,0x + â(k)

`,1

)
J(k)
`−1(x) + â(k)

`,2J(k)
`−2(x) (44)

where n!! = n(n − 2)(n − 4) · · · denotes the product of every other positive integer. The

coefficients are given by

â(k)
`,0 = (2` + 1)

1
√

(` − k)(` + k + 1)
(45)

â(k)
`,1 = −

2k + 1
2` − 1

1
√

(` − k)(` + k + 1)
(46)

â(k)
`,2 = −

2` + 1
2` − 1

√
(` + k)(` − k − 1)
(` − k)(` + k + 1)

(47)

To the author’s knowledge, the recursion given by equations (42) to (47) has not been

published previously. It is simpler than the recursion given by equation 5 in reference [31],

and unlike the recursion derived in reference [43], it has no singularity at x = ±1.

5.5 Uncollided Fluence Basis

For the uncollided fluence expansion, basis functions of the form

Q̃ixiyizklg(r, Ω̂, E) = Pix(x)Piy(y)Piz(z) Y`k(Ω̂) χg(E)

are used where Y`k is the real spherical harmonic of degree ` and order k with |k| < `. As

with the surface basis {Γm}, the high order cross-terms are eliminated upon truncation of

the basis.
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5.6 Spherical Harmonics

The the real spherical harmonic Y`k(µ, φ) are defined such that

Y`k(µ, φ) =


1
√
π
Pk
`(µ)cos(kφ), k > 0

1
√

2π
Pk
`(µ), k = 0

1
√
π
P−k
` (µ)sin(−kφ), k < 0

The normalized associated Legendre Polynomials are defined

Pk
`(x) = (−1)k

√
(` − k)!
(` + k)!

(1 − x2)k/2 dk

dxk P`(x)

for 0 ≤ k ≤ ` with `, k integers with the orthonormal Legendre polynomial

Pn(x) =

√
2n + 1

2
1

2nn!
dn

dxn

[
(x2 − 1)n

]
For more, see Abramowitz and Stegun [1].

5.7 Response Function Generator

A user code for EGSnrc called rf_generator is developed to evaluate all of the responses,

both volume-to-volume and surface-to-volume, used in this work. Because Monte Carlo is

used to estimate the response coefficients, there is also a variance estimate associated with

each response coefficient. To estimate the impact of this uncertainty on COMET-PE dose

calculations, these variances are propagated through the solution of the linear system as

described by Zhang and Rahnema [54, 55].
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CHAPTER VI

WATER-ALUMINUM-LUNG INTERFACE PHANTOM

To test the accuracy of the method, a benchmark developed by Rogers and Mohan [39] is

used. While the benchmark was originally intended for Monte Carlo methods, it challenges

any method’s ability to handle strong heterogeneity. It was used, for example, to test the

deterministic code Attila [19]. The problem consists of a 30.5 x 39.5 x 30 cm3 layered slab

phantom irradiated by a photon point source with 100 m source to surface distance. This is

depicted in figure 7 on the following page. The 18 MV spectrum comes from Monte Carlo

simulation of a Varian Clinac 2100. The the benchmark specification also includes a 6 MV

photon energy spectrum from the same accelerator [39]. These energy spectra are plotted in

figure 8 on page 39. The beam is collimated to 1.5 x 1.5 cm2 on the phantom surface. The

phantom’s material layout is given by table 1. The cross sections for aluminum, water, and

lung tissue are plotted in figure 9. The material density changes by an order of magnitude

across the aluminum-lung interface, and the beam’s narrow collimation precludes lateral

charged particle equilibrium. These factors combine to make this benchmark an extreme

test of photon-electron transport.

Table 1: Material composition of the interface phantom.

Region∗ Material Density (g/cm3)
0≤ d < 3 Water 1.0
3≤ d < 5 Aluminum 2.702
5≤ d < 12 Lung Tissue 0.26

12≤ d < 30 Water 1.0
∗ d=depth in cm
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Figure 7: The ICCR benchmark problem.

6.1 Reference Solutions

Reference KERMA (kinetic energy released per unit mass), and dose distributions were

calculated using the DOSXYZnrc user code [51] of the EGSnrc code system [24]. Dose

was calculated with 1 billion source particles and the transport parameters listed in table 18

on page 89. KERMA was calculated using 16 billion source particles and all the same

transport parameters with the exception of the electron energy cutoff, which was set to

100 MeV to disable electron transport. Energy deposition was tallied in 5 x 5 x 2 mm3

voxels along the beam centerline. The dose reference solution was found to agree with

the EGS4 solution provided by Rogers and Mohan [39] within 1% of the maximum dose

or within 2.5% of local dose. The reference KERMA solution required 3.0 hours on 12

compute nodes and the reference dose solution required 1.0 hour on the same system. All

calculations presented in this work were performed using a cluster with 16 compute nodes,

each with 16 GB of memory and 2 quad-core (a total of 8 cores per node) AMD Opteron

2350s clocked at 2.0 GHz.
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Figure 8: Photon source spectra for a Varian Clinac 2100

10−1 100 101

Energy (MeV)

10−3

10−2

10−1

100

101

102

To
ta

lC
ro

ss
Se

ct
io

n
σ t

(c
m
−

1 )

Aluminum
Water
Lung Tissue

Figure 9: Total photon cross sections for aluminum, water, and lung tissue
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6.2 Expansion order notation

In order to succinctly express the truncation order used for a particular calculation, the

notation

(o1o2o3o4o5o6)

is introduced where

o1 = angular expansion order for uncollided fluence

o2 = spatial expansion order for uncollided fluence

o3 = angular expansion order for photon fluence

o4 = spatial expansion order for photon fluence

o5 = angular expansion order for electron fluence

o6 = spatial expansion order for electron fluence.

For example, order=(917062) would denote an expansion of 9th order in uncollided angle,

1st order in uncollided space, 7th order in photon angle, 0th order in photon space, 6th order in

electron angle, and 2nd order in electron space. Additionally, when discussing KERMA, the

electron expansion orders are irrelevant, so they are omitted. Thus, (9264) means (9264. . .).

Similarly, when discussing TERMA, neither of the surface expansions are relevant, so (92)

is written to mean (92. . .).

6.3 Pre-computation

Response functions for water, aluminum, and lung are pre-computed using rf_generator,

and getxs is used to extract continuous energy cross sections from EGSnrc and to compute

multigroup cross sections. All of the continuous energy cross sections and physics settings

were the same as those used to for the reference solutions. The uncollided photon energy

group structure was composed of 20 groups with widths varying between 40 keV and 2

MeV. This same energy structure was used to form bins for both the photon and electron
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fluences; in the electron case there were only 19 bins because one was below the energy

cutoff. More detail on this energy structure is given in section 6.5.1 below. Response

functions were computed for two different mesh sizes: 5 mm and 10 mm. Responses were

computed up to order (929172). For each source basis function, 10 million source particles

were simulated. Dose and KERMA were tallied in 1 x 1 x 1 mm3 voxels within each mesh.

