
A SYSTEM-OF-SYSTEMS FLEXIBILITY FRAMEWORK:
A METHOD FOR EVALUATING DESIGNS THAT ARE

SUBJECTED TO DISRUPTIONS

A Thesis
Presented to

The Academic Faculty

by

David S Warshawsky

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
December 2015

Copyright © 2015 by David S Warshawsky

A SYSTEM-OF-SYSTEMS FLEXIBILITY FRAMEWORK:
A METHOD FOR EVALUATING DESIGNS THAT ARE

SUBJECTED TO DISRUPTIONS

Approved by:

Professor Dimitri N Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Professor Daniel Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Daniel Cooksey
School of Aerospace Engineering
Georgia Institute of Technology

Professor John Salmon
School of Aerospace Engineering
Georgia Institute of Technology

Professor Graeme Kennedy
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: August 20, 2015

To Adina, for always believing in me

iii

ACKNOWLEDGEMENTS

First I want to thank my advisor Dr. Dimitri Mavris for giving me the chance to

excel in a PHD program. I originally had my heart set on studying control systems

but he convinced me to leave my comfort zone and explore the wide world of systems

engineering. I am extremely grateful for his tireless effort in running the Aerospace

Systems Design Lab and obtaining enough funding so that all of us students could

work on real world research projects and gain valuable engineering experience.

Next I want to thank Kelly Griendling for singling me out from the throng of first

years and introducing me to the new and growing field of systems of systems. Through

her direction, I found a topic that was both interesting to me and worth writing a

dissertation on. I am especially grateful for the friendly and supportive environment

that she created in the ARCHITECT work group that gave me confidence and a

feeling of belonging. I also want to thank Daniel Cooksey for always being there to

listen to my crazy ideas and to keep me on track to graduate. If it weren’t for his

direction, I would still be sitting at my desk with my head in the clouds dreaming of

cool new methods to try out, and this dissertation would never have been written.

I also want to thank the rest of my thesis committee, Dr. Kennedy, Dr. Salmon,

and Dr. Schrage for taking interest in my work and giving me valuable feedback along

the way.

Nothing was more valuable to me in surviving this process than the close friends I

made along the way. I want to thank Aharon for befriending me as soon as I stepped

foot on campus, and Jamie for all the Friday morning games of bowling where I vented

my frustration. I want to thank Yaakov for always giving a sympathetic ear, and Eli

for encouraging me to take breaks every once and a while. Lastly, I want to thank

iv

the Broyde family for treating me like a son and always making sure I had a home to

go to when I needed it most.

Most importantly, I cannot express my gratitude enough to my wife, Adina. She

stuck with me through all the tough times and always saw the best in me, even when

I was stressed or too tired to care. Thank you for tolerating the late nights and lame

dinners. I owe you more than I can ever repay.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xiv

