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Abstract 
Wigner’s [E. P. Wigner, Phys. Rev., 1932, 40, 749] representation of the 

density operator as a c-number quasiprobablity distribution in phase space 

allowing quantum mechanical averages involving the density matrix to be 

calculated as phase space averages just as classical averages originally used by 

him to obtain quantum mechanical corrections to classical thermodynamic 

equilibrium i.e. to the Maxwell-Boltzmann distribution so applying to closed 

quantum systems is extended to open quantum systems comprising a canonical 

ensemble of Brownian particles in a potential. This is accomplished via an idea of 

Gross and Lebowitz [E. P. Gross and J. L. Lebowitz, Phys. Rev. 1956, 104, 1528]. 

They suggested that using Wigner’s representation the connection between 

classical and quantum collision kernels, (i.e. in classical mechanics the 

Stosszahlanzatz describing the bath-particle interaction in the open system in the 

Boltzmann equation for the single particle distribution function) is much more 

transparent than in the density operator formalism. Moreover the quantum kernel 

should closely correspond to the classical one. Hence the idea developed in this 

Thesis that in the quantum Brownian motion the collision term in a quantum 

master equation in Wigner’s representation should be described by a Kramers–

Moyal like expansion truncated at the second term (leading of course in the 

classical limit to the Fokker-Planck equation) as in the classical Brownian motion. 

Imposition of the Wigner equilibrium distribution as the stationary solution of this 

equation (which is akin to the Fokker-Planck equation) in the manner used by 

Einstein [A. Einstein, in R. H. Fürth, Ed., Investigations on the Theory of the 

Brownian Movement, Methuen, London, 1926; reprinted Dover, New York, 1954] 

used to calculate diffusion coefficients in the Fokker-Planck equation by imposing 

the Maxwell-Boltzmann distribution as the stationary distribution then leads to the 

most important results of this Thesis. Namely the diffusion coefficients in the 

master equation become functions of the quantum parameter and the derivatives 

of the potential. Moreover all the solution techniques (matrix continued fractions 

etc) developed for the Fokker-Planck equation carry over to the quantum case as 

is illustrated by calculating the reaction rate and dynamical structure factor of a 

particle in a periodic cosine potential where the results are in agreement with 

those predicted by quantum reaction rate theory. 
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CHAPTER I 

 

Introductory concepts: reasons for the 

development of a theory of quantum 

Brownian motion 

 

The classical theory of dissipation based on the Brownian motion 

(representing the heat bath degrees of freedom) of a particle in a potential is 

ubiquitous in many areas of applied mathematics, theoretical physics and 

chemistry, particularly those aspects of nonequilibrium statistical mechanics and 

fluid mechanics dealing with the nature of metastable states and the rates at which 

these states decay. (The classical theory is summarized in Chapter II). Typical 

examples from statistical mechanics are current-voltage characteristics of 

Josephson junctions, the rate of condensation of a supersaturated vapour, 

dielectric and Kerr effect relaxation in liquids and nematic liquid crystals, 

dynamic light scattering, chemical reaction rate theory in condensed phases, 

superparamagnetic relaxation, polymer dynamics, nuclear fission and fusion and 

so on [1-4]. All these phenomena in one way or another depend on the nucleation 

and growth of some characteristic disturbance within a metastable system, e.g., 

condensation of a saturated vapour is initiated by the formation of a sufficiently 

large droplet of the liquid. If this droplet is big enough it will be more likely to 

grow than to dissipate and will bring about condensation of the entire sample [2]. 

In many cases particularly at low temperatures a theory of dissipation 

based on the classical Brownian motion (which is a particular Stosszahlansatz for 

the Boltzmann equation describing the evolution of the single particle distribution 

function i.e. the reduced distribution function in phase space) may be inadequate 

because it ignores quantum effects. Quantum noise arising from quantum 

fluctuations is also of importance in nanoscale and biological systems. We 

mention [3] the noise assisted tunnelling and transfer of electrons and quasi-

particles. The characteristics of such quantum noise vary strongly as a function of 
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temperature and at high temperatures a crossover to Johnson-Nyquist noise which 

is essentially governed by the classical Brownian motion takes place. 

 

 

Single system, ,i iq p  

 

Universe 

Figure I.I. The classical dynamics of a collection of N particles where N is 

of the order of 
2310  say, is described by the Liouville equation [1] in the 6N phase 

space (q,p) where q(t) and p(t) denote the collection of 3N positions and 3N 

momenta. The Liouville equation describes the time evolution of the phase space 

density of representative points ρ (q,p) (it is simply a statement of the fact that the 

representative points are conserved and stream along the constant energy trajectories 

in phase space) and is 
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where { }Hρ,  is the Poisson bracket, H is the Hamiltonian and the large D’s denote 

the hydrodynamical derivative. It is a purely dynamical theorem first given by 

Joseph Liouville in 1838. Boltzmann’s idea (1872) was essentially to replace the 

entire system of 
2310  degrees of freedom by a single (tagged) system of 3 degrees 

of freedom interchanging energy with the rest of universe or heat bath, i.e. the effect 

of the remaining 
2310 3−  degrees of freedom is represented by collisions (this is 

the Stosszahlansatz) so that for the tagged system
D

Dt

ρ
 is no longer zero and the 

(q,p) for the universe is now reduced to ( ),s sq p  for the single system, ρ  is then 

the reduced or single particle distribution function which obeys the famous 

Boltzmann equation describing the evolution of the single particle distribution 

function from an initial state. Since the hydrodynamical derivative is no longer zero 

the trajectories of the single system in the (qs,ps) phase space exhibit energy diffusion 

and no longer purely stream. This idea is due to Boltzmann and comes from his 
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attempt to show that whatever the initial state of a gas the Maxwell-Boltzmann 

distribution must ultimately set in. Later Einstein (1905) used these concepts to great 

effect to explain the Brownian motion using the Fokker-Planck equation which is a 

particular form of the Boltzmann equation when the collisions are frequent, but 

weak. The whole procedure is remarkably well illustrated in the following paragraph 

from Statistical Physics II, Nonequilibrium Statistical Mechanics, by R. Kubo, M. 

Toda and N. Hashitsume, 2
nd

 edition Berlin Springer-Verlag, 1991: 

“We have emphasized repeatedly that the fundamental logic structure of 

statistical physics is the derivation of the laws of physics by introducing different 

stages of coarse graining from microscopic laws. By proceeding a step further, our 

description is made even cruder than the previous one by partial contraction of 

information. This contraction is a projection of the object onto a certain cross section 

of our understanding. Here the problem is to find the appropriate way of describing 

of the projected process. 

For example, the stochastic process called Brownian motion is the 

projection of the microscopic motion of a colloid particle and all the molecules of the 

surrounding liquid onto the dimension of the motion of the colloid particle only. 

Furthermore, if the motion is projected onto the displacement then it becomes a 

diffusion process of the Brownian particle. 

The complete dynamical description of N gaseous molecules confined in a 

box is made in terms of their position and momentum variables given as functions of 

time t. If the molecular positions are not observable, then the projected motion is 

described by the stochastic evolution of the distribution function 

1 2( , ,..., , )Nf p p p t . The equation governing this evolution is called a master 

equation. It should furthermore be possible to discover the probability 
1( , , )f r p t  of 

finding a molecule with momentum p and position r at time t. This is largely 

contracted information and useful in describing the pas only extremely crudely. 

When a colloid particle is much larger and heavier than molecules of the 

surrounding liquid, the projected process becomes an ideal Brownian motion which 

is Gaussian and Markovian.” 

 

 

Yet another aspect of the subject which has come to the fore in recent years is the 

quantum mechanics of macroscopic quantum variables such as the decay of a zero 

voltage state in a biased Josephson junction, flux quantum transitions in a SQUID 

[4] and the possible reversal by quantum tunnelling of the magnetization of a 

single domain ferromagnetic particle as used to store data. Such particles typically 

comprise 10
4
-10

5
 spins acting in unison so that the magnetization is a 
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macroscopic quantum object. It has been conjectured by Bean and Livingston 

[5,6] that the magnetization may reverse (so losing the stored information) by 

quantum tunnelling through the particle internal magnetocrystalline anisotropy 

barrier as well as by the conventional mechanism of thermally agitated jumping 

over the barrier [1,7] which is in this context is called Néel relaxation [8]. More 

precisely by this tunnelling they mean the possibility of transitions of the 

magnetic moment at absolute zero of temperature from a state of complete 

alignment to a state of zero overall magnetization, due to the moment tunnelling 

through the barrier. It is thus immediately apparent that the Brownian motion 

plays a vital role in information and communications technology as well as in 

fundamental issues of applied mathematics and theoretical physics such as the 

existence of quantum tunnelling on a macroscopic scale. One may also remark in 

the context of macroscopic quantum tunnelling (which is a mesoscale quantum 

phenomenon) that substantial experimental data on magnetic relaxation now 

exists [8] at mK temperatures the analysis of which is severely hampered by the 

lack of an appropriate theory of quantum dissipation which could predict for 

example the relaxation behaviour as a function of spin size. 

All these considerations necessitate the development of a theory of 

quantum Brownian motion both for translation (particles) and rotation (spins) 

particularly a theory which addresses directly the issue of the quantum-classical 

correspondence [9,10] in terms of a quantum analogue of the classical Fokker-

Planck equation (which is a particular form of the Boltzmann equation describing 

the classical Brownian motion where the Stosszahlansatz is that the collisions 

ensuing from the bath-particle interaction are frequent but weak) describing the 

classical Brownian motion. Such an evolution equation will allow system 

parameters such as the Kramers escape rate [1] (in magnetic relaxation the inverse 

of the time of reversal of the magnetization), correlation times, susceptibilities, 

etc., to be calculated in terms of the eigensolutions of that equation in a manner 

analogous to those of the Fokker-Planck equation. Moreover, it would be possible 

to compare asymptotic solutions for parameters such as escape rates yielded by 

reaction rate theory with the corresponding quantities calculated from such a 

quantum master equation. For example, in the classical case, the smallest 

nonvanishing eigenvalue of the Fokker-Planck equation yields the exact Kramers 

escape rate. Thus the range of validity of the various asymptotic expressions in 
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different damping regimes for that quantity may be accurately established [1,11-

13]. Wigner’s [14] (c-number) representation of quantum statistical 

mechanics in terms of phase space distributions (via [15] direct classical 

analogues of the relevant quantum operators and quantities so that the 

expectation values of physical variables may be expressed via phase space 

integration as rapidly converging expansions in Planck’s constant � ), is an 

ideal starting point for the formulation of semiclassical quantum master 

equations (akin to the Fokker-Planck equation) governing almost classical 

systems constituting quantum mechanics on the mesoscale. 

Now the treatment of the Brownian motion in terms of diffusion (Fokker-

Planck) equations by Einstein, Kramers, etc. which is essentially based on a single 

particle phase space distribution function describing the time evolution of the 

swarm of moving phase space points and which with the aid of modern computing 

techniques [1,16] allows one to evaluate various physical parameters ignores 

quantum effects. If one wishes to include these, however, in a diffusion equation 

treatment, a difficulty immediately arises, namely one cannot speak, because of 

the uncertainty principle, [14] of a particle having simultaneously a well defined 

position and momentum i.e. in the quantum world the concept of a precise phase 

point has no meaning. In other words it is impossible to ascertain the position of a 

system in phase space more accurately than to say that it is in a volume of the 

order of n� , where n is the number of degrees of freedom and �  is Planck’s 

constant [17] or experimentally it is ultimately impossible to make the 

measurements necessary to establish the classical trajectory. It follows therefore 

that one cannot define as in classical statistical mechanics a probability that the 

particle has a particular position and a particular momentum i.e. a joint 

probability distribution of the canonical variables. Hence one cannot define a true 

phase space probability distribution for a quantum mechanical particle 

emphasising the need for a different representation than the classical moving 

phase point. Nevertheless functions of the canonical variables as we have 

introduced in the last paragraph instead of the more usual Heisenberg and 

Schrödinger representations, bearing some resemblance to phase space 

distribution functions namely quasiprobability (not everywhere necessarily 

positive with the occurrence of “negative probability” being closely related to the 
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impossibility of simultaneously measuring canonical variables) distribution 

functions have proven [14,18] very useful in quantum mechanical systems as they 

provide insights into the connection between classical and quantum mechanics 

allowing one to express quantum mechanical averages in a form which is very 

similar to that of classical averages. Thus they are ideally suited to the study of 

the quantum-classical correspondence as is well illustrated by the following 

remarks of Baker [17] and Stratonovich [19]; Baker: “The large-scale 

experimental validity of classical mechanics tells us that quantum theory must, in 

some sense, correspond closely to classical mechanics. We have altered the 

classical concept of a moving point in phase space to that of a quasi-probability 

distribution which changes in time. This distribution is imagined to be 

concentrated about the classical point, so that a crude measurement will be unable 

to differentiate between the two theories. To ensure this correspondence, we use 

the statement which actually seems to be given by experiments – on the average, 

Hamilton’s canonical equations hold”; Stratonovich: “The statistical nature of 

quantum theory is manifested in the process of physical “measurement.” From 

this it follows that the “pre-observation” state of a quantum system, which exists 

before the “measurement” and is independent of it (one can speak of such a state, 

to be understood in a definite sense), is a statistical state. 

In the classical theory the “pre-observation” state of a statistical system is 

described by distribution functions in a certain space (we denote this space by M). 

We assume that in the quantum theory such a “pre-observation” state is described 

by distribution functions in this same “representation” space M, which 

accordingly has a classical meaning. But owing to the fact that a quantum 

“measurement” is more complicated than a macroscopic measurement, and is 

inevitably associated with an integral operation in the representation space, in 

contrast to the classical situation, negative values of the distribution function are 

possible at particular points of this space. The “representation distributions” of 

course do not give an entirely classical interpretation of quantum theory, but they 

provide a basis for that interpretation of the quantum theory which has maximum 

closeness to classical ideas and thus has the greatest physical-intuitive meaning.” 

The first of these quasiprobability distributions was introduced by Wigner 

[14] in 1932 in order to study in semiclassical fashion quantum corrections to the 

Maxwell-Boltzmann distribution of classical statistical mechanics which inter alia 
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elucidated the role played by tunnelling effects at high temperatures in reaction 

rate theory [14,18]. The Wigner distribution function was meant to be a 

reformulation, using the concept of a quasi-probability distribution in phase 

space, of Schrödinger’s wave mechanics which describes quantum states of 

functions in configuration space. Thus the Wigner function is of particular use in 

the statistical mechanics of closed systems (i.e., systems with zero dissipation to 

the heat bath) as effectively it allows one to consider quantum corrections up to 

( )2N
O �  to the classical distribution function, i.e., the quantum-classical 

correspondence. Hence, Wigner’s formulation originally given for translational 

motion of a particle provides a basis for mesoscale quantum mechanics. The 

corresponding phase space representation for spin systems was given by 

Stratonovich in 1956 [19] who introduced the Wigner quasiprobability density 

function on the surface of the unit sphere in the phase space of orientations i.e. the 

polar and azimuthal angles ( ),ϑ ϕ . By way of background we remark that Wigner 

[14] originally arrived at his quasiprobability density W(x,p) for translational 

motion of a particle in phase space ( , )x p , which is the quasiprobability 

representation of the density operator simply by requiring that, the marginal 

distributions of W(x,p) should yield the correct quantum mechanical probability 

densities for the position x and momentum p of the particle with Hamiltonian 

2ˆ ˆ ˆ/ 2 ( )H p m V x= +  in phase space. He thus established in a more or less heuristic 

manner a one to one correspondence [20] between the quantum state ψ  in the 

particle Hilbert space and a real phase space function ( , )W x p  which is also called 

the Wigner transform. Later Moyal [21] discovered a much more general 

formulation of representation space distributions where he showed that on 

introducing a characteristic function operator ( )ˆ ˆ ˆ( ) expM i p xτ θ τ θ, = +    of the 

position and momentum that the Weyl correspondence rule between c-numbers 

and operators can be inverted via the Wigner transform from an operator in the 

Hilbert space to a function in the phase space. This is now known as the Moyal 

quantization and was originally applied to particles with symmetries described by 

the Heisenberg-Weyl group. Stratonovich [19] on the other hand in attempting to 

generalize the Moyal quantization to spins governed by the SU(2) rotation group 

in the representation space of polar angles (the quasiprobability density function 
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( , )W ϑ ϕ  is entirely analogous to W(x,p) for the Heisenberg-Weyl group except 

that certain differences arise because of the angular momentum commutation 

relations [19]) discovered a linear bijective mapping (cf. Eqs. 1-3 of [19]) between 

operators on the Hilbert space and functions in representation space. This 

mapping [22] satisfies a number of physically intuitive properties, covariance and 

tracing being the two most important, and essentially replaces Moyal’s 

characteristic function operator. Thus representation space distributions can be 

determined (see Chapter IV) via this bijective map from the general definition of a 

representation distribution using the symmetry properties of the underlying group, 

e.g., the translational Wigner function ( , )W x p  is derived [19] by applying the 

principles of homogeneity and equivalence of directions.  

We further remark that extensive computer simulations of Wigner 

distributions have been carried out by Filinov et al. [23] using molecular 

dynamics. These simulations are very useful in so far as they provide 

“experimental” benchmarks for the verification of quantum reaction rate theory 

and analytic solutions derived from quantum master equations. 

Now in the classical Brownian motion a particle constitutes an open 

system, i.e., it may interchange energy with its surroundings and so dissipation is 

involved. An elegant attempt to include quantum effects in this context was made 

by Caldeira and (Nobel Laureate) Leggett in 1983 [24]. They showed how 

nonequilibrium effects could be included in Wigner’s approach by regarding a 

Brownian particle as bilinearly coupled to a large number of harmonic oscillators 

in thermal equilibrium at temperature T as in the method of Pollak [25]. The 

oscillators represent the normal modes of the bath or environment. Quantization 

of the bath oscillators then leads to a semiclassical quantum master equation 

governing the time dependent Wigner distribution function in phase space. This 

equation resembles the classical Fokker-Planck equation, thus as shown by the 

author and his collaborators [26] a representation of the solution as matrix 

continued fractions in the frequency domain may again be used. Hence asymptotic 

formulae for quantum escape rates etc. can be compared with the exact solutions 

just as in the classical case and ranges of validity of the approximate solutions can 

be delineated. An important difference however is that in order for the Wigner 

equilibrium phase space distribution to be the stationary distribution, the diffusion 
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coefficient in the Fokker-Planck like master equation arising from the truncation 

of a Kramers-Moyal expansion at the second order term must become a function 

of the derivatives of the potential as noted in [26]. In the classical theory of the 

Brownian motion the Kramers-Moyal expansion is simply a differential 

representation of the Chapman-Kolmogorov integral equation describing the 

evolution of the transition probability for a Markov process. Truncation at the 

second term in the Kramers-Moyal expansion is possible for the Gaussian white 

noise characteristic of the Brownian motion because the higher order statistical 

moments may be all expressed as powers of the second moment [1]. In assuming 

a second order truncation of a Kramers-Moyal expansion in the quantum case we 

are in effect following the remark of Baker above “that quantum theory must in 

some sense correspond closely to classical mechanics…” 

Up to the present, little in the nature of detailed solutions of semiclassical 

master equations describing quantum Brownian motion in external potentials has 

appeared in the literature. A notable exception is the Brownian motion of a 

quantum harmonic oscillator which has been treated by Agarwal [27] and others 

(see, e.g., refs. [28,29] and references cited therein). However, recently García-

Palacios and Zueco [30,31] have proposed an effective approach to the solution of 

the master equation for the quantum Brownian motion in an anharmonic potential 

( )V x . They proceed by assuming that a Kramers-Moyal expansion of an integral 

equation for the transition probability exists just as in the classical case and that 

the expansion may again by truncated at the second term. However unlike the 

work described in the present Thesis they regard the diffusion coefficients as 

constant with the consequence that when the resulting master equation is applied 

to the calculation of quantum corrections to the Kramers escape rate their 

calculation is unable to predict the lowering of the potential barrier due to 

quantum effects as first identified by Wigner in his quantum transition state 

theory based on the Wigner function for the closed system which incorporates 

quantum effects into the Maxwell-Boltzmann statistics. Nevertheless their work is 

valuable in so far as their ideas suggest how Brinkman’s representation (see 

Chapter II) of the classical Fokker-Planck equation as a partial differential 

recurrence relation in configuration space [32] and its associated solution methods 

based on matrix continued fractions arising from the choice of a suitable spatial 
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basis for the observables [1,16] could be also extended to the quantum regime. 

This has been successfully accomplished for the first time by the author and his 

collaborators for the particular case of a periodic cosine potential [26]. 

Moreover, analytical solutions for various quantum parameters such as 

escape rates available from quantum rate theory (which has been extensively 

verified via computer quantum molecular dynamic simulations [23]) have been 

compared with those obtained from the solution of quantum master equation for 

this potential. Both solutions essentially agree with each other indicating that our 

approach via a semiclassical quantum master equation is likely to be fruitful in the 

future. 

In a general sense one may remark that the problem of quantum effects in 

the translation and rotational Brownian motion is significant at a fundamental 

scientific level, and in information and communication theory particularly because 

its solution will elucidate the role played by dissipative quantum tunnelling in the 

various quantum relaxation processes as well as providing a basis for a theory of 

macroscopic quantum tunnelling for which the semiclassical approach is ideally 

suited. The problem of macroscopic quantum tunnelling in spin systems is 

especially important in the context of information storage by means of magnetic 

nanoparticles. These constitute single domain ferromagnetic particles consisting 

of one giant spin of amount 4 510 10−  Bohr magnetons. Such particles may reverse 

their magnetization in classical fashion because the magnetization may escape due 

to thermal agitation over the internal anisotropy potential barrier of the particle 

with consequent loss of the information stored. It is, however, possible that the 

magnetization may also tunnel through the anisotropy potential barrier which is an 

example of macroscopic quantum tunnelling as a giant spin is involved. The 

existence or otherwise of this phenomenon may only be verified by having a 

theory of quantum spin relaxation in an anisotropy potential, the simplest example 

of which is uniaxial anisotropy with a transverse field applied. If a solution of this 

problem were available one could pinpoint the crossover temperature between 

reversal by thermal agitation and quantum tunnelling and its possible implications 

for information storage at low temperatures. We remark that this problem has 

been studied experimentally in some detail [8]. However, analysis of the 
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experimental data is hampered by the lack of an adequate theory. See for example 

[33,34] 

In the context of the spin relaxation we should also mention the problem 

of molecular nanomagnets [35] where the effect of spin size is all-important. In 

fact one can show experimentally [8] the size effects in the magnetization 

dynamics and hysteresis loops in going from multi-domain magnetic 

nanoparticles to molecular clusters. Hence a theoretical method for predicting the 

magnetization evolution as a function of spin size which would come from 

extending Stratonovich’s formulation of the Wigner function for spins to include 

dissipation would be extremely useful particularly to major players in the 

magnetic recording industry such as Seagate, BASF etc. Finally the Wigner 

function has extensive practical applications in signal processing, filtering, and 

engineering (time-frequency analysis), since time and frequency constitute a pair 

of Fourier-conjugate variables just like the x and p pair of phase space. We 

mention bioengineering, acoustics, speech analysis, vision processing, turbulence 

microstructure analysis, radar imaging, seismic data analysis, quantum optics, 

quantum computing and so on [36]. 
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CHAPTER II 

 

Summary of the classical theory of the 

Brownian motion 

 

As a background to the development of semiclassical master equations for 

the quantum Brownian motion it is first necessary to summarize the classical 

theory. We shall accomplish this first by means of an introductory section 

outlining in brief the main developments and from that we shall select for a 

detailed description those parts that are necessary for the development of a 

quantum theory. 

II.I Early developments of the classical Brownian motion 

The commonest example of the Brownian motion is the rapid haphazard 

perpetual motion (Schwankung) of a pollen grain in a colloidal suspension, 

 

Figure II.I. Trajectory of a Brownian particle. 

 

first reported in a meticulous series of observations by the botanist Robert Brown 

in 1828 [1]. The motion was theoretically explained by Einstein in 1905 [1,2-7] in 

terms of a discrete time random walk in the diffusion limit of a very large number 

of microscopic steps with the same variance each taking on average the same 

microscopic time and is mathematically [1,4] a consequence of the central limit 

theorem of probability theory, the only random variable being the direction of the 

walker. Thus Einstein was able to write down a probability density diffusion 

equation in configuration space governing the time evolution of the concentration 

of the Brownian particles. Hence he was able to calculate the mean square 
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displacement of a Brownian particle regarded as a sphere in terms of the viscous 

drag (given by Stokes’ law) imposed by the surroundings, the absolute 

temperature and the time between successive observations of the displacement of 

the particle. Einstein envisaged the motion in physical terms as an inescapable 

consequence of the second law of thermodynamics and as incontrovertible 

evidence for the existence of atoms as later (1908) verified experimentally by 

Perrin [1,2]. He used Einstein’s formula in order to determine Avogadro’s number 

and obtained satisfactory agreement with the accepted value. Einstein’s theory 

which ignores the inertia of the particle and its subsequent extensions which are 

listed below effectively allow one to construct a classical theory of dissipative 

phenomena.  

The most significant extensions which are of physical interest [1,2-7] are 

due to Smoluchowski (1906, who treated the non inertial Brownian motion in an 

external potential, such as that due to gravity), Langevin (1908, who proceeded 

from the Newtonian equation of motion of the particle augmented by stochastic 

terms imposed by the surroundings so rederiving Einstein’s results (in the non 

inertial limit) and so must be regarded as the founder of the subject of stochastic 

differential equations; he essentially considered the position and momentum of 

the particle as random variables), Debye (1913, who considered the non inertial 

rotational Brownian motion of a rigid rotator in the presence of an applied 

alternating electric field for the purpose of explaining dielectric relaxation of polar 

molecules at high frequencies), Ornstein (1917, who included the inertia of the 

Brownian particle in the formula for the mean square displacement), Klein (1921, 

who gave a probability density diffusion equation (Klein-Kramers equation) for 

the evolution of the joint probability density function of the positions and 

momenta of an assembly of Brownian particles in phase space in the presence of 

an external potential so that inertial effects could be included exactly), Kramers 

(1940, who treated noise activated escape over a potential barrier due to the 

Brownian motion and so was able to predict the influence of solvent friction on 

the transmission coefficient) [1,2,3,7], Doob (1942, who showed [7] that the 

proper interpretation of the Langevin equation was as an integral equation leading 

inter alia to the Itô and Stratonovich interpretations of that equation [6]), 

Brinkman [8] (1956, who formulated the Klein-Kramers equation in the presence 

of an arbitrary potential as a partial differential recurrence relation in 
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configuration space), and Risken [6] (1983, who developed effective matrix 

continued fraction algorithms for the exact solution of Brinkman’s recurrence 

relation using matrix methods based on a Heisenberg-like formulation of the 

solution of the problem. This is described in Section II.IV below. We summarize 

Einstein’s theory of the Brownian motion as follows [4].  

II.II Einstein’s theory of the Brownian motion 

Einstein's theory of the Brownian motion [1,4] is based on the notion that 

the Brownian particle - a large particle such as a pollen grain suspended in a 

colloidal suspension executes a discrete time random walk. The walk is due to the 

very large number of impacts of the surrounding molecules on the Brownian 

grain. In other words the displacement of the Brownian particle is a sum of 

random variables, each having arbitrary distributions. We suppose that the 

density of random walkers in an element x x dx→ +  at time t is f. After a discrete 

time τ has elapsed we consider a neighbouring element of the same size situated at 

x′ (τ is supposed so large that the motion of the random walker is independent of 

its motion at time t±τ yet τ is supposed very small compared to the observation 

time intervals). We next suppose that the probability of a walker entering from a 

neighbouring element to x′ is: 

 ( , ) ( , )x xφ τ φ τ′− = ∆  (2.1) 

with: 

 ( , ) ( , )φ τ φ τ−∆ = ∆  (2.2) 

since we have an unbiased random walker. Summing over all neighbouring 

elements we then have: 

 ( , ) ( , ) ( , )f x t f x t dτ φ τ
∞

−∞

+ = + ∆ ∆ ∆∫ . (2.3) 

The above integral equation, called the Smoluchowski integral equation [1], is a 

particular form of the Boltzmann equation introduced by Boltzmann in 1872 [1] in 

order to demonstrate that whatever the initial distribution of an assembly of 

molecules in phase space, the ultimate result would be the Maxwell-Boltzmann 

distribution. Eq. (2.3) provides [1] a complete analogue of the Boltzmann 

equation when molecules of the medium can collide only against fixed centres or 

other molecules that have a given velocity distribution. Eq. (2.3) must be solved 

for f given an initial distribution for f. Also a "mechanism" or physical cause 
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(stosszahlansatz) for the random process must be given i.e. φ(∆,τ) must be 

specified - here we specify φ by imagining that the random walker moves along 

the x-axis in such a way that in each step it can move either ∆ to the right or ∆ to 

the left, the duration of each step being τ , moreover, each individual random 

walker executes a motion which is independent of the motion of all other walkers 

in the system. Finally the motion of a random walker at a particular instant is 

independent of the motion of the random walker at any other instant (the random 

walker has no memory) that is the motion at time t±τ is statistically independent 

of the motion at time t. 

Equation (2.3) can however equally well be written by Taylor's theorem 

as: 

 

( )

0 0

2 2

2
0

( , )

! !

2 !

n

n n n

n n
n n

n n

n
n

d
f f

n t n x

f

n x

φ τ
τ

∞

∞ ∞
−∞

= =

∞

=

 
∆ ∆ ∆ 

∂ ∂ =
 ∂ ∂
  
 

∆ ∂
=

∂

∫
∑ ∑

∑

 (2.4) 

by the definition of an average. Moreover, on account of Eq. (2.2) 

 2 1 0n+∆ = . (2.5) 

Equation (2.4) which is the simplest form of the Kramers-Moyal [1] expansion is 

entirely equivalent to the Smoluchowski integral equation. Now let us suppose 

that ∆ and τ approach zero (extremely small displacements in infinitesimally short 

times) in such a way that: 

 

2

0
0

lim
2

D

τ
τ∆→

→

∆
=  (2.6) 

and let us further suppose that all terms (τ2
) and (τ4

) and higher vanish in Eq. (2.4) 

then that equation formally goes over into the diffusion equation: 

 
2

2

f f
D

x x

∂ ∂
=

∂ ∂
 (2.7) 

where: 

 0 0( , , )fdx f x t x t dx=  (2.8) 
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is the conditional probability that the random walker is in x x dx→ +  at time t 

given that it was at x0 at time t0. The neglect of the higher order terms in 2n∆  as 

τ → 0 may be justified as follows. We recall that the probability distribution 

φ(∆,τ) of the elementary displacements in time τ arises from the continual 

buffeting of the random walker by the very large number of impacts by the 

molecules of the surrounding medium. Thus the resulting displacement ∆ of the 

walker is the sum of the elementary displacements arising from the molecular 

collisions (supposed statistically independent) which take place in time τ so that 

the central limit theorem of probability theory applies. The central limit theorem 

may be stated as follows [1]; let {ξi} be a sequence of n independent random 

variables each having arbitrary distributions, then the sum: 

 1 2 ... n

n

ξ ξ ξ
ξ

+ + +
=  (2.9) 

approaches a normally distributed random variable (in this case ∆) as n → ∞. 

Furthermore, if ξi has mean zero and variance 2 2

i i
ξ σ= < ∞  then ξ has mean 

zero and variance  σ2
 where: 

 2 2

1

1 n

i

in
σ σ

=

= ∑ . (2.10) 

The elementary displacement ∆ is a centred Gaussian random variable thus 

 2 2(2 1)!!
n

n n∆ = − ∆ . (2.11) 

Equation (2.11) when combined with Eq. (2.4) is the justification for the 

neglect of the higher order terms in the Kramers-Moyal expansion. The 

fundamental solution of Eq. (2.7) also called the Green function or propagator is: 

 

[ ]2

0

0

( ) ( )

4

0 0

0

1
( , , )

4

x t x t

D t t
f x t x t e

D t tπ

−
−

−
=

−
 (2.12) 

which is a centred Gaussian distribution with variance: 

 [ ]
22

0 0( ) ( ) 2x t x t D t tσ = − = −  (2.13) 

Equation (2.12) defines the Wiener process [1] that is the probability 

distribution of the displacements of the Brownian particle. We note two important 

points, σ is not mean square differentiable so that the velocity of a Brownian 
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particle cannot exist. Wiener proved that the realisations (sample paths) [x(t) - x0] 

of the Brownian process are almost everywhere continuous but nowhere 

differentiable. Moreover, Eqs. (2.6) and (2.13) are the same which is an indication 

of the self-similar nature of the Brownian process. Meaning that any given 

magnification (subject of course to physical limits such as distances of the order 

of the mean free path of a molecule) the Brownian motion trajectories appear on 

average to be the same, that is, the trajectory of a given Brownian particle is a 

random fractal [2] (dilation invariant object). The scaling of the steps or 

segments of the trajectory with magnification defines the fractal dimension which 

in this case according to the right side of Eq. (2.13) is 2. 

To continue, Einstein essentially by considering the Brownian motion of a 

particle in a potential V(x) and requiring that ultimately the Maxwell-Boltzmann 

distribution should prevail determined the diffusion coefficient D so finding the 

famous formula: 

 2

0 0

2
[ ( ) ( )]

kT
x t x t t t

ζ
− = − . (2.14) 

In writing Eq. (2.14) it is assumed that the viscous drag on the particle is 

given by Stokes' Law. ζ is the drag coefficient. Equation (2.14) which connects 

the mean square fluctuations in the displacement of the Brownian particle with the 

dissipative coupling to the heat bath is essentially the fluctuation-dissipation 

theorem. Equation (2.7) in the presence of a potential V(x) which reads: 

 
f f f V

D
t x x xζ

 ∂ ∂ ∂ ∂
= + 

∂ ∂ ∂ ∂ 
 (2.15) 

is called the Smoluchowski differential equation, usually abbreviated to just the 

Smoluchowski equation. Notice that the second term arises from Stokes’ law 

essentially as follows because the drift current is 
dr f=J v , where

ζ
=

F
v  and F is 

the applied force of potential ( )V x . The diffusion Eq. (2.15) then follows from 

the continuity equation div
f

t

∂
= −

∂
J  where dr diff= +J J J , 

diff

f
D

x

∂
= −

∂
J  is the 

diffusion current by requiring that at equilibrium the total current J  must vanish, 

in other words the drift current is exactly balanced by the diffusion current. This 

method of calculating diffusion coefficients due to Einstein will be extended to 

the quantum case in Chapter VI where the Maxwell-Boltzmann distribution in the 
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potential well will be replaced by the Wigner stationary distribution and the 

ensuing alterations to the collision term which causes the diffusion coefficient to 

become a function of the derivatives of the potential will be calculated. In many 

problems notably in curvilinear coordinates the drift and diffusion coefficients are 

functions of the coordinates because of the metrics involved. 

In 1908 Perrin [1,2] successfully calculated the Avogadro number from 

observations of the mean square displacement of a Brownian particle so 

confirming Eq. (2.14). 

We remark that Einstein's approach to the Brownian motion is based on 

statistical assumptions of a general nature, not fixed to a specific model [2]. On 

the other hand Smoluchowski's investigations which yielded essentially the same 

results, were published some months later than Einstein's. He considered (in the 

spirit of Boltzmann) a detailed kinetic model namely collisions of hard spheres as 

well described by Mazo [2]. Unlike Einstein whose theory is essentially statistical 

and follows from the central limit theorem, Smoluchowski used the dynamics of 

the particle motion in a specific dynamic way. The link between the two methods 

was provided by Langevin in 1908. His idea was [1,2] that a suspended particle in 

a fluid is acted upon by forces due to the molecules of the solvent. This force can 

be expressed as a sum of its average value and a fluctuation about this average 

value. Thus Langevin's starting point is the Newtonian equation: 

 ( ),
d dx

m t
dt dt

υ
ζυ λ υ+ = =  (2.16) 

in which the fluctuating force λ(t) has the following properties 

 ( ) 0tλ =  (2.17) 

 1 2 1 2( ) ( ) 2 ( )t t kT t tλ λ ζδ= −  (2.18) 

(δ denoting the Dirac-delta function) where the angular braces denote the 

statistical average of λ over its realizations. Moreover Isserlis’s theorem [1] 

concerning averages of products of Gaussian random variables must be satisfied 

namely that in an even number of observations everywhere time average is 

ensemble average  
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 ( ) ( )

( ) ( )
0

( ) ( ) ( ) ( )

1
lim

T

T

F t F t F t F t

F t F t

F t F t d
T

τ

τ

τ τ
′

′→∞

′ = +

=< + >

= +
′ ∫

 (2.19) 

 

 
1 2 2 1 2 2

... ( ) ( )... ( )

( ) ( ) ,
i j

i j

n n

k k

k k

t t t

t t

λ λ λ λ λ λ

λ λ
<

≡

=∑∏
 (2.20) 

where the sum is over all distinct products of expectation value pairs, each of 

which is formed by selecting n pairs of subscripts from 2n  subscripts. For 

example, when 2n = , we have 

 1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ= + +  

In general, from the theory of permutations and combinations, there will be 

(2 )!/(2 !)n
n n  such distinct pairs. We also have for an odd number of observations 

 1 2 2 1 1 2 2 1
( ) ( )... ( ) ...

0.

n n
t t tλ λ λ λ λ λ+ +≡

=
 

Isserlis’s theorem also known Wick’s theorem allows the truncation of the 

Kramers-Moyal expansion after the second term as it automatically shows that all 

the higher order terms are of order of τ 2  and higher (cf the notation following Eq. 