The pre-computation time for the 5 mm library was 4.7 hours and for the 10 mm library,

9.3 hours. Both libraries were run using 12 compute nodes (96 cores).

6.4 COMET-PE Solutions

Only the central 11 x 11 x 30 cm3 column of the phantom was modeled in COMET-PE

(an additional DOSXYZnrc calculation verified that this did not affect the solution). The

solver was applied sequentially to the photon fluence system and then to the electron flu-

ence system. Electron to photon feedback was found to be negligible, so iteration between

the photon and electron solutions was not required. A tolerance of ε = 10−3 was used for

convergence of the Gauss-Seidel iteration. Because the response coefficients were com-

puted stochastically, they contribute uncertainty to the COMET-PE solution. Although

mesh sizes of 5 mm and 10 mm were used, energy deposition was calculated on a finer

1 x 1 x 1 mm3 grid for the entire phantom. To obtain a value for each of the 5 x 5 x 2

mm3 voxels required by the benchmark, the output was integrated using nearest-neighbor

interpolation.

6.5 Sensitivity Study

There are many input parameters that affect the accuracy and efficiency of COMET-PE

solutions. The most important parameters are the energy group structure and the response

expansion truncation orders. In this section, values for these parameters are chosen in an

attempt to maximise both accuracy and efficiency. To assess accuracy, the water-aluminum-

lung slab benchmark problem is used. The multigroup energy structure is assessed using an
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analytical continuous energy solution to a 1-D version of the slab phantom. Building upon

this, the new method is used to calculate total energy released per unit mass (TERMA) for

the 3-D problem. This is verified against the analytical solution and against a Monte Carlo

reference solution. Next, kinetic energy released per unit mass (KERMA) is calculated

using various photon expansion truncation orders to determine appropriate parameters for

photon transport. Finally, dose is calculated, testing the effect of the electron expansion

truncation parameters. By stepping through the energy deposition process systematically–

from TERMA to KERMA to dose–the approximation is built in layers, validating one at

a time. This way, an exhaustive search of the parameter space is avoided. Table 19 on

page 90 gives definitions for the quantities used to evaluate the accuracy and precision of

the results.

6.5.1 Energy Group Structure

To analyze the effectiveness of different group structures, a 1-D analogue of the slab phan-

tom is examined, considering only the uncollided photon fluence. Assuming an isotropic

source q0(Ω̂, E) = q0(E), one can integrate (26) and (27) over all angles to get the 1-D

fluence distributions

ψu(x, E) =
1
x2 q0(E) exp[−τ(x, E)] (48)

ψu
g(x) =

1
x2 q0g exp[−τg(x)] (49)

where x = |r − r0| is the distance from the source. These equations form the basis of a

simple test problem that can help decide on a multigroup energy structure. The material

composition for this test is taken directly from the slab phantom as detailed in table 1 on

page 37. The prospective group structures are tested against both beam energies provided

with the benchmark (see figure 8 on page 39) to derive a group structure that works for both

6 MV and 18 MV beams. To compare group structures, both the total uncollided energy

fluence Ψ (MeV/cm2) and the total energy released per unit mass (TERMA) (MeV/g) are
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Figure 10: Total uncollided energy fluence as a function of depth. Vertical divisions indi-
cate material interfaces.

examined. In continuous energy, these quantities are defined

Ψ(x) =

∫
dE ψu(x, E) (50)

TERMA(x) =

∫
dE

σt(x, E)
ρ(x)

ψu(x, E). (51)

These integrals are evaluated using an 8,192 point composite trapezoidal quadrature to

calculate continuous energy reference solutions. These reference solutions are plotted in

figures 10 and 11 on pages 43–44. Using the multigroup approximation, these quantities

take the form

ΨMG(x) =
∑

g

ψu
g(x) (52)

TERMAMG(x) =
∑

g

σtg(x)
ρ(x)

ψg
u(x). (53)

The effectiveness of the multigroup structures is assessed by comparing values calculated

with multigroup summations (52) and (53) to those calculated with continuous energy inte-

grals (50) and (51). Four different group structures with 5, 10, 20, and 30 nested groups as
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Figure 11: TERMA as a function of depth. Vertical divisions indicate material interfaces.

given in table 2 on the next page are tested. The effects of the different group structures on

total uncollided energy fluence Ψ can be seen in figures 12 and 13 on page 46. The results

for TERMA are shown in figures 14 and 15 on page 47. Tables 3 and 4 on page 48 provide

a summary of these comparisons. In each case, the finer group structures lead to more

accurate estimations. Thus, the 30 group structure is the most accurate and the 5 group

structure is the least accurate. Because computational effort increases with the number of

groups, the 20 group structure is used for the rest of this work. The same structure is also

used to specify the energy bins for the photon and electron fluence expansions. It is more

difficult to assess the impact of the bin structure since it is built in to any response function

library at the time of pre-computation. Unlike the spatial and angular truncation order, it is

more challenging to vary the bin structure at run time. Methods to optimize the choice of

energy bin structure are an area of ongoing research.
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Table 2: Energy group structures for uncollided photons. Each column gives the group
boundaries E1, E2, ..., EG+1 in MeV.

30 Groups 20 Groups 10 Groups 5 Groups
19.00 19.00 19.00 19.00
18.00 18.00
17.00
16.00 16.00 16.00
15.00
14.00 14.00
13.00
12.00 12.00 12.00 12.00
11.00
10.00 10.00
9.00
8.00 8.00 8.00
7.00
6.00 6.00
5.50 5.50 5.50 5.50
5.00 5.00
4.50 4.50 4.50
4.00
3.50 3.50
3.00 3.00 3.00 3.00
2.50 2.50
2.00 2.00 2.00
1.50 1.50
1.25
1.00 1.00 1.00 1.00
0.75
0.50 0.50
0.25 0.25 0.25
0.15
0.05 0.05
0.01 0.01 0.01 0.01
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Figure 12: Effect of group structure on error in total uncollided energy fluence for the 6
MV source. Vertical divisions indicate material interfaces.
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Figure 13: Effect of group structure on error in total uncollided energy fluence for the 18
MV source. Vertical divisions indicate material interfaces.
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Figure 14: Effect of group structure on error in TERMA for the 6 MV source. Vertical
divisions indicate material interfaces.
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Figure 15: Effect of group structure on error in TERMA for the 18 MV source. Vertical
divisions indicate material interfaces.
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Table 3: Effects of group structure on total uncollided energy fluence and TERMA for the
6 MV source.