LIST OF FIGURES . xxi

NOMENCLATURE . xxvi

SUMMARY .xxvii

I BACKGROUND AND MOTIVATION 1

1.1 Hardware Open Systems Technologies 1

1.2 Internet of Things . 3

1.3 Level of Repair Analysis . 5

1.3.1 Define terminology . 6

1.3.2 LoRA in practice . 7

1.3.3 Mathematical LoRA models 13

1.4 Systems of Systems . 22

1.5 SoS design . 26

1.6 Flexibility measurement . 38

1.6.1 Definitions of flexibility . 38

vi

1.6.2 Flexible manufacturing systems 44

1.6.3 Space system flexibility . 49

1.6.4 Network flexiblity . 52

1.6.5 SoS Flexibility Framework 57

1.7 Modeling and simulation . 65

1.8 Discrete Event Simulations . 71

1.9 Heuristic evaluation . 73

1.9.1 8-puzzle . 75

1.9.2 Traveling salesman problem (TSP) 77

1.10 Network modeling . 80

1.10.1 A Network Theory-based Approach for Modeling a System-of-

Systems . 80

1.10.2 A Modeling Process to Understand Complex Architectures . 81

1.10.3 ARC-VM: An Architecture Real Options Complexity-Based

Valuation Methodology for Military Systems-of-Systems Ac-

quisitions . 82

1.10.4 The Information Age Combat Model 83

1.10.5 Department of Defense Architecture Framework 83

1.10.6 Dynamic network analysis 84

1.10.7 Section summary . 87

vii

1.11 Design space exploration . 89

1.12 Evolutionary algorithms . 98

1.13 Flexibility based SoS design methodology 104

II FLEET WIDE LEVEL OF REPAIR ANALYSIS DISCRETE EVENT

SIMULATION (FLORA DES) . 108

2.1 Model Overview . 108

2.2 Description of individual functions 117

2.2.1 Repair . 117

2.2.2 Replace . 119

2.2.3 Ship . 124

2.2.4 Failure . 129

2.2.5 Assign depot . 131

2.2.6 Obsolete . 133

2.2.7 Upgrade . 134

2.2.8 Depot failure . 138

2.2.9 Operational shift . 140

2.3 Choice of variables . 141

2.4 Simulated responses . 147

2.4.1 Support/Maintenance Cost 147

viii

2.4.2 Availability . 147

2.4.3 Growth flexibility . 148

2.4.4 Volume flexibility . 150

2.4.5 Divisibility . 152

2.5 Stochasticity of the responses . 154

2.6 Model validation . 155

III FLEET WIDE LEVEL OF REPAIR ANALYSIS NETWORK MODEL

(FLORA NET) . 158

3.1 Task to task network . 160

3.2 Task to agent network . 166

3.3 Agent to agent network . 167

3.4 Chapter summary . 177

IV SIMULATION RESULTS . 179

4.1 Model setup . 179

4.1.1 Scenario definition . 179

4.1.2 Design variable ranges . 181

4.1.3 Data collection and visualization 182

4.2 Correlation between flexibility measures 196

4.3 Correlation between network properties 200

ix

4.4 Relationship between flexibility and performance 208

4.4.1 Flexibility vs. Cost . 209

4.4.2 Flexibility vs Availability . 212

4.4.3 Summary of results . 216

4.5 Relationship between flexibility and network properties 219

4.5.1 Correlations . 220

4.5.2 Principal components . 225

4.5.3 Simulation risk . 227

4.5.4 Summary of experiment 2 . 231

4.6 Comparison of design space down selection methods 231

V APPLICATION OF THE METHODOLOGY TO A DESIGN CASE

STUDY . 240

5.1 Problem definition . 241

5.1.1 Objective definition . 241

5.1.2 Baseline definition . 241

5.1.3 Design variable determination 242

5.2 Design evaluation . 243

5.3 Design space down selection . 244

5.3.1 Full factorial design space . 245

x

5.3.2 Baseline optimization . 245

5.3.3 Optimization with flexibility 248

5.3.4 Flexibility based optimization with heuristics 250

5.3.5 Summary of observations . 255

VI CONCLUSIONS . 262

6.1 Summary of findings . 262

6.2 Summary of contributions . 265

6.3 Future work . 266

APPENDIX A — OVERVIEW OF GRAPH THEORY 269

APPENDIX B — NSGA II . 281

APPENDIX C — PATH FINDING DFS 284

REFERENCES . 287

xi

LIST OF TABLES

2 Contents of the THING global variable data structure 109

4 Contents of the PARTS global variable data structure 110

5 Contents of the PLATFORMS global variable data structure 111

6 Contents of the PLACE global variable data structure 111

8 Repair function summary . 118

9 Replace function summary . 119

10 Ship function summary . 124

11 Packaging costs . 128

12 Air cargo shipping parameters . 129

13 Failure function summary . 129

14 Assign depot function summary . 131

15 Obsolete function summary . 133

16 Component upgrade model . 135

17 Block buy function summary . 136

18 Field mod function summary . 137

19 Depot failure function summary . 138

20 Operational shift function summary 140

21 Table of edge logic . 169

xii

22 Table of Pc values . 176

23 Simulated force structure . 179

24 Platform architectures . 180

25 Maintenance site locations relative to the warehouse 180

26 Labor rates . 180

27 List of design variables and ranges . 181

29 Example of one of the best performing designs: system architecture . 184

30 Example of one of the best performing designs: simulated performance 185

31 Example of one of the worst performing designs: system architecture 186

32 Example of one of the worst performing designs: simulated performance186

33 Defaulted values for component MTBF 187

34 Defaulted values for location MTTR 188

35 The effect of increasing the number of disruptions on the correlation

to an undisrupted system . 192

36 Correlation matrix for flexibility measures when only maintenance re-

quirements are varied . 200

37 First three eigenvectors of the covariance matrix of network properties 208

38 Correlation between flexibility and network properties for the 5000

random designs . 220

xiii

39 Correlation between flexibility and network properties when only main-

tenance strategy is varied . 222

40 Correlation matrix relating principal components of FLoRA Net to

flexibility measures . 225

41 Eigenvectors of the covariance matrix when only maintenance strategy

is varied . 225

42 Correlation matrix relating principal components of FLoRA Net to

flexibility measures when only maintenance strategy is varied 226

43 Difference between designs found by optimizing for flexibility and the

baseline optimization . 250

44 Difference between designs found by optimizing with heuristics and

optimizing for flexibility . 254

xiv

LIST OF FIGURES

1 Purpose of LoRA during different parts of the life cycle of the system [3] 9

2 Purpose of LoRA during different parts of the life cycle of the system

[122] . 9

3 Example of non-economic LoRA logic flow diagram [87] 10

4 Example of non-economic LoRA questions [87] 11

5 Overview of the Level of Repair Analysis methodology 13

6 An example network flow problem ([22]) 18

7 Waterfall model for software development [131] 27

8 Evan’s spiral model for ship design [59] 28

9 Boehm’s spiral model for software development [28] 29

10 Systems engineering vee model [72] 31

11 DoD trapeze model [119] . 34

12 Dahmann’s Wave model [47] . 34

13 Delaurentis’ “Proto-method” for SoS problems [51] 35

14 ARCHITECT Vee with Enablers Mapped to Methodology Steps [77] 36

15 Initial skeleton of the proposed SoS design methodology 39

16 Overall logic flow of FLoRA DES . 73

17 Initial state and end state of the classic 8-puzzle 76

xv

18 Design-oriented network analysis framework 80

19 DoDAF overview [116] . 85

20 Design-oriented network analysis framework [38] 86

21 Example of task decomposition for RAAM evaluation 91

22 Summary of design space exploration methods 97

23 Methodology for designing flexible systems of systems 104

24 Overall logic flow of FLoRA DES . 113

25 Logic flow diagram for the replace function 123

26 Truth table for the replace function when multiple components on a

platform need replacement . 123

27 Logic flow diagram for the ship function 126

28 Logic flow diagram for the failure function 131

29 Logic flow diagram for the upgrade function 139

30 A depiction of the elements that make up the example problem . . . 159

31 The task to task relationship network for the example problem 161

32 The agent to task relationship network for the example problem . . . 167

33 The baseline agent to agent relationship network for the example problem168

34 Example execution of the path finding DFS 172

35 Simulation runtime increases as more platforms are considered 183

xvi

36 Histograms comparing performance and cost with disruptions and with-

out . 189

37 Histograms showing the increase in cost due to disruptions 190

38 Histograms showing the decrease in availability due to disruptions . . 191

39 Relationships between availability and cost with disruptions and without193

40 The effect of increasing the number of disruptions on the correlation

to an undisrupted system . 194

41 Cost vs. availability with disruptions and without, color coded to

identify good solutions . 195

42 Relationship between growth flexibility and divisibility 196

43 Relationship between volume flexibility and divisibility 197

44 Relationship between growth flexibility and divisibility 198

45 Matrix of plots comparing all flexibility measures when only mainte-

nance requirements are varied . 199

46 Relationship between functional cyclicity and graph energy 201

47 Relationship between max flow and graph energy 202

48 Three plots describing the relationship between responses for the N2

and N3 networks . 203

49 Relationship between maximum degree in the N1 and N4 networks . . 204

50 Relationship between path connectivity in the N2 and N3 networks . 205

xvii

51 Matrix of scatter plots describing the relationship between the principal

components . 207

52 Relationship between divisibility and cost with increasing levels of dis-

ruptions . 210

53 Relationship between growth flexibility and cost with increasing levels

of disruptions . 211

54 Relationship between volume flexibility and cost with increasing levels

of disruptions . 213

55 Relationship between divisibility and availability with increasing levels

of disruptions . 214

56 Relationship between growth flexibility and availability with increasing

levels of disruptions . 215

57 Relationship between volume flexibility and availability with increasing

levels of disruptions . 216

58 Matrix of plots showing cost and performance vs. flexibility with cor-

relation coefficients . 217

59 Matrix of plots showing cost and performance vs. flexibility with good-

ness of fit statistics . 218

60 Scatter plots of evaluated designs comparing volume flexibility and the

properties of the P network . 221

61 Scatter plots comparing volume and growth flexibility with the func-

tional cyclicity and algebraic connectivity of the P network 223

xviii

62 Scatter plots comparing volume and growth flexibility with the maxi-

mum nodal degree in the N1 network 224

63 From left to right: A 2D joint probability distribution with a vertical

line depicting a fixed x value. The marginal distribution on y with a

line depicting a threshold for acceptable values. The CDF of y where

the vertical line is the threshold on y and the horizontal line represents

an acceptable level of risk . 229

64 Blue: Response space for all solutions. Green: only the low risk solu-

tions. Left: Comparison of flexibility response spaces. Right: Perfor-

mance vs cost response spaces . 230

65 Results from the baseline optimization. Highlighted points represent

dominant solutions. 233

66 Results from optimizing with flexibility as an objective. Highlighted

points represent dominant solutions in the cost vs availability solution

space . 235

67 Comparing Pareto frontiers from three design space exploration methods236

68 Results from optimizing with flexibility as an objective and simulation

risk as a constraint . 238

69 The complete design space with non-dominated points highlighted . . 246

70 Non-dominated points with respect to all five metrics. Highlighted

points are non-dominated with respect to cost and availability 247

71 Designs evaluated by the baseline optimization with non-dominated

points highlighted . 248

xix

72 Convergence of the baseline optimization 249

73 Flexibility scatter plots of designs evaluated by the flexibility based

optimization. Non-dominated points are in purple. Down selected

points are highlighted. 251

74 Cost and availability of designs evaluated by the flexibility based opti-

mization. Chosen designs are circled 252

75 Convergence of the flexibility based optimization 253

76 Heuristic measure scatter plots of designs evaluated by the flexibility

based optimization with heuristics. Non-dominated points are in red.

Down selected points are highlighted. 255

77 Flexibility scatter plots of designs evaluated by the flexibility based

optimization with heuristics . 256

78 Cost and availability of designs evaluated by the flexibility based opti-

mization with heuristics. Chosen designs are circled. 257

79 Convergence of the flexibility based optimization with heuristics . . . 258

80 Cost and availabiltiy of designs chosen by each down selection method 259

81 Flexibility of designs chosen by each down selection method 260

82 Comparison of convergence rates for each of the optimization methods 261

83 Example graphs: graph, digraph, weighted graph 270

84 Example adjacency matrices: graph, digraph, weighted graph 271

85 Example graph with average degree 1 272

xx

86 Examples of paths and cycles: (from left to right) A path from E to

A, The shortest path from E to A, nodes B,C, and E are a cycle . . . 274

87 Example graph with connectivity . 276

88 Cuts through a network flow from node A to node E 277

89 Example graph with adjacency, degree and Laplacian matrices 279

xxi

Nomenclature

General Acronyms

SoS System of systems

O&S Operations and support

HOST Hardware Open Systems Technologies

COTS Commercial Off The Shelf

FACE Future Airborne Capability Environment

LoRA Level of Repair Analysis

ELoRA Economic Level of Repair Analysis

FLoRA Fleet-wide Level of Repair Analysis

M&S Modeling and Simulations

DES Discrete Event Simulation

EA Evolutionary Algorithm

GA Genetic Algorithm

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

COMPASS Computerized Optimization Model for Predicting and An-

alyzing Support Structures

SRU shop replacement unit

LRU line replacement unit

ISR Intelligence Surveillance and Reconnaissance

SEAD Suppression of Enemy Air Defenses

C2 Command and Control

ARCHITECTArchitecture Based Technology Evaluation and Capability

Tradeoff

RAAM Rapid Architecture Alternative Modeling

xxii

ARCNET Architecture Resource-Based Collaborative Network Eval-

uation Tool

TSP Traveling Salesman Problem

DODAF Department of Defense Architecture Framework

DOE Design of Experiments

JPDF Joint Probability Distribution Function

CDF Cumulative Distribution Function

PCA Principal Components Analysis

LoRA models

Ci the set of components at indenture level i

Γc the set of subcomponents of item c

g a set of components that share a fixed cost

E the set of echelon levels

De the set of possible decisions available at echelon level e

vcc,e,d the variable cost associated with component c at echelon e

to perform action d

fcg,e,d the fixed cost associated with component set G at echelon

e to perform action d

γc the total annual failures of component c

Xc,e,d 1 if action d is performed for component c at echelon e

Yg,e,d : 1 if for any component in G, action d is performed at

echelon e

I the set of indenture levels

J the set of components

R the set of available repair options

Γ a set hierarchical relationships between component set X

xxiii

m(r, i) 1 if repair option r is selected at indenture level i

n(r, x) 1 if repair option r is selected for component x

cv(r, x) variable cost for using repair option r for component x

cf (r, i) fixed cost for enabling repair option r at indenture level i

Maintenance Logistics Model

AMC&D Advanced Mission Computer and Displays

JAM Joint Aviation Model

DH Display Head

MP Mission processor

P Platform

C Component

D Depot

I Intermediate

W Warehouse

O Operator

FH/YR Flight hours per year

CND Cannot Duplicate

T Time

A Overall system availability

an long term availability of platform n

ak availability of component n at time t

Ak overall availability after event k

∆tk duration of event k

Network model

AC Algebraic Connectivity

xxiv

FV Fiedler Vector

FC Functional Cyclicity

PFE Perron Frobenius Eigenvector

CNE Coefficient of Network Effects

GE Graph Energy

CPL Characteristic Path Length

PCANS Precedence Commitment Assignment Network and Skills

Li The load on edge i

P A set of paths that accomplish the same capability

pi The number of paths that use edge i

poi the number of paths in P that don’t use edge i

Fv the probability that the demand exceeds the maximum ca-

pacity

T the set of tasks

G the set of agents

P the network relating tasks to one another

Pij an edge weight in the P matrix

A the network relating tasks to agents

Atg an edge weight in the A matrix

Ad
ti the degree of a task in the A matrix

Ad
gi the degree of an agent in the A matrix

N the network relating agents to one another

Nij an edge weight in the N matrix

MF maximum flow through the P network

Deg maximum degree in the N1 network

Npath number of paths in the N2 network

Cpath most critical path in the N2 network

xxv

Pconn2 path connectivity of the N2 network

Pconn3 path connectivity of the N3 network

Optimization

NSGAII Non-dominated Sorting Genetic Algorithm II

NSGM NSGAII Program in Matlab

C Cost

A Availability

F Flexibility

F1 Divisibility

F2 Growth flexibility

F3 Volume flexibility

xxvi

SUMMARY

As systems become more interconnected due to advancements in information tech-

nology and embedded computing, the set of existing systems that a new system must

interact with becomes increasingly large. These systems of systems (SoS) add addi-

tional layers of complexity to the traditional systems engineering design methodologies

by exhibiting emergent, evolutionary and adaptive behavior. At the same time the

life span of the SoS far exceeds the life span of its component systems and likely the

operational environment as well. As such it is very difficult to accurately predict how

the SoS will perform and what it will look like in the distant future. However, it is

imperative that the engineers not ignore this fact when planning for the maintenance

of systems within systems of systems. As such the primary goal of this dissertation

will be to develop a method for SoS maintenance planning.

Without the ability to predict the changes that the SoS will be subjected to, it

is not possible to accurately simulate its performance in a changing environment.

Instead, it is hypothesized that by examining the system’s inherent resistance to un-

certainty, one can increase the performance in the presence of changes and disruptions.

The literature suggests that flexibility, defined as the ability to adapt to changes, is

a good attribute to measure. Therefore, the first contribution is the development of

a framework for measuring the flexibility of an SoS and applying it to an example

multi-platform maintenance planning problem.

Three categories of flexibility were defined that apply to systems of systems. First,

volume flexibility refers to the amount of excess resources that the system possesses.

It can be assumed that excess resources will be used to mitigate the negative effects

xxvii

of a change in the environment. Second, divisibility is a measure of the modularity of

choices in the system. The more options for performing the intended capability that

are available the less likely that a disruptive event will completely disable the system.

Finally, growth flexibility is a measure of how easy it is to implement a change to

the system. When the system is no longer able to perform the capability due to any

number of potential reasons, growth flexibility describes how much it will cost and

how long it will take to get the system running again.

In order to test the hypothesis that flexible systems of systems perform better in

a changing environment, an example problem was explored. Level of Repair Analysis

(LoRA) is the process of planning for the replacement and repair of components

in a system. Generally, this is a simple logistics optimization problem and would

not be considered an SoS. However, there is a push to increase the commonality of

components across multiple systems. The resulting interactions between overlapping

supply chains increases the complexity of the problem and begins to resemble a simple

SoS. When disruptive events are applied to the model, the desired emergent and

evolutionary behaviors can be observed.

A discrete event simulation was developed and used to generate a set of randomly

evaluated designs for a multi-platform maintenance scenario. For each of these de-

signs the performance and cost was measured for a disruptive environment and an

ideal one. Additionally, three measures of flexibility were evaluated corresponding to

the three categories described above. It was shown that the three measures of flexi-

bility correlate stronger with the performance and cost of the system in a disruptive

environment than in an undisrupted scenario.

A second issue addressed was that current SoS simulation methods tend to be very

computationally expensive. For a full scale SoS the resulting design space exploration

effort could very well take several human life times to complete. Even for very simple

problems the cost is significant, therefore an attempt was made to develop heuristics

xxviii

that could be used to rapidly down select the design space before the expensive

simulation is employed. To do this, it was assumed that all systems of systems can

be described by the interaction between multiple entities or tasks. As such, it was

hypothesized that a network model could always be used to describe an SoS abstractly.

The advantages of network models is that relevant properties can be rapidly evaluated

using simple graph theory procedures.

To test this hypothesis a network model was developed describing the interrela-

tionships between agents and tasks in the modified LoRA problem. Fourteen network

properties were identified using graph theory as having the potential to relate to the

flexibility of the system. It was found that when the design variables primarily drive

changes in the network topology the graph properties correlate fairly well with the

flexibility measures. However when this is not the case a method was proposed for

identifying the probability that a given solution will exhibit favorable performance.