(2.6)). Equation (2.16) (which is the equation of motion of the random variables x 

and υ) when averaged over the realizations of the phase path ( , )x v  then yields 

(for convenience setting 
0 0t = ) 

 2

2
[ ( ) (0)] 1

t

m
tkTm

x t x e
m

ζζ

ζ

− 
− = − +  

 
 (2.21) 

(a result actually obtained for the first time by Ornstein in 1918 [2].) Equation 

(2.21) is mean square differentiable, so that the velocity of the Brownian particle 

now exists, is equivalent to Einstein's result only at times well in excess of m/ζ , 

the frictional time. The reason for this is [2] that Einstein worked only in the 

configuration space of the Brownian particle, he did not actually introduce the 

velocity of the particle except in so far as to demonstrate that for the pollen 

particles he envisaged, the time scales were so long that the last two terms in Eq. 

(2.21) were negligible. This assumption is equivalent to stating that the particles 
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thermalize exceedingly rapidly. By working in the complete phase space [2] 

Langevin was also able to find the velocity relaxation. 

Einstein’s treatment of the Brownian motion introduces an external force 

of potential ( )V x  only in a virtual sense in order to calculate the diffusion 

coefficient. The gist of his argument being that the introduction of a potential well 

causes a Maxwell-Boltzmann distribution to be set up in the well which must then 

render the collision term in the Fokker-Planck equation zero. The well is 

necessary in order to have a stationary solution, because for a free Brownian 

particle no stationary solution exists. The introduction of a virtual force renders 

Einstein’s analysis more complicated for the beginner than either that of 

Smoluchowski who includes the well explicitly or Langevin who obtains the 

constant in his rapidly fluctuating random force by arguing that a Maxwellian 

distribution of the velocities sets in almost immediately which is true for large 

particles such as pollen grains. 

In general the form of the Fokker-Planck equation for diffusion in one 

dimension under the influence of an external force is 

 

(1)

2
(2)

2

( , | )
( , ) ( , | )

( , ) ( , | )

f y t x
D y t f y t x

t y

D y t f y t x
y

∂ ∂
 = −  ∂ ∂

∂
 +  ∂

 (2.22) 

where (1)D  is the drift coefficient and (2)D  is the diffusion coefficient. 

Throughout this Chapter we will specify the distribution by f and we shall 

distinguish the various distribution functions by quoting their arguments. Clearly 

Smoluchowski’s differential Eq. (2.15) is a special case of Eq. (2.22). 

Since in general we will be dealing with the multivariable form of the 

Fokker-Planck equation, it is necessary to quote the form of that equation for 

many dimensions characterized by a set of random variables 
1{ } { , }nξ ξ=ξ � . The 

multivariable form of the Fokker-Planck equation [6] is with ({ }, |{ })f f t= y x , 

{ }y  denoting a set of realisations of the random variables { }ξ : 

 

(1)

2
(2)

,

,

( , )
( , ) ( , )

1
( , ) ( , ) .

2

i

i i

k l

k l k l

f t
D t f t

t y

D t f t
y y

∂ ∂
 = −  ∂ ∂

∂
 +  ∂ ∂

∑

∑

y
y y

y y

 (2.23) 
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For simplicity, let us suppose that the process is characterised by a state vector y 

having only two components (y1, y2) (these, for example, could be the realisations 

of the position and velocity of a Brownian particle), and so the two variable 

Fokker-Planck equation written in full is assuming that the 2 dimensional 

Kramers-Moyal expansion is truncated at the second term, 
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(1) (2)

.

1 ,

1

2
i k l

i k li k l

f
D f D f

t y y y=
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   = − +   ∂ ∂ ∂ ∂

∑ ∑  (2.24) 

or 
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∂ ∂ ∂
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(2.25) 

In general, (2) (2)

1,2 2,1D D=  so that 
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 (2.26) 

where the various drift and diffusion coefficients are 

 (1) (2)

,
0 0

lim ,   lim ,   ( , 1, 2).
i ji

i i j
t t

y yy
D D i j

t t∆ → ∆ →

∆ ∆∆
= = =

∆ ∆
 (2.27) 

A particular example of this is the Langevin equation for a free Brownian 

particle which may be represented as the system describing the random motion of 

the phase point ( ( ), ( ))x t v t  

 
( )

,   
dx dv t

v v
dt dt m

λ
γ= = − +  (2.28) 

with 

( )1 2 1 2

0,

2 .

t

t t m kT t t

λ

λ λ γ δ

( ) =

( ) ( ) = −
 

This equation may be used to calculate the drift and diffusion coefficients as 

follows. We have writing the Langevin equation in terms of infinitesimals over a 

small time t∆  for the first drift coefficient 

 (1) 1
1

0 0

lim lim
t t

y x
D v

t t∆ → ∆ →

∆ ∆
= = =

∆ ∆
 (2.29) 
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which follows from the fact that the average of the noise is zero. 

Now, the change in velocity in a small time ∆t is 

1
( )

t t

t

v v t F t dt
m

γ
+∆

′ ′∆ ≈ − ∆ + ∫ . 

Thus the second drift coefficient (1)

2D  is 

 (1)

2
0

lim
t

v
D v

t
γ

∆ →

∆
= = −

∆
. (2.30) 

Likewise, the diffusion coefficients (2)

1,1 ( , )D x v  and (2)

1,2 ( , )D x v  are 
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t
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∆
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=

 (2.31) 

because the numerator is obviously of order ( )
2

t∆ . In like manner  
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because ( ) 0F t = . In order to evaluate the second diffusion coefficient 
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consider 

 

( ) ( )
2 22 2

2

2
( )

1
( ) ( ) .

t t

t

t t t t

t t

v t
v v t F t dt

m

F t F t dt dt
m

γ
γ

+∆

+∆ +∆

∆
′ ′∆ = ∆ −

′ ′′ ′ ′′+

∫

∫ ∫
 (2.34) 



 26 

The first term on the right-hand side of Eq. (2.34) is of order 2( )t∆ , the second 

term vanishes on averaging, and 

 
( ) ( ) 2 ( )
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t t t t t t t t

t t t t

F t F t dt dt D t t dt dt

D t

δ
+∆ +∆ +∆ +∆

′ ′′ ′ ′′ ′ ′′ ′ ′′= −

= ∆

∫ ∫ ∫ ∫  (2.35) 

( D kTmγ= ), whence the diffusion coefficient is 

 (2)

2,2 ( , ) 2 /D x v kT mγ= . (2.36) 

Thus, we obtain 
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f f vf kT f
v

t x v m v
γ
 ∂ ∂ ∂ ∂

+ = + 
∂ ∂ ∂ ∂ 

, (2.37) 

which is the desired Fokker-Planck equation describing the evolution of the 

probability distribution of the displacement and velocity of a free Brownian 

particle in phase space ( ( ), ( ))x t v t . The left hand side of this equation corresponds 

to the Liouville equation for the single particle distribution function and is the 

convective derivative which is no longer zero while the right hand side is the 

Boltzmann collision term arising from the reduction of the many particle 

distribution function to a single particle one as described earlier. If an external 

conservative force is introduced nothing new is essentially involved and Eq. 

(2.37) merely becomes  
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2

1 ( )
 

f f dV f vf kT f
v

t x m dx v v m v
γ
 ∂ ∂ ∂ ∂ ∂

+ − = + 
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. (2.38) 

Clearly in this case the second drift coefficient is no longer zero in the 

Kramers-Moyal expansion. Equation (2.38) is called the Klein-Kramers equation. 

It may be equally written in the phase space of positions and momenta which is 

more convenient for the quantum generalizations. The Klein-Kramers equation 

may be solved by converting it via appropriate orthogonal expansions of the phase 

space variables into a differential recurrence relation for the observables, i.e., the 

decay functions of the system as described in Section II.IV below. These may be 

represented [1,6] as matrix continued fractions in the frequency domain. The same 

representation may also be obtained directly from the Langevin equation by 

averaging that equation over its realizations in phase space [1]. (Recall that the 

Langevin equation is simply the Newtonian equation of motion of the particle 

augmented by a systematic frictional force proportional to the velocity of the 
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particle superimposed on which is a rapidly fluctuating random force both forces 

representing the effect of the heat bath on the particle and in the Klein-Kramers 

equation are represented by the collision term). The continued fraction 

representation has led to many exact solutions as outlined in [1,6]. In the present 

context one should also mention that it may be shown (see Appendix II.I) [10] 

that a generalized Langevin equation, i.e., the equation of motion of a Brownian 

particle with memory friction is equivalent to the Newtonian equation of motion 

of a particle moving in a potential V(x) bilinearly coupled to a bath of harmonic 

oscillators (essentially a string or transmission line attached to the particle which 

serves as a schematic description of the heat bath) with a high frequency cutoff 

ansatz for the spectral density of the bath oscillators. 

The particle plus harmonic oscillator heat bath (string), etc. readily lends 

itself to quantum generalizations. Due to the introduction of the string the number 

of degrees of freedom becomes essentially infinite. However, this inconvenience 

is compensated [11,12] by the fact that we now have a conservative dynamical 

system which can be quantized in the usual manner. The essential ideas go back to 

Lamb’s [13] attempt to explain radiation damping in classical electrodynamics 

and Planck’s (1900) inspired treatment of blackbody radiation. One of the most 

notable quantum generalizations based on such particle-string models is that of 

Caldeira and Leggett [14] yielding quantum master equations describing 

nonequilibrium phenomena in phase space leading to generalizations of the 

Wigner distribution (see Chapter VI). 

II.III Klein-Kramers equation and its application to 

reaction rate theory 

In transition state theory (TST) [15] which constitutes the simplest form of 

reaction rate theory (see Figure II.II below) a chemical reaction is modelled as 

escape of particles due to thermal agitation from a source situated at the bottom of 

a potential well A say over a high barrier of height  ∆V situated at C which is 

called the transition state, the coordinate x is called the reaction coordinate. 
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Figure II.II Single well potential function as the simplest example of 

escape over a barrier. Particles are initially trapped in the well near the point A by a 

high potential barrier at the point C. They very rapidly thermalise in the well. Due to 

thermal agitation however very few may attain enough energy to escape over the 

barrier into region B whence they never return. 

 

For simplicity the particles of mass m are supposed having crossed the barrier 

never to return. This leads to the following formula [4] for the rate constant 

(formally defined as the current or flux of particles at the barrier divided by the 

population of the particles in the well) 

 
( )1
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V V

AkT kT
A

V x
e e

m
ν

π

∆ ∆
− −′′

Γ = =  (2.39) 

which was originally proposed by Arrhenius from analysis of experimental data. 

An elementary derivation of Eq. (2.39) is given in Chapter V. Equation (2.39) 

however has the flaw that the prefactor  νA is simply the frequency of oscillation 

in the well (the attempt frequency) and is thus entirely independent of the 

dissipative coupling of the particles in the well to the surrounding heat bath. Thus 

escape of particles may occur in the absence of fluctuations so violating the 

fluctuation dissipation theorem. Another way of stating this is that in the transition 

state or equilibrium theory the Maxwell-Boltzmann distribution which prevails in 

the depths of the well is assumed to hold everywhere. This is not true near the top 

of the barrier due to the leaking of particles over the barrier. The problem of 

incorporating nonequilibrium effects which is essentially a boundary layer 

problem was first attacked by Kramers [16]. In 1940 he suggested that Eq.(2.39) 

should be replaced by: 

 
V

kT
AA eν

∆
−

Γ =  (2.40) 
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where A is a (transmission) factor describing the dissipative coupling of the bath 

to the well. The aim is to calculate the transmission factor A as a function of the 

coupling. Kramers accomplished this by generalizing, as we have just seen, 

Einstein's theory of the Brownian motion to yield the complete phase space 

description, (i.e. Eq. (2.38) above), of the Brownian motion which is then used as 

a model of the dissipative coupling. The Klein-Kramers equation applies to 

systems, which (ignoring the bath coordinates) have a separable additive 

Hamiltonian of the form: 

 21
( )

2
H mx V x= +�  (2.41) 

and is entirely equivalent to the Langevin equation: 

 ( )
V

mx x t
x

ζ λ
∂

+ + =
∂

�� �  (2.42) 

provided  λ(t) is Gaussian white noise. Kramers obtained asymptotic solutions for 

the prefactor A from Eq. (2.38) in two limiting cases. The first is called very low 

damping which may be explained as follows: Here he proceeded by rewriting Eq. 

(2.38) in angle-action variables (or equivalently angle-energy variables). Then he 

supposed that the energy trajectories form essentially closed (apart from a critical 

energy curve known as the separatrix on which the particle may escape) loops so 

that they do not differ significantly from those of the undamped librational motion 

in the well with energy equal to the barrier or saddle energy  ∆V . Next since the 

motion is very lightly damped the loss of energy in one cycle of the motion is 

very small i.e. the energy is a slow variable (it is almost conserved) while the 

angle or phase is a fast variable. Thus eliminating the phase by averaging along an 

energy trajectory over the fast phase variable yields a diffusion equation in the 

energy. The solution of this energy diffusion equation ultimately leads to the 

escape rate for very low damping (VLD). We have: 
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 (2.43) 

where 

 
m

ζ
γ =  
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so that 

 ( )cA J Eγ=  

where ( )cJ Eγ is the energy loss per cycle of the almost periodic motion along the 

barrier (saddle) energy trajectory, Ec = ∆V and J(Ec) is the action evaluated at the 

barrier energy. The approximation  νAJ(Ec) ∼ Ec = ∆V may be used to render Eq. 

(2.43) in an even simpler form. Equation (2.43) which unlike Eq. (2.39) precludes 

escape without coupling to the bath holds if in Eq. (2.40) 1A�  that is when: 

 ( )cJ E E kTγ = ∆ � . (2.44) 

Thus the energy loss per cycle of the almost periodic motion of the saddle 

energy trajectory is much less than the thermal energy. Kramers also obtained an 

asymptotic solution for the escape rate for very high damping (VHD) namely 

E kT∆ � : 

 
( ) ( ) V

A C kT
V x V x

e
ζ

∆
−′′ ′′
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which is often written: 

 
2

V

A C kTe
ω ω

πγ

∆
−

 (2.46) 

so that: 

 CA
ω

γ
= . (2.47) 

Thus unlike the transition state theory escape is precluded for very small 

or very large coupling to the bath. Moreover at a certain critical coupling where 

(∆E ∼ kT) a transition in the escape rate from  ζ to inverse ζ dependence occurs. 

This region is much more difficult to treat as no small perturbation parameter 

exists [1,17] (see our discussion at the end of this Section). Equation (2.46) which 

does not include inertial effects may be determined entirely either from the 

Smoluchowski differential equation (for the distribution function in configuration 

space which neglects inertia) or from the very high friction limit of the Kramers 

asymptotic solution of the Klein-Kramers equation for the escape rate for ∆E > 

kT. The asymptotic solution is valid in the so called intermediate to high damping 

case (IHD): 
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 (2.48) 

where intermediate damping is defined as the γ = 0  value of Eq. (2.48) which 

corresponds to the TST result where the transmission factor is unity. 

Equation (2.48) includes inertial effects but is not valid for very small 

damping. In its derivation which requires linearization of the Langevin equation 

about the saddle point (in this one dimensional case a simple maximum) one 

assumes that the thermal distribution prevails almost to the top of the well. This is 

not true for small damping because the nonequilibrium region extends into the 

depths of the well far beyond the saddle point region where the Langevin equation 

may be linearized. It goes over into the VHD damping result for large γ . The 

Kramers calculation (which explains the riddle of escape in the absence of 

fluctuations, associated with the transition state theory) applies to mechanical 

systems with separable and additive Hamiltonians of the form of Eq.(2.41). It was 

generalized to systems of n degrees of freedom and non-separable Hamiltonians 

by Langer [1,17,18] in the IHD case he obtained: 

 
det

det

V

A kT

C

E
e

E
λ

∆
−

+Γ = . (2.49) 

Thus the escape rate is expressed in terms of the Hessians of the saddle 

and well energies and the (unstable) positive eigenvalue  λ+
, of the set of noiseless 

Langevin equations of the system linearized about the saddle point. Equation 

(2.49) is extremely useful in discussions of the time of reversal of the 

magnetization of single domain ferromagnetic particles in non-axially symmetric 

potentials of the magnetocrystalline anisotropy and has been verified 

experimentally for such systems [19]. Furthermore Eq. (2.49) demonstrates that to 

calculate the escape rate all that is necessary is a knowledge of the energy 

landscape of a system which is in itself however, an extremely difficult problem. 

Equation (2.49) itself forms a key part of Langer's [18] general theory of the 

decay of metastable states and is a generalisation of Becker and Döring's (1935) 

calculation [1] of the rate of condensation of a supersaturated vapour. We remark 

that the Kramers asymptotic solutions for the escape rate may be verified by 

solving the Klein-Kramers equation for the smallest non vanishing eigenvalue 

which is directly proportional to the escape rate as it is exponentially small 
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compared to all the other eigenvalues. This has been accomplished for a large 

variety of systems by Risken [6] and Coffey et al. [1] in the context of dielectric 

and magnetic relaxation. λ1 may also be calculated by averaging the Langevin 

equation over its realisations as described by Coffey et al. [1] and solving the 

resulting hierarchy of equations for the statistical averages by matrix continued 

fraction methods. 

Kramers was however, unable to find asymptotic solutions valid in the so 

called Kramers turnover region, where the energy loss per cycle of a particle 

having the saddle point energy is of the order of the thermal energy. Here the 

coupling between the Liouville and dissipative terms in the Klein–Kramers 

equation enters so that one may no longer ignore the Liouville term as was done 

in his solution for the very low damping regime. (The Liouville term vanishes 

when averaged over the fast variable in the VLD case by the principle of the 

conservation of density in phase). This problem, named the Kramers turnover 

problem, was solved nearly 50 years later by Mel’nikov and Meshkov [20]. They 

gave an integral formula namely 
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∫  (2.50) 

bridging the VLD and intermediate damping (essentially the TST) asymptotic 

solutions simultaneously establishing a range of validity for the TST solution. 

Their solution [17,20,21] for the energy distribution function which is obtained by 

the Wiener-Hopf method is based on the Green function of an energy/action 

diffusion representation of the Klein-Kramers equation in the Kramers turnover 

region. Thence they obtain an integral called the depopulation factor, which when 

multiplied by the TST or intermediate damping result yields a formula which 

reduces to the VLD formula as the friction coefficient tends to zero so solving the 

Kramers turnover problem. Furthermore, Mel’nikov [11,12] (see also Meshkov 

and Mel’nikov [20]) established in the context of Kramers’ Brownian motion 

model of noise assisted escape that the TST escape rate is accurate provided the 

ratio of the thermal energy to the barrier height is less than the ratio of the friction 

coefficient to the saddle angular frequency with that ratio in turn much less than 

unity. Now the TST or intermediate damping result is a particular case of the IHD 

formula provided the preceding condition is satisfied (in fact that result constitutes 
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the absolute lower limit of validity of the IHD solution as a function of friction). 

Thus they postulate from heuristic reasoning, essentially appealing to continuity 

that a formula valid in all damping regimes may be given by simply multiplying 

the general IHD result by the depopulation factor, i.e. Eq. (2.50). Besides their use 

in reaction rate theory these asymptotic solutions which hold of course only when 

the barrier height is significantly greater than the thermal energy are also very 

useful as benchmark solutions in the numerical calculation of escape reaction 

rates i.e. the smallest non vanishing eigenvalue for matrix continued fraction 

solution of the Klein-Kramers equation. They also lend themselves to quantum 

generalizations which we now briefly summarize as they will be used in Chapter 

VI. 

First Mel’nikov [11,12] extended the depopulation factor method to take 

into account quantum effects in a semiclassical ad hoc way by simply inserting 

the quantum mechanical transmission factor for a parabolic barrier [22] into the 

classical integral equation for the energy distribution function yielded by the 

Wiener-Hopf method in the Kramers turnover region. On solving for the energy 

distribution function and proceeding to the VLD limit he was able to obtain an 

integral formula for the VLD quantum Kramers rate which at high temperatures 

reduces to the classical VLD result. Moreover, he gave explicit expressions for the 

quantum VLD rate for cubic and cosine potentials (for details see Section 3.4 of 

[11]). These results simplify if the potential well is assumed to be very wide so 

that the noise can be treated as classical; see Eqs. (15) and (16) of [12] here it is 

possible to give a simple analytic formula for the VLD quantum Kramers rate; see 

Eq. (16) of Ref. [11]. 

The procedure for finding the quantum VLD rate involving insertion of the 

quantum transmission factor into the classical integral equation in the Kramers 

turnover region, explicitly solving the resulting integral equation by the Wiener-

Hopf method and proceeding to the VLD limit avoids an explicit quantum 

mechanical evolution equation. This conclusion may be drawn because the 

quantum TST (or in the context of Brownian motion the intermediate damping 

result with quantum corrections) whence the depopulation factor interpolates to 

the VLD regime follows from purely equilibrium considerations. In like manner, 

the quantum IHD rate (of which quantum TST is a particular case) may be 

obtained without explicit knowledge of an evolution equation as demonstrated by 
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Pollak [23,24] using the string-particle model. Mel’nikov’s idea is also likely to 

be of use in obtaining the VLD result even if an explicit quantum Fokker-Planck 

equation in phase space is known due to the difficulty in transforming such an 

equation into energy/angle variables (when the diffusion coefficient becomes a 

function of the derivatives of the potential) in order to obtain an energy diffusion 

equation in the manner of Kramers. However, the ad hoc insertion of the 

parabolic barrier transmission factor requires rigorous justification. Following 

Mel’nikov and Meshkov [20], Grabert [25] and Pollak et al. [26] presented a 

complete solution of the classical Kramers turnover problem and have shown that 

the Mel’nikov and Meshkov universal formula can be obtained without their ad 

hoc interpolation between the weak and strong damping regimes. In the 

semiclassical limit, the latter theory was extended to the quantum regime by Rips 

and Pollak [27] where a review and comparison of the various approaches is 

given. We remark that comprehensive reviews of applications and developments 

of Kramers’ reaction rate theory have been given by Hänggi et al. [28], Mel’nikov 

[11], Coffey et al. [17], and Pollak and Talkner [29]. These review articles 

provide one with a detailed theoretical description of reaction rate theory, a 

variety of examples of its application, relevant references, and even indicate 

future open problems to be tackled. 

The classical Mel’nikov and Meshkov universal formula involving the 

depopulation factor provides an accurate approximation to the exact rate for all 

values of damping including the VHD, VLD, and the Kramers turnover regions as 

has been repeatedly verified theoretically (see, e.g., Refs. [30-36]). Furthermore, 

Coffey et al. [17,21] have extended the Mel’nikov method to the magnetization 

relaxation of single-domain ferromagnetic particles. (The magnetic relaxation 

differs fundamentally from that of mechanical Brownian particles because the 

undamped equation of motion of the magnetization of a single domain 

ferromagnetic particle is the gyromagnetic equation and the Hamiltonian is non 

separable. Thus the inertia plays no role; the part played by inertia in the 

mechanical system is essentially mimicked in the magnetic system by the 

gyromagnetic term causing the coupling or ‘entanglement’ of the transverse and 

longitudinal modes). The calculation of the longest relaxation time for various 

magnetocrystalline anisotropies has been accomplished in Refs. 37-40. We 

remark that in spite of very good overall agreement between numerical results and 
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the universal turnover formula a marked difference of order of 20% between 

numerical and analytical results in the VLD region at moderate barriers exists [30-

33,36]. In order to improve the accuracy of the universal turnover formula in this 

region, Mel’nikov [41,42] suggested a systematic way of accounting for finite-

barrier corrections. If such a correction is included, the accuracy of the universal 

formula is considerably improved (see, e.g., [43]). Thus, the classical Kramers 

turnover problem may be consider as solved despite of some open questions 

remaining to be clarified [29]. On the other hand in the quantum case, apart from 

comparisons using numerical simulations (see, e.g., Ref. [44-47]) which are 

essentially numerical, the quantum mechanical extensions of the Kramers theory 

and its various generalizations have not been verified due to the lack of a suitable 

master equation for the quantum Brownian motion in a potential. 

II.IV Klein-Kramers equation: Representation of the 

master equation as partial differential relations in 

configuration space- Brinkman’s method 

In this section in view of its importance in the formulation of the quantum 

master equation we illustrate how the Klein-Kramers equation may be written as a 

partial differential recurrence relation in configuration space, which may be 

solved by continued fraction methods provided the form of the potential is 

specified.  

The Klein-Kramers equation, i.e. Eq. (2.38) can be written in terms of the 

momentum p as (with kTβ = 1 ) 
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In 1956 Brinkman [8] demonstrated a method by which a partial 

differential recurrence relation representation of the Klein-Kramers equation in 

configuration space x may be obtained by expanding the momentum part of the 

solution of the Klein-Kramers equation in an orthonormal basis of Weber 

(harmonic oscillator) functions ( )nD y  as 
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where ( , )n x tϕ  are configuration space distribution functions for 0n ≥ . The result 

is known as Brinkman’s hierarchy and can be solved using a method based on 

matrix continued fractions developed in 1983 by Risken [6]. In this section we 

proceed to calculate Brinkman’s equations from the Klein-Kramers equation. In a 

later Chapter (VIII) we extend this calculation to the second order in perturbation 

theory in the square of Planck’s constant. 

First we recall that the harmonic oscillator functions ( )nD y  satisfy the 

recurrence relations [48]: 
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the differential equation  
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and the orthogonality relation  
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where 
,m nδ  denotes Kronecker’s delta. By substituting Eq. (2.52) into the classical 

Klein-Kramers equation, namely Eq. (2.51) , and using Eqs. (2.53)-(2.55), we 

have the following partial differential recurrence relation for the separation 

functions 
nϕ  
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This set is now called Brinkman’s hierarchy. Following Brinkman [8,49], on 

defining the following spatial differential operators 
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we find that the Brinkman hierarchy becomes the three term differential 

recurrence relation  
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If we now take the Laplace transform over the time variables and suppose that the 

initial velocity distribution is Maxwellian so that ( ,0) 0, 0n x nϕ = > , we find in 

the s-domain that Eq. (2.58) becomes the set  
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where the tilde �  denotes the Laplace transform. This set may then be solved by 

successive approximations to yield for the Laplace transform of the configuration 

space distribution  
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In the high dissipation limit, where 0γ −1 → , only the leading term on the right 

hand side of Eq. (2.60) survives and we are left with (since ( )D
J J O γ −1
∼ )  

 � �
0 0( , ) ( ,0) ( , )Ds x s x J J x sϕ ϕ γ ϕ0− =  (2.61) 

which on inversion to the time domain yields the Smoluchowski equation, i.e.,  
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( mζ γ= ). We note that Eq. (2.60) may also be formally arranged in the 

coordinate representation as the continued fraction of operators  
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This equation may also be written in a Heisenberg-like representation where 

postulating a suitable spatial basis and corresponding state vector, we may replace 

the spatial differential operators JD and J by matrices (see for details [50]) so that 

Eq. (2.63) may be represented as a matrix continued fraction for the observables. 
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The matrix continued fraction approach is very convenient for the purpose of 

computation [1,6] and is easily extended to the quantum case [51-56].  

 

APPENDIX II 

 

Appendix II.I: How Wolynes’ result may be derived using the 

harmonic version of quantal TST without using path integral 

methods 

In this Appendix we partially rewrite a paper by Pollak [23] with 

derivations of the various equations of that paper. We use the notation of his 

paper. Let 

V
#
=barrier height 

V(q)=the potential 

tη( )  = a time-dependent friction related to the zero-centered Gaussian random 

force Fext(t) by the fluctuation-dissipation relation, i.e., 

 ( ) ( ) ( )0
ext ext B

F F t k T tη= . (2.64) 

The generalised Langevin equation is (for the classical particle) 

 ( )
( )

( )
2

2

0

t

ext

dq td q dV
M t d F t

dt dt dq

τ
η τ

−
+ + =∫ . (2.65) 

This equation may be derived from a Hamiltonian with a harmonic bath [57], i.e. 

 

2 2
2

1

1
( )

2 2 2

N
q j j

j j j

j j j j

p p C
H V q m x q

M m m
ω

ω=

    
= + + + +         

∑ .(2.66) 

(See also [58].)Here ( ),
j j

p x  are the momenta and coordinates of the j
th

 bath 

oscillator whose mass and frequency are mj and jω  respectively. Cj couples the j
th

 

bath oscillator to the system. By assuming that at time t=0, the bath is in thermal 

equilibrium, it can be shown [57] that q(t) is exactly governed by Eq. (2.65) (and 

Eq. (2.64)) where the time-dependent friction ( )tη  is  

 ( ) ( )
2

2
1

cos
N

j

j

j j j

C
t t

m
η ω

ω=

=∑ . (2.67) 

The spectral density of the bath ( )J ω  is defined as [58]  
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 ( ) ( )
2

12

N
j

j

j j j

C
J

m

π
ω δ ω ω

ω=

≡ −∑ . (2.68) 

The time-dependent friction (Eq. (2.67)) can be expressed in terms of the spectral 

density ( )J ω   

 ( )
( )2

cos
J

t t d
ω

η ω ω
π ω

∞

−∞

= ∫ . (2.69) 

To prove Eq. (2.69) we multiply Eq. (2.68) by  

 
cos t

d
ω

ω
ω

 (2.70) 

to get 

 
( ) ( )

2

1

cos cos
2

N
j

j

j j j

CJ
t t

m

ω π
ω ω δ ω ω

ω ω ω=

= −∑  (2.71) 

and integrate over all values of ω , i.e. 

 
( ) ( )

2

1

cos
cos

2

N
j

j

j j j

CJ t
t d d

m

ω π ω
ω ω δ ω ω ω

ω ω ω

∞ ∞

=−∞ −∞

= −∑∫ ∫ .(2.72) 

Using the sifting property of the delta function [59] namely 

 ( ) ( ) ( )f t t a dt f aδ
∞

−∞

− =∫  (2.73) 

gives us the result 

 ( )
coscos j

j

j

tt
d

ωω
δ ω ω ω

ω ω

∞

−∞

− =∫  (2.74) 

and from which 

 
( ) 2

1

cos cos
2

N
j

j

j j j

CJ
t d t

m

ω π
ω ω ω

ω ω

∞

=−∞

= ∑∫  (2.75) 

and therefore 

 

( )

( )

2

1

2
cos cos

.

N
j

j

j j j

CJ
t d t

m

t

ω
ω ω ω

π ω ω

η

∞

=−∞

=

=

∑∫
 (2.76) 

Once again, 

 ( )
( )2

cos
J

t t d
ω

η ω ω
π ω

∞

−∞

= ∫ . 
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“With this notation it is possible to obtain the continuum limit for the dynamics by 

defining ( )J ω  as a continuous function instead of defining each Cj separately” 

[23]. 

We take the Laplace transform of ( )tη , i.e.  

 ( )( ) ( ) ( )
0

st
t s e t dtη η η

∞
−= = ∫	L  (2.77) 

which on inserting Eq. (2.69) 

 

( )
( )

( )
0

0

2
cos

2
cos .

st

st

J
s e t d dt

J
e t d dt

ω
η ω ω

π ω

ω
ω ω

π ω

∞ ∞
−

−∞

∞ ∞
−

−∞

=

=

∫ ∫

∫ ∫

	

 (2.78) 

Now we change the order of integration and integrate with respect to t first 

 

( )
( )

( )
0

0

2
cos

2
cos .

st

st

J
s e t dt d

J
e t dt d

ω
η ω ω

π ω

ω
ω ω

π ω

∞ ∞
−

−∞

∞ ∞
−

−∞

=

 
=  

 

∫ ∫

∫ ∫

	

 (2.79) 

The integral (in Eq. (2.79)) is the Laplace transform of cos tω  the result of which 

can be found from tables and is  

 

( )
0

2

cos cos

.

st
e t dt t

s

s

ω ω

ω

∞
−

2

≡

=
+

∫ L

 (2.80) 

We can also solve this integral by remembering that ( )1
cos

2

i t i t
t e e

ω ωω −= +  and 

carrying out the integrations. Now we have 

 ( )
( )

2

2 J s
s d

s

ω
η ω

π ω ω

∞

2

−∞

 
=  

+ ∫	 . (2.81) 

Equation (2.81) may also be written (using Eq. (2.67) and getting its Laplace 

transform with the result of Eq. (2.80)) as  

 ( )
2

2 2
1

N
j

j j j j

C s
s

m s
η

ω ω 2
=

 
=   + 
∑	 . (2.82) 

We wish to calculate the quantal rate and do so by using the following 

methodology, namely the Hamiltonian given in Eq. (2.66) may be treated as a 
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quantal Hamiltonian. For a finite discrete set of oscillators one may evaluate the 

quantal thermal decay rate using harmonic quantum transition state theory (TST). 

After obtaining the TST expression one may take the continuum limit, to obtain 

an estimate for the quantal decay rate of a particle governed by the generalised 

Langevin equation. 

To implement this, we must evaluate quantal partition functions at the well 

(q=0) and the barrier (q=q#). The partition functions may be evaluated via a 

normal mode analysis at the barrier and the well. To prepare the ground for the 

derivation of the rate expression we undertake the normal mode analysis. We 

assume that the potential may be approximated as  

 ( ) 2 21

2
V q M qω0≈  (2.83) 

in the vicinity of the well and as 

 ( ) ( )
221

2
V q V M q qω≈ − −#

# #  (2.84) 

at the barrier. Here ω0  is the frequency at the well and ω#  is the imaginary 

frequency at the barrier. The harmonic approximations given in Eqs. (2.83) and 

(2.84) implies that the Hamiltonian in the vicinity of the well and barrier may be 

written in separable form as a sum of 1N +  harmonic oscillators. This is achieved 

[60] by first transforming to mass-weighted coordinates 

 

1
2

1
2

j j j

q M q

x m x

′ =

′ =
 (2.85) 

and then diagonalizing the ( ) ( )1 1N N+ × +  force constant matrix defined by the 

second derivatives of the potential at the well and the barrier. 

The Hamiltonian Eq. (2.66) with Eq. (2.83) becomes  

 

2

2

2
2

1

2
1

2 2
1

2 2 2

1

1
( )

2 2 2

1 1

2 2 2 2

N
q j j

j j j

j j j j

N
q j j j

j j j

j j j j

p p C
H V q m x q

M m m

p p C m
M q m x q

M m m

ω
ω

ω ω
ω

=

0
=

    
= + + + +         

      = + + + + 
      

∑

∑

(2.86) 

and with Eq. (2.85) it is now  
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2
2

2

2 2

1 1
2 21

1 1

2 2 2 2

N
q j j

j j

j j
j j

p p C q
H q x

M m m M
ω ω

ω
0

=

   ′  ′  ′= + + + + × 
      

∑ .(2.87) 

From this equation and Eq. (2.83) it is clear that the well is located at 0jq x ′′ = = ; 

j=1,…,N. Derivatives of H are: 

 2

1 1 1 1
2 2 2 21

N
j j

j j

j
j j j j

C CH
q x q

q M m M m
ω ω

ω ω
0

=

 ∂ ′ ′ ′= + +
′∂  

 
∑  (2.88) 
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002 2
1

N
j

j j j

CH
k

q Mm
ω

ω0
=

∂
= + =

′∂
∑  (2.89) 

 2

1 1
2 2

j

j j

j j

CH
x q

x M m
ω

∂ ′ ′= +
′∂

 (2.90) 

 
2

2

2
,

j ii

j

H
k i

x
ω

∂
= = =

′∂
 (2.91) 

and 

 
2

0 01 1
2 2

, 1,2,...,
j

i i

j j

CH
k k i N

x q M m

∂
= = = =

′ ′∂ ∂
. (2.92) 

The second-derivative matrix of the potential (with respect to the mass-

weighted coordinates) at the well is denoted by K
	

 and has the following structure 

 

00 0

0

N

N NN

k k

K

k k

 
 

=  
 
 

…

� � �
	

�

 (2.93) 

where  

 

2

2

00 2
1

2

0 0 2

,

, 0,1,2,...,

0, , , 1,2,...,

N
j

j j j

i
i i

i i

i j

C
k

Mm

C
k k i N

Mm

k i j i j N

ω
ω

ω

0
=

= +

= = =

= ≠ =

∑

 (2.94) 

i.e.  
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 
 
 
 =
 
 
 
 
 
 
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�
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�
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 (2.95) 

We have ( )1N +  equations and the ( )1N +  eigenvalues of K
	

 are denoted by 2

iλ ; 

0,1,...,i N= . The iλ  are the normal mode frequencies at the well. 

(Now [61] for a general matrix A
	

 the eigenvalue problem Ax xλ=
	 	 	

 which 

is for 0x ≠
	 	

, ( ) 0A I xλ− =
	 	 	 	

. A Iλ−
	 	

 is singular if and only if its determinant 

( )det A Iλ−
	 	

 called the characteristic determinant of A
	

 is zero. The resulting 

polynomial equation in λ  is called the characteristic or secular equation of A
	

 and 

its solutions are the eigenvalues 
1 2, ,..., nλ λ λ  of A

	
.) 

The secular equation for K
	

 is 
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�

�

�

�

�

 (2.96) 
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This is a difficult determinant to work out. However we can rewrite this by 

carrying out elementary row operations and arrive at our new determinant say 

( )det L
	

 i.e. 