Number Error in Ψ Error in TERMA
of Groups Max (%) RMS (%) Max (%) RMS (%)

5 0.74 0.65 4.30 1.20
10 0.21 0.18 1.48 0.40
20 0.04 0.04 0.35 0.08
30 0.01 0.01 0.14 0.03

Table 4: Effects of group structure on total uncollided energy fluence and TERMA for the
18 MV source

Number Error in Ψ Error in TERMA
of Groups Max (%) RMS (%) Max (%) RMS (%)

5 0.38 0.30 2.03 0.83
10 0.09 0.07 0.50 0.20
20 0.03 0.02 0.16 0.06
30 0.01 0.01 0.06 0.02

6.5.2 Accuracy of Source Integration (TERMA)

It is desirable to test the new aspects of COMET-PE in isolation from the rest of the method.

Namely, the multigroup cross sections, ray-tracing, adaptive cubature, and volume-to-

volume response function generator should be tested. Unlike convolution-superposition

methods, COMET-PE does not actually use TERMA when calculating KERMA or dose.

However, TERMA calculation provides a good verification since the solution can be com-

puted analytically. TERMA is computed for the benchmark problem using the COMET-PE

method, and this is compared with the 1-D analytical result that is used to test multigroup

energy structures above. For further verification, the analytical solution is compared to a

result from DOSXYZnrc, which was modified to tally TERMA. One billion source histo-

ries are used for the DOSXYZnrc computation. Figure 16 shows a comparison between

the the analytical and Monte Carlo results. The difference between these two solutions is

attributable almost entirely to statistical uncertainty. Figure 17 on page 51 and 18 show

a comparison between COMET-PE and the analytical results for 5 mm and 10 mm mesh
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sizes. These figures also include the effect of varying the spatial order of the uncollided

fluence expansion. The effect is larger for the 10 mm mesh size than it is for the 5 mm mesh

size. When a 0th order spatial expansion is used it creates a stair step pattern in the resulting

TERMA distribution. This is more difficult to see with the 5 mm mesh size because the

effect is smaller and because of the TERMA grid that is used as part of the benchmark. For

both the 5 mm mesh size and the 10 mm mesh size, COMET-PE outputs TERMA on a 1 x

1 x 1 mm3 grid; these values are then summed to give values on a coarser 5 x 5 x 2 mm3

grid per the benchmark specification. Thus, with the 5 mm mesh size, more of the TERMA

comparison points represent an average of values from 2 neighboring meshes. This ob-

scures the stair step effect that would otherwise be more obvious. Table 5 summarizes

the results of the comparison and table 6 gives information on the statistical uncertainty.

The differences between COMET-PE and the analytical solution are caused by statistical

uncertainty and systematic errors from three sources:

1. the multigroup approximation – see figure 15 on page 47

2. volume effects – the analytical solution is a 1-D average and the COMET-PE solu-

tions are 3-D averages

3. expansion truncation – this is most obvious for the 10 mm mesh.

The volume effects also contribute to the difference between Monte Carlo and the analytical

solution, but these differences are overwhelmed by statistical uncertainty.

6.5.3 Accuracy of Photon Transport (KERMA)

By calculating kinetic energy released per unit mass (KERMA), one can measure the ac-

curacy of photon transport. To determine appropriate expansion truncation orders for the

surface photon fluence, COMET-PE is compared with DOSXYZnrc for several settings of

these parameters. The Monte Carlo reference solution has average relative uncertainty of

0.08% and maximum relative uncertainty of 0.11%.
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uncollided spatial expansion order is varied. Shading indicates uncertainty within 1, 2, and
3 estimated standard deviations, and vertical divisions indicate material interfaces.
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Figure 18: COMET-PE compared with analytical TERMA using 10 mm mesh size as the
uncollided spatial expansion order is varied. Shading indicates uncertainty within 1, 2, and
3 estimated standard deviations, and vertical divisions indicate material interfaces.
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Table 5: Comparison of TERMA calculations relative to an analytical solution. Both mesh
size and uncollided spatial expansion order are varied for the COMET-PE solutions. The
values following ± give estimated uncertainty at the level of one standard deviation.

Error Relative Error
Method Mean (%) Max (%) Mean (%) Max (%)

Monte Carlo 0.11 ±0.01 0.60 ±0.23 0.23 ±0.02 0.98 ±0.38
5 mm, (00) 0.21 ±0.00 1.32 ±0.01 0.40 ±0.00 1.62 ±0.01
5 mm, (01) 0.06 ±0.00 0.17 ±0.03 0.10 ±0.00 0.18 ±0.03
5 mm, (02) 0.06 ±0.00 0.17 ±0.04 0.11 ±0.00 0.18 ±0.04
10 mm, (00) 0.61 ±0.00 3.36 ±0.03 1.15 ±0.00 4.20 ±0.04
10 mm, (01) 0.05 ±0.00 0.16 ±0.07 0.08 ±0.01 0.21 ±0.08
10 mm, (02) 0.05 ±0.01 0.25 ±0.11 0.10 ±0.01 0.26 ±0.11

Table 6: Uncertainty in the TERMA comparison.

Relative Uncertainty
Method Average (%) Max (%)

Monte Carlo 0.28 0.39
5 mm, (00) 0.01 0.01
5 mm, (01) 0.03 0.03
5 mm, (02) 0.04 0.04

10 mm, (00) 0.04 0.04
10 mm, (01) 0.08 0.08
10 mm, (02) 0.12 0.13

The results for varying the photon angular expansion order for the 5 mm mesh size are

given in table 7 on the next page and figure 19 on page 55. The 5 mm COMET-PE solutions

each have average relative uncertainty of ∼0.15% and maximum relative uncertainty of

∼0.16%. Because the COMET-PE uncertainty estimates appear to be relatively insensitive

to expansion order, the uncertainties for 5 mm cases (9271), (9281), (9290), and (9291) are

not calculated explicitly; instead, these are assumed to be the same as those of the (9261)

expansion. From the table, one can see that accuracy improves with increasing angular

order up to about the (9261) expansion, after which the differences are on the order of the

statistical uncertainty. From figure 19, one can see that the difference between COMET-PE
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and Monte Carlo is largely explained by statistical uncertainty for the (9281) expansion.

