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Summary

The contents of this work are designed for planning wireless telecommunication sys-

tems in indoor environments with application intended for time division multiple

access (TDMA) systems. The term resource optimisation mentioned in the title

refers to the optimisation of the resources that make up a communication system,

such as the power, server and mobile unit costs.

Defined here is a resource optimisation algorithm that uses at its core a ray-tracing

engine. The ray-tracing provides propagation signal strength (coverage) information.

The base stations are positioned within predefined cells contained in the building and

can be moved subject to a number of constraints at each iteration of the optimisation.

Each constraint is related to the capacity requirement of a user, in other words the

signal to interference requirement.

For an optimisation procedure to be reliable, it is expected that the ray-tracing

solution be calculated to a very high degree of accuracy so as to provide the algorithm

with adequate information. Using a full wave solution such as an integral equation

technique instead to give better results is virtually impossible due to the compu-

tational complexity of the problem. In the past authors have relied on empirical

coverage calculations that are known to work excellently in outdoor models but are

not at all reliable in indoor propagation due to the diffraction and reflection paths

being neglected.

The problem using a ray-tracing engine at the heart of an optimisation algorithm

is that it may require the continual creation of a visibility list every time a server is

moved, if that visibility list is dependant on the location of the transmitter. Many

well known ray-tracing algorithms depend on a visibility algorithm which assumes
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the transmitter is at a fixed location. It will be shown that this is not the case for

the new ray-tracing algorithm described here. This means that the ray-tracing allows

the optimisation procedures to operate with reasonable computational times, while

providing far more accurate propagation coverage in the building than empirical

methods. The description of an algorithm that converts the building into convex

spaces is one of the main achievements of this work, showing how the building is

broken up, and how a visibility algorithm is formed.

The optimisation algorithms presented by previous authors use path-loss based

models instead of signal to interference ratio based models. This is adequate for GSM

but not for TDMA systems where the servers are not communicating directly with

one another by cabling, in other words each acts as a separate entity.

The chapters of this thesis have a very deliberate progression, going through a

process of building the inner workings of an optimisation tool before describing the

optimisation itself. The majority of the work consists of using well-known ray-tracing

methods such as method of images for reflections, uniform theory of diffraction (UTD)

for diffraction paths, and transmissions through and inside different types of media.

The shortcomings of ray-tracing are highlighted and novel techniques to correct

reflection, transmission and diffraction coefficients are presented in great detail.

A brief look at linear programming methods is followed by a downlink and uplink

optimisation procedure married together with the ray-tracing results. The algorithm

uses a method previously described in the literature, with considerable alteration

making it novel in its own right. An attempt is then made to obtain good simulations

of a TDMA system finding the best positions of the servers whilst giving the highest

possible bit rates to the users of the system.
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Chapter 1

Introduction

The work of this thesis is intended for time division multiple access (TDMA) system

applications but can also be extended to work in CDMA, WIFI, UMTS and WCDMA

systems. The term resource optimisation mentioned in the title refers to the optimi-

sation of the resources that make up a communication system. The system provider

may attempt to save financially by providing cheaper services while maintaining good

coverage. Examples of where the provider may incur large costs are in:

• antenna costs - antennas are costed according to type, ranging from very ex-

pensive smart antennas down to omni-directional antennas.

• location costs - the position in a building where the antenna needs to be

mounted may be expensive or cheap.

• capacity requirements of the user - may be low in the case of voice links or

high in the case of data links. The higher the bit rate required by the user

equipment (UE) the better the planning of the system should be to give each

user adequate service.

• environmental safety issues - planning the antennas in an area that will not

effect nature or humans.

This thesis will concern itself with defining a resource optimisation algorithm that

uses at its core a raytracing engine to provide propagation coverage information.
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The optimisation problem will be defined as follows: Generate the least number of

base stations at optimal locations giving adequate coverage to a set of users with a

predetermined capacity requirement.

When a simulation is performed to obtain the optimal positions of base stations

while providing the largest number of possible users wanting a connection to the

system, this is usually performed in two stages known as downlink and uplink opti-

misation. In a telecommunications system the downlink is the connection from many

servers in a network to many user equipments (UEs). User equipment (UE) is a

general term given to laptops, palmtops, palmpilots, mobile phones, etc, that use

wireless technologies. The uplink is the connection from the UE back to a receiving

server. Servers are also called base transceiver stations (BTS) with the ability to both

send and receive information. They can contain one or more antennas in a working

system. For our system we will assume that the downlink optimisation requires a

number of user equipments with a particular capacity requirement assigned to each,

assumed already to be connected to the system.

The capacity requirements of the user will depend on what is known as the signal

to interference ratio (SIR). This is a measure of the signal strength received by a user

in the presence of possible interfering base stations. The other base stations which

are possibly emitting at the one time can drown out the signal from the best server.

This needs to be avoided where possible, and this is why an optimally positioned set

of base stations is necessary. The uplink optimisation determines how many users

can connect to the system assuming that each UE is possibly interfering with one

another and that they are randomly distributed in the building.

The optimisation algorithm depends heavily on propagation effects which must

be computed to give the signal to intererence ratios (SIR). Without accurate values

for the signal strength it can not be assumed that the simulation of the system is

reliable. The decision was made to use asymptotic methods to obtain the signal

strength (path-loss) values.

Accurate field strength is virtually impossible to attain using a direct three di-

mensional integral equation formulation of the full wave solution over large surface
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areas. The computational complexity is far too great due to the dense matrix systems

arising during the calculation of the current density. Asymptotic methods however,

have the advantage of being accurate at very high frequencies and are known to be

computationally fast to calculate. They do have limitations though, some of which

will be discussed at length in this thesis.

In the case of UMTS (specifically CDMA) we deal with frequencies of the order

of 2GHz, that is a wavelength of 3/20 metres giving reasonable results for asymptotic

methods. The electromagnetic wave is assumed to impinge upon surfaces at a point.

This gives rise to reflection and transmission points on surfaces and diffraction points

on edges. The asymptotic solutions most widely used are ray optic techniques calcu-

lating direct line of site (LOS), reflections and diffractions from a server to a UE. The

ray-tracing method we consider uses the method of images to calculate reflected and

transmitted rays. Two papers in the literature use very similar electromagnetic wave

equations to the ones mentioned in this thesis. The first is a planning tool called CIN-

DOOR1 by Torres [81] containing a full three dimensional ray-tracing code for indoor

wireless systems in enclosed spaces. The second is also an indoor wireless prediction

tool described by Ji[39]. Other methods exist such as beamforming described by

Funkhouser[25], allowing for faster computation of point to multipoint calculations.

Authors such as Hassan-Ali[30] have used statistical models mixed with geometri-

cal optics techniques to provide accurate coverage calculations. Multiple diffraction

methods are sometimes incorporated such as the one described by Di Giampaolo[22].

The novelty in this thesis will be in the application of ray-tracing methods within

optimisation algorithms. In the past authors such as Rappaport[71] used empirical

propagation procedures in their optimisation software because it was fast to calculate.

Many avoid using ray-tracing in a location optimisation because the ray-tracing needs

to be recalculated each time the transmitter is moved. Many ray-tracing algorithms

depend on a visibility algorithm assuming the transmitter is at a fixed location. It

will be shown that this is not the case for the new ray-tracing algorithm described

here. This means that the ray-tracing allows the optimisation procedures to operate

1All references are alphabethically ordered by surname of the first author not by order of ap-

pearance.
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with reasonable computational times, while providing far more accurate propagation

coverage in the building than empirical methods.

It turns out that a similar ray-tracing method to the one in this thesis was pre-

sented in 2002 by Yun[86] for a two dimensional outdoor environment problem. Our

initial results where presented to Enterprise Ireland in a technical report in December

2001. The methods are sufficiently different to warrant a very detailed description in

this thesis.

The optimisation algorithms described by Rappaport[71] are very involved but

excellent as a basis on which to build a better algorithm. They require field strength

information but do not contain signal to interference ratio information. In other

words it does not consider the capacity problem. The algorithm of Rappaport will be

used as a skeleton to build a far more sophisicated algorithm that accounts for SIR

values. Many unexplained variables will be replaced with realistic parameters based

on statistics made available by Nokia [52].

The chapters are broken down as follows:

Chapter 2: The main focus of this chapter will be to outline reflection and

transmission coefficients as described in Balanis[7] for PEC, lossless and lossy media.

The UTD diffraction coefficients are described based on the work of Kouyoumjian,

Pathak[51] for single diffraction cases. The UTD result is only applicable to PEC

materials, so the method of Tiberio [80] is applied to give a heuristic dielectric re-

sults. The corner diffraction corrections to UTD are described based on the work of

McNamara[58] and Burnside[19]. It should be noted that Michaeli[62] have comments

on the validity of the corner diffraction method in certain cases. Results are presented

for reflection, transmission and diffraction coefficients at the end of this chapter. The

results confirm the correct implementation of each method. Each of these methods

are necessary to build the electromagnetic components of the ray-tracing code given

the ray-paths as described later in Chapter 4.

Chapter 3: Here we will concern ourselves primarily with corrections to the re-

flection, transmission and diffraction coefficients commonly used in ray-tracing tech-

niques.
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A number of authors used the methods of Burnside[18] to account for multiple in-

ternal reflections inside walls. Most recently the thesis of DeCoster[21] and planning

software CINDOOR [81] gave mention to the method of Burnside [18]. Although the

method is fast to compute it is inherently limited due to its plane wave approximation

to the antenna source. A more accurate way of describing the solution for multiple

scattering is to use a full ray-tracing technique, but this is far too slow to compute

and is hardly worth the effort. Described in this chapter is a numerical technique

that computes the internal reflections in a dielectric slab, using a technique based

on the method of images applied in most ray-tracing techniques. Because of certain

geometrical properties of the slab it will be shown that the method is easy to apply

and gives different path-loss values when compared with Burnside’s results. A nu-

merical technique is necessary for obtaining the ray-tracing result in a lossless and

lossy dielectric slab, since the method of images can not be used to define the exact

location of the image in the slab. The angle of transmission inside the slab must be

computed numerically to give an accurate result. Here also a comparison between

a ray-tracing solution using UTD and an approximate numerical moment method

solution described by Brennan[17] will show up discrepancies in the UTD solution.

Brennan presents a numerically fast but accurate approximation to Harrington’s[29]

exact solution. It was found when investigating the correctness of these UTD coef-

ficients on a rectangular plate, that the scattered field does not totally agree with

the solution obtained by Brennan[17]. A simple technique for correcting the problem

areas is described in this chapter.

Chapter 4: In this chapter a different approach to looking at the building will

be assumed to the ones commonly stated in the literature. Usually as in De Coster[21]

the building is split into facets and some form of visibility algorithm is applied to

determine the diffraction edges and the tree of reflections of the transmitter to provide

a method of images solution when obtaining the reflection paths. In the optimisation

algorithm described in Chapter 7, the location of a number of transmitters is altered

at every step. It is very important therefore to define the ray-tracing algorithm in

such a way that the visibility algorithm is fast but not dependant on transmitter
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location. If the algorithm is dependant on transmitter location it will require a lot

of preprocessing of information to obtain all ray-paths. But a technique that stores

spatial information only is not dependant on location and can be partially stored

away for reuse.

Instead of describing just the walls, floors, doors and windows of the building as

facets, the thickness is added, and the space contained in the rooms is modelled also.

In fact the building will be stored as convex spaces. A convex space has the property

that any line segment passing through it will always enter and exit at only two points.

This has the effect of providing a link from one point in space to any other point

in space in the building. It has the advantage of speeding up the calculation of the

reflected fields. Finding the diffraction edges is relatively easy also. This chapter

gives a complete description of the building as it would appear in the computer code,

and algorithms are presented for calculating the reflection points on filled convex

spaces. A diffraction edge tree and edge tree are also explained in detail.

Chapter 5 This chapter is concerned with testing the complete ray-tracing soft-

ware. A number of selected tests are used to ensure that the reflected, transmitted

and diffracted ray-paths are generated correctly. Where problems were found, they

were corrected. Results are presented for all techniques in a building consisting of

three stories. A measurement campaign was conducted to test the validity of the

ray-tracing in an indoor environment. Two measurement sets were compared with

ray-tracing results and the differences between the two were explained.

Chapter 6: This chapter serves as an introduction to optimisation methods

used in Chapter 7. Convex, quasi-convex and non-linear algorithms are discussed cast

in the form of programming problems. Path-following methods are described that

lead to optimal or sub-optimal solutions in a finite number of steps. An example is

given to show how the whole process works in practise.

Chapter 7: The optimisation of a system depends on many issues. The nature

of the function to be optimised is one issue and the type of constraints is another.

In this chapter the function will contain variables relating to the location of the

base stations and constraints will be of the form of capacity requirements at UE
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positions. The function to be optimised subject to some constraints in this case is

described by a non-linear programming problem. Much of the background on convex

problems or linear programming problems is covered by Boyd [12] but some of the

techniques can be applied to non-linear programmes. The method for solution of a

programming problem is usually sought by a path-following method as described in

Chapter 6. Both the downlink and the uplink algorithms are described and results

are presented for test buildings given the parameters of Nokia [52] as test statistics

to obtain physically meaningful results. A tighter constraint problem is obtained by

expressing the path-loss values as a mean path-loss value. This mean value is obtained

by a random phase generator that is usually computationally time consuming. Here

a fast numerical technique is presented that speeds up the computation considerably.

Chapter 8: Conclusions are presented based on the results obtained in each of

the previous chapters.

Appendices: A description of future work and a user manual for the STIWRO

tool are explained in detail.

7



Chapter 2

Ray Tracing for Indoor

Environment

2.1 Ray-based coordinate system

We define the Helmholtz equation derived from Maxwells equations [7] with complex

permittivity ǫ as:

∇2E(r, ω) + k2E(r, ω) = 0 (2.1)

where k2 = ω2µǫ and E is the time-harmonic electric field at the point r, ω is the

angular frequency, ǫ is the permittivity of free space and µ is the permeability of free

space.

Adopting the Luneberg[56], Kline[47], guess solution of the isotropic source in a

free space medium, we assume the asymptotic solution:

E(r, ω) ≈ e−jkψ(r)
∞
∑

i=0

Ei(r)

(jω)i
(2.2)

H(r, ω) ≈ e−jkψ(r)
∞
∑

n=0

Hi(r)

(jω)i
(2.3)

where ψ(r) is the wave function referred to as the eikonal surface.

Equating like powers in ω leads to a further set of equations.

1. The eikonal function

∇ψ = r̂n (2.4)
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where n is the refractive index of the medium.

2. The transport equations

∂E0

∂r
+ 1

2

{

∇2ψ
n

}

E0 = 0 for the first-order terms

∂Em

∂r
+ 1

2

{

∇2ψ
n

}

Em = vp
2
∇2Em−1 for the higher-order terms

(2.5)

where vp is the wave velocity in the medium. This equation is used later to define

the slope diffraction term in James[37], Balanis[7] Ch. 13.

3. The condition equations

ŝ · E0 = 0 for the first-order terms

ŝ · Em = vp∇ · Em−1 for the first-order terms
(2.6)

As the radial frequency w tends to infinity in the asymptotic expansions, equation

(2.2) and (2.3) yield:

E(r, ω) ≈ e−jkψ(r)E0(r) (2.7)

H(r, ω) ≈ e−jkψ(r)H0(r) (2.8)

Using these expressions forms a ray-optic solution to the Helmholtz equation

formula. We must consider the cases of direct, reflected, transmitted and diffracted

rays.

To define the formula for the direct ray all that remains to be defined is the

amplitude factor As which gives the attenuation between any two points along a ray-

path. Because the conservation of energy flux in a tube of rays must be preserved,

for an isotropically emanating source point, we can conclude that

S0dA0 = SdA (2.9)

where S0 is the radiation density at r = 0 and S is the radiation density at r,

with cross-sectional areas given by dA0 and dA respectively (see Figure 2-1). We also

know that

|E|
|E0|

=
dA0

dA
=

√

ρ1ρ2
(ρ1 + s)(ρ2 + s)

(2.10)

which defines the spatial attenuation factor As(s).
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s

ρ

ρ2

ρ1

Figure 2-1: A astigmatic ray generated by two narrow beams.

For different sources the astigmatic attenuation factor changes over distance when

the wave is propagating through free space. For instance, in the case of a line-source

which is isotropic and transverse magnetic in z (TMz) with a field observed at position

ρ relative to the source, we know that the source extends to infinity in the z-direction

giving the first radius of curvature, ρ1 = +∞ and the second radius of curvature is

ρ2 = ρ, the distance of the observer from the source. In the case of a spherical wave

the radii of curvature are equal, (ρ1 = ρ2 = ρ).

The following results for the astigmatic attenuation factor As(s) hold:

type ρ1 ρ2 As(s)

plane wave ∞ ∞ 1
s

line source ∞ ρ
√

ρ
ρ+s

point source ρ ρ ρ
ρ+s

(2.11)

2.2 Reflection from Planar Surfaces

If the reflecting surface can be approximated by a plane tangent at P and the wave

front of the incident field is assumed to be planar, then the reflected field as given by

Balanis[7], Ch.13, is defined to be

Er(s) = Ei(P) ·R
√

ρr1ρ
r
2

(ρr1 + s)(ρr2 + s)
e−jks (2.12)

where ρr1, ρ
r
2 are the principle radii of curvature of the reflected wave front at the
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point of reflection P. R is the reflection coefficient matrix and Ei is the incident field

at the point of reflection P (see figure 2-2).

s

P

n̂

ρ êr⊥

êr||êi||

êi⊥

Figure 2-2: The reflected ray from a flat plate.

The electric field is split into the parallel and perpendicular components with

respect to the direction of the ray. The incident directions êi⊥ and êi|| are defined as

êi⊥ =
ŝi × n̂

|ŝi × n̂| (2.13)

êi|| = ŝi × êi⊥ (2.14)

and the outgoing reflected ray has directions:

êr⊥ = êi⊥ (2.15)

êr|| = ŝr × êr⊥ (2.16)

These components are refered to as the components of the ray-based coordinate

system. Using them we can define the incident field as:

Ei(R) = (Ei(R) · êi||)êi|| + (Ei(R) · êi⊥)êi⊥ (2.17)

In turn the matrix R is defined in terms of the ray-based coordinate system as:

R =







R⊥ 0

0 R||





 (2.18)

where

R⊥ = =
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

(2.19)

R|| = =
−η1 cos θi + η2 cos θt
η1 cos θi + η2 cos θt

(2.20)

11



where ηi =
√

µi
ǫi
, µi is the permeability of medium i, and ǫi is the real or complex

permittivity of medium i (see Balanis[7], Ch. 5). Snell’s law of refraction holds giving

k1 sin θi = k2 sin θt (2.21)

giving cos θt =
√

1− (k1/k2)2 sin
2 θi, where ki = ω

√
µiǫi is the wave number in

medium i, θi is the angle of incidence made with the outward normal to the surface

of contact and the incident ray, and θt is the angle after refraction inside medium 2

(see Figure 2-3).

2.3 Reflection and Transmission Coefficients

With all the information above it is now possible to define the reflection coefficient and

transmission coefficient through a dielectric medium assuming that we are travelling

from free space initially. Assuming that free space is medium 1 and the dielectric

slab is medium 2 as in Figure 2-3 we must define the reflection and transmission

coefficient for perfect electric conductors (PEC), lossless and lossy media.

ǫ2
θt

ǫ1

ǫ1

θi

Reflection

Transmission

Incident

Figure 2-3: The reflected and transmitted ray in a dielectric slab.
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2.3.1 Perfect Electric Conductor (PEC) Case

In this case ǫ2 = −j∞ so that the reflection coefficient for medium 1 to medium 2

given by R is defined as

R =







R⊥ 0

0 R||





 =







−1 0

0 1





 (2.22)

In this case there is no transmission into the planar surfaces.

2.3.2 Lossless and Lossy Case

In this case ǫ2 = ǫ1ǫ
′ where ǫ1 is the permittivity of free space and ǫ′ is the relative

permittivity of the dielectric slab. Knowing µ2 = µ1 and k1/k2 = 1/ǫ′ leads to the

expression of the reflection coefficients in equations (2.19) and (2.20) as

R⊥ =
cos θi −

√

ǫ′ − sin2 θi

cos θi +
√

ǫ′ − sin2 θi
(2.23)

R|| =
−ǫ′ cos θi +

√

ǫ′ − sin2 θi

ǫ′ cos θi +
√

ǫ′ − sin2 θi
(2.24)

The corresponding transmission coefficients in the perpendicular and parallel di-

rections from free space into the dielectric medium are given by

T 12
⊥ =

2 cos θi

cos θi +
√

ǫ′ − sin2 θi
(2.25)

T 12
|| =

2
√
ǫ′ cos θi

ǫ′ cos θi +
√

ǫ′ − sin2 θi
(2.26)

and the transmission coefficients out of the dielectric medium are given by

T 23
⊥ =

2
√

ǫ′ − sin2 θi

cos θi +
√

ǫ′ − sin2 θi
(2.27)

T 23
|| =

2
√
ǫ′
√

ǫ′ − sin2 θi

ǫ′ cos θi +
√

ǫ′ − sin2 θi
(2.28)

In the case of the lossy medium the relative permittivity is defined to be

ǫ′ = ǫr − jσ/ω (2.29)
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where ki = αi + jβi and

αi = ω
√
µiǫi







1

2





√

1 +
(

σi
ωǫi

)2

− 1











(2.30)

βi = ω
√
µiǫi







1

2





√

1 +
(

σi
ωǫi

)2

+ 1











(2.31)

as defined by Balanis[7], Ch. 5.