If that probability is high enough then it is worth spending computational resources

to get an accurate assessment, otherwise it should be discarded. This method was

shown to increase the average flexibility and decrease the average cost of the resulting

set of down selected solutions.

Finally, it was proposed that an evolutionary algorithm would be a good method

for exploring the design space efficiently. A publicly available multi-criteria genetic

algorithm, NSGAII, was used to obtain the frontier of non-dominated solutions. It

was found that when optimizing for flexibility the down selected subset of solutions

is very close to the set of optimal solutions in the entire design space. Addition-

ally, when heuristics were used comparable solutions were found in a fraction of the

time. It should be noted that since this was a multi-attribute design problem, it

is possible than any of the down selected solutions could be considered the “best”

design. However, it can be definitively stated that the heuristics greatly improved

the computational efficiency of the method.

xxix

CHAPTER I

BACKGROUND AND MOTIVATION

1.1 Hardware Open Systems Technologies

The Navy Hardware Open Technology Standard (HOST) was developed to increase

the portability of components within Navy computer systems. The problem it is try-

ing to solve is that the hardware standards that systems engineers must conform to

when designing a new platform are flexible enough that multiple vendors can develop

products that comply with the standards, meet the requirements, but are not com-

patible with one another. This means that when the platform design is finalized, one

component must be chosen, and should something happen to that manufacturer the

Navy is out of luck. Therefore, HOST is intended to reduce the variability in exist-

ing standards, so multiple different vendors can be available for a given component

type.[6] Similarly, the NavAir Future Airborne Capability Environment (FACE) ini-

tiative is focused on developing modular and scalable software that maximizes reuse

and interoperability across many platforms employed by the Navy. [106] In combi-

nation their future vision includes the design of a mission computer that uses more

generic COTS (commercial off the shelf) components to reduce production cost, in-

crease the ease of future upgrades, and increase the applicability to all platforms in

the fleet. The desired result is an architecture for airborne computing that reduces

life cycle costs and development cycle time.

Currently, when designing a new aircraft, the manufacturer is also responsible

for designing the mission computer and providing replacements for the lifetime of the

platform. The result is that each platform has a unique mission computer, costing

hundreds of thousands of dollars with unique circuit cards costing tens of thousands

1

of dollars each to replace. Additionally the “core law” [43] requires that components

that are mission critical must be maintained by a service organic repair depot. Com-

bined with the cost of the parts, this means that repairs are generally done at the

subcomponent level on the circuit cards themselves (integrated circuits, capacitors,

etc...). This type of maintenance strategy tends to be costly, and highly skill intensive,

and requires a large supply of unique spare parts.

From the perspective of operational and support (O&S) costs, the goal is to make

the maintenance strategy more forgiving of the disposal of circuit cards since by using

more COTS cards, purchasing new ones is cheaper and easier. Additionally because

of the increase in commonality, the total number of unique spare parts that must be

stored is also reduced, as well as the skill required to repair the mission computer as

a whole. This could mean increasing the amount of repairs that can be done by the

platform operator before it must be sent to the depot. Alternatively, HOST suggests

that maintenance be performed by the mission computer manufacturers themselves,

instead of a Navy operated repair depot, thereby further reducing O&S costs. An-

other advantage of commonality is that as upgrades become necessary, a different

manufacturer can provide a better product. Then, the old boxes need not be dis-

carded entirely due to the high level of commonality across the fleet, and the supply

of spare parts need not be drastically overturned, because some other platform that

did not need an upgrade yet can still use them. However, in order to realize these

benefits, some amount of planning must be done to design a maintenance policy for

the new mission computer. The reason for considering multiple platforms is that it

allows for high level interactions between entities, such as resource sharing. This is

expected to demonstrate some amount of cost savings by allowing for commonalities

across platforms. For example, if two platforms use the same display head, then the

depot will not need to carry as many spares. In conclusion, the paradigm shift calling

for increased commonality across different platforms will complicate the process of

2

maintenance planning.

1.2 Internet of Things

Some of the challenges that arise from increasing the modularity of military systems

can be easily illustrated with a more generic scenario relating to increased interactions

between every day common items. A common theme in science fiction is a future

describing data at one’s fingertips and computers managing most of the mundane

tasks of our everyday lives. That reality is much closer than ever before. Because of

improvements in cloud data storage, wireless technology and embedded computing,

many common household items are becoming more and more interconnected. The

ability to know everything about anything in real time unlocks great potential in

business, engineering and even day to day life.

The term “Internet of things” was coined around 20 years ago by Kevin Ashton

to describe how RFID technology combined with the internet could be used in supply

chain management to better track products.[12] Now “Internet of things” is used

to describe everything related to overcoming the gap between physical objects and

their digital representations. Anything from cars warning each other of traffic, to

refrigerators tracking the expiration date on perishable items would be considered

part of the Internet of things. [162]

The consequences of the desire to connect everything, is that every product now

requires an embedded processor of some sort. This is not necessarily a huge problem

due to the falling cost of embedded computing, and constant improvements in soft-

ware. However, the issue is that in order for such a product to be successful it must

have an easy to use interface, which will necessarily grow more complicated as things

become more connected. Then the problem becomes, that the commonly used inter-

faces that people are used to have saturated the market but are closely guarded by

large companies such as Microsoft, Apple, and Google. In the meantime though those

3

interfaces must still integrate with systems developed by other companies, which puts

increased burden on those smaller developers. [57]

For example, it has been many years since car companies started introducing

digital dashboard displays into automobiles. These dashboards are capable of nav-

igation, entertainment, and connection to mobile phones to make hands-free calls.

However, as mobile devices begin to perform these same functions, people begin to

use their smart phone instead, since that is the interface they are more comfortable

with. In response Apple is set to release a product called Carplay which is an auto-

motive dashboard that interfaces seamlessly with the phone in a hands-free way.[10]

Additionally the Open Automotive Alliance is a group of information technology and

automotive companies (including Google) devoted to developing similar products, in-

cluding a dashboard interface for Android devices.[5] The result is that it no longer

makes sense for the car manufacturer to develop its own connected dashboard, rather

it just needs to give the requirements to the mobile device manufacturers and they

will develop the computer.

There is an issue here with the difference in time scales of the production and

upgrades cycles between the computers and the appliances themselves. It is quite

common to replace one’s mobile devices every 2-3 years as newer and more capa-

ble products are released. However, the same cannot be said about cars and other

appliances where the time scale can be on the order of ten to twenty years. It is

then logical to consider, that in the future, people will get the connected elements

of their appliances serviced and upgraded more frequently by a separate service con-

tracted by the computer manufacturers. The ramifications of this potential paradigm

shift also effect consumers that are integrally more involved in the design process.

Consider how this effects a consumer that not only is paying for the product, but is

also funding the research and development, such as the U.S. Navy, and is required

to propose a maintenance policy for the new system up front. A maintenance policy

4

that must account for the fact that the new system is modular in nature and will be

serviced by multiple contractors. This is the primary problem with the HOST design

paradigm that this thesis will attempt to address. How does the system designer plan

for the maintenance of a system that has many independently designed parts whose

maintenance requirements and upgrade cycles are potentially in conflict?

1.3 Level of Repair Analysis

The first step in answering the primary research question of this thesis is to benchmark

how maintenance planning is currently done. Whenever the DoD commissions a

new system, it must also design a maintenance strategy to go along with it. The

maintenance strategy is responsible for “delivering economical and reliable mission

ready systems, sub-systems, and components to effectively and efficiently support the

war-fighter”[113]. The way it is done now is a process called Level of Repair Analysis

(LoRA). LoRA is the methodology for planning how and where each component of a

system will be maintained at minimum cost. It is primarily based around a heuristic

selection process, relying on subject matter experts (SMEs) to answer questions to

evaluate alternatives. Once a set of feasible alternatives is obtained an optimizer is

frequently applied to the economic criteria to finalize the maintenance architecture.

This two step process can be broken down as follows.

1. Use noneconomic decision criteria to make the initial support decisions.

2. Use an economic model to optimize for the most cost effective alternative

As with the Internet of things, LoRA becomes interesting when obsolescence is

introduced to the problem. The more CoTS components are used, the harder it is to

choose components that will be available throughout the life span of the system, and

the need to plan for upgrades becomes more important. When the system attempts

to replace an obsolete component, it attempts to match the fit, form and function of

5

the old component. However, the more these attributes vary the harder it is likely to

be to retain the maintenance strategy used by the original platform. This change in

requirements will require the system to evolve. Advanced knowledge of these changes

could potentially impact the original design.

1.3.1 Define terminology

[139]

• Echelon

The echelons are the maintenance levels. Generally speaking level 1 refers to the

operator and level 3 is a depot. Any number of echelons can be used, however

realistically there are usually not more than four.

• Operator

The echelon where the end items are actually used to perform tasks. As such

this is the only location where failures occur. Operators are usually capable of

performing limited maintenance functions though it usually costs a lot to enable

this capability.

• Depot

Depot maintenance is defined in U.S. code title 10 section 2460 [1] as “material

maintenance or repair requiring the overhaul, upgrading, or rebuilding of parts,

assemblies, or sub-assemblies, and the testing and reclamation of equipment as

necessary, regardless of the source of funds for the maintenance or repair or the

location at which the maintenance or repair is performed”. For example, the

Norfolk naval shipyard is a US Navy maintenance depot. Alternatively, some

components also get maintained at the original equipment manufacturer. In

this case that would be considered the depot.

6

• Intermediate level of repair

AFI 21-101 defines intermediate level maintenance as the “second level of main-

tenance performed off-equipment (on removed component parts or equipment)

at backshop level. Primarily testing and repair or replacement of compo-

nent parts. This level also includes Centralized Intermediate Repair Facilities

(CIRFs).” [154] Intermediate levels tend to serve multiple operators in close

proximity to one another, and are more capable of performing maintenance

than the operators. They are frequently used to perform testing on dysfunc-

tional components that have already been removed from the platform at the

operator. At which point repairs can sometimes be done at the I-level, but

other times it must be sent along to a full depot.

• Indenture

The levels of indenture refer to the hierarchy of components in the system. Level

one is the platform also known as the end item. Level two is also sometimes

known as a line replacement unit (LRU) and level three is sometimes referred

to as a shop replacement unit (SRU).

Any number of echelons and indenture levels can be considered, but the complexity

of the problem does increase with the levels considered. For this study it is assumed

that three echelons and two levels of indenture are sufficient for observing meaningful

behaviors performing the desired tradeoffs.

1.3.2 LoRA in practice

From the MIL STD 1390D [3] the level of repair analysis (LORA) is one of the pre-

scribed techniques in the military and maritime industries to achieve a system design

with the minimum whole life maintenance cost. It applies to all system acquisition,

modification and R&D programs and is an integral part of logistics support analysis.

7

It influences the support cost which in turn influences the total life cycle cost of own-

ership. Additionally it has an important impact on the operational readiness of the

system. It uses economic and non-economic criteria as well as readiness objectives

to determine the least costly method for replacing, discarding or repairing each com-

ponent in the system. Therefore, the goal is to minimize the maintenance cost and

potentially influence the system design from the very beginning of the design process.