Table 7: Sensitivity of KERMA calculation to photon angular expansion order for the 5
mm mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)

(9201) 1.40 ±0.01 4.59 ±0.13 2.44 ±0.01 5.53 ±0.15
(9211) 0.95 ±0.01 1.68 ±0.13 1.93 ±0.01 2.95 ±0.17
(9221) 0.23 ±0.01 0.39 ±0.07 0.52 ±0.01 1.25 ±0.18
(9231) 0.27 ±0.01 0.56 ±0.11 0.60 ±0.01 1.58 ±0.18
(9241) 0.17 ±0.01 0.38 ±0.12 0.38 ±0.01 0.89 ±0.17
(9251) 0.17 ±0.01 0.38 ±0.12 0.39 ±0.01 1.00 ±0.18
(9261) 0.10 ±0.01 0.33 ±0.13 0.22 ±0.01 0.68 ±0.18
(9271) 0.13 ±0.01 0.31 ±0.15 0.29 ±0.01 0.76 ±0.18
(9281) 0.09 ±0.01 0.33 ±0.13 0.19 ±0.01 0.55 ±0.18
(9291) 0.10 ±0.01 0.31 ±0.15 0.21 ±0.01 0.57 ±0.18

The results for varying the photon spatial expansion order for the 5 mm mesh size

are given in table 8 and figure 20 on page 56. The first order spatial expansion provides

greater accuracy than the zeroth order expansion. From figure 20, it appears that much

of the difference between COMET-PE and Monte Carlo can be explained by statistical

uncertainty, but there may be a systematic error of ∼0.1% of the maximum KERMA that

occurs in the second water slab, beyond a depth of 12 cm. Regardless, the accuracy is

excellent, with all relative errors substantially below 1%.

Table 8: Sensitivity of KERMA calculation to photon spatial expansion order for the 5 mm
mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)

(9290) 0.15 ±0.01 0.40 ±0.14 0.30 ±0.01 0.65 ±0.17
(9291) 0.10 ±0.01 0.31 ±0.15 0.21 ±0.01 0.57 ±0.18

The results for varying the photon angular expansion order for the 10 mm mesh size
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Figure 19: Impact of photon angular order on KERMA for the 5 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces.
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Figure 20: Impact of photon spatial order on KERMA for the 5 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces
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are given in table 9 on page 57 and figure 21 on page 58. The 10 mm COMET-PE solu-

tions each have average relative uncertainty of ∼0.43% and maximum relative uncertainty

of ∼0.46%. For the 10 mm cases, all uncertainties are estimated directly. One can see

improvement in accuracy with increasing order until (9241); after this, the results are dom-

inated by statistical uncertainty. The impact of statistical uncertainty is greater for the 10

mm mesh size than it was for the 5 mm mesh. This is because the same number of parti-

cle histories is used for generating each set of response functions, yet the 10 mm meshes

contain 8 times the number of 1 mm3 regions for scoring energy deposition (TERMA,

KERMA, and dose). Thus, it is reasonable to expect uncertainty will be higher, especially

for KERMA since it uses a collision estimator rather than a track-length estimator. It is

interesting to note the manifestation of this uncertainty in the COMET-PE solution is of a

different character than what one would expect to see from uncertainty caused by a purely

stochastic method. With COMET-PE, the same pattern of statistical noise repeats in each

mesh. In fact, each different material has its own repeating pattern of noise. For example,

the pattern seen in the first slab is duplicated in the last slab as well since both are composed

of water.

Table 9: Sensitivity of KERMA calculation to photon angular expansion order for the 10
mm mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)

(9201) 0.49 ±0.02 2.23 ±0.38 0.82 ±0.04 3.12 ±0.46
(9211) 0.62 ±0.02 1.51 ±0.30 1.32 ±0.04 2.74 ±0.45
(9221) 0.34 ±0.02 1.09 ±0.30 0.71 ±0.04 1.75 ±0.45
(9231) 0.30 ±0.02 0.74 ±0.42 0.65 ±0.04 1.67 ±0.44
(9241) 0.26 ±0.02 0.73 ±0.42 0.52 ±0.04 1.39 ±0.46
(9251) 0.25 ±0.02 0.70 ±0.42 0.50 ±0.04 1.46 ±0.45
(9261) 0.23 ±0.02 0.73 ±0.42 0.45 ±0.04 1.29 ±0.45
(9271) 0.24 ±0.02 0.73 ±0.42 0.46 ±0.04 1.31 ±0.45
(9281) 0.22 ±0.02 0.72 ±0.42 0.43 ±0.04 1.21 ±0.45
(9291) 0.23 ±0.02 0.73 ±0.42 0.44 ±0.04 1.22 ±0.45
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Figure 21: Impact of photon angular order on KERMA for the 10 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces.
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The results for varying the photon spatial expansion order for the 10 mm mesh size

are given in table 10 and figure 22 on the following page. These results do not clearly

favor either (9290) or (9291). This is somewhat surprising, especially when considering

the advantage of the first order spatial expansion in the 5 mm mesh size. It is likely that

greater statistical precision in the pre-computation would reveal more of a difference here.

Table 10: Sensitivity of KERMA calculation to photon spatial expansion order for the 10
mm mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)

(9290) 0.21 ±0.02 0.86 ±0.29 0.37 ±0.04 1.32 ±0.44
(9291) 0.23 ±0.02 0.73 ±0.42 0.44 ±0.04 1.22 ±0.45

6.5.4 Accuracy of Electron Transport (Dose)

The dose calculation involves all parts of the method: analytical integration of the un-

collided fluence, photon transport, and electron transport. Since all of these parts except

electron transport are tested by other calculations (TERMA and KERMA), the dose calcu-

lation is used to test the method’s sensitivity to parameters affecting electron transport. The

COMET-PE solutions are compared to a reference solution computed with DOSXYZnrc.

The Monte Carlo reference solution has average relative uncertainty of 0.07% and maxi-

mum relative uncertainty of 0.12%.

The results for varying the electron angular expansion order for the 5 mm mesh size are

given in table 11 on page 61 and figure 23 on page 62. The 5 mm COMET-PE solutions

each have average relative uncertainty of ∼0.03% and maximum relative uncertainty be-

tween 0.13% and 0.16%. Uncertainties for the cases (9281i2) for 2 ≤ i ≤ 7 were estimated

using a calculation of order (924132). The uncertainty for the (928171) and (928170) cases

was estimated using order (924131) and (924130) calculations respectively. One can see

that accuracy improves with electron angular expansion order up to 7th order, the maxi-

mum tested. It is possible that further improvement might be seen by raising the electron
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Figure 22: Impact of photon spatial order on KERMA for the 10 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces.

60



angular expansion order even higher. The electrons set in motion by Compton scattering of

primary photons have a highly forwardly-peaked angular distribution. When the electron

angular order is set too low, the surface expansion fails to capture this peaked distribution

and lateral electron leakage is overestimated.