 

( )

2 2

2 1 2

1 1 1 1 1 12 2
2 2 2 2 2 21 1

1 2

2

2

2

0 0 0

0 0 0

0 0 0

N N
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2
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= =

2
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2
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2
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− + −
−

−

= −

−

∑ ∑ �

�

�
	

�

�

 (2.97) 

and from the theory of determinants, that the determinant of a real symmetric 

matrix is given by the products of the eigenvalues 

 ( ) ( )2det detL K Iλ= −
	 	 	

 (2.98) 

i.e. 
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=
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= − + − 

−  

× −

∑ ∑

∏

	
(2.99) 

Tidying up the term in the curly brackets of Eq. (2.99) we have 

 ( )
( )

( )
2

2 2

2 2
1 1

det 1
NN

j

j

j jj j j

C
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Mm
ω λ ω λ

ω ω λ
2 2
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   
 = − + − 
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.(2.100) 

Now 

 
( ) ( )2det det

0

L K Iλ= −

=
	 	 	  (2.101) 

implies that  
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1

1 0
N

j

j j j j

C

Mm
ω λ

ω ω λ
2

0 2
=

   
 − + = 

−    
∑  (2.102) 

or 
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 ( )2

1

0
N

j

j

ω λ 2

=

− =∏ . (2.103) 

The solutions of Eq. (2.103) are simply  

 2 2 , 1, 2,...,j j Nλ ω= = . (2.104) 

Let 2

0λ  be a solution of Eq. (2.102) i.e. 2 2

0λ λ= . 

Now,  

 ( ) ( ) ( )2 2 2 2 2

0

1

det
N

j

j

K Iλ λ λ ω λ
=

− = − −∏
	 	

 (2.105) 

and let 2 2
sλ = −  so Eq. (2.105) is  

 ( ) ( ) ( )2 2 2 2 2

0

1

det
N

j

j

K s I s sλ ω
=

− = − −∏
	 	

. (2.106) 

This is the first part of Pollak’s Eq. (13) [23] 

Now Eq. (2.82) viz, 

 ( )
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2 2 2
1

N
j

j j j j

C s
s

m s
η

ω ω=

 
=   + 
∑	  (2.107) 

from which we can write 

 ( )
( )
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2 2 2 2

0 0 2 2 2
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j j j j

Cs
s s s

M Mm s
ω η ω
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∑	 .(2.108) 

The right hand side of Eq. (2.108) is the leading entry in L
	

 with 2λ  replaced by 

2
s− . Therefore we can replace the leading term in L

	
 by the left hand side of Eq. 

(2.108). Since ( ) 2 2 2

1 2det ... NK λ λ λ=
	

.and this is equivalent to determinant whose 

diagonal elements are 2 2 2

1 2, ,..., Nλ λ λ . And so it follows that  

 

( ) ( )( ) ( )
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= + +∏

�
	 	

 (2.109) 

Quantal transition state theory: 

The transition state theory expression for the rate of decay Γ  is well 

known [62]: 

 ( )
#

0

B
k T Z

T
h Z

 
Γ =  

 
. (2.110) 
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Here h is Planck’s constant and Z
#
 and Z

0
 are the partition functions at the 

transition state and at reactants. At the transition state we have N real oscillators 

with frequencies #

jλ ; 1,...,j N=  and one imaginary frequency oscillator with 

imaginary frequency #

0λ . Therefore the quantal partition function is ( ( )
1

Bk Tβ
−

= ) 

 
#

#

0
#

# #1
0
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12

1 1
sin 2sinh

2 2
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Z e
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=

=
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∏
�

� �

. (2.111) 

Note the well known divergence of Z
#
 at low temperatures [23]. The quantal 

partition function at the well is  
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1 1
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Z e
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� �

. (2.112) 

Therefore the thermal decay rate, i.e. Eq. (2.110) becomes (on putting in Eqs. 

(2.111) and (2.112)) 
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(2.113) 

We can write this as 
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where  
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. (2.115) 

For very high temperatures, i.e. T –large which also implies β  is small we use the 

following approximations: sinh x x≈  and sin x x≈  for x small. Therefore  

 0#

# #
10 0

N
j

j j

λλω
ρ

ω λ λ=

  
≈   
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CHAPTER III 

 

The density matrix 

 

III.I Introduction 

In classical statistical mechanics a statistical ensemble is represented by a 

distribution function in the phase space of the canonical variables describing the 

system. In quantum mechanics such a distribution function is replaced by a 

(statistical) density matrix denoted by ρ  hereafter. The statistical density matrix 

was originally introduced by von Neumann in order to treat systems where there 

is a statistical element to the physics other than that which arises directly from 

quantum mechanics (where each particle presents a range of possible states unlike 

classical mechanics), e.g. the ensemble just mentioned whose constituent 

members (i.e. each particle) are distributed over a range of possible states. Before 

embarking on a general discussion of the density matrix we shall illustrate the 

basic concepts by considering the probability density for a pure state, i.e. one 

described by a wave function xψ ( ) , where the quantum mechanical probability 

(for which there is no classical analogy) that the particle may be found between x 

and x dx+  is given by 

 
( )

( ) .

P x dx

x x dx

ρ

ψ ψ ∗

=

= ( )
 (3.1) 

In the language of ensembles [1] an ensemble in a pure state (i.e. a state common 

to all members to the ensemble) can be regarded as representing an individual 

system whose exact quantum mechanical state is known. On the other hand an 

ensemble in an appropriate mixed state can be regarded as representing a system 

whose complete possible quantum specification is not known.  

In Dirac notation the configuration space probability amplitude and its 

conjugate are written  

 x xψ ψ( ) =  (3.2) 

and 
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 x xψ ψ∗( ) =  (3.3) 

so that  

 ( ) ).x x x x xψ ψ ψ ψ ρ∗( ) = = (  (3.4) 

The ket-bra operator in the middle of Eq. (3.4) is called the density operator 

 �ρ ψ ψ=  (3.5) 

and the position space diagonal matrix element of the operator is  

 �x x xρ ρ( ) =  (3.6) 

where x  is an eigenket of the position operator x̂ . 

The most didactic way of presenting the density matrix is to consider a 

particle in a one-dimensional box in the ground state. Here  

 22
sin

x
x

L L

π
ρ( ) =  (3.7) 

by elementary quantum mechanics. In general, expressions such as Eqs. (3.1) and 

(3.7) may be thought of as the diagonal matrix elements of a more generalised 

density operator,  

 �,x x x xρ ρ′ ′( ) =  (3.8) 

where x  and x′  may be thought of as continuous labels on the rows and columns 

of the density matrix. (A detailed explanation of the Dirac notation used in Eq. 

(3.8) is given at the end of Section III.IV below). For example, for an electron in 

the ground state of a box of length L, the x  and x′  matrix element of the density 

operator in position space representation is given by [2] 

 
2 2

, sin sin
x x

x x
L L L L

π π
ρ

′
′( ) =  (3.9) 

and one may verify that the time evolution of the matrix element , )x xρ ′(  for a 

particle moving in a one dimensional potential, e.g. a box of length L, ( )V x  is in 

general in the position space representation given by [3]  

 

�

( )

�

2 2

2 2
( ) ( )

d x x i i
V x V x

dt m x x

x x

ρ

ρ

′   ∂ ∂ 
′= − − −  ′2 ∂ ∂   

′×

�

�  (3.10) 

Clearly Eq. (3.9) is a steady state solution of Eq. (3.10). 
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According to Tolman [1] the example we have taken is a system of which 

we have maximal knowledge in so far as is allowed by quantum mechanics. Thus 

the system at any time of interest will be in a perfectly definite quantum state so 

that it may be represented by an ensemble in a pure state each member of the 

ensemble being in the same state as the system itself. The only uncertainties as to 

its properties and the only needs for taking averages will arise because of the 

inherently statistical character of the quantum mechanics itself for which there is 

no classical analogy. On the other hand if our knowledge of the system is less 

than maximal so that we represent it by an ensemble in a mixed state then the 

system itself might be in one of the various quantum mechanical states 

represented in the ensemble. Hence further uncertainties and needs for taking 

averages will be present of the same kind as encountered in the classical 

mechanics due to the distribution over the different states. 

In order to crystallize these ideas we note (see later on in this Chapter) that 

for a mixed state comprising a statistical mixture [2] the density operator can be 

written in terms of a linear combination of density operators for a set of N 

eigenstates so that the x , x′  matrix element of that operator is in the position 

representation 

 

�

1

,

( ) ( )
N

j j j

j

x x x x

w x x

ρ ρ

ψ ψ∗

=

′ ′( ) =

′=∑
 (3.11) 

where the weights 
jw  (characterising the distribution over the states and 

corresponding to the usual averaging process over the ensemble in the classical 

statistical mechanics) occurring in the linear combination are non negative 0jw ≥  

and  

 
1

1
N

j

j

w
=

=∑  (3.12) 

which follows from the fact that ρ  must be normalised. Here the density operator 

is  

 
1

1

ˆ

ˆ .

N

j j j

j

N

j j

j

w

w

ρ ψ ψ

ρ

=

=

=

=

∑

∑
 (3.13) 
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A useful example is that given by Wyatt [2] namely the density matrix elements 

in position space representation for a Boltzmann (thermal) distribution at 

temperature T over the particle-in-a-box energy eigenstates N namely  

 
1

2 2
, sin sin

( )

j BE k TN

j

e j x j x
x x

Z T L L L L

π π
ρ

−

=

′
′( ) =∑  (3.14) 

in which ( )Z T  is the partition function. For this mixed state, the probability 

density would be the diagonal element viz  

 2

1

2
sin

( )

j BE k TN

j

e j x
x

Z T L L

π
ρ

−

=

( ) =∑  (3.15) 

Integrating this expression over the length of the box and noting the definition of 

the partition function namely 

 
1

( ) j B

N
E k T

j

Z T e
−

=

=∑  (3.16) 

shows that ρ  is normalised to unity. This corresponds in the operator 

representation to requiring that  

 ˆTr ρ = 1 . (3.17) 

Yet another example [4] is the Hamiltonian operator for a uniaxial 

paramagnet of arbitrary spin value S in a constant field H0 superimposed on a 

uniaxial anisotropy field which is  

 2ˆ ˆˆ
S Z ZH S Sβ ξ σ= − − . (3.18) 

where ˆ
ZS  is the Z-component of the spin operator Ŝ , σ  and ξ  are the 

dimensionless internal and external field parameters respectively. The equilibrium 

spin density matrix ρ̂  is given by 

 
ˆ

ˆ SH

Se Z
βρ −= , (3.19) 

where 
ˆ

Tr{ }SH

SZ e
β−=  is the partition function. Here the matrix elements 

,m mρ ′  of 

the equilibrium spin density matrix 
ˆ

ˆ SH

Se Z
βρ −=  are  

 
2

, ,

m m

m m m m Se Z
σ ξρ δ +

′ ′= , (3.20) 

where the partition function 
SZ  is given by the finite sum 

2S m m

S m S
Z eσ ξ+

=−
=∑ . In 

general the coordinate representation of the density operator does not lend itself as 

easily to the calculation of quantum corrections to classical distribution functions 
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as the phase space representation pioneered by Wigner [5], which is discussed in 

Chapter IV. 

III.II Systems in a pure state  

In this section we will follow closely the treatment of Tolman [1] (1938) 

and consider a system of f degrees of freedom specified by coordinates 
1... fq q  

which collectively we denote by q and we suppose that the system is in a pure 

state for the time being. Let us now consider the function  

 0( ) ,u q q tψ= ( )  (3.21) 

This is called the probability amplitude and pertains to a fixed time 
0t . We can 

express Eq. (3.21) using generalized Fourier series as a linear combination of the 

eigenfunctions ( )ku q  which describe states characteristic of some selected 

observables viz 

 
0, ( )k k

k

q t c u qψ ( ) =∑  (3.22) 

where the kc  are the Fourier coefficients. If we want to change to a continuous 

time we simply write Eq. (3.22) as  

 , ( ) ( )k k

k

q t a t u qψ ( ) =∑ . (3.23) 

Hence by orthogonality the Fourier coefficients are given by the integral over the 

collection of coordinates 

 , ( ) ( )n nq t u q dq a tψ ∗( ) =∫ . (3.24) 

A case of frequent interest is in terms of the eigenfunctions corresponding to the 

eigenvalues 
nE  of the energy. We have for an isolated system the Schrödinger 

equation  

 0H
i t

ψ
ψ

∂
+ =

∂

�
 (3.25) 

so that with Eq. (3.23)  

 

( ) ( ) 0

( )
( ) ( ) 0.

k k

k

k
k k k

k

H a t u q
i t

da t
Ha u q u q

i dt

∂ 
+ = ∂ 

 
+ =  

∑

∑

�

�

 (3.26) 

For an isolated system  
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 ( )k kHu q E=  (3.27) 

because H is time independent. Hence by the orthogonality properties of the 

( )ku q  we have that 

 ( ) 0n
n n

da
a t E

i dt
+ =
�

, (3.28) 

with solution  

 ( )
n

i
E t

n na t c e
−

= �  (3.29) 

implying 

 ,
k

i
E t

k k

k

q t c u eψ
−

( ) =∑ � . (3.30) 

We may write this in more familiar Fourier like form as  

 ( ) ( ) ,k ka t u q q t dqψ∗= ( )∫ , (3.31) 

 , ( ) ( )k k

k

q t a t u qψ ( ) =∑ . (3.32) 

Thus the system can be specified at time t either in coordinate language by ,q tψ ( )  

or in Fourier coefficient language ( )ka t . Hence in the manner of Born the 

quantum mechanical probability of finding an individual system described by Eq. 

(3.32) in the characteristic state corresponding to the eigenfunction ( )nu q  is  

 ( ) ( ) ( )n n nW t a t a t∗= . (3.33) 

Since the system is in a pure state this expression is typical of each constituent of 

the ensemble. Equation (3.33) is then a Fourier representation of the quantum 

mechanical probability. The case where n is not necessarily equal to m can be 

used to define the density matrix in the Fourier representation, as we shall see 

shortly. We justify Eq. (3.33) as follows. We have  

 
( )

,

l k

i
E E t

l k k l

k l

a a u u eψψ
−

∗ ∗ ∗=∑ � . (3.34) 

Now  

 1dqψψ ∗ =∫  (3.35) 

implies 

 1l l

l

a a∗ =∑  (3.36) 

or 
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 1l

l

W =∑ . (3.37) 

Thus 

 
l l la a W∗ = . (3.38) 

Hence we see that lW  represents a probability arising because of a spread in the 

predictions associated with the specification of a single quantum mechanical state. 

III.III Systems in a mixed state  

We saw that in the classical statistical mechanics we represent the state of 

a system of f degrees of freedom by the position of a point in a qp-phase space of 

2f dimensions, and then represent an ensemble of such systems by a ‘cloud’ of 

phase points distributed with the density ρ . Assuming that this density has been 

normalised to unity, so that we have  

 1dqdpρ
Ω

=∫  (3.39) 

with  

 
1

1

...

...

f

f

dq dq dq

dp dp dp

=

=
 (3.40) 

we can then calculate the mean value – for the systems in the ensemble – of any 

function F(q,p) of the coordinates and momenta with the help of the equation  

 ( , )F F q p dqdp
Ω

= ∫ . (3.41) 

Now [1] the density matrix with components 
,n mρ  introduced by von Neumann 

[6] in the quantum mechanics plays a role somewhat similar to that of the density 

ρ  in the classical mechanics. Since the specific expression of this matrix will 

depend on the particular language or quantum mechanical representation, which 

is being used, it will be desirable to use the generalised Fourier coefficient 

language we have introduced above in defining the matrix. Thus let us regard the 

state of each constituent system, in an ensemble of similar non-interacting 

quantum mechanical systems, as represented by a generalised probability 

amplitude ( )na t  so that  

 , ) ( ) ( )k k

k

q t a t u qψ ( =∑  (3.42) 
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where the ( , )u k q  are any desired complete set of orthogonal, normalised 

eigenfunctions. Using the general ( )ka t  language, the density matrix can then be 

defined by its component elements 

 ( ) ( ),

1
( ) ( ) ,

N

n m m n m na t a t a a
N

α α
α

ρ ∗ ∗

=1

= =∑  (3.43) 

where we take a mean of the products ( ) ( )m na t a t
∗  for all the systems of the 

ensemble α =1,2,…,N, and the order of the indices for 
,n mρ  has been chosen to 

agree with the convention usually made in this connection. 

Since n n nW a a
∗= ,  

then 

 
,

.

n n n n

n n

P W

a a

ρ

∗

= =

=
 (3.44) 

This is an expression for the probability that a system chosen at random from the 

ensemble would be found in the state n. 

We may summarize by saying that in general the double brace will 

correspond to taking a mean first over the range of possibilities presented by each 

member of the ensemble (quantum mechanical average) and then over the 

members of the ensemble (ensemble average). Thus recalling that F must now be 

regarded as a quantum operator that 

 ˆ( , ) , ( , ) ,F q p F q t F q q t dq
i q

ψ ψ∗ ∂
≡ = ( ) ( )

∂∫
�

 (3.45) 

would denote the mean value of the observable F for a system in the quantum 

mechanical state ψ  and  

 ( )
1

1 N

F F
N

α
α=

= ∑  (3.46) 

would denote the mean value of that observable for the N systems α =1,2,…,N of 

an ensemble. We shall use the double bar, however, in the precise sense of 

denoting a mean for the members of an ensemble without reference to the 

necessity or not for first taking a mean for each member.  
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III.IV Mean values in terms of the density operator  

Since n n nW a a
∗=  would give the probability of finding an individual 

system described by Eq. (3.32) in the characteristic state corresponding to the 

eigenfunction ( )nu q  we saw that  

 
,n n n n

n n

P W

a a

ρ

∗

= =

=
 (3.47) 

is the probability that a system chosen at random from the ensemble would be 

found in the state n, so that summing the individual probabilities  

 

,

1.

k k k

k k

k

k

k k

k

P

W

a a

ρ

∗

=

=

=

=

∑ ∑

∑

∑
 (3.48) 

The sum of the diagonal elements of the 
,k lρ  is simply the trace of the matrix ρ̂  

generated by the 
,k lρ . Thus the classical normalization given by Eq. (3.39) is 

replaced by  

 ˆTr 1ρ =  (3.49) 

We now consider the mean value of an observable. We have  

 

,

ˆ , ( , ) ,

( ) ( ) ( ) ( )m m m m

m n

F q t F q q t dq
i q

a t u q Fa t u q dq

ψ ψ∗

∗ ∗

∂
= ( ) ( )

∂

=

∫

∑∫

�

 (3.50) 

Let us define  

 
, ( ) ( , ) ( )m n m nF u q F q u q dq

i q

m F n

∗ ∂
=

∂

=

∫
�

 (3.51) 

in other words the matrix elements of the operator F̂ . Moreover the 
,m nF  have the 

Hermitian property  

 
, ,m n n mF F∗ =  (3.52) 

It now follows that Eq. (3.50) becomes 
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[ ]

,

,

, ,

,

ˆˆTr .

m n n m

m n

m n n m

m n

mm
m

F F a a

F

F

F

ρ

ρ

ρ

∗=

=

=

=

∑

∑

∑

 (3.53) 

Thus Eq. (3.41) which in classical statistical mechanics yields the mean 

value of the observable for all the systems in the ensemble as an integral of the 

observable over all phase space is replaced by the trace of the corresponding 

quantum mechanical matrix as first shown by von Neumann [6] in 1927.  

The Dirac notation embodied in Eq. (3.51) may be also used to clarify the 

notation for the density matrix in Section III.I above. We have by definition for 

the matrix elements of the density operator  

 

�

�

�

nm m n

m m

u u

u u dq

m n

ρ ρ

ρ

ρ

∗

=

≡

≡

∫  (3.54) 

where as is usual in quantum mechanics we suppress the u’s. Hence replacing the 

m and n associated with the rows and columns of the density operator by x and x′  

we have  

 
�

nm

xx

x xρ ρ

ρ ′

′=

=
 (3.55) 

which is usually written as  

 ,nm x xρ ρ ′= ( ) . (3.56) 

III.V The von Neumann equation of motion of the density 

operator 

von Neumann has shown [6] that the evolution in time of the density 

operator is given by the (von Neumann’s) equation: 

 

ˆ ˆ1 1ˆ ˆ ˆˆ ˆ ˆ ,

0

H H H
t i t i

ρ ρ
ρ ρ ρ

∂ ∂   + − ≡ +   ∂ ∂

=

� �  (3.57) 
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where ˆˆ , Hρ    denotes the commutator of the operators ρ̂  and Ĥ . Equation 

(3.57) is the analogue in quantum statistical mechanics of the Liouville equation 

derived in Chapter I, namely 

 

{ }

{ }
3

1

0

N

i i i i i

D
H

Dt t

H H

p q q p

ρ ρ
ρ

ρ ρ
ρ

=

∂
≡ + , =

∂

 ∂ ∂ ∂ ∂
, Η = − 

∂ ∂ ∂ ∂ 
∑

 (3.58) 

where { }Hρ,  is the Poisson bracket. Moreover Eq. (3.57) follows from Eq. (3.58) 

if the classical Poisson bracket is replaced by ( )
1

i
−
�  times the commutator of the 

operators ρ̂  and Ĥ .  

To derive this equation we consider the rate of change of the matrix 

elements 
nmρ , i.e. the rate of change of  

 �
nm m nu uρ ρ=  (3.59) 

Thus we consider an expansion for the state of a system in the quite 

general form (i.e. Eq. (3.42)) 

 , ) ( ) ( )k k

k

q t a t u qψ ( =∑ , (3.60) 

where the ( )ku q  may be any complete set of orthonormalized eigenfunctions for 

the system, and the ( )ka t  are the corresponding probability amplitudes. 

For the rate of change of ( )na t  with time we then have the generalized 

Schrödinger equation (3.26)  

 
, ,n

n k k

k

a i
H a

t

∂
= −

∂
∑
�

 (3.61) 

where the matrix elements of the Hamiltonian operator are given by 

 
,

ˆ
n k n kH u Hu dq

∗= ∫  (3.62) 

which has the Hermitian property 

 , ,n k k nH H ∗= . (3.63) 

Hence the rate of change of 
nmρ  with time becomes 
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( )

,

, ,

m nn m

n k m k m k k n

k

a a

t t

i
H a a H a a

ρ
∗

∗ ∗ ∗

∂∂
=

∂ ∂

= − −∑
�

 (3.64) 

which can be more simply written as  

 ( ),

, , , ,

n m

n k k m n k k m

k

i
H H

t

ρ
ρ ρ

∂
= − −

∂
∑
�

. (3.65) 

This equation is a general expression for the quantum analogue of Liouville’s 

theorem. If we rewrite Eq. (3.65) as  

 ( ),

, , , ,

1n m

n k k m n k k m

k

H H
t i

ρ
ρ ρ

∂
= − −

∂
∑
�

 (3.66) 

and recall that for matrices A and B [7] 

 AB C=  (3.67) 

iff 

 
, , ,i j i k k j

k

c a b=∑  (3.68) 

we see that in operator notation Eq. (3.66) is 

 

ˆ ˆ1 1ˆ ˆ ˆˆ ˆ ˆ ,

0

H H H
t i t i

ρ ρ
ρ ρ ρ

∂ ∂   + − ≡ +   ∂ ∂

=

� �  (3.69) 

which proves von Neumann’s equation.  

In the ,x x′  representation, Eq. (3.66) becomes for a system under the 

influence of a potential ( )V x  

 

�

( )

�

2 2

2 2
( ) ( )

d x x i i
V x V x

dt m x x

x x

ρ

ρ

′   ∂ ∂ 
′= − − −  ′2 ∂ ∂   

′×

�

�  (3.70) 

which is a partial differential equation for the evolution of the matrix elements. 

III.VI Applications of the equilibrium density matrix 

As an example of the application of the equilibrium density matrix [8] we 

shall calculate the mean energy of an ideal monatomic gas namely  

 
3

2
E NkT=  (3.71) 
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where N is the number of molecules. Next we will calculate the mean energy of a 

single simple harmonic oscillator of frequency ν  in a system composed of many 

such oscillators, held at temperature T, in quantum statistical mechanics, namely  

 
1h

E h h

N eβ ν

ν ν
= +

2 −
 (3.72) 

where N is the total number of oscillators. We shall also very briefly treat the 

Brillouin function for spins [9] which occurs in the theory of paramagnetism. 

First we recall that the transition from classical statistical mechanics to 

quantum statistical mechanics is achieved by replacing the classical partition 

function, i.e. 

 BH k T
Z e dk

−= ∫  (3.73) 

with the quantum partition function  

 Tr ( )BH k T
Z e

−= . (3.74) 

In Eq. (3.73) the volume element in phase space is defined  

 
1

N

s

s

dk dµ
=

= ∏  (3.75) 

where sdµ  is the volume element associated with one of the subsystems defined 

by  

 s sx sy sz s s sd dp dp dp dx dy dzµ ≡ . (3.76) 

The subsystem phase space is called the “micro-phase space” or the “ -spaceµ ” 

and the volume elements always factorizes as in (3.75). If we consider an entity 

such as an ideal gas where the only potential that remains is that between the 

(identical) particles and the walls of their container the partition function also 

factorizes by statistical independence so that  

 
1

B

s

H k T

N
h

s

s

N

Z e d

e d

z

β

λ

µ

−

−

=

=

 
=  

 

=

∫

∏ ∫  (3.77) 

where the “one-particle partition function” is defined by  

 h
z e d

β µ−≡ ∫  (3.78) 
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and the subscript s is dropped since it will be assumed that the subsystems are 

identical. In the quantum case we shall again suppose that the system is composed 

of N independent subsystems, therefore the Hamiltonian may be expressed as a 

sum of individual contributions, say 

 
1

N

s

s

H h
=

=∑ . (3.79) 

The energy is similarly a sum of individual contributions  

 
1

N

s

s

E ε
=

=∑ . (3.80) 

A state for the macroscopic system is now determined by specifying the set of 

quantum numbers { } { }1 2, ,..., Nn n n n= , where 
in  refers to the th

i  subsystem. The 

partition function then takes the form 

 
{ }

( )

{ }

1

1

...
...

n n BN

N

k T

n n

Z e
ε ε− + +

=∑ ∑ . (3.81) 

We can factor Eq. (3.81) as  

 
{ } { } { }

1 2

1 2

... n Bn B n B N

N

k Tk T k T

n n n

Z e e e
εε ε −− −    

=        
    
∑ ∑ ∑ . (3.82) 

Furthermore, if the subsystems are identical, the partition function takes the form  

 nZ z=  (3.83) 

where the one-particle quantum partition function is defined by 

 
{ }

n Bk T

n

z e
ε−=∑ . (3.84) 

This expression is the quantum analogue of the classical “one-particle partition 

function” namely Eq. (3.78) 

 h
z e d

β µ−≡ ∫ . (3.85) 

The lable s is again dropped since it will be assumed that the subsystems are 

identical. 

III.VI.I Mean energy of an ideal monatomic gas 

As our first application of quantum statistical mechanics [8,10], consider 

an ideal monatomic gas composed of identical subsystems with mass m. The 

Hamiltonian for a single subsystem is given by  
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 ( )

2

2 2 2

2 2 2 2

2 2 2

ˆ

2

1

2

.
2

x y z

p
h

m

p p p
m

m x y z

=

= + +

 ∂ ∂ ∂
= − + + 

∂ ∂ ∂ 

�

 (3.86) 

We consider a large cubical box of volume 3
V L=  and apply periodic boundary 

conditions. In this case, the wave functions are just plane waves 

 
( )

, , 3

1
( , , )

x y z

x y z

i p x p y p z

n n n x y z e
L

φ
+ +

=
�
. (3.87) 

Here ( ), ,
x y z

p p p  now denote the momentum eigenvalues, they are given by  

 
( ) ( )2

, , , ,   ;  0, 1, 2,...

, ,

x y z x y z ip p p n n n n
L

i x y z

π
= = ± ± ± ∞

=

�

 (3.88) 

This discrete quantization is imposed by the periodic boundary conditions. The 

energy eigenvalues are given by since the particles are quasi-independent (particle 

in a 3-D box problem) 

 

( )

( )

2 2 2

, ,

2

2 2 2

1

2

1 2

8

x y zn n n x y z

x y z

p p p
m

n n n
m L

ε

π

= + +

 
= + + 

 

�
 (3.89) 

where , ,x y zn n n  are any integers. The one-particle partition function now takes the 

form  

 
( )2 2 2 2 28x y z

x y z

n n n h mL

n n n

z e
β− + +

=∑∑∑  (3.90) 

where, as usual, 1 kTβ ≡ . If the number of levels becomes very dense and the 

box is large we can evaluate z by replacing the summation by integrals. For 

example  
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exp exp
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x
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π
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∞
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 
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 

−

=
2
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 (3.91) 

where 

 
2

2
8

h

mL

β
α 2 = , (3.92) 

i.e.  

 
2 2

2

2
exp [ ]

8
x

x

n

h n L m

m L h

β π

β

 
− → 
 

∑ . (3.93) 

Therefore, Eq. (3.90) is 

 

3

3

2

2

2

2
.

L m
z

h

m
V

h

π

β

π

β

 
=   
 

 
=  

 

 (3.94) 

This is the quantum partition function for a single particle of mass m in a box of 

volume 3L  satisfying periodic boundary conditions in the limit where the volume 

of the box tends to infinity. The corresponding translational energy of a system 

composed of N such subsystems may be found as follows. First we note that the 

partition function is 

 NZ z=  (3.95) 

and that by inspection of Eq. (3.77) the mean energy E is given by 

 
ln Z

E
β

∂
= −

∂
. (3.96) 

Hence  

 
3

2

2

ln ln

2
ln

Z N z

m
N V

h

π

β

=

  
   =         

 (3.97) 
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which on expanding the logarithm and differentiating as in Eq. (3.96) yields 

 
3

2

N
E

β
= ⋅  (3.98) 

in agreement with the classical kinetic theory result. Notice that assuming that the 

volume of the box is very large means that the first excited state lies 

infinitesimally close to the ground state so that the freezing out of the translational 

motion then takes at a temperature infinitesimally close to T=0; hence in order to 

explain results like the Nernst heat theorem one must abandon the continuum 

approximation.  

III.VI.II Mean energy of harmonic oscillator 

Consider [8] a macroscopic system composed of N identical subsystems 

which are one-dimensional simple harmonic oscillators, in other words a perfect 

quantum gas of harmonic oscillators. The Hamiltonian for a single subsystem is 

given by 

 

2
2

2 2
2

2

1

2 2

1
.

2 2

p
h m q

m

d
m q

m dq

ω

ω

2

2

= +

= − +
�

 (3.99) 

It is a basic result of quantum mechanics that the energy spectrum of the one-

dimensional simple harmonic oscillator is given by  

 

1
 ; 0,1,2,...,

2

1
.

2

n
n n

n h

ε ω

ν

 
= + = ∞ 
 

 
≡ + 
 

�

 (3.100) 

The quantum partition function for a single subsystem is defined by  

 ( )1 2h n

n

z e
β ν− +

=∑  (3.101) 

where Bk Tβ =1 . The sum appearing in this expression is simply a geometric 

series 

 ( )
2

2 1 ...h h h
z e e e

β ν β ν β ν− − − = + + +  
 (3.102) 

which is immediately summed to give  

 2 1

1

h

h
z e

e

β ν

β ν

−

−
=

−
. (3.103) 

The partition function for the entire system is again given by Eq. (3.83), i.e.  
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 nZ z=  (3.104) 

and hence  

 ( )ln ln ln 1
hh

Z N z N e
β νβ ν − 

= = − − + 2 
. (3.105) 

The mean energy of one oscillator in this system follows from  
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2 1

h

h

E Z

N

h e
h

e

β ν

β ν

β

ν
ν

−

−

∂
= −

∂

= +
−

 (3.106) 

which may be rewritten as  

 
2 1h

N h h

E e
β ν

ν ν
= +

−
. (3.107) 

This is the Planck distribution. It is a crucial result. Equation (3.107) provides the 

correct expression for the mean energy of a single harmonic oscillator of 

frequency ν  in a system composed of many such oscillators, held at temperature 

T, in quantum statistical mechanics. The first term on the right hand side of Eq. 

(3.107) is a constant independent of the temperature. It arises because of the zero-

point energy in the spectrum in Eq. (3.100). We denote this contribution by 
0E  so 

that  

 
0

2

h
E N

ν 
≡  

 
 (3.108) 

hence 

 ( )0

1

1Bh k T

h
E E

N e
ν

ν
− =

−
 (3.109) 

Consider the limiting cases of this equation. Suppose first that one is interested in 

high temperature so that 

    or   Bh T h kβ ν ν1� �  (3.110) 

In this case the exponential in the denominator can be expanded in a power series  

 1 ...Bh k T

B

h
e

k T

ν ν
= + +  (3.111) 

which yields  

 ( )0

1
B

E E k T
N

− = . (3.112) 
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This is the classical result for the energy of a simple harmonic oscillator; it 

follows from the equipartition theorem essentially due to the fact that the potential 

energy is quadratic in the displacement. At high temperature we thus recover the 

classical result. 

Consider next the case of low temperature where  

    or   Bh T h kβ ν ν1� � . (3.113) 

The exponent in Eq. (3.109) now becomes very large, the exponent dominates in 

the denominator, and one has  

 ( )0

1
Bh k T

E E h e
N

νν −− = . (3.114) 

The contribution to the energy in Eq. (3.114) falls exponentially to zero under the 

conditions of Eq. (3.113). We thus explicitly exhibit the “freezing out” of the 

excitations at low temperatures in quantum statistical mechanics. One of the 

failures of classical statistical mechanics was the inability to account for this 

freezing out of the modes at low temperature as evidenced by the experimental 

data in a wide variety of physical phenomena. 

III.VI.III Paramagnetism: The Brillouin function  

We consider an ensemble of atoms and assume that each of them has a 

fixed magnetic moment m of magnitude 
Bg Sµ  where g is the so called ‘Landé 

factor’ or ‘spectroscopic splitting factor’, and  

 
2

B

e

e

m c
µ =

�
 (3.115) 

is known as the Bohr magneton. e is electron charge, 
em  is the electron mass and 

c is the speed of light. The spin operator Ŝ  has the property that the component 

zS  can only assume the 2 1S +  discrete values , 1,...,S S S− − + , i.e. one of the 

integer or half integer values between S−  and S+  in integer steps.  

The magnetic moments interact with an applied magnetic field H but not 

with each other. Therefore if H is applied along the z-axis we have cf Eq. (3.19) 

above that  
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 (3.116) 

After considerable manipulation this can be written [9] essentially because the 

partition function is a geometric series in ( )exp Bg Hµ β  in the closed form  

 ( )z z

S

S m
B g SH

S g S
µ β

µ Β

Β

= =  (3.117) 

where the function ( )SB x   

 ( )
2 1 2 1 1

coth coth
2 2 2 2

S

S S x
B x x

S S S S

+ +   
= −   

   
 (3.118) 

is called the Brillouin function. Along with the argument x it also depends on the 

spin number, S which is one of the principal differences between it and the 

Langevin function arising in the classical theory of paramagnetism. In the 

classical limit defined by high temperature β → 0  and a large spin number  

 ( ) ( ) ( )
1

cothSB x L x x
x

→ = − . (3.119) 

The quantum effects contained in the Brillouin function become important either 

for small S or very low temperatures or very intense fields. Note that for small H, 

Eq. (3.117) may be written  

 
( 1)

3

B
z

g S S
S H

µ β +
= . (3.120) 

Further discussion of the representation of spin dynamics in terms of phase space 

distributions is given in the next Chapter. Notice that if a mean field potential is 

included e.g. arising from uniaxial anisotropy with  and ξ σ  being the external 

and anisotropy field parameters respectively  

 
2

S
m m

S

m S

Z e
σ ξ+

=−

= ∑  (3.121) 

it does not in general appear possible to get a simple closed expression for 
zS . 
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III.VII Irreversibility-quantum collision kernels  

In Chapter I we saw that the classical dynamics of a collection of N 

particles where N is of the order of 2310  say, is described by the Liouville 

equation in the 6N phase space (q,p) where q(t) and p(t) denote the collection of 

3N positions and 3N momenta. The Liouville equation describes the time 

evolution of the phase space density of representative points ρ (q,p) and is  

 { } 0
D

H
Dt t

ρ ρ
ρ

∂
≡ + , =

∂
 (3.122) 

where 

 { }
3

1

N

i i i i i

H H

p q q p

ρ ρ
ρ

=

 ∂ ∂ ∂ ∂
,Η = − 

∂ ∂ ∂ ∂ 
∑  (3.123) 

is the Poisson bracket, H is the Hamiltonian and the large D’s denote the 

hydrodynamical derivative. Furthermore we saw that it is a purely dynamical 

theorem and that Boltzmann’s microscopic explanation of the 2
nd

 law of 

thermodynamics contained in it the idea that one may essentially replace the entire 

system of 2310  degrees of freedom by a single (tagged) system of 3 degrees of 

freedom interchanging energy with the rest of universe or heat bath, i.e. the effect 

of the remaining 2310 3−  degrees of freedom is represented by collisions (this is 

the Stosszahlansatz) so that for the tagged system
D

Dt

ρ
 is no longer zero and the 

(q,p) for the universe  is now reduced to ( ),s sq p  for the single system, ρ  is then 

the reduced or single particle distribution function which obeys the famous 

Boltzmann equation describing the evolution of the single particle distribution 

function from an initial state. Since the hydrodynamical derivative is no longer 

zero, i.e. the trajectories of the single system in the ( ),s sq p  phase space exhibit 

energy diffusion and no longer purely stream.  