Early on, when the system architecture is still flexible, LoRA is used to determine

the number of maintenance sites, number of systems, and the component character-

istics such as the minimum MTBF (Mean Time Between Failures) that the mainte-

nance system can handle. Later on in the system life cycle it can be used to determine

whether or not it is worth repairing the components when they break. Additionally,

it can be used to determine the support equipment required at the maintenance sites,

the number of spare components that should be purchased, and how to schedule

maintenance. Finally, later in the system’s life cycle, LoRA can be used to evaluate

changes that must be made to the system to determine if the upgraded system can

still be maintained affordably. This perspective on LoRA gives a good idea of the

types of tradeoffs that can be made with the method but is not a good documentation

of how it is actually performed.

For a perspective on how LoRA is implemented, the MTAIN manual on LoRA

states [87] that “The Level Of Repair Analysis (LORA) is instrumental in providing an

optimized maintenance philosophy based upon a cost rational.” LoRA is an iterative

process part of logistics support analysis. The non-economic part is a screening

process before economic LoRA is done. It is based on a set of prescribed questions

and a logic chart. An example of the prescribed questions and logic chart can be

found in figures 3 and 4. The problem with this step is that it requires the subjective

input of subject matter experts and is not scientifically reproducible making it a poor

choice of study for a thesis. Therefore, the main focus will be on the second step,

8

Figure 1: Purpose of LoRA during different parts of the life cycle of the system [3]

Figure 2: Purpose of LoRA during different parts of the life cycle of the system [122]

9

computational LoRA, which is a repeatable method.

START

1
N

Y

3
N

Y

5
N

Y

4
N

Y

2
Y

N

Re-evaluate item to be replaced as part if
the next higher assembly

Replace the item at 1st line, perform ELORA
to determine optimum repair/discard

strategy

Replace the failed sub item at 1st line,
perform ELORA to determine optimum
repair/discard strategy for the sub item

Replace item at 1st line, perform ELORA to
determine optimum repair/discard strategy

for item

Replace item at 1st line and repair at 2nd line,
perform ELORA to determine optimum

repair/discard strategy for the failed sub-item

Replace the item at 1st

line and discard

Figure 3: Example of non-economic LoRA logic flow diagram [87]

Economic LoRA is the second step and is used to fine tune the strategies that

result from step 1 using computational models and optimization algorithms. To quote

the manual, “these algorithms require specific input data for the system inherent

supportability characteristics and its intended “Use” or deployment profile. System

level data include the system’s expected operational life, operational profile, and

site data (distances between operational centers and repair shop, including the total

number of these facilities.). The item data include component MTBF, cost, repair

time, procurement lead times etc. These data elements provide the life-cycle cost data

and system data used for the ELORAs.” To summarize, the computational model

requires detailed information about the system utilization, component characteristics

and maintenance site characteristics.

10

Questions for the above ELORA logic diagram

Question 1: Is the design of the item such that repair
is feasible?

Question 2: Are the item’s maintenance
characteristics and installation such that a
remove/replace strategy is feasible at first line?

Question 3: Does the item have lower level
assemblies?

Question 4: Does item’s maintenance characteristics
permit a replacement action of the sub-item?

Question 5: Does the item’s configuration consist of
subassemblies from multiple vendors?

Figure 4: Example of non-economic LoRA questions [87]

11

An example of a LoRA model is the COMPASS (Computerized Optimization

Model for Predicting and Analyzing Support Structures) tool developed by the U.S.

army. [2] It runs in three modes:

1. Evaluate:

The total maintenance policy cost is calculated using an economic model, given

an end system and a defined maintenance strategy

2. Optimize:

Minimizes total cost subject to constraints on the following factors

• Economic factors

– Cost

– Availability

– Mean time between failures (MTBF)

– Mean time to repair (MTTR)

• Non-economic factors

– Safety

– Mobility

– Vulnerability

– Policy

– Manpower

3. STAT

The Sensitivity and Trend Analysis Tool varies the values for the above factors

to determine the effects of variability on the total cost

Essentially, COMPASS defines an optimization problem, minimizing cost subject

to constraints defined by organizational rules and guidelines[3]. This is consistent

12

with the Navy’s desire to “maximize the effectiveness of depot support and optimize

program investments which will result in greater sustainment support to meet mission

requirements”[113]

Choose mission
computer architectures
for all platforms

Problem definition

Create database of
available maintenance
assets

Generation of
alternatives

Eliminate alternatives based on feasibility

LoRA step 1: Heuristic down selection

Optimize the remaining alternatives to determine
the most cost effective option with consideration
for operational readiness

LoRA step 2: Cost optimization

Figure 5: Overview of the Level of Repair Analysis methodology

1.3.3 Mathematical LoRA models

The computational LoRA models are primarily based on the methods described in

the following literature. The problem is not particularly unique in its basic form,

therefore the literature on the topic is fairly limited. To begin with, most of the

work stems from the models of Barros [21][20] who poses the problem as an integer

programming optimization problem.

Model assumptions:

1. A system is either operative or inoperative

2. A system’s parameters are constant, such as the failure distribution

3. The operator knows the state of the system and failures are detected immedi-

ately

13

4. Component failures have no effect on other components in the system

5. Identification of the reason for failure is instantaneous

6. Failures follow a Poisson distribution with mean failure rate MTBF

7. If a subsystem is discarded so are all its components this is also true if it is

shipped

Integer programming formulation:

• I - the set of indenture levels

• J - the set of components

• R - the set of available repair options

• Γ - a set hierarchical relationships between component set X

• m(r, i) - 1 if repair option r is selected at indenture level i

• n(r, x) - 1 if repair option r is selected for component x

• cv(r, x) - variable cost for using repair option r for component x

• cf (r, i) - fixed cost for enabling repair option r at indenture level i

minimize ct =
∑
x∈X

∑
r ∈ Rcv(r, x)n(r, x) +

∑
i∈I

∑
r∈R1

cf (r, i)m(r, i)

subject to
∑
r∈R

n(r, x) = 1, for x ∈ X

m(r, i) ≥ n(r, x), for r ∈ R1, i ∈ I, x ∈ X

n(r, x) ≤ n(r, y), for r ∈ R2,∀y ∈ Γx,∀x non-terminal

n(r, x) ≥ n(r, y), for r ∈ R3,∀y ∈ Γx,∀x non-terminal

m(r, i), n(r, x) ∈ 0, 1, for r ∈ R, i ∈ I, x ∈ X

The five constraints can be described as such

14

1. Exactly one repair option is chosen for each component

2. Fixed costs are charged if a repair option is chosen for a component

3. If a system is discarded so are its components

4. If a component is repaired so will its system

5. Restricts the problem to pure integer programming

Basten [22] generalizes this model by allowing a predefined set of components to

share the same fixed costs. The following assumptions are made:

model assumptions:

1. Repairs have variable costs, annual fixed costs are incurred just to keep the

capability of performing a given action at an echelon

2. The end item itself never moves for example the aircraft doesn’t leave the op-

erator; rather, the mission computers are replaced and move around

3. Repair a component by replacing a subcomponent, if it has no subcomponents

modeled then it is repaired directly

4. A failed component can only be moved from an echelon level to e+1

5. Probability of successfully repairing is 100%

6. Data is aggregated across an echelon, meaning all echelons on the same level

are considered as one big depot.

7. Following from the previous assumption, repair for a certain item always hap-

pens at the same site

8. Therefore, the number of locations between a site and the warehouse should be

equal

15

At each echelon there are three possible decisions for each component. Either

it is discarded or it is repaired. The third option is choose neither and send the

component to the next echelon. Each LRU has an expected number of annual failures

of which a percentage of these lead to SRU failures and so on. However, if a LRU is

discarded then it doesn’t matter what happened at the lower levels. Each decision,

echelon, component triple is represented by a variable cost. Additionally fixed costs

are associated with an echelon if any action is performed there for one component in

a given set. This represents sets of components that utilize the same maintenance

facilities and equipment, therefore as long as a location can service one of them, it

can service all of them. This is the main contribution of Basten’s model.

The following optimization problem is then stated using an objective function that

is a sum of all variable and fixed costs for all components and echelons.

Ci : the set of components at indenture level i

Γc : the set of subcomponents of item c

g : a set of components that share a fixed cost

E : the set of echelon levels

De : the set of possible decisions available at echelon level e

vcc,e,d : the variable cost associated with component c at echelon e to perform

action d

fcg,e,d : the fixed cost associated with component set G at echelon e to perform

action d

γc : the total annual failures of component c

Xc,e,d : 1 if action d is performed for component c at echelon e

16

Yg,e,d : 1 if for any component in G, action d is performed at echelon e

minimize
∑
c∈C

∑
e∈E

∑
d∈D

vcc,e,d · γc ·Xc,e,d +
∑
g∈G

∑
e∈E

∑
d∈D

fcg,e,d · Yg,e,d

subject to
∑
d∈D

Xc,e,d = 1,∀c ∈ C1

Xc,e,move ≤
∑

d∈De+1

Xc,e+1,d,∀c ∈ C, ∀e ∈ |e 6= eCEN

Xc,e,repair ≤
∑
d∈De

Xb,e,d,∀c ∈ C|Γc 6= ∅, ∀b ∈ Γc,∀e ∈ E

Xc,e,d ≤ Yg,e,d,∀g ∈ G,∀c ∈ g,∀einE,∀d ∈ D

Xc,e,d, Yg,e,d ∈ {0, 1},∀c ∈ C, ∀e ∈ E,∀d ∈ D, ∀g ∈ G

The five constraints can be described as such.

1. There must be a decision for all LRUs at level 1. This is based on the assumption

that the end item never leaves the operator

2. If move is chosen then a decision is made at the next echelon - since move is

simply deferring the decision to the next level

3. If repair is chosen then a decision is made for all its child components at this

level as they are now removed from the item and must be handled separately.

4. Fixed costs are taken into account if a decision is taken for the given component

Alternatively the LoRA problem can be modeled as a minimum cost flow problem

with side constraints. A flow problem is a network representation of the echelons

with Fv,w is the amount of flow through a given arc and Yr,l indicates whether a

given resource is located at a location. The network is constructed of source nodes

representing the occurrence of failed components, decision nodes where variable costs

are incurred as actions are taken, transformation nodes which represent the case where

an item’s components are separated and sent elsewhere, and finally sink nodes where

17

the flow goes when no more decisions need to be made. The constraints are such

that outflow from source nodes is constant, decision nodes have balanced flow across

them, transformation nodes split the inflow between the outgoing arcs, and only arcs

that are enabled due to the availability of resources are used.

Figure 6: An example network flow problem ([22])

Bouachera et al. [31] suggests that a genetic algorithm would perform better

than the traditional integer programming problem because of the large number of

decision variables. It can be assume that gentic algorithms (GA) are good for complex,

combinatorial problems.

Additionally tabu search is applied to the GA to improve the performance even

further. In tabu search, [58] memory is used to keep track of solutions that have

already been evaluated. In doing so, there is a better chance that the global optima

is found.

18

To briefly summarize, LoRA is a critical part of the systems design process. It is

an iterative process that is intended to provide different types of solutions at differ-

ent times in the system’s life cycle, from depot placement, maintenance equipment

requirements, to spare component allocations. There are not many current meth-

ods for conducting LoRA, most of them use an integer programming model, they

only consider the components for one system at a time, and only consider cost as an

optimization objective. The Navy has stated that the maintenance strategy should

ideally be low cost but it should also maximize the amount of time that the platform

is available to the war-fighter, meaning that availability should also be considered.