Table 11: Sensitivity of dose calculation to electron angular expansion order for the 5 mm
mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)
(928122) 2.86 ±0.00 5.62 ±0.04 6.32 ±0.01 14.72 ±0.09
(928132) 1.78 ±0.00 4.18 ±0.04 3.97 ±0.01 10.87 ±0.09
(928142) 0.99 ±0.00 2.30 ±0.05 2.22 ±0.01 5.47 ±0.10
(928152) 0.72 ±0.00 1.66 ±0.05 1.60 ±0.01 3.66 ±0.10
(928162) 0.56 ±0.00 1.41 ±0.05 1.22 ±0.01 2.65 ±0.09
(928172) 0.49 ±0.00 1.41 ±0.05 1.06 ±0.01 2.76 ±0.09

The results for varying the electron spatial expansion order for the 5 mm mesh size are

given in table 12 and figure 24 on page 63. A first order expansion in space results in the

highest accuracy of those tested. When the spatial order is set to 0, dose is underestimated

in a pattern similar to when the angular expansion order is too low. It appears that the spa-

tial expansion, not just the angular expansion, is important for preventing artificial lateral

leakage. This may be caused by the lack of lateral charged particle equilibrium associated

with the small 1.5 x 1.5 cm2 field size.

Table 12: Sensitivity of dose calculation to electron spatial expansion order for the 5 mm
mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)
(928170) 3.74 ±0.00 8.61 ±0.06 7.54 ±0.01 20.30 ±0.22
(928171) 0.46 ±0.00 1.13 ±0.05 1.01 ±0.01 2.23 ±0.09
(928172) 0.49 ±0.00 1.41 ±0.05 1.06 ±0.01 2.76 ±0.09

The results for varying the electron angular expansion order for the 10 mm mesh size are

given in table 13 on page 64 and figure 25 on page 65. The 10 mm COMET-PE solutions
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Figure 23: Impact of electron angular order on dose for the 5 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces.
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Figure 24: Impact of electron spatial order on dose for the 5 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces.
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each have average relative uncertainty of ∼0.09% and maximum relative uncertainty of

∼0.55%. For the 10 mm cases, uncertainty is computed for all cases except (924172), which

is assumed to have the same uncertainty distribution as (924162). Accuracy improves with

increasing electron angular order up to (924162). Overall, the behavior with angular order

is similar to that seen with the 5mm mesh size. When the angular order is too low, the

dose along the beam’s central axis is underestimated, especially in the lung region where

electrons travel the farthest.

Table 13: Sensitivity of dose calculation to electron angular expansion order for the 10
mm mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)
(924122) 1.76 ±0.01 5.01 ±0.04 3.82 ±0.01 13.06 ±0.10
(924132) 0.94 ±0.01 3.20 ±0.05 2.00 ±0.01 8.39 ±0.11
(924142) 0.53 ±0.01 2.17 ±0.05 1.04 ±0.01 3.90 ±0.10
(924152) 0.38 ±0.01 1.86 ±0.06 0.69 ±0.01 3.33 ±0.10
(924162) 0.34 ±0.01 1.43 ±0.05 0.61 ±0.01 2.83 ±0.10
(924172) 0.35 ±0.01 1.53 ±0.05 0.60 ±0.01 3.09 ±0.11

The results for varying the electron spatial expansion order for the 10 mm mesh size are

given in table 14 on page 67 and figure 26 on page 66. In this case, accuracy improves with

increasing electron spatial order up to 2nd order, the maximum tested. The pattern seen in

the error for the (924170) case is particularly interesting. When the electron spatial order

is too low, dose is underestimated, and it is underestimated most on the shallowest face

of each mesh. This indicates that there is a failure of–what should be–transient charged

particle equilibrium; the electrons liberated within each mesh as a result of the collisions of

primary photons are not being adequately replaced by electrons flowing downstream across

mesh interfaces. Thus, there is a small build-up region within each mesh.
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Figure 25: Impact of electron angular order on dose for the 10 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces.
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Figure 26: Impact of electron spatial order on dose for the 10 mm mesh size. Shading
indicates uncertainty within 1, 2, and 3 estimated standard deviations, and vertical divisions
indicate material interfaces.
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Table 14: Sensitivity of dose calculation to electron spatial expansion order for the 10 mm
mesh size.

Error Relative Error
Expansion Mean (%) Max (%) Mean (%) Max (%)
(924170) 2.67 ±0.01 6.57 ±0.06 5.50 ±0.01 11.13 ±0.09
(924171) 0.76 ±0.01 3.21 ±0.06 1.62 ±0.01 5.44 ±0.09
(924172) 0.35 ±0.01 1.53 ±0.05 0.60 ±0.01 3.09 ±0.11

6.5.5 Timing

Timing information is given for the most economical calculations that result in maximum

relative error of less than 3%. For the 10 mm mesh size, the (924162) case requires just

over 23 minutes on one compute node. For the 5 mm mesh size, the (928171) case requires

6.0 hours on one compute node. Compared to the Monte Carlo reference (if run on a single

node) the 10 mm case is 31 times faster and the 5 mm case is twice as fast.

6.6 Discussion

Overall, COMET-PE is highly accurate for both KERMA and dose calculation in this

benchmark problem. Maximum error of less than 1.5% is achieved for both 5 mm and

10 mm mesh sizes. The dose results are comparable to those found in a comparison be-

tween the GATE Monte Carlo method and EGSnrc [22]. The small differences between

DOSXYZnrc and COMET-PE arise from statistical uncertainty and from truncation error.

The statistical uncertainty has two sources: the response coefficients and the reference solu-

tion, both of which were computed using stochastic methods. The statistical uncertainty is

most pronounced in the KERMA distributions. The uncertainty is lower for the dose distri-

butions because the dose was tallied with a track-length estimator instead of the relatively

inefficient collision estimator that was used for KERMA. For both the dose and KERMA

solutions, the 10 mm case has larger uncertainty than the 5 mm case because the 10 mm

meshes have 8 times the number of 1 mm3 scoring voxels. It is reasonable to expect that

better agreement would be obtained if uncertainties were smaller.
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Truncation error is caused by failure of the truncated expansion to fully represent the

true fluence distribution. The impact of truncation error is most obvious in the lung build-

down region (5 cm < depth < 7 cm), where electrons born upstream in the aluminum slow

down and deposit dose. The physics of this process necessitate a well-resolved energy

spectrum because electron track length is most sensitive to energy in the low-density lung.

A 1% difference in the energy of a 6 MeV electron is enough to change its range by 1 mm.

Because the electron bin structure is relatively unrefined, and because the 1 mm shift is

almost identical in both the 5 mm and 10 mm cases, it is likely that this difference is caused

by a deficiency of electron energy resolution. In general, the truncation errors are small,

and could likely be improved by optimizing both the bin structure and expansion orders.