In like manner in the quantum mechanics von Neumann’s equation of 

motion of the density operator namely  

 

ˆ ˆ1 1ˆ ˆ ˆˆ ˆ ˆ ,

0

H H H
t i t i

ρ ρ
ρ ρ ρ

∂ ∂   + − ≡ +   ∂ ∂

=

� �  (3.124) 
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where ˆˆ , Hρ    denotes the commutator of the operators ρ̂  and Ĥ  may be 

reduced and generalized; reduced by confining the number of degrees of freedom 

to a small but representative set and generalized by adding a collision operator to 

account for the bath degrees of freedom and the bath system interaction. Hence 

the equation of motion of the reduced density operator is analogous to the 

Boltzmann equation viz., 

 
ˆ ˆˆ ˆ( ),s s

s

Di
H t

t Dt

ρ ρ
ρ

∂  + = ∂ �
 (3.125) 

where ˆ ( )H t  is now a time dependent Hamiltonian. An example of collision 

integrals which in the classical mechanics is known as the Van Vleck- Weisskopf 

model [11] is 

 
eqsD

Dt

ρρ ρ

τ τ
= − +  (3.126) 

with 

 
( )

( )

H t

eq H t

e

e dpdq

β

β
ρ

−

−
=
∫

 (3.127) 

which becomes in the quantum mechanics  

 
ˆˆ ˆ eqsD

Dt

ρρ ρ

τ τ
= − +  (3.128) 

where  

 

( )

ˆ ( )

ˆ ( )
ˆ

Tr

H t

eq H t

e

e

β

β
ρ

−

−
= . (3.129) 

This model which is simply exponential relaxation towards an equilibrium 

distribution has been extensively used by Karplus and Schwinger [12] in order to 

obtain a theory of microwave line shape. This is an example where the density 

operator formalism shows clearly the connection between the classical and 

quantum collision terms called kernels in the exposition of Gross and Lebowitz 

[13]. According to them [13] the analogy is not usually as transparent as in the 

Van Vleck-Weisskopf model so that it is easier to see the correspondence by 

proceeding via Wigner’s phase space representation of the density matrix using an 

collision integral which has the same form as that which occurs in the classical 

distribution function (e.g. the assumption used extensively by us throughout the 
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Thesis that the collision term in the quantum Brownian motion master equation 

for the time evolution of the Wigner function has the form of a Kramers-Moyal 

term truncated at the second term just as in the classical Brownian motion). The 

density matrix elements may then be found by inverse Fourier transformation. An 

illuminating account of the calculation of the density matrix elements directly 

from Eq. (3.125) may be found in Gross and Lebowitz [13] for a system of fixed 

axis rotators for the strong collision model where in the classical mechanics a 

rotator instantaneously assumes the Maxwellian distribution of velocities after a 

collision. We shall not enter into any further detailed discussion of the 

nonequilibrium density matrix as in this Thesis we treat nonequilibrium problems 

by using the Wigner representation. 
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CHAPTER IV 

 

Representation distributions and quantum 

master equations for closed systems 

 

We commence our formulation of quantum master equations in terms of 

representation distributions by describing Wigner’s solution [1,2] for the 

stationary distribution in phase and configuration spaces for translational motion 

of particles with separable and additive Hamiltonians. In all that follows it will be 

helpful to recall [3] that Wigner’s representation of quantum mechanics can 

be formally defined as a means of associating a c-number function in phase 

space ( ),x p  with every operator which is a function of position and 

momentum operators ( )ˆ ˆ,x p  and is in effect the inverse of Weyl’s rule which 

is used to calculate quantum mechanical operators from classical quantities. 

 

IV.I Wigner’s stationary distribution for closed systems 

Wigner’s original objective in introducing his phase space representation 

of quantum mechanics was to study quantum corrections to thermodynamic 

equilibrium, i.e., to the Maxwell-Boltzmann distribution of classical statistical 

mechanics [1,2,4]. We have already emphasised that the Wigner phase space 

distribution ( ), ,W x p t  allows one to calculate quantum mechanical expectation 

values using concepts of classical statistical mechanics. In this respect however, 

the Wigner function is not unique, being one of many such phase space 

representations [4-6]. However, of all such representations it has the simplest 

properties [4-6] as noted by Wigner although he knew only that it yields the 

correct marginal distributions for position and momenta respectively [7]. For a 

quantum system with a Hamiltonian operator 

 2ˆ ˆ ˆ/ 2 ( )H p m V x= +  (4.1) 

the Wigner distribution function ( ), ,W x p t  for a pure state is defined to be [1,2] 
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ipyy y
W x p x x e dyψ ψ

π

∞
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−∞

   
= + −   

   ∫ �

�
, (4.2) 

which is real but not everywhere positive so that it is a quasiprobability 

distribution. Here �  is Planck’s constant. Equation (4.2) holds if the function ψ  

evolves according to the Schrödinger equation 

 ( )
2 2

2
2

i V x
t m x

ψ ψ
ψ

∂ ∂
= − +

∂ ∂

�
� . (4.3) 

Integration of the joint quasi-probability density ( ), ,W x p t  with respect to the 

momentum p yields the marginal distribution 

 ( ) ( ) ( )
2 *

x x xψ ψ ψ=  (4.4) 

i.e., the correct quantum mechanical probability for the various values of the 

coordinate x. Integration of W with respect to the position x yields the correct 

quantum mechanical probability for the momentum p, viz., the marginal 

distribution (see Appendix IV.I) 

 ( )
2

ipx
x e dxψ

∞
−

−∞

∫ . (4.5) 

By introducing a density matrix for a pure state 

 ( ) ( )*

1 2 1 2
ˆ , )x x x xρ ψ ψ( =  (4.6) 

and new coordinates 
1 2( ) / 2x x x= +  and 

2 1y x x= − , one can write Eq. (4.2) as 

 /1 1 1
ˆ( , , ) ,

2 2 2

ipy
W x p t x y x y e dyρ

π

∞
−

−∞

 
= + − 

 ∫ �

�
. (4.7) 

Equation (4.7) which is merely a special representation (Weyl-Wigner) of the 

density matrix is simply the Fourier transform of the density operator expressed in 

terms of the above variables and is the generating function for all spatial 

autocorrelation functions of a given quantum mechanical wave function )xψ ( .  

IV.II Moyal’s statistical interpretation of the Wigner 

function 

The Wigner function may also be couched as accomplished by Moyal [8] 

in familiar probability theory language as the inverse Fourier transform of a 

characteristic function (moment generating function) whence observables may be 

calculated by parametric differentiation with respect to µ ν, . Moreover in so 
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doing he showed that the Wigner function is the correct joint distribution if we 

make the Weyl correspondence between operators and phase space functions [7]. 

In order to establish the Weyl correspondence we form the characteristic function 

operator (it is useful to conceive of the operators p̂  and x̂  as random “variables” 

and the c-numbers x and p as their realizations) 

 

( ) ( ){ }

( )

ˆ ˆ,

0

ˆ ˆ ˆ, exp

ˆ ˆ
!

x p

n
n

n

i p x

i
p x

n

χ µ ν µ ν

µ ν
∞

=

= +

= +∑
. (4.8) 

The characteristic function in a state ( )xψ  is then given by the scalar product  

 

( ) ( )( )

( )

( ) ( )

{ }

ˆ ˆ ˆ ˆ, ,

ˆ ˆ( )

( )

ˆ ˆ( )

ˆ ˆ( )

ˆ, ,

ˆTr .

x p x p

i p x

i p x

i p x

i p x

e

x e x dx

e

e

µ ν

µ ν

µ ν

µ ν

χ µ ν ψ χ µ ν ψ

ψ ψ

ψ ψ

ρ

+

∞
∗ +

−∞

+

+

= ,

= ,

=

=

=

∫  (4.9) 

The phase space distribution is thus by Fourier inversion 

 
( )

( )ˆ ˆ,2

1
( , ) ,

2

i p i x

x pW x p e d d
µ ν χ µ ν ν µ

π

∞ ∞
− −

−∞ −∞

= ∫ ∫  (4.10) 

where of course the mixture ( ) ( )*

n n nc x xψ ψ∑  is now assumed. Furthermore 

since ˆ ˆ,p x  are canonically conjugate operators we may use the Baker-Campbell-

Hausdorff identity (proof in Appendix IV.II) 

 ( ) ( ) ( ) ( )1ˆ ˆ ˆˆ ˆ ˆexp A+B exp A exp B exp B,A
2

  =    
 (4.11) 

noting that  

 

[ ]ˆ ˆ ˆ ˆ ˆˆ,p x px xp

i

= −

=
�  (4.12) 

is the commutator of the operators ˆ ˆ,x p , so that the characteristic function 

operator becomes 

 
( )

1
ˆ ˆ2

ˆ ˆ,

1
ˆ ˆ2

ˆ ,
i

i x i p

x p

i
i p i x

e e e

e e e

µν
ν µ

µν µ ν

χ µ ν

−

=

=

�

�

. (4.13) 
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The Baker-Campbell-Hausdorff identity may now be used to evaluate the 

characteristic function. We have  

 
ˆ

ˆ ˆ, ( )
i x

i p

x p x e e x dx

µ
ν

µχ µ ν ψ ψ
 ∞

+ 
2 

−∞

, = ∗( ) ( )∫
�

. (4.14) 

We then have using the shifting property (proof in Appendix IV.III) 

 
ˆi p

e x x
µ ψ ψ µ( ) = ( + )�  (4.15) 

so that  

 ˆ ˆ, ( )
i x

x p x e x dx

µ
ν

χ µ ν ψ ψ µ
 ∞

+ 
2 

−∞

, = ∗( ) ( + )∫
�

�  (4.16) 

which with the replacement  

 
2

x x
µ

→ −
�

 (4.17) 

becomes  

 ( )ˆ ˆ,

1 1
,

2 2

i x

x p x e x dx
νχ µ ν ψ µ ψ µ

∞
∗

−∞

   
= − +   

   ∫ � � . (4.18) 

We have given the details of this derivation as it is somewhat obscure in Moyal’s 

original paper. We remark that Moyal’s formulation as expressed by Eq. (4.9) 

fails however for spins as commented upon by Stratonovich [9]. To see this let us 

take as non-commuting operators two components of the spin say ˆ ˆ and 
y z

S S  then 

the characteristic function must be periodic in  and µ ν and in general the function  

 ( ){ }ˆ ˆ ˆTr exp y zi S Sµ ν ρ+  (4.19) 

is not periodic in these so that Moyal’s formulation fails for the canonical 

variables in the phase space of orientations. Compare for example the differences 

in the transition probabilities (Green’s functions) for the Brownian motion of a 

fixed axis rotator specified by the angular coordinate φ  and a particle moving 

along the x-axis as demonstrated in [10]. 

 ( ) ( ) 2
0 /

0

1
, ,0 ,  0

2

ip p t

p

W t e t
φ φ τφ φ

π

∞
− −

=−∞

= ≥∑  (4.20) 

which is periodic in φ  unlike  
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( )

0

2
0

/ 2

0

( ) / 4

1
( , ,0)

2

.

i x x Dt

x x Dt

W x t x e d

e
Dt

ξ ξ ξ
π

π

2
∞

( − )−

−∞

− −

=

1
=

4

∫
 (4.21) 

Stratonovich has shown how to correctly construct the Wigner function in the 

phase space of orientations as part of his general discussion of representation 

distributions for quantum systems which we summarize in Section IV.IV. 

Returning to translational motion we have 

 ( )ˆ ˆ,

1 1
,

2 2

i x

x p x e x dx
νχ µ ν ψ µ ψ µ

∞
∗

−∞

   
= − +   

   ∫ � � . (4.22) 

Thus by Fourier inversion using the definition of the delta-function 

 
1

2

i
e d

ξηδ ξ η
π

∞
±

−∞

( ) = ∫  (4.23) 

we have 

 ( ) * *1 1 1
,

2 2 2

i p
W x p x e x d

µψ µ ψ µ µ
π

∞
−

−∞

   
= − +   

   ∫ � �  (4.24) 

which by elementary transformations is Eq. (4.7). Hence Moyal’s formulation in 

terms of characteristic functions constitutes a systematic study of expectation 

values of all Weyl ordered operators for particles and identifies the inverse 

Fourier transform of their moment generating function to the Wigner function 

[11]. The calculation of expectation values from the characteristic functions is 

illustrated in Appendix IV.IV.  

IV.III Time evolution of the Wigner function 

Equation (4.7) may be used to demonstrate that the Wigner function W  

satisfies the evolution equation [1,2] (for details see Appendix IV.V) 

 ˆ 0W

W
M W

t

∂
+ =

∂
, (4.25) 

where the operator ˆ
WM  is defined as 

 
( )
( )

2 2 1 2 1

2 1 2 1
1

1ˆ
2 2

/ 2
.

2 1 !

W

r r r

r r
r

p W i i
M W V x V x W

m x i p p

ip W V W V W

m x x p r x p

+ +∞

+ +
=

    ∂ ∂ ∂
= − + − −    ∂ ∂ ∂    

∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ + ∂ ∂
∑

� �

�

�
 (4.26) 
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Equation (4.25) is an analogue of the classical Liouville equation; indeed the 

leading order term is noneother than that equation. It may be solved exactly for 

the harmonic oscillator where the Wigner operator is the same as the classical 

Liouville operator as shown in Chapter V. For other potentials it may be solved by 

perturbation theory in 2
�  as we shall also show in Chapters VII and VIII. Yet 

another method of calculating the Wigner function is by direct Wigner 

transformation using Eq. (4.7), however this requires a knowledge of the matrix 

elements of the density matrix. This procedure is illustrated for spins in Section 

IV.IV below where it is explicitly demonstrated how a knowledge of the matrix 

elements of the equilibrium spin density matrix leads to a series expression in the 

representation space of polar angles for the Wigner function of a spin with an 

axially symmetric Hamiltonian.  

Clearly the Wigner function ( , )W x p  [3] exhibits most of the properties of 

a classical phase space distribution and in the classical limit ( , )W x p  changes in 

time like a classical statistical mechanics distribution would. This is equivalent to 

saying it reduces to a phase point executing a trajectory in phase space rather than 

the fuzzy quasi-phase point dictated by the uncertainty principle. Moreover the 

expectation value of a quantum operator Q̂  may be calculated using the Wigner 

function from the corresponding classical variable ( , )Q x p  as (Q  is the Weyl 

symbol of the quantum operator Q̂ ) 

 ( ) ( )ˆˆTr ( , , ) ( , )Q t Q W x p t Q x p dx dpρ= = ∫ . (4.27) 

This is a key result since it expresses the ensemble average of an operator Q̂  as a 

phase space integral. The Wigner representation contains only such features as are 

common to both quantum and classical statistical mechanics as is evident from the 

representation of the Wigner function in terms of the characteristic function and 

formally represents quantum mechanics as a statistical theory on classical phase 

space [4]. Therefore it is especially suitable for the development of semiclassical 

methods of solution, for example, for the purpose of analysis of two interacting 

systems, where one is treated quantum mechanically while the other is treated by 

using classical theory. Here the Wigner representation allows one to easily obtain 

quantum corrections to the classical results [1,2] since in effect the only property 

it does not share with the classical theory is that ( ), ,W x p t  is positive everywhere 
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because in quantum theory it may have negative values for some regions of x and 

p. That we still have a viable physical theory is ensured by the uncertainty 

principle that no measurement can be made of momentum and position 

simultaneously beyond a certain accuracy [12]. This has been put in another way 

by Baker [7]; we quote “when quantum mechanics predicts an impossible result 

like a “negative probability” then the interpretation is that there is no physically 

realizable experiment to measure the joint distribution.” 

IV.IV Stratonovich’s general analysis of representation 

distributions for quantum systems 

The above analysis applies to particles with separable and additive 

Hamiltonians. We mention that a different analysis is required in order to provide 

a Wigner function representation for spins (essentially because in rotation the 

distribution functions are always periodic). In order to accomplish this 

Stratonovich [9] as part of a general discussion of representation distributions for 

quantum systems introduced the quasiprobability density function ( , , )W tϑ φ  for 

the spin orientations in configuration space. ϑ  and φ , the polar angles, are now 

the canonical variables. Stratonovich prompted by the failure of his initial attempt 

to generalize Moyal’s quantization procedure to spins introduced a 

quasiprobability density function on the sphere which he defined as the trace of 

the product of the system density matrix and the irreducible tensor operators 

having matrix elements in the spherical basis representation given by the Clebsch-

Gordan coefficients. Hence the average value of a quantum spin operator may be 

calculated just as the corresponding classical function from the Weyl symbol of 

the operator. Moreover as shown much later by Klimov [11], for a general 

Hamiltonian, the evolution equation for the Wigner function of the closed system 

proposed by Stratonovich may be expanded for large spins ( 1S � ) in powers of 

the small parameter 1
Sη −=  with the term linear in η  being the same as the 

classical Liouville equation (analogous to the result for particles). Thus the 

Stratonovich representation for spins [9], just as the Wigner representation for 

particles, is well suited to the development of semiclassical methods of solution 

allowing one to obtain quantum corrections to the classical results in the simplest 

possible way. The c-number representation of the quantum spin dynamics is 
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especially important in treating magnetic relaxation [13]. In view of the 

importance of and generality of Stratonovich’s study of representation 

distributions for quantum systems we shall attempt to summarize the general 

principles underlying such representations as given by him and we shall apply 

them to derive the Wigner distribution and the representation distribution for 

systems with symmetries described by the SU(2) rotation group. 

Stratonovich [9] defines the “representation distribution” by the following 

requirements: 

1. The space M in which it is defined has as a classical interpretation, 

for example, phase space (which we have just considered) or the 

space of orientations. 

2. The distribution can be expressed linearly in terms of the density 

matrix ρ̂ . This requirement is directly related to the linearity of the 

whole apparatus of quantum theory, i.e., it is connected with the 

statistical interpretation of the theory. The density matrix ρ̂  like 

any other operator Â , has associated with it a (c-number) function 

in the representation space 

 ˆˆ ˆˆ( ) Tr ( );     ( ) Tr ( )M L M A M AL Mρ ρ= =  (4.28) 

via the kernel ˆ( )L M , which is an operator depending on the point 

M as a parameter. For example the point M of the representation 

space could be a point on the unit sphere, so that ( , )M ϑ φ= . 

3. The distribution must be a real function; in general, to a Hermitian 

operator Â  there must correspond a real function A(M) (Weyl 

symbol). This requirement amounts to the condition of Hermiticity 

of the operators ˆ( )L M  for all points M.  

4. Statistical averaging of the classical functions A(M) (Weyl 

symbols) must give the same results as the rule for averaging of 

operators viz  

 

ˆ ˆ( ) ( ) Tr 

ˆ .

A M M dM A

A

ρ ρ=

=

∫
 (4.29) 

Hence from Eq. (4.28) and (4.29) we have as a representation of a quantum 

operator the inverse transformation 
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 ˆ ˆ( ) ( )A A M L M dM= ∫  (4.30) 

where the c-number representation is given by the transformation 

 ˆ ˆ( ) Tr ( )A M AL M= . (4.31) 

These rules tell one how to get the operator relation from the c-number 

representation and vice-versa. Thus condition 4 is equivalent to the requirement 

that the direct and inverse transformations are accomplished by means of the same 

kernel i.e. the mapping given by Eq. (4.31) is bijective.  

By regarding the operators ˆ ˆ, , ...A B as elements of a complex Euclidean 

space with a scalar product given by the trace ˆ ˆˆ ˆ( , ) Tr A B AB
∗=  ( B̂

∗  is the 

Hermitian adjoint to B̂ ) –we introduce an orthonormal basis 
1 2

ˆ ˆ, ,...A A such that  

 
,

ˆ ˆTr ,
i j i j

A A δ∗ = . (4.32) 

Thus the kernel ˆ( )L M  is represented by the expansion 

 ( )ˆˆ( ) i i

i

L M A A M
∗=∑  (4.33) 

where  

 ( ) ˆ ˆTr ( )i iA M A L M= . (4.34) 

This requirement is equivalent to the condition  

 ( ) ( ) ,i j i jA M A M dM δ∗ =∫ . (4.35) 

According to Eq. (4.29) the normalization condition  

 ˆTr ρ = 1  (4.36) 

becomes  

 1M M dMρ λ( ) ( ) =∫  (4.37) 

where  

 ˆ) Tr ( )M L Mλ( = . (4.38) 

Thus we must take as the normalized distribution a function of the form 

 ( )w M M Mρ λ= ( ) ( )  (4.39) 

so that from Eq. (4.29) the rule for averaging must be written  

 ˆ ( ) ( ) ( )A A M M w M dMλ −1= ∫  (4.40) 

which by definition is  
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 ( ) ( )A M Mλ −1 . (4.41) 

Hence in Stratonovich’s formulation the definition of a representation distribution 

amounts to calculating the inverse of the trace of the operator associated with the 

mapping of the density matrix unto the representation space. Stratonovich’s 

abstract treatment of the representation space density presented above may be 

used to derive specific distributions. The Wigner distribution is an important 

specific case. We have  

 /1 1 1
ˆ( , ) ,

2 2 2

ipy
W x p x y x y e dyρ

π

∞
−

−∞

 
= + − 

 ∫ �

�
 (4.42) 

and here  

 
', ''

( ' '') /

ˆ ˆ( )

1 ' ''

2 2

x x

i x x p

L M L

x x
e xδ

π
−

=

+
= ± ( − )�

�

. (4.43) 

Thus the translational Wigner function is simply derived [9] by applying 

the principles of homogeneity and equivalence of directions embodied in the 

symmetries of the Heisenberg-Weyl group combined with the notion of a classical 

representation space. This should be compared with the intuitive method of 

Wigner who appears to have arrived at his distribution by ad hoc reasoning in so 

far as his distribution yields the correct marginal probabilities for position and 

momenta. 

As far as systems with SU(2) rotational symmetry is concerned phase 

space methods have been mainly applied in quantum optics and very little 

attention has been paid to other spin systems. For example explicit equations for 

the equilibrium quasiprobability density function ( , )W ϑ ϕ  have been presented 

only for the particular simple case of a spin in a uniform magnetic field 
0H  

[13,14]. In view of the importance of the magnetocrystalline anisotropy in 

physical applications [15,16] which in general gives rise to a multi-stable 

potential we shall illustrate the phase space method [9,11,17-23] by summarizing 

for completeness and as an example of the generality of Wigner’s ideas 

concerning representation of quantum operators by c-number quasiprobability 

distributions the calculation given by Kalmykov et al. [24] of the equilibrium 

quasiprobability distribution function for a uniaxial paramagnet of arbitrary spin 
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value S in a constant field H0 superimposed on an anisotropy field so that the 

Hamiltonian is  

 2ˆ ˆˆ
S Z ZH S Sβ ξ σ= − − . (4.44) 

where ˆ
ZS  is the Z-component of the spin operator Ŝ , σ  and ξ  are the 

dimensionless internal and external field parameters respectively. (In the classical 

limit, taking a single domain ferromagnetic particle as example, S → ∞ , 0ξ → , 

0σ → , they reduce to S constξ ξ ′= = , 2
S constσ σ ′= =  which are the well 

known field and anisotropy parameters, SM H
v

kT
 and 

Kv

kT
 where v is the volume 

of the particle, SM  is the saturation magnetization and K is the anisotropy energy 

density). Thus we shall calculate the quasiprobability density W  corresponding to 

the equilibrium spin density matrix ˆ
eqρ  given by 

 

ˆ

ˆ
SH

eq

S

e

Z

β

ρ
−

= , (4.45) 

where  

 
ˆ

Tr { }SH

SZ e
β−=  (4.46) 

is the partition function. A model Hamiltonian of the type of Eq. (3.18) has a 

variety of physical applications (see, e.g., [25-27]). 

In order to proceed using Stratonovich’s method we first recall that the 

density matrix ρ̂  of the spin Ŝ  is represented by a (2 1) (2 1)S S+ × +  square 

matrix [28]. The Hermitian ( †ˆ ˆρ ρ= ) and normalized ( ˆTr 1ρ = ) density matrix ρ̂  

may be expanded as a sum of the polarization operators ( )

,
ˆ S

L M
T  namely [28] 

 
2

* ( )

, ,

0

ˆˆ
S L

S

L M L M

L M L

a Tρ
= =−

=∑ ∑ , (4.47) 

where the asterisk denotes the complex conjugate and the expansion coefficients 

,L Ma  (statistical moment tensors) are given by [28] 

 

*

, ,

,

, , , , ,

,

( 1)

2 1

2 1

M

L M L M

S
S m

L M S m L M m m

m m S

a a

L
a C

S
ρ

−

′

′−
′=−

= −

+
=

+
∑

. (4.48) 
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Here ,
, , ,

S m
S m L mC

′
 is the Clebsch-Gordan coefficient [28] and ,m mρ ′  is the matrix 

element of the density matrix operator ρ̂  in the spherical basis representation. 

The irreducible tensor operators 
( )
,

ˆ S
L MT  form an orthogonal basis in the space of 

( ) ( )2 1 2 1S S+ × +  matrices with matrix elements given by [28] 

 ( ) ,
, , , ,

,

2 1ˆ
2 1

S S m
L M S m L m

m m

L
T C

S

′

′

+  =  +
,  

where ,S m m S′− ≤ ≤ , –L < M < L, and 0 ≤ L ≤ 2S. 

The Wigner quasiprobability distribution function ( , )sW ϑ ϕ  on the 

surface of the unit sphere for a spin system given by Stratonovich [9] (see also 

[11]) is defined by the invertible map [cf. Eq. (4.28) above with representation 

space ( , )M ϑ ϕ= ] 

 { }ˆ ˆ( , ) Tr ( , )s
sW wϑ ϕ ρ ϑ ϕ= , (4.49) 

where s parameterizes quasiprobability functions of spins belonging to the SU(2) 

dynamical symmetry group such as considered here, ˆ ( , )sw ϑ ϕ  is the Wigner-

Stratonovich operator or kernel of the (bijective) transformation given by Eq. 

(4.49) defined as [11] (recall that the spherical harmonics are the appropriate 

functions for the description of rotations) 

 ( )
2

, * ( )
, , ,0 , ,

0

4 ˆˆ ( , ) ( , )
2 1

S L s
S S S

s S S L L M L M

L M L

w C Y T
S

π
ϑ ϕ ϑ ϕ

−

= =−

=
+
∑ ∑  (4.50) 

(which corresponds to the operator ˆ( )L M  such that [cf. Eqs. (4.29) and (4.37) 

above] 

 { }ˆTr ( , ) 1sw ϑ ϕ =  

( ˆTr L( )M Mλ( ) =  is normalized to unity) and  

 

,

2 1 ˆˆ ( , )sin
4

s

S
w d d I

θ ϕ

ϑ ϕ ϑ ϑ ϕ
π

+
=∫ . 

Here Î  is the identity matrix. The density matrix operator ρ̂  may then be 

expressed using the kernel Eq. (4.50) via the inverse transformation 

 

,

2 1
ˆ ˆ ( , ) ( , )sin

4

s
s

S
w W d d

θ ϕ

ρ ϑ ϕ ϑ ϕ ϑ ϑ ϕ
π

−+
= ∫ , (4.51) 
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i.e., the mapping given by Eq.(4.49) is bijective. The function ( , )s
W ϑ ϕ−  now 

allows us to calculate the average value of an arbitrary spin operator Â  in the 

same way as the corresponding function for translational motion because the 

( , )sW ϑ ϕ−  are covariant under rotations and provide the overlap relation (which 

essentially follows from Eq. (4.40) above) 

 

{ }

,

ˆ ˆˆTr

2 1
( , ) ( , , )sin

4

s s

A A

S
A W t d d

θ ϕ

ρ

ϑ ϕ ϑ ϕ ϑ ϑ ϕ
π

−

=

+
= ∫

, (4.52) 

where 

 { }ˆ ˆ( , ) Tr ( , )
s

sA Awϑ ϕ ϑ ϕ=  (4.53) 

is the Weyl symbol of the operator Â  (see, e.g., [8]). Substituting Eqs. (4.47) and 

(4.50) into Eq. (4.49), we have after some algebra the representation distribution  

 
( )

2
, *
, , ,0 , ,

0

ˆ ˆTr ( , )

4
( , )

2 1

s
s

S L s
S S
S S L L M L M

L M L

w W

C a Y
S

ρ ϑ ϕ

π
ϑ ϕ

−

= =−

=

=
+
∑ ∑

 (4.54) 

where the statistical moment tensors 
,L Ma  (so called because the operator 

ˆ ( , )sw ϑ ϕ  is effectively the analogue of Moyal’s characteristic function operator 

( )ˆ ˆ ˆ( ) expM i p xτ θ τ θ, = +   ) are defined by Eq. (4.48) and we have noted that 

[28] 

 { }( ) ( )
, , ,,

ˆ ˆTr ( 1)
S S M

L M L L M ML MT T δ δ′
′ ′ −′ ′ = − . (4.55) 

The parameter values 0s =  and 1s = ±  correspond to the Stratonovich [9] and 

Beresin [19] contravariant and covariant functions, respectively (the latter are 

directly related to the P- and Q-symbols which appear naturally in the coherent 

state representation; see Ref. 11 for a review). In this Chapter [24], we consider 

1s =  only ( 1s = −  and 0s =  can be treated in like manner); thus we omit 

everywhere the superscript s−  in ( , )sW ϑ ϕ−  and subscript s  in ˆ ( , )sw ϑ ϕ . 

Equation (4.54) for the Wigner function ( , )sW ϑ ϕ  is very similar to those 

introduced by Agarwal et al. [20,29,30], however, in the present form it allows 

one to readily evaluate equilibrium quasiprobability distributions. In particular 

problems it can be considerably simplified. As an example, we obtain explicit 
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equations for the Wigner function of a system with Hamiltonian given by Eq. 

(3.18). Here the matrix elements ,m mρ ′  of the equilibrium spin density matrix 

 

ˆ

ˆ
SH

eq

S

e

Z

β

ρ
−

=  (4.56) 

are given by 

 

2

,

,

m m

m m

m m

S

e

Z

σ ξδ
ρ

+
′

′ = . (4.57) 

where the partition function 
SZ  is given by the finite sum 

 
2

S
m m
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m S

Z e
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= ∑ . (4.58) 

Due to the symmetry about the z axis, the general Eq. (4.54) can be simplified 

yielding the quasiprobability density ( )SW ϑ  for axial symmetry in the series form 
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where we have noted that 
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Y Pϑ ϕ ϑ

π

+
=  (4.60) 

and ( )LP z  is the Legendre polynomial [31] of order L. Using Eqs. (4.48) and 

(3.20), and the explicit form for the Clebsch-Gordan coefficient ,
, , ,0

S S
S S LC , viz.  

,
, , ,0

2 1
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(2 )!(2 1)!

S S
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S
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, 

we obtain  
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 (4.61) 

Equation (4.61) can be presented in an equivalent form which emphasises the 

relationship with Fourier series representation of the associated classical 

Boltzmann distribution, namely 

 
2

0

( ) ( 1/ 2) (cos )
S

S L Leq
L

W L P Pϑ ϑ
=

= +∑ . (4.62) 

Here L eq
P  is the equilibrium value of the Legendre polynomial LP  given by 
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where the explicit equation for the Clebsch-Gordan coefficient ,
, , ,0

S m
S m LC  is 
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For the particular values of S = 1/2, 1, 3/2, 2, 5/2, and 3, Eq. (4.61) yields the 

closed form results 
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where 
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2 2
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ξ ξ
ϑ ϑ= + . (4.63) 



 90 

Furthermore, for arbitrary 1S >> , the leading terms of the series in 2 2sin / ( )fξϑ ϑ  

for the equilibrium distribution ( )SW ϑ  are given by 

 

2 2
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 (4.64) 

In particular, Eqs. (4.63) and (4.64) allow one to readily evaluate ( )SW ϑ  at its 

maxima which occur at 0ϑ =  and ϑ π=  meaning classically that the spins are 

concentrated at the bottom of the wells where the minima of the potential occur, 

the saddle point is at 1cos ( 2 )ϑ ξ σ− ′′= − , we have  
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W e
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. (4.65) 

so that the maxima are unequal in height due to the biasing effect of the external 

field. In the classical limit ( S → ∞ , 0ξ → , 0σ → , S constξ ξ ′= = , 

2S constσ σ ′= = ), the equilibrium distribution ( )SW ϑ  tends to the Boltzmann 

distribution  
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is the classical partition function, / 2h ξ σ′ ′= , and 
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is the error function of imaginary argument [31]. The distribution ( )1
2

( )SS W ϑ+  

is shown in Figure IV.I. below. 
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Figure IV.I The distribution ( )1
2

( )SS W ϑ+  for 2σ ′ = , 0.5ξ ′ = , and 

various values of S. 

 

For 0σ = , when the Hamiltonian becomes ˆˆ
S ZH Sβ ξ= − , Eq. (4.61) 

reduces to the known results for a spin in a uniform external magnetic field 

[13,14] 
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The distribution ( )SW ϑ  given by Eq. (4.67) is the spin analogue of the Wigner 

quasiprobability distribution function ( , )W x p  for a quantum Brownian oscillator 

[32] (see Chapter V) namely 
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In the low temperature limit ( 2 1ξ σ′ ′+ >> ), the series expression for ( )SW ϑ  in 

Eq. (4.61) can be approximated to a very high degree of accuracy in the vicinity 

of the maxima at 0ϑ =  and ϑ π=  as 
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(2 1)( ) ( ), ( 1),
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e
W f
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and  
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respectively (see Figure IV.II below). (This is analogous to replacing the potential 

( )V x  in the vicinity of a minimum by a parabola in the case of translational 

motion). The interpretation of Eqs. (4.68) and (4.69) is that in the vicinity of the 

maxima at 0ϑ =  and ϑ π= , the dynamics of the spin at low temperatures 

constitutes precession in the effective magnetic field 

( ) [ ]
1

(2 1)H Sβγ ξ σ
−± = ± + +� . 
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Figure IV.II The distribution ( )1
2

( )SS W ϑ+  (solid lines) for 5σ ′ = , 

0.5ξ ′ = , and S = 2 and 10. Crosses (× and +): Eq. (4.68). Stars (� and �): Eq. 

(4.69). 
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Thus as an illustration of the power and generality of Wigner’s method we 

have summarized how [24] the representation space method which formally 

represents the quantum mechanics of spins as a statistical theory on the classical 

configuration space of polar angles (ϑ,ϕ) (which are now the canonical variables) 

may be used to construct equilibrium quasiprobability density functions for model 

spin Hamiltonians. These quasiprobability equilibrium densities are important in 

quantum tunnelling phenomena in ferromagnetic nanoparticles [33] and molecular 

magnets [34] and also in the crossover region between reversal of the 

magnetization of these particles by thermal agitation and reversal by macroscopic 

quantum tunnelling which is of current topical interest [35]. For example by 

analogy with the original classical calculation of Néel [36] the simplest 

description of quantum effects in the magnetization reversal time of a nanoparticle 

would be provided by the inverse escape rate from the wells of the 

magnetocrystalline and external field potential as calculated by quantum transition 

state theory (TST) [37] (which will be summarized for point particles in Chapter 

V). TST ignores the disturbance to the equilibrium distribution in the wells 

created by the loss of the magnetization due to escape over the barrier and so 

involves the equilibrium distribution only as that is assumed to prevail 

everywhere. However the equilibrium quantum distribution is also essential in the 

inclusion of nonequilibrium effects in the quantum escape rate. In this situation a 

quantum master equation describing the time evolution of the quasiprobability 

density in the representation space is required in order to generalize the escape 

rate calculations pioneered by Kramers [38] for point particles and by Brown 

[39,40] for single domain ferromagnetic particles in the classical case using the 

Fokker-Planck equation. Here the diffusion coefficients are calculated (see 

Chapter II) using Einstein’s imposition [40] of the Maxwell-Boltzmann 

distribution as the equilibrium solution of that equation. In like manner by 

postulating [41-44] a Kramers–Moyal like expansion truncated at the second term 

(as in the Fokker-Planck equation) for the collision term in the quantum master 

equation, the diffusion coefficients in the expansion may be calculated (see 

Chapter VI) by requiring that the equilibrium quasiprobability distribution in the 

representation space renders the collision term zero. In the present context this has 

been illustrated for the particular case of a spin in a uniform field in Ref. [45] and 
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indicates clearly how all the solution methods developed for the classical Fokker-

Planck equation carry over seamlessly to the quantum case just as the 

corresponding solutions for particles [41-44] (which are summarized in Chapter 

VII). 

This concludes our survey of the early fundamental contributions to phase 

space quantum mechanics. 

 

APPENDIX IV 

 

Appendix IV.I: Calculation of the marginal distributions 

The details of the calculation of the marginal distribution for the quantum 

mechanical probability for the various values of x and p are as follows. We have 

with an obvious change of variable, i.e. 
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�
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. (4.70) 

The marginal distribution [46] of the displacement X is then got in the usual way 

by integrating out the momentum or P dependence. The capital letters are used to 

denote random variables. We have  
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 (4.71) 

Now using the definition of the delta function 
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and its sifting property 
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we get 
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 (4.74) 

Note that this Eq. (4.74) is the true probability distribution rather than a quasi-

probability. 

The quantum mechanical probability for the momentum may be found by 

integrating W(x,p) with respect to x. We have  
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(4.75) 

We introduce the variables u and v in the double integral such that 
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which implies that  
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and use the following formula for the change of variables in the double integral 

[47] 
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∗
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where J is the Jacobian and is defined as  
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On substituting the values of the derivatives into the determinant, the modulus of 

the Jacobian has the value of 1 � and hence we get 
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The double integral on the right hand side of Eq. (4.77) can be written as 
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and since v is a dummy variable it is clearly equal to 
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This may also be written as the product of the Fourier transform of the wave 

function xψ ( ) viz. 