2.4 Transmission Through a Dielectric Slab

When a planewave propagates into a dielectric slab it bends on contact meaning that

the time spent inside the slab is longer than if it could pass through at the angle of

incidence (see Figure 2-4). The phase also changes inside the slab. For this reason

it is important to correct the transmitted field through the slab. If the phase of the

field entering the slab is e−jk1s then the phase and attenuation must be altered so

that the field takes the form:

e−jk1s → T 12T 23e
−jk1se−jk1ρ1e−jk2le+jk1ρ2 (2.32)

as defined in Burnside[18], where l is the length of the ray inside the slab, ρ1 is the

extra distance covered by the incident ray before it bends, ρ2 is the distance covered

by the ray inside the slab if it were to travel straight through without refraction, and

t = ρ2 − ρ1. See Figure 2-4 to clarify the meaning of variables.

The term e−jk2l is the actual phase due to the transmission in the slab. The

term e−jk1t = e−jk1(ρ2−ρ1) is what would be calculated by the ray-tracing, because the

bending in the slab is not accounted for. Together they give the necessary correction

to the field.

If d is the width of the slab then the value of t and l are given by the following

formulae:

t = l cos(θi − θt) (2.33)

=
d cos θi

√

ǫ′ − sin2 θi + d sin2 θi
√

ǫ− sin2 θi
(2.34)
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θt

ǫ1, µ1, σ1
θi

ǫ1, µ1, σ1

ρ1

ρ2

ǫ2, µ2, σ2 l

s

Figure 2-4: The planewave transmission through a slab.

l =
d

cos θt
=

d
√
ǫ′

√

ǫ′ − sin2 θi
(2.35)

2.5 Three Dimensional Diffraction Coefficients

The use of the localised coordinate system is not only used for the reflection and

transmission coefficients but also for the diffraction coefficients. Instead of a ray-

based coordinate system as in the case of reflections and transmissions, an edge-based

coordinate system is created for an incoming ray striking a wedge at a diffraction point

and scattering from that point in many directions which lie on the Keller cone. For

an angle β0 made with the edge e and the source point, the angle made with e and

some observation point must also be β0 (see Figure 2-5).

The standard two dimensional diffraction coefficient is extended to three dimen-

sions so that the dyadic coefficient is defined by McNamara[58] as:

Ed = Ei(P)D

√

ρ

s(ρ+ s)
e−jk1s (2.36)

where Ei(P) is the incident field at the point P from a source point, D is the

diffraction matrix defined by Pathak, Kouyoumjian[51]. The square root term is
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ê

β0

β0

s′

s

n

Figure 2-5: The diffraction wedge and Keller cone.

the attenuation factor due to diffraction from a point source, and the phase term is

related to the distance travelled from the diffraction point to the receiver point.

The diffraction coefficient of Pathak, Kouyoumjian for a PEC is given by:

D =







−Ds 0

0 −Dh





 (2.37)

where

Ds = C
[

D+
e (ξ

−) +D−
e (ξ

−) +R⊥
0 D

−
e (ξ

+) +R⊥
1 D

+
e (ξ

+)
]

(2.38)

Dh = C
[

D+
e (ξ

−) +D−
e (ξ

−) +R
||
0D

−
e (ξ

+) +R
||
1D

+
e (ξ

+)
]

(2.39)

where

ξ∓ = φ∓ φ′ (2.40)

D∓
e (ξ

±) = cot

(

π ∓ ξ±

2n

)

F(kLa∓(ξ±)) (2.41)

F(x) = 2j
√
xejx

∫ ∞
√
x
e−jτ

2

dτ (2.42)

a∓(ξ±) = 2 cos2
(

2nπN± − ξ±

2

)

(2.43)

2nπN± − ξ± ≈ ±π (2.44)

L =
ss′

s+ s′
sin2 β0 (2.45)

where N± is the nearest integer satisfying equation (2.44).
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Setting up the ray-based coordinate system ŝ′, φ′, β′
0 for the incoming ray and

ŝ, φ, β0 for the outgoing ray, it is possible to write the coordinates as:

φ̂′ =
−ê× ŝ′

| ê× ŝ′ | , β̂
′
0 = φ̂′ × ŝ′ (2.46)

φ̂ =
ê× ŝ

| ê× ŝ | , β̂0 = φ̂× ŝ (2.47)

where n̂i is the unit outward normal to the ith planar surface Bi of the wedge.

The construction of the angle φ′ is achieved by the following steps:

• construct the unit vector t̂0 pointing along the 0th planar surface which is per-

pendicular to the unit vector ê.

t̂0 = n̂0 × ê (2.48)

• construct the unit vector ŝ′t obtained by projecting the vector ŝ′ onto a plane

containing t̂0.

ŝ′t =
s′t

| s′t |
=

s′ − (s′.ê)ê

| s′ − (s′.ê)ê | (2.49)

It should be noted that there is a type setting error in McNamara’s[58] otherwise

excellent book when defining both s′t and st, although the final formula is

correct.

• φ′ is the angle between the unit vectors t0 and s′t. The angle φ is constructed

in a similar manner.

φ′ = π −
[

π − cos−1(−ŝt) · t̂′0
]

sgn(−ŝ′t · n̂0) (2.50)

φ = π −
[

π − cos−1(−ŝt · t̂0)
]

sgn(−ŝ′t · n̂0) (2.51)

where sgn is the sign function defined as

sgn(x) =











1 if x ≥ 0

−1 if x < 0
(2.52)
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The reflection coefficients R0,1
⊥,|| from the planar surfaces numbered according to

their relevant planes, are defined as in equations (2.23) and (2.24) to be:

R0,1
⊥ =

cos θ0,1i −
√

ǫ′ − sin2 θ0,1i

cos θ0,1i +
√

ǫ′ − sin2 θ0,1i

(2.53)

R0,1
|| =

−ǫ′ cos θ0,1i +
√

ǫ′ − sin2 θ0,1i

ǫ′ cos θ0,1i +
√

ǫ′ − sin2 θ0,1i

(2.54)

where

cos θ0i = −ŝ′t · n̂0 (2.55)

cos θ1i = +ŝ′t · n̂1 (2.56)

2.6 Corner Diffraction

The uniform theory of diffraction uses the concept of a wedge that extends infinitely

along the edge. In practice this is not the case, and therefore a correction may be

required to supplement the solution. Using corner diffraction provides a correction

for this, and a correction for the case were there is a virtual diffraction point, that is

a point which would lie on the diffraction edge if it were not a finite length.

β0

sc

s′

P

z′

Qc

Qe

s

s′′

β0c

βc

Figure 2-6: The geometry associated with a corner diffraction calculation.
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The generalised corner diffraction formula described by both McNamara[58] and

Burnside[19] for corners that do not meet at 900 degrees to one another is given by







Eβc
0

Ec
φ





 =







I

M







√
sin βc sin β0c

cos β0c − cos βc
F [k1Lca(π + β0c− βc)]

e−jk1s

4πs
(2.57)







I

M





 =







Ei
β′

0

(Qc)Cs(Qe)

Ei
φi
(Qc)Ch(Qe)







√

8π

k1
ejπ/4 (2.58)

where the corner diffraction coefficients for both the electric and magnetic case are

given by:

Cs,h =
−ejπ/4

2n
√
2πk1 sin β0

[

cot

(

π + ξ−

2n

)

F [k1L
ia(ξ−)]

∣

∣

∣

∣

∣

F
{

Lia(ξ−)

2πLca(π + β0c − βc

}∣

∣

∣

∣

∣

+ cot

(

π − ξ−

2n

)

F [k1L
ia(ξ−)]

∣

∣

∣

∣

∣

F
{

Lia(ξ−)

2πLca(π + β0c − βc

}
∣

∣

∣

∣

∣

(2.59)

∓ cot

(

π − ξ+

2n

)

F [k1L
rna(ξ+)]

∣

∣

∣

∣

∣

F
{

Lrna(ξ+)

2πLca(π + β0c − βc

}∣

∣

∣

∣

∣

∓ cot

(

π − ξ+

2n

)

F [k1L
roa(ξ+)]

∣

∣

∣

∣

∣

F
{

Lroa(ξ+)

2πLca(π + β0c − βc

}∣

∣

∣

∣

∣

]

where F is the fresnel transition function (FTF), a(x) = 2cos2(x/2) and the attenu-

ation due to the diffraction edge is given by

L =
s′s′′

s′ + s′′
sin2 β0 (2.60)

The attenuation due to scattering from the corner when the edge is straight is given

by

Lc =
scs

sc + s
(2.61)

2.7 Results

To confirm that the reflection, transmission and diffraction coefficients are correct, it

is now necessary to compare the results from a C++ software implementation of the

formulations against previously presented results.
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2.7.1 Reflection and Transmission Coefficients

The perpendicular reflection and transmission coefficients defined in equations (2.23)

and equation (2.25) are shown in Figure 2-7 to agree with the results of Balanis[7].

The parallel reflection and transmission coefficients defined in equations (2.24) and

equation (2.26) are shown in Figure 2-8. All results are presented for lossless relative

permittivity ǫr = 2.56, 9, 16, 25, 81.

2.7.2 Uniform Theory of Diffraction Coefficients

The result for a two dimensional half-plane is now presented. The parameters are θ′ =

300, θ ∈ [0, 3600], n = 2π, β0 = 900, L = ρ = 100λ, λ = 1. The diffraction coefficient

consisting of four terms can be broken up into two terms relating to the incident

shadow boundary and another two relating to the reflective shadow boundary. The

first term is unchanged whether considering electric or magnetic polarisation, while

the second reflective term is positive for magnetic polarisation and negative for electric

polarisation. The results obtained in Figure 2-9 agree with the results presented by

Balanis[7].

2.7.3 Corner Diffraction Coefficients

The corner diffraction results are usually presented in the literature for far field

scattering results or as radar cross sections (RCS). Changing some of the terms in

the corner diffraction formula it should be possible to define the solution for the

scattering from a 2d × 2d rectangular plate excited by a monopole resting on its

centre as shown in Figure 2-10.

The angle β′
0 has the property that

β′
0 = cos−1(êA · ŝ) = cos−1(− sin θ cosΦ) (2.62)

where Φ = 45o is the outgoing planewave angle to obtain the far field scattering result.

From this it is possible to obtain the diffraction point locations for QA, QB, QC and

QD on each edge of the rectangular plate. The incident field at the corner diffraction
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points is defined to be

Ei
φ′ = −e

−jk
√
2d

√
2d

(2.63)

In the example chosen it turns out that Ei
β′

0

= 0. The astigmatic attenuation factor

is defined to be As = 1/
√
ρ′ for a planewave scattering from a point. The factors L

and Lc must also change because of the planewave scattering to give:

L = ρ sin2 β0 (2.64)

Lc =
√
2 (2.65)

Also the phase factor is defined as e−jkŝr·r2 instead of e−jks, where r2 =
√
2dx̂ +

√
2dŷ in the case of edge A.

The scattered field Ec
θ = Ec

φ(φ̂ · θ̂) is presented in Figure 2-11. The results are

identical to that presented in McNamara [58]. The length d = 2.5λ for this particular

example.

21



0 10 20 30 40 50 60 70 80 90
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angles θ
i

R
⊥

Reflection Coefficients R⊥

ε
r
=2.56

ε
r
=4

ε
r
=9

ε
r
=16

ε
r
=25

ε
r
=81

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Angles θ
i

T
⊥

Transmission Coefficients T⊥

ε
r
=2.56

ε
r
=4

ε
r
=9

ε
r
=16

ε
r
=25

ε
r
=81

Figure 2-7: The perpendicular reflection and transmission coefficient plots for varying

lossless relative permittivity ǫr.
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Figure 2-8: The parallel reflection and transmission coefficient plots for varying loss-

less relative permittivity ǫr.
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Figure 2-10: A monopole mounted over a rectangular plate.

10 20 30 40 50 60 70 80 90

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Diffracted field from corner diffraction

θ/degrees

E
θ (

dB
)

Figure 2-11: The scattered field Ec
θ for a rectangular plate with d = 2.5λ, incorpo-

rating corner diffractions.
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Chapter 3

Extensions to Ray-tracing

In this chapter amendments are made to known reflection, transmission and diffrac-

tion coefficients described in the literature. Many different types of methods can be

applied to the three dimensional ray-tracing problem but it was felt that a closer ex-

amination at the dielectric slab problem would be advantageous. Before elaborating

on the details of these methods a quick overview of existing methods is described

here for completeness.

3.1 Overview of Existing Methods

Reflection coefficients and transmission coefficients are well explained by Balanis[7]

and Born, Wolf[11]. Burnside[18] introduced an approximation that could be used to

calculate internal reflections in dielectric slabs. A multi-layered dielectric structure as

described by Thakur[79] could be considered, but will not be included in this work.

The main concern mentioned in many papers is the treatment of the diffraction

coefficient. The definitive works on the uniform theory of diffraction are presented

by Kouyoumjian and Pathak[49], [51], [66]. An excellent overview of diffraction based

methods is presented by Knott[48] in which the physical theory of diffraction (PTD)

by Ufimtsev [82], the method of equivalent edge currents (EEC) of Michaeli [59]-

[61], and physical optics are presented. The equivalent edge currents has since been

combined with PTD to give the PTDEEC methods described by Jakobus[34], [35],
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which incited remarks by Ufimtsev[83] due to inaccuracies in the definition of PTD.

An exact numerical formulation of the full wave solution using an integral equation

approach was obtained by Harrington[29]. Later Rao, Wilton, Glisson[69] designed

a basis function that allows the integral equation to be solved more easily. This

method employs what is now known as the RWG basis set used in a moment method

solution for small arbitrary shaped surfaces. The current density must be calculated

at a very large number of points on the surface to obtain an accurate numerical so-

lution, and because of this, the number of unknowns in the problem is very large.

The storage of a full moment method impedance matrix is impossible for large plates

because the matrix is dense. By dense, we mean that most of the entries in the

matrix are non-zero. More recently the method by Brennan[17] was applied to rect-

angular plates using a forward-backward moment method solution that attempts to

avoid the calculation of the complete impedance matrix. Again this method uses

the RWG basis. The method stores the contribution to the current density from the

impedance matrix in groups, and each group is updated in a new iteration throwing

away the used impedance matrix contribution, thus allowing for larger plate sizes and

faster computational times. Other solutions such as the finite difference time domain

problems (FDTD) as described more recently by Yin[85] can also be used for three

dimensional solutions of the Helmholtz equation.

3.2 Improvement of Reflection and Transmission

Coefficients

Ray-optics methods including transmission coefficient calculations in lossless dielec-

tric walls are well explained by Burnside [18].

The result of Burnside is obtained from an infinite geometric series of planewave

reflection terms inside a dielectric slab. Each term is of the form

Rm = T1T2R
2m−1
1 P 2m

d Pm
a (3.1)

where Rm is the mth order internal reflection coefficient in the slab, l = d/ cos θt is

the length of the ray reaching from one side of the slab to the other, Pd = e−jk2l is the
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change in phase for the length of the ray, and Pa = ejk2l sin θt sin θi is a phase shift term

due to the emergence of the ray from a different point in the slab. θi, θt and d are

indicated on Figure 3-1. R1 is the reflection coefficient from the free space medium

into the dielectric slab as described in Section 2.3. T1 and T2 are the transmission

coefficients into and out of the slab as described in Section 2.3 also.

ǫ2

ǫ1

ǫ1

θt

θi

d

θi

Figure 3-1: Infinite number of planewave reflections inside a lossless dielectric slab.

When the infinite series is summed in the case of the perpendicular and parallel

components the following result was obtained:

R||,⊥ =
R1(||,⊥)(1− P 2

dPa)

1−R2
1(||,⊥)P

2
dPa

(3.2)

In an indoor environment we are dealing with short finite slabs meaning that the

number of internal reflections are not infinite, therefore requiring the truncation of the

infinite series expansion to a finite expansion. Also the transmitter is usually modelled

using a line-source, point source or hertzian dipole which means that the angle of entry

θi into the surface is decreasing as the number of internal reflections increases (see

Figure 3-2), whereas a planewave assumptions says that the angle of entry into the

surface never changes for each internal reflection. Although Burnside’s approximation

might be perfectly valid for the application of transmission in an indoor ray-tracing,

we can not conclude this without closer investigation of the method. Many ray-

tracing tools use Burnsides method to augment the reflection coefficient result usually

because it is a simple formula to implement.

As an aside, we found that Burnside states that the transmission coefficient is
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Figure 3-2: Different configuration that might be considered for slab penetration.

defined as T1 = 1+R1 in the case of an electric and magnetic line source, but this is

in fact incorrect, as can be seen from the derivation by Balanis[7], Ch. 5. This result

is only correct for the electric (horizontal) polarisation case when T⊥ = 1 + R⊥. In

the case of the magnetic (vertical) polarisation case the formula should be of the form

cos θi(1 + R||) = cos θtT||. Although the final result stated above in equation (3.2)

is correct for both polarisations, the paper is confusing. For instance, Laurenson[53]

stated that the result for the vertical polarisation case was neglected and proceeded

to derive his own formula failing to notice that his formula reduced to the result of

Burnside because of the identity T1T2 = (1−R2
1) for both the electric and magnetic

polarisation cases.

3.2.1 Internal reflections in a lossless dielectric slab

We propose that a full raytrace be compared with the result of Burnside. By full ray-

trace, we mean that in the case of a lossless dielectric slab, one can use the method of

images to find a finite set of internal reflections in a slab of finite length. In the loss-

less dielectric case we will see that the derivation of a finite set of internal reflections

in the slab is quite straight forward due to a clever geometrical construction, but

the lossy case not derived by Burnside (see next section) is much trickier. Instead of

recursively building an automated method of images obtaining the nth order images

of a transmitter leading to the calculation of the nth order reflection coefficient in the

dielectric slab, we can define a simple formula for any nth order reflection without

calculating any images using the method now stated below.

If we set up the geometry for a line-source, point-source or planewave as in Figure
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Figure 3-3: Geometrical construction for first, second and third order internal reflec-

tions

3-3, we see that we can define a simple formula with unknowns θi and θt as follows:

(h1 + h2) tan θi + 2d1 tan θt = d2 (3.3)

but we know also from Snell’s law of refraction for lossless dielectrics that:

k1 sin θi = k2 sin θt (3.4)

Substituting equation (3.4) into equation (3.3) and defining x = sin2 θi we obtain

the formula:

f(x) = 0 = d2
√

ǫr − x(1 + ǫr) + x2 − h
√

ǫrx− x2 − 2d
√
x− x2 (3.5)

where h = h1 + h2.

This formula looks cumbersome at first, but θi is easily obtained using one of two

simple numerical techniques, the bisection algorithm or Newton Raphson formula (see

Appendix A). In the case of the Newton Raphson formula we require the derivative

of the function f(x) as:

f ′(x) =
d2(2x− (1 + ǫr))

2
√

ǫr − x(1 + ǫr) + x2
− h(ǫr − 2x)

2
√
ǫrx− x2

− d1(1− 2x)√
x− x2

(3.6)

It might be asked, why would we resort to a numerical technique when it is possible

to construct the points of transmission exactly? The answer lies in the fact that we

can not calculate the points of transmission using a standard method of images for the
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lossless and lossy dielectric cases, and for that reason we use the numerical technique

in both cases.

From this result we obtain the first order reflection coefficient for a point source

given by:

R⊥ =
cos θi −

√

ǫr − sin2 θi

cos θi +
√

ǫr − sin2 θi
(3.7)

R|| = −ǫr cos θi +
√

ǫr − sin2 θi

ǫr cos θi +
√

ǫr − sin2 θi
(3.8)

which leads to the reflected field E1
r given by

E1
r = Ei(R1)R1T

(1)
1 T

(1)
2 As(s, l)e

−jksPaPd (3.9)

where T
(1)
1 is the first order transmission in the dielectric slab, T

(1)
2 is the trans-

mission coefficient of the re-emergent ray from the slab, Ei is the incident field at the

point R1 of entry into the slab, s is the distance travelled from the exit point of the

slab to the receiver point, and Ei(R1)R1 = (Ei
⊥R⊥)e

r
⊥ + (Ei

||R||)e
r
||.

