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ABSTRACT 

 

In this thesis, a recursive algorithm based on kernel mapping is applied to 

develop an automated, ICU Signaling. The method is portable and adaptive, 

and has lower complexity. Streams of different medical parameters are used 

to identify normal and abnormal conditions of individual patients in ICU. 

Using a system as such, the slightest of anomaly deviated from the norm, 

can be detected and alarmed, so that the medical team can take immediate 

and emergency action. 
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I. INTRODUCTION 

 

A. Problem Statement 

An Intensive Care Unit (ICU) is powerful in evaluating critically ill patients. 

But for ages, ICUs have appointed a medical person, a nurse, for every 

patient in the ICU. The job of the nurse is similar to being a human monitor 

to a patient, to see if anything goes wrong and to summon emergency 

medical help. Technology has been cutting a lot of salary cost these days and 

here also we have planned and evolved ideas to remove this hectic human 

operations. Disadvantages are crucial as the human operator might get 

exhausted and miss a critical condition of the patient to report. So here is the 

remedy. Our Kernel-based Online Anomaly Detection (KOAD) algorithm 

helps to automate the ICU and it is the algorithm that will call for medical 

emergency if required. KOAD takes over the whole human monitoring 

system as it directly monitors any change in the measuring parameters in 

real time, computes it, compares it to the normality space and detects what 

ranges of values are normal for a particular patient. It saves the normal 

ranges in a dictionary and raises an orange alarm if values spans beyond the 

normality space. It resolves the orange alarm to green if it computes that the 

value is normal and to a red alarm if it crosses the normality span. When a 

red alarm is raised, a literal alarm rings, thus calling the medical team for 

help. This is a very effective method of automation with high detection rate 

and with the added advantage of being an adaptive and online algorithm 

with bounded complexity.     
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B.  Our Contributions 

Most prior work in network anomaly detection has used block-based 

methods, which are only suitable for offline applications, requiring waits of 

up to hours before alerts occur. Thus our algorithm takes the alternative 

approach of learning the behavior of online anomaly, and autonomously 

adapting to shifts in the structure of normality itself. Initially, we worked 

with a hypothetical data on the basic and important medical parameters of an 

ICU patient. Having successfully achieving our goals in making the 

algorithm run, we gathered the real data and applied it on the algorithm and 

achieved expected results. In this paper we develop a sequential, real-time 

anomaly detection algorithm that incrementally constructs and maintains a 

stream of medical parameters which defines the region of normal behavior. 

The parameters adapts over time to address changes in the structure of 

normal range values of parameters, with new elements being added obsolete 

members deleted as the normality region expands or migrates. We provide a 

comparative study on real data of our proposed Kernel-based Online 

Anomaly Detection (KOAD) algorithm. The results indicate that the 

detection performances are approximately equivalent, with the KOAD 

algorithm offering lower computational complexity and faster time-to-

detection.  
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C. Outline of Thesis 

This paper is organized as follows. Section II gives an overview of different 

applications used in ICU emergency signaling and also states details about 

the other networks that use Kernel based algorithm. Section III presents the 

KOAD algorithm, analyses computational complexity, and discusses the 

choice of the algorithm parameters. It mainly monitors whether or not our 

algorithm will run effectively on ICU patients. This section discusses in 

detail the applications and the code used to achieve our means. Section IV 

compares the performance of our algorithm on data recorded on the network. 

Initially, the use of hypothetical data gave us desired results. Later the 

collection of real data and its application on KOAD showed results of an 

ICU patient in both its normal form and caused alarm when an anomaly was 

detected. Section V provides concluding remarks and describes avenues for 

future research. 
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II. RELATED WORK 

A. Apart from our work which mainly focuses on the recursive Kernel based 

Online Anomaly Detection; there have been a series of works used in ICU 

Emergency Signaling. 