This would require a multi-attribute decision method.

Additionally, none of these methods consider the cost of changing the system once

it is in place. It is assumed that when a change is needed LoRA will be conducted

again and the appropriate change will be implemented. However, if it is assumed that

changes are inevitable, such as in the HOST example, it is likely worth considering

them from the start. Some potential disruptions that can be considered include

required upgrades and part obsolescence. This is in contrast to the single platform

analysis that assumes that upgrades and obsolescence do not effect the maintenance

policy. In the past an upgrade of a system would simply require that LoRA be

revisited and the appropriate changes made. However, in the HOST scenario multiple

systems will be using a similar set of components and upgrading one system will likely

have an effect on the other systems that share components. In this case which can be

considered a multi-platform maintenance network, an upgrade to one platform system

will effect the maintenance policies of all other connected systems. The same logic

applies to the ability of the logistics network to reconfigure in order to support new

platform types that will be added to the fleet and share components. Additionally

the maintenance strategy should have the ability to transition to wartime levels of

loading should the need arise.

19

The result is a modified maintenance planning problem. It is a multi-criteria

optimization of a system subject to disruptions. In order to choose an appropriate

method for solving this new design problem, the nature of the problem must first be

defined.

1. Discrete alternatives

Most traditional design methods rely on the fact that most of the design factors

are continuous variables. This allows the use of highly efficient design space

exploration methods such as gradient based optimizers, statistically informed

designs of experiments, and time saving methods such as response surface mod-

eling. However, for this type of problem, the design factors are the platform

architectures, maintenance cite characteristics, component attributes, and oper-

ational requirements. The primary design variable in LoRA is the maintenance

strategy for each component. This is generally characterized by a finite number

of options which causes the design space to be discrete. While there are some

continuous variables such as the labor rates of the depots or the failure rates of

individual components, they are the exception instead of the rule.

2. Stochastic

No two mission computers are truly identical, therefore they do not perform

or fail the same way. While previous work tends to generalize and assume

that all components fail a deterministic amount of times, the addition of dis-

crete changes to the system due to disruptions invalidates this assumption. For

example, upgrading a component will usually result in a slight change to its

characteristics such as its failure rate. This discrete change in component at-

tributes will cause a discrete change in the failure behavior. Additionally, it

is very hard to predict when disruptions will occur, therefore these behaviors

must be modeled as random events. This means that statistical analysis must

20

be done on each proposed solution. In order to enable the statistical analysis

of each design, a significant sample set must be obtained using the evaluation

method. This is done by repeating the evaluation of each design a number of

times which will usually increase the computational cost by at least one order

of magnitude.

3. Evolutionary development and emergent behavior

“The Navy is called upon to continue to maintain weapons systems past their

intended life while reconfiguring its depots to meet the maintenance needs of

new systems designed for the evolution to the next generation of warfare”.[155]

As such the designed maintenance strategy will necessarily evolve over time as

old platforms are retired or upgraded and new platforms are introduced. As

mentioned several times previously, the effects of obsolescence on maintenance

planning for modular systems should be significant. Therefore, the reaction of

the system to disruptions must be considered.

4. Multi-objective

“Maximize the effectiveness of depot support and optimize program investments

which will result in greater sustainment support to meet mission requirements”.[113]

In addition to minimizing cost, the effectiveness of depot support must be bro-

ken down into several more metrics including, time to war-fighter and availabil-

ity. Additionally, metrics must be placed on the system to quantify how well it

evolves in response to disruptions.

To summarize, maintenance planning for the HOST problem is a multi-objective,

stochastic design problem with discrete alternatives. It can be assumed that the

maintenance network should never break down due to disruptions therefore, it is nec-

essary to consider disruptions to the system and attempt to choose a design which

21

responds favorably in such an environment in addition to minimizing cost and max-

imizing platform availability. It will be shown in the next section that this design

problem shares many characteristics with system of systems (SoS) design problems.

1.4 Systems of Systems

A system is defined to be “a functionally, physically, and/or behaviorally related

group of regularly interacting or interdependent elements; that group of elements

forming a unified whole”.[117] From here it can be conceptually understood that an

SoS is a group of complete systems that behave together in the way that subsystems

are integrated to make a single system. However, here are some formal definitions

that take into account additional factors.

1. Systems of systems are large scale integrated systems that are independently

operable but are networked together for a common goal [88]

2. An SoS is defined as a set or arrangement of systems that results when indepen-

dent and useful systems are integrated into a larger system that delivers unique

capabilities [119]

3. Systems of systems exist when there is a presence of a majority of the follow-

ing five characteristics: operational and managerial independence, geographic

distribution, emergent, behavior, and evolutionary development.[134]

4. Systems of systems are large scale concurrent and distributed systems that are

comprised of complex systems [95]

5. An SoS involves the integration of multiple, potentially previously independent,

systems into a higher level system [146]

In summary, the following characteristics are crucial to understanding any kind

of SoS:

22

1. Independent systems

The systems that make up the SoS, are independently owned and managed.

This also describes how the individual systems have frequently been designed

at different points in the SoS life cycle or are purchased COTS products and

were not necessarily designed to work well together.

2. Networks and interoperability

As mentioned above, the independent systems must work together. In order to

do that, they must share resources, and a network is a graphical representation

of all the resource sharing links in an SoS. The interoperability is a measure of

how well those links are implemented. Understanding how the systems collab-

orate and share resources is crucial to quantifying SoS performance.

3. Emergent behavior

The phenomenon of emergence will be defined as the fact that the performance

of the SoS is not equal to the sum of performances of the individual systems.

In other words, the SoS’s ability to share resources can help fill in for the

deficiencies of some individual. Alternatively, the requirement to share resources

can also encumber the SoS and reduce the overall performance. Only proper

analysis can determine which behavior will occur.

4. Evolutionary development

This describes how the SoS is intended to adapt to environments that are out-

side of its originally intended operational envelope. Given that the cost of

implementing an SoS includes the cost of many potentially expensive systems,

an SoS is usually intended to outlive the original scenario it was designed for.

Additionally, it is frequently a requirement that the SoS never fail. As such,

less than optimal performance is acceptable for short periods of time as long as

23

the capability continues to be available. Therefore, the ability for the SoS to

adapt to disruptions and changes is crucial for a successful SoS.

To bring it back to the multi-platform logistics problem, all of these characteris-

tics were described in the previous section. For the most part the different platforms

and their maintenance supply chains can be considered independent systems. They

were likely designed at different times for different purposes and with different main-

tenance requirements. However, now that a set of common components is introduced,

those previously independent supply chains must now overlap and share resources.

Emergent behavior can be observed as the resource sharing allows for the system to

get away with stocking fewer spare components and potentially reduce the cost and

time required to implement an upgrade. Finally, as mentioned in the previous section,

disruptions must be considered forcing the system to adapt and evolve in response.

In order to further narrow down the definition for the purposes of this study, it is

necessary to further differentiate between types of SoS.[119]

Virtual SoS lack a central management authority and a centrally agreed upon

purpose for the system-of-systems. Large-scale behavior emerges and may be

desirable, but this type of SoS must rely upon relatively invisible mechanisms

to maintain it

In collaborative SoS the component systems interact mostly voluntarily to

fulfill agreed upon central purposes. The Internet is a collaborative system.

The Internet Engineering Task Force works out standards but has no power to

enforce them. The central players collectively decide how to provide or deny

service, thereby providing some means of enforcing and maintaining standards.

Acknowledged SoS have recognized objectives, a designated manager, and

resources for the SoS; however, the constituent systems retain their independent

ownership, objectives, funding, and development and sustainment approaches.

24

Changes in the systems are based on collaboration between the SoS and the

system.

Directed SoS are those in which the integrated system-of-systems is built and

managed to fulfill specific purposes. It is centrally managed during long-term

operation to continue to fulfill those purposes as well as any new ones the system

owners might wish to address. The component systems maintain an ability to

operate independently, but their normal operational mode is subordinated to

the central managed purpose.

Most SoS are virtual, some are becoming collaborative, and even now there are the

beginnings of directed SoS that are designed from the ground up. However, the DoD

puts its focus somewhere in the middle as it sees a growing number of acknowledged

SoS where the individual systems are independently developed but expected to work

together. This is the case with the maintenance planning problem.

The additional defining characteristics of acknowledged systems of systems are as

follows.

Provides a unique capability or common goal

A capability is “the ability to execute a specified course of action (A capability

may or may not be accompanied by an intention.).” [90] Unlike a virtual SoS,

an acknowledged SoS requires that all the entities have agreed upon a common

goal, that they are working together to perform a single high level task. In

this case the common goal would be to provide maintenance support for all the

naval aircraft.

Geographic distribution

While not a truly necessary condition for an SoS it is a common issue. The

consequences of physical distance between systems include time delays on re-

source transfers and tend to reduced the efficiency of the SoS. For this problem

25

the maintenance sites can be thousands of miles apart resulting in significant

shipping times and costs.

1.5 SoS design

Given that the multi-platform maintenance planning problem has been character-

ized as an SoS design problem, it is prudent to explore the literature on SoS design

methodologies in order to find one that may work for this problem. The first place to

start is with the history of systems design methodologies. The evolution of systems

of systems design methodologies begins with methodologies originally formulated for

large scale software development.

The first of such development models was the waterfall model. it was developed

by Winston Royce in 1970 [131] to address the fact that the traditional software

development process of analyzing the problem then writing code was unable to handle

the development of larger, more complex systems. The model introduces a set of

defined steps that are followed in order with a minimum of iteration necessary. The

first step is to define the system and its requirements. Then the problem is analyzed

and a design is proposed. If no design successfully meets the requirements the model

allows for iteration on the requirements until a design can be found. The next step is

to implement the design and test it. If after testing, the design it is determined that

it is not good enough, the model returns to the design step and iterates until a good

design is found and is implemented. (Figure 7)

A second method was developed by J Harvey Evans in 1950 [59]. The spiral model

was intended to address the fact that for complex systems such as aircraft and naval

vessels, the increase in number of requirements makes the effects of early decisions

more pronounced. The model organizes the required design and development tasks

into a logical order and as the development effort spirals out the early decisions are

revisited and verified and a better solution is converged upon. (Figure 8)

26

Figure 7: Waterfall model for software development [131]

27

Figure 8: Evan’s spiral model for ship design [59]

28

Boehm modified this method in 1988 [28] (Figure 9) to apply to software devel-

opment efforts and breaks the spiral into four phases.

1. Determine objectives, alternatives and constraints.

2. Evaluate alternatives, identify and resolve risks.

3. Develop and verify product

4. Plan the next phase

Figure 9: Boehm’s spiral model for software development [28]

The next generation of design models was the vee model. Two versions of the vee

model were developed almost concurrently. The first by NASA in 1987 [112] for soft-

ware development and the second by Forsberg and Mooz in 1990 [71]. Both models

29

are essentially a series of waterfall models linked together to handle the design of very

complex systems. Each step on the vee corresponds to an increase in granularity in

focus. For example, while the first step may be designing the general functionality

of the system, the later steps will be the design of increasingly more detailed compo-

nents. While the left side of the vee represents this decomposition and design of the

system and its components, the right side is a decrease in detail as the components

are implemented and tested finally culminating in the implementation of the entire

system.(Figure 10) The ability to consider increasing levels of abstraction makes this

method attractive for the design of systems of systems simply by adding one more

level to the vee. However, this model does not consider life cycle effects or the fact

that emergent behavior makes the link between decomposition and recomposition

tenuous at best.