The attenuation factor of the nth order internal reflected ray is defined as

A(n)
s (s, l) =

ρ

ρ1 + 2nl + s
(3.10)

where s is the distance travelled out of the slab to the receiver point, ρ is the

distance from the source to the entry point into the slab and 2nl is the distance

covered by 2n bounces inside the slab.

Now if we reflect the slab as shown in Figure 3-3 for the second and third order

internal reflections we see quickly that a similar formula exists for the calculation of

both θi and θt as in equation (3.3) above. It is easily seen that the nth order internal

reflection results in a formula given by:

h tan θ
(n)
i + 2nd1 tan θ

(n)
t = d2 (3.11)

The resultant formula for the calculation of θi is given by:

f(x) = 0 = d2
√

ǫr − x(1 + ǫr) + x2 − h
√

ǫrx− x2 − 2nd1
√
x− x2 (3.12)
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Each term of the total reflection coefficient is similar to that given by equa-

tion (3.1) and the total reflection coefficient is therefore expressed as:

R = R
(0)
1 −

n
∑

m=1

T
(m)
1 T

(m)
2 R

(m)2m−1
1 P

(m)2m
d P (m)m

a (3.13)

except that each R
(m)
1 contains different angles of θ

(m)
i and θ

(m)
t for each mth

order internal reflection. Because the angles change in each term, the result does not

collapse to a single term as in Burnside’s geometric series expression.

3.2.2 Internal reflections in a lossy dielectric slab

As stated before, the case of internal reflections inside the lossy dielectric slab is much

more cumbersome to formulate. A method of images solution does not hold because

the complex permittivity of the slab alters the direction of the incoming wave. On

entry into the slab, a planewave sets up a constant phase plane. The true angle of

refraction is no longer θt as in the lossless case. In fact we will see that θt is itself

complex. From Snells law of refraction we know that

γ1 sin θi = γ2 sin θt (3.14)

where γ1 = jβ1 = jω
√
µǫ1 and γ2 = α2 + jβ2 =

√
−ω2µǫ2 + jωµσ where σ is the

conductivity of the slab, α2 = k1
√

ǫ′

2

√

√

1 +
(

σ
ωǫ2

)2 − 1 and β2 = k1
√

ǫ′

2

√

√

1 +
(

σ
ωǫ2

)2
+ 1.

ǫ′ = ǫ2/ǫ1 is the relative permittivity in the slab. This is explained more in Balanis[7],

Ch. 5.

It follows that:

cos θt =
√

1− sin2 θt =

√

√

√

√1−
(

jβ1
α2 + jβ2

)2

sin2 θi (3.15)

=

√

√

√

√1− sin2 θi
ǫ′ − j σ

ωǫ1

(3.16)

=

√

√

√

√

√

√

ǫ′2 +
(

σ
ωǫ1

)2 − ǫ′ sin2 θi − j σ
ωǫ1

sin2 θi

ǫ′2 +
(

σ
ωǫ1

)2 (3.17)
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Now if we set a = ǫ′2 +
(

σ
ωǫ1

)2 − ǫ′ sin2 θi and b = −j σ
ωǫ1

sin2 θi then

α = s cos ζ =

√

√

√

√

√

a

2
(

ǫ′2 +
(

σ
ωǫ1

)2
)

√

√

√

√

√

√

√

√

√1 +

(

b

a

)2

− 1 (3.18)

β = s sin ζ =

√

√

√

√

√

a

2
(

ǫ′2 +
(

σ
ωǫ1

)2
)

√

√

√

√

√

√

√

√

√1 +

(

b

a

)2

+ 1 (3.19)

p = s(α2 cos ζ − β2 cos ζ) (3.20)

q = s(α2 sin ζ + β2 cos ζ) = α2β + β2α (3.21)

For a uniform planewave travelling from medium 1 into medium 2, the transmitted

field is then written as:

Et = E2 exp {−(α2 + jβ2)(x sin θt + y cos θt)} (3.22)

= E2e
−yp exp {−j(β1x sin θi + yq)} (3.23)

The transmitted field is clearly non-uniform but if we define the instantaneous field

as:

Et = ℜ(Etejωt) = E2e
−yp exp {−j(ωt− β1x sin θi + yq)} (3.24)

then we can define the imaginary coefficient to be a constant term if we set

t = β1 sin θi (3.25)

then

ωt− (β1x+ yq) = ωt−
√

t2 + q2(x sinψ2 + y cosψ2) (3.26)

= ωt− k2e(x sinψ2 + y cosψ2) (3.27)

giving us an angle ψ2 being the angle of transmission into the slab instead of θt,

setting up constant phase planes perpendicular to the direction of propagation, which

is what we would expect (see Figure 3-4).

Using the same setup as in the lossless case shown in Figure 3-3 we obtain the

formula in θi and ψ2 given by:

h tan θi + 2nd1 tanψ2 = d2 (3.28)
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Figure 3-4: Planewave incidence on a lossy dielectric media.

which can be solved by the bisection algorithm or Newton Raphson method as

stated for the lossless case.

It is important to realise that the terms in equation (3.13) are slightly differ-

ent. The term Pd giving the phase related to the distance travelled in the di-

electric from one side of the slab to the other is now given by: Pd = e−jk2l =

e−ype−jk2e(x sinψ2+z sinψ2). Pa also changes because our real valued angle is ψ2 not θt

as before, therefore Pa = ejk2l sinψ2 sin θi .

3.3 Results of Comparison with Burnside or Known

Solutions

3.3.1 Example 1: Lossless Dielectric with Transmitter and

Receiver Close Together

A dielectric slab of thickness d1 = 0.2 metres was used to test the ray-tracing based

solution for the internal reflections with the solution obtained by Burnside as ex-

plained in Section 3.2.1. The position of the line source was (−r cos θ, 0, r sin θ) and
the receiver is placed at (r, 0, r) as shown in Figure 3-5. The angle θ was allowed to

vary between 1o and 90o. r has a value of 10 metres for this calculation.
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Figure 3-5: Dielectric slab with positioning of transmitter and receiver.

The constants h1 = r sin θ, h2 = r and d2 = r cos θ+ r are easily deduced and can

be substituted into equation (3.11). The dielectric is firstly assumed to be lossless,

but the lossy results will also be presented later. A relative permittivity of ǫr = 4.0

was chosen for this particular example. The results obtained are shown in Figure 3-6.

The results are plotted for an infinite order ray-trace obtained by using the method

in Section 3.2.1. In can be seen that the results vary around the first order reflection

results. This result was obtained using only the incident field and the reflection off

the plate. The solution of Burnside is significantly different that the result obtained

from the ray-tracing solution as expected. The ray-tracing needs only to be run with

up to 5th order images in practice because the solution quickly converges to a stable

solution, this is shown in Figure 3-7.

3.3.2 Example 2: Lossless Dielectric with Transmitter and

Receiver Far Apart

For this next example, we assume the same geometry as in Figure 3-5 except that

the radius r of the circle is redefined to be 10r. The receiver point is left in the same

position as before. All other variables remain the same also. The results are shown

in Figure 3-8.

Again there is a sizable difference between Burnside’s results and the full ray-

tracing result.
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Figure 3-6: The results for the geometry in Figure 3-5 with lossless relative permit-

tivity ǫr = 4.

3.3.3 Example 3: Lossy Dielectric and Transmitter and Re-

ceiver Close Together

The values of the configuration are identical to the parameters in Example 1 except

that the permittivity of the slab is complex. The permittivity is defined to be:

ǫ2 = ǫ1

(

ǫr − j
σ

ωǫ1

)

(3.29)

= ǫ1ǫr (3.30)

where the relative permittivity is given by ǫr. For a typical concrete wall, the

conductivity is of the order of 1.0× 10−2. In this case the relative permittivity has a

value of ǫr = 4.0−j0.08987. The full raytracing solution versus the solution obtained

by a single reflection is presented in Figure 3-9. Burnside does not have a solution

for this problem so no results are presented here for comparison. There is a very
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Figure 3-7: The convergence of the raytracing for increasing orders of reflection given

that θ = 45o and r = 10.

noticable difference between the full ray-tracing result and the 1st order reflection

result.

3.3.4 Example 4: Lossy Dielectric with Transmitter and Re-

ceiver Far Apart

For this example the configuration of Example 2 with the transmitter located on a

circle of radius 10r is considered again. The complex permittivity of Example 3 is

considered also. The comparison is made between the result for the full ray-tracing

solution and the single reflection result. The results are quite different in places.
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Figure 3-8: The results for the geometry in Figure 3-5 with a radius change r defined

to be 10 times larger.

3.4 Problems Associated with UTD Diffracted Fields

There are a number of problems that exist in the UTD diffraction coefficients which

need to be addressed. All of these have been highlighted before in previous papers

and books. Six such problems are named here for completeness although more may

exist. This section serves as a record of such issues that are partially addressed in

the next section and are addressed in the literature using other methods.

The problems known in UTD are as follows:

1. In the UTD formulation described by Balanis [7], Ch. 13 for a simple perfect

electrical conducting wedge, there are a number of problems that exist. The
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Figure 3-9: The results for the geometry in Figure 3-5 using ray-tracing for a lossy

media.

assumption that s′ ≫ 0 leads to

H
(2)
0

∼=
√

2j

πks′
e−jks

′

(3.31)

which becomes less accurate when ks′ < 3. Also the assumption that s ≫ 0

leads to the assumption that
∫

steepest descent path
H(z)eksh(z)dz (3.32)

can be evaluated. But s≫ 0 is not necessarily true since the receiver point may

be placed close to the diffraction point (see Figure 3-11). Both assumptions give

rise to the one problem. If a point it too near the diffraction point then the

UTD formulation becomes invalid.

2. Low angles of incidence yield a soft diffraction coefficient Ds → 0, but this

is not correct. Slope diffraction as presented in Balanis[7], Ch. 13, James[37]
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Figure 3-10: The results of the ray-tracing for a lossy media with transmitter and

receiver far apart..

and Jones[41] is used to supplement the solution. Other references such as

Cockrell[20] exist for specific antenna types.

3. Off Keller Cone diffraction points, may exist but be required to give a diffracted

field (see Figure 3-12). These points will give zero field when using UTD. Many

methods have been used to obtain fields in the off Keller cone regions, using

methods such as modified physical optics [57], [1], [36], or incremental length

diffraction coefficients (ILDC) [75], [84] and equivalent edge currents [40], [59]-

[61].

4. El-Sallabi[23] states that Luebbers[74] dielectric formula gives poor results in

Shadow regions. These results are not necessarily correct since there is no

account of transmission through windows and doors taken into account. The
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only way to confirm the results of this paper is to calculate the results in an

anechoic chamber under controlled conditions.

5. If diffraction points are close together, then higher order terms such as double

diffraction described by Balanis[7], Luebbers[74], Holm [31] need to be included

to account for coupling between the wedge points.

6. Erricolo[24] states that when a source and observer have no line of sight as

shown in Figure 3-13, that the single diffraction coefficient is no longer sufficient

for good accuracy and therefore double diffraction must be introduced. Again

Luebbers [74] is a good paper on the subject of double diffraction techniques.

s

β0

β0

s′

n

ê

Figure 3-11: Wedge with receiver point a short distance from diffraction point.

3.5 Solution of 3D Plate Problem

The solution of the two dimensional flat plate problem is solved exactly using the

three dimensional electric field integral equation solution to the Helmholtz equation

given by:

Es = −jωA−∇Φ (3.33)

where the magnetic vector potential A is defined as

A(r) =

√

µ

4π

∫

S
J
e−jkR

R
dS ′ (3.34)

41



β0

s′

s

n

ê
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Figure 3-13: No single diffraction point exists between receiver and transmitter.

and the scalar potential Φ is defined as:

Φ(r) =
1

4πǫ

∫

S
σ
e−jkR

R
dS ′ (3.35)

where σ is the surface charge density related to the surface divergence of J through

the continuity equation

∇s · J = −jωσ (3.36)

The boundary conditions are enforced by using the condition that n̂×(Ei+Es) = 0

on S the surface of the rectangular flat plate.

The full moment method solution is described by Rao, Wilson, Glisson[69]. The

plate is split into triangular facets each of which have basis functions defined on their

edges. This allows the current density J to be calculated numerically and following

that, Es can be derived by equation (3.34) substituted into equation (3.33). The
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matrix equation resulting from the full solution is very time consuming to calculate

and solve because the matrix is dense (most entries are non-zero). Many people have

worked on methods to speed up the solution. Brennan[17] in particular has defined

a method which iterates through the plate travelling across and back and up and

down until the solution converges. The solution is not straight forward to calculate.

He needed to introduce a buffer zone when iterating up the plate, to avoid spurious

diffracted field interactions when solving for subsections of the plate in isolation. The

results obtained by Brennan will serve as the canonical solution to the plate problem

and will be used for comparisons with the scattered field obtained by using a full

ray-trace incorporating UTD diffraction coefficients. By full ray-trace we mean that

there can be one reflection from the surface and up to four diffractions, one from each

edge of the plate (see Figure 3-14). Note that the scale of the rectangular plate is

not in equal aspect ratio for this plot.

Figure 3-14: Ray-trace on 2D plate with one reflection and 4 diffractions.
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Figure 3-15: The geometry of a 3D plate, transmitter and receiver points on a line.

For a suitable test problem (see Figure 3-15) the integral equation was solved

over a plate of size 6λ × 6λ which at a frequency of 900MHz will give a plate of

size 2 metres ×2 metres. The half-wave dipole position was defined to be located

at Tx = (r sin θ cosφ, r sin θ sinφ, r cos θ) = (10
√
3, 0, 10) when r = 20, θ = 60o and

φ = 0o.

The receiver points are defined along a line segment [a, b] above the plate. The

value a = (−100, 0, 20) and b = (20, 0, 20) and the interval of 0.1 between each point

on the line results in 1201 receiver points. The results are shown in Figure 3-16 for

the UTD. The plot shows the diffracted fields from side A, side B and D combined,

side C and the reflected field. The complete scattered field is also shown made up of

the sum of all diffracted fields and reflected field.

When comparing the scattered field with that obtained by Brennan as shown in

Figure 3-17 the results do not agree. The reason for the mismatch seems to be due to

the changing directions of the diffracted field curves. The diffracted rays obtained in

the ray-tracing were checked and found to be correct. In Section 2.7.2 in the previous

chapter the diffraction coefficients where shown to give perfect agreement with Bala-

nis’s results. Also all values such as φ, φ′ and β0 where checked for correctness. The

fact that the plate is of short finite width is most likely the reason for the discrepancy.

When running the solution for larger sized plates there is no large jump like the ones

encountered here. Holm[31] shows exactly the same sort of result for a double knife

edge diffraction problem with a large spike in the scattered field very similar to the

one observed in Figure 3-16. Holm describes how it is possible to use higher order

term to smooth out the spike but at a large computational expense.

The diffracted fields assume that each edge of the plate is along an infinite wedge,
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Figure 3-16: Diffracted field for ray-tracing plus reflected field.

which is definitely not correct. If we could define an analytical formula for the

diffracted field that corrects UTD at low angles of incidence and removes the dis-

crepancy of UTD while having a low computational cost, this would be a substantial

achievement. The rest of this section will concern itself with the single plate problem

and results are presented for a two dimensional truncated half-plane (THP) solution

that helps correct the UTD solution in three dimensions.

3.6 Correction to Diffracted Fields Over a Flat

Plate

The majority of the contribution to the scattered field should come from Sides A and

C in the example just described. Since walls in buildings are usually connected to

both floor and ceiling, they only have two diffraction edges. Keeping this in mind,
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Figure 3-17: UTD solution versus canonical moment method solution.

what follows is a two dimensional solution to the scattered field over a finite plate

which can then be modified to give the three dimensional result. The two dimensional

formulation requires a line-source or planewave instead of a point-source to make the

solution calculable.

3.6.1 The Electromagnetic Problem

The electromagnetic field is emitted by an antenna defined to be transverse magnetic

in z (TMz). The antenna is an isotropic line-source emitting into a lossless media in

the presence of a perfect electrically conducting scatterer. The method of solution is

the two-dimensional Helmholtz equation.

What we now want to derive is an expression which will be used for an electric

field integral equation.

We start with the Wiener-Hopf technique (see [37], [33]) for a half-plane excited
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Figure 3-18: The geometry of the truncated half-plane problem

by a plane wave, and then truncate it, to give a finite plate solution (see Figure 3-18).

The incident field Ei and total field Et for any incoming angle θi is defined as:

Ei(ρ
′, θs) = ẑEoe

kρ′(cos θs−cos θi) (3.37)

Et(ρ, θs) = ẑ

√



π
Eo[e

kρ cos(θs−θi)F (a1)∓ ekρ cos(θs+θi)F (a2)] (3.38)

where

F (a) =
∫ ∞

a
e−τ

2

dτ (3.39)

a1 = −
√

2kρ cos((θs − θi)/2) (3.40)

a2 = −
√

2kρ cos((θs + θi)/2) (3.41)

Equation (3.38) represents the total field for both electric and magnetic field

integral equations. The case when the ∓ sign is minus gives the electrically polarised

diffracted field (soft polarization), while a plus sign gives the magnetically polarised

diffracted field (hard polarization).

Using Maxwells equations:

∇× Et = −ωµH (3.42)

J = ŷ × (H1 −H2) (3.43)

where H1(ρ, θs) = H(x, 0+) is the current on the upper half of the plate, and

H2(ρ, θs) = H(x, 2π−) is the current on the lower half of the plate, satisfying the

boundary conditions. Substituting equation (3.38) into equations (3.42) and (3.43)

gives the current density J defined by:

J = ŷ × (H1|(ρ=x,θs=0+) − H2|(ρ=x,θs=2π−)
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 (3.44)

The resulting ẑ component of the current density J is:

Jz =
k

2
sin θie

kx cos θi [F (a)∓ F (−a)]
√



π
+

√

k

8πx
sin

θi
2

[

e−kx ∓ e−kx
]

(3.45)

where a =
√
2kx cos θi

2
.

Taking the cases of the EFIE current density Jz and MFIE current density Mz

separately we have from equation (3.45) that:

Jz = 2JPO

√



π
F (a) +

√

k

2πx
sin

θi
2
e−kx (3.46)

Mz = JPO (3.47)

where JPO = k
2
sin θie

kx cos θi is the physical optics current defined on the infinite

strip.

The above result Jz is defined by Rossi[72]1. Mz was used in a paper by Bren-

nan [16] in the context of a solution of a closed body terrain problem consisting of

many connected strips. At this point the magnetic field is no longer required so it will

be dropped from the analysis. We now calculate the scattered field by integrating

over a finite closed interval [0, L] of the plate. This will give us the truncation of the

plate necessary to correct the problems in the UTD solution. The result is a integral

for the electric scattered field Es and magnetic scattered field Hs defined by:

Es =
∫ L

0
Jz(x)e

kx cos θsdx (3.48)

Using integration by parts we obtain:

Es = −k sin θi
√



2

[

ekζL

kζ
F−(a1)−

1

kζ

cos θi
2

sin θs
2

F−(a2)

]

− 1√
2

cos θi
2

sin θs
2

F−(a2) (3.49)

where a1 =
√

4kL
π

cos θi
2
, a2 =

√

4kL
π

sin θs
2
, ζ = cos θi + cos θs, and F−(a) =

∫ a
0 e

−π
2
τ2dτ is the negative fresnel integral which can be numerically integrated.

1Rossi had a mistake in his formulation which meant that his scattered field result was incorrect
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It proves easy to integrate over the range [0, L] when truncating the half-plane,

but in practice the formulation is easier to expanded about the centre point of each

plate (see Figure 3-18). In this case the integral must be transformed to give a result

over the range [−L/2, L/2]. This is given by the following simple translation:

Jz(x) → Jz(x+
L

2
)

resulting in the transformed results for Es:

Es =
∫ L

2

−L
2

Jz(x+
L

2
)ekx cos θsdx = e−

kζL

2

∫ L

0
Jz(x)e

kx cos θsdx

Physically this is equivalent to shifting the plate by a factor−L/2 along the x-axis.
The discontinuity at x = 0 then resides at x = −L/2 and the incident and scattered

field must be adjusted accordingly. This is achieved by making the exponential shift

as in the previous equation.

So the final result for the scattered field is:

Es = −k sin θi
√



2





e
kζL

2

kζ
F−(a1)−

e−
kζL

2

kζ

cos θi
2

sin θs
2

F−(a2)





− e−
kζL

2√
2

cos θi
2

sin θs
2

F−(a2) (3.50)

3.6.2 Numerical solution of Truncated Half-Plane method

The scattered field in equation (3.49) is solved numerically using an expression for

the fresnel integral presented in mathematical tables [3], or one of the numerical

methods defined in numerical recipes in C [68].