 Lakhina et al. demonstrate the intrinsic low-dimensionality of network 

flows, and the high spatial and temporal covariance structure between 

the flows. Lakhina et al. used the technique of Principal Component 

Analysis (PCA) to separate the space occupied by a set of traffic 

metrics into two disjoint subspaces, corresponding to normal and 

anomalous behavior, respectively. They signal an anomaly when the 

magnitude of the projection onto the residual, anomalous subspace 

exceeds an associated PCA Qstatistic threshold. The PCA subspace 

method was shownto be more effective than EWMA and Fourier 

approaches in automatic diagnosis of anomalies. Lakhina et al. also 

suggested an online formulation of the PCA-based algorithm in. This 

involved using a sliding window implementation to identify the 

normal and anomalous subspaces based on a previous block of time. 

The variation in the structure of multivariate network traffic statistics 

over time is, however, non-negligible. Further, the PCA-based 

detection algorithm is extremely sensitive to the proper determination 

of the associated Q-statistic threshold. We implemented the proposed 

online version of PCA and observed that although the anomalous and 

normal subspaces remained relevant over time, using stale 

measurements to calculate the Q-statistic threshold resulted in an 

unacceptable number of false positives. This indicates that 

straightforward extensions to the PCA-based method are not robust 

and motivates alternative approaches for an online application. 
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 Brutlag uses as an extension of the Holt-Winters forecasting 

algorithm, which supports incremental model updating via 

exponential smoothing. His algorithm defines a “violation” as an 

observation that falls outside an interval (a confidence band), and 

identifies a “failure” (an anomaly) when the number of violations 

within an observation window exceeds a threshold. Hajji uses a 

Gaussian mixture model, and develops an algorithm based on a 

stochastic approximation of the Expectation-Maximization (EM) 

algorithm to obtain estimates of the model parameters. 

 

 Recently there has been an upsurge of interest in strategies for 

detecting at-risk patients in order to trigger the timely intervention of 

a Medical Emergency Team (MET), also known as a Rapid Response 

Team (RRT). We review a real-time automated system, BioSign, 

which tracks patient status by combining information from vital signs 

monitored non-invasively on the general ward. BioSign fuses the vital 

signs in order to produce a single-parameter representation of patient 

status, the Patient Status Index. The data fusion method adopted in 

BioSign is a probabilistic model of normality in five dimensions, 

previously learnt from the vital sign data acquired from a 

representative sample of patients. BioSign alerts occur either when a 

single vital sign deviates by close to ±3 standard deviations from its 

normal value or when two or more vital signs depart from normality, 

but by a smaller amount. In a trial with high-risk elective/emergency 

surgery or medical patients, BioSign alerts were generated, on 

average, every 8 hours; 95% of these were classified as „True‟ by 
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clinical experts. Retrospective analysis has also shown that the data 

fusion algorithm in BioSign is capable of detecting critical events in 

advance of single-channel alerts. 

 

 A prospective observational study was done comparing invasive 

monitoring and noninvasive monitoring in 60 critically ill or injured 

patients who required hemodynamic monitoring shortly after entering 

the ED of a university-affiliated county hospital. Cardiac output (CO) 

values measured by the standard then no dilution pulmonary artery 

catheter technique were compared with simultaneously obtained 

measurements using a noninvasive bio-impedance method. 

Concurrent measurements were made of pulse oximetry to screen 

pulmonary function and transcutaneous       oximetry to assess tissue 

perfusion. Noninvasive monitoring can provide hemodynamic and 

perfusion information previously available only by invasive thermo-

dilution catheters. Such noninvasive monitoring can display 

continuous on-line real-time data, allowing immediate recognition of 

circulatory abnormalities and providing a means to titrate therapy to 

appropriate therapeutic goals. 