The timing information provided in this chapter is not sufficient to compare the relative

efficiency of DOSXYZnrc and COMET-PE for several reasons. First, DOSXYZnrc scored

energy deposition on a 5 x 5 x 2 mm3 grid compared with COMET-PE, which computed

energy deposition on a much finer 1 x 1 x 1 mm3 grid. With COMET- PE, this high level of

detail comes without penalty thanks to the use of pre-computation. It is also unfair to com-

pare these calculation times because COMET-PE modeled a phantom that was shortened

to 11 x 11 x 30 cm3 while DOSXYZnrc modeled the entire 30.5 x 39.5 x 30 cm3. phantom.

Finally, DOSXYZnrc was run on 12 nodes of the cluster while COMET-PE was only run

on a single node. The next two chapters provide timing results that are more suitable for

comparison.

68



CHAPTER VII

WATER PHANTOM

Measurements in water phantoms form the basis for the commissioning of linear accelera-

tors and treatment planning systems. It is therefore important to calculate dose accurately

in water. In this chapter a standard water phantom is used to assess the accuracy and effi-

ciency of COMET-PE when compared with Monte Carlo.

A composite analysis, combining relative dose difference and distance to agreement, is

used to measure the accuracy of the method [13, 28]. A voxel is considered “passing” if it

has either relative error within the prescribed tolerance (%) or distance to agreement within

the specified tolerance (mm). When these methods are used alone, relative error is too sen-

sitive in regions with high dose gradients and distance to agreement is too sensitive within

regions of low dose gradients. Combining the two methods provides a more meaningful

analysis. For the sake of simplicity, the algorithm used to compute distance to agreement

searches only along the three coordinate axes away from each voxel. This means that the

true distance to agreement can be conservatively underestimated, resulting in failures for

some voxels that should actually pass.

7.1 Benchmark Specifications

The phantom is a 30 x 30 x 30 cm3 cube of water. A 6MV point source illuminates the

phantom from source to surface distance of 100 cm. The beam is collimated to 10 x 10 cm2

field on the phantom surface. The energy spectrum is pictured in figure 8 on page 39.

7.2 Monte Carlo Reference Solution

The reference solution is computed using DOSXYZnrc. The physics settings are given by

table 18 on page 89. Dose is tallied in 4 x 4 x 4 mm3 voxels throughout the phantom.
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For this calculation, 1.2 × 109 source histories were followed, consuming 9.8 hours on 8

compute nodes or a total of 64 CPU cores. The resulting solution has average relative

uncertainty of 0.17%. The maximum relative uncertainty in voxels receiving at least 10%

of the maximum dose is 0.46%. The 8-fold symmetry of this problem is used to reduce

the Monte Carlo uncertainty by averaging each dose value with its image under each of the

7 non-trivial symmetric transformations. After symmetrization, the solution has average

relative uncertainty of 0.06%, and the maximum relative uncertainty in voxels receiving at

least 10% of the maximum dose is 0.16%. These uncertainty values are underestimated,

however, because covariances between symmetric voxels are not accounted for.

7.3 COMET-PE Solutions

COMET-PE solutions are computed using the same response library that is used for the slab

phantom. These computations are performed with the 10 mm mesh size, and truncation

order is set to (914162). The convergence criterion is set to the relatively conservative

value of ε = 10−5. COMET-PE outputs dose for 1 x 1 x 1 mm3 voxels throughout the

phantom. For comparison with Monte Carlo, these values are then averaged over 4 x 4

x 4 mm3 voxels. The resulting solution has average relative uncertainty of 0.17%. The

maximum relative uncertainty in voxels receiving at least 10% of the maximum dose is

0.43 %. The uncertainty was computed in a calculation that took just under 45 minutes on

8 compute nodes. To test the method’s ability to scale with distributed-memory parallelism,

the calculation is re-run with different numbers of compute nodes, from 1 to 16. In these

scaling tests, uncertainty is not estimated.

7.4 Results: Accuracy

A comparison of the COMET-PE and and Monte Carlo dose distributions is given in fig-

ure 27 on the next page. The phantom is composed of 421 875 voxels. The 66 715 (∼ 16%)

of these voxels that receive dose greater than 10% of the maximum dose in the reference
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Figure 27: Comparison of isodose contours for the water phantom. Dose is given as a
percentage of the maximum reference dose. Solid lines represent the Monte Carlo solution,
and dashed lines represent the COMET-PE solution. Part (a) shows a slice through the
central axis, and (b) shows a slice perpendicular to the central axis at depth = 2.2 cm.
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solution are evaluated for agreement. The results are given in table 15. The 168 voxels that

Table 15: Agreement of voxels receiving greater than 10% of the maximum reference
dose.

Criterion # Passing voxels % Passing voxels
1% / 1 mm 40 601 60.857
2% / 2 mm 64 921 97.311
3% / 3 mm 66 547 99.748
4% / 4 mm 66 650 99.902
5% / 5 mm 66 715 100.00

failed the 3% / 3 mm test are shown in figure 28 on the next page. All of the failures occur

at the corners of the beam. Dose was underestimated at each of the 168 points. Before

symmetrization, there were 6 additional failing voxels closer to the beam’s central axis in

the deepest 2 cm.

7.5 Results: Performance

To evaluate the distributed-memory performance, the calculation was run on 1, 2, 4, 8, 12,

and 16 compute nodes. Since each compute node has 8 CPU cores, this represents scaling

from 8 up to 96 CPU cores. Figure 29 on page 74 shows speedup as a function of the

number of compute nodes. For this performance analysis, the code is considered to consist

of three parts:

1. Source integration: the time required for the adaptive cubature to evaluate integrals

of the uncollided flux.

2. Response calculation: the time spent applying response functions, most of which is

consumed by the fluence iterations.

3. Input/output: the time spent reading (mostly response functions) and writing (dose)

to disk.

A breakdown of the time spent on each task is given by figure 30 on page 74. The single-
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Figure 28: Voxels failing the 3% / 3 mm test. Each pixel represents the total number of
failing voxels summed along the direction perpendicular to the image plane. Part (a) shows
a plane through the central axis, and (b) shows a plane perpendicular to the central axis.
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Figure 30: Time spent on each phase of computation.
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node computation took 108 minutes while the 16-node computation takes less than 14

minutes, representing a speedup of nearly 8 times. The source integration uses less than

0.16% of the total computation time in all cases. Response computations dominate the total

effort, taking 61% of the time on 16 nodes and 96% of the time on a single node. When

running on 8 nodes, the same number used for the reference solution, the COMET-PE

solution takes less than 20 minutes.

7.6 Discussion

COMET-PE is shown to be highly accurate and efficient for this water phantom problem.

The greater than 97% pass rate for the 2% / 2 mm criterion is excellent, and the small

discrepancies that do exist may be overestimated. Most of the voxels that fail the 3% / 3

mm test are located on the corners of the beam. Due to the limitations of the method used

to calculate distance to agreement, it is likely that many of these failing voxels are actually

within 3 mm in the diagonal direction.