There are a few areas where equation (3.50) needs special attention. We would

expect to have a problem at the reflective shadow boundary (when θi = π−θs) due to
a singularity that exists there. Although the terms in equation (3.50) can be collected

up to form a sinc function, the solution was found to be unstable. Instead a small

argument expression can be used like that of the uniform theory of diffraction around

the transition regions [7]. Extrapolating about either side of the shadow boundary

yields the correct result. In this case Es is found by the following formula:

Es(θi, θs) =
Es(θi, θs − ǫ) + Es(θi, θs + ǫ)

2
(3.51)
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The other case of concern is the case when θs = 0. In this case the scattered field

is defined as:

Es = −e
− kζ

2

√

F−(

√

4kL

π
) (3.52)

3.7 Results: Truncated Half-Plane Versus UTD

3.7.1 Comparison for Plane Wave Incidence

We first present the results for the solution of the electric field integral equation for a

flat plate of length 10metres, with frequency 900MHz, and incoming angle θi = 175o.

The impinging wave is assumed to be plane, as in Figure 3-18. The results are pre-

sented for far field scattering in the range [0o, 180o] at 200 points. The Truncated

half-plane method was implemented using equation (3.49) along with its special cases

defined by equations (3.51) and (3.52). The uniform theory of diffraction (UTD) re-

sult is presented using the Keller approximation. The method of moments result was

calculated using a conjugate gradient squared method to include the backscattering

(see Golub[26], Kenny[43]).

The results are excellent for the lower spectrum of angles up to 90o, but start

to deteriorate in the backscattering region. This is because the result obtained by

the truncated half-plane (THP) method only contains a forward propagating term.

The difference arises because the method of moments (MoM) and UTD contain the

diffraction from the far end of the plate which gives the backscattering result. What

is notable is the fact that the UTD is corrected in the problem area in this case where

θs < 20o. This is the region of most importance since we wish to make the correction

at low angles.

3.7.2 Comparison with Exact MoM result

In this example the three dimensional plate described in Section 3.5 along with 1201

scattered field points and a point source is set up. The geometry of the problem

is shown in Figure 3-15. Figure 3-20 shows again how the THP result corrects the
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Figure 3-19: Comparison between full EFIE solution, Truncated half-plane method,

and UTD.

ray-tracing in the problem area. There is not a perfect match but when plotting the

result in decibels the error between the MoM and THP is very small.

This result was obtained by modifying equation (3.51) to change the incident

planewave into a Hertzian dipole, also the scattered field points are not far field

points, so these have to be expressed explicitly. So the formula used to obtain the

point source result is:

EPS
s (ρ, s) = −jkηIol

4πρo
e−jkρo sin θiEs(θi, θs)

e−jks

s
(3.53)

where the fields produced by a half-wave Hertzian dipole with length l = λ/2 are

given by

Ei(ρo) = −jkηIol
4πρo

e−jkρo sin θiθ̂ (3.54)

and η is the impedance of free space, and Io = 1 is the emitting current in the dipole.

In equation (3.53) the truncated half-plane formula is pre-multiplied by the dipole

incident field and post-multiplied by the term necessary to represent the receiver point
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Figure 3-20: Correction to UTD obtained by THP solution

as a point-source. The angle θi is the angle made from the source to the centre of

the plate ρo and the x-axis. θs is the the angle made from the centre point ρo to

the scattered field point and the x-axis. As seen in Figure 3-16 the area between the

turning points of the diffracted field from side A and side C is the area that has to

be corrected in the UTD result. This is easily achieved by replacing the result with

the THP result in the problem region as indicated by Figure 3-20.

3.8 Conclusions

The formulation of Burnside for internal reflections although reasonable and simple to

calculate presupposes that all internal reflections in a slab originate from a number of

planewaves each entering a dielectric slab at the same angle of incidence and arriving

eventually at a receiver point outside the slab. Although this may be exactly correct

for planewaves the emitting source is better described by a line source or point source

in practice. Therefore in a ray-tracing solution of the problem the angles of incidence
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of each ray entering the slab are in fact different. A novel numerical solution was

found to yield different results in the lossless and lossy dielectric case which should

be more physically meaningful than Burnside’s result. The only way to be absolutely

certain that the results are better is to compare the results with an integral equation

solution of the full-wave problem.

The asymptotic solution of the full-wave problem using UTD diffraction coeffi-

cient was found to be incorrect for small scattering objects such as flat plates. Small

scatterers such as these occur frequently in an indoor building environment. The

discrepancy is likely due to coupling effects which can be corrected at a large com-

putational cost by Holm’s[31] method. The result is greatly improved by the novel

numerical technique described in this thesis and is less computationally expensive

than the usual UTD coefficient since it contains only two fresnel function terms.
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Chapter 4

Building an Indoor Ray-Tracing

Tool

The use of ray-optical methods to provide ray-paths in recent planning tool is well

explained in the literature. There are three main varieties known as ray-tracing, ray-

launching and beam-forming techniques. Ray-tracing seems to be the most commonly

implemented form of ray-optical approach because it can give exact ray-paths between

a source and receiver. Ray-launching on the otherhand relies on a spectrum of rays

leaving the transmitter and arriving close to or at the receiver. The technique usually

involves some sort of geodesic sphere theory. Beam forming is commonly implemented

because the user of the planning tool wishes to calculate point-to-multipoint path-loss

values, that is transmitter to many receivers. Within the communications group at

Trinity College O’Brien, Kenny[65] worked on a point-to-multipoint ray-tracing code

using a 2D beam-forming technique.

A large number of papers exist on the planning and design of indoor wireless

networks such as in CINDOOR[81], Stola[76], Inanoglu[32] to name but a few.

In this thesis we consider a ray-tracing implementation containing a preassigned

maximum order of reflection paths and up to one diffraction included in that path.

Most ray-tracing solutions pre-compute or use some sort of visibility algorithm to

ascertain information about the connectivity of the building. By visibility we mean

that a point in space is visible if it is in front of some obstacle whilst it is considered
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to be invisible if behind an obstacle. Using a visibility algorithm makes it easy to

determine transmission points in front of an observation points, and reflection points

around an observation point. The visibility algorithm is one of the most important

issues in this new ray-tracing tool, because it determines the speed of the optimisation

algorithm. More will be said about this now in the next section.

4.1 Building Storage Using Convex Spaces

The way in which a building geometry is stored determines how quickly one can

extract visibility information. We need the visibility algorithm to determine the

position of diffraction edges. A lot of planning tools use a drawing exchange format to

store building geometries generated by AutodeskTM . These geometrical constructions

do present themselves in a way that is manipulable by a visibility algorithm, but it

will be shown here that using a different arrangement of the building apriori, gives a

naturally more reliable algorithm.

Since ray-tracing involves connecting a point in space to another point, it is natu-

ral to split the building into a series of convex spaces (six faced polyhedra). A convex

space has the property that a line drawn through it will intersect at most two points

on the boundary of a six faced polyhedron (see Figure 4-1). If a building is stored

as a collection of convex spaces, it is possible to navigate from one point to another

across many convex spaces very quickly. This will form the visibility algorithm for our

ray-tracing. Assuming the building can be completely described by a set of convex

spaces, the connections between each convex space need only be calculated once. This

information is then stored away. The buildings described in this thesis were modelled

as convex spaces and were input by data entry into a computer. It is intended in

the future that the building could be converted into convex spaces using an auto-

mated process taking drawing exchange format (DXF) files directly from AutoCAD

and analysing the facet information to generate each convex space. Storing visibility

information for reuse is not a new idea, it has been used in ray-tracing algorithms

for years [10]. A more complicated but similar algorithm to the one presented here

was presented by Yun [86].
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Figure 4-1: A convex space intersected by a line L.

Complicated building geometries including L-shaped rooms and torus shapes may

be split into a discrete number of convex spaces (see Figure 4-2).

Figure 4-2: An L-shaped region seen from above and torus shaped region splitting

into convex spaces.

Each convex space has six boundaries {Bj}6j=1, each of which is described by four

vertices {vi}4i=1 or by the equation of a plane. A useful numbering system for the

boundaries is defined such that for two convex spaces Ci and Cj touching one another,

if Ci is connected to Cj by boundary Bk, then Cj is connected to convex space Ci by
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boundary B7−k (see Figure 4-3).
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Figure 4-3: Two convex spaces connected at boundaries B3 and B4.

A building consists of filled or free convex spaces. By free convex space we mean

that the convex space is assumed to contain free space. Filled convex spaces can be

lossless or lossy dielectrics. If we want them to be impermeable then we define them

to be perfect electric conductors.

A building contains floors and stories containing filled or free convex spaces. Sto-

ries contain rooms, and rooms contain free convex spaces (see Figure 4-4). Stories

are sandwiched between floors. A diagram showing the connections is presented in

Figure 4-5. Walls, interior walls, exterior walls and doors are all filled convex spaces

which may contain zero volume.

Figure 4-4: A building is made up of floors, stories, rooms and convex spaces.

A floor may contain apertures which are free convex spaces, to model lift shafts

or stairwells. Doors and windows may have different depths when compared with the
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Figure 4-5: A schematic representation of a hierarchical description of a building.

surrounding walls to give more realistic modelling.

The way we obtain the connectivity information is by finding the equation of

planes of the boundaries of our current convex space of interest, and determining

which other convex spaces have boundaries that lie on the same plane. Then we

determine whether a point on this same plane is contained in the boundary of the

current boundary of interest. Doing this for the whole building will give us all the

connections we need, and this is the information that need only be calculated once

and stored away. If for some reason a new convex space is added to the building,

the software will automatically recreate the inter-connectivity information to allow

for the change.

4.2 Determining Reflection and Transmission Points

The steps required to determine the reflection and transmission points in a building

without diffractions are:

1. Determine all images of a transmitter Tx ≡ Tx(x, y, z) using the method of
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images.

2. Determine the valid reflection points by tracing back from the receiver point to

the image of a transmitter.

3. Pick out the transmission points along the way and store this information also.

We will now present each step of the algorithm in turn.

4.2.1 Point Method of Images

The method of images is used to determine the positions of the transmitter images

in the building. This is a method widely used because it determines ray paths up to

a given order. Ray launching could also be used but we will not be looking at that

here. Because we have now described the building as a number of convex spaces, it is

possible to use our compact storage of the building to speed up the method of images

process.

The algorithm is defined as follows:

1. A set of reflective planes about the transmitter must be determined. We note

that reflection points lie on the boundary of filled convex spaces, so we need not

check the connections with free convexs inside rooms and apertures of floors.

From each of the six boundaries of these filled convex spaces we determine a

unique set of equations of reflection planes of the form Ax + By + Cz = D,

oriented so that the point n̂ = (A,B,C) defines an outward normal to the

plane.

2. Once the reflection planes are obtained, the transmitter Tx is defined to be the

0th order reflection point T (0)
x in a tree of images.

3. Determine if the transmitter T (0)
x is on the positive side of each reflective plane.

By this we mean that the we test the condition d = (T (0)
x − v) · n̂ > 0 where v

is some point on the reflective plane. If d > 0 then reflect the image point T (0)
x

in the plane to obtain a new image point Tx
(1). This operation is performed for

all reflective planes until all first order images are created.
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4. From a first order image Tx
(1) second order images and higher order images are

obtained by repeating the procedure in the previous step.

The image tree is created in such a way that a node in the (n+1)th level of the

tree can access the node in the nth level of the tree. We do not need to store the

information about the reflective planes that generated the image, because it is

a simple matter to obtain the midpoint between the nth and (n + 1)th points

and then obtain the reflective plane (see Figure 4-6).

4.2.2 Determining the Reflection Points in a Ray-Path

There are a number of algorithms which are required before finding the reflection

points in a building. One important algorithm is finding the convex space containing

the receiver or transmitter point of interest. We first know that the observation point

is not inside a wall, so it must be in a free convex space. In Figure 4-5 we see that

the free convex spaces are contained inside stories, so it is easy to determine which

story the point is inside, and then it is a simple matter of finding which free convex

space the point is contained in, by traversing through each free convex space.

The algorithm for determining the reflection points in a ray-path of order n for a

specific branch of the image tree is now described as follows:

Tx1
(1)

0th Order Images

1st Order Images

2nd Order Images

T (0)
x

Tx1
(2)

Tx2
(1)

Figure 4-6: The image points generated by method of images.

1. First determine the free convex space where the receiver and transmitter lies

using the algorithm just mentioned above. The receiver is pushed onto a stack
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of points which will form a ray-path list. The receiver is also indicated by a

key (see Figure 4-7).

2. Create a line segment from the receiver point to the nth order image in the

image tree.

3. We first intersect the line with the current convex space to give a point of

contact P into the next free or filled convex space. If the point of contact P is

on boundary bi then we know that it is on the boundary of b6−i in the adjacent

convex space. We have already stated that all boundaries are connected to

adjacent boundaries so it is easy to determine which adjacent convex space

contains the point of contact.

4. If the point of contact P falls on a filled convex space then we need to update

our transmission count. If we pass through too many filled spaces, that is, a

number great than the maximum that we wish to allow, then we say that the

ray-path is invalid and therefore we stop at this point.

5. If the point of contact P is on the positive side of the line, that is, d = (P −
v) · n̂ > 0 where v is some point on the reflective plane and n is the outward

normal from the plane, we know that we must travel until d = 0. If we find

that d < 0 then we have not found a point on the reflective plane, and therefore

the ray-path is invalid, and we stop at this point.

6. The line segment can intersect at most two points on a convex space at P and

Q. We know P already, so it is easy to determine Q on the opposite side of the

convex space. We then continue our procedure as in the two steps above until

we determine the point of reflection. Once we obtain this point of reflection

we push it onto the ray-path stack, and this becomes our new start point for

the algorithm. From this point we repeat the algorithm except that we use the

previous image point to determine our line segment.

7. Repeat the process until no image points remain.
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Figure 4-7: The reflection and transmission points generated by the method of images.

4.3 Finding Points of Diffraction

The algorithm for finding the valid diffraction points or in the case of corner diffraction

finding virtual diffraction points, is described as follows:

1. Determine all diffraction edges in the building.

2. Sort the diffraction edges and images of the diffraction edges in a diffraction

tree, created using the method of images.

3. Find the nth order ray including one diffraction using the diffraction tree and

reflection tree.

Each of the steps in the algorithm are covered in the next sections.

4.3.1 Determining Diffraction Edges of Filled Convex Spaces

The algorithm for finding all valid diffracting edges in an indoor environment incor-

porating the convex space methodology is defined as follows:

1. When using diffraction algorithms within a building we must first define all valid

diffraction edges. Only filled convex spaces can generate a valid diffraction edge.
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An edge is contained on two boundaries Bi and Bj of a convex space such that

we obtain 12 permutations of the couple (i, j):

(1, 2), (1, 3), (1, 4), (1, 5)

(2, 3), (3, 4), (4, 5), (5, 2)

(6, 2), (6, 3), (6, 4), (6, 5)

2. If we extract a list Ai of the free convex spaces adjacent to Bi and a list Aj of

the free convex spaces adjacent to Bj then for each convex space Cm in Ai and

each convex space Cn in Aj we check to see if an adjacent boundary to Cm is in

Aj or a adjacent boundary to Cn is in Ai. We say that this boundary is part of

convex space Ck. Assuming there isn’t a boundary, we have no valid diffraction

edge, but assuming there is we need to do some further checks.

3. Intersecting the edge of Ck between Bi and Bj with boundary B6−j of Cm and

B6−j of Cn we form a diffracting edge.

4. If B6−i in Cm and B6−j in Cn are coplanar then we have no valid diffracting

edge, otherwise we do have a valid diffracting edge.

4.3.2 Creating a Method of Images Tree for Diffractions

If we describe the diffraction edge by its endpoints, then the method of images is

identical to the method of images described for a point except that both points are

reflected in reflective planes instead of one point.

The tree will contain many diffraction edges at the 0th order layer, and will have

images of the diffraction edges when reflected in planes at the 1st layer (see Figure

4-8).

4.3.3 Calculating the Diffraction Point and Ray-Path

We will see that for an mth order ray with one diffraction point positioned as nth

order term of the list, that there are m−n−1 reflections before the diffraction point,

and there are n reflections from the diffraction point to the receiver point.
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Figure 4-8: The image points generated by method of images of diffraction points.

Figure 4-9 shows how a 4th order ray-path is decomposed into a path from

T (m−n−1)
x = T (2)

x to the diffraction point Pm−n = P4−1 = P3 on the diffraction edge

De = [D1
e , D

2
e ]. There is a path generated then from D(1)

e = [D1(1)
e , D2(1)

e ] to the

receiver point Rx.

Before calculating the ray path we need to describe in more detail how the point

of diffraction P is found given that the ray-path contains (m−n− 1) reflections, one

diffraction and n reflections:

1. Calculate the lengths L1 = (T (m−n−1)
x −D1

e)×v̂1 and L2 = (R(m−n−1)
x −D2(n)

e )×v̂2
using shortest distance formula to De and D

(n)
e respectively (see Figure 4-10).

2. Construct the distances d1 = (T (m−n−1)
x − D1

e) · v̂1 and d2 = (Rx − D2(n)
e ) · v̂2

which in turn gives the points of contact Ad = D1
e+ v̂1d1 and Bd = D1(n)

e + v̂2d2.

3. Define the length d = d2 − d1.

4. Using the ratio L1 : L2 it is possible to locate P using the formula: P =

Ad + v̂1
L1d

L1+L2
.

Now, once the diffraction point is found we are in a position to describe the

method for finding the ray path. This algorithm will again be computationally fast

because of the convex space description of the building. Another thing that makes

this algorithm fast is the continual reuse of the diffraction tree. It is never a good
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Figure 4-9: The ray path for a 4th order ray including one diffraction point at P3.

idea to build the diffraction tree into the point image tree although some authors

have done this, instead it is better to know exactly what branch of the diffraction

tree (nth) needs to be extracted given that we know the order of reflection (m−n−1)

before the diffraction point. This efficient method was described by Schettino[73] and

many other authors. If the diffraction tree is inserted inside the point image tree then

we end up with many multiple copies of the tree which is very inefficient.

The method for extracting ray-paths is described as follows:

1. Let the receiver Rx be the (m+ 1)th image point.

2. Looping over all nth order diffraction edges of the diffraction tree, extract a

single term D(n)
e and also determine its generating edge De. The generating

edge is found by travelling back up to the 0th order level of the diffraction tree

(see Figure 4-8).

3. Extract a transmitter image of order (m−n−1) and then construct the diffrac-

tion point Pm−n using the method described earlier in this section.
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Figure 4-10: The ray path of orderm unfolded with a diffraction point at the (m−n)th

point.

4. If Pm−n is contained in De then it is a real diffraction point used with standard

diffraction methods. If it is not a contained in De then it is still required for the

corner diffraction techniques and is marked as a virtual diffraction point. Each

reflection point Pm−n+j is constructed for all j = 1, 2, · · · , n by travelling back

from the receiver point Rx to the diffraction point Pm−n using the algorithm in

Section 4.2.2.

5. The reflection points Pj for all j = 1, 2, · · · ,m−n−1 are generated by travelling

back from the diffraction point to the transmitter using the same algorithm in

Section 4.2.2.

The construction of the double diffraction points is not so easy. In the past the

method of finding the diffraction points was easily described for coplanar edges, but

in practise the edges may point in any direction, especially in an indoor environment.

The Newton-Raphson formula is easily applied (see Appendix A) to define an iterative

solution which converges to the valid diffraction points. We did not concern ourselves

with double diffraction point in this work.
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4.4 Conclusions

The two dimensional convex space description of the building avoids the description of

a standard visibility algorithm like that of Agelet[5] as explained by Yun[86] making

a computational saving of 25% to 30%. It would be expected that this saving would

also occur in a full three dimensional implementation like the one described in this

thesis.

Because this algorithm avoids a conventional visibility algorithm related to the

transmitter location, it is exactly what is needed to avoid computational slow downs

in the optimisation procedure to be presented in Chapter 7.

The algorithm avoids any loss of ray information and in fact forms a path along

which transmissions and reflections are easily found. In some ray-tracing algorithms

finding the reflection points and transmission points results in a sorting algorithm

having to be called to obtain the correct ordering of the transmission and reflection

points along the ray-path.

The separation of the diffraction edge list tree from the reflection tree avoids

repetition of the diffraction tree calculation and speeds up the algorithm as a result.
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Chapter 5

Verification of Ray-Tracing and

Comparison with Measurements

The correctness of any ray-path finding method needs to be tested thoroughly, es-

pecially when developing a commercial tool. Where possible a verification of the

working modules written in C++ must be compared with previously generated re-

sults, or systems need to be devised to obtain another simple method of obtaining

the same result. Also a comparison with real measurements is important since this

verifies the validity of the assumptions made in the tool and verifies that the tool as

a whole is working correctly.