 ( , )W x p dx p pψ ψ
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See for example Mandel and Wolf [48], p.542. Hence we have the symmetrical 

relations  
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where the Fourier transform pair of the wave function are  
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Appendix IV.II: Proof of the Baker-Campbell-Hausdorff identity 

The Baker-Campbell-Hausdorff identity arises from the fact that in 

quantum mechanics it is not true to say that 
ˆ ˆˆ ˆA B A B

e e e
+ = , where Â  and B̂  are 

operators. However suppose that the operators Â  and B̂  commute with their 

commutator, i.e.,  

 ˆ ˆ ˆˆ ˆ ˆ, , , , 0B A B A A B      = =        (4.78) 

which is the case for the position and momentum operators q̂  and p̂ . 

To prove the Baker-Campbell-Hausdorff identity namely 

 ( ) ( ) ( ) ( )1ˆ ˆ ˆˆ ˆ ˆexp A+B exp A exp B exp B,A
2

  =    
, (4.79) 
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we [49] consider an operator ˆ ( )F s  depending on the real parameter s: 
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The derivative of F̂  with respect to s is  
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Next we use the property that for every analytic function ( )F x  

 ˆ ˆˆ ˆ ˆ, ( ) , ( )A F B A B F B    ′=     (4.82) 

where ( )F x′  denotes the derivative of ( )F x  (where the property of the operators 

is as above i.e. Eq. (4.78)). We can write 
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 (4.83) 

Therefore, 
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and 
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−  = +   . (4.85) 

On substitution of Eqs. (4.84) and (4.85) into Eq. (4.81) we obtain  

 ( )
ˆ

ˆ ˆˆ ˆ ˆ, ( )
dF

A B s A B F s
ds

 = + +   . (4.86) 

Since ˆ ˆA B+  and ˆ ˆ,A B 
   commute, we can integrate this differential equation. 

This yields  
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Setting 0s =  (in Eq. (4.80)) we obtain  
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1

A B
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so that Eq. (4.87) becomes 
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( ) 2ˆ ˆˆ ˆ, 2ˆ ( ) .
A B s A B s

F s e
 + + =  (4.89) 

Now set 1s =  in Eqs. (4.80) and (4.89) gives  
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e e e
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This is the Baker-Campbell-Hausdorff identity and is entirely equivalent to that 

given above in Eq. (4.79) because ˆ ˆˆ ˆA,B B,A   = −     and the fact that the 

commutator is a number. 

Appendix IV.III: Proof of how the operator exp(-ilpx/ħ) describes 

a displacement of a distance l along the x-direction 

Here we show the proof of 

 ˆi p
e x x

µ ψ ψ µ( ) = ( + )� . (4.91) 

We do so [49] by searching for an operator Â  acting on a wave function xψ ( ) , 

with  

 Â x x lψ ψ( ) = ( − ) . (4.92) 

Using the Taylor expansion, we can write 
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In the x-representation the momentum operator acts as  
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which is equivalent to Eq. (4.91) with l µ= − � . 

Appendix IV.IV: Calculation of the moments i.e. observables via 

the derivatives of the characteristic function  

Here we simply treat x and p as c-numbers and regard ( , )W x p  as a joint 

probability distribution in the random variable X,P. Hence we have from the usual 
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definition of the characteristic function as the Fourier transform over the 

probability density function ( , )W x p . 

At this stage it is also useful to introduce the characteristic function of the 

Wigner distribution function. The characteristic function is the (in this case) the 

two dimensional Fourier transform of W and it is  
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y
i p

i x p

e

y y
x x e dy e dx dp

ν µ

ν µ

χ µ ν

ψ ψ
π

+

∞ ∞ ∞
−

+

−∞ −∞ −∞

, =

    
= + −    

    
∫ ∫ ∫ �

�

 (4.95) 

Now considering the integration with respect to p 

 

1 1

2 2

1

yy i pi p
i p

e e dp e dp

y

µ
τ

π π

δ µ

 ∞ ∞
−−  

 

−∞ −∞

=

 
= − 

 

∫ ∫ ��

� �

� �

 (4.96)  

yielding  

 ( ) *

ˆ ˆ,

1
.

2 2

i x

x p

y y y
x x e dx dy

νχ µ ν ψ ψ δ µ
∞ ∞

−∞ −∞

     
, = + − −     

     ∫ ∫� �

 (4.97) 

Clearly this is going to reduce to an integral involving x only. In order to avoid 

difficulties with delta functions, we should change the variable in the delta 

function integral above, namely 

 1

1

y
y

dy dy

µ − =

⇒ = −

�

�

. 

Therefore 

 ( ) *

ˆ ˆ,
2 2

i x

x p x x e dx
νµ µ

χ µ ν ψ ψ
∞

−∞

   
, = + −   

   ∫
� �

 (4.98) 

This is the characteristic function of the Wigner distribution. We can use this to 

evaluate observables. 

Consider 

 
( )ˆ ˆ, *

2 2

x p i x
x x i x e dx

ν
χ µ ν µ µ

ψ ψ
ν

∞

−∞

∂ ,    
= + −   

∂    ∫
� �

.  (4.99) 

Clearly  
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( ) ( )ˆ ˆ, *x p

i x x x dx

i x

µ ν

χ
ψ ψ

ν

∞

−∞=0, =0

∂ 
= 

∂ 

=

∫
 (4.100) 

which is the correct quantum mechanical average. In like manner 

 
ˆ ˆ, *x p i x

e dx
t t

ν
χ ψ ψ

ψ ψ
µ

∞ ∗

−∞

∂  ∂ ∂
= + 

∂ ∂ ∂ 
∫  (4.101) 

or on introducing  

 u x
µ

= ±
2

�
 

we have 

 
ˆ ˆ, *x p i x

e dx
u u

ν
χ ψ ψ

ψ ψ
µ

∞ ∗

−∞

∂  ∂ ∂ 
= + −  

∂ 2 ∂ 2 ∂  
∫

� �
 

and if u xµ = 0, =  and also set ν = 0  we get 

 
ˆ ˆ, *x p

dx
x x

µ ν

χ ψ ψ
ψ ψ

µ

∞ ∗

−∞=0, =0

∂   ∂ ∂
= −   

∂ 2 ∂ ∂  
∫
�

. (4.102) 

Now, recalling that  

 

*
p p d x

p i
x

ψ ψ
∞

− ∞

=

∂
= −

∂

∫

�

 

we have  

 

*
p i dx

x

p i dx
x

p p p

ψ
ψ

ψ
ψ

∞

−∞

∞ ∗
∗

−∞

∗∗

∂
= −

∂

∂
=

∂

= =

∫

∫

�

�  

because p is observable and therefore real. 

We have  

 

ˆ ˆ,

2 2

.

x p i i
p p

i p

µ ν

χ

µ
∗

=0, =0

∂ 
= + ∂ 

=

 (4.103) 
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Hence it follows that just as in conventional statistics we can evaluate any 

desired quantum mechanical average from the characteristic function of the 

Wigner distribution. 

Appendix IV.V: Derivation of the evolution equation for Wigner’s 

distribution function  

The calculation of the time evolution equation for Wigner’s distribution function, 

i.e. Eq. (4.2) that is (for a pure state) 

 ( ) * /1
,

2 2 2

ipyy y
W x p x x e dyψ ψ

π

∞
−

−∞

   
= + −   

   ∫ �

�

 (4.104) 

which is an equivalent definition to that given by Hillery et al. [46] (their equation 

(2.2a)) as  

 ( ) ( ) ( )* 2 /1
,

ipy

WP x p x y x y e dyψ ψ
π

∞

−∞

= + −∫ �

�
. (4.105) 

This equivalence can be demonstrated through the substitution of the variable y 

with  

 1 1 and hence 
2 2

y dy
y dy= =  

yielding  

 ( ) 1 /* 1 1
1

1
,

2 2 2

ipy

W

y y
P x p x x e dyψ ψ

π

∞
−

−∞

   
= + −   

   ∫ �

�
 (4.106) 

which is the same as the Wigner distribution ( ), ,W x p t  defined above. In 

deriving the time dependence of the Wigner function we follow Hillery et al. [46] 

and proceed using the notation of Eq. (4.105). 

Taking the derivative of w.r.t. t we must remember that x yψ ( + )  is also a 

function of t, since we are using  x yψ ( + )  as short notation for ,x y tψ ( + )  and 

similarly for ,x y tψ ( − ) . Hence using the product rule of differentiation we get  

 
( )

( )
( ) ( )

( )* 2 /
, 1

.
W ipy

P x p x y x y
x y x y e dy

t t t

ψ ψ
ψ ψ

π

∗∞

−∞

 ∂ ∂ − ∂ +
= + + − 

∂ ∂ ∂ 
∫ �

�

 (4.107) 

Since the function ψ must evolve according to the Schrödinger equation 

(Eq. (4.3)) we can make the following substitutions: 
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2 2

2

( , )
( ) , )

2

x t
i V x x t

t m x

ψ
ψ

∗
∗ ∂ ∂

− = − + ( 
∂ ∂ 

�
�  (4.108) 

and correspondingly 

 
2 2

2

( , )
( ) , )

2

x t
i V x x t

t m x

ψ
ψ

 ∂ ∂
= − + ( 

∂ ∂ 

�
�  (4.109) 

where the variable x is replaced by the variable x y+ and x y−  respectively. Thus 

we obtain 

 

( )
( ) ( )

( ) ( )

( )

( )

2 2
* 2 /

2

2 2
2 /

2

2 2
* 2 /

2

2 2

2

, 1
( )

2 ( )

( )
2 ( )

( )
2 ( )

( )
2 ( )

W ipy

ipy

ipy

P x p
x y V x y i e

t m x y
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i
x y V x y e
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x y V x y
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ψ
ψ ψ

π

ψ
ψ ψ

ψ
ψ ψ

π

ψ
ψ ψ

∞

−∞

∗
∗

∞

−∞

∗
∗

∂  ∂
= + − + − −  ∂ ∂ − 

 ∂
+ − − + +  ∂ +  

  ∂
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∫

∫

�

�

�

�
�

�

�
�

� �

�

�
( ) 2 / .ipy
i e dy




 

�
�

 (4.110) 

The time evolution of ( ),WP x p  may be decomposed into two parts 

because the Schrödinger equation is linear. Thus we can consider the free kinetic 

energy and potential energy terms separately. In the first part we consider the 

contribution from the free kinetic energy term and let the potential energy term 

( ) 0V x =  obtaining 

 

( )
( )

( )

( )

( )

2 2
* 2 /

2 2

2 2
2 /

2

2
2 /

2

2
2 /

2

,

2 ( )

2 ( )

2 ( )

.
( )

W ipy

ipy

ipy

ipy

P x p i
x y e

t m x y

x y e dy
m x y

i
x y e

m x y

x y e dy
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ψ
ψ

π

ψ
ψ

ψ
ψ

π

ψ
ψ
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∗

∞ ∗

−∞

∗

∂  ∂
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  ∂
= − −  ∂ + 

 ∂
− +  ∂ −  

∫

∫

�

�

�

�

�

�

�

 (4.111) 
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The integral is with respect to y so  

 
2 2

2 2

( ) ( )

( )

x y x y

x y y

ψ ψ∂ − ∂ −
⇒

∂ − ∂
 (4.112) 

and similarly for x y+ , i.e.  

 
( )

( ) ( )
2 2

2 /

2 2

, ( ) ( )
.

2

W ipy
P x p i x y x y

x y x y e dy
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ψ ψ

π
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∗
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∫ �

 (4.113) 

Equation (4.113) is in exact accordance with Hillery et al. [46], (their equation 

(2.48)). We now use the following two operators  

 ,     
2 2

y p
i p i y

∂ ∂
= = −

∂ ∂

� �
 (4.114) 

so that we may rewrite Eq. (4.113) in accordance with Hillery et al., equation 

(2.49) 
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 (4.115) 

Next we notice that  
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( ) ( )( )

( ) ( )
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2 /

, 1

1 ( ) ( )
.

W ipy
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x y x y e dy
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∞
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 (4.116) 

Thus we can write Eq. (4.115) as  

 .W W
P Pp

t m t

∂ ∂
= −

∂ ∂
 (4.117) 

Taking advantage of the functional dependence of ,x tψ ( )  we can change dy to dx 

and switching back to our equivalent notation, ( , , )W x p t  as per Eq. (4.106), we 

have  
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 .
W p W

t m x

∂ ∂
= −

∂ ∂
 (4.118) 

This equation is identical to the classical Liouville equation in the force-free case 

and is in accordance with Hillery et al. 

Next we calculate the contribution due to the potential energy term. In 

general we have  
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�
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 (4.119) 

This time we consider only the contribution of the potential energy term ( )V x  

while temporarily letting the  

 
2

2
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∂ −
 

yielding  
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 (4.120) 

We now expand the potential ( , )V x y  in a Taylor series about the point x,  

 ( ) ( )( )
!

y
V x y V x

λ
λ

λ λ

∞

=0

+ =∑  (4.121) 

where 
( ) ( )V x
λ

 is the thλ  derivative of ( )V x . Expanding out this sum for 

( )V x y+ and ( )V x y−  respectively we have  

 
2 3

( ) ( ) ( ) ( ) ( ) ...
2! 3!

y y
V x y V x yV x V x V x′ ′′ ′′′+ = + + + + (4.122) 

and 
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2 3

( ) ( ) ( ) ( ) ( ) ...
2! 3!

y y
V x y V x yV x V x V x′ ′′ ′′′− = − + − + (4.123) 

We then take the sum  

 ( ) ( )V x y V x y+ − −  

noticing how all even terms will cancel each other. Thus  
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3 5
5
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1
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=
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=
−

∑

 (4.124) 

Substituting Eq. (4.124) into Eq. (4.120) we obtain the contribution due to the 

potential energy term 
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1
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∂
=

∂ −
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We wish to substitute out 2
y

λ−1 . We begin by taking the derivative of 2 /ipy
e

�  w.r.t. 

p. 

 
2 /

2 /2ipy
ipye iy

e
p

∂
=

∂

�
�

�
 (4.126) 

and then the 2λ −1  derivative, 
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2

2 1 2 /

2

2
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e iy
e

p

i
y e
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 (4.127) 

and therefore 
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2 1 2 /
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ipy e

y e
i p

λ λ
λ
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−1 −1
−
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∂ 
=  

∂ 

�
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 (4.128) 

and 

 

2 2
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22
y

i p

λ λ
λ

λ

−1 −1
−

−1

∂ 
=  

∂ 

�
. (4.129) 

Notice that Eq. (4.129) follows simply from the operators as per Eq. (4.114) 

above. Substituting Eq. (4.129) into Eq. (4.125) we get 
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 (4.130) 

We can now substitute in Eq. (4.106) to get the contribution of the potential 

energy term 
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Expanding out the sum we obtain the end result for the potential energy term 
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 (4.132) 

Combining the contributions from the free kinetic energy and the potential energy 

we have the equation for the time evolution of the Wigner distribution function 

 
2 2 2

2 2
1

( 2)

(2 1)!

r r r

W W W W

r r
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+1 +1∞
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=
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∑
�

 (4.133) 

which is precisely as given in Eq. (4.25). This equation excluding dissipation, that 

is, for a closed system may be solved [1] by perturbation theory to any order in 

2r�  to yield quantum corrections to the classical Maxwell-Boltzmann distribution. 

Appendix IV.VI: Fourier transforms and Wigner distributions  

Take the Fourier transform pair: 

 
1

( ) ( )
2

i
F f e d

ηξξ η η
π

∞
−

−∞

= ∫ , (4.134) 

 
1

( ) ( )
2

i
f F e d

ηξη ξ ξ
π

∞

−∞

= ∫ . (4.135) 

Consider the definition of the Wigner distribution i.e. 

 ( ) ( ) ( )* 2 /1
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ipy
W x p x y x y e dyψ ψ
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∞
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= + −∫ �

�
. (4.136) 
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We want to write down ( ) ( )* x y x yψ ψ+ −  in terms of a Fourier integral. First 

we write (in the symmetrical form of the Fourier integral) 

 ( )
( ) ( )*

2 /
21

,
2 2

ipy
x y x y

W x p e dy
ψ ψ

π π

∞

−∞

+ −
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�
 (4.137) 

then we will have by Fourier’s integral theorem  
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or 

 ( ) ( )* 2 /
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∞
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. (4.138) 

If we set 0y = , we have  
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∞

∗
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( ) = ( ) = ∫ . (4.139) 

To continue we will define the quantum Fourier transform pair 
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π
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�
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x
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�
. (4.141) 

We already found by evaluating the double integrals (see above) in Eqs. (4.71) 

and (4.75) that  
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∞ ∞
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which is clearly  

 ( )p pφ φ∗( )  

by using Eq. (4.140). We now clearly have  
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φ φ

∞
∗

−∞

∞
∗

−∞

= ( ) ( )

= ( ) ( )

∫

∫
 (4.142) 

Wigner also defines  
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1 2
.
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x
i p

x
i p

P x p p p p p e dp

p p p p
e dp

φ φ
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φ φ
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 (4.143) 

Now we apply Fourier integral theorem and so we have 

 
21

( , )
2 2

p
i xp p p p

P x p e dx
φ φ

π π

′∞∗

−∞

′ ′( + ) ( − )
′= ∫ �  (4.144) 

or  

 
2

( , )

p
i x

p p p p P x p e dxφ φ
′∞

∗

−∞

′ ′ ′( + ) ( − ) = ∫ �  (4.145) 

which on letting 0p′ =   

 ( ,0)p p P x dxφ φ
∞

∗

−∞

( ) ( ) = ∫ . (4.146) 

Note that P is not the same as W. See also p277 of [50]. 
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CHAPTER V 

 

Stationary solution of the evolution equation 

for the Wigner distribution: Application to 

transition state theory 

 

V.I Perturbation solution of Wigner’s stationary equation 

This chapter is mainly concerned with the calculation of stationary Wigner 

functions for particles using Eq. (4.25) for the evolution of the Wigner 

distribution in phase space and how it may be used to calculate reaction rates 

assuming that thermal equilibrium prevails everywhere. We remark that since in 

general the matrix elements of the density matrix are not known exactly for all but 

the simplest particle Hamiltonians, e.g. the harmonic oscillator, direct 

transformation of these using the Stratonovich bijective mapping in the manner 

outlined for spins in Section IV.IV is not usually feasible. Equation (4.25) in the 

general time dependent case reads 

 ˆ 0W

W
M W

t

∂
+ =

∂
 (5.1) 

where the Wigner-Liouville operator ˆ
WM  is defined as 

 
( )
( )

2 2 1 2 1

2 1 2 1
1

1ˆ
2 2

/ 2
.

2 1 !
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r r r

r r
r

p W i i
M W V x V x W

m x i p p

ip W V W V W

m x x p r x p

+ +∞

+ +
=

    ∂ ∂ ∂
= − + − −    

∂ ∂ ∂    

∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ + ∂ ∂
∑

� �

�

�
 (5.2) 

The stationary solution is then obtained by setting the time derivative 

equal to zero. We remark that Wigner [1] originally calculated quantum correction 

terms to the classical stationary distribution functions for a system with n degrees 

of freedom. For illustrative purposes, we consider a system with n = 1, i.e., a 

canonical ensemble of particles each of mass m moving in a potential ( )V x  at 

temperature T. Each particle is characterized by the energy 
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2

( , ) ( )
2

p
x p V x

m
ε = +  (5.3) 

Following Wigner [1] we develop the stationary probability function ( , )stW x p  in 

the power series in Planck’s constant 

 2 4

0 2 4( , ) ( , ) ( , ) ( , ) ...stW x p W x p W x p W x p= + + +� �  (5.4) 

where 

 ( , )

0 ( , ) x p
W x p e

βε−=  (5.5) 

is the classical stationary distribution i.e. the Maxwell-Boltzmann distribution. As 

shown in Appendix V.I, the functions 2( , )W x p  and 4( , )W x p  representing the 

second and fourth order of perturbation theory can be readily evaluated. (Wigner 

showed that the odd order terms in Planck’s constant are all zero). Thus we have 
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  ′′
+ Λ − 

   

 ′′ ′′′′ ′ ′′
+ − + − 

 
 

′ ′′ ′′ ′  
′′′ ′+ + − + − + 

 

 (5.6) 

where 

 
2 2

24m

β
Λ =
�

 (5.7) 

is the characteristic quantum parameter. One may infer from the form of the first 

and second order perturbation solutions for 
2( , )W x p  and 

4( , )W x p  that in general 

in the 2n
th

 order of perturbation theory, correction terms to the classical Gaussian 

momentum distribution and spatial derivatives of the potential will occur. Thus 

quantum effects give rise to non Gaussian behaviour of the momentum 

distribution and in general the equilibrium phase space distribution function is no 

longer separable in the position and momentum variables. The above equations 

are written explicitly to ( )4
o � . In like manner higher order quantum correction 
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terms to the Wigner stationary distribution ( , )stW x p  may be calculated. Thus 

( , )stW x p  can be given, in principle to any desired degree r of 2r
� . Methods for the 

calculation of Wigner functions are described in Appendix V.II. 

V.II Configuration space distribution 

The phase space distribution is a joint distribution so that the 

corresponding equilibrium distribution function in configuration space namely the 

quantum mechanical probability of the displacements for a system with density 

matrix ρ̂  

 

2
/(2 )

( , )

( )

( , )
2

st

st

p m

st

W x p dp

P x

e dp

W x p dp
m

β

β

π

∞

−∞
∞

−

−∞

∞

−∞

=

=

∫

∫

∫

 (5.8) 

can be readily evaluated from Eq.(5.6). We have 

 

( ){ 2

2
2 2 2 4 (4)

( ) 1 2

36 48 44 5 24 / ... .
10

V

stP x e V V

V V V V V V V

β β

β β β

−  ′ ′′= + Λ − 

Λ
′′ ′′′ ′ ′′ ′ ′ + + − + − +  



 (5.9) 

Equation (5.9) demonstrates how the probability of a configuration given 

by the Boltzmann factor ( )V x
e

β−  in classical theory (and holding in quantum 

theory for high temperatures) is modified for lower temperatures.  

V.III Calculation of equilibrium averages 

The equilibrium distribution function in configuration space ( )stP x  can be 

used to evaluate the equilibrium average of any function F(x) in semiclassical 

fashion as alluded to in Chapters I and IV. We demonstrate this retaining terms to 

4( )o � . We have for the semiclassical equilibrium average 
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(5.10) 

where 

 V

clZ e dx
β−= ∫  (5.11) 

is the classical partition function. Retaining terms linear in the quantum parameter 

Λ we have 
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 (5.12) 

where the classical equilibrium average is defined as 
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Noting that  
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we have finally 



 115 

 ( ) ...
cl cl cl cl cl

F F F V F V FV′′ ′ ′ ′′= + Λ + − +  (5.14) 

Equation (5.14) clearly demonstrates how quantum mechanical 

equilibrium averages may be expressed via perturbation theory in terms of 

classical equilibrium averages. 

V.IV Wigner’s stationary solution for a harmonic 

oscillator 

Obviously, the calculation of the Wigner distribution ( , )stW x p  is a tedious 

task for an arbitrary potential ( )V x  (see the Appendices V.I and V.II). However, 

in some cases the stationary Wigner distribution ( , )stW x p  can be found in closed 

form. A famous example is the quantum harmonic oscillator, where the potential 

 
2 2

0( )
2

m x
V x

ω
=  (5.15) 

and the equilibrium Wigner function can be presented in the simple exact form 

[2,3,4] (see Appendix V.II) 
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where 
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and  
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Here we have used the series expansion of coth z  see Eq. (4.5.67) of [5], viz., 

 
3

51 2
coth ....

3 45 945

z z
z z

z
= + − + −  (5.20) 

We shall demonstrate in Chapter VI how the Wigner stationary distribution can be 

used in the establishment of semiclassical Fokker-Planck equations and so in the 

quantum-classical correspondence which is the main objective of this review. 

However, many other applications exist and one of the most important of these in 

the present context is how Eq. (5.6) can be used to correct the classical transition 

state theory equation for the escape rate from a potential well which was first 

accomplished by Wigner [6,7]. 

V.V Application of the Wigner stationary distribution to 

transition state theory 

The simplest description of thermally activated decay which involves 

escape of particles over a potential barrier due to thermal agitation, is in terms of 

classical transition state theory (TST). In the simplest form of TST we consider a 

system with one degree of freedom in the absence of a reservoir where two 

assumptions are made [8]. First thermal equilibrium prevails in the well (for 

example, through the action of Maxwell’s demon who keeps replenishing the 

particles at the source) so that the metastable state is represented by a canonical 

equilibrium distribution (unlike in the Kramers [9] treatment of the escape rate 

where nonequilibrium effects due to the loss of particles from the well are taken 

account of by means of the theory of Brownian motion leading to friction 

dependence of the transmission coefficient). Secondly a particle is supposed never 

to return once it has crossed the potential barrier. The first assumption means that 

friction, i.e., dissipation to the bath does not affect the escape rate. Thus the 

system in effect is a closed classical system. However, according to Mel’nikov 

[10] the results of classical TST should also be applicable in a wide range of 

dissipation for which thermal noise is sufficiently strong to thermalize the 

escaping particles yet not so strong as to affect particle motion across the top of 
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the potential barrier, i.e., a Maxwell-Boltzmann distribution still holds at the top 

of the barrier. In the context of the Kramers model this is the so called 

intermediate damping case (cf. Fig. 1.13.2 of [11]). In the treatment of Kramers, 

however, which explicitly involves an open classical system with dissipation to 

the bath described by the Brownian motion stosszahlansatz, he shows that for 

sufficiently weak friction the escape rate is suppressed because of the depletion of 

the well population while for strong friction the escape rate is suppressed due to 

the slowing down of the particle motion at the top of the barrier. This behaviour is 

contained in the transmission coefficient. The IHD escape rate and Melnikov’s 

extension of it to provide a solution for all values of the dissipation is treated in 

Chapter VI. 

The suggestion that quantum mechanical tunnelling might play a 

significant role in some chemical reactions, was first made in 1927 by Hund [12] 

almost at the inception of quantum mechanics. The first guess at a quantum 

transition state theory appears to have been made by Wigner who proposed a 

quantum generalization of the classical TST [8,12,13], where the reaction rate Γ  

is given by 

 

1

1

1

( ) ( ) ( , )

( ) ( , )

( , ) .

a c st
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a c

p
Z p x x W x p dpdx
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θ δ
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∞ ∞
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−∞ −∞

∞
−

−∞

∞
−

−∞

Γ −

=

=

∫ ∫

∫

∫

∼

 (5.21) 

In the above equation the delta function means that all the particles cross 

at 
cx x=  while the step function means that only particles with positive 

momentum can escape. The probability current or flow of phase points in phase 

space is defined as 

 ( , ) ( ) ( , )
st

p
J x p p W x p

m
θ= , (5.22) 

where we note that physically ( , )stW x p  corresponds to a concentration in phase 

space, and of course the concentration as commonly conceived which in this 

instance is the Wigner configuration space distribution is got by integrating out 

the p dependence. In like manner the flow of points in configuration space is got 
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by integrating the phase space current with respect to p. In all calculations of the 

current densities the bottleneck at cx  has unit cross-sectional area and the current 

density is uniform across this section. The constant current is maintained by the 

Maxwell demon. Here θ is the unit step function, point c is the top of the barrier, 

point a is the bottom of the well and 
aZ  is the partition function of the well region 

which is the population of particles inside the well 

 ( , )a st

well

Z W x p dpdx= ∫ ∫ . (5.23) 

It is clear that the escape rate is then simply the constant current in configuration 

space divided by the population inside the well. The above considerations show 

clearly the connection between Wigner’s definition (Eq. (5.21)) of the escape rate 

and the flux over barrier definition used by Farkas [14] and later by Kramers. 

Proceeding (see Figure V.I) we remark that near the summit (point c) and 

near the bottom (point a) of the well the potential may be described by an inverted 

harmonic oscillator and harmonic oscillator potentials, namely, 
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2 2
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2

c
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a
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m x
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V x
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ω
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′′ +
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 (5.24) 

where ( ) /c cV x mω ′′= , ( ) /
a a

V x mω ′′= , 
cx x x′ = − , and

ax x x′′ = − . Thus 

near the bottom of the well, the partition function 
aZ  is approximated by that of a 

harmonic oscillator (see Eq. (5.63) Appendix V.II below) with 
0 aω ω=  and is 

given by  
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 (5.25) 
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 V(x) 

b 

x a 

c 

∆V 

 

Figure V.I Single well potential function as the simplest example of escape 

over a barrier. Particles are initially trapped in the well near the point a by a high 

potential barrier at the point c. They very rapidly thermalise in the well. Due to 

thermal agitation however very few may attain enough energy to escape over the 

barrier into region b whence they never return. The escape rate is defined as the flux 

or current of particles at the barrier divided by the well population which is sensibly 

approximated by the number of particles near the bottom of the well. 

 

Near the top of the barrier, the Wigner function ( , )stW x p  is approximated by that 

of an inverted harmonic oscillator [see Eq. (5.61) below] so that 
0 ciω ω=  and is 

given by  

 ( ) ( )2 tan / 2 /( )( )
( , ) sec / 2 c cc

p mV x

st c cW x p e e
ω β ωβ ω β −−≈
� �

� . (5.26) 

Substituting Eqs. (5.25) and (5.26) into Eq. (5.21), we obtain 
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where ( ) ( )c aV V x V x∆ = −  is the barrier height and 
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 (5.28) 

is the quantum correction to the classical TST result. The lowest order quantum 

correction to this pre-exponential factor was first obtained by Wigner [6] (see also 

[7]). He emphasized that the quantum factor Ξ represents an effective lowering of 

the potential barrier so enhancing the escape rate. According to Wigner [6], Eq. 

(5.27) constitutes the quantum corrections to classical TST at high temperatures. 
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In the context of quantum dissipation, one may infer that Eq. (5.27) also 

represents the extension of the intermediate damping Kramers escape rate (for 

which classical TST provides a reasonably accurate approximation [10,15]) to 

include quantum effects. An important feature of Eq. (5.27) which does not 

manifest itself in the first order in ħ
2
 approximation is that the prefactor Ξ 

diverges at a crossover temperature Tc given by /(2 )c cT kω π= � . The divergence 

occurs because the parabolic (or inverted oscillator) approximation for the 

potential is only valid near the top of the barrier. However, at very low 

temperatures
cT T� , where the particle is near the bottom of the well, the 

parabolic approximation to the barrier shape is not sufficient [16] (see also Weiss 

[8], Chapter 12). On the other hand at cT T> , transitions near the barrier top 

dominate so that the parabolic approximation is accurate [17]. Moreover the 

simple approximation appearing on the right hand side of Eq. (5.28) should hold 

with a reasonable degree of accuracy. This approximation also appears to be in 

substantial agreement with the experimental results of Bouchaud et al.[18]. 

We have demonstrated how the quantum escape rate in the absence of 

dissipation, namely Eq. (5.27), may be obtained by Wigner’s perturbation method. 

The result was originally obtained in a more succinct fashion without using 

perturbation theory by recalling that the rate constant may be written [12,16] 

 1
( )aZ w e d

βεε ε
∞

− −

−∞

Γ = ∫ . (5.29) 

Here  

 
2 ( ) /( )

1
( )

1 c cV
w

e
π ε ω

ε
− −

=
+ �

 (5.30) 

which is the exact quantum transmission coefficient (ignoring dissipation) of a 

parabolic barrier [19]. We again approximate the potential by that of an inverted 

harmonic oscillator at the top of the barrier which holds good at the barrier as well 

as at a small distance below it. This is the reason for regarding the integral in Eq. 

(5.29) as having infinite limits. Thus one finds on evaluating the integral in Eq. 

(5.29) with these limits that the escape rate is given by 

 
2 sin( / 2)

cVc

a c

e
Z

βω

βω
−Γ =

�

�
. (5.31) 

Noting Eq. (5.25), one can readily obtain Eq. (5.27) from Eq. (5.31). 
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Quantum TST as formulated for particles with separable and additive 

Hamiltonians in the manner just described has also been applied [20] in the 

context of magnetization reversal to the escape rate of the large spin model of 

single domain ferromagnetic particles. This model describes a ferromagnetic 

particle with uniaxial anisotropy with external fields applied parallel and 

perpendicular to the anisotropy axis. Tunnelling in such a model will be caused by 

the transverse field [20]. Now, the Hamiltonian of the model (which is not 

separable and additive as the canonical variables are now the polar angles θ  and 

ϕ  specifying the orientation of the magnetization vector) may be mapped [20] 

onto that of a mechanical particle moving in a double well potential. Hence the 

quantum TST rate described above which is a close approximation to the exact 

escape rate in the intermediate damping region may also be used to study 

thermally assisted tunnelling of the magnetization of a single domain 

ferromagnetic particle. The complete solution of the foregoing problem, however, 

essentially involves the extension of Wigner’s formalism to the phase-space 

description of spin systems as initiated by Stratonovich [21] and recently extended 

and reviewed by Klimov [22] who gave exact evolution equations for SU(2) 

dynamical group quasidistribution functions. Applications of the formalism 

include quantum decoherence in the rotation of small molecules [23], spin 

squeezing and spin entanglement in the semiclassical limit [24]. In the context of 

TST for spins described by the SU(2) rotation dynamical group we should remark 

that the results of the calculation of the Wigner distribution given in Section 

IV.IV, Eqns. (4.59) et seq., are very important. Essentially these results (ignoring 

dissipation to the bath) allow one to calculate the escape rate and so the quantum 

corrections to the magnetization relaxation time for axially symmetric potentials 

of the magnetocrystalline anisotropy. The foregoing results are also important in 

the inclusion of dissipation in the calculation of the relaxation time because due to 

the axial symmetry all that is required to write down such an equation is a 

knowledge of the stationary distribution as that entirely determines the diffusion 

coefficients since the precession term drops out of the Liouville operator.  

In the next Chapter we shall demonstrate how the Wigner stationary 

distribution may be used to construct quantum master equations including 

dissipation. 
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APPENDIX V 

 

Appendix V.I: Wigner’s method of calculation of stationary 

functions 

By substituting Eq. (5.4) into Eq. (5.1) and equating the coefficients of the 

different powers of Ñ, we have [25] 

 
33

02 2

3 3

1
0

24

WW Wp V V

m x x p x p

∂∂ ∂∂ ∂
− + − =

∂ ∂ ∂ ∂ ∂
, (5.32) 

 
533 5

04 4 2

3 3 5 5

1 1
0

24 1920

WW W Wp V V V

m x x p x p x p

∂∂ ∂ ∂∂ ∂ ∂
− + − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂

 (5.33) 

etc. Following Wigner [1] we seek W2 as  

 ( , ) 2 2 2

2 2 2 0 0
( )x p

W e p A V B V A V B V
βε− ′′ ′ ′′ ′ = + + +  . (5.34) 

By noting that ( , )

0

x p
W e

βε−=  and substituting Eq. (5.34) into Eq. (5.32), we obtain 

 
3

2 224
A

m

β
= ,   2 0B = ,   

2

0
8

A
m

β
= − ,   

3

0
24

B
m

β
= , 

so that 

 
2

2 2 ( , )

2
( ) 3 ( ) ( )

24

x p
W p V x V x V x e

m m

βεβ β
β − ′′ ′′ ′= − +  

. (5.35) 

In like manner, we seek W4 as 

 

( , ) 4 2 2 4

4 4 4 4 4 4

2 2 2 4

2 2 2 2 2

2 2 4

0 0 0 0 0

[ ( )

( )

].

x p
W e p A V B V V C V V D V E V

p A V B V V C V V D V E V

A V B V V C V V D V E V

βε− ′′′′ ′′′ ′ ′′ ′ ′′ ′= + + + +

′′′′ ′′′ ′ ′′ ′ ′′ ′+ + + + +

′′′′ ′′′ ′ ′′ ′ ′′ ′+ + + + +

 (5.36) 

By substituting Eqs. (5.35) and (5.36) into Eq. (5.33), we have 

4

4
1920

A
m

β β 
= −  

 
,   4 4 4 0B C E= = = ,   

42

4
1152

D
m

β β 
=  

 
, 

3

2
192

A
m

β β 
=  

 
,   

32

2
480

B
m

β β 
= −  

 
,   

33

2
576

C
m

β β 
=  

 
,   

32

2

3

320
D

m

β β 
= −  

 
,    

2 0E = ,   

2

0
128

A
m

β β 
= −  

 
,   

22

0
96

B
m

β β 
=  

 
,   

23

0

3

320
C

m

β β 
= −  

 
,    
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22

0

5

384
D

m

β β 
=  

 
,   

24

0
1152

E
m

β β 
=  

 
, 

so that 

 

( )

( ) ( )

( ) ( ) ( )

2 22 2 (4)
( , )

4

2 22 (4) 2

2 2 4(4) 2

4 72 120

3

4 48 120 144 80

3 5
.

128 96 320 384 1152

x p
Vp V

W e
m m

V V Vp V V V

m

V V V VV V V

βε ββ β β

β β ββ β β

β β β ββ β

−
  ′′  

= −   
      

 ′′ ′ ′′′′′ ′
+ − + − 

  

′′ ′ ′′ ′′′′ ′ 
− + − + + 



 (5.37) 

On taking into account Eqs. (5.35) and (5.37) we obtain Eq. (5.6). The 

function 
4W  can be rewritten in terms of the Hermite polynomials 

2( )H z  and 

4( )H z  as  

 

( )

( ) ( )

( ) ( ) ( )

22 (4)
( , )

4 4

2 2(4) 2

2

2 2 4(4) 2

( )
8 72 120

2
( )

15 15 18 15

22 24 8
,

15 15 45 5 18

x p
V V

W e H q
m

V V VV V V
H q

V V V VV V V

βε ββ β

β β ββ β

β β β ββ β

−
  ′′ 

= −  
     

 ′′ ′ ′′′′′ ′
+ − + − 

  

′′ ′ ′′ ′′′′ ′ 
− + − + + 



 (5.38) 

where 

 
2

q p
m

β
=  (5.39) 

and the ( )nH z  are defined by the generating function [26] 

 ( ) ( )
2 2

1 e e , 0,1,2,3...
n

n z z

n n

d
H z n

dz

−= − =  (5.40) 

This result was originally obtained by Wigner (see Eq. (26) of [1]).  