The performance results demonstrate excellent scaling for the response computations.

The input/output portions of the code are a clear limit to performance when scaling to more

than ∼8 compute nodes, but this is expected since there has been no effort to parallelize

disk access. The scaling of the source integration is related to the parallel domain decom-

position. Most of the source integration effort is spent on meshes that straddle the beam

edge, so parallel efficiency is affected by the way these edges are distributed among com-

pute nodes. Overall, the source integration is highly efficient, using less than 0.16% of the

total computational effort. This represents an advantage for COMET-PE when it comes to

problems with complicated source distributions such as those encountered in rotational arc

therapy. Superposition methods scale in complexity in proportion to the number of beam

angles. By contrast, the COMET-PE calculation time is only weakly dependent on the

source complexity; thus it is ideally suited for these applications.

Besides scaling well COMET-PE is efficient. When both methods are run on 8 compute
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nodes, COMET-PE is over 13 times faster than Monte Carlo with uncertainty estimation

enabled and over 30 times faster without uncertainty estimation. Testing shows that the un-

certainty estimated with COMET-PE is insensitive to expansion order. When uncertainty

calculation is enabled, however, the same expansion order is used for the fluence calcula-

tion as is used for the uncertainty calculation. This means that about 2/3 of the floating

point operations are used to estimate uncertainty, and only 1/3 go toward dose calculation.

For this reason, an input option will be added to select a response truncation order for

the uncertainty calculation independent of the setting used for the fluence. It is expected

that these lower order uncertainty calculations will consume an order of magnitude less

computational effort without sacrificing the quality of the estimate.
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CHAPTER VIII

LUNG CT PHANTOM

In the clinical setting, patient-specific dose calculations use computed tomography (CT)

data to provide information on patient geometry and material composition. To further test

the capabilities of COMET-PE, a CT-based lung benchmark problem is used.

8.1 Creation of the Benchmark Problem

Given a CT scan, one must somehow derive data on the density and material composition to

use for dose calculation. In general, this problem is difficult because it is underdetermined;

there is not enough information in (single-energy) CT data to uniquely determine both den-

sity and material composition for each voxel. Although this problem is certainly important,

it is shared by all transport methods, including Monte Carlo [14]. This issue, along with

the use of interpolation to derive response functions for a continuous range of densities, is

left to future work. For this work, material conversions are performed as specified by ta-

ble 16. This conversion is similar to the default conversion performed by the CTCREATE

Table 16: CT to material conversion.
Range of Hounsfield units Material Density (g/cm3)
-1000≤ HU < -950 Air 1.2048 × 10−3

-950≤ HU < -700 Lung 0.26
-700≤ HU < 125 Soft Tissue 1.0
125≤ HU < 2000 Bone 1.85

tool [51], but density is mapped to a set of discrete values. To create a phantom compatible

with a 10 mm mesh, the CT data was first re-sampled to 10 mm voxels before material

conversion. This process is depicted by figure 31. A GUI application, called CTgui, was
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(a)

(b)

(c)

Figure 31: Creation of the lung phantom from CT data. The original CT scan data is shown
in part (a). Part (b) shows the scan data resampled to 10 x 10 x 10 mm3 voxels. Part (c)
shows the discretized phantom.
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developed to help with this process. The program can import and export both DICOM im-

ages and EGSPHANT files, which are required for DOSXYZnrc. The same tool can also be

used to visualize dose distributions imported from .3ddose files. All of the contour plots

in this chapter and in the previous chapter were generated this way. Figure 32 on the next

page shows screenshots of CTgui.

Using CTgui, a 48 x 36 x 16 cm3 region surrounding a lung tumor is chosen to provide

the benchmark geometry. The coordinate system is the set so that the tumor is located at

the treatment isocenter. A posterior-anterior field is chosen to provide the source. The

field size is 2 x 2 cm2 at the isocenter. (Since the tumor is located at a depth of 9.9 cm,

and because the source-to-isocenter distance is 100 cm, the field has a source-to-surface

distance of 90.1 cm, and the field size is 1.802 x 1.802 cm2 at the posterior surface. The

source energy distribution is given by the same 6MV spectrum (see figure 8 on page 39)

that is used with the water phantom in the previous chapter.

8.2 Monte Carlo Reference Solution

The reference solution is computed using DOSXYZnrc. The physics settings are given by

table 18 on page 89. Dose is tallied in 5 x 5 x 5 mm3 voxels throughout the phantom. For

this calculation, 1010 source histories were followed, consuming 5.5 hours on 8 compute

nodes or a total of 64 CPU cores. The resulting solution has average relative uncertainty of

0.06%. The maximum relative uncertainty in voxels receiving at least 10% of the maximum

dose is 0.91%.

8.3 Pre-computation

Response functions are pre-computed for 10 mm meshes with expansion up to order (929172).

The energy structure is the same as for the slab phantom benchmark (see chapter 6). For

each source basis function, 10 million source particles are simulated. Dose is tallied in 1 x

1 x 1 mm3 voxels within each mesh. The pre-computation uses 9.8 hours on 12 compute
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Figure 32: CTgui: a tool for interaction with volume data.
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nodes (96 cores).

8.4 COMET-PE Solution

The COMET-PE solution is computed with an expansion or order (924162) using a conver-

gence criterion of ε = 10−3. COMET-PE outputs dose for 1 x 1 x 1 mm3 voxels throughout

the phantom. For comparison with Monte Carlo, these values are then averaged over 5 x 5 x

5 mm3 voxels. The resulting solution has average relative uncertainty of 0.14%. The max-

imum relative uncertainty in voxels receiving at least 10% of the maximum dose is 0.69

%. Including uncertainty calculation, the solution uses 81 minutes on 8 compute nodes.

Without uncertainty calculation, the time is 33 minutes.

8.5 Results

A comparison of the COMET-PE and Monte Carlo dose distributions is given in figures 33

to 35 on pages 82–84. As with the water phantom, dose is compared for voxels that

received greater than 10% of the maximum dose. In this case there are 6007 comparison

voxels. The 37 voxels that fail the 3% / 3 mm test are shown in figure 36 on page 85. As

Table 17: Agreement of voxels receiving greater than 10% of the maximum reference
dose.