5.1 Correctness of Diffraction and Reflection Ray-

Paths

The diffraction method needed to be evaluated for a test case. A simple example

suited to this uses a single room containing four diffraction edges yielding symmetries

in the ray-path solution across the lines XX and YY (see Figure 5-1). The transmitter

and receiver are set up in such a way that they always ensure symmetry. If the ray-

paths are found to be anti-symmetric then it is clear that some of the paths were

missing. Because there are a number of convex spaces meeting at one diffraction edge

it is not such a simple matter to guarantee the correct ray-paths for the calculation.
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Figure 5-1: Diffraction paths mixed with reflections inside a one room building.

It was found that this test did show up errors in the Software Tool for Wireless

Resource Optimisation (STIWRO) code which were easily fixed with some small case

statements in our code. It turned out that when tracing a ray from the diffraction

point back to the transmitter, it was important to move the starting point by a

perturbation along the line to be traced so that the correct convex space containing

the diffraction point was found, otherwise the algorithm starts off in the wrong convex

space and can detect an extra transmission through a wall, which is incorrect.

Again setting up the one room building as for the diffraction case, the valid

reflections should form a symmetric pattern through the line segments XX and YY.

This is the case as can be seen in Figure 5-2.

5.2 Software Tests

A building was generated containing a total of 230 convex spaces, with 4 floors

including the roof, 3 stories, with internal walls, external walls, doors, windows and

6 or 7 rooms per story. The floor contained apertures to represent stairwells. The
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Figure 5-2: 0th − 3rd order reflections inside a one room building.

building plan can be seen in Figure 5-3. The second story contains an L-shaped room

in the top right corner which must be split into two free convex spaces. The third

story contains a corridor (room) which must be split into two or three convex spaces

depending on the way it which it is split. For the examples that follow, the doors of

each room are assumed to be closed. All plots in this section were easily generated

using Matlab functions once the building was stored as convex spaces.

The constitutive parameters for the different dielectric materials making up the

building are presented in Table 5.1. Although the values are frequency dependent we

will assume they are constant values for frequencies greater than 900MHz.

5.2.1 Test 1: Reflections Inside a Single Story

Presented here is a sample of the type of results that can be obtained from running

the ray-tracing with reflections up to 3rd order and no diffractions. For the purposes

of this illustration the number of transmissions was set to be a maximum of three. If
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Figure 5-3: A plan view of three stories in the sample building and 2nd floor.

a higher number of transmissions were specified then the number of rays would be too

numerous to give a presentable plot. The transmitter is placed at location (3, 18, 1.5)

and the mobile terminal is placed at location (26, 2, 1.5). The transmission frequency

is defined to be 900MHz. All reflected rays of order zero to three are presented in

Figure 5-4 along with an overlaid plan view of the first story of the building.

This plot does not display the full complexity of the ray-paths because it is shown

along a two-dimensional cross section. In many cases if there are a sufficient number

of transmissions allowed, the rays pass into other stories through floors and re-enter

from the opposite side back into the story where the receiver lies.
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Constitutive Parameters ǫ µ σ

Free Convex Space 1 1 0

Exterior Walls 4.44 1 0.08

Interior Walls (guess) 4.0 1 0.04

Doors (glass, Balanis[7]) 2.32 1 1.45×10−3

Windows (glass) 2.32 1 1.45×10−3

Table 5.1: Dielectric material properties for sample building

5.2.2 Test 2: Confirmation of Correctness of Reflected Rays

To validate the correctness of the reflected rays it was necessary to test the raytracing

over an infinite flat plate (practically speaking this is is a large plate with no diffrac-

tion edges). The transmitter was placed at (x, y, z) = (0, 0, 5) and assumed to be a

hertzian dipole. The total field was calculated for the TMz case. At each receiver

point on a regular grid of size 30 × 20 metres the result was compared with the re-

sult obtained by reflecting the transmitter in the large plane, that is the geometrical

optics (GO) solution. The results are shown in Figure 5-5.

It can be seen that the plots look identical for the perfect electric conducting

case, which is what we would expect. In fact they are identical to 16 places of

decimal, showing that all the ray-based coordinate systems and attenuation factors

are working correctly.

5.2.3 Test 3: Diffractions Inside a Building Story

The transmitter is placed at location (3, 18, 8.5) and the mobile terminal is placed at

location (26, 2, 8.5) so that we expect some diffractions from the edges of the corridor

on the 3rd floor of the sample building shown in Figure 5-3. As can be seen in Figure

5-6 this is the case. The order of reflections is 3, diffractions is 1 and transmissions

is 3 for this plot. There is also a diffraction from an aperture that exists on the 3rd

floor in the room where the receiver is positioned. The 3rd floor plan is identical to

the 2nd floor plan shown in Figure 5-3.
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Figure 5-4: 0th − 3rd order reflections inside first story of the building.

5.2.4 Test 4: Path-Loss Grid Plot

This test assumes a regular grid between (0.75, 0.75, 5.0) and (30.75, 20.75, 5.0) with

step size ∆x = 0.25 and ∆y = 0.25 leading to the path-loss computation at 9600

points covering the second story of the sample building. A frequency of 900MHz

for a z-axis oriented hertzian half-wave dipole at location (5.0, 5.0, 5.0) leads to the

result in Figure 5-7 where the maximum number of reflections is 3, transmissions is

4, and diffractions is 1. The path-loss is plotted in decibel/metres but the building

height is stretched in the z-axis, so that the story and path-loss grid can be overlaid.

The results are easily interpreted showing large path-losses in areas which are heavily

shadowed from the transmitter. The computational time on a 1700MHz Pentium 4

workstation was 42 minutes for all 9600 computations. The average number of valid

ray paths would be of the order of 100, so that the average time for the calculation

of the received total path-loss at each receiver is approximately 0.25 seconds. Some

years ago an indoor ray-tracing code was developed by the group at Trinity College
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Figure 5-5: The ray-tracing result versus the geometrical optics result.

with computational times of about 40 minutes for a building with 12-15 convex spaces

and 200-400 reciever points. With the increase in computing power this code would

run on the Pentium 4 in about 10 minutes. Obviously the new ray-tracing code gives

a far superior computation time since it contains over 200 convex spaces and 25-50

times more receiver points.

5.3 Verification of Two Measurement Sets

The communications group in the Printing House at Trinity College has at its disposal

antennas, network analysers and draftsman drawings to perform its own measurement

campaign. I obtained the draftsman drawing of the building and input the dimensions

into the computer to form the top floor of the printing house with open or closed

doors where necessary. An example of the building is shown in Figure 5-8.
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Figure 5-6: Diffraction paths mixed with reflections inside the third story of the

building.

5.3.1 Measurement Set 1

A transmitter was placed in one of the rooms of the building at location Tx =

(5.468, 6.51, 1.45) inside the free convex space number 12 indicated in Figure 5-8.

The receiver points were set up along the corridor and out into the landing area.

Measurements were taken from an antenna mounted on a trolley as shown in Figure

5-9. For the first measurement set the building contained a number of open doors

whilst other door are shut. All open doors are shown in Figure 5-8. The room

containing the transmitter was its doors open so as to form some diffraction effects

down the corridor. The transmission frequency was 1.0GHz and the spacing be-

tween receiver points was 1 metre for the west end of the corridor and 0.25 for the

east end also shown in Figure 5-8. The shorter spacing was used to obtain a better

measurement of the fluctuations in the field as it propagates in the corridor.

The measurement results along with the ray-tracing prediction are shown in Fig-

ure 5-10. Using a relative permittivity of 2.32 and conductivity of 1.45 × 10−3 the
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Figure 5-7: A path-loss grid generated for 9600 points on the second story of the

sample building.

results agree quite well with the measurements. Changing the permittivity and con-

ductivity gives closer agreement with the measurements, although each is a guess.

The first set (indicated in red) are most likely the more realistic of the two because the

permittivity and conductivity defined by Balanis[7] were assigned to the reinforced

glass in the doors.

Again a ray-tracing prediction was performed with the doors closed and no doors

at all on the office containing the transmitter just to show how the field can vary if

the modelling of the building is incorrect. These results are shown in Figure 5-11.

5.3.2 Measurement Set 2

In the next measurement set the transmitter was placed in the corridor at position

Tx = (4.688, 4.516, 1.45) and the receiver is placed at the far end of the corridor in
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front of some fire doors along the line x = 14.774 with all doors closed as shown in

Figure 5-12.

The results are presented in Figure 5-13. The reference solution obtained us-

ing the ray-tracing contained up to order 3 reflections, order 4 transmissions and

no diffractions. There are no diffractions anyway because all doors are closed. The

solution shown in Figure 5-13 (green line) does not seem to correlate with the mea-

surement results. To see if there was cancellation of the signal due to multi-path we

ran the same ray-trace except that the maximum number of reflections was 1, shown

by the red line in the plot. The results are much more similar to the measurements.

The discrepancy is likely due to phase cancellation, building error or wrong complex

permittivity for the walls and doors. To get an average value of the path-loss at each

point a mean of a random walk can be used. This mean value will not be explained in

detail here, although it is explained in great detail in Chapter 7. The results for the

random walk mean with orders of reflection less than or equal to 1 give a path-loss

value thats varies very little across the width of the corridor as shown by the blue

line. This value is a little below the mean of the measurement results. It would

seem obvious that increasing the order of reflections should increase this mean, and

this was found to be the case as shown by the black line when using reflection up to

order 3 with the random walk mean. The values are very close to the mean of the

measurement values which is what we would have expected.

5.4 Conclusions

The simulations of the ray-tracing against real measurement sets were found to give

good agreement without adding to or augmenting the simulation results.

Although the results are good it is possible to do better. The only way to improve

on the results is to get very accurate positions of the wall, doors and windows in the

building and to define the complex permittivity very accurately using a network

analyser or some other equipment that will provide the true values.
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Figure 5-8: A three-dimensional view of the top floor of the Printing House at TCD.
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Figure 5-9: A trolley with a half-wave dipole antenna set up to measure incoming

signals from another antenna.
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Figure 5-10: Measurements set in the corridor and overlaid ray-tracing predictions.
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Figure 5-11: Measurements set compared with ray-tracing results obtained from an

incorrectly modelled building.
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Figure 5-12: A plan view of the top floor of the Printing House at TCD with all doors

closed.
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Figure 5-13: A plan view of the top floor of the Printing House at TCD with all doors

closed.

81



Chapter 6

Convex and Non-Linear

Optimisation Methods

The optimisation of a system depends on many issues. The nature of the function

to be optimised is one issue and the type of constraints is another. A function to be

optimised subject to some constraints results in what can be described as a linear or

non-linear programming problem. Much of the background on convex problems or

linear programming problems is covered by Boyd [12]. The method for solution of a

programming problem is usually sought by a path-following method. These methods

take an initial solution (sometimes a guess) for the unknowns in the problem, and

iterate by following a path to the optimal solution. Such methods are well understood.

For a very good overview of path-following methods consult Gonzaga[27].

Optimisation methods were known to be slow to solve when using primitive meth-

ods such as the simplex method, but Karmarkar’s Algorithm [4] was able to achieve

much faster orders of complexity for solving linear programming problems.

In the case of path-following techniques using steepest descent methods such as the

conjugate gradient method, many authors such as Powell [67] use restart techniques

to converge to a solution faster. What now follows is a brief overview of convex

problems and an iterative technique to find the solution of a constrained convex

optimisation problem.
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6.1 Quick Overview of Convexity

Given a set C ∈ Rn with any two points x1 and x2 in C, the space is said to be

convex if the following holds

y = θx1 + (1− θ)x2 (6.1)

where y is always contained in C, and 0 ≤ θ ≤ 1. It just so happens that the

convex space idea used in Chapter 4 is very much related to the convex optimisation

formulation.

In the case of a function f(x), the function is said to be convex if for any x1, x2 ∈
Rn and λ is a scalar such that 0 ≤ λ ≤ 1 the following identity must hold:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (6.2)

If a function or space can be split into domains that contain a finite number of

convex functions or spaces then the function or space is said to be quasi-convex.

The terms quasi-convex and convex are well explained in Boyd[12]. If a space is

neither quasi-convex or convex then it is usually a non-linear problem, or can be cast

into some form of convex problem by a change of variables. For instance a fractional

programming problem can sometimes be cast as a linear programming problem by

changing some variables as explained by Boyd. In the case of a particular non-linear

and non-convex problem Kandukuri and Boyd[50] showed that the problem could be

cast as a geometrical programming problem.

6.2 Convex Optimisation Techniques

We define some notation for a convex optimisation problem as follows:

minimize

subject to

f0(x)

fi(x) ≤ 0, i = 1, 2, · · · ,m
hi(x) = 0, i = 1, 2, · · · , p

(6.3)

where the function f0 : Rn → R is the function to be optimised known as the

objective function or cost function and x ∈ Rn is the optimisation variable. The
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functions fi(x) are the inequality constraint functions and hi(x) are the equality

constraint functions.

The set of points for which the objective function is defined is called the domain

D of the optimisation problem defined as:

D =
m
⋂

i=0

dom fi ∩
p
⋂

j=1

dom hj (6.4)

A point x ∈ D is feasible if it satisfies all the constraints. We want to find the

optimal value of x usually represented by x∗. If it can be obtained then the problem

is described as solvable. If x∗ can only be obtained to within an error ǫ, then the

solution is described as ǫ-suboptimal.

A simple example to illustrate convexity follows. Suppose we have 5 constraints

each of the form fi = aix + bi. These are sometimes known as hyperplanes. If the

intersection of all the hyperplanes form a polygon then they form a convex space

since any point is connected to any other point in the space by a line. But it is

possible to have 5 constraints that form two triangles. In this case there are at most

3 constraints met by a feasibility point. In this case the space is not convex and

does not form a convex domain. So the functions themselves can be convex functions

but their domain of intersection may not be convex making it impossible to find a

feasibility point.

In electromagnetics we are well used to solving problems with one base station

with fixed position and many mobile receivers. The solution is obtained from a linear

systems of equations of the form Ax = b where A is an n× n matrix and x, b ∈ Rn.

This problem is a linear programming problem with no inequality constraints. But in

the optimisation problem that we need to consider for indoor radio wave propagation,

we have many antennas whose location must be optimised for many mobile terminals.

A lecture on this subject was presented by Boyd[12] implementing a linear frac-

tional program. The program could be cast as a linear programming problem. The

optimisation problem is described as:

minimize

subject to

cT x+d
eT x+f

Gx ≤ h,

Ax = b.

(6.5)
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where c, d, e, f, x ∈ Rn and G ∈ Rm×n and A ∈ Rn×n.

Rewriting this problem we can express the problem as a linear program of the

form:

minimize

subject to

cTy + dz

Gy − hz ≤ 0,

Ay − bz = 0, eT + fz = 1,

z ≥ 0

(6.6)

where y, z ∈ Rn are introduced to rearrange the problem.

We will now conclude this chapter with a path-following solution of a linear pro-

gramming problem. In the next chapter we will see that the problem to be solved

appears at first to be linear but is in fact non-linear, but the path-following technique

presented here can be used to solve the problem.

The linear programming problem that we wish to solve will be of the form:

minimize

subject to

cTP

AP ≤ b,

P ≥ 0

(6.7)

where c ∈ Rn is a cost function on the variable P ∈ Rn, and P is the output power

of the each server.

We will not give any more details about our problem as of yet. What is stated

above in equation (6.7) is sufficiently general for the approaches that we wish to now

present. We first describe the barrier function and its purpose and then a method to

converge towards an optimal solution (all described in Boyd[12]).

6.2.1 Barrier Functions

The logarithm barrier function is defined as:

minimize
m
∑

i=1

− ln(bi − aTi x) (6.8)

where we define x = −∞ when the bi − aTi x ≤ 0, and the domain of the barrier

function is given by:
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dom f = {x|aTi x < bi for all i = 1, 2, · · · ,m} (6.9)

We will see that the barrier function of equation (6.8) can be used to combine the

inequality constraints with the objective function of equation (6.7) making the linear

program more practical to solve. So assuming that we can combine the constraints

and objective function what remains for the problem in equation (6.7) is to define a

way of iterating from some starting solution in the domain where the feasible solution

exists until we travel to the optimal point. One simple algorithm which can be used

to do this is the steepest descent method. We define a change in direction by

x(k+1) = x(k) + v(k)r(k) (6.10)

where r(k) is the distance covered in the kth step and v(k) is the unit vector specifying

the direction in which the variable x is moving.

6.2.2 Steepest Descent Algorithm

The algorithm for the general descent method then takes the form

given a start point x(0) ∈ dom f

k = 0

repeat

Determine a descent direction v(k)

Perform a line search. Choose some r(k) ≥ 0

x(k+1) = x(k) + v(k)r(k)

k = k + 1

until stopping criteria is met

There are many ways in which we can define a descent direction to obtain the

vector v(k), one simple way is to define the steepest descent method which is obtained

by taking the L∞ norm of the gradient of the function f . The reason we might choose
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this direction is because it indicates the worst direction in which the residue of the

solution exists, and therefore the obvious direction to travel in is this direction, to try

and correct the solution. This may not seem that obvious at first, but particularly in

the case of the indoor optimisation problem described in the next chapter, it will be

seen that this is a very natural direction to take. Many other possibilities exist, one

which is commonly used is the Newton method, or the use of a method that uses the

previous search direction to give information about the newest search direction (see

Powell[67]).

The steepest descent algorithm is then defined as:

given a start point x(0) ∈ dom f

k = 0

repeat

Determine the steepest descent direction v
(k)
sd = −‖∇f‖∞

Perform a line search. Choose some r(k) ≥ 0

x(k+1) = x(k) + v(k)r(k)

until stopping criteria is met

6.2.3 Line Search Methods

There are two types of line search algorithms usually used, either an exact one in

which the value r(k) is calculated exactly, or using an iterative technique called the

backtracking line search. This method is inexact so that it only approximates the

search direction. The function f along the line (x(k) + r(k)v(k)) must be reduced so

that the solution is increasing. By increasing we mean that f(x+h) > f(x) for some

h. The algorithm is described as follow:

t = 1;

while(f(x(k) + r(k)v(k)) > f(x(k)) + αr(k)∇Tfvsd)

t = βt

end
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The constant α have a value usually in the range [0.1, 0.3] so that the evaluation

of f at the point x be reduced by 10% to 30% each time a step is taken to a new

point. The value β is usually about 0.5 so that the step length is halved obtaining

a usable point in a reasonable amount of time. If we use too large a value of β then

the line search will require a large number of iterations in many cases, while setting

it too small can obtain a value that is not close enough to our required solution. It

was found in practice that α = 0.3 and β = 0.5 give solutions that converge quickly

to their optimum.

6.2.4 Stopping Criterion

Defining a stopping criterion is usually related to the gradient of f , and takes the

form ‖∇f‖∞ < η where η is some small positive real number.

6.2.5 Sequential Unconstrained Minimisation Technique (SUMT)

For the linear program:

minimize

subject to

cTx

Ax ≤ b,

x ≥ 0

(6.11)

with the steepest descent direction, the line search, barrier method and stopping

criterion defined, we can define a method known as the Sequential Unconstrained

Minimisation Technique (SUMT). First the constraints are combined into the objec-

tive function to obtain an unconstrained problem. The logarithm barrier method is

introduced to define the unconstrained linear programming problem as:

minimize f(x) = tcTx−
m
∑

i=1

ln(bi − aTi x) (6.12)

where t is a value which is very small if we want to emphasise the constraint terms,

and very large if we want to emphasise the objective function.
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We require the gradient of the barrier function for the steepest descent gradient

function.

∇
(

m
∑

i=1

ln(bi − aTi x)

)

=
m
∑

i=1

ai
bi − aTi x

= ATd (6.13)

where d = 1/(b1 − aT1 x, b2 − aT2 x, · · · , bn − aTmx).

The complete SUMT method can be now defined as follows:

Define α ∈ [0.1− 0.5], β = 0.5, η = 10−3, ǫ = 105, µ = 5, t0 = 10−3

b, d ∈ Rm, A ∈ Rm×n, x ∈ Rn

t = t0;

Repeat

{

do

{

d = 1/(b− Ax);

∇f = tc+ ATd;

vsd = −‖∇‖∞ = −max(∇fi);



























Steepest Descent Direction

f(x) = tcTx−
m
∑

i=1

ln(bi − ATi x);

}

Unconstrained Objective Function

r = 1;

while (f(x+ rvsd) > f(x) + αr∇fvsd or f(x+ rvsd)) = −∞)

{
r = βr;

}







































Line

Search

Method

x = x+ rvsd;

}

while (‖∇f‖2 ≤ η)} Stopping Criterion

if (m/t < ǫ or r < 10−10)

Stop;











SUMT Stopping Criterion

t = µt;

}
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This is the standard SUMT method described as described by Boyd[12], with a

few small changes. The while loop contains a reference to the case when a line search

crosses a constraint, when this happens the barrier function will have the value −∞.