To summarize, this model begins to show some generic methodological steps that

can be used for SoS design. The first step must be to define the problem and determine

the objectives and the constraints. Then the different alternative designs can be

evaluated and the best ones can be implemented. These steps will be the primary

backbone of any design methodology.

Moving on to design methods specific to systems of systems, SoSE is the process

of designing an SoS. It is defined by the SoSE center of excellence as “an emerg-

ing interdisciplinary approach focusing on the effort required to transform capabil-

ities into SoS solutions and shape the requirements for systems. SoS Engineering

ensures that: Individually developed, managed, and operated systems function as

autonomous constituents of one or more systems of systems and provide appropriate

functional capabilities to each of those systems of systems, Political, financial, legal,

technical, social, operational, and organizational factors, including the stakeholders’

perspectives and relationships, are considered in SoS development, management, and

operations, An SoS can accommodate changes to its conceptual, functional, physical,

30

Figure 10: Systems engineering vee model [72]

31

and temporal boundaries without negative impacts on its management and opera-

tions: An SoS collective behavior and its dynamic interactions with its environment

to adapt and respond, enables the SoS to meet or exceed the required capability.”

[149]The literature on the subject prescribes a number of methodologies and design

philosophies for approaching SoSE, including the following.

Keating defines SoSE simply as the integration of complex systems. He identifies

the main challenges of SoSE as the uncertain nature of the design requirements, the

fact that SoS performance is dependent on the conditions that the SoS operates un-

der, the human element, and organizational and political issues that tend to plague

projects on such a large scale. Due to the ambiguity of the final design, it is very diffi-

cult to determine the boundaries of the design space as is necessary for the “problem

definition” step of conventional SE methods. Therefore, the keys to SoSE success lie

in a structured, iterative, multidisciplinary process for designing a robust and flexible

solution. Also known as a “satisficing” solution. In essence the focus must shift from

designing final products to picking good enough initial deployment options that will

adapt and evolve over time. [146]

Luzeaux adopts a similar approach, pointing out that the goal of SoS design is

not optimal performance but satisfactory performance. An SoS is usually comprised

of large heterogeneous and autonomous systems, defined by a focus on networks

and resource sharing, and largely dependent on human behavior. Therefore, it is

impossible to truly quantify the performance of the SoS during the design process.

Only, later on through observation and feedback is the SoS capable of performing its

task and performance can be quantified. As such the focus must be shifted from the

individual specifications of the component systems to their interactions. [100]

Alternatively Sage and Cuppan identify the organizational issues to be the biggest

roadblock to SoS design. They propose that to successfully implement an SoS it must

be governed as a whole, hence they call it a federation of systems. In order to realize

32

this goal, they call on the tenets of new federalism to prescribe how the design teams

and governing organization should be arranged and how they interact. The result

is an environment that fosters innovation which is crucial to survival in an evolving

environment as long as it adheres to the common goal. [134]

To summarize, the focus of SoS design is to use efficient analysis methods that may

be lacking in accuracy to rapidly implement a design that can perform the capability

adequately. Once it is up and running the focus shifts to ensuring that it continues

performing its job despite changes to the environment. This is achieved through

continuous observation, feedback and proper management practices that promote

adaptation. To use an analogy, where traditional systems engineering is focused on

developing an airplane and getting it in the sky, SoS engineering is focused on changing

the airplanes engines mid-flight. Therefore, since the SoS can never be taken down

for maintenance, the early steps of SoS design must focus on generating designs that

are easy to adapt using metrics such as robustness and flexibility. In essence, it is like

designing an airplane where it is easy to change its engines mid-flight.

On this note, the DoD developed its own model for SoS development (figure 11)

focusing on the needs of the individual systems and acknowledging that the process

must continue throughout the life cycle of the SoS, since systems of systems are

not usually new acquisitions, rather they tend to be an evolution of the interactions

between a group of existing systems. [119]

The major criticism of this methodology is that the order of steps is fairly am-

biguous and there doesn’t seem to be a well defined output from the methodology

which leads to its metaphorical nickname, “The taxpayers’ sinkhole of SoS develop-

ment”. Therefore, for the implementer’s ease Dahmann modified the DoD’s model

to represent it from a sequential time perspective, specifying where feedback occurs

and clarifying where the SoS actually gets implemented. [47] (figure 12)

33

Figure 11: DoD trapeze model [119]

Figure 12: Dahmann’s Wave model [47]

34

Similar to the DoD, Delaurentis defines an outline for an SoS design process fo-

cusing on what must be done before decisions can be made. The first step is the

definition phase, where the baseline SoS is set and barriers to more preferred behav-

ior are identified. Next is the abstraction phase, where the main actors, resources,

disruptors, drivers and networks are defined. Finally with all that in hand, modeling

and simulation takes place in the implementation phase, at which point the decision

making process can begin.[51] This method does not consider the iterative nature of

SoS implementation, though it does give a good sense of how the first steps of SoS

development should occur.

Figure 13: Delaurentis’ “Proto-method” for SoS problems [51]

Most recently, Griendling modified the traditional systems engineering V-model

to facilitate capability based acquisitions. The focus was on how the SoS is rep-

resented and documented during the design process using architectural views. The

35

methodology defines how architectures can be used for alternative generation and

evaluation. The result is a streamlined process for designing a single update to an

SoS with consideration for supporting the Wave model throughout the life cycle of

the SoS [77]

Figure 14: ARCHITECT Vee with Enablers Mapped to Methodology Steps [77]

To summarize, the first two models (DoD and Wave) focus primarily on the it-

erative nature of SoS implementation. They were developed for the purpose of con-

tinually supporting the SoS while it is in operations through feedback and upgrades.

However, the problem with them is that they are very abstract and hard to follow.

The second two models (Delaurentis and Griendling) focus on a single iteration of the

SoS design cycle. The propose methods for problem definition, alternative generation

and design evaluation in support of the decision making process. However, neither

method does much to account for the ability of the SoS to adapt and evolve.

36

The goal of this thesis is to iterate on the above design methodologies and define

a methodology that will work for the multi-platform maintenance planning problem.

First, it is clear that for SoS design problems it is necessary to consider how the SoS

will evolve over the course of its life. This includes planning for upgrades even if

the exact content of those upgrades is impossible to predict due to the uncertainty

in the future operating environment. Whether it is providing for a mechanism to

iterate on the design or planning on observing the SoS and upgrading it as needed,

all the design philosophies described here attempt to pick an initial design that can be

easily modified in the future. This is somewhat contrary to the systems engineering

philosophy that early decisions matter greatly and therefore great care must be taken

in making those decisions. In fact, the only decision that must be made early on for

systems of systems is how to delay the decisions as long as possible by implementing

a system that is easy to adapt over time.

Figure 15 shows the beginning of the development of a methodology. It starts with

a problem definition phase where the boundaries of the system being designed are

defined. Then objectives of the design process are stated, such as minimizing O&S

costs and maximizing performance. Finally, potential disruptive conditions must be

listed, which is similar to the barriers and disruptors of favorable behavior described

by DeLaurentis. The second step is the modeling process where computational meth-

ods are used to estimate the goodness of potential designs with respect to the design

objectives. This is where many of the contributions of this thesis will fall given that

modeling and simulation is one of the biggest gaps in SoS design. However, the nature

of SoS modeling is such that it is not likely that all possible designs will get evaluated

at the maximum level of fidelity. Therefore, the third step will be a down selection of

the design space, so that a working solution can be implemented as quickly as possi-

ble. As such, the transition between steps 2 and 3 is iterative, where the design space

is systematically reduced using increasingly more reliable models, before advancing

37

to the final step. In step 4, decisions are made and the chosen system architecture

is implemented. This is done by using knowledge of the current scenario in order to

tradeoff between the different objectives and pick the design that is best suited to the

given customer’s priorities. Finally, since the design of an SoS is never complete, the

methodology repeats itself by observing the system in operation and reevaluating at

some later point in time when changes need to be made.

As it stands, this methodology is incomplete. Therefore the purpose of this re-

search is to make an attempt at filling those gaps in the context of the multi-platform

maintenance planning problem. The first question is, how can the system be evalu-

ated in the context of a disruptive environment? This will primarily be answered by

developing recommendations on metrics to use and how to model them. The second

question is, given that SoS modeling is expensive and the design spaces are large, are

there ways of reducing the cost? This leads to the third question. Given that it may

not be possible to improve the modeling costs by enough due to the complexity of

systems of systems, are there efficient methods of down selecting the number of de-

signs so that the higher fidelity models only get used on the most promising designs?

The following sections will attempt to answer these questions.

1.6 Flexibility measurement

1.6.1 Definitions of flexibility

The first question that must be answered is how to quantify the ability of the SoS to

continue operating despite disruptive events. The literature in the previous section

implied that a flexible system would be able to adapt to changes in the environment

and maximize the chances that capability is performed. The following section will be

a literature review of the definitions and methods for measuring flexibility.

Several engineering fields have attempted to design flexibility into their systems,

including manufacturing, space, communications, and transportation systems. Each

38

Problem
definition

Design
evaluation

Design space down
selection

Decision making

Models

Performance

Cost

Objectives

Disruptions

Observation and reevaluation

Implementation

Scenario

Multi-objective
decision making

In
cr

ea
si

n
g

m
o

d
e

l f
id

el
it

y

Capabilities

Baseline

Figure 15: Initial skeleton of the proposed SoS design methodology

of these design problems desire flexibility to mitigate the effects of disruptive events

that could cripple the system. In some cases it is because the system is hard to access

and fix, in other cases it is because system failure would be catastrophic, but in all

cases flexibility is desired because of the massive amounts of money invested in the

system.

From the literature, three categories of definitions can be defined. The first set

focuses on the ability of the system to adapt to changes. If a model can be defined

for how the system will adapt to disruptions then these definitions are likely to be

sufficient. However, in general, it is impossible to accurately predict all the disruptions

and therefore it is equally difficult to predict how it will adapt. The following are

some of those definitions from the literature.

• A measure of the ability of a system to adapt to external changes, while main-

taining satisfactory system performance. [109]

• The ability to respond to a changing environment [24]

39

• The ability of a system to respond to potential internal or external changes

affecting its value delivery, in a timely and cost-effective manner. [115]

• The ability to change or react with little penalty in time, effort, cost, or perfor-

mance [153]

• The ability to adapt to changing environment (technology) and requirements

(market demand) [165]

• The ability of a system to respond to changes to its mission in a timely and

efficient manner [135]

• The ease with which a network can adjust to changing circumstances and de-

mands [62]

• The capacity to continue functioning effectively despite changes in the environ-

ment [103]

• The ability of an organization to suffer limited change without severe disorga-

nization [61]

• The extent to which the structure of an organization facilitates or hinders re-

sponsiveness of members of the organization to change [129]

• The ability to adjust activities to changing conditions [97]

• The three categories of flexibility for systems requiring manned labor are, nu-

merical flexibility, functional flexibility and financial flexibility. Numerical flex-

ibility is the ease by which the number of employees can be changed to meet

changes in demand. Functional flexibility is the ease by which the labor tasks

are changed, and financial flexibility refers to how the payment structure enables

the other two categories. [13]

40

Many of these definitions emphasizes the ease of adapting effectively. Some focus

on the cost of adapting, some focus on the time required to implement the change

and others focus on the magnitude of the loss of performance due to a disruption.