 

 MicroEEG is a portable, battery-operated, wireless EEG device, 

developed by Bio-Signal Group to overcome the obstacles to routine 

use of EEG in emergency departments (EDs). The standard system 

was used to obtain EEGs from healthy volunteers in the EEG 

laboratory, and studies recorded from patients in the ED or ICU were 

also used for comparison. In one experiment, a signal splitter was 

used to record simultaneous microEEG and standard EEG from the 
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same electrodes. EEG signal analysis techniques indicated good 

agreement between microEEG and the standard system in 66 EEGs 

recorded in the EEG laboratory and the ED. In the simultaneous 

recording the microEEG and standard system signals differed only in 

a smaller amount of 60 Hz noise in the microEEG signal. The results 

suggest that the technical qualities of microEEG are non-inferior to a 

standard commercially available EEG recording device. EEG in the 

ED is an unmet medical need due to space and time constraints, high 

levels of ambient electrical noise, and the cost of 24/7 EEG 

technologist availability. This study suggests that using microEEG 

with an electrode cap that can be applied easily and quickly can 

surmount these obstacles without compromising technical quality. 
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B. The proposed algorithm is based on the kernel version of the 

recursive least squares algorithm. It assumes no model for network 

traffic or anomalies, and constructs and adapts a dictionary of 

features that approximately spans the subspace of normal behavior. 

There are many other systems that use the Kernel Recursive 

Algorithm. 

 

 An extensive network of surveillance and security network is 

prevalent in many places in today‟s world. They range from 

analogue closed-circuit television (CCTV) systems to 

sophisticated networks of infra-red and motion sensors in 

sensitive areas such as banks and museums. A recursive 

algorithm based on kernel mappings to propose an 

automated, real-time intruder detection mechanism for 

surveillance networks. Our proposed method is portable and 

adaptive, and does not require any expensive or sophisticated 

components. 

 

 The formation of disulphide bridges between cysteines plays an 

important role in protein folding, structure, function, and evolution. 

Here, we develop new methods for predicting disulphide bridges in 

proteins. We first build a large curated data set of proteins containing 

disulphide bridges to extract relevant statistics. We then use kernel 

methods to predict whether a given protein chain contains intrachain 

disulphide bridges or not, and recursive neural networks to predict the 
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bonding probabilities of each pair of cysteines in the chain. These 

probabilities in turn lead to an accurate estimation of the total number 

of disulphide bridges and to a weighted graph matching problem that 

can be addressed efficiently to infer the global disulphide bridge 

connectivity pattern. It can classify individual cysteine residues as 

bonded or nonbonded with 87% specificity and 89% sensitivity. The 

estimate for the total number of bridges in each chain is correct 71% 

of the times, and within one from the true value over 94% of the 

times. The prediction of the overall disulphide connectivity pattern is 

exact in about 51% of the chains. In addition to using profiles in the 

input to leverage evolutionary information, including true (but not 

predicted) secondary structure and solvent accessibility information 

yields small but noticeable improvements. Finally, once the system is 

trained, predictions can be computed rapidly on a proteomic or 

protein-engineering scale. 

 

 The Cerebellar Model Articulation Controller (CMAC) neural 

network is an associative memory that is biologically inspired by the 

cerebellum, which is found in the brains of animals. The standard 

CMAC uses the least mean squares algorithm to train the weights. 

Recently, the recursive least squares algorithm was proposed as a 

superior algorithm for training the CMAC online as it can converge in 

one epoch, and does not require tuning of a learning rate. Recently 

also, the use of kernel methods in the CMAC was proposed to reduce 

memory usage and improve modeling capabilities. In this paper the 

Kernel Recursive Least Squares (KRLS) algorithm is applied to the 

CMAC. Due to the kernel method, the computational complexity of 
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the CMAC becomes dependant on the number of unique training data, 

which can be significantly less than the weights required by non-

kernel CMACs. Additionally, online sparsification techniques are 

applied to further improve computational speed. 

 

 A real-time network anomaly detection method that is not based on an 

a priori model is the time based inductive learning machine (TIM) of 

Teng et al. Their machine constructs a set of rules based upon usage 

patterns. The detection algorithm detects a deviation when the premise 

of a rule occurs but the conclusion does not follow. Applying machine 

learning approaches to network anomaly detection is a recent 

phenomenon. Examples include the use of statistical learning 

techniques to detect email worms and viruses by Martin et al., and an 

algorithm based on Kernel PCA proposed by Heafield. 
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III. THEORETICAL FRAMEWORK 

A. Monitoring Architecture 

Tentatively one monitoring architectures can be proposed, similar to the 

KOAD application in BRAC University surveillance system. A distributed 

approach where the algorithm is run locally for each and every ICU patients 

and after each timestep, each node makes a decision whether any anomaly 

has been detected or not and then communicates a binary result in Central 

Monitoring Unit (CMU). If anomaly has been detected, an alarm would ring 

to draw the attention of the operator, and the operator checks which patient 

condition is showing critical and send immediate medical team for 

assistance. The alarm room should be quite far from the ICU room as any 

alarm might as well make other patients‟ situation critical.  