The line search must continue until a point is found inside the domain. Also, added

is a condition that if the distance travelled by the search is less than 10−10, then the

algorithm terminates. This is perfectly reasonable since the convergence is related to

the length of the line search step. The smaller the step, the closer the point is to the

optimal solution.

6.2.6 Example of SUMT method

What follows is an example of the SUMT method applied to a linear combination

with two variables and seven constraints. The linear programming problem presented

by Beasley[8] is described as:

minimize

subject to

180x+ 160y

6x+ y ≥ 12

3x+ y ≥ 8

4x+ 6y ≥ 24

x ≤ 5

y ≤ 5

x, y ≥ 0

(6.14)

If equation (6.14) is rewritten in the form of equation (6.11) then the form obtained

is easily solvable using the SUMT method. This is exactly what will be done in the

next chapter when solving the indoor resource optimisation problem.

minimize

subject to

180x+ 160y

−6x− y ≤ −12

−3x− y ≤ −8

−4x− 6y ≤ −24

x ≤ 5

y ≤ 5

x, y ≥ 0

(6.15)
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Note that c = (180, 160), P = (x, y) and aTi x ≤ bi for all i = 1, 2, · · · , 7.
Drawing the constraints on a cartesian plane it is easy to see the region of feasi-

bility for the solution. The domain or region of feasibility is marked in Figure 6-1 is

shaded.
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6x+ y ≥ 12
y ≤ 5

x ≤ 5x ≥ 0

3x+ y ≥ 8y ≥ 0

6x+ 4y ≥ 24

Figure 6-1: Feasible region for convex optimisation problem with 2 variables and 7

constraints

Starting at some point within the feasibility domain, say x = (4.9, 4.9) it is

possible to iterate to the optimal solution. The variables controlling the convergence

of the method are set to be β = 0.5, α = 0.3, η = 10−3, ǫ = 10−5, µ = 5 and t0 = 10−3.

The solution converges in 13 iterations but even gives very good results after 10

iterations. Figure 6-2 show how the result converges to the optimal x = 12/7, y =

20/7.
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Figure 6-2: Convergence to the optimal result in 13 iterations of SUMT
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Chapter 7

Indoor Resource Optimisation for

TDMA

In a telecommunications system the downlink is the connection from many servers in

a network to many receivers. These receivers are usually called user equipment (UE)

because they range from voice links on mobile phones and palm-pilots to laptops and

multimedia phones. The uplink is the connection from the UE back to a receiver in

the server.

When a simulation is performed to obtain the optimal number of users required to

be attached to the system, we usually perform what is known as a downlink and uplink

optimisation. The downlink optimisation requires a number of user equipments with

a particular capacity requirement assigned to each, to be connected to the system.

The uplink optimisation determines how many can connect to the system assuming

that each UE is possibly interfering with one another and that they are randomly

distributed in the building.

7.1 Downlink Optimisation Requirements

Before beginning the description of the downlink optimisation algorithm it is neces-

sary to describe:

1. the physical environment required by the model.
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2. the traffic in the system.

3. the UMTS system requirements.

7.1.1 The Environment

The environment will be a multi-story indoor building defined exactly as in Chapter

4. The walls, doors, windows, floors and ceilings will consist of filled convex spaces

having permittivity, permeability and conductivity parameters associated with them.

For experimental purposes the filled convex spaces can be perfect electric conductors

(PEC), lossless or lossy.

7.1.2 Traffic

User Equipment (UE) can be a mobile phone, lap-top or desktop computer. The

receiver positions in the building will serve as positions where UEs can be placed.

The capacity required by the UEs can be defined as the traffic of the system. Each

user will require a service suitable for their needs. For instance if a person requires

a mobile call they will require a voice link at 12.2 kbps. Whereas if a person is

using a laptop they may require a high speed connection rate of 128 kbps or higher.

The capacity of the system is a function of the area, number of users and capacity

requirements of each user of the system. This can be expressed numerically as:

γ =
N
∑

i=1

γ(xi, yi, zi) (7.1)

where γ is the total capacity requirement in the system, and γ(xi, yi, zi) is the

capacity requirement of a user at position (xi, yi, zi), where there exists N users.

For a time division duplexing (TDD) based system the statistic of interest is not

the path-loss, rather it is the signal to interference ratio (SIR). The target signal to

interference ratio is related to the energy per bit per noise factor written Eb/No.

At each user position we need to generate a measure of the required signal level SL

defined as follows:

SL =
ImFmRs

Pg
(7.2)
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where Im is the interference margin, Fm is the fade margin, Rs is the receiver

sensitivity, and Pg is the processing gain.

The receiver sensitivity is calculated using the following formula:

Rs = kTBNfEb/No (7.3)

where k = 1.380658 × 10−23J/K is the Boltzman constant, T = 290K is the

temperature measured in Kelvin of the antenna, B = 3.84MHz is the bandwidth

and Nf = 5dB for base stations and 7dB for receivers is the noise factor defined by

Nokia[52].

We will see that in practise we can remove the fade margin from the calculations

if we can define a mean signal value over a small area. We will see later that this

can be achieved by the use of a mean random value of the signal value supplied by a

ray-tracing model.

Table 7.1 shows the Eb/No, fade margin and processing gain based on measure-

ments made by Nokia[52] defined in a book on the subject of UMTS.

In fact the target signal to interference ratio (tSIR) required for our problem will

be defined as

tSIR =
Eb/No

Pg
(7.4)

The interference margin is usually included in the SIR formula, but in this case

is not defined because all interferers are known in the system.

7.1.3 UMTS System Constraints

Each base transceiver station (BTS) for the UMTS system contains a number of

servers. Each server contains one antenna system. In practice the antenna can fall

into one of the following four categories: it could be a dipole, be sectorized (usually

into 90o sectors), consist of an array or a smart antenna. For the optimisation tool we

will assume that the antenna is omni-directional or sectorized for simplication pur-

poses. A more complicated antenna type leads to a much later number of unknowns

in the problem.
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Direction Service Eb/No Fast Fade Processing

Margin(dB) Gain (dB)

Downlink 12.2 kbps voice 9.4 5.5 12

128 kbps 11.7 3.5 2.4

real-time data

128 kbps 6.7 3.1 2.4

non real-time data

Uplink 12.2 kbps voice 1.7 6.3 12

(receive diversity) 128 kbps 1.0 6.3 2.4

real-time data

128 kbps 0.3 3.4 2.4

non real-time data

Uplink 12.2 kbps voice 8.6 6.3 12

(no receive diversity) 128 kbps 8.7 6.3 2.4

real-time data

128 kbps 6.4 3.4 2.4

non real-time data

Table 7.1: Table of Eb/No rates, fasde margins and processing gains.

Usually there is a cost function, in our case this will be related to the capacity

requirements of the users only. The economic cost is not taken into account. The

economic cost is related to the cost of certain antennas as well as the cost associated

with where they can be positioned in a building. The economic cost can contain

parameters such as installation, maintenance, health and appearance.

Power control at the BTS and the UEs is always discrete with a maximum permis-

sible power level available which we will define as Wmax. We define the power Pi in

the ith BTS to be an element of the discrete set {W1,W2, · · · ,Wmax}. The maximum

permissible power is defined as:

Wmax = RsImRmin (7.5)

where Rs and Im are already defined, and Rmin is the minimum path-loss to
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another base station from the current server in the current base station.

The receiver sensitivity is defined to be the signal required to provide a defined

error output from the receiver. It is obvious from its definition that the receiver

sensitivity is related directly to the signal to interference ratio (SIR). In the case

of an uncooperative system we use the term acceptable interference level instead

of receiver sensitivity. An uncooperative system is another system that is set up

separately from the current system in use, and the telecommunication has no control

over how it is run.

The interference margin is a statistic which states a value above the interference

signals that the received signal must exceed. In the case of uncooperative systems

we call this the protection ratio. It is a value below the receiver signal level, that the

interferers signals may not exceed.

7.2 Non-linear Downlink Optimisation Algorithm

The algorithm described by Rappaport[71] employs a non-linear optimisation tech-

nique which places a number of base stations in a building and then uses a gradient

technique to iterate to an optimal set of locations for the base stations subject to

a number of path-loss constraints for a given distribution of UE’s and an objective

function consisting of a linear combination of minisum and minimax objective func-

tions.

The form of the objective function at first seems very similar to the function

mentioned in the previous chapter. What makes it different is the change in location

of the base station at each step of the optimisation procedure. This also results in

changes in the constraints since they are interrelated. This makes the whole problem

non-linear since the domain of the objective function is changing at each step of the

optimisation procedure.

In the previous chapter the general descent method was described as:

given a start point x(0) ∈ dom f

k = 0

97



repeat

Determine a descent direction v(k)

Perform a line search. Choose some r(k) ≥ 0

x(k+1) = x(k) + v(k)r(k)

k = k + 1

until stopping criteria is met

The optimisation technique requires a starting solution, a method to obtain the

descent direction, a search direction to be chosen and a stopping criteria. The starting

point x(0) is defined to be the locations of the base stations each of which is allocated

at one point at the centre of gravity of a hyper-rectangle. These hyper-rectangles

must be predetermined. The descent direction can be obtained by using a number

of methods such as the conjugate gradient, Newton or Hookes and Jeeves method.

The stopping algorithm is usually related to a measure of the gradient change as

described in the previous chapter.

The method of Rappaport[71] was modified and improved in this thesis to include:

1. An improved layout for what he calls hyper-rectangles, these are rectangles in

which a base station is given the freedom to be moved so long as that base sta-

tion does not cross the perimeter of the rectangle. We found that we could base

the algorithm for allocating the hyper-rectangles upon the amount of capacity

required by a user in a certain area.

2. Instead of using a heuristic pathloss model Seidel, Rappaport[70] we used a ray-

tracing method that can be iteratively applied in the optimisation algorithm

for increasing orders of reflections.

3. The objective function of interest in the original method was based on signal

strength (path-loss) but in this new approach the signal to interference is used

giving a more descriptive representation of the interaction between the base

stations in an indoor environment.
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4. More complicated antenna systems can be incorporated into the problem, not

just omni-directional antennae.

5. An alternative stopping algorithm is presented which includes a measure of user

capacity reached by the system.

6. Annealing is used to jump out of local maxima.

7. A hard handover algorithm can be implemented to avoid overflow of a server.

In TDD there is never soft handover. The base station hands over some of the

UE’s to another base station. This can be only implemented at the end of an

optimisation procedure, otherwise it was found that the non-linear optimisation

technique becomes unstable.

8. The mean of a random phase is applied to the ray-tracing so as to avoid fading.

We want an average path-loss over a small area, so this is a good way to obtain

a good estimate of the mean.

Each of these points are now discussed in each of the following sub-sections 7.2.1 to

7.2.7.

7.2.1 Allocation of Hyper-Rectangles where Base Stations

Reside

The method of Rappaport[71] uses a centre of gravity approach to find the location

of a hyper-rectangle where the initial position of the base stations is allocated, in

the vicinity of receivers (xi, yi, zi) each having an associated priority weight wi, so

that the centre of gravity cj in the jth hyper-rectangle will be calculated using the

formula:

cj =

(

∑N
i=1wixi
N

,

∑N
i=1wiyi
N

, zi

)

(7.6)

Rappaport does not suggest a physical interpretation for the weights, but we do

know that they must be set by the user of the system. In this implementation the
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weights wi = γi are related to the capacity γi in the system. So the starting location

for our base stations will be the centre of capacity Γi:

Γi =

(

∑N
i=1 γixi
N

,

∑N
i=1 γiyi
N

, zi

)

(7.7)

This is exactly what you would expect, since the base station needs to be in close

vicinity to the high capacity links and is not required to be as close to the lower

capacity links.

Rappaports method for calculating the hyper-rectangles is given as follows:

1. The building is stored inside one hyper-rectangle.

2. Find the centre of gravity in all hyper-rectangles.

3. Split across the longest dimension in the x or y direction generating a new set

of two hyper-rectangles.

4. Continue the algorithm as in steps 2-3 splitting the hyper-rectangles until the

required number of base stations is obtained.

In our case we know that the capacity of the servers is sj = 2Mbps, so that the

server contains receivers whose capacity when added together will not exceed the

capacity of the server. Therefore we can implement the constraint that

N
∑

i=1

γi ≤ sj (7.8)

We define the splitting algorithm as follows:

1. The building is stored inside one hyper-rectangle.

2. Find the centre of capacity in all hyper-rectangle.

3. Split across the x and y direction to obtain two hyper-rectangles in each case.

The hyper-rectangles that contain the smallest number of servers will be the

chosen splitting direction for the hyper-rectangles.

4. Continue the algorithm as in steps 2-3 until all hyper-rectangles meet the server

capacity constraint.
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7.2.2 Objective Function and Constraints

The objective function f of Rappaport consists of a linear combination of a min-

isum objective function f1 and minimax objective function f2 subject to a number of

placement constraints. These constraints as stated above are the boundaries of the

hyper-rectangles. The minisum objective function has the drawback that it might

ignore some remotely located UEs, while obtaining a good total weighted coverage.

The minimax objective function on the other hand has the drawback that it concen-

trates on the worst case situation at the expense of the overall averaged weighted

coverage. For this reason the linear combination of the two methods is implied. Rap-

paport uses a method based on signal strength while we know in practice that the

signal to interference ratio is the statistic of real significance. Rappaports non-linear

optimisation problem is stated as:

minimize

subject to

f(X, Y, Z) = φf1(X, Y, Z) + (1− φ)f2(X, Y, Z)

0 ≤ xj ≤ hj1, 0 ≤ yj ≤ hj2,

0 ≤ zj ≤ hj3 for all j = 1, 2, · · · , n

(7.9)

where

f1 =
1

m

m
∑

i=1

wi [pi(X, Y, Z) + µimax{0, pi(X, Y, Z)− si}] (7.10)

f2 =
1

n

n
∑

j=1

max

i ∈ Sj
wi [pi(X, Y, Z) + µimax{0, pi(X, Y, Z)− si}] (7.11)

and X = (x1, x2, · · · , xn), Y = (y1, y2, · · · , yn), Z = (z1, z2, · · · , zn). (xi, yi, zi) is the

current position of the base station in the ith hyper-rectangle Hi of the building. si

is the required signal strength at a UE location and pi is the calculated path-loss at

m receiver points using the 914MHz path-loss model described in Rappaport[70]. µi

are the penalty functions defined at each UE location.

When using a signal to interference based formula there is a significant change of

constraints and of the functions f1 and f2.

Firstly the path-loss model is replaced with a ray path-loss model. pi(X, Y, Z) =

(‖R(r1− rik)‖, ‖R(r2− rik)‖, · · · ‖R(rm− rik‖) is defined to be the ray-path loss from

m transmitters to the receiver point rik that has best server k. The constraints pi > si
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are replaced with signal to interference ratio constraints of the form SIR > tSIR

where tSIR is a target interference ratio to be met, described in Section 7.1.3. The

modified objective function f1 and f2 take the form:

f1 =
1

m

m
∑

i=1

γi [pi(X, Y, Z) + µimax{0, tSIRi(X, Y, Z)− SIRi}] (7.12)

f2 =
1

n

n
∑

j=1

max

i ∈ Sj
wi [pi(X, Y, Z) + µimax{0, tSIRi(X, Y, Z)− SIRi}] (7.13)

For the case of an omni-directional antenna the constraint equation is given by:

SIRi =
Pi‖R(ri − rij)‖

∑

k 6=i Pk‖R(rk − rij)‖+ nt
> tSIRi (7.14)

where ri is the location of the ith base station, rij is the jth UE position that

has best server ri, Pi is the power transmitted from the ith server. ‖R(rk − rij)‖ is

the total ray path-loss obtained by calculating a vector norm on all ray-path losses

between server rk and the point rij . The power Pi is set to be constant obtained

by ensuring that the base stations do not interfer with one another. The ray-tracing

technique is exactly the same as the one defined in Chapter 4. The power control

derivation is described in the next section.

7.2.3 Power Control

In the case of an omni-directional antenna the formula for obtaining the transmitter

power is defined by equation (7.5), where Ri
min is defined to be the minimum path-loss

between the ith base station and every other base station written as:

Pi = RsImR
i
min (7.15)

Ri
min =

min

∀j 6= i
‖R(ri − rj)‖ (7.16)

If the antenna is sectorized with m equally sized sectors aik ∈ {ai1, ai2, · · · , aim}
then the power is multipled by a gain Gik in the kth sector aik of the ith base station

to define the transmit power for that sector. The minimum path-loss for each sector

is then defined as:

Rik
min =

min

∀j 6= i
‖R(ri − rj)‖ |ai

k
(7.17)
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where the ray path-loss is restricted to the sector aik.

We wish to set the gains Gik so that the power from each sector aik are given by

Pik = RsImGikR
ik
min are divided equally amongst each sector. The formula for the

gain can then be defined as

Gik =
Ri
t

mRik
min

(7.18)

where Ri
t =

∑m
k=1R

ik
min is the total path loss for the base station. This has the

effect that each sector emits Pi/m of the power where Pi is the total power output

of the server.

In the case of a sectorized antenna the signal to interference ratio constraint on

the optimisation changes to:

SIRi =

∑m
k=1GikPi‖R(ri − rij)‖ |ai

k
∑m
k=1

∑

l 6=iGlkPl‖R(rl − rij)‖ |al
k
+nt

> tSIRi (7.19)

7.2.4 Stopping and Line Search Criterion

The stopping criterion is usually related to the gradient of the objective function as

already stated in Section 6.2.4. In this case however an extra piece of information

is added to the loop controlling the stopping criteria. We say that if the number of

receivers reaching their target signal to interference ratio is above a certain percent-

age, then we will stop the algorithm. In practice it was found that 90% of receivers

reach the required target SIRs.

Also we found that when performing the line search, we usually half the step

length until we get convergence in the gradient calculation. We found that if you get

an increased number of receivers reaching the target signal to interference ratio, then

we should stop the line search at this point, and use the new positions as the next

point in our continuing optimisation.

In the line search algorithm it is necessary to calculate finite difference derivatives

to obtain the steepest descent path for the gradient method. The derivatives take

the form:

ξij =
f(ri + δej)− f(ri)

δ
(7.20)
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giving a steepest descent direction Vsd:

Vsd =
max

∀i, j ξij (7.21)

where ej is a unit vector pointing in the x, y or z direction and ξij is calculated for

every base station position ri. An exception to this rule is when the steepest descent

direction has the effect of causing the server capacity to be exceeded. In this case

the next best direction is assumed.

Rappaport used a value of 0.5 for δ for his methods and halved this twice in the

next two steps to get the algorithm to converge nicely. The value was then reset again

and the process would start all over again. We noted that this value should be set to

be something highly physical when moving from one position to another. We know

that a signal can fall sharply from one position to another by just moving centimetres

at a time, so because of the sampling theorem we guessed that δ = λ/2 would be a

good starting point for the value of δ. In practice it was found that the method could

become unstable if too small a value of delta was used since that would result in a

line search algorithm that is moving around in fast fades. The results turned out to

be meaningless in this case.

7.2.5 Annealing

It is presumed that the algorithm is in a local maximum if there is no significant

change in the number of receivers meeting the signal to interference ratio, and if this

happens, a step length of δ = 2λ is taken and the position with the highest number of

receivers meeting the SIR is assumed to be the new starting point for the algorithm.

In some cases all directions for the steepest descent calculation result in the server

capacity being exceeded. In this case the annealing step must be introduced to correct

the problem.

7.2.6 Hard Handover

It is possible in some cases to find a position of the base stations where one server has

exceeded its capacity requirement and then use a hard handover to another server
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to balance the servers. It was something that we looked briefly at, but could make

for a more promising algorithm in the future. Currently in the optimisation tool it

is ignored.

7.2.7 Mean Path-loss Values

The mean of the path-loss for a point to point link can be calculated using the

formula for the mean of a random walk. This involves taking each complex ray path

Eij separately between the ith base station and jth receiver and substituting them

into a random walk formula. It should be noted that taking the random walk result

yields a far more constrained system than just taking the sum of the complex ray

paths. This can be seen from looking at the SIR formula:

SIRi =
Pi
∑

Eij
∑

k 6=i Pk
∑

Ekj + nt
> tSIRi (7.22)

The sum of complex numbers in the denominator tend to cancel out in phase

giving a smaller absolute value of the field (path-loss), and in turn the target signal

to interference ratio tends to be met more easily. We can not assume this is true

in reality, since there may exist building measurement error, incorrect permittivity

or neglected complexity of the building and therefore we can not exactly predict

the phase of the complex number. The random walk mean value turns out to be

physically more meaningful.