In practice the definition that gets used is likely going to correspond to the metric

of primary importance to the problem. In traditional maintenance planning that

metric would be cost, however for systems of systems maintaining an adequate level

of performance is the primary goal, therefore quantifying the loss in performance

would make sense.

The second category of definitions focus on the range of capabilities or decisions

that the system possesses. In theory a system that has more options will be more

resistant to change as it can pick whichever option maximizes performance given the

current environment. For example, if an intelligence, reconnaissance and surveillance

(ISR) system can choose from a satellite, a low flying aircraft or a special operations

commando to track a target then it will be able to switch off between modes of sensing

depending on whether there is cloud cover, or the target goes into a densely populated

area. Similarly, the more options the system has for performing its job then the less

likely an event that disrupts some of the options will entirely cripple it. For example,

if a maintenance system has two available depots then if one is shut down it will still

be able to perform repairs. In essence, this set of definitions comes very close to the

concept of resilience which can be defined as the system’s ability to sustain damage.

[63] The following are some of those definitions from the literature.

• The number of alternatives left over after making a decision [130]

• The postponement of decisions until more is known [83]

• The capacity for taking new action to meet new circumstances [103]

• The cost of moving between states, the loss of performance when changing

states, and the physical difference between two states [48]

41

• The range of reachable states, and cost to transition [143]

• A measure of the system’s potential performance [142]

This set of definitions tends to quantify flexibility as the absolute number of

options available to the system. For example, a system that can perform multiple

tasks will still be valuable as long as at least one of those task is required, therefore it

can be considered more flexible than the system that only has one purpose. As before,

some of the definitions also identify the cost of accommodating all these possibilities

as a primary concern. To use the maintenance system above as an example again,

sustaining two depots is likely to cost more than only having one.

The final category of definitions focuses on the system’s sensitivity to uncertainty.

In essence, these definitions mirror the concept of robustness which can be defined as

the variability in the systems behavior with respect to environmental noise. [107] In

theory, a system that is invariant with respect to disruptions could also be considered

flexible in the sense that it will continue performing its job despite variations in the

environment. However, in reality the two concepts tend to be opposites. Robustness

tends to describe how the system doesn’t need to adapt most of the time and does

not consider what should happen when the system is finally outside its comfort zone

and is asked to adapt. Given that for systems of systems, the true nature of the

disruptions is impossible to predict, it is necessary to consider the ability to adapt.

However, robustness should be a component of SoS flexibility since a robust system

will be able to maximize the time required between upgrades. The following are some

of those definitions from the literature.

• A filter for external perturbations, an absorber of uncertainty [45]

• Excess resources in the system for dealing with uncertainty [104]

• A hedge against uncertainty [64]

42

To summarize, the definitions fall into the following three categories.

1. The ability of the system to adapt to change

2. The number of options available to the system

3. The systems sensitivity to uncertainty

These categories are somewhat related. For example, if a system has the capability

to perform many tasks, then the average cost of adapting to a change in requirements

will be low since some of the time it will already possess the required capability and

the cost will be minimal. Another example, if a system is very good at adapting

then it is more likely to succeed in an uncertain environment, because it is less likely

to cost as much to change to match the true nature of the requirements once more

information becomes available. These three categories will form the basis for a generic

definition of SoS flexibility. While it is tempting to choose one definition and run with

it, it is better to consider flexibility as an aggregate metric that combines the effects

of adaptability, robustness and resilience into one system attribute. Flexibility can be

summarized as the ability of the system to continue performing its job in a disruptive

and evolving environment. It is a quantification of the evolutionary nature of the

system though that is too abstract to actually measure, therefore a multi-faceted

definition is easier to implement.

Another product of this literature review is an initial indication of how different

aspects of flexibility are measured. What will become more apparent in the next

few sections is how problem specific the actual measurement methods tend to be. In

those sections the literature will be surveyed further in an attempt to find methods for

measuring flexibility that apply to the multi-platform maintenance planning problem

and systems of systems in general. Below is a summary of five different measurable

quantities that were linked to flexibility by the sources mentioned above.

43

1. Cost of changing

2. Time to effect a change

3. Loss in performance due to a change

4. Number of available options

5. Amount of surplus resources

1.6.2 Flexible manufacturing systems

Much of the literature on measuring flexibility originates with manufacturing systems.

When developing a new product, much thought is given to the design of the manufac-

turing line that will produce the item. This initial factory setup represents a major

initial investment in the product. However, should circumstances change, it might

be necessary to make changes to the manufacturing system which would represent

another major investment. For example, should the demand for the product increase,

failing to increase the capacity would result in a lost opportunity. Alternatively, if a

new product is developed, it would be advantageous to utilize as much of the existing

manufacturing system as possible in order to minimize the initial setup cost. There-

fore, much thought has been put into how to design flexible manufacturing systems.

To do that it is necessary to measure the value gained by being flexible.

Most of the measures focus on a number of different categories of flexibility in the

system, each one corresponding to either certain types of changes that are expected

to occur in order to minimize the impact or typical actions that must be performed

when attempting a change in order to minimize the associated costs. They are:

• Slack [142, 143, 144] identifies seven categories of flexibility based on the range

of reachable states and the cost to transition. The categories are machine,

routing, process, new product, delivery, mix and volume.

44

• Browne [34] identifies a slightly different set of categories as machine, product,

process, operation, routing, volume, expansion,and production flexibility.

• Zahran [164] focuses on he number of alternatives for processing each product,

and the efficiency in changing to process new products.

• Kochikar [93] focuses on the cost of changing states measured with a reachability

graph of all available states.

• Shewchuk [140, 141] develops generic measures for product, routing, material,

production, volume, and mix flexibilities.

Sethi and Sethi [137] summarize the list of categories of manufacturing system

flexibility and defines them as such.

• Machine flexibility relates to the equipment that is used on the manufacturing

line. It is a measure of the number of operations that each machine can perform

without a significant effort required to switch.

• Flexibility of a material handling system is a measure of the system’s ability

to move different part types efficiently for proper positioning and processing

through the manufacturing facility.

• Operation flexibility is the number of ways to produce a certain part.

• Process flexibility is a measure of the set of part types that the system can

produce without major setups.

• Product flexibility is the ease with which the system can change to accommodate

new parts.

• Routing flexibility is the number of alternate routes through the system for

producing different parts.

45

• Volume flexibility is the range of demand levels that the system can operate

profitably at or, given a distribution of the demand, the probability that the

system is profitable.

• Expansion flexibility is the ease with which the system’s capacity and capability

can be increased when needed.

• Program flexibility is the ability of the system to run virtually unattended for

a period of time.

• Production flexibility is the maximum number of part types that the manufac-

turing system can produce without adding major capital equipment. This is

also sometimes referred to as mix flexibility.

• Market flexibility is the ease with which the manufacturing system can adapt

to a changing market environment.

These measures very closely follow the categories listed previously. When the

ease of adaptation is measured it is generally done by quantifying the cost and time

required to effect that change. When the number of available options is desired, it

is simply counted. Finally, resistance to uncertainty generally refers to the range

of environments in which the system can operate comfortably. As the environment

that a manufacturing system exists in is usually defined by the demand for goods,

this is usually measured by the probability that the system is profitable given a

range of demands. Sometimes the amount of excess resources that are available

to accommodate increases in demand is used as an indicator of this resistance. In

theory if the manufacturing line has some unused machines lying around, then when

the demand increases those machines will go towards filling the new demand.

Later work has been devoted to exploring the relationships between these cate-

gories of flexibility and the overall effects on performance and cost.

46

Shewchuck [141] explores tradeoffs between product, mix, production and volume

flexibility. The results indicate that some types of flexibility can be increase mutually

such that trade offs are not always present if the correct design approach is chosen.

One result was that product flexibility increases with part flexibility. This usually also

comes with an increase in the processing capabilities of the system and the processing

capabilities of individual groups of machines. Additionally, mix flexibility increases

by employing a larger quantity of less flexible processors if processor flexibility is low.

Otherwise increasing the processing capabilities of the system has the same effect.

Finally, production flexibility increases with the processing capability of the system

and volume flexibility increases with the processing capacity of the system.

Chen and Chung [42] explore the relationship between machine flexibility, routing

flexibility, and system performance. Performance was quantified by machine utiliza-

tion time and the number of in process items. The result is that flexibility generally

increases performance at a decreasing rate. Routing policy as well as operating con-

ditions could have critical effects on the magnitude of performance improvement.

Benjaafar [25] investigates the correlation between production and machine flexi-

bilities with performance. One result is that flexibility can be an effective mechanism

in dealing with the disruptive potential of variability in a dynamic environment. Ad-

ditionally, in the presence of variability a relationship can be shown between flexibility

and performance. This is shown by a reduction in part flow time, number of bot-

tlenecks, part waiting time, and work-in-process inventories. Another conclusion is

that flexibility has an effect on average performance and the variance on performance.

More flexibility results in better performance and more predictability. These benefits

can be found at even low levels of flexibility but there are diminishing returns on how

much performance can be obtained.

Gupta et al. [79] explore the trade offs between multiple types of flexibility and

performance. Performance is quantified by the machine idle time which is the inverse

47

of machine utilization and job waiting time. The first result was that job waiting time

increases with product, machine, and process flex which are all mutually related.

This also indicates a trade-off against volume flexibility. In general, adding more

machines was found to tip the scale in favor of product flexibility. The second result

was that machine idle time decreases when the number of machines and routes is

simultaneously decreased. This causes an increases in volume flexibility and product

variety.

Suarez et al. [147] explore the relationship between product flexibility, mix flexi-

bility, volume flexibility and performance. Unlike, all the previous studies, this study

used data collected from existing manufacturing plants. The findings were as follows

• More automated plants tended to be less flexible despite the fact that the ma-

chines are more reconfigurable

• Work involvement and flexible wages correlate with an increase in flexibility

• Component re-usability increases mix and product flexibility

• There is no apparent relationship between product quality or cost and flexibility

• There is no apparent relationship between mix and product flexibility

• Volume fluctuation and mix flexibility are negatively correlated. This is because

the greater the mix of products the less likely a change in demand for one

product type will greatly affect the system.

• Volume and mix flexibility showed no relationship. However, in theory a system

with low mix flexibility will need high volume flexibility to compensate.

• There is a weak positive correlation between volume and product flexibility.

48

• Mix and product flexibility are strongly correlated. The makes sense since the

faster a plant can introduce new products the more likely it will be to increase

its mix.

To summarize, there are trade-offs between different types of flexibility, but in

general any increase in flexibility will result in an increase in performance in the

presence of disruptions. In conclusion, there are many useful concepts that can be

borrowed from manufacturing system flexibility, but the actual measures tend to

be limited in scope as they are very problem specific as they frequently relate to

the physical equipment that performs the tasks. However, one concept that seems

promising is the idea of volume flexibility which is a quantification of the range of

demands that the system can accommodate. In the maintenance planning problem,

the demand on the system can be defined in terms of the rate at which components

fail and need maintenance, therefore a measure of the maximum failure rate that the

system can effectively handle would be a meaningful measure. To generalize this to

other types of systems of systems it would be meaningful to know the largest enemy

that a military SoS could effectively engage or the maximum number of targets that

an ISR system could track at one time. In essence this is the scalability of the system

defined as the ability of the system to increase the scope of its operations beyond

what was initially anticipated. [30]

1.6.3 Space system flexibility

Flexible manufacturing systems are desirable because of the large initial investment

required. Similarly, space systems also tend to be very expensive. However, one

difference is that they tend to be very inaccessible, such that when a change occurs

it is very hard to adapt. Therefore, there is an array of literature on quantifying

flexibility for space systems with a greater focus on the system’s innate flexibility as

opposed to the cost of changing it.