A proposed architecture is given below -   
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The topology shown is a star topology. The CMU, central monitoring Unit, 

monitors all incoming traffic from ICU of individual patients. From P1 to 

P12 are ICU patients connected to the algorithm monitoring them 24/7. The 

idea is to monitor all patients simultaneously, through the CMU which is 

included in the hospital surveillance system. The patients online data is 

transmitted through a dedicated transmission line could be optical fiber or 

E1 connections. Optical fibers are expensive but delay is a factor for critical 

patients. KOAD itself saves a lot of hardware implementation and thus a 

high speed transmission fiber is the key to effective automation.  

 

The flowchart of monitoring architecture is shown below -    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig2:- Flowchart of monitoring architecture 
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B. Kernel Online Anomaly Detection (KOAD) 

Algorithms based on the so-called “kernel trick” involve using a kernel 

function that maps the data into a feature space of much higher dimension, 

with the expectation that points depicting similar behavior would cluster in 

the higher dimensional feature space. The idea is that a suitable kernel 

function, when applied to a pair of input vectors, may be interpreted as an 

inner product in the feature space. This subsequently allows inner products 

in the feature space (inner products of the feature vectors) to be computed 

without explicit knowledge of the feature vectors themselves, by simply 

evaluating the kernel function: 

k(xi, xj) = (φ(xi), φ(xj))            (1) 

where xi, xj denote the input vectors and φ represents the mapping onto the 

feature space. 

Consider a set of multivariate measurements {xt}
T

t=1. In an appropriately 

chosen feature space F with an associated mapping φ, the feature vectors 

corresponding to the points in {xt}
T

t=1 that depict normal behaviour, 

{φ(xt)}
T

t=1, are expected to cluster. Then, it should be possible to explain the 

region of normality (in the feature space) using a relatively small dictionary 

of approximately linearly independent elements {φ(˜xj)}mj =1. Here {˜xj}mj 

=1 represent those {xt}T t=1 that are entered into the dictionary. The size of 

the dictionary, m, is expected to be much less than T, thereby leading to 

computational and storage savings. Feature vector φ(xt) is said to be 

approximately linearly dependent on {φ(˜xj)}mj=1 with approximation 

threshold ν, if the projection error δt satisfies the equation of:-  

t = mina  m
 j=1 aj (xj) -  (xt) 

2            (2) 
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The kernel-based Online anomaly detection algorithm operates at each 

timesteps t on a measurement vector xt. It begins by evaluating the error δt 

in projecting the arriving xt onto the current dictionary (in the feature 

domain). Observe that (2) involves an L2 norm, which may be simplified 

exclusively in terms of the inner products of φ(˜xj) and φ(xt), and thus 

evaluated using the kernel function without explicit knowledge of the feature 

vectors themselves. This error measure δt is then compared with two 

thresholds ν1 and ν2, where ν1 < ν2. If δt < ν1, KOAD infers that xt is 

sufficiently linearly dependent on the dictionary, and represents normal 

behaviour. If δt > ν2, it concludes that xt is far away from the realm of 

normality and immediately raise 

a “Red1” alarm to immediately signal an anomaly. If ν1 < δt < ν2, KOAD 

infers that xt is sufficiently linearly independent from the dictionary to be 

considered an unusual event. It may indeed be an anomaly, or it may 

represent an expansion or migration of the space of normality itself. In this 

case, KOAD does the following: it raises an “Orange” alarm, keeps track of 

the contribution of the relevant input vector xt in explaining subsequent 

arrivals for l  timesteps, and then 

takes a firm decision on it. At timestep t + l, KOAD re-evaluates the error δ 

in projecting xt onto dictionary Dt+l corresponding to timestep 

t + l. Note that the dictionary may have changed between timesteps t and t + 

l, and the value of δ at this re-evaluation may consequently be different from 

the δt at timestep t. If the value of δ after the re-evaluation is found to be less 

than ν1, KOAD lowers the orange alarm and keeps the dictionary 

unchanged.  