Appendix V.II: Calculation of stationary Wigner functions 

The purpose of this Appendix [25] is to present a method of obtaining a 

complete solution of Eq. (5.1) which governs the behaviour of the Wigner 

function. Equation (5.1) reduces to the classical Liouville equation if ħ is set equal 
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to zero. The ħ
2r

 terms give the quantum correction if this is very small. From Eq. 

(5.1) it is clear that the quantum equation of motion is the same as the classical 

equation of motion when the potential ( )V x  has no third and higher derivatives, 

e.g. for a uniform electric field or for a system of oscillators. However, a subtle 

difference exists in so far as the possible initial conditions are restricted because 

not all ( , , )W x p t  are now permissible. Equation (5.1) can be presented in the 

equivalent form [2] 

 
( , )

2 ( , ) sin( / 2) ( , )
W x p

x p W x p
t

ε
∂

= − Θ
∂

� �  (5.41) 

where 

 
2

( , ) ( )
2

p
x p V x

m
ε = +  (5.42) 

is the energy corresponding to the Hamiltonian operator Ĥ  of the system, Θ is an 

operator defined as 

 
p x x p

∂ ∂ ∂ ∂
Θ = −

∂ ∂ ∂ ∂

� � � �

 (5.43) 

with the arrows indicating in which direction the derivatives act. In reality, this is 

merely an abbreviated form of Eq. (5.1) which may be verified by expanding the 

sine in a power series and using the fact that  

 ( , ) 0x p
p x

ε
∂ ∂

=
∂ ∂

. (5.44) 

In order to proceed we first recall that at equilibrium the density matrix ˆ
stρ  of a 

canonical ensemble is given by 

 
ˆ

ˆ
( )

st
Z

ρ
ρ

β
= , (5.45) 

where 

 { }ˆ
( ) Tr

H
Z e

ββ −=  (5.46) 

and 

 
ˆ

ˆ He βρ −= . (5.47) 

The unnormalized density matrix ρ̂  satisfies the equation 
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ˆ ˆˆ

ˆ ˆ

H

H

ρ
ρ

β

ρ

∂
= −

∂

= −

 (5.48) 

subjected to the initial condition
0

ˆˆ I
β

ρ
=

= , where Î  is the identity operator. 

Equation (5.48) is referred to as the Bloch equation for the density matrix of a 

canonical ensemble [26]. Making the Wigner-Weyl transformation [27] of Eq. 

(5.48), one obtains [2,28] (cf. Eq. (5.41)) 

 
( , )

( , )cos( / 2) ( , )st
st

W x p
x p W x pε

β

∂
= − Θ

∂
�  (5.49) 

where ( , )stW x p ρ= 	 , ( , )x p Hε = 	 , and F	  denotes the Wigner-Weyl 

transformation of the operator F̂ , viz., 

 / ˆ( , ) / 2 / 2
ipz

F x p e x z F x z dz= − +∫ �	 . (5.50) 

The initial condition for Eq. (5.49) is 

 
0

( , ) 1stW x p
β =

= . (5.51) 

This is the Wigner interpretation of the Bloch equation, which was intensively 

studied by many authors and was first derived in this form by Oppenheim and 

Ross [29]. Equation (5.49) can be simplified to yield [3]  

 
2 2

2

2

( , )
2 ( ) sin ( , ) ( , ).

4 8

st
st

W x p
V x x p W x p

x p m x
ε

β

  ∂ ∂ ∂ ∂
= − +  

∂ ∂ ∂ ∂   

� �
� �

 (5.52) 

This equation was originally given by Alastuey and Jancovici [30]. 

In order to find the stationary probability function ( , )stW x p  from Eq. 

(5.52) by perturbation methods, we develop ( , )stW x p  in a power series  

 2

0 2

1

( , ) ( , ) ( , )
r

st r

r

W x p W x p W x p
∞

=

= +∑�  (5.53) 

where 

 ( , )

0 ( , ) x p
W x p e

βε−= . (5.54) 

By substituting Eq. (5.53) into Eq. (5.52) and equating the coefficients of the 

different powers of Ñ, we have in the n
th

 order of perturbation theory 
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n k k k
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WW W V
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m x k x p
ε

β
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∂∂ ∂ − ∂
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∑
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 (5.55) 

The solution of Eq. (5.55) satisfying the condition 

 
2 0

0nW
β =

=  (5.56) 

is 

 

22 2
2( )2 2

2 2 2 2 2
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1 ( 1)
.

8 (2 )!2

kk kn
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n k k k
k

WW V
W e e d

m x k x p

β
βε λε λ−− −

=
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= − 

∂ ∂ ∂  
∑∫

 (5.57) 

The analogous solution for a different distribution function was obtained by 

Kirkwood [31]. One of the earliest applications was to quantum corrections of the 

classical equations of state and related corrections to chemical reaction rates [6,7]. 

They have been extensively used in statistical mechanics ever since (see, for 

example, Oppenheim and Ross [29] and Nienhuis [32]). 

As an example of application of the above formalism, we calculate the 

Wigner function of a canonical ensemble of harmonic oscillators at temperature T 

[33]. Here 

 
2 2

0
0( ) ( )

2

m x
V x V x

ω
= +  

and  

 ( )V x mω2
0

′′ =  

so that Eq. (5.52) becomes 

 
2 2 2

2 2

( , ) 1
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8

st
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W x p
x p m W x p

m x p
ε ω

β
2
0

  ∂ ∂ ∂
= − ( ) + +  

∂ ∂ ∂  

�
.

 (5.58) 

To solve Eq. (5.58) we make the ansatz (following Hillery et al. [2]) 

 
( ) ( , ) ( ) ( ) ( )

0 0( , )
A x p V x B V x

W x p e
st

β ε β β − − + −
 = (5.59) 

where (0) (0) 0A B= = . Substituting this into Eq. (5.58) yields 

 [ ]
2 2

0 0
0( , ) ( ) 1 0.

2 2

dA dB
x p V x A A

d d

ω ω
ε

β β

    
− − − + + =    

     

� �

 (5.60) 
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Noting that the solution of the coupled differential equations  

2

20 1
2

dA
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ω

β
 

+ = 
 

�
 

and 

2

0 0
2

dB
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d

ω
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 
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�
 

is given by 

 0

0

2
( ) tanh

2
A

β ω
β

ω

 
=  

 

�

�
 

and  

0( ) ln cosh
2

B
β ω

β
 

= −  
 

�
, 

we have finally 

 ( ) [ ] ( )0 0 00 2 ( , ) ( ) tanh / 2 /( )( )

0
( , ) sech / 2 .

x p V xV x
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W x p e e

ε β ω ωβ β ω − −−= � �
�

 (5.61) 

The normalized Wigner function is then given by 

 

( ) [ ] ( )0 0 02 ( , ) ( ) tanh / 2 /( )1
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 (5.62) 

where 
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e
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∞ ∞
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=
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�

�

 (5.63) 

We remark that the Wigner function ( , )normW x p  for the mixed states of a 

harmonic oscillator is a superposition of the Wigner functions for the pure 

states ( , )nW x p , viz., [2,4] 
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Here ( , )nW x p  is defined as 
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n n n
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 (5.65) 

where 

 

1/ 4 2

0 0 01
( ) exp

22 !
n n

n

m m x m
x H x

n

ω ω ω
ψ

π

   
= −           � � �

 (5.66) 

is an eigenfunction of the harmonic oscillator, where ( )nH z  and ( )nL z  are the 

Hermite and Laguerre polynomials, respectively [5]. Other examples of Wigner 

functions for simple quantum systems such as the Morse oscillator and the 

particle in an infinite square well potential can be found in Ref. [3]. 
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CHAPTER VI 

 

Master equation for the Wigner function 

 

VI.I Wigner function for open systems 

The results we have given in Chapter V apply to closed quantum systems 

apart from the supposition that for intermediate damping just as its classical 

counterpart the quantum TST rate provides a good approximation to the Kramers 

escape rate at temperatures greater than the critical temperature. Now, as already 

mentioned in Chapter I and as demonstrated by Caldeira and Leggett [1], the 

Wigner formalism [2,3] may also be applied to open quantum systems [4]. In 

particular, it provides a useful tool for introducing quantum corrections to 

classical models of dissipation such as many body collisions or Brownian motion 

[1,5-8]. In this context as we have seen the one-dimensional quantum Brownian 

motion of a particle of mass m moving in a potential ( )V x  is usually studied by 

regarding the Brownian particle as bi-linearly coupled to a bath of harmonic 

oscillators in thermal equilibrium at temperature T [1,8-16]. The most convenient 

way (see Chapter II, Appendix II.I) of characterizing the bath effect is by means 

of the spectral density characterising the coupling parameters to the j
th

 oscillator, 

which is cut off in some manner at high frequencies. (Little information about the 

coupling constants is usually available and introduction of the spectral density 

with a given high frequency cutoff should therefore be regarded [17] as a 

phenomenological way to account for environmental effects). The oscillators 

constituting the string or transmission line represent the normal modes of the bath. 

We remark that the effect of friction is regarded as entirely equivalent to the 

bilinear coupling to these normal modes. Quantization of the bath of oscillators 

[1] then yields the semiclassical master equation [1,8-16] 

 ˆ ˆ
W D

W
M W M W

t

∂
+ =

∂
, (6.1) 

where the operator ˆ
WM  is defined by Eq.(4.26) viz., 
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( )
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2 1 2 1
1

1ˆ
2 2

/ 2

2 1 !

W

r r r

r r
r

p W i i
M W V x V x W

m x i p p

ip W V W V W

m x x p r x p

+ +∞

+ +
=

    ∂ ∂ ∂
= − + − −    

∂ ∂ ∂    

∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ + ∂ ∂
∑

� �

�

�
 (6.2) 

and the operator ˆ
DM  is given by 

 ˆ .D p pp xp

W W
M W D pW D D

p p x

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

 (6.3) 

Here , ,p ppD D  and xpD  are coordinate, momentum, and time dependent 

parameters which are to be determined. The left hand side of Eq. (6.1) is the 

quantum analogue of the Liouville equation, while ˆ
DM W  characterizes the 

interaction of the Brownian particle with the thermal bath at temperature T; the 

term ˆ
DM W  being the analogue of the collision kernel (stosszahlansatz) in the 

classical kinetic theory. In general Eq. (6.3) has the form of a Kramers-Moyal 

expansion truncated at the second term, which is to be expected on intutitive 

grounds given that the Wigner distribution should closely approximate the 

classical one (as discussed in Chapter I). This point has also been emphasized by 

Gross and Lebowitz [18] who state that “appropriate quantum kernels are 

suggested by requiring that the Wigner distribution function satisfy an 

integrodifferential equation (e.g. Boltzmann’s collision integral) with a stochastic 

kernel which is the same as that obeyed by the classical distribution function.” 

Conditions for the validity of the master Eq. (6.1) are discussed elsewhere (e.g., 

Refs. 19 and 20). We remark that in general the kernel ˆ
DM W  contains quantum 

correction terms [15] additional to those given by Caldeira and Leggett. Most of 

these terms can be incorporated in the present treatment, e.g. the term 
p xp xD∂ ∂  in 

Eq. (6.3) absent in the original Caldeira–Leggett equation [1] is included in ˆ
DM W  

explicitly as in Ref. [15] (this term describes quantum mechanical coupled p-x 

diffusion). 

Being in possession of the functional form of the master Eq. (6.1) for the 

Brownian particle, the crucial step is to determine the coefficients , ,p ppD D  and 

xpD . In the classical limit, 0→� , the coefficients , ,p ppD D  and 
xpD  become (as 

shown, e.g., in [24,63]) 
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 , / , 0p pp xpD D m Dγ γ β= = = , (6.4) 

where γ  is a dissipation parameter. Equation (6.1) then reduces to the Klein-

Kramers (Fokker-Planck) Eq. (2.51). As we have already mentioned the classical 

Klein-Kramers equation has been extensively applied to the Brownian motion in a 

potential [21,22]. 

Hitherto calculations of , ,p ppD D  and 
xpD  in the quantum case have 

usually been undertaken for a Brownian harmonic oscillator (see, for example, 

Refs. 10-14). As far as semiclassical treatments of the Brownian motion in an 

anharmonic potential ( )V x  are concerned little in the way of solution of Eq. (6.1) 

apart from the pioneering work of Wigner (on quantum corrections to the classical 

distribution function in the closed system summarized in the previous Chapter) 

has appeared. Undoubtedly, many methods of determining these coefficients 

exist. However, we now suggest a simple heuristic method of determining 

, ,p pp xpD D D  for an arbitrary potential ( )V x . For simplicity, we evaluate 

, ,p pp xpD D D  in the approximation of frequency independent damping, where 

, ,p pp xpD D D  in Eq. (6.1) are independent of the time [12,13]. In the high 

temperature limit, this approximation may be used in a wide range of the model 

parameters both in the limits of weak and strong damping [23]. For the range of 

parameters, where such an approximation is not valid (e.g., throughout the very 

low temperature region), other methods should be used (a detailed discussion of 

the validity of this approximation is given by Grabert [23]). We have also chosen 

the approximation of frequency independent damping because that underlies the 

classical Brownian motion and so is appropriate here. Our objective being merely 

to understand how quantum effects treated in semiclassical fashion alter the 

classical Brownian motion in a potential. 

In order to determine the explicit form of , ,p pp xpD D D  in Eq. (6.1), we use 

Wigner’s results for the unnormalized equilibrium distribution ( , )stW x p  from Eq. 

(5.6) viz. 
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(4)
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3
6 10

2 9

5 3 5

5 9 3
2 ... .
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x p
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p
W x p e V V V
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Vp V

m

V Vp V V V
V

m

V V V V V
V V

βε β
β

β β

ββ β

β β

β

−
  

′′ ′′ ′= + Λ − +  
 

  ′′
+ Λ − 

   

 ′′ ′′′′ ′ ′′
+ − + − 

 
 

′ ′′ ′′ ′ 
′′′ ′+ + − + − + 

 

 (6.5) 

The equilibrium Wigner distribution ( , )stW x p  satisfies Wigner’s Eq. (5.1), 

namely 

 ˆ 0W

W
M W

t

∂
+ =

∂
 (6.6) 

to ( )4
o �  [2]. On the other hand, ( , )stW x p  must also be the equilibrium solution 

of the generic master Eq. (6.1), i.e., it must also satisfy ˆ 0D stM W = . By seeking a 

solution for ,p xpD D , ppD  in the form  

2 4

2 4( , ) ( , )p p

pD d x p d x pγ= + + +� � � , 

2 4

2 4( , ) ( , )pp pp

pp

m
D d x p d x p

γ

β
= + + +� � �  

and 

2 4

2 4( , ) ( , )xp xp

xpD d x p d x p= + +� � � 

and by substituting Eq. (6.5) into Eq. (6.1), one then finds if ( , )stW x p  is a 

solution of ˆ 0D stM W = , that the coefficients 
pD  and 

xpD  must remain as in Eq. 

(6.4) and only 
ppD  must be altered to read 

 

2 2
2 (4)2 5

1 2 ( ) 6 ( ) ( ) 2 ( ) 3 ( ) ... .
5

pp

m p
D V x V x V x V x V x

m

γ

β β

   Λ 
′′ ′′′ ′ ′′= + Λ − + + − +   

    
 (6.7) 

Thus the explicit form of the master Eq. (6.1) containing the terms up to ( )4
o �  is 
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3 3 5 5

2 2 4 4 2
2 (4)

2

...
24 1920

5
1 6 2 3 ...

12 1440

W p W V W V W V W

t m x x p x p x p

m p W
pW V V V V V

p m m m p

β β
γ

β β

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   ∂ ∂
′′ ′′′ ′ ′′= + + − + + − +   ∂ ∂       

� �

� �

 (6.8) 

The imposition of the Wigner phase space distribution ( , )stW x p  as the 

equilibrium solution of the master Eq. (6.1) so yielding a potential dependent 

diffusion coefficient ppD  appears to be the exact analogue of the ansatz of a 

Maxwell-Boltzmann stationary distribution used by Einstein, Smoluchowski, 

Langevin, Klein and Kramers [21,22] in order to calculate diffusion coefficients 

in the Fokker-Planck equation of the classical theory of the Brownian motion. 

Furthermore, the condition 

 �
0 0DM W =  

is entirely equivalent to the property of the collision kernel ( )St f  in the classical 

kinetic theory, whereby the equilibrium distribution function 

 0( , ) ~ exp[ ( , )]f x p x pβε−  

always satisfies the condition 

 
0( ) 0St f = . 

Here ( , , )f x p t  is the phase space distribution function obeying the kinetic 

equation  

( )
f p f V f

St f
t m x x p

∂ ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
. 

In particular, this is so for the Klein-Kramers equation (2.51), where 

 ( )
m f

St f pf
p p

γ
β

 ∂ ∂
= + ∂ ∂ 

. 

In the quantum case, this idea has been used before, e.g., by Gross and Lebowitz 

[18] in their formulation of quantum kinetic models of impulsive collisions. 

According to [18], for a system with a time dependent Hamiltonian �H , the 

equation governing the time behaviour of the density matrix ρ  is 

 � �,
i

H Q
t

ρ
ρ ρ

∂  + = ∂ �
, (6.9) 

where the collision kernel operator �Q  satisfies the condition 
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 �
0 0Qρ =  

where 

 

�

�( )
0

0
0

Tr

H

H

e

e

β

β
ρ

−

−
=  

is the equilibrium density matrix and � 0H  is the time independent Hamiltonian. 

Our condition �
0 0DM W =  is entirely analogous to the Gross-Lebowitz condition 

�
0 0Qρ = . The condition � 0 0Qρ = ; has also been used by Redfield [24] in the 

calculation of the matrix elements of the relaxation operator �Q  in the context of 

his (second-order) perturbation theory of relaxation processes. We also mention 

that the modification of the diffusion coefficients in the classical Fokker-Planck 

equation caused by quantum effects has been anticipated by Zwanzig [25]. 

By way of comparison with previous results we note that the master 

equation Eq. (6.8) can be used for an arbitrary potential ( )V x . For illustration, we 

consider a harmonic potential 

 
2 2

0( )
2

m x
V x

ω
= , 

which is of the utmost importance as the quantum Brownian oscillator model is 

ubiquitous in physics and chemistry. Here the calculation can be considerably 

simplified as the normalized equilibrium Wigner function is available in the 

simple exact form Eq. (5.16). Noting Eqs. (5.16) and (5.20), we can readily 

evaluate 
ppD  for a quantum oscillator in closed form. Thus we have from our 

perturbation procedure  

 

2 2 2 4 4 4

0 0

0 0

2

1 ...
12 720

coth
2 2

,

pp

m
D

m

p

γ β ω β ω

β

ω β ω
γ

γ

 
= + − + 

 

=

=

� �

� �
 (6.10) 

where 2
p  is given by Eq.(5.18), so that Eq. (6.8) becomes 

 2W p W V W W
pW p

t m x x p p p
γ

 ∂ ∂ ∂ ∂ ∂ ∂
+ − = + ∂ ∂ ∂ ∂ ∂ ∂ 

. (6.11) 
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The master Eq. (6.11) coincides in all respects with that of Agarwal [10], who 

first developed a detailed theory of Brownian motion of a quantum oscillator (see 

his Eq. (2.11) with 0λ = ) in the weak coupling limit. It is known, however, that 

according to the already available theory of quantum dissipation, in a quantum 

Brownian oscillator, the equilibrium distribution as well as the equilibrium 

averages 2
x  and 2

p  depend on damping (appropriate equations are given in 

Chapter 6 of [26]). In the approximation of Ohmic damping with Drude’s 

regularization, these equations read 

 2

2 2

0

1 1

/(1 / )n n D D n

x
m v vβ ω γω ω

∞

=−∞

=
+ + +

∑  (6.12) 

and 

 

2

02

2 2

0

/(1 / )

/(1 / )

D D n

n n D D n

vm
p

v v

ω γω ω

β ω γω ω

∞

=−∞

+ +
=

+ + +
∑ , (6.13) 

where 

 
2

n

n
v

π

β
=
�

 

and 
Dω  is a cutoff frequency (a Drude regularization is necessary as in pure 

Ohmic damping 2
p  diverges [27]). However, according to [27], these equations 

reduce to Eqs. (5.17)and (5.18) either for vanishing damping ( 0γ → ) or in the 

high temperature limit (
0 0β ω →� ). Moreover, the difference between the 

damping dependent and damping independent equations is negligible for 

0/ 0.1γ ω <  (which is, in fact, the condition for the existence of damped 

oscillations and/or narrow spectral lines) for all 0β ω�  (see Figure VI.I below). 

Thus for 1β γ ≤� , Eq. (6.11) (i.e., the Agarwal model) may be used as an 

approximate description of the kinetics of a quantum oscillator. 
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Figure VI.I. The normalized equilibrium averages 
2

0
2 /m xω �  and 

2

0
2 /p m ω�  vs. temperature, 

01/( )β ω�  for various values of the normalized 

damping 
0/γ ω : 0 (curves 1), 0.2 (2), 1.0 (3), and 5.0 (4). The calculations are from 

Eqs. (6.12) and (6.13); a Drude model with the cutoff frequency 010Dω ω= . (After 

U. Weiss [27] and Grabert et al. [28]). 

 

We remark that our procedure can be generalized for the harmonic 

oscillator by simply using the corresponding damped equations for 2
x  and 

2
p  from Eqs. (6.12) and (6.13). Noting that for the stationary distribution (Eq. 

(5.16)) the condition ˆ 0D stM W =  is fulfilled and seeking the additional terms 

needed in order to satisfy the Wigner Eq. (6.6), leads to the master equation given 

by Grabert [23] 
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22
2 2
0 .

W p W V W W
pW p

t m x x p p p

p
m x W

p q m

γ

ω

 ∂ ∂ ∂ ∂ ∂ ∂
+ − = + ∂ ∂ ∂ ∂ ∂ ∂ 

 
∂  − −

 ∂ ∂
 

 (6.14) 

Equation (6.14) differs from the Agarwal Eq. (6.11) by the last term in the right 

hand side. The principal difference between Eqs. (6.11) and (6.14) is that because 

of this additional term, Eq. (6.14) is not a bona fide Fokker-Planck equation since 

one of the eigenvalues of the diffusion matrix is negative [23]. This is related to 

the fact that the equilibrium averages 2
x  and 2

p  depend on the damping 

parameter γ . 

VI.II Quantum Smoluchowski equation 

Here we demonstrate how the quantum Smoluchowski equation for the 

configuration space distribution function which is valid in the high dissipation or 

noninertial limit can be obtained from the master Eq. (6.1) by using Brinkman’s 

method [29] which we have summarized in Chapter II. We shall show how (a) his 

method of solution of the Klein-Kramers equation may be transparently extended 

to the quantum case to yield quantum differential recurrence relations in 

configuration space and how (b) a quantum Smoluchowski equation (having as 

equilibrium solution the Wigner configuration space distribution) follows directly 

from the quantum Brinkman recurrence relations. We recall first that Brinkman 

[29] showed by expanding the momentum part of the solution of the Klein-

Kramers equation (Eq. (2.51)), ( , )W x p  in an orthonormal basis { }nD  of Weber 

(harmonic oscillator) functions ( )nD y , viz., [30] 

 
2 4

0

( , , ) ( , )p m

n n

n

W x p t e D p x t
m

β β
ϕ

∞
−

=

 
=  

 
∑ , (6.15) 

where 

 
22 4

( ) 2
2

n y

n n

y
D y e H

− −  
=  

 
 

and ( )nH z  is the Hermite polynomial of order n [31], that Eq.(2.51) becomes a 

partial three-term differential recurrence relation in the distribution functions 
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( , ), 0n x t nϕ ≥  (see Chapter II.IV). In particular, 
0( , )x tϕ  yields the configuration 

space distribution function 

 

0

( , ) ( , , )

( , )

P x t W x p t dp

x tϕ

=

≡

∫ . 

Thus one may assume [15,16] (just as in the classical case) that the momentum 

dependence of the Wigner function W  may be expanded in the Weber functions 

nD  in the form of Eq. (6.15). By substituting Eq. (6.15) into the master equation 

with the collision kernel, Eq. (6.8), one then finds on utilizing the orthogonality 

and recurrence properties of 
nD  that the quantum Brinkman equations for the 

functions ( ),n x tϕ  are  

 

( )1 1
1

2 3

2 32 3

1
1

1
2 .

n n n
n n

n n

V
n n

t x x m xm

V V

x xm

ϕ ϕ ϕ β
γϕ ϕ

β

γ ϕ ϕ
β

− +
−

− −

∂ ∂ ∂ ∂ 
+ + + + + ∂ ∂ ∂ ∂ 

 ∂ ∂
= Λ +  ∂ ∂ 

 (6.16) 

(for simplicity we limit the calculation to ( )2
o � ). In the classical limit ( 0Λ = ), 

Brinkman’s recurrence Eq. (6.16) has been solved for a wide variety of potentials 

using matrix continued fraction methods as described in [21,22]. As the 

semiclassical Eq. (6.16) constitutes a partial differential recurrence relation, 

essentially similar to the classical one, Brinkman’s original method may also be 

applied here. Equation (6.16) then yields to first order in 2� , quantum corrections 

to the nonequilibrium configuration space functions ( ),n x tϕ . In effect, Eq. (6.16) 

generalizes Wigner’s perturbation procedure, his Eq. (23) of Ref. [2] to non-

equilibrium dynamics governed by the Brownian motion stosszahlansatz allowing 

one to study the nonequilibrium quantum-classical correspondence. 

Now our objective along with calculating diffusion coefficients for the 

quantum Fokker-Planck equation in phase space is to show (guided everywhere 

by Brinkman’s classical calculation [29]) how one can derive from Eq. (6.16) a 

semiclassical Smoluchowski equation. In order to accomplish this we note that in 

the noninertial or high damping limit ( 0m →  or / 1mγ ζ= >> ), the ratio 

 / 0, 1n nϕ γ ≈ ≥
i

.  (6.17) 

Hence we have from Eqs. (6.16) and (6.17) the following hierarchy 
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x xm

ϕ ϕ
ϕ β ϕ ϕ

γ β
1 3
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∂ ∂ ′ ′′= − + + + Λ 
∂ ∂ 

, (6.20) 

etc. The time derivative in Eq. (6.18) cannot be neglected as that equation is a 

constitutive relation. If we now close the set by supposing 3 0ϕ =  then the first 

two terms on the right hand side of Eq. (6.20) vanish when 0m →  as is easily 

shown and we have in the non-inertial (or high friction) limit 

 ( )V xϕ ϕ2 0
′′= Λ . 

The system of Eqs. (6.18)-(6.20) is now closed and can be readily rearranged to 

yield an equation for the configuration space distribution function 

0( , ) ( , )P x t x tϕ= , viz., 

 ( )
P P V

DP
t x x xζ

 ∂ ∂ ∂ ∂
= + 

∂ ∂ ∂ ∂ 
. (6.21) 

Here 

 mζ γ=  

and 

 
[ ]1 2 ( )V x

D
ζβ

′′+ Λ
=  

have the meaning of friction and diffusion coefficients, respectively. Equation 

(6.21) reduces to the classical Smoluchowski equation for the configuration space 

distribution function ( ),P x t  if 0Λ = . The closure assumption we have used may 

be justified rigorously by solving the quantum Brinkman Eqs. (6.16) by iteration 

to arbitrary order in n and then taking the noninertial limit as illustrated in the 

classical case in Chapter II.IV. The advantage of the Smoluchowski equation is 

that it is much easier to solve than the Brinkman equations. We remark that Eq. 

(6.21) can also be obtained from Eq. (6.1) by using an heuristic approach due to 

Kramers [32] just as in the classical case (see Appendix VI.I at the end of this 

Chapter).  
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The semiclassical Smoluchowski Eq. (6.21) is equivalent to classical 

Brownian motion in the potential V(x) with coordinate dependent diffusion 

coefficient D(x). The corresponding Langevin equation in the Stratonovich 

interpretation [21,22] reads  

 [ ] [ ] [ ]
1

( ) ( ) ( ) ( ) ( )
2

x t V x t D x t D x t t
x

ζ β
λ

ζ ζ

∂  
= − + + 

∂  
� . (6.22) 

Here the dot denotes the time derivative and ( )tλ  is a random force with the 

Gaussian white noise properties  

 
( ) 0,

( ) ( ) (2 / ) ( )

t

t t t t

λ

λ λ ζ β δ

=

′ ′= −
 

(the overbar means the statistical average over the realizations of the random 

force). Just as in the classical case, the semiclassical Smoluchowski Eq. (6.21) 

may be applied to the study of the long time (or low frequency) relaxational 

behavior of a system [21,22]. 

We emphasize that it is often preferable to write the diffusion coefficient 

D in the equivalent form  

 [ ]{ }
1 41 2 ( ) ( )D V x oζβ

−
′′= − Λ + � . (6.23) 

The diffusion coefficient so written ensures that Eq. (6.21) will not violate the 

second law of thermodynamics irrespective of the nature of the potential [33]. For 

example, the diffusion coefficient so written for an arbitrary asymmetric periodic 

ratchet potential ( )V x  at zero-external bias ensures a vanishing probability 

current j  for any order of 2�  (and not only to 4( )o � ) as evidenced by Machura et 

al. [33] in their discussion of the semiclassical Smoluchowski equation proposed 

by Ankerhold et al. [34,35]. The quantum Smoluchowski equation deduced by 

Ankerhold et al. [34,35] (via the path integral formulation of quantum dissipative 

systems) is very similar but not identical to Eq. (6.21). That equation reads in our 

notation 

 
[ ]ef A

V D PP P

t x x xζ

∂ ∂ ∂ ∂
= + 

∂ ∂ ∂ ∂ 
, (6.24) 

where 
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( )
2

ef

V x
V V x

λ ′′
= + , 
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is the quantum parameter as used by them [34,35]. Noting that, 2 2

1

/ 6
n

n π
∞

−

=

=∑ , 

2 /λ β→ Λ  and AD D→  in the high temperature limit 2γβ π<<� ; we see that 

Eq. (6.24) differs from Eq. (6.21) only by the additional term ( / 2)Vλ ′′  in 
efV . 

However, this difference is important, because the stationary solution of Eq. 

(6.24) in the high temperature limit is [34,35] 

( )( ) 2
( ) ~ 1 ( ) 3 ( ) ...

V x

AP x e V x V x
β β−  ′ ′′+ Λ − +  , 

which is similar to the coordinate dependent part of the Wigner phase space 

distribution ( , )stW x p  [resulting from omitting the 2p  term in Eq. (6.8)]. 

However, the true Wigner equilibrium distribution in configuration space ( )stP x  

[2]  

 { }( ) 2
( ) ~ 1 ( ) 2 ( ) ...

V x

stP x e V x V x
β β− ′ ′′ + Λ − +   (6.25) 

(which includes by integration with respect to p the contribution of the 2p  term in 

Eq. (6.8)), does not coincide with ( )AP x  and so does not satisfy Eq. (6.24). 

Moreover, only the first order term (with respect to Λ) of the quantum correction 

factor Ξ  Eq. (5.28) to the classical TST escape rate formula in the very high 

damping limit is yielded correctly by Eq. (6.24) (in order to evaluate the factor Ξ  

one needs only ( )stP x  and ( )D x ; see Section III below, where the factor Ξ  is 

calculated from the Smoluchowski Eq. (6.21)). Nevertheless, in order to satisfy 

these two conditions, one may easily modify the Ankerhold et al. Eq. (6.24) by 

simply replacing 
efV  by V  and λ by 2 / βΛ  in that equation.  

Equation (6.21) is written explicitly to ( )4
o � . In like manner higher order 

quantum correction terms to the diffusion coefficient D may be calculated. 

However, a much more simple approach to the evaluation of D exists. Namely by 
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using the explicit form of the equilibrium distribution function in configuration 

space 

 ( ) ( , )st stP x W x p dp= ∫  

given by Eq. (5.9), combined with the stationary equation 

 
( )

0stst
DPP V

x x xζ

∂ ∂ ∂
+ = 

∂ ∂ ∂ 
 

so that we have the next term in the perturbation expansion of the diffusion 

coefficient D  in Eq. (6.21), viz., 

 

( )

( )

2
2 1 (4)

1
2

2 1 (4)

1 4
( ) 1 2 ( ) 3 ( ) ( ) ( ) 3 ( ) ...

5

12
1 2 ( ) ( ) ( ) 2 ( ) ( ) ... .

5

D x V x V x V x V x V x

V x V x V x V x V x

β
ζβ

ζβ β

−

−

−

 Λ
′′ ′′′ ′ ′′= + Λ − + − + 

 

  Λ 
′′ ′′′ ′ ′′= − Λ + + − +  

   
 (6.26) 

We remark that for a quantum oscillator, the diffusion coefficient D is 

independent of x and is given by 

 0 0coth
2 2

D
ω β ω

ζ
=
� �

. (6.27) 

Here we have noted that according to Eqs. (5.16) and (5.17) the equilibrium 

distribution in configuration space ( )stP x  for a quantum oscillator is 

 0

0

( ) tanh( / 2)
( ) ~ exp

/ 2
st

V x
P x

β ω

ω

 
− 
 

�

�
  

where 2 2

0( ) / 2V x m xω= . 

VI.III. Escape rate in the very high damping limit  

As a simple application of the above results, we demonstrate how a 

semiclassical correction to the Kramers escape rate Γ  (see chapter II) of a 

Brownian particle over a potential barrier in the very high damping limit (VHD) 

and at high temperatures T>Tc [17,21,27] can be calculated from Eq. (6.21). First 

we note that Eq. (6.21) is a continuity equation namely 

 0
P j

t x

∂ ∂
+ =

∂ ∂
, 

where the probability current j is given by 
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( )P V DP

j
x xζ

 ∂ ∂
= − + ∂ ∂ 

. (6.28) 

Substitution of the stationary Wigner distribution ( )stP x  from Eq. (5.9) into Eq. 

(6.28) renders 0j =  [with accuracy ( )4
o � ] for any well behaved ( )V x , so 

verifying that  

 0

( )
( )

( )

st

st

P x
P x

P x dx
=
∫

 

is a stationary solution of our semiclassical quantum Smoluchowski Eq. (6.21). 

The second stationary solution of Eq. (6.21) j=constant refers to steady 

probability current flow over the potential barrier generated by ( )V x . This 

solution allows one to evaluate the escape rate /j NΓ ≈  from a potential well 

with a minimum at 
ax x=  over a single potential barrier at 

cx x=  the 

nonequilibrium effects arise because unlike in TST Maxwell’s demon does not 

replace the particles lost by diffusion over the barrier. The normalization factor N 

is given by the well population and the probability current j is evaluated in the 

vicinity of the barrier top [22]. First we note that the inverse escape rate 1−Γ  may 

by approximated as ([22], Section 5.10) 

 1 1 1~ ( ) ( ) ( )st st
top well

D x P x dx P x dx
− − −Γ ∫ ∫ . (6.29) 

The well integral can be evaluated just as in the TST case described in Chapter V 

from the harmonic oscillator equations 

 

( ) ( )
1

( )

( , )

sinh / 2 .a

well st

well

st

well

a

V x

a

I P x dx

W x p dpdx

Z

e
βπ ω β

−−

=

=

=

=   

∫

∫ ∫

� �

 (6.30) 

Regarding the calculation of the integral in the vicinity of the barrier  

1 1( ) ( )top st
top

I D x P x dx
− −= ∫ , 
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we recall that within the approximation of the potential near the barrier top by an 

inverted parabola, the diffusion coefficient ( )D x  near the top (point c) is 

independent of x and is given by Eq. (6.27) with 
0 ciω ω= , viz., 

 ( ) ( )/ 2 cot / 2c cD ω ζ β ω= � � . (6.31) 

Furthermore the equilibrium distribution function in configuration space 

near the top is 

 

( ) ( )2 tan / 2 /

( ) ( , )

2

sin
c c c

st c

top

V x m xc

c

P x W x p dp

m
e

β ω ω βπ ω

ω β
− +

=

=

∫

� ��

�

,  (6.32) 

where ( , )cW x p  is defined by Eq. (5.61) with 
0 ciω ω= . Noting Eqs. (6.31) and 

(6.32), we can evaluate the integral topI  near the barrier top as  

 ( )

1 1

( )

2

( ) ( )

2 sin / 2
.c

top st
top

c V x

c

I D x P x dx

e
m

βζ βω

ω

− −=

=

∫
�

�

 (6.33) 

Hence we have 

 

( )
1

2 sinh( / 2)

2 sin( / 2)

.
2

top well

Vc a

c

Vc a

I I

e

e

β

β

ω βω

πγ βω

ω ω

πγ

−

− ∆

− ∆

Γ

=

= Ξ

∼

�

�
 (6.34) 

The form of Eq. (6.34) which is the classical VHD Kramers rate  

 
2

V

c a
VHD

e
βω ω

πγ

− ∆

Γ ∼  

multiplied by the quantum correction factor  

sinh( / 2)

sin( / 2)

c a

a c

ω βω

ω βω
Ξ =

�

�
 

reinforces our contention that we are essentially treating our system as a quantum 

particle at T>Tc embedded in a classical bath where the diffusion coefficient is 

modified to take into account quantum dissipative effects due to the bath-particle 

interactions. The effect of very high dissipation is to reduce the tunnelling 

contribution to the reaction rate just as such dissipation reduces the thermal 
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reaction rate below that predicted by the classical TST. The quantum correction 

terms in Eq. (6.34) are (as they must be) in complete agreement with Wigner’s 

quantum TST calculation of the escape rate [36] given in Chapter IV which 

assumes that equilibrium prevails in the vicinity of the barrier (see also [37]). This 

semiclassical rate is increased due to tunnelling compared to the classical Kramers 

rate ( 0→� ) because the tunnelling decreases the effective barrier height which 

occurs in the exponential part of Eq. (6.34). The result we have given should hold 

at relatively high temperatures T>Tc and when classically the energy dissipated 

per cycle of the almost periodic motion of a particle having the saddle point 

energy is much greater than the thermal energy.  