The total power at the mobile terminal (UE) is obtained by setting some norm

on the individual ray path losses. Assuming the use of the Euclidean norm is not

always correct. For instance, in a real environment their are effects due to scattering

from walls that we can not predict exactly. They can be assumed to be random, so

that the phase of the path loss leaving any scattering object is altered. If we want a

measure of the received power at the mobile terminal, we can say that the result is

obtained from a set of random variables. A good measure of the power is the mean

power obtained at the receiver including gaussian random phase. An analogous way

of looking at this is that we want the average power about some point so that we

move the mobile terminal randomly around about its current position to avoid fading.
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Takahashi[77],[78] describes a random phase summation applied to ray-tracing which

is applicable for our problem.

The power loss along any ray path is a complex number of the form:

xk + jyk = Ek exp(jφk) (7.23)

and r is the sum of N such random variables given by

r =
N
∑

r=1

Ek exp(jφk) (7.24)

where Ek =
√

x2k + y2k is the amplitude of the power and exp(jφk) is the phase,

φk is a set of independently and identically distributed uniform random variables in

the range [0, 2π].

The probability density function giving rise to the mean of the sum of the random

variables is of the form

WN(r) = r
∫ ∞

0
ξJo(ξr)

k=N
∏

k=1

Jo(ξEk)dξ (7.25)

The mean of the random variable is then given by

r =
∫ ∞

0
rWN(r)dr (7.26)

It can be seen from the above equations (7.25) and (7.26) that the mean of the

random variable is a doubly infinite integral which is quite time consuming to solve

numerically. The alternative is to calculate the random variable r given by equation

(7.24) n times, where n is very large and then apply the formula

r =
1

n

n
∑

i=1

ri (7.27)

where ri is the result of the ith random variable calculation. It turns out that

this procedure is even longer to calculate that the doubly infinite integral because it

requires that n is of the order of 100,000 so that the error in the random mean is

guananteed to be 1%.

We found that if you define a numerical quadrature rule of order 2, that is the

trapezoidal rule, we can make a composite version which we apply to the calculation
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of the WN(r) integral, converging to the correct solution quickly. The nth order

composite trapezoidal rule says that for an interval [a, b] that

In =
1

2
(f(a) + f(b)) + h

n−1
∑

i=1

f(a+ ih) (7.28)

mi

d1

r-axis

ωn(r)

Ωi

ai bi

Figure 7-1: Intervals for Wn(r)

The numerical integration Wn(r) of the integral WN(r) over the line [0,∞] with

variable ξ must be first defined. The infinite line is divided into a number of finite

intervals Ωi of length d2 such that Ωi = [ai, bi] = [ai + hi(i− 1), ai + hii] (see Figure

7-1). A recursive trapezoidal rule is set up to find the accurate numerical solution of

the integral over the subinterval Ωi. This algorithm is defined as:

1. The 2nd order composite trapezoidal rule is applied to the interval Ωi giving an

integral which uses three sample points ai, bi and mi where mi is the midpoint

of the interval.

2. The 4th order composite trapezoidal rule is defined by subdivided between

[ai,mi] and [mi, bi]. This integral contains 5 sample points. Note that only

two function evaluations are required, since the previous three where retained
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from step 1 and included in the calculation in step 2, making the algorithm

much faster. This sort of speed up is not obtained easily from other quadra-

ture rules, because the integral points do not necessarily appear in the same

positions as in the previous ordered calculation.

3. A comparison between the 2nd and 4th order rules is made to see if there is a

large error between the two.

4. The interval is then subdivided continually and the 2n
th

order composite result

is compared with the previous calculation 2n−1th until the result converges to a

satisfactory tolerance of error.

5. Iterate for increasing i until

Wn
∑i=n
i=1 Wn

< tol

Now the computation of the outer integral must be obtained. The algorithm is

as follows:

1. Set a step size d1 for the numerically finite integral In in the range [0, nd1] which

will approximate the infinite integral equation (7.26) and assume an euler rule

so that In takes the form

In = d1
n
∑

i=1

riWN(ri) (7.29)

2. At each step of the calculation of the euler rule, we much calculate riWN(ri)

for ri = {d1, 2d1, · · · , nd1} until

rnWN(rn)

In−1

< tol (7.30)

When the tolerance is met, the integral has reached its desired accuracy and

stops at that point.

This method is confirmed by comparing the numerical result with the result of equa-

tion (7.27).
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7.3 Uplink Optimisation Requirements

The uplink optimisation is a simulation resulting in a number of users being able

to connect to the closest base station (best server) and achieving their full capacity

requirement or some percentage of their requirement.

It was decided that two types of simulations of a working system would be re-

quired. One where their is an initial set of users and more are connected or one where

there are no users on the system and each user is connected one at a time. It turns

out that the former is a subset of the latter by inspection so it was assumed that the

population starts at nil and increases one at a time.

The choosing of the total population is directly related to the number of base

stations in use. By total population it is meant the number of users that can possibly

connect to the system at any one time. It is known that the number that can

successfully connect at any one time to one base station in practice is 8, although the

theoretical maximum is 16. Therefore we set our population to have size 8n, where

n is the number of base stations.

For any UE the following information is required:

• Number - An index to the mobile terminal.

• Type - The type of terminal either Voice, real-time data or non real-time data,

will inform the user of the maximum data rate achievable for that type of use,

and the height above ground of the user. For instance a PC is approximately

one metre above the floor level, while a voice link is approximately 1.5 metres

above floor level.

• Reference Location - This is an (x, y, z) coordinate which tells where in a

particular story the terminal exists.

• Final Location - If the terminal moves then this is the position at its final

state.

• Maximum/Minimum Power The maximum power or minimum power out-

put from the UE must be known before commencing the initial population
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selection.

7.4 Uplink Optimisation Algorithm

The algorithm for choosing the population is as follows:

• The reference location Pi(x, y, z) for the UE is generated by setting x, y and z

to be independent uniformly random variables. This location will be an item

which if successfully connected will be pushed onto a linked list, otherwise it

will be dropped and disregarded.

• Generate the UE position, if it is contained in a free convex space, i.e. not

inside a wall, then it is a valid point, otherwise it must be re-generated until a

valid point is found. The height is set according to the value obtained from the

random number generator. Supposing it appears in the ith story of the building,

its height is then altered to be a height h above the floor level in accordance

with the height stipulations mentioned above.

• The data rate is set using a random variable Ri ∈ [0, 1] so that

Ri ≤ a Set Voice Data

Ri > a and Ri ≤ b Set non real-time data

Ri > b and Ri ≤ 1 Set real-time data

(7.31)

where each value a and b are predefined by the user of the system.

• Determine the best server for the current UE.

• Define the transmission power at the ith UE to be Pij with best server rj as

in the downlink optimisation. The transmission power in the UE must be set

to incorporate power control. By this we mean that the received signal at the

base station should be approximately equal for all UEs communicating with it.

If the receiver sensitivity is Rs in the base station then the power at the UE

must be set to be Pij = Rs×Rij where Rij = ‖R(ri− rj)‖ is the path-loss from

the UE to its best server rj.
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• Next the signal to interference ratio is tested to see that it is met using the

following formula

PijRij
∑

k 6=j
∑

rl∈Sk
PlkRlj +

∑

rl∈Sj
PljRlj + nt

≥ tSIR(Txj) (7.32)

or for the case of multiple user detection (MUD)

PijRij
∑

k 6=j
∑

rl 6=Sk
PlkRlj + nt

≥ tSIR(Txj) (7.33)

In the case of multiple user detection the base station can determine which of

the UEs connected to it is the correct one by analysing the encoded signal.

This leads to the negligibility of the interference from the other UEs connected

to that best server as can be seen from the missing term in equation (7.33).

• Now that all the information is available, such as position of the UE, maximum

power and SIR information it is important to check that the capacity of the

system can be met. The following steps need to be adhered to:

1. If the signal to interference ratio is met then proceed to step 2, otherwise

stop.

2. If the number of connections to the current best server is less than 8 then

proceed with current server to step 3, otherwise check next best server and

proceed to step 3 if connection is possible. A failure on both, results in a

dropped connection.

3. If the total capacity in the current server is not exceeded and the total

capacity will be met after adding the new UE, then proceed to step 4.

Otherwise half the capacity requirement and try to meet total capacity

upper bound again. Failing this an attempt is made to use the second

best server and if the capacity requirement is met, again proceed to step

4.

4. The capacity is met and connection is possible to the server so the UE is

then connected to the system.
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• Once the server is connected to the system, an attempt is made to add new

connections, until the upper bound of 8n is reached.

This algorithm was run N times for a large number N to ascertain an average

number of connections. So if the number of connections was xk on the kth attempt

then the average was calculated using the formula:

x =

∑N
k=1 xk
N

(7.34)

7.4.1 Computational Savings

Another point that is important to consider is that as the number of UE connections

increases, the calculation time of the signal to interference ratio in equation (7.32) and

(7.33) will greatly increase, if the values are recalculated every time. Avoiding this

overhead is quite simple if the signal to interference ratio is stored. The interference

part of the SIR can be extracted and updated as new connections are established.

Assuming that the ith connection has just been added to the system each existing

SIRk for location rk with best server rl must be updated for k = 1, 2, · · · , i− 1. This

can be achieved as follows:

interferenceold =
PklRkl

SIRk

− nt (7.35)

interferencenew = interferenceold + PijPil (7.36)

SIRk =
PklRkl

interferencenew + nt
(7.37)

Also the interference to the current server must be stored as SIRi. The total

capacity in each server and number of connections currently to each server may also

be stored to increase efficiency in the algorithm.

7.5 Results

7.5.1 Downlink Optimisation for a Foyer Problem

A foyer problem with 3 large areas of high capacity links marked in brown in Figure 7-

2 and low capacity links marked in blue will be used to rigorously test the correctness
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Figure 7-2: Three high capacity areas in a building foyer.

of the optimisation algorithm. For this simple configuration with a total capacity of

5 megabits, the splitting algorithm of Rappaport will split across the centre of the

x-axis first, to give two hyper-rectangles each containing approximately 2.5 megabits,

and then the splitting algorithm will split each of these across the y-axis to give a

total of 4 hyper-rectangles each containing about 1.25 megabits.

The new algorithm determines that initially splitting across the x-axis will give 4

base stations while splitting across the y-axis initially will yield 3 base stations. The

smaller number is preferred and therefore chosen. The result of the splitting is shown

in Figure 7-3.

This example was specifically chosen to show how the method will define a smaller

number of base stations to start with. For many tests without exception we found

that this is true. Three areas of high capacity where chosen as shown in Figure 7-2

because the splitting algorithm is non-trivial in this case. If a symmetric problem

was chosen the method of Rappaport would almost certainly give the same answer

as the updated algorithm. These three areas represent hot-spots where we want to

113



Figure 7-3: Three hyper-rectangles and centres of capacity generated using new al-

gorithm.

try and guarantee coverage with high data rates. It is apparent when looking at the

uplink optimisation part of the algorithm that users are not necessarily restricted to

using high data rates in these areas. They may require high data rates elsewhere.

The downlink positions of high capacity serve as a guide to how efficiently the system

will meet the customers needs.

Next the downlink optimisation can be performed to achieve the optimal positions

of the base transceiver stations (BTS). The chosen frequency for the simulation is

2GHz which is used for current bluetooth and WIFI technologies. The technique was

able to obtain 90% of the required coverage for the user capacity requirements shown

in Figure 7-2. The ray-tracing was set initially to have reflections of order 1, and then

using the optimal positions obtained from this optimisation the algorithm was rerun

with reflections of order 2. This is a useful way to run the algorithm, because it acts

as a fine tuning in each increment. The best servers and their coverage are shown

in Figure 7-4. The red, yellow and white areas correspond to the coverage points of
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servers 1, 2 and 3 respectively. The black areas are the receiver positions that did not

meet their SIR requirements. For this particular problem the parameters of Table

7.1 where used. The step length δ described in Section 7.2.4 was set to vary between

2λ = 0.3 and λ/2 = 0.075. The noise factor in the UE for the downlink was set to

be 7dB.
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Figure 7-4: The three best server positions generated for a foyer problem used to

meet 90% of the user capacity requirements.

To find the absolute theoretical optimal location for the base stations would re-

quire an order O(N3) computation where N is the number of possible base station

locations defined on a regular grid. This computation could take a matter of days to

run, whereas the downlink optimisation algorithm runs in just under 53 minutes.

7.5.2 Uplink Optimisation for the Foyer Problem

The uplink optimisation requires a noise factor of 5dB in the receiver at the BTS. A

random sample of 24 points were placed in the foyer and the optimisation algorithm

was run with parameters a = 0.6 and b = 0.9. This has the effect that 60% of the
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connections will be voice connections, 30% will be non-real time data and 10% will

require fast high speed data at 256kbps. It turns out that the algorithm can not

achieve a large number of connects at the full data rates, if the SIR is to be met. In

fact only 3 or 4 connections were established in the simulations using the statistics of

Nokia. Why might this be, one might ask? The first issue is that the test problem is

an open foyer. This means that there are no barriers to reduce interference. Also, the

SIR required for high data rates gives rise to high power levels in the UE, and this

has the effect of swamping out other signals. The upshot of all of this is, that either

the capacity requirements are reduced to a much smaller proportion of the required

level, or some other technique must be used to achieve the high rates. In fact it has

been observed in a WCDMA system currently operating in Manx Telecom in the Isle

of Man, that high data rates are only achieved if the UE is almost on top of the

emitting antenna. This information was obtained by private communication from a

member of British Telecom. The reason for this is obvious. As the UE approaches

the antenna the power required to obtain the capacity requirements is lowered, and

then not as much interference is incurred by the other UEs.

Since we are interested in a TDMA system, that is one using time domain du-

plexing (TDD) it is possible to share the information to be sent over many time

slots. This has the effect of lowering the capacity requirement in each time slot and

therefore reducing the required SIR. An experiment was carried out by generating

100 samples of 24 UE locations, and the mean number of connections was found.

The results are excellent from this experiment as expected. 18 out of 24 connections

could meet their full required capacity. That means that about 75% meet their SIR.

7.6 Conclusions

Using a ray-tracing algorithm whose visibility algorithm does not depend on transmit-

ter location allows the optimisation algorithm to run with reasonable computational

times. If the computational times were too slow for the path-loss calculations then

empirical methods would have to be used instead. This was not the case and this the-

sis shows conclusively that ray-tracing has a place in future optimisation techniques.
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The objective function of the non-linear program is related to a measure of signal

to interference ratio. In systems other than TDMA such as CDMA with FDD, a

path-loss based objective function similar to that of Rappaport’s could be used. The

parameters described by Nokia or some similar parameters would still be required to

define realistic system parameters.

The main novelty in the optimisation technique used in this thesis is in the initial

placement of the base stations, the writing of the problem as a signal to interference

problem, the use of realistic parameters, the use of a better norm on the path-loss

value (mean path-loss) and introduction of more complicated antenna types.
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Chapter 8

Conclusions

This work introduces two novel extensions to ray-tracing, one being the expression

for the reflected field from a dielectric slab attempting to improve on the method

of Burnside[18] and using a method that is faster than a conventional ray-tracing

method of images to calculate all internal reflections in the slab. This method was

shown to give different results from that of Burnside and should be more accurate

since the angles of incidence are allowed to vary for each internal reflection whereas

Burnside’s formula assumes a constant angle of incidence for all rays inside the slab.

The second method is a truncated half-plane solution based on the Sommerfeld

Wein-Hopf approximation to the diffracted field derived in two dimensions and mod-

ified for use in three dimensions. The result was applied to a small rectangular plate

where there are known to exist large discrepancies in the scattered field when apply-

ing the uniform theory of diffraction solution. The novel method gives a much better

approximation to the scattered fields for clearly defined angular ranges.

A new building description expressing the building volumetrically as a contiguous

set of convex spaces was defined in this thesis. A ray-tracing method using the method

of images is applied to find the reflection points. A tree of images of the transmitter

is created, and the connectivity of the convex spaces is used to quickly trace from an

image to any receiver point in the building. The convex spaces are used to determine

the location of diffraction edges and a diffraction tree is created for each edge with up

to one order less than the maximum order of the reflection images tree. The convex
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space description replaces the standard visibility algorithms previously described in

the literature, and makes the ray-tracing faster than most standard ray-tracing. In

particular the fact that the connectivity is not related to the transmitter location

means that the software can be run over and over again for different positions of

transmitters without having to pre-compute a visibility tree. The connectivity of the

building is precomputed just like a standard visibility algorithm except that it needs

only to be done once and then never again. Because the convex space description of

the building is used in this way it lends itself very well to optimisation algorithms

where the base station location is changing at every iteration.

A number of quite involved tests were performed to clarify that the ray-tracing

procedures coded in C++ were working correctly. These involved specific tests used

to check any omission of ray-paths, and to check the correctness of the electromagnetic

equations explained in chapter 2. A measurement campaign was also set up with two

measurement set. Although the permittivity of the walls, doors and windows are

unknown and therefore were guessed at, the results are good when comparisons were

made between the ray-tracing and the measurement sets. No augmentation of the

ray-tracing was required to get a good fit to the measurements.

The optimisation algorithm of this thesis is based on a non-linear optimisation

technique of Rappaport[71]. It’s novelty is in the changes to the original algorithm

where the initial position of the antennas is redefined, an empirical path-loss model

is replaced with the ray-tracing techniques mentioned above, the stopping algorithm

is changed, and the constraints are changed to accommodate a TDMA system simu-

lation. Fade margins are neglected when an average measure of the path-loss is used,

to give a more constrained optimisation procedure. Meaningful system parameters

are introduced in accordance with specifications by Nokia[52]. Simulations of the

system show that other systems will not meet their capacity requirements as easily

as a TDMA system.
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Appendix A

Numerical Methods for Finding

the Angle of Incidence into a

Dielectric Slab

The methods explained in the following two sections are root finding methods. They

start with some function f(x) = 0 with variable x. Either the bisectional algorithm

or Newton-Raphson method is applied to the function f giving a root. In each case

the correct root is found if a suitable range containing the root is defined at the start

of the process.

A.1 Bisection Algorithm

In this thesis the bisection method is used to find the transmission points into a

dielectric slab with a number of predetermined internal reflections. In many standard

text books it is also used to obtain solutions of convex optimisation problems where

the solution converges to an optimal solution.

The bisection algorithm requires a range of validity for the solution. If we have a

function f(x) containing n roots then we need to know something about the nature

of the function so that we can pick our range of validity.

In the case of a dielectric slab we want to find the incoming angle θi but we know
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that the value required is in the range [0, π/2] from the geometry of the problem. We

also know that if we obtained a reflection from the surface with no internal reflections,

that the angle of incidence θ0 is larger than the solution obtained from the cases where

internal reflections are included. This leads us to the conclusion that a tighter range

[alower, bupper] = [0, θ0] can be assumed.

Some books define the method in such a way that if an end point and middle

point are the same sign, then the end point is set to be the middle point. Dividing

the end point and midpoint values and seeing if that value is greater than zero is

equivalent to doing a sign check.

We may apply the bisection algorithm as follows:

Define alower, bupper, f(x), tol;

while(| bupper − alower |> tol)

{

cmiddle =
(alower + bupper)

2
;

if(f(cmiddle)/f(alower) > 0)

alower = cmiddle;

else

bupper = cmiddle;

}

A.2 Newton-Raphson Method

The Newton-Raphson method requires the function f(x), its derivative f ′(x) and a

starting guess x(0). The starting guess used in the dielectric slab problem is either

x(0) = π/2 or x(0) = θ0i .

The algorithm is defined as:

Define f(x), f ′(x), tol;

Set initial guess x(0) = θ0i ;

n = 0;
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while(x(n) − x(n−1) > tol)

{

x(n+1) = x(n) − f(x(n))

f ′(x(n))
;

n++;

}
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Appendix B

Future Work

B.1 Verification of Improvement to Burnside’s for-

mula

The numerical technique used to improve on Burnside’s formula explained in Chapter

3, needs to be verified by an exact solution of the slab problem obtained using an

integral equation approach.

B.2 Extensions of Truncated Half-Plane Solution

Considering the truncated half-plane result obtained for a three dimensional problem

as in Chapter 3, it should be possible to apply the two-dimensional result to some

indoor three dimensional cases. The area where the application could prove beneficial

is in corridors where a number of walls are intermittently split by doors (see Figure

B-1). The field is scattered off many corners at low angles where the UTD solution

breaks down. Also the multiple diffractions need to be accounted for. Taking a two

dimensional cross-section of the corridor and applying the result obtained in chapter

3 recursively as in the TIM method of Brennan[14] would seem a natural idea to try to

apply. Preliminary results for scattering from a two-dimensional terrain profile have

been obtained but need to be confirmed to be applicable in an indoor environment.
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Figure B-1: A corridor with 2 doors and diffraction around the corner

B.3 Extensions to Convex Space Algorithm

The C++ software used to define the convex space algorithm, at the moment only

allows for rectilinear shapes, but should be extended to include four vertex polyhedra

and 6 vertex polyhedra. These will allow the building to be modelled more exactly.