If the value of δ is found instead to be greater than ν1 after the re-evaluation 

at timestep t + l, KOAD performs a secondary “usefulness” test to resolve 
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the orange alarm. The usefulness of xt is assessed by observing the kernel 

values of xt with {xi}t+_i=t+1. If a kernel value is high (greater than a 

threshold d), then φ(xt) is deemed close enough to φ(xi). If a significant 

number of the kernel values are high, then xt cannot be considered 

anomalous; normal traffic has just migrated into a new portion of the feature 

space, and xt should be entered into the dictionary. Contrarily if almost all 

kernel values are low, then xt may be concluded to be a reasonably isolated 

event, and should be heralded as an anomaly. We evaluate:   

 

[t+l
i=t+1  (k(xt , xi)>d)] > l                      (3) 

 

where I is the indicator function and   (0, 1) is a selected constant. In this 

manner, by employing this secondary “usefulness test”, KOAD is able to 

distinguish between an arrival that is an anomaly, from one that is a result of 

a change in the region of normality. If (3) evaluates true, then KOAD lowers 

the relevant orange alarm to green (no anomaly) and adds xt to the 

dictionary. If (3) evaluates false, it elevates the relevant orange alarm to a 

“Red2” alarm. 

KOAD also deletes obsolete elements from the dictionary as the region of 

normality expands or migrates, thereby maintaining a sparse and current 

dictionary. In addition, it incorporates exponential forgetting so that the 

impact of past observations is gradually reduced.  
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IV. EXPERIMENTS 

A. Hypothetical Data 

The concept of hypothesis came by, when we were to see whether KOAD 

works for ICU parameters. The search began from where we will be able to 

collect parameters. After considering all probable options, National Heart 

Foundation and Research Centre (NHFRC) seemed quite eligible as they 

have a research unit involved and therefore they were even apt to provide us 

with any help that we would require in our proposed research. The first step 

was to have an insight of what parameters does an NHFRC ICU measures 

and to know their normal and abnormal ranges. Dr. Fazle Elahi Chowdhury, 

a pioneer in implementing a research unit in Heart foundation, provided us 

with the parameters through our advisor Mr.Tarem Ahmed.  

The lab work began next. We tabled all the parameters accordingly in a 

spreadsheet and input data over hundred intervals hypothetically but based 

on the legitimate range each parameter can support. After we have a 

complete spreadsheet with parameters and data for 100 intervals, we input 

the hypothesis in the KOAD. As KOAD is written in Matlab, we were lucky 

to have a spreadsheet reading option and got a matrix of parameter values 

against time intervals. The algorithm was modified accordingly then to have 

some expected results in terms of graphs and alarms, incubated within the 

algorithm. The hypothetical table was designed as such, so that every single 

parameter has some anomaly compared to the normal range value, which is 

so not typical of the real life phenomenon; i.e., even a critical ICU patient 

will not show abnormality in all the available parameters. This was done on 

purpose, just to check that the algorithm works even in the utmost worst case 

scenario. The accomplishment of this hyper hypothesis, led us to pursue for 
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some real patients‟ data to feed in our algorithm and check the validity of 

our research.   

 

B. Results 

As mentioned above in the hypothetical data part, we were successful into 

getting results after running the unrealistic table of parameters. The results 

included complexity analysis and graphs of sensitivity and detection vs. 

false alarms.  