VI.IV. Escape rate in the intermediate to high damping 

region 

Here we consider intermediate to high damping which includes small 

inertial effects and which has the foregoing result as a particular limit. Guided by 

the classical case the solution will obtain when the energy loss per cycle is 

significantly greater than kT. In other words when the region of nonequilibrium of 

the distribution function near the top of the barrier does not exceed in spatial 

extent the region where the potential may be represented as an inverted harmonic 

oscillator potential [21]. This calculation illustrates the link between the exact 

solution of the IHD quantum Kramers escape rate for finite temperatures T>Tc 

(given by Wolynes [38] and later by Pollak [39]) and the present perturbative 

semiclassical approach. Wolynes used a path integral evaluation of the reactive 

flux correlation function. On the other hand Pollak [39] started from the 

equivalence of the generalized Langevin equation for a Brownian particle to the 

equation of motion of a particle moving in a potential V(x) bilinearly coupled to a 

bath of harmonic oscillators already alluded to. This procedure (which 

demonstrates using normal mode analysis that classically the IHD Kramers rate is 

equivalent to a harmonic multidimensional TST rate) may be extended to the 

quantum case by quantizing the system plus bath Hamiltonian consisting at the 

transition state of an assembly of real oscillators and one with imaginary 

frequency of oscillation representing the unstable barrier crossing mode. It leads 

to Wolynes’ result without using path integrals. Other calculations [17] based on 

extensions of Langer’s imaginary part of the free energy method to include 
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quantum effects also yield that result. The objective of all these calculations was 

to predict the temperature dependence of the quantum Kramers escape rate in 

condensed phases at finite temperatures. 

We proceed from Eq. (6.1) using our perturbative method as follows. 

Adapting the procedure described for the classical case in [40-42], we need the 

number of particles 
an  in the potential well at point a and the current 

cj  across 

the barrier top at point c (or in general the saddle point current) in order to 

calculate the escape rate  

 
( / ) ( , )

.
( , )

c
IHD

a

c
top

well

j

n

p m W x p dp

W x p dpdx

Γ =

=
∫

∫

 (6.35) 

Note that Eq. (6.35) is of course the same flux over barrier definition as used by 

Wigner (cf. Eq (5.21)) however the difference is that W occurring in the 

numerator is now the nonequilibrium distribution near the barrier top.  

The number of particles is a an Z= , where aZ  is given by Eq. (5.25). In 

order to calculate the barrier current 
cj , one needs the Wigner stationary solution 

near the top (point c). Here the Wigner function is approximated by the harmonic 

oscillator Eq. (5.61) with 
0 ciω ω=  and is given by 

 ( ) ( ) ( )2 2 2 tan / 2 /( )( )( , ) sec / 2
c c cc

m p xV x

c
W x p e e

ω β ω ωβ β ω
′ ′− −−′ ′ =

� �
� , (6.36) 

where /p p m′ =  and 
cx x x′ = − . Furthermore, near the top we have from Eq. 

(6.1) 

 2c c c

c c p p

W W W
p x p W D

x p p p
ω γ ′ ′

∂ ∂ ∂ ∂
′ ′ ′+ = + ′ ′ ′ ′∂ ∂ ∂ ∂ 

, (6.37) 

where 2/p p ppD D m′ ′ = . The diffusion coefficient 
ppD  is independent of x and is 

given by Eq. (6.10) with 
0 ciω ω= , so that 

( / 2 )cot( / 2)p p c cD mγ ω β ω′ ′ = � � . 

Equation (6.36) has the form of a Boltzmann distribution and satisfies Eq. (6.37). 

This fact allows us to write following Kramers [32,41,42] the nonequilibrium 

solution ( , )W x p′ ′  near the barrier as 
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( )2 2 2

( , ) ( , )
cp x

cW x p CF x p e
β ω′ ′ ′− −

′ ′ ′ ′= , (6.38) 

where ( )( )
sec / 2cV x

cC e
β ω β−= �  and ( )tan / 2 /( )c cmβ ω β ω′ = � � . The function 

( , )F x p′ ′  is a crossover function which has the equilibrium distribution in the 

depths of the well, varies very rapidly in the vicinity of the barrier and vanishes 

beyond the barrier as in the classical Kramers case [32,41,42]. Consequently that 

function must satisfy the boundary conditions  

 
1,

( , ) .
0,

x
F x p

x

′ → ∞
′ ′ → 

′ → −∞
 (6.39) 

By substituting Eq. (6.38) into Eq. (6.37) and noting that / 2p pD β γ′ ′ ′ = , we have 

the differential equation for the crossover function as in the classical case [32,40-

42] 

 
2

2

2c p p

F F F F
p x D p

x p p p
ω γ′ ′

∂ ∂ ∂ ∂
′ ′ ′+ = −

′ ′ ′ ′∂ ∂ ∂ ∂
. (6.40) 

The solution of Eq. (6.40) is of the form 

 ( , ) ( )F x p F p ax′ ′ ′ ′= − . 

By substituting ( )F p ax′ ′−  into Eq. (6.40) and introducing p ax ξ′ ′− = , we have 

 
2

2

2
( ) 0c p p

F F
a p x Dγ ω

ξ ξ
′ ′

∂ ∂
′ ′ − − + =  ∂ ∂

. (6.41) 

Equation (6.41) simplifies to an ordinary differential equation if  

 2 ( )c a aω γ= −  

or  

 
2

2

4 2
ca

γ γ
γ ω− = + −  

(this is the condition that the eigenvalue associated with the unstable barrier 

crossing mode is real) namely  

 
2

2
( ) 0p p

F F
a Dγ ξ

ξ ξ
′ ′

∂ ∂
− + =

∂ ∂
. (6.42) 

The solution of Eq. (6.42) satisfying the boundary conditions Eq. (6.39) is 

 
2

( ) / 2

1
( )

p pa D

y
F e dy

ξ γ

ξ
π

′ ′−

−

−∞

= ∫ . (6.43) 

The current cj  is then given by 
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2 2

( ) / 2

2
( )2

(0, )

.
2sin( / 2) 4 2

p p

c

c c

p a D

p y

V x

c

c

j m p W p dp

mC
p e e dydp

e

γ

β

β

π

γ γ
ω

βω

′ ′

∞

−∞

′ −∞
′ ′− −

−∞ −∞

−

′ ′ ′=

′ ′=

 
= + −  

 

∫

∫ ∫

�

�

 (6.44) 

Thus the escape rate IHDΓ  from Eq. (6.35) is given by 

 
2

2

2 4 2

Va
IHD c

c

e
βω γ γ

ω
πω

− ∆
 

Γ = Ξ + −  
 

, (6.45) 

where the quantum enhancement factor Ξ is again given by the Wigner quantum 

TST factor Eq. (5.28). In the very high damping limit, Eq. (6.45) reduces to Eq. 

(6.34). Equation (6.45) appears to describe a quantum Brownian particle with the 

quantum effects in the bath-particle interaction arising via the dependence of the 

diffusion coefficient on the derivatives of the potential in the quantum master 

equation. The simple form of the results obtained are a consequence of the exact 

solution for the Wigner function for the harmonic oscillator given in [20,43]. 

In the context of solutions of the IHD quantum Kramers rate, we remark 

that the analysis of Wolynes [38] as well as that of Pollak [39] involves 

quantization of both bath and particle just as methods [17] based on Langer’s 

analytical continuation of the free energy. The quantum mechanical enhancement 

factor Ξ yielded by all these calculations is for Ohmic friction [27,38] 

 
2 2

2 2
1

(2 / ) 2 /

(2 / ) 2 /

a
W

n c

n n

n n

ω π β π γ β

ω π β π γ β

∞

=

+ +
Ξ =

− + +
∏

� �

� �
. (6.46) 

If the condition 2γβ π<<�  is fulfilled, we have the TST result as 

0
lim W
βγ →

Ξ = Ξ
�

 [27], thus recovering our result embodied in Eq. (6.45). In this 

particular instance the damping independent Ξ  is a fair approximation to 
WΞ . 

This result suggests that replacement of the equilibrium distribution function by 

that of the closed system may ultimately yield reasonable semiclassical 

approximations to the actual time dependent quantum distribution. A 

comprehensive analysis of Eq. (6.46) has been made by Hänggi et al. [44] and 

also by Weiss [27], where it is shown how the product Eq. (6.46) may be written 
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in terms of gamma functions consequently Wigner’s original quantum correction 

is recovered when T>>(γ/ωc)
2
Tc.  

VI.V Escape rate for all values of the dissipation 

The escape rate IHDΓ  in the IHD regime discussed in Section VI.IV is 

extremely important, because exactly as in the classical case it appears in a 

general expression for escape rate valid for all values of dissipation. As already 

mentioned in Chapter II.III, Mel’nikov [45,46] and Rips and Pollak [47] have 

extended the bridging integral method for mechanical particles to account for 

quantum tunnelling in a semiclassical way. They attempt to generalize the 

classical formulae given by Kramers to all escape rate regimes and the bridging 

integral to include quantum effects by incorporating in their derivation the 

quantum tunnelling factor for a parabolic barrier. They showed that the quantum 

rate Γ above the crossover temperature may be written just as in the classical case 

as [47] 

 
IHDΓ = Γ ϒ , (6.47) 

where 
IHDΓ  is the quantum escape rate in the IHD regime and ϒ  is the quantum 

depopulation factor defined as  

 
ln 1 ( / 2)sin

exp
cosh(2 ) cos

P x i
dx

x

λ λ

π λ λ

∞

−∞

  − −  ϒ =  
−  

∫
	

. (6.48) 

Here 

 
2

β
λ

Ω
=
�

, 

with 

 
2

2

4 2
c

γ γ
ωΩ = + −  

is the characteristic frequency of the unstable barrier crossing mode (in the Ohmic 

damping limit), and 

 ( ) ( )
( )

s
P is P e dx

ε εε ε
∞

′− −

−∞

′= ∫	 , 

where ( )P ε ε ′  is the probability kernel expressing the probability that a particle 

with energy ε ′  leaving the barrier region will return to the barrier with an energy 

between ε  and dε ε+ . The quantum rate  
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 [ ]1 ( ) ( )R f dε ε ε
∞

−∞

Γ = −∫  

is found by solving (using the Wiener-Hopf method) an integral equation  

 ( )( ) ( ) ( )f P R f dε ε ε ε ε ε
∞

−∞

′ ′ ′ ′= ∫  (6.49) 

for the population per unit time of particles ( )f ε  at the top of the barrier; here 

( )R ε  is the quantum reflection probability for a parabolic barrier. The explicit 

forms of ( )P is	  are given elsewhere [47-49]. In particular, in Refs. 48 and 49 

explicit equations for the escape rate are given for quantum Brownian motion in 

the periodic potential 

 0 0( ) cos( / )V x V x x= − . (6.50) 

(
0x  is a characteristic length) which will be used in Chapter VI. In the classical 

limit, Eq. (6.48) reduces to the known result of Mel’nikov [45,46] 

 
2

2

0

1 ln{1 exp[ ( 1/ 4)]}
exp

1/ 4

x
dx

x

γδ

π

∞ − − +
ϒ =  

+  
∫ , 

where δ  is the dimensionless action variable.  

Just as in the classical case, the validity of Eq. (6.47) may be confirmed by 

direct comparison with the escape rate evaluated from the master equation (6.1) 

describing the evolution of the Wigner distribution function in phase space. Here 

the escape rate can be calculated by the matrix continued fraction method [21,22]. 

As we have stated García-Palacios and Zueco [15,16] have shown how the 

classical matrix continued fraction Risken method [22] could be extended to the 

quantum regime. Using this approach, Coffey et al. [50,51] have evaluated the 

escape rate Γ by solving Eq. (6.8) for the cosine potential Eq. (6.50) via matrix 

continued fractions.  

VI. VI Conclusions 

We have shown in this Chapter how the quantum master Eq. (6.1) which 

we have proposed may be used to incorporate the dissipation to the heat bath in 

quantum reaction rate theory in the intermediate to high damping limit. These 

results will be compared with the exact escape rates yielded by the matrix 

continued fraction method in Chapter VII. In that Chapter the quantum master 

equation for a cosine potential will be solved in detail to order 2�  and a brief 
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sketch will also be given for a 2-4 bistable potential will also be given. Moreover 

it will also be demonstrated how the quantum generalization of the Meshkov-

Melnik’ov depopulation factor combined with the quantum IHD Kramers rate 

which we have derived here agrees closely with the exact results. This is a rather 

important test of the Wigner function approach as quantum reaction rate theory 

has been extensively verified by computer simulations obtained by the molecular 

dynamics method [52,53] which calculates numerically time correlation functions 

etc. in the Wigner representation of quantum statistical mechanics. 

 

APPENDIX VI 

 

Appendix VI.I: Kramers’s method applied to the derivation of the 

quantum Smoluchowski equation 

In the classical theory of the Brownian motion for the purpose of deriving 

the Smoluchowski equation from the Klein-Kramers equation, Kramers proceeded 

by splitting the Klein-Kramers equation into two parts, consisting of the 

Smoluchowski operator acting on the phase space distribution and a remainder. 

Next by integrating along a straight line 
0x p xγ+ =  (constant) in phase space 

and taking the high damping limit he demonstrates that the contribution of the 

remainder to the configuration space distribution is approximately zero while the 

first part reduces to the Smoluchowski equation.  

In order to derive a quantum Smoluchowski equation from the quantum 

Klein-Kramers Eq. (6.8) in analogous fashion we first rewrite Eq. (6.8) in the 

form (with m = 1 following Kramers [32]) 

 

2 2

2 2

2 3 2

2 3 2
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3

1 1 1 1
1 2 1 2

1 1 1
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1
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γ β γ βγ

γ β β γ

γβ γ

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + Λ + + + Λ        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

     ∂ ∂ ∂ ∂ Λ ∂ ∂ ∂ ∂
+ + + Λ − −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 Λ ∂ ∂ ∂ ∂ ∂
− − ∂ ∂ ∂ ∂ 

2 3 3 3

2 2 3 3 3 3

1
.

V V
W W

p x p x x x xβγ γ βγ

  Λ ∂ ∂ ∂ ∂ Λ ∂ ∂
− − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (6.51) 
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This can be checked most easily by directly rewriting Eq. (6.51) in the form of 

Eq.(6.8) up to the terms 4( )O � . We now integrate both sides of this equation 

(with respect to the momentum) along a straight line in phase space 
0/x p xγ+ =  

(constant). The integration extends over all possible momentum values from 

p = − ∞ to p = + ∞. Note 
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0

0

x

x x x

x

∂ ∂ ∂
=

∂ ∂ ∂

∂
=

∂

 

and 
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0
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x

p p x

xγ

∂ ∂ ∂
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∂ ∂ ∂

∂
=

∂

 

whence  

 
1

p xγ

∂ ∂
−

∂ ∂
 

is the zero operator along this line. If we denote the integral of W along this line 

by 0( , )P x t , we obtain: 
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∫

∫

 (6.52) 

where ds is the element of arc length along the line in question. However, since 

2 2 2
ds dx dp= +  and /dp dx γ= −  or dp dxγ= −  and also, since we let γ → ∞ , 

(i.e., we take the high friction limit) we can approximate ds ≈ dp. Thus; the 

position coordinate has the value 
0x x≈  along the line 

0/x p xγ+ = . We also use 

the fact that 
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 0 0/ /

0

 

( , )

x p x x p x

W
ds Wds

t t

P x t
t

γ γ+ = + =

∂ ∂
=

∂ ∂

∂
=

∂

∫ ∫
 (6.53) 

By letting γ → ∞  and 0x x→  we again obtain Eq. (6.21). 
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CHAPTER VII 

 

Solution of the quantum master equation 

 

In the previous chapters we have proposed a quantum master equation for 

the Brownian motion of a particle in a potential ( )V x  [1-4]. Specifically we have 

demonstrated how the Wigner stationary distribution for closed systems can be 

used to formally establish a semiclassical master equation allowing one to study 

the quantum-classical correspondence. Here we show in detail [2,3] how to solve 

this master equation for particular quantum systems. In order to illustrate this we 

consider a particle moving in the periodic potential 

 
0 0( ) cos( / )V x V x x= −  (7.1) 

where x is the position of the particle and x0 is a characteristic length. Both the 

classical and quantum Brownian motion in periodic potentials have been used, 

e.g., to model the diffusion in solids, premelting films, and surfaces (see, for 

example, Refs. [5-7]). Furthermore, Brownian motion in periodic potentials arises 

in a number of other important physical applications. We mention the current-

voltage characteristics of the Josephson junction [8], mobility of superionic 

conductors [9], a laser with injected signal [10], phase-locking techniques in radio 

engineering [11], dielectric relaxation of molecular crystals [12], the dynamics of 

a charged density wave condensate in an electric field [13], ring-laser gyroscopes 

[14], stochastic resonance [15,16], etc.  

Analytical approaches to the problem are usually based on the ingenious 

asymptotic method originally devised by Kramers [17] (as described in Chapter 

II) in connection with thermally activated escape of particles from a potential 

well. His method allows one to determine closed form asymptotic equations for 

the escape rate in the limits of very low and relatively high dissipation to the heat 

bath. In this context we must remark that the Kramers escape rate problem in a 

periodic potential is qualitatively different from that for a metastable well because 

the periodic potential is multistable. Thus the particle having escaped a particular 

well may again be trapped due to the thermal fluctuations in another well. 
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Moreover, jumps of either a single lattice spacing or of many lattice spacings are 

possible. Thus the escape rate in a periodic potential is called the jump rate [18]. 

Furthermore we have mentioned that the Kramers idea was later elaborated upon 

by Mel’nikov [19,20] and Mel’nikov and Meshkov [21]. They proposed, based on 

a Wiener-Hopf equation, a universal formula (that is valid for all values of the 

dissipation) for the escape rate. Thus they solved the problem of the Kramers 

turnover between very low and relatively high dissipation, i.e., the calculation of 

the escape rate Γ from a potential well for all values of the damping. Later Grabert 

[22] and Pollak et al. [23] presented a complete solution of the classical Kramers 

turnover problem showing that the Mel’nikov turnover formula for the escape rate 

can be obtained without his ad hoc interpolation between the weak and strong 

damping regimes. We remark that the theory of Pollak et al. [23] is also applicable 

to an arbitrary memory friction and not just in the “white noise” (memoryless) 

limit. A detailed comparison of numerical and analytical approaches to the 

Brownian motion in the cosine periodic and tilted cosine periodic potentials has 

been given by Ferrando et al. [18] and Coffey et al. [24]. Moreover, in order to 

estimate the quantum decay rate for all values of damping, Mel’nikov [19,20] and 

Rips and Pollak [25] have further extended the classical method of evaluation of 

the escape rate Γ  to account for quantum tunnelling in a semiclassical way. By 

applying this approach to a cosine periodic potential, Georgievskii and Pollak [26] 

have obtained a universal expression for the quantum rate Γ above the crossover 

temperature between tunneling and thermal activation for the quantum Brownian 

dynamics in that potential. 

Here we solve the semiclassical master equation for the quantum 

Brownian dynamics in a periodic potential Eq. (6.50). In particular we evaluate 

the dynamic structure factor. This factor allows one to evaluate various physical 

parameters [18,27] including of course the escape rate. One of the most important 

characteristics associated with the Brownian motion in either a single- or a multi-

well potential is the friction and temperature dependence of the greatest 

(overbarrier) relaxation time τ (or the inverse of the escape rate). The results of 

exact solutions yielded by the continued fraction method for the damping 

dependence of τ will be compared here with those of the Mel’nikov universal 

equation for the quantum Kramers rate. Such a comparison is yet another purpose 
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of this Chapter. Thus the validity of the semiclassical approach may be 

ascertained. 

VII.I. Representation of the quantum master equation as 

a differential recurrence equation 

The quantum master equation is  

 

2 3 3

3 3

2 2 2

2

...
24

1 ... .
12

W p W V W V W

t m x x p x p

m V W
pW

p m x p

β
γ

β

∂ ∂ ∂ ∂ ∂ ∂
+ − + +

∂ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂
= + + +  ∂ ∂ ∂   

�

�
 (7.2) 

In order to represent the quantum master equation as a differential recurrence 

relation for the statistical moments, we make the following rescaling in Eq. (7.2) 

so to render that equation in non dimension form 
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2 2
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γ ηγ

β
η

′ =

′ =

′ =
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Λ =

=

′ =

=

�  

We then have in the first order of perturbation theory, (second order perturbations 

will be considered in Chapter VIII) 

 

3 3

3 3

2

2

1

2 4

2 1 2 .
2

W W U W U W
p

t x x p x p

U W
p W

p px

γ
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′+ − +

′ ′ ′ ′∂ ∂ ∂ ∂ ′ ′∂ ∂

  ′ ∂ ∂ ∂
′= + + Λ   ′ ′∂ ∂′∂   

 (7.3) 

To investigate the process whereby the particle traverses the periodic 

potential we must obtain the nonperiodic solution of Eq. (7.3) [27]. Thus we make 

the ansatz [27] 

 

1/ 2

1/ 2

( , , ) ( , , , ) ikx
W x p t w k x p t e dk

′−

−

′ ′ ′ ′ ′ ′= ∫ , (7.4) 



 162 

where w  is periodic in x′  with period 2π and it is assumed that k is restricted to 

the first Brillouin zone, -1/2 ≤ k ≤ 1/2. The periodic function w  can then be 

expanded in a Fourier series in x and in orthogonal Hermite functions ( )nH p ′  in 

p′  [18,27], viz., (this particular form of the orthogonal expansion is chosen 

because the resulting differential recurrence relation is more amenable to 

numerical calculation than the one generated by an expansion in harmonic 

oscillator functions as used in our discussion of the Brinkman equations) 

 

2 ( ) / 2
,

3 / 2
0

( , )
( , , , ) ( )

2 2 !

p U x
n q iqx

n
n

n q

c k te
w k x p t H p e

nπ

′ ′− − ∞ ∞
′−

= =−∞

′
′ ′ ′ ′= ∑ ∑ . (7.5) 

By substituting Eq. (7.5) into Eq. (7.4), we obtain from Eq. (7.3) after some 

algebra that the Fourier coefficients , ( , )n qc k t ′  satisfy the eleven term differential 

recurrence relation 

 

( )

( ) ( )

( ) ( )
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+ Λ − − −

 (7.6) 

By invoking the general method for solving matrix differential-recurrence 

equations [28,29], we have the solution of Eq. (7.6) for the spectra 

 , ,
0

( , ) ( , ) i t
n q n qc k c k t e dt

ωω
∞ −= ∫	  (7.7) 

in terms of matrix continued fractions (details of this solution are given in 

Appendix VII.I). 

VII.II. Calculation of the observables 

Just as in the classical case, having determined , ( , )n qc k t , we can evaluate 

the dynamic structure factor ( , )S k ω	  defined as 

 

0

( , ) ( , )
i t

S k S k t e dt
ωω

∞
−= ∫	 , (7.8) 

where 

 
[ ]( ) (0)

0
( , )

ik x t x
S k t e

−
=  
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is the characteristic function of the random variable ( ) (0)x t x− , i.e., the 

displacement of the particle as it wanders through the wells, and the angular 

brackets 
0
 mean equilibrium ensemble averaging. The dynamic structure factor 

plays a major role in neutron and light scattering experiments [27]. In the present 

context various physical parameters such as the escape rate, diffusion coefficient, 

etc., can be evaluated from ( , )S k ω	 . The characteristic function ( , )S k t′  is 

calculated in a manner analogous to the classical case [18,27]  

 
0

0 1 0

[ ( ) (0)]

0
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0 0 0 0
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1 0 0 1 0 0
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∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

 

(here 0(0)x x′ ′= , ( )x t x′ ′= ). The function 

 0

1/ 2

( )

0 0 0 0

1/ 2

( , , , , ) ( , , , , , )
ik x x

W x p x p t e w k x p x p t dk
′ ′− −

−

′ ′ ′ ′ ′ ′ ′ ′= ∫  

satisfies Eq. (7.3) with the initial condition  

 
0 0 0 0( , , , ,0) ( , )stW x p x p W x p′ ′ ′ ′ ′ ′= . (7.9) 

where 0 0( , )stW x p′ ′  is the equilibrium Wigner distribution function (which is a 

stationary solution of the master equation (7.2) [1,2]; see Appendix VII.I, Eq. 

(7.30)]. Noting that for a periodic function ( )f x  and 
11/ 2 ,  1/ 2k k− ≤ ≤  [27] 

 1

2

( )

1

0

( ) ( ) ( )
i k k x

e f x dx k k f x dx

π

δ
∞

−

−∞

= −∫ ∫ , 

and utilizing Eq. (7.5) and the orthogonality properties of the Hermite functions 

nH , the characteristic function ( , )S k t′  becomes a series of the Fourier 

coefficients 0, ( , )qc k t′  as [27]  

 

2 2
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∑

 

where 
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iqx U x

q
a e dx
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and 
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0 0 0 0

0

( , , , ) ( , , , , , )w k x p t w k x p x p t dx dp

π ∞

−∞

′ ′ ′ ′ ′ ′ ′ ′ ′= ∫ ∫ . 

Thus the dynamic structure factor ( , )S k ω	  then becomes a series of the 0, ( , )qc k ω	 , 

viz., 

 
0,( , ) ( , )

q q

q

S k a c kω ω
∞

=−∞

= ∑	 	 . (7.10) 

Thus having calculated ( , )S k ω	 , we may evaluate the escape (jump) rate Γ  as 

follows [18]. The function S(k,t) can be approximated at long times by an 

exponential 

 / ( )( , ) ( ) t k
S k t h k e

τ−= . (7.11) 

The characteristic (longest) relaxation time ( )kτ  can then be extracted by 

representing Eq. (7.11) in the frequency domain as [18] 

 
0

( ,0) ( , )
( ) lim

( , )

S k S k
k

i S kω

ω
τ

ω ω→

−
=

	 	

	
. 

The escape (jump) rate Γ  is given by 

 

1/ 2
1

0

2 ( )k dkτ −Γ ≈ ∫  (7.12) 

allowing one to estimate the average longest relaxation time of the system since 

1~τ −Γ . Now 1( )kτ −  can be expressed in terms of the jump rate Γ  and the jump 

length probabilities nP  (the probability of a jump of length 
0 / 2n x π ) as the 

trigonometric series [18] 

 [ ]1

1

( ) 1 cos(2 )n

n

k P nkτ π
∞

−

=

= Γ −∑ . (7.13) 

Thus the jump-length probabilities nP  may then be obtained in integral form as 

the Fourier coefficients of the Fourier expansion of 1( )kτ −  as detailed in [18] 

 

1/ 2
1 1

0

2 ( ) cos(2 )nP k nk dkτ π− −= − Γ ∫ . (7.14) 
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For high potential barriers, in the jump diffusion limit, the jump-length 

probabilities nP  allow one to evaluate both the mean-square jump length 2
l  and 

the diffusion coefficient D as [18] 

 2 2 2 2
0

1

4 n

n

l x n Pπ
∞

=

= ∑ , (7.15) 

 ( ) 2
/ 2D l≈ Γ . (7.16) 

The above equations describe in detail the diffusion process in the periodic 

potential.  

VII.III Application of Mel’nikov’s universal equation 

As already mentioned, Mel’nikov [20] has extended his solution of the 

classical Kramers turnover problem to include quantum effects in a semiclassical 

way. He did this by simply inserting the quantum mechanical transmission factor 

for a parabolic barrier into the classical integral equation for the energy 

distribution function yielded by the Wiener-Hopf method in the Kramers turnover 

region. In the approximation of Ohmic damping, he derived a universal formula 

for the quantum rate MΓ  valid for all values of damping above the crossover 

temperature between tunneling and thermal activation 

 M

IHDΓ = Γ ϒ . (7.17) 

Here 
IHDΓ  is the quantum escape rate in the intermediate to high damping (IHD) 

region ( 1γ ′ ≥ ) and ϒ  is the quantum depopulation factor. Furthermore Larkin 

and Ovchinnikov [30] have generalized Mel’nikov’s approach to a system 

coupled to a bath with Johnson-Nyquist quantum thermal noise spectrum and 

Mel’nikov and Sütö [31] have applied this method to quantum Brownian motion 

in a tilted cosine potential [the zero tilt case corresponds to Eq. (6.50)]. Later Rips 

and Pollak [25] gave a consistent solution of the quantum Kramers turnover 

problem demonstrating how the Mel’nikov universal Eq. (7.17) can be obtained 

without his ad hoc interpolation between the weak and strong damping regimes. 

Finally Georgievskii and Pollak [26] treated the escape rate problem in a periodic 

cosine potential showing that the quantum depopulation factor ϒ  in Eq. (7.17) is 

 

1
2

0

4 sin ( ) ( )k F k dkπϒ = ∫ . (7.18) 
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The function F(k) is (in our notation) 

 
2 ( )
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sin 1
( ) exp ln
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R x
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a a e dx
F k

ax ae e kπ π

∞ −

− −
−∞

  − 
=   

−+ −   
∫ ,

 (7.19) 

with 

 
2
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π

∞
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′ Λ − Λ
=

Λ Λ
∫ . (7.20) 

Here ( )23 2a gγ γ′ ′= Λ + −  and 8 2gδ γ ′= . If absolute precision is 

unnecessary the function R(x) from Eq. (7.20) can be replaced by its classical 

limit ( )2
( ) 1/ 4R x xδ≈ + . We may now estimate using the Wigner function 

method the quantum escape rate 
IHDΓ  [and thus MΓ  via Eq. (7.17)] by adapting 

results of the classical Kramers escape rate theory [17] (see Section VI.IV). The 

quantum escape rate IHDΓ  is then 

 ( )2 22
2

g

IHD g eγ γ
πη

−Ξ
′ ′Γ = + − , (7.21) 

where  

 
sinh( / 2)

1 2
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c a

a c

g
ω βω

ω βω
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�
…

�
 (7.22) 

is the quantum correction factor (in full agreement with quantum transition state 

theory [32]), 

 

( ) /

( ) / .

c c

a

a

V x m

V x m

ω

ω

′′=

=

′′=

 

The form of Eq. (6.45) appears to be consistent with our (Chapter II) conception 

of a quantum Brownian particle as embedded in a classical bath with the quantum 

effects in the bath-particle interaction arising via the dependence of the diffusion 

coefficient on the derivatives of the potential in the quantum master equation. The 

simple result follows from the exact solution for the Wigner equilibrium 

distribution function for the harmonic oscillator given in Refs. [33-35] which we 

have described earlier.  

Finally the jump-length probabilities can be estimated as [18] 
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1/ 2
2

0

1/ 2
2

0

sin ( ) ( )cos(2 )

sin ( ) ( )

M
n

k F k nk dk

P

k F k dk

π π

π

= −
∫

∫
, (7.23) 

where ( )F k  is defined by Eq. (7.19) and the superscript M denotes analytical 

calculation (as in Ref. [18]).  

The results yielded by the analytical theory may now be compared with 

the matrix continued fraction solution. 

 

 

 

VII.IV Results and discussion  

The real and imaginary parts of the normalized dynamic structure factor 

 
( , )

( ,0)

S k

S k

ω	

	
 

are shown in Figure VII.I for various barrier heights g with the damping 

parameter 10γ ′ = , and wave number k = 0.2. For comparison, we also show in 

this figure the pure Lorentzian spectra 

 
( , ) 1

( ,0) 1 k

S k

S k i

ω

ωτ
=

+

	

	
, (7.24) 

where the relaxation time ( )k M kτ τ=  is related to the escape MΓ  from the 

universal Eq. (7.17) via 

 

1/ 2
1

0

2 ( )M
M k dkτ −Γ = ∫ . 
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Figure VII.I (a). The real part of the normalized dynamic structure factor 

( , ) / ( ,0)S k S kω	 	  vs ωη for various values of barrier parameter g = 5, 7, 9, and 11; 

the damping coefficient γ′ = 10 and k = 0.2. Solid and dashed lines: the matrix 

continued fraction solution with Λ = 0.02 and Λ = 0 (classical case), respectively. 

Stars and open diamonds: Eq. (7.24) with Λ = 0.02 and Λ = 0, respectively. 
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Figure VII.I (b). The imaginary part of the normalized dynamic structure 

factor ( , ) / ( ,0)S k S kω	 	  vs ωη for various values of barrier parameter g = 5, 7, 9, 

and 11; the damping coefficient γ′ = 10 and k = 0.2. Solid and dashed lines: the 

matrix continued fraction solution with Λ = 0.02 and Λ = 0 (classical case), 

respectively. Stars and open diamonds: Eq. (7.24) with Λ = 0.02 and Λ = 0, 

respectively. 

 

Apparently the simple Eq. (7.24) describes perfectly the low frequency part of the 

normalized dynamic structure factor ( , ) / ( ,0)S k S kω	 	 . 
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The greatest relaxation time 1τ −= Γ  predicted by the turnover formula Eq. 

(7.17) and the inverse decay rate calculated numerically by matrix continued 

fractions are shown in Figure VII.II as functions of the damping parameter γ′ for 

various values of the quantum parameters Λ (the curves and open circles 

corresponding to 0Λ =  are the classical results). The IHD [Eq. (6.45)], 

asymptotes for τ  are also shown for comparison. Using the Wigner stationary 

distribution Wst and imposing the condition � 0D stM W =  gives the correct 

dependence of the escape rate on the quantum parameter Λ (τ  decreases with 

increasing Λ). If the condition � 0D stM W =  is not fulfilled (for example, the 

diffusion coefficient Dpp is regarded as a constant), the behaviour of the decay rate 

is not reproduced at all (see Figure VII.II). The quantitative agreement in 

damping behaviour may be explained as follows. The escape rate as a function of 

the barrier height parameter g for large g is approximately Arrhenius-like and 

arises from an equilibrium property of the system (namely the stationary 

distribution at the bottom of the well). On the other hand the damping dependence 

of the escape rate is due to nonequilibrium (dynamical) properties of the system 

so that the Mel’nikov approach [19,20] should yield the relaxation time for all 

values of the damping. The greatest relaxation time τ predicted by the Mel’nikov 

universal Eq. (7.17) and the inverse decay rate calculated numerically via matrix 

continued fractions are shown in Figure VII.III as functions of γ′ for various 

barrier heights. The IHD [Eq.(6.45)] asymptotes for τ are also shown for 

comparison. The higher the barrier parameter g the more pronounced is the 

quantum correction in agreement with Wigner’s original prediction [36] based on 

equilibrium considerations. 

The results of calculations of the jump-length probabilities nP  and M
nP  

from Eqs. (7.14) and (7.23) are shown in Figure VII.IV for 0Λ =  (classical case) 

and 0.02Λ = . The numerical results are consistent with an asymptotic 

exponential decay of the M
nP . However, for large n and small friction parameter, 

γ ′  deviations from the exponential behaviour may appear [18]. 
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Figure VII.II. The normalized longest relaxation time τ /η vs. γ′ for the 

barrier parameter g = 5 and various values of the quantum parameter Λ = 0 (classical 

case), 0.01, 0.02, and 0.03. Solid lines: the universal Eq. (7.17). Dashed lines: the 

IHD Eq.(6.45). Open circles: the matrix continued fraction solution of the master 

Eq.(7.3). Symbols: the matrix continued fraction solution of Eq. (7.3) with the 

constant diffusion coefficient /ppD mγ β= .  
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Figure VII.III. τ /η vs. γ′ for various values of the barrier parameter g = 5, 

7, 9, and 11. Solid and dotted lines: the universal Eq. (7.17) for Λ = 0.02 and Λ = 0 

(classical case), respectively. Dashed lines: the IHD Eq. (6.45) for Λ = 0.02. Open 

circles: the matrix continued fraction solution of Eq. (7.3). Symbols: the matrix 

continued fraction solution of Eq. (7.3) with the constant diffusion coefficient 

/ppD mγ β= . 

In spite of the very good agreement between the numerical results and the 

universal Eq. (7.17) for Λ<0.03, a difference between numerical and analytical 

results exists in the IHD region for larger values of Λ. The disagreement indicates 

that in order to improve the accuracy for these values of Λ, additional terms of the 
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order of Λ2
, etc. should be included in the master equation. These higher order 

quantum correction terms to the master Eq. (7.2), may be calculated, in principle, 

to any desired degree r of Ñ
2r

. However, with increasing r, the correction terms 

become more complicated. In particular, the explicit form of the master Eq. (6.1) 

containing the terms up to ( )4
o �  is (the derivation is given in detail in Chapter 

VIII) 

 

2 3 3 4 5 5

3 3 5 5

2 2 4 4 2
2 (4)

2

...
24 1920

5
1 6 2 3 ...