Also as mentioned in Chapter 4, the convex space representation of the building needs

to be automated because at the moment it is input by hand. The algorithms for such

an automation need to be succinct and cleverly written.

B.4 Tests on Software

The ray-tracing algorithms need to tested more thoroughly in a large building by an

independent party so that the software can be altered to output information that

meets the telecommunications industries needs.
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Appendix C

Software Tool for Indoor Wireless

Resource Optimsation (STIWRO)

User Guide

C.1 Directory Hierarchy

The C++ software contained in the STIWRO project was created in Visual C++

version 6 using a single workspace containing many projects as shown in Figure C-

1. The runtime workspace (runtime.dsw) contained in the runtime directory shown

in Figure C-2 contains 20 projects in all. Some of these projects were created for

test purposes to confirm that different parts of the software work correctly, or were

used to generate specific results used in the thesis of Eamonn Kenny and as part of

the software description. All C++ modules are stored in .cpp files in the directory

STIWRO-C++ along with appropriate .h header files. The software was designed

in such a way that all object files are shared between projects, in other words if one

project is compiled and then another is compiled, the common object files are not

recompiled if they remained unchanged in the intermediate period. This was easily

achieved by setting the Release and Debug directories to be the same for each project.

This is not the default setting in the Visual C++ software.
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Figure C-1: The Visual C++ window containing all projects.

C.2 File Formats

C.2.1 Building Files

In the Runtime directory a large number of sample buildings and contained rooms

exist for testing (see Figure C-2). They were created to use as inputs for the simu-

lation of downlink and uplink optimisation algorithm, as well as sample ray-tracing

code contained in approximately ten of the projects.

The input files for the building could be generated by AutoCAD if a DXF con-

vertor was written to convert the files into the format required by the STIWRO tool.

At present the files are built by hand. The building file containing all convex spaces,

is defined to be a .dat file. The room connectivity is defined in the .roo file. The

convex space information is stored as in Table C.1.

Note that the number of floors in this case is N+1 including the roof of the
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Figure C-2: The hierarchical structure for the project code.

building. The stories are interlaced between the floors. The building number is

a number associated with the building. Each floor or story contains at least one

filled convex space of the form is described as in Table C.2. <sometype> can be

either Door, InteriorWall, ExteriorWall or Window. Defining a free convex space

<sometype> takes on the value Room.

The storage of the room connectivity takes the form of Table C.3. The connections

must be made to the floors above and below as well as the same floor so that it is

easy to traverse from room to room.

The buildings once defined by the .dat and .roo files can be easily presented by

Matlab. At present the software tool will send any story or floor of a building to

an output file of the users choosing, by including one call to the story( ) or floor( )

methods in the C++ Matlab class contained in the Matlab.cpp file. The results in

Figure C-3 are generated in this way, and then story3d.m is called from within Matlab

to generate the three-dimensional building. Rotating the building shows the doors

and windows more clearly. A breakdown of all the C++ projects will be presented

in a later section.
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Building Building Number

Floors Number of Floors

Stories Number of Stories

Floor 1

· · ·
Story 1

· · ·
Floor N+1

· · ·

Table C.1: The basic layout of the input building data file

Figure C-3: A sample story of a building including doors, windows, exterior and

interior walls.

C.2.2 Base Transceiver Station (BTS) files

The base transceiver station is a description of a general transmitter plus the require-

ments for the ray-tracing algorithm. The best way to describe the contents of the file

is by providing an example as shown in Table C.4

Table C.4 contains a flag to say the file is a BTS file, an ID number, the region

were the antenna is placed e.g: GraftonStreet, the location of the server, the default

transmitting power, the frequency band, the orientation of the antenna specifying

tilt and azimuth, the cost, the number of channels, the noise factor in the receiver

at the BTS, the noise factor in the user equipment (UE), the maximum number of
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Convex<sometype>

X1 Y1 Z1

X2 Y1 Z1

X2 Y2 Z1

X1 Y2 Z1

X1 Y1 Z2

X2 Y1 Z2

X2 Y2 Z2

X1 Y2 Z2

DielectricParameters

Permittivity - ? Permeability - ? Conductivity - ?

Table C.2: The Structure of the input required to describe a filled convex space.

ROOM N

BelowAdjacent1 BelowAdjacent2 · · ·
SameAdjacent1 SameAdjacent2 · · ·
AboveAdjacent1 AboveAdjacent2 · · ·

Table C.3: The connection of Room N to room in the same floor and below and

above floors.

reflections in the ray-tracing, the maximum number of transmissions, the maximum

number of diffractions, a flag to specify whether a point source or hertzian dipole is

used, a random walk flag to specify whether a random mean is taken of the complex

ray-paths when summed together, a corner diffraction flag to specify whether it is

being used, the maximum capacity in the server, a diagram for the antenna, and a

polar diagram not currently used in the present configuration.

C.2.3 Downlink and Uplink Optimisation Parameter File

The files are identical in layout for the definition of parameters necessary to run the

uplink and downlink optimisation routines. Statistics must be give for voice, real-
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time and non real-time data links. In each case Eb/No the energy per bit noise ratio

must be specified, along with the fade margin and processing gain.

130



BTS

001

Region

Location (5.0,7.0,2.0)

Power 1

FrequencyBand [900.0-900.0]

Orientation < 0, 0 >

Cost 0

NumberOfChannels 1

NoiseFactorAtBTS 7.0

NoiseFactorAtUE 5.0

Reflections 3

Transmissions 4

Diffractions 1

HertzianDipole 0

RandomWalk 0

CornerDiffract 0

capacity 2.0

omni.diag

polar.dat

Table C.4: Sample BTS file

Interference Margin

Voice Eb/No Voice Fade Margin Voice Processing Gain

Real Time Data Eb/No Real Time Data Fade Margin Real Time Data

Processing Gain

Non Real Time Data Eb/No Non Real Time Data Non Real Time Data

Fade Margin Processing Gain

Table C.5: Nokia Parameters File Layout
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C.3 Running C++ Projects

C.3.1 Downlink Optimisation Project

Project downlink

Main Caller main-optimiseh.cpp

Input Files foyer.dat foyer.roo bts2000.dat capacity.txt

downlinkparam.dat

Output Files location.txt newcells.txt bestserver2.txt

Matlab Runfiles capacitygrid.m newbestserver.m

Table C.6: Downlink Project Description

The main calling function can be modified to allow the software to run for different

buildings and parameter details. The input files are set at the moment to run the

case of a foyer building (one single room) with capacity details defined in capacity.txt.

The capacity file consists of 3 patches of high capacity. These patches are created

and visualised using the Matlab runfile capacitygrid.m (see Figure 7-2). The software

can then be run, and the results generated can be visualised using the Matlab runfile

newbestserver.m (see Figure 7-4). The results generated contain the final positions

of the base station locations upon completion of the downlink optimisation. Also,

the best servers are indicated at each user equipment point that achieves its capacity

requirement. If the capacity requirement is not met, then a black square indicates

this since no best server exists.

C.3.2 Geometrical Optics (GO) Project

This project performs a comparison between a Hertzian dipole located over a large

flat plate and the geometrical optics approach to the same problem. Assuming that

no diffraction exist for each result, the plot of the pathloss coverage obtained by

running the Matlab runfiles gopathloss.m and spathloss.m results in exactly the one

values (see Figure 5-5).
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Project go

Main Caller main-go.cpp

Input Files largeplate.dat largeplate.roo bts1800.dat

Output Files gopathloss.txt pathloss.txt

Matlab Runfiles gopathloss.m spathloss.m

Table C.7: Geometrical Optics Project Description

C.3.3 Comparison of UTD versus Exact Solution (linefield)

Project

Project lineField

Main Caller main-linefieldx.cpp

Input Files plate.dat plate.roo bts900.dat

Output Files linefieldx.txt reflectionfield.txt diffractionfield.txt

incidentfield.txt linex.res

Matlab Runfiles linefieldx.m

Table C.8: Linefield Project Description

This project performs a comparison between the UTD based ray-tracing solution

over a small flat plate of size 6λ × 6λ and the exact integral equation (IE) solution

obtained by Conor Brennan[17] for the same plate. The pathloss is calculated along

a line of length 120 metres with 1201 sample points. A very detailed set of results

with many windows can be presented to the user by running the Matlab runfile

linefieldx.m. The plots show the incident field, reflected field and diffracted fields in

isolation. There is also a plot of the total scattered field from both the ray-tracing

and the exact solution. A large disagreement is obtained (see Figure 3-16) that is

explained in the software description[46].
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Project mimoh

Main Caller main-mimo.cpp

Input Files <user defined building>.dat <user defined building>.roo

bts<user defined>.dat points.dat

User Define Flags Gaussian Random Variable = On/Off

Output Files raypaths i j.txt

Matlab Runfiles none

Table C.9: MIMO Project Description

C.3.4 Multiple Input Multiple Output (MIMO) Project (Stan-

dalone Version)

The multiple input, multiple output (MIMO) project was created specifically for a

Socrates student project written by Maurizio Salvino. In his project he was required

to set up a number of transmitters that would send signals to one another. This

C++ project was created specifically for his purposes. It outputs the ray-paths ray-

paths i j.txt from transmitter i to transmitter j. A point to point result is calculated

in all cases. If i is transmitting to j then it is assumed that the calculation of j

back to i is reflective, so that it can be neglected. The main function main-mimo.cpp

provides a standalone executable that can be run from within Matlab for a num-

ber of different building or BTS files. A flag can be set from the command line or

from within Matlab so that the ray-paths are multipled by a random phase or left

unchanged.

C.3.5 Multiple Input Multiple Output (MIMO) Project (Hard-

coded Version)

This multiple input, multiple output (MIMO) project was created specifically for

tests required by Eamonn Kenny to ensure that the software delivered to Maurizio

Salvino was working correctly. Instead of using user defined buildings and BTS

files, specific files are hard-coded into the main function call main-mimoh.cpp. The
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Project mimoHardcoded

Main Caller main-mimoh.cpp

Input Files building.dat building.roo bts900.dat points.dat

Output Files raypaths i j.txt

Matlab Runfiles none

Table C.10: MIMO Hard-Coded Project Description

building file building.dat and bts900.dat are the hard-coded files. There is no random

phase multiplication in the results as in the previous standalone version.

C.3.6 Point to Multi-Point (multi) Project (Standalone Ver-

sion)

Project multi

Main Caller main-multi.cpp

Input Files <user defined building>.dat <user defined building>.roo

bts<user defined>.dat

Output Files pathloss.txt

Matlab Runfiles pathloss.m

Table C.11: Multi-Point Coverage Project Description (Standalone)

This project is used to present coverage on a rectangular grid for a single trans-

mitter. The building and BTS files are defined by a user from the command line or

from within a Matlab runfile.

C.3.7 Point to Multi-Point (multi) Project (Hard-Coded Ver-

sion)

This project provided a multi-point calculation resulting in a path-loss coverage plot

for a given transmitter and receiver hardcoded into main-multih.cpp. The Matlab

runtime file pathloss.m produces a coverage plot that overlays the building walls.
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Project multiHardCoded

Main Caller main-multih.cpp

Input Files building.dat building.roo bts900.dat

Output Files pathloss.txt

Matlab Runfiles pathloss.m

Table C.12: Multi-Point Coverage Project Description (Hard-coded)

All walls are set to be transparent so that the path-loss can be seen clearly, and

to emphasise the fall off in signal as the signal propagates through the walls (see

Figure 5-7. This is probably the most descriptive and well presented plot that the

communications group at Trinity have produced, and yet was very easy to generate

due to the power of the Matlab engine.

C.3.8 Printing House Measurement Set 1 Project

Project PrintingHouse

Main Caller main-printing.cpp

Input Files printinghouse.dat printinghouse.roo bts1000.dat

conornodoors.dat conorclosed.dat measurementoffice.dat

Output Files corridoropendoor1.txt corridoropendoor2.txt

corridorclosed1.txt corridornodoors.txt

Matlab Runfiles measureoffice.m aspect3d.m

Table C.13: Printing House Measurement Campaign (Hard-coded)

This project provided a point calculation of path-loss in a corridor for comparison

with that obtained by measurement set 1. The Matlab runtime file measureoffice.m

produces a coverage plot that overlays all results as presented in Figure 5-10. The

runtime file aspect3d.m presents the building, transmitter, receiver points and convex

space centres as shown if Figure 5-8.
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C.3.9 Printing House Measurement Set 2 Project

Project PrintingHouse2

Main Caller main-printing2.cpp

Input Files printingclosed.dat printingclosed.roo bts1000.dat

Output Files corridorclosedR1.txt corridorclosedR1RW.txt

corridorclosedR3.txt corridorclosedR3RW.txt

Matlab Runfiles measureacross.m aspect3d.m

Table C.14: Printing House Measurement 2 Campaign (Hard-coded)

This project provided a point calculation of path-loss in a corridor for comparison

with that obtained by measurement set 2. The Matlab runtime file measureacross.m

produces a coverage plot that overlays all results as presented in Figure 5-13. The

runtime file aspect3d.m presents the building, transmitter, receiver points and convex

space centres as shown if Figure 5-12.

C.3.10 Corner Diffraction with Far Field Scattering Project

Project pwCornerDiffraction

Main Caller main-linediag.cpp

Input Files plate.dat plate.roo bts750.dat

Output Files diffractionfield.txt

Matlab Runfiles cornerdiff.m

Table C.15: Far Field Corner Diffraction Description

This routine attempts to generate the results of McNamara[58] for the far field

pattern generated by a flat plate with a monopole plated at the centre. The scattered

field points are generated along a diagonal hemisphere from the plate. The plate

plate.dat used in other projects was retained for this sample problem, although the

frequency was altered so that the problem would give exactly the same results at that

obtained by McNamara. The corner diffraction option is turned on in bts750.dat. The
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Matlab runfile cornerdiff.m is used to generate the far field results shown in Figure

2-11.

C.3.11 Random Number Generator Project

Project random

Main Caller main-random.cpp

Input Files none

Output Files none

Matlab Runfiles none

Table C.16: Random Number Generator Description

This function is a simple program to test the generation of random variables using

a time dependant seed to ensure that the generator is sufficiently random.

C.3.12 Field Strength at Receiver due to a Point on a Sphere

Project

Project receiverPtOnSphere

Main Caller main-ptonsphere.cpp

Input Files plate.dat plate.roo bts900.dat

Output Files reflections.txt diffractions.txt

Matlab Runfiles sreflection.m sraytrace.m sdiffraction.m

Table C.17: Transmitter Point on Sphere Description

This is a single point to point path-loss calculation performed between a point

on a sphere and some receiver point, both hard-coded into the main caller main-

ptonsphere.cpp.
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Project receiverSphere

Main Caller main-sphere.cpp

Input Files plate.dat plate.roo bts900.dat

Output Files pathloss.txt

Matlab Runfiles pathloss.m

Table C.18: Field Strength on Sphere Description

C.3.13 Field Strength at Receiver Points on a Sphere Project

This is a point to multi-point path-loss calculation performed between a point on a

sphere and many receiver points on a hemisphere, both hard-coded into the main

caller main-sphere.cpp.

C.3.14 Reflection Coefficients Project

Project reflectCoeff

Main Caller reflectCoeff.cpp

Input Files none

Output Files singleReflect.txt singleTransmission.txt infiniteReflect.txt

correctedReflect.txt infiniteTrans.txt correctedTrans.txt

infiniteReflectPS.txt geometry.txt infiniteReflectPW.txt

meanInfinitePS.txt r*.txt t*.txt

Matlab Runfiles reflectCoeff.m runPWvsPS.m balanisref.m

runExactDielvsSingle.m runExactDielvsSingleFar.m

runExactvsBurnside.m

Table C.19: Reflection Coefficients Description

This is probably the most detailed project of them all. It contains a large amount

of result files used to make comparisons between a full ray-tracing solution, single

reflection solution and Burnside’s solution[18] for internal reflections in a slab. There

are a large number of Mablab runfiles. The runfile reflectCoeff.m provides a plot as

in Figure C-4 of the single reflection results and infinite reflection results obtained by
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Figure C-4: Single versus Infinite reflection and transmission coefficients.

using the single reflection result file singlereflection.txt and infiniteReflect.txt. Like-

wise the transmission results are obtained from singleTransmission.txt and infinite-

Trans.txt. Results for the comparison of single reflection, Burnside and ray-tracing

are presented using runExactvsBurnside.m and the results are shown in Figure 3-6.

Results for the lossy case can be presented using runExactDielvsSingle.m for a point

close to a plate, and runExactDielvsSingleFar.m for a point far from a plate. The

results of Balanis[7] for the reflection and transmission coefficients can be generated

by setting different permittivities ǫ within reflectCoeff.cpp and then generating a file

r<number>.txt and t<number>.txt representing the reflection and transmission co-
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efficients for a given permittivity=<number>. The runfile balanisref.m expects that

the all files are created for a varying number of permittivities, the values of which

are ǫ = 2.56, 4, 9, 25, 81.

C.3.15 Single Point to Point Ray-Tracing Project (Standalone

Version)

Project single

Main Caller main-single.cpp

Input Files <user defined building>.dat <user defined building>.roo

bts<user defined>.dat

Output Files reflection.txt diffraction.txt

Matlab Runfiles sraytrace.m sdiffraction.m

Table C.20: Point to Point Description

Figure C-5: Diffraction paths between two points.
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This is a standalone version of a point to point path-loss calculation performed

for a user defined building and BTS file. At the moment the transmitter and receiver

are hard-coded, although this could be easily changed. The results are presented

for all reflected rays using sraytrace.m. The diffraction paths are presented using

sdiffraction.m as show in Figure C-5.

C.3.16 Single Point to Point Ray-Tracing Project (Hard-

coded Version)

Project singleHardcoded

Main Caller main-singleh.cpp

Input Files building.dat building.roo bts900.dat

Output Files reflection.txt diffraction.txt

Matlab Runfiles sraytrace.m sdiffraction.m sreflection.m

Table C.21: Point to Point Hardcoded Description

This is a hardcoded version of a point to point path-loss calculation performed

for a given building and BTS file. At the moment the transmitter and receiver and

hardcoded into the main caller. The code can be run and the reflections presented

from within Matlab all at the same time, using sreflection.m. This is achieved by

using a DOS call from within Matlab to the executable singleHardcoded.exe located

in the Release directory of the runtime directory (see Figure C-2 for the directory

layout).

C.3.17 Sequential Unconstrained Minimisation Technique (SUMT)

Project

This project contains a simple linear programming problem with two unknowns and

7 constraints described by Beasley [8]. The starting solution is a point (x0, y0) rep-

resenting the two unknowns as they would appear on a cartesian plane. The initial

guess is moved using a path-following algorithm until the optimisation solution is
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Project sumt

Main Caller main-sumt.cpp

Input Files none

Output Files sumt.txt

Matlab Runfiles sumt.m

Table C.22: SUMT Description

found. All the points along the path are sent to sumt.txt. The Matlab runfile sumt.m

is then used to plot the region of feasibility and shows the convergence of the solution

to it’s optimal point (12/7, 20/7) as in Figure 6-2.

C.3.18 Diffraction Testing Project

Project testDiffraction

Main Caller main-diffraction.cpp

Input Files none

Output Files diffract.txt diffract2.txt

Matlab Runfiles sumt.m

Table C.23: Diffraction Testing Description

This project is used to test that the UTD diffraction coefficients used in the ray-

tracing agree with results obtained from a Matlab code. They were shown to be the

same in all cases. The Matlab code was written by Derek Bell long before the C++

code was written.

C.3.19 Receiver Grid over Flat Plate Project

This project was set up just like the linefield project mentioned earlier in this Chapter,

except that instead of presenting points along a line, the results are presented on a

uniform rectangular grid, allowing them to be plotted using pathloss.m. This project

is very similar also to the multih project mentioned previously in this Chapter also.
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Project testPlate

Main Caller main-testPlate.cpp

Input Files plate.dat plate.roo bts900.dat

Output Files pathloss.txt

Matlab Runfiles pathloss.m

Table C.24: Receiver Grid over Flat Plate Description

C.3.20 Uplink Optimisation Algorithm Project

Project uplink

Main Caller main-uplink.cpp

Input Files foyer.dat foyer.roo bts2000.dat capacity.txt

uplinkparam.dat

Output Files pathloss.txt

Matlab Runfiles pathloss.m

Table C.25: Uplink Optimisation Description

This project uses the results obtained by a downlink optimisation algorithm to

see how many users can possibly connect to the system by calculating the solution N

times and then calculating the average number of connections for those N solutions.

The result is a number which is printed for the user to see.
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