 Sensitivity graph shows how much lower or higher values the 

algorithm can detect. The detection is set with various thresholds of 

nu1 and nu2, which is again parameter dependent. When all the 

parameters have errors no particular thresholds can be set, because 

again it is unrealistic for all the parameters to be anomalous all at the 

same time. The only valid conclusion that all parameter anomalies 

give us is that the algorithm is even capable of detecting all at the 

same time. When one or few related parameters like mean blood 

pressure and heart rate or diastolic blood pressure and blood vessel 

pressure is combined, a sensible set of thresholds was figured out. 

This particular threshold differs from patient to patient, which again 

is responsible for various height, weight and age of the individual. 

Through the sensitivity check, we concluded that the first goal of 

automation is served. 

 The detection versus false alarm graph provided insight about how 

keenly the threshold should be set to be alarmed with the critical 

condition of the patient. Sensitivity tells us how much the algorithm 

is efficient and this makes us use it as an advantage. The scenario is 

such: an alarm is always ringing if situation goes beyond normal. 
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For any time period it is better if there rings an alarm for 100% of 

the given interval and only 5% being the false alarm rate. Thus the 

graph shows how much effectively an automated system alarms the 

medical team even if it is not needed, but at the same time, serving 

to intensive monitoring of the patient under observation. Also the 

lesser the time it takes to make 100% detection, the better, which is 

also served by our hypothetical data. However, when all parameters 

were shown to have anomaly, the curve shows inefficiency. The 

reason is quite reasonable. If thought in literal terms, the alarm 

would not stop ringing and medication is impossible. The detection 

versus false alarm graph for the unrealistic data made us realize that, 

all parameters cannot go wrong all at the same time or the patient 

would need to be declared medically dead. When one or related 

parameters are shown to have anomaly, the detection rate is high and 

false alarms are also in track with the thresholds set. Each parameter 

has a different threshold for a particular patient; i.e., the threshold 

for ph is way different from the threshold of base excess. 

 Complexity analysis is a key to ICU application. In terms of storage 

requirements, the maximum dimensions of the variables that KOAD 

stores are m × m, where m is the dictionary size. KOAD also retains 

the input vectors that raise orange alarms for l timesteps, and an 

additional L×m binary matrix. The computational complexity is O 

(m2) for every standard timestep, and O (m3) on the rare occasions 

when an element removal occurs. KOAD complexity is thus 

independent of time, making it naturally suited for ICU application, 

where anomaly occurrence doesn‟t have any time specification. Our 

experiments have shown that high sparsity levels are achieved in 
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practice, and the dictionary size does not grow indefinitely. Note that 

the data streams are fixed in the hypothesis and are fed in the 

algorithm at regular continuous intervals.     

 

C. Real Data Collection 

Successful implementation of the hypothetical data led us to go for some 

real patients‟ data which would reflect real issues. Data collection has never 

been an easy job for any research and this time it had not been an exception 

either. After being verified about the algorithm running in extreme 

conditions we asked for real data through our advisor Mr.Tarem Ahmed 

from Dr. Fazle Elahi Chowdhury.  

 

We first sent the hypothetical data table to the doctor, acknowledging him 

about our research success. He looked through all of it and emailed us with 

few of his ICU patients‟ data spreadsheet. The items were raw and far 

stretched from our laboratory data. We analyzed the data and figured out that 

a lot of formulae are associated closely with few parameters and this is the 

association that made the parameters related. To exemplify, cardiac index 

was related to cardiac output and body surface area which in turn is related 

to height and weight of the individual concerned. So the constraint we faced 

while tabulating the hypothesis about the related parameters is solved here. 

Also, along with real patient‟s data the doctor attached some normal extends 

of parameter range which has unusually been reported as normal. Also we 

are notified that, being a heart specialized hospital, National Heart 

Foundation and Research Centre has constraint of not measuring or dealing 

with any non-heart related parameters. But as far as our algorithm is 

concerned, we knew that if real Cardiac ICU parameters can work, any ICU 

parameter is going to run successfully in our proposed KOAD algorithm. 
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The first step of our report, which is the real data accumulation, concludes 

here.          

 

D. Application and Results 

The idea of applying the real data parameters to our algorithm was simply 

substituting the hypothetical ones. But it didn‟t turn out to be that simple. 