12 1440

W p W V W V W V W

t m x x p x p x p

m p W
pW V V V V V

p m m m p

β β
γ

β β

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    ∂ ∂ 
′′ ′′′ ′ ′′= + + − + + − +    ∂ ∂     

� �

� �

 (7.25) 

We emphasize that we use the equilibrium Wigner function ( , )stW x p  for 

vanishing damping ( 0γ → ). In quantum systems, however, the equilibrium 

distribution ( , )W x pγ  is often regarded as damping dependent [32]. The damping 

dependence of ( , )W x pγ  is unknown for arbitrary ( )V x . However, ( , )W x pγ  

always reduces to ( , )stW x p  in the high temperature limit. Moreover, the 

difference between ( , )W x pγ  and ( , )stW x p  may be negligible in a large range of 

variation of the model parameters. Thus one would expect that the evolution Eq. 

(7.2) is a reasonable approximation for the kinetics of a quantum Brownian 

particle in a potential ( )V x  when 1β γ ≤� .  

The justification of the master Eq. (7.2) for the quantum Brownian motion 

of a particle in a periodic (cosine) potential (by showing that the solution of that 

equation for the greatest relaxation time is in agreement with that predicted by 

quantum rate theory) and the successful extension to the quantum case of the 

matrix continued fraction methods associated with the classical Fokker-Planck 

equation are our main results. In particular the dependence of the diffusion 

coefficient on the derivatives of the potential (with consequent lowering of the 

potential barrier) arising from the ansatz of a Wigner stationary distribution 

for the equilibrium solution of the open system successfully reproduces 

escape rates predicted by the quantum generalization of the Kramers escape 

rate theory and its various extensions to the turnover region as applied to the 
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cosine potential. Furthermore, the successful extension of the classical matrix 

continued fraction method [27,37] to the semiclassical quantum master equation 

allows one to accurately calculate in semiclassical fashion quantum corrections to 

the appropriate dynamical quantities such as correlation functions and 

susceptibilities (cf. the calculation of the dynamic structure factor). This is in 

general impossible using quantum reaction rate theory since that theory as 

presently formulated does not involve an explicit master equation. We further 

remark that the agreement obtained between escape rates calculated from quantum 

reaction rate theory in the manner of Georgievskii and Pollak [26] and those from 

the master Eq. (7.2) (cf. Figures VII.II and VII.III) also constitutes a verification 

of quantum rate theory for the potential in question. The above considerations 

suggest it is obviously worthwhile extending the present study of Eq. (7.2) to 

other quantum systems such as the Brownian motion in a periodic potential with 

tilt, the double-well potential, etc. This will allow one to study the interplay of 

quantum tunnelling, thermal fluctuations and dissipation in such systems. In 

particular one will be able to evaluate in semiclassical fashion quantum effects in 

the spectra of relevant dynamical quantities and the influence of quantum 

tunnelling on the relatively high temperature behaviour of their spectra. We 

reiterate that the dependence of the diffusion coefficient on the derivatives of 

the potential arising from the imposition of the Wigner stationary 

distribution is crucial. If this dependence is not taken into account, e.g. 

considering the diffusion coefficient as constant, the characteristic lowering 

of the barrier produced by the quantum tunnelling near the top of the 

barrier cannot be reproduced neither can one regain the results of the 

quantum reaction rate theory. 

Our calculations which have been outlined for mechanical systems with 

separable and additive Hamiltonians may also be extended to particular 

(nonseparable) spin systems such as a single domain ferromagnetic particle since 

the giant spin Hamiltonian of the particle may be mapped onto an equivalent 

single mechanical particle Hamiltonian. This transformation is of particular 

importance concerning the existence of macroscopic quantum tunnelling 

phenomena in such ferromagnetic particles [38] and also in the discussion of the 

crossover region between reversal of magnetization by thermal agitation and 
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reversal by macroscopic quantum tunnelling which is of current topical interest 

[39].  

The calculations we have given are in the first order of perturbation theory 

and consequently apply to small values of the small values of the parameter Λ . 

The purpose of the following Chapter is to extend them to second order in Λ . In 

this way at some time in the future it will be possible to assess the accuracy of the 

first order perturbation theory results. 

APPENDIX VII 

Appendix VII.I : Matrix continued fraction solution 

First we introduce the column vectors  

 

1, 1

1,0

1,1

( , )

( ) ( , )

( , )

n

n n

n

c k t

t c k t

c k t

− −

−

−

 
 ′ 
 ′=
 

′ 
 
 

C

�

�

. 

Hence the scalar multi-term recurrence Eq. (7.6) can be rearranged as the five 

term matrix differential recurrence relation 

 

[ ]

1

1 2 3

( ) ( ) ( 1) ( )

( ) ( ) ( ) ,

n n n n

n n n n n n

d
t t n t

dt

t t t

γ−
−

+
+ − −

′ ′ ′ ′= − −

′ ′ ′+ + Λ +

C Q C C

Q C q C r C

 (7.26) 

where the matrix elements of , ,n n n
±Q q r  are given by 

 ( ), , 1 , 1
,

2 1 1
( )

4 4
n q p q p q p

q p

n g
i q k δ δ δ±

− +

− ±    = + −    
Q ∓ , 

 ( ), 1 , 1
,

( 1)( 2)( 3)

8
n q p q p

q p

n n n
ig δ δ− +

− − −  = − r , 

 ( ), 1 , 1
,

( 1)( 2)n q p q p
q p

g n nγ δ δ− +
  ′= − − + q , 

and ,q pδ  is Kronecker’s delta. Next we use perturbation theory to find the 

solution of Eq. (7.26) treating Λ as the customary small parameter so that we seek 

a solution as 

 0 1( ) ( ) ( )n n nt t t′ ′ ′= + ΛC C C  (7.27) 
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Substituting Eq. (7.27) into Eq. (7.26), we have the matrix three-term differential 

recurrence relation for 0 ( )n t′C  in the zero-order of perturbation theory 

 0 0 0 0
1 1( ) ( ) ( 1) ( ) ( )n n n n n n

d
t t n t t

dt
γ− +

− +′ ′ ′ ′ ′= − − +
′
C Q C C Q C  (7.28) 

and in the first order of perturbation theory the forced matrix three-term 

differential recurrence relation for 1 ( )n t′C , viz., 

 

1 1 1 1
1 1( ) ( ) ( 1) ( ) ( )

( )

n n n n n n

n

d
t t n t t

dt

t

γ− +
− +′ ′ ′ ′ ′= − − +

′

′+

C Q C C Q C

R

 (7.29) 

where 

 0 0
2 3( ) ( ) ( )n n n n nt t t− −′ ′ ′= +R q C r C .  

By invoking the general method [27,37,40,41] for solving three term 

matrix recursion equations, we have the exact solution for the zero order spectrum 

 0 0

0
( ) ( ) st

n ns t e dt
∞ −= ∫C C	  

in terms of a matrix continued fraction, viz. 

 0 0
1 1 1( ) ( ) (0)s s=C ∆ C	 , 

 0 0 0
1 1 2 1 1( ) ( ) ... ( ) (0)n n n n ns s s

− − − −
− −= =C S C S S S ∆ C	 , 

where 

 ( )n n ns
− −=S ∆ Q  

and the matrix continued fraction ( , )n k s∆  is defined by the recurrence equation 

 [ ]{ }
1

1 1( ) ( 1) ( )n n n ns s n sγ
−+ −

+ +′= + − −∆ I Q ∆ Q . 

In like manner, we also have the exact solution for the first order spectrum 

1
1( , )k sC	  in terms of a matrix continued fraction, viz., 

 1 1 1
1 1 1 1 2 3 3( ) ( ) (0) ( ) [ (0) ]s s s

+ += + +C ∆ C ∆ S S C F	 , 

where 1 ( )n n n s
+ +

−=S Q ∆  and 

 ( ) 0
3 4 2 3 2 1 1

4

... ... ( ) (0)n n n n n

n

s
∞

+ + − − −
− −

=

 
= + + 
 

∑F q S S q S r S S ∆ C . 

Here we have noted that 0 (0) , 2n n= ≥C 0  and 1
2 (0) ,=C 0  1 (0) ,  4n n= ≥C 0 . 
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The initial condition vectors 0 (0)nC  and 1 (0)nC  can be calculated just as in 

the classical case [27] by using the initial condition at 0t =  for  

 
0 0 0 0( , , , ,0) ( , )stW x p x p W x p′ ′ ′ ′ ′ ′= , 

Eq. (7.9). However, instead of the Maxwell-Boltzmann distribution of the 

classical theory, the equilibrium Wigner distribution function 
0 0( , )stW x p′ ′  now has 

the form [1,2] (see note at the end of this Appendix) 

 ( ){ }2
0 0( )1 2 2

0 0 0 0 0( , ) 1 ( ) 2 3 ( )
p U x

stW x p Z e U x p U x
′ ′− −−  ′ ′ ′ ′ ′ ′′ ′= + Λ + − 

 (7.30) 

where the partition function Z is given by 
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Here 

 3/ 2
02 ( )clZ I gπ=  

is the classical partition function and 0 ( )I x  and 1( )I x  are modified Bessel 

functions of the first kind. Equations (7.4), (7.5), (7.9), and (7.30) yield the initial 

conditions for , ( )n qc t  as 

 ( ) 0 0( ) / 2
, 0

0

1
(0)

2 !

iqx U x
n q n

n
c H p e

n

′ ′+′= , 

where the brackets 
0
 mean the average over 

0 0( , )stW x p′ ′ . By representing 

, (0)n qc  via perturbation theory as 

 0 1
, , ,(0) (0) (0)n q n q n qc c c= + Λ , 

we have the initial conditions for 0
, (0)n qc  and 1

, (0)n qc , viz., 
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We now demonstrate how we obtained the initial condition 1
0, (0)qc . 

Firstly, 
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 (7.31) 

where Z is  
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i.e.  

 
( ){ }

( ){ }

2
0 0

0

( ) 2 2

0 0 0

0 0 2

( ) 2

0 0 0

0

1 ( ) 2 3 ( )
( , )

1 ( ) 2 ( )

p U x

st

U x

e U x p U x
W x p

e U x U x dx

π

π

′ ′− −

′−

 ′ ′ ′ ′′ ′+ Λ + − ′ ′ =

′ ′ ′′ ′ ′+ Λ −∫
.

 (7.33) 

We calculated Z for the potential ( )0 0cosU x g x′ ′= − . i.e.  

 1

0
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gI g
Z Z

I g
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. (7.34) 

Therefore  
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 (7.35) 

which by Taylor’s theorem is 
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and with 
0 1H =  and 2

2 4 2H p= −  can be written as 
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From Eq. (7.5) viz., 
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we can write Eq. (7.37) as 
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Equating the coefficients of the 
nH  in Eq. (7.39) with Eq. (7.37) we obtain, 
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and which by the orthogonality property of the circular function yields  
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 (7.41) 

In like manner we obtain the result for 1
2, (0)qc . Having determined 

0 1
1 1 1( , ) ( ) ( )k s s s= + ΛC C C	 	 	 , we can evaluate the dynamic structure factor ( , )S k ω	  

in terms of , ( , )n qc k ω	  as 

 0

0, 0,3 / 2
( , ) (0) ( , )

2

cl
q q

q

Z
S k c c kω ω

π

∞

=−∞

= ∑	 	 . 

A no te  o n  i n i t i a l  co nd i t i o ns :  

As far as the first order of perturbation theory is concerned the solution of 

the master equation is of the form  



 178 

 0 1( ) ( ) ( )n n nt t t′ ′ ′= + ΛC C C . (7.42) 

Moreover we saw that the initial condition vectors 0 (0)nC  and 1 (0)nC  can be 

calculated just as in the classical case [27] by using the initial condition at 0t =  

for  

 
0 0 0 0( , , , ,0) ( , )stW x p x p W x p′ ′ ′ ′ ′ ′= . (7.43) 

The notation is exactly that of Wang and Uhlenbeck [42] as used in classical 

problems, in other words we first solve the Fokker-Planck equation for sharp 

initial conditions and then average the result over a Maxwell-Boltzmann 

distribution of initial values of 0 0,x p  in order to determine the solution for 

equilibrium initial conditions. This procedure amounts to finding the Green 

function of the Fokker-Planck equation and then weighting it with the Maxwell-

Boltzmann distribution. For example Wang and Uhlenbeck calculate the mean 

and mean square positions and momenta for a harmonic oscillator for sharp initial 

conditions. If the mean positions and momenta as a function of time so calculated 

are multiplied by the sharp initial values of these quantities and then averaged for 

a second time over a Maxwell-Boltzmann distribution the quantities that result (by 

stationarity, i.e. invariance under a shift of the time axis) are the position and 

momentum autocorrelation and crosscorrelation functions of the oscillator. 

Alternatively if one wished to calculate these functions one can simply proceed by 

postulating the Maxwell-Boltzmann distribution as the initial condition and 

disregard the Green function or one can as in Chapter II in deriving the 

Smoluchowski equation from the Brinkman equations postulate an initial 

condition in the form of a Maxwellian distribution of velocities or momenta times 

an arbitrary function of position. By analogy we suppose that the procedure 

carries over to the quantum master equation in the context of Wigner’s quasi 

phase space approach so that one effectively replaces the Maxwell-Boltzmann 

initial condition by Wigner’s stationary distribution in phase space. If one chooses 

to proceed via direct calculation of the Green function some care must be taken 

into what is exactly meant by a delta function initial distribution in phase space on 

account of the limitations imposed by the uncertainty principle. Furthermore the 

phase space averages calculated by imposing the Wigner stationary distribution as 

initial condition will no longer necessarily have the meaning of correlation 
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functions due to the non commutative operator algebra characteristic of quantum 

mechanics. 
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CHAPTER VIII 

 

Inclusion of higher order corrections in ħ2 in 

the quantum Brownian motion in a cosine 

potential  

 

VIII.I Brief outline  

In Chapter II we have shown how in principle how one may calculate 

diffusion coefficients to any order in 2�  in the quantum master equation resulting 

from the ansatz that one may truncate a Kramers-Moyal like expansion at the 

second order term. Moreover we have solved the particular problem of the 

quantum Brownian motion in a cosine potential, viz. 

 0 0( ) cos( )V x V x x= − . (8.1) 

In order to investigate the convergence of the perturbation expansion or to 

consider cases where the quantum parameter is not necessarily small it is 

necessary to outline how higher order terms can be included in the ordinary 

differential recurrence relations. We shall illustrate the methodology for the 

cosine potential problem of the previous chapter. In order to achieve maximum 

clarity for the reader we shall proceed by first giving the partial differential 

recurrence relations or the Brinkman equations for a general potential in the basis 

defined by the Fourier expansion [1,2] 

 
( )

2

0

, ,
( , ', , ) ( )

2 !

p
n

nn
n

C k x te
W k x p t H p

nπ

′− ∞

=

′ ′
′ ′ ′= ∑  (8.2) 

where the orthogonality relation for the Hermite polynomials, ( )nH p , is given by  

 
2

,( ) ( ) 2 !
p n

m n m ne H p H p dp n πδ
∞

−

−∞

=∫ . (8.3) 

We shall then specialize these equations to the cosine potential by expanding the 

spatial part ( ), ,nC k x t′ ′  in a Fourier series like in the previous Chapter. Just as in 
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that Chapter the basis is chosen in the form of Eq. (8.2) rather than the ( , )n x tϕ  

used for the Brinkman equations used in Chapters II and VI, because the above 

form yields optimum convergence of the ordinary differential recurrence relations.  

VIII.II The quantum master equation to the 2
nd

 order in 

ħ
2
 and its solution 

In Chapter VI we showed that the evolution equation of the Wigner 

distribution function for an open system is,  

 ˆ ˆ
W D

W
M W M W

t

∂
+ =

∂
, (8.4) 

and to 4( )O �  

2 3 3 4 5 5

3 3 5 5

2 2 4 4 2
2 (4)
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...
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12 1440

W p W V W V W V W

t m x x p x p x p

m p W
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p m m m p

β β
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β β
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   ∂ ∂ 
′′ ′′′ ′ ′′= + + − + + − +   ∂ ∂       

� �

� �

 (8.5) 

and on transposing terms from the left hand side we have  

2 3 3 4 5 5

3 3 5 5

2 2 4 4 2
2 (4)

2

...
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12 1440
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β β
γ

β β
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= − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   ∂ ∂ 
′′ ′′′ ′ ′′+ + + − + + − +   ∂ ∂      

� �

� �

 (8.6) 

In terms of Λ  where  

 
2 2

24m

β
Λ =
�

 (8.7) 

is the characteristic quantum parameter the evolution equation ( 2 4( ) ( )O OΛ ≡ � ) 

becomes 

 

3 3 2 5 5
2

3 3 5 5

2
2 (4)

3
...

10

2 5
1 2 6 2 3 ...

5

W p W V W m V W m V W

t m x x p x p x p

m p W
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p m p

β β

γ
β β

2 4

2

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + − Λ + Λ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   ∂ Λ ∂ 
′′ ′′′ ′ ′′+ + + Λ − + + − +   ∂ ∂      

 (8.8) 
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The first order terms in Λ  are obviously the same as before and since Eq. (8.8) is 

linear we can simply add on the second order terms in Λ , i.e. to 4( )O � , are 

 
4 5 5 2 5 5

2

5 5 5 5

3

1920 10

V W m V W

x p x pβ 4

∂ ∂ ∂ ∂
+ ≡ + Λ

∂ ∂ ∂ ∂

�
 (8.9) 

from the right hand side of Eqs.(8.6) (or (8.8)), and the dissipative term is  

 

4 4 2
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�

 (8.10) 

Λ has units of 2 1T M −  or area per Joule. β�  has units of time. 

In order to represent the quantum master equation as a differential 

recurrence relation for the statistical moments we again introduce the following 

normalized variables [1,2], 

 

0
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1
( ) ( )
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p p

t t

x x x

V x U x

η

η

β
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′→
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′→

 (8.11) 

where  

 
2

0

2

mxβ
η =  (8.12) 

and  

 0g Vβ=  (8.13) 

After some simple algebra, we obtain the following rescaled master equation, 
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 (8.14) 

where we have introduced 

 γ γη′ =  (8.15) 
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and the new quantum parameter (note the difference in this and (8.7)) 

 
2

0mx

β2

Λ =
24

�
 (8.16) 

which are dimensionless damping and quantum parameters, respectively. 

To investigate the process whereby the particle traverses the periodic 

potential we must obtain the nonperiodic solution of Eq. (8.14) [1,2] as in Chapter 

VII. Thus we again make the ansatz [1,2] 

 

1/ 2

1/ 2

( , , ) ( , , , ) ikx
W x p t w k x p t e dk
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−

′ ′ ′ ′ ′ ′= ∫  (8.17) 

where w  is periodic in x with period 2π and it is assumed that k is restricted to the 

first Brillouin zone, 1/ 2 1/ 2k− ≤ ≤ . The periodic function w  can then be 

expanded in a Fourier series in x and in orthogonal Hermite functions ( )nH p′  in 

p′  as before, viz., 
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 (8.18) 

For the moment for purpose of illustration we shall just take the classical 

part of our second order quantum master equation (8.14) i.e. (let 0Λ = )  
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By substituting Eq. (8.18) into Eq. (8.17), (i.e. Eq. (8.2))  
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and on substitution of this expansion we have 
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We use the following recurrence relations of the ( )n
H p  (we have dropped the  ′  

for ease of notation) 
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Notice that,  
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and on using the recurrence relations (Eqs. (8.22)) we have  
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i.e. on differentiation of W with respect to p′  we just change sign and increase the 

counter of ( )nH p  by one, hence  
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Therefore Eq. (8.21) can be written as 

 

( )
( )

( )
( ) ( )

( )
( )( )

( )
( )( )

1 1

0 0

1

0

0

, , , ,1 1 1

22 ! 2 !

, ,1

2 2 !

, ,
;

2 !

n n

n n n
n n

n n

n

n
n

n

n

n
n

n

C k x t C k x t
H p H p nH p

t xn n

C k x tU
H p

x n

C k x t
nH p

n

γ

∞ ∞

+ −
= =

∞

+
=

∞

=

′ ′ ′ ′∂ ∂  ′ ′ ′= − + ′ ′∂ ∂  

′ ′∂
′+ −

′∂

′ ′
′+ −

2

∑ ∑

∑

∑
 (8.26) 

(we divided out 

2
p

e

π

′−

). We now apply the orthogonality relation of the ( )nH p  

i.e. 

 ( ) ( )
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=∫  (8.27) 

to obtain the following set of partial differential recurrence equations 
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which are simply the classical Brinkman equations written in the basis defined by 

Eq. (8.20). We next expand ( ), ,nC k x t′ ′  in the form 
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We substitute this equation into Eq. (8.28) in order to obtain 
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Letting r q k= + , say, we can divide across both sides of Eq. (8.30) to give  
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Thus with the potential given by Eq. (8.1) namely  

 ( ) cos( )U x g x′ ′= −  (8.32) 

and its derivative expressed in exponential form 
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Eq. (8.31) becomes 
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∑

∑

 (8.34) 

so that we can apply the orthogonality property of the trigonometrical functions 

namely 

 

2

( )

,

0

1

2

i r s x

r se dx

π

δ
π

± − =∫  (8.35) 

to obtain the following set of ordinary differential recurrence equations 

 

( ) ( )

( ) ( )

, , 1, 1, 1 1, 1

1, 1, 1 1, 1

2 4
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n q n q n q n q n q

n q n q n q

d n ig
c n c i q k c c c

dt
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i q k c c c

γ − − + − −

+ + + + −

 
′= − + + + − ′  

+  
+ + − −  

 (8.36) 

These are simply the Brinkman equations for a cosine potential written in a form 

which will yield the nonperiodic solution. 

Now in order to find the quantum corrections (since the master equation is 

linear) we can take one term at a time and add the results of our calculations to the 

relevant equations. We initially take the first order in Λ  and then proceed to 2Λ . 

We have already carried out the calculation for ( )O Λ  and we give the results 

below. The set of partial differential equations to ( )O Λ  are  

 

( )
1 1

1

3 2

3 23 2

, , 1

2 2

2
( 1) 2 .

2

n n n
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n n

C k x t C Cn U n
n C C

t x x x

n U U
n n C C

x x

γ

γ

− +
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− −

′ ′∂ ∂ ∂∂ + 
= − − + − ′ ′ ′ ′∂ ∂ ∂ ∂ 

 − ∂ ∂ 
+Λ − + 

′ ′∂ ∂  

 (8.37) 

The corresponding set of ordinary differential recurrence equations have 

been given in Chapter VII (namely Eq. (7)) and are  
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( ) ( )

( ) ( )
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1, 1, 1 1, 1
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′+Λ − + + − 

 

 (8.38) 

VIII.III The quantum master equation to the second 

order in ħ
2
 and its solution 

The second order terms in Λ  in the conservative part of the master 

equation (cf. Eq. (8.6)), i.e. to 4( )O � , are after rescaling  
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�

 (8.39) 

while the dissipative term becomes  
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�

 (8.40) 

Thus written in full the rescaled master equation reads (cf. Eq. (8.14) above) 

( )

3 3 5 5
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3 3 5 5

2
2 3 2 4

2 2

2 3 2 4

1 3

2 4 80

2
2 1 2 6 2 3 2 5 .

2 5
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    ′ ∂ ∂ ∂ ∂ ∂ ∂ ∂   ′+ + + Λ − Λ + + −   ′ ′ ′∂ ∂ ∂′ ′ ′ ′∂ ∂ ∂ ∂      
 (8.41) 

Taking the correction to the conservative term first, namely 

 
5 5

5 5

3

80

U W

x p

2 ∂ ∂
+ Λ

′ ′∂ ∂
, (8.42) 

we apply Eq. (8.24) so that expression (8.42) becomes 
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Divide across by 

2p
e

π

′−

 and apply the orthogonality relation Eq. (8.27) to get 
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C k x t nU

x n

π−2

−

′ ′∂
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To get our first order of perturbation theory the partial differential equation (Eq. 

(8.37) above) we multiplied across by ( )
1 2

2 !n
n π

−

 and we must do the same for 

our new term (8.44) which becomes 

 ( )( )( )( )
5

55

3 2
1 2 3 4

20
n

U
n n n n n C

x

2
−

∂
− Λ − − − −

′∂
. (8.45) 

Our second order expression for the dissipative part of the master equation 

requires a much lengthier calculation. This term is  

 ( )
2

3 2 4
2 2

3 2 4

2
6 2 3 2 5

2 5

U U U U W
p

p x px x x

γ
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 (8.46) 

which also may be written 

 ( ) ( )
2

2 3 2 2
4 4 2

3 2 2
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 (8.47) 

In writing (8.47) we have used the identity  
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Now from the recurrence relations of the Hermite polynomials (cf. Eq. (8.22)) we 

have  
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1 2 3
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( 1) .

n n n

n
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n n H p
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−

+
= +

+ +

 (8.49) 

We use this and the ladder type property of the derivative of W with respect to p′  

given in Eq. (8.24) and follow the same procedure as for the conservative term to 

obtain  
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 (8.50) 

The foregoing equations allow one to write the quantum Brinkman 

equations correct to second order in Λ , these are the seven term partial 

differential recurrence relation which however in reality again constitute a forced 

three term partial differential recurrence relation in accordance with perturbation 

theory in Λ ; 
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 (8.51) 

Now our potential is ( ) cosU x g x′ ′= − . Take the first term i.e. (8.45) and our 

expansion of ( ), ,nC k x t′ ′ , namely  
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we get the fifth derivative of U and express it in exponential form, i.e. 

 ( )
5

(5)

5
2

ix ixU ig
U e e

x

−∂
= = − −

′∂
, (8.53) 

so that 
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As before we apply the orthogonality property of the circular functions to give 
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 (8.55) 

The recurrence relations resulting from the dissipation term involves quite 

an amount of algebra but the method is exactly the same. In this case we have 

some products of different orders of derivatives of the potential e.g. 
3

3

U U

x x

∂ ∂

′ ′∂ ∂
 

which results in different effects on the q-counter. Some useful results:  
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After the procedure described above the second order dissipative term can be 

written as  
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 (8.57) 

The complete set of differential recurrence relations for the nonperiodic solution 

for the cosine potential is then 
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 (8.58) 

Again Eq. (8.58) in accordance with perturbation theory constitutes the 

classical ordinary differential recurrence relation for the cosine potential forced by 

the quantum terms, for example in order to solve Eq. (8.58) we first calculate the 

solution of the classical problem i.e. Eq. (8.58) without the quantum terms which 

is the zero order perturbation theory or unperturbed solution. Having determined 

this solution (via matrix continued fractions) it is substituted into Eq. (8.58) and 

all terms ( )O
2Λ  and higher are neglected. This is the first order perturbation 

solution we have calculated in Chapter VII. The second order perturbation 

solution is then calculated by substitution of the first order perturbation solution 

into Eq. (8.58) and then ignoring terms 4( )O Λ  and higher. The perturbation 

method is entirely analogous to that used by Wigner in 1932 for the solution of 

the Wigner-Liouville equation for the closed quantum system. We shall now 

arrange Eq. (8.58) in matrix continued fraction form as we did for the first order 

perturbation solution in Chapter VII. 

VIII.IV Matrix continued fraction solution for second 

order perturbation theory in the quantum parameter 

We introduce as in the previous Chapter, the column vectors (we use here t 

instead t’) 
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which allow us to suppress the q dependence, Eq.(8.58) can be ostensibly 

rearranged as the set of matrix seven-term recurrence equations (which of course 

is simply a forced three term matrix recurrence equation because of the structure 

of the perturbation expansion) 
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where  
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 (8.64) 

In accordance with perturbation theory it is anticipated that the solution will be of 

the form  

 0 1 2 2( ) ( ) ( ) ( )n n n nt t t t= + Λ + ΛC C C C , (8.65) 

where the superscripts denote the power of Λ  used. Having written our set Eq. 

(8.58) in matrix form we must also determine the initial conditions to second 
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order of perturbation theory. In the time and resources allotted to this project it 

has only been possible to treat the partition function to second order in Λ . I 

propose to solve the problem completely at a later stage and to present a full 

numerical analysis and comparison with the first order solution.  

We saw that the Wigner stationary distribution (before rescaling) is 
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where 
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and (in this unrescaled notation) where 
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24m

β
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�

 

is the characteristic quantum parameter. The reader should not confuse this Λ  

( 2 2 /(2 )mβΛ = 4� ) with the Λ which we will soon redefine. We will rescale Eq. 

(8.66) as before using: 

 0x x x′→  (8.67) 

 0mx
p p

η
′→  (8.68) 
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Therefore Eq. (8.66) becomes (with the new and dimensionless 

parameter
2

2
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β
Λ =

4

�
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This distribution must again be normalized. To ( )O Λ  i.e. the first quantum 

correction to the Maxwell-Boltzmann distribution which we now call the Wigner 

distribution, we have the following: 
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where Z is the partition function as we saw in Chapter VII, 
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Including the next correction gives 
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where the partition function is now given by 
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On integrating out the momentum we get 
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The potential is  

 ( ) cosU x g x′ ′= −  (8.76) 

and therefore the partition function maybe expressed [3] in terms of the modified 

Bessel functions [4] as 
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Here 

 3 2

02 ( )clZ I gπ=  (8.78) 

is the classical partition function and 0( )I x  and 1( )I x  are modified Bessel 

functions of the first kind [4]. 

Equation (8.77) can be found by using the recurrence relations of the 

modified Bessel functions, namely  

 
1 1
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The Wigner stationary distribution is now 
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Having determined the partition function the Fourier coefficients 
,n qc  

maybe calculated in the same way as the first order approximation. 
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CHAPTER IX 

 

Conclusions  

 

We have outlined in this Thesis how Wigner’s method of obtaining 

quantum mechanical corrections to the Maxwell-Boltzmann distribution and 

applying to closed quantum systems may be extended to a canonical ensemble of 

Brownian particles in a potential ( )V x  at temperature T. Throughout the 

calculation the bath is described classically while the tagged particle is treated 

quantum mechanically using Wigner’s quasiprobablity representation of the 

density operator for the single particle distribution function. The advantage of 

such a formalism as emphasized by Gross and Lebowitz [1] is that the connection 

between classical and quantum collision kernels, (i.e. in classical mechanics the 

Stosszahlanzatz used in the Boltzmann equation) is much more transparent if one 

is familiar with the classical case than in the density operator formalism. Indeed 

according to Gross and Lebowitz [1] in their discussion of quantum dielectric 

relaxation using the quantum generalization of the so called strong collision 

model [2,3] (following earlier work of Karplus and Schwinger [4] on a full 

quantum mechanical treatment of the Van Vleck-Weisskopf model [5] for the 

shape of collision broadened absorption lines) “appropriate quantum kernels are 

suggested by requiring that the Wigner distribution satisfy an integrodifferential 

equation (of the form of a Boltzmann equation) with a stochastic kernel which is 

the same as that obeyed by the classical distribution function. Then one expresses 

the Wigner function in terms of the density matrix.” (cf. Baker’s [6] remark “the 

(quasiprobability) distribution is imagined to be concentrated about the classical 

point, so that a crude measurement will be unable to differentiate between the two 

theories”). These considerations led us to postulate since the Stosszahlansatz 

underlying the theory of the classical Brownian motion is that the collisions are 

frequent but weak a Kramers–Moyal like expansion truncated at the second term 

(leading of course in the classical limit to the Fokker-Planck equation) as the 

phase space representation of the collision operator. The diffusion coefficients in 

the resulting quantum master equation may then be determined by requiring that 
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the equilibrium quasiprobability distribution in the representation space renders 

the collision term zero. The most important result is that the bath-particle 

interaction causes the various diffusion coefficients in the semiclassical quantum 

master equation for the single particle distribution function in phase 

(representation) space to become position and momentum dependent; a result 

which had already been anticipated by Zwanzig (1958) [7]. He suggested that the 

diffusion coefficients in the classical Fokker-Planck equation should be modified 

by quantum effects. He was led to this conclusion by considering a model of 

Montroll and Shuler [8] for the relaxation from an initial nonequilibrium 

distribution of energy of a system of harmonic oscillators immersed in a heat bath. 

They gave a relaxation equation for the fraction of quantum oscillators in a given 

quantum state at any time. Zwanzig rewrote this relaxation equation in terms of 

the appropriate von Neumann evolution equation for the elements of the 

nonequilibrium density matrix which reduces to the Schrödinger equation for zero 

dissipation. Next he expressed the von Neumann equation in phase space form 

using Wigner’s definition of his function as a particular Fourier transform of the 

density matrix as we have used throughout the Thesis. Thus, he arrived at a 

quantum master equation analogous to the Fokker-Planck equation which clearly 

shows that the diffusion coefficients are altered by quantum effects.  

Now on expansion of the momentum dependence of the time dependent 

Wigner distribution function in phase space in Weber or oscillator functions 

(orthogonal Hermite polynomials) and substitution into our quantum master 

equation, the form of the classical Brinkman hierarchy of partial differential 

recurrence relations for the configuration space distribution function is essentially 

preserved as we saw in Chapters V-VIII. Thus all the methods of solution of the 

Brinkman equations for the classical Fokker-Planck equation such as matrix 

continued fractions may also be applied to the quantum master equation. The 

explicit calculations we have presented in Chapters VII and VIII constitute an 

example of the solution of the semiclassical Klein-Kramers equation for the 

Brownian motion in a periodic potential. The approach, which is grounded in 

continued fraction methods, clearly indicates how many existing results of the 

classical theory of Brownian motion in a potential (double well, tilted periodic, 

etc.) may be extended to the semiclassical case. In addition in the high damping 

(or noninertial) limit, Brinkman’s method of derivation of a partial differential 
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equation (Smoluchowski equation) governing the behaviour of the configuration 

space distribution function may also be used to derive from the quantum 

Brinkman hierarchy a quantum Smoluchowski equation for the configuration 

space distribution function without using path integral methods. 

By way of illustration of our results we have demonstrated how our 

calculation of the diffusion coefficient yields the known master equation for the 

time dependent Wigner function for the quantum Brownian harmonic oscillator 

originally obtained by Agarwal [9]. In addition we have demonstrated how our 

procedure yields a closed form solution for the quantum Kramers IHD escape rate 

showing clearly that the nature of our dynamical model is that of a quantum 

particle embedded in a classical bath with the bath particle interaction giving rise 

to a dependence of the diffusion coefficients on the derivatives of the potential 

and on the momentum. The solution so obtained reduces to Wigner’s previously 

known solution given by his extension of TST to quantum systems described in 

Chapter V. This is in effect the intermediate damping case of the quantum IHD 

result. We remark that the theory we have presented yields in the manner of the 

classical Fokker-Planck equation exact numerical solutions (within the limitations 

of the semiclassical approach) for various system parameters such as the quantum 

Kramers escape rate. These may be used as a benchmark in order to evaluate the 

accuracy and range of validity of various asymptotic expressions for that quantity 

as we have shown in Chapter VII. We have illustrated methods of calculating 

escape rates in the context of the Wigner function approach without detailed 

treatment of the very low damping case. In general, in order to consider the VLD 

case, it may be easier to use semiclassical functional-integral methods [10,11]. 

However, since the objective of the Thesis is the formulation of appropriate 

quantum mechanical evolution equations rather than the calculation of quantum 

mechanical escape rates, we have refrained from considering the low damping 

case although that is the most interesting from a quantum mechanical point of 

view as one would expect the largest quantum effects to manifest themselves in 

the VLD regime. In view of these considerations the existence of the universal 

escape rate ( IHDΓ = Γ ϒ  where ϒ  is the depopulation factor) valid for all values of 

damping [12-14] is a most useful tool as it will automatically yield the correct 

escape rate for all values of the damping from a knowledge of the IHD rate. 
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Our approach which has been outlined for mechanical systems with 

separable and additive Hamiltonians may also be extended to spin systems such as 

single domain ferromagnetic particles in the presence of an external magnetic 

field. This is accomplished using Stratonovich’s generalization of Moyal’s 

quantization procedure to spins in order to construct a Wigner function for spin 

systems. We recall (Chapter IV) that mindful that Moyal’s definition of the 

characteristic function is not periodic as it must be so if applicable to spins. 

Stratonovich introduced a quasiprobability density function on the sphere which 

he defined as the trace of the product of the system density matrix and the 

irreducible tensor operators having matrix elements in the spherical basis 

representation given by the Clebsch-Gordan coefficients. Hence the average value 

of a quantum spin operator may be calculated just as the corresponding classical 

function from the Weyl symbol of the operator. We have briefly illustrated this in 

Chapter IV. There we briefly outlined for the purpose of completeness a 

calculation made by Kalmykov and so presented the equilibrium quasiprobabililty 

function representation of the density operator for the spin Hamiltonian 

corresponding to a spin under the influence of an internal uniaxial anisotropy field 

and an applied uniform field parallel to the anisotropy field. The Wigner-

Stratonovich method is capable of great generalization and it has been very 

recently been shown [15-17] that a knowledge of the phase space representation 

of the equilibrium density matrix coupled with a truncated Kramers-Moyal like 

representation (as we have illustrated for particles in Chapter V) of the collision 

operator for spins allows one to determine the diffusion coefficients in that 

expansion so that spin problems may be treated in essentially the same way as we 

have outlined for particles. 

The main part of the Thesis assumes that Wigner’s evolution equation for 

particles is truncated at terms of the order of the square of Planck’s constant. In 

Chapter VIII we have shown how the calculations may be extended to the fourth 

order. Essentially nothing new is involved. However it is obvious from Chapter 

VIII that the mathematical manipulations become considerably more complicated. 

It is planned to carry out a comprehensive numerical analysis in the manner 

outlined for the squared term in Chapter VII in the future. This will provide both a 

useful check on the convergence of the perturbation procedure in the quantum 

parameter and will provide a more accurate description of the quantum effects 
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when these are not automatically assumed small. We remark that Wigner [18] 

originally included the fourth order effects in his 1932 discussion of the quantum 

corrections to the Maxwell-Boltzmann distribution, i.e. classical thermodynamic 

equilibrium. 
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