Criterion # Passing voxels % Passing voxels
1% / 1 mm 5 106 85.00
2% / 2 mm 5 931 98.73
3% / 3 mm 5 970 99.38
4% / 4 mm 5 987 99.67
5% / 5 mm 6 000 99.88

with the water phantom, all of these voxels are located either on the beam corner or near

the beam’s exit. In each of the 37 voxels, COMET-PE predicts a higher dose than Monte

Carlo.
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Figure 35: Lung phantom isodose contours in the coronal plane. Solid contours represent
the Monte Carlo solution, and dashed contours represent the COMET-PE solution. The
letters R, L, H and F indicate right, left, head, and foot directions. The horizontal and
vertical green lines correspond to the axial plane of figure 33 and the sagittal plane of
figure 34.

8.6 Discussion

COMET-PE is shown to be highly accurate and efficient for this CT-based problem. Over

98% of voxels with dose greater than 10% of maximum dose pass the 2% / 2 mm criterion.

Furthermore, the number of passing voxels, especially on the beam corners, may be un-

derestimated. This is due to limitations in the way that distance to agreement is evaluated.

Most of the voxels that fail the 3 % / 3 mm test are located within 3 cm of the anterior sur-

face, where the dose is lowest, and where Monte Carlo uncertainties are highest. A similar

failure pattern was observed when using the raw Monte Carlo solution as a reference for the

water phantom. In that case, the failures disappeared when symmetry was used to reduce

the uncertainty of the Monte Carlo reference solution in post-processing. For this reason,

it seams likely that many of the failures near the phantom’s anterior surface are caused by

the limited precision of the Monte Carlo solution.

Furthermore, performance is excellent. With uncertainty calculation enabled, COMET-

PE is 4 times as fast as the Monte Carlo reference solution. Without uncertainty estimation,
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Figure 36: Voxels failing the 3% / 3 mm test. Projections are shown on the axial (a), sagittal
(b), and coronal (c) planes. Each colored pixel represents the total number of failing voxels
summed along the direction perpendicular to the image plane according to the scale in part
(d).
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the COMET-PE calculation is 10 times as fast as Monte Carlo. As mentioned in the pre-

vious chapter, enhancements to the uncertainty calculation will likely decrease the cost of

COMET-PE uncertainty estimation in the near future.
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CHAPTER IX

CONCLUSION AND FUTURE WORK

9.1 Summary

A new method for radiotherapy calculations that is comparable in accuracy to Monte Carlo

has been developed. The new method is an extension of the COMET method for coupled

photon-electron transport in 3-D. Because it takes advantage of stochastic pre-computation,

the method is capable of achieving high precision without long calculation times. To adapt

the method for radiotherapy, both a new set of angular basis functions and a new analytical

treatment of highly anisotropic sources are used. The efficiency of the iterative solver

is improved, and it can now take full advantage of both shared-memory and distributed-

memory parallel architectures. The method’s accuracy is demonstrated by comparison with

the DOSXYZnrc Monte Carlo code. For a highly heterogeneous slab phantom, COMET-

PE calculates dose with maximum error of less than 1.5% and with maximum relative error

of less than 3% for both 5 mm and 10 mm mesh sizes. When a COMET-PE solution is

compared with Monte Carlo for a homogeneous water phantom 97.31% of voxels receiving

more than 10% of the maximum dose pass a 2%/2 mm distance to agreement test and

99.75% pass a 3%/3 mm test. When COMET-PE is compared with Monte Carlo for a CT-

based dose calculation benchmark, 98.73% of the voxels receiving more than 10% of the

maximum dose pass a 2%/2 mm test, and 99.38% pass a 3%/3 mm test. These results shows

that COMET-PE is capable of high fidelity physical simulation in the presence of strong

heterogeneity and in the absence of charged particle equilibrium as well as in complicated

CT-based geometries. Timing comparisons show that COMET-PE is roughly 10-30 times

faster than Monte Carlo for calculations using a 10 mm mesh size. Thus, COMET-PE is

not only highly accurate, but fast.
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9.2 The Path Forward

To be clinically useful, the method must be able to model a realistic linear accelerator and

it must be able to represent the continuous variation in material properties associated with

CT-based dose calculation. Future work should investigate response function interpolation

as a means of simulating continuous density variation. Additionally, a more accurate source

model that includes accelerator head scatter, collimator leakage, and electron contamina-

tion should be investigated.

There are many opportunities to further improve the performance of the iterative solver.

Foremost among these is the Low Order Acceleration (LOA) method, which has already

been applied to COMET calculations in nuclear reactor physics. Finally, the search for

basis functions that provide a better representation of the fluence using fewer terms should

continue.
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APPENDIX A

EGSNRC TRANSPORT PARAMETERS

Table 18: EGSnrc transport parameters.
Parameter Value
Photon Energy Cutoff 10 keV
Electron Energy Cutoff 700 keV
Photon Cross Sections XCOM
Electron Step Algorithm PRESTA-II
Boundary Crossing Algorithm EXACT
Spin Effects On
Bound Compton Scattering norej
Photoelectron Angular Sampling On
Rayleigh Scattering On
Atomic Relaxations On
Bremsstrahlung Cross Sections NIST
Bremsstrahlung Angular Sampling KM
Pair Production Angular Sampling KM
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APPENDIX B

QUANTITIES USED TO DESCRIBE ACCURACY AND

PRECISION

Table 19: Quantities used to evaluate accuracy and precision. x̄ denotes the reference
solution; x̃, the approximate solution; y, a generic vector; and δy its estimated standard
deviation.

Quantity Definition

Average Relative Uncertainty [39] RMS
({

δyi

yi

∣∣∣∣ yi >
max(y)

2

})
Maximum Relative Uncertainty max

(
δy

/
y
)

Mean Relative Error mean |(x̃ − x̄) /x̄|

RMS Relative Error RMS ((x̃ − x̄)/x̄)

Maximum Relative Error max |(x̃ − x̄) /x̄|

Mean Error mean |x̃ − x̄| /max |x̄|

RMS Error RMS (x̃ − x̄)/max |x̄|

Maximum Error max |x̃ − x̄|/max |x̄|

Root Mean Square (RMS)

√
1
N

N∑
i=1

yi
2

Mean 1
N

N∑
i=1

yi

Given a reference distribution f̄ (r) and an approximate distribution f̃ (r), the distance-

to-agreement at a point r is defined as

DTA(r) = min
{
h | f̄ (r) = f̃ (r + hΩ̂) ∀ h ≥ 0, Ω̂ ∈ 4π

}
.

In the case of values defined on a set of voxels, tri-linear interpolation is used to find
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continuous distributions. In this work, distance-to-agreement is estimated by searching

only along the three coordinate axes (±x̂,±ŷ,±ẑ) rather than the full space of possible

directions (4π). The approximation is then given by

DTA(r) ≈ min
{
h | f̄ (r) = f̃ (r + hΩ̂) ∀ h ≥ 0, Ω̂ ∈ {±x̂,±ŷ,±ẑ}

}
.

This approximation is an upper bound for the true distance-to-agreement as defined above.
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