Every individual patient showed a familiar trend of anomaly. For example, 

the one whose data showed considerable fluctuations in partial pressure of 

CO2 also showed variations in partial pressure of O2 as well. Another‟s 

showed very random values on the concentration of magnesium ions. It was 

daunting to us about its not following any range, but, later as we figured out 

its value is assessed seldom and can take any value.  

 

After all the data have been fed into the spreadsheet and the algorithm ran, a 

completely different structure was observed from the hypothetical data. The 

sensitivity curve shows pretty much the same results but the detection versus 

false alarm curve shows significant change. With the hypothetical data, even 

if only few related parameters were changed, the rate of alarms in the 

hypothetical data was less than the real ones. In other words, spikes showed 

off more in the real data than in the hypothetical ones. The reason was, we 

hypothesized anomalies to occur at a given time only once in any given 

interval. Whereas, in real times, anomalies occurred quite often for a critical 

patient - the reason the patient is admitted in ICU. We checked the 

thresholds and figured out no matter how much we try to concise the nu1 

and nu2 range, it will alarm the team as many times as needed, or else the 

algorithm gets inefficient. For example, if thresholds are set with a higher 
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value, medical unit will not be alarmed even when the patient has reached 

critical point. 

 

The conclusion that we have drawn from the real data implementation is 

that, the version of KOAD is perfectly capable of taking ICU data and 

provide significant outcome. It can give different outcomes with different 

patients, as it learns automatically the condition of the newly admitted 

patient and allows medical team to set thresholds accordingly.      

 

Fig3: Abnormal output  

 

 

The above figure shows the output of all-anomaly parameters, which is 

considered as unrealistic. As a figure shows, it is impossible to set a 

threshold as there is no pattern. The purpose of this was to check to what 

extent the algorithm can detect changes and anomalies effectively. This is 
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the hypothetical data, designed to analyse the complexity and detection 

rate of the algorithm. 
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Fig4: Normal Patient (SVRI) 

 

The above figure shows Systemic vascular Resistance index anomaly only. 

As seen in the figure it is easy to detect and set thresholds. Most of the 

points lie below 0.25 of deltastore. Therefore a medical expert will set the 

threshold greater than 0.25 for an anomaly to be alarmed.   
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 Fig5: Normal Patient (ETCO2)  

 

The above figure shows End tidal Carbon-dioxide tension. Again it‟s 

easy to set thresholds. Clearly most of the values are below 0.2 and thus a 

medical expert would set the threshold as 0.2 and above for anomaly to 

be detected and ring the alarm.  
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V. CONCLUSION AND FUTURE WORKS 

We have described a kernel-based online anomaly detection algorithm that is 

able to detect anomalous events in real time. We have demonstrated that the 

proposed algorithm achieves similar detection performance to the most 

effective block-based approaches, but has a faster time-to-detection and 

lower computational complexity. Hypothetical analyses have shown the 

algorithm to work almost perfectly. But implementation of such a system in 

real time requires planning. The algorithm runs on hardwares that must be 

compatible to run such files. As mentioned in the section of monitoring 

architecture, the medical service location must have a team to be able to 

implement such technology. A topology, servers, transmission mechanism, 

monitoring experts, system analysts, and IT support are additional keys and 

costs to run this system.  

Our work is restricted only to the algorithm – to see whether KOAD is able 

to analyze medical parameters. All the modification has been done to make 

it available for all future works related to enhance medical services. May it 

be network enhancement or overall medical surveillance, further 

improvement is possible from this point of work where finally the system 

(servers, database, workstations, and application software) will run smoothly 

and the goal of automating critical care units will be accomplished. Some 

components of success would be high availability of system architecture, 

medical device integration, usability, clinical surveillance, global data 

repository, deployment scope and 24/7 turnkey support. Architectural future 

work might include:- 

 Interpretation technique for patho-physiological data collected at the 

ICU to support parameter specification.  
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 Interfaces and representations for effectively integrating and 

interpreting knowledge from multiple sources. 

 Techniques to organize different levels of generality. 
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