49

For example, the Galileo spacecraft was launched in 1989. In 1991 as the spacecraft

arrived at Jupiter the high-gain antenna, responsible for transmitting most of the data

back to earth, failed to deploy, so from 1993 to 1996 NASA to work to redirect the

data flow through multiple low gain antennae through extensive reprogramming for

data compression and improvements to the ground based signal receiving stations.

This element of flexibility allowed the 1.39 billion dollar spacecraft to perform 70%

of its mission despite a potentially catastrophic failure. [105]

Shaw [138] defines the flexibility of a satellite by decomposing it into functional

modules. Modules are nodes impacting information flow from source to sink in the

system. The average cost per node to provide satisfactory service is an aggregate of

the cost of designing flexibility into the system. They define two types of adaptability.

First is the sensitivity of the performance to changes in technology or requirements.

Second, is the ability of the architecture to perform a different mission.

Saleh [135] defines space system flexibility as the ability of a system to respond

to changes to its mission in a timely and efficient manner. In contrast, robustness is

the system’s ability to continue the same mission despite changes to the environment.

The distinction is that one measure is focused on the system and the other focuses

on its environment. A measure of flexibility is formulated based on the expected net

present value of the system as a function of design lifetime. Real options theory is

then used to assess the value of maintaining a flexible system.

Real options theory developed by Black & Scholes [27] was developed to assess

the value inherent in decision trees. Real options are the ability to make a decision

in contrast to monetary options which are investments. It is similar in concept since

generally one must invest resources in order to maintain the ability to make certain

decisions. The method treats the potential choices in a similar fashion to a portfolio

of financial assets. In this way value is assigned dependent on future uncertainty.

If uncertainty is high it is worth maintaining a diverse portfolio, but as the future

50

becomes clearer the cost of keeping an option becomes less than its probable value.

This theory is similar to the definitions of flexibility that are based on the number

of available states of the system, which is why it is a popular method for assessing

flexibility.

However, De Neufville [49] claims that the Black & Scholes equations only work

when the product is marketable. If no price can be associated with the product then

a reasonable approximation is necessary. Even then it is only applicable if there is a

market with established statistics. In the case of space systems this is hard because

each system is unique, is intended to last a long time, and is susceptible to major

changes during its life.

Nilchiani [115] developed a framework for measuring space system flexibility.

1. Define the aspects of the system that should be flexible. Which parts of the

system are most effected by uncertainty.

2. Define the boundary of the system to be studied. Will flexibility be assessed at

the component level, or at the system level.

3. Define the time frame in which flexibility will be observed. The nature of

flexibility changes with the time scale of the changes to which the system must

be flexible to.

4. Identify the sources of uncertainty. The system is being designed for an uncer-

tain and probabilistic future. In order to assign value to the system’s flexibility

the types of expected changes must be quantified.

5. Define metrics for performance. Flexibility is defined as added value to the sys-

tem, and the system’s value is its ability to perform a certain mission. Therefore,

in order to measure flexibility, performance must be quantifiable.

6. Create a baseline and generate alternatives.

51

7. Assess each alternative’s changes to the baseline design.

8. Evaluate alternatives.

9. Explore the trade space.

The basic outline of the methodology resembles the generic systems engineering

design methodologies described earlier. The main difference is in how the problem is

defined. In this case the focus is on defining only parts of the system that make it

more flexible, and the changes to the environment that make flexibility valuable.

For SoS problems, it is possible to define the aspects of the system that should be

flexible. However, it is very hard to define the nature of the changes that it will be

subject to. If it were easy then it would make sense to define all possible changes as

noise variables and simply conduct a robustness analysis. One possibility that follows

from the methods described in this section would be to define at least one type of

disruption for each category of flexibility. These representative changes could then

be used to measure each facet of flexibility. Additionally, while actually using real

options theory may not apply here, the idea behind maintaining multiple methods

for providing the capability is a concept that seems promising and will be explored

later on.

1.6.4 Network flexiblity

A network is a system that is defined by the interrelationships between its compo-

nents. For systems that are strongly reliant on their ability to pass information or

resources between entities, a network is a good way to describe it. Additionally, the

SoS’s capability can frequently be described by a set of required tasks, the inter-

dependencies of which can also be described by a network. However, the failure of

a connection in the network can have repercussions throughout the system, there-

fore it is valuable to measure the flexibility of the network in terms of its resistance

52

to such cascading failures. For the maintenance planning problem, the network of

maintenance cites and how they share resources is a possible consideration.

One example of a flexible communications network was in the 1950’s [11] when

AT&T invested enormous amounts of money in upgrading their telephone network

to handle the rapidly increasing demand for long distance telecommunications. They

found that by allowing the network to evolve, through rapid inclusion of new tech-

nologies and dynamic call routing routines they could readily adapt to potentially

catastrophic disruptions and increase the overall performance and efficiency of the

system.

Cares [35] states the goals of designing networked military forces as stability,

adaptability and flexibility. Stability is achieved for networks to which a loss of

elements does not greatly impact the performance. Adaptability is the ability for

forces to synchronize and reach a steady state of performance. Finally, flexibility is a

measure of the range of interoperability options available to the system. The desired

result is a military system that would provide stable performance when subject to

vigorous adaptations or extreme environments. This statement seems to echo the

multi-faceted definition of flexibility stated earlier.

Moses [110] claims that flexibility is an external approach where humans make

the changes. Networks are naturally flexible due to the presence of multiple paths,

however, this comes at the cost of added complexity as the number of elements in-

creases. In this method, real options are once again used to measure the value of the

number of paths through the network. The concept of counting paths through the

network is analogous to counting the number of options available to the system.

Continuing on the idea of counting paths, Magee and De Weck [101] define network

flexibility as the ratio of paths to nodes in the network. Additionally, flexibility is the

ease by which changes can occur and it is defined with respect to network expansion

as the ratio of flexibility before and after expansion relative to the ratio of cost before

53

and after.

Flexibility w.r.t expansion =
links per node after expansion

links per node before expansion
· original cost

expanded cost
(1)

Feitelson and Salomon [62] define network flexibility as the ease by which a network

can adjust to changing circumstances and demands, both in terms of infrastructure

and operation. They also conclude that flexibility is a multi-faceted metric with the

following three categories;

• Node flexibility is the ease by which nodes can be added. Ease is defined in terms

of the cost or time associated with the change. Node flexibility is dependent on

the ability to physically create a new one such as node size, requirements on node

placement, environmental concerns, and interface requirements. Essentially it

is like the cost of building a new depot or perhaps the likelihood that a new

depot can be placed related to the number of available locations.

• Link flexibility is the cost of connecting two nodes. Just like node flexibility this

is mainly related to the requirements placed on the creation of links. However

unlike the nodes it is also necessary to consider the traffic on the link and

the dependence of a network on links to other networks. For example, air

transportation nodes require links to a land transportation network.

• Temporal flexibility is the ability to sequence infrastructure investments and

the degree to which the infrastructure requires coordination among users. One

part of temporal flexibility is divisibility which is the extent with which choices

are locked in. This is essentially, the extent to which paths through the network

interconnect or the modularity of the paths.

One criticism of this method is that it does not use quantified measures of the

dimensions of flexibility rather qualitative ones. However, the concept of identifying

54

the cost factors of nodes and links as well as the dependence of the network on other

infrastructure is a very good approach. What is nice here is that they define the

expected relationships between the dimensions and flexibility. For example, smaller

node areas are more flexible as it is easier to move them, more divisible routing leads

to higher flexibility and, more requirements means less flexibility. While quantifying

the cost of adding a node or an edge is likely a very problem specific quantification,

the idea of network divisibility seems generic enough to try. In some sense this is a

measure of the number of options available for each required task in the SoS, though

if all the options are compatible with one another, a highly divisible network will

also tend to have a higher number of possible paths. Therefore, simply counting the

viable paths through the network should be a way of measuring divisibility.

Scott et al. [136] propose a method for identifying critical links in a transportation

network. This similarity to flexibility is that the ability to identify the weakest link

in a network can be useful in quantifying bounds on the system’s ability to adapt.

The network robustness index evaluates the cost of rerouting around each link. The

criticality of the link is dependent on the load which the link is expected to carry.

When that link fails, the load must be absorbed by the surrounding paths, therefore,

the higher the capacity of the surrounding paths the less critical the particular link

will be. The cost of rerouting is assessed as the difference in the cost between the link

existing and the link failed. This method is applicable to the maintenance planning

problem in that identifying critical paths in the system can be done by evaluating

how the demand is shared between the different maintenance sites.

Continuing on a similar idea, Morlok and Chang [109] define capacity flexibility

as the ability of a transportation system to accommodate variations or changes in

traffic demand while maintaining a satisfactory level of performance. It is measured

as the maximum capacity of the system. The assumption is that the greater the

capacity the more likely it is to meet the change in demand. Due to the long lead

55

times required to make changes, it is desirable to design a system that is less likely

to need a major overhaul. The method uses an optimizer to determine the maximum

load the system can handle. A lower bound on the capacity is evaluated with a

fixed network. This corresponds to typical changes in demand and traffic patterns.

An upper bound is determined by solving the same problem while allowing slight

variations corresponding to more drastic changes such as severe weather or terrorist

attacks. If the distribution on demand is known, the maximum capacity can be used

to determine the probability that the system will be successful. This concept is similar

to the volume flexibility of manufacturing systems, and the idea of quantifying the

maximum capacity of the network is likely a good way of measuring volume flexibility

for the maintenance planning problem.

In summary, most of these methods focus on the evaluation of paths in the net-

work. Paths are the series of links in the network that information or resources must

pass through to get to a desired location. The flexibility of the network is then de-

fined as the ability for resources to continue passing through the network successfully

despite changes to the network. The first assumption that is generally made is that

disruptions to the network reduce its ability to pass resources. One assumption that

can then be made is that the network adapts to restore its performance which can be

by adding new elements or rerouting. From this, several concepts of flexibility can

be derived, including the divisibility of paths, path criticality and the cost of adding

paths through node and edge addition. Alternatively the maximum capacity of the

network can be compared to the current demand such that it can inherently sustain

a certain range of disruptions without requiring changes. These measures will be

considered later on when developing a measure of flexibility for systems of systems.

For the purposes of SoS flexibility, network flexibility possesses one particularly

attractive feature that the previous two bodies of knowledge did not, that is, there

are a finite number of possible changes to a network. As there are only two categories

56

of elements in a network, nodes and links, so too all changes to the network can

be categorized as either the addition or removal of an element or a change to its

characteristics. This is in stark contrast to the infinite types of events that can occur

in the real world to a system as large and complex as an SoS. Therefore, characterizing

the problem as a network design problem allows all disruptions to be grouped into

two abstract categories, which is very desirable.

1.6.5 SoS Flexibility Framework

Building on the methodologies described above, this section will describe the formu-

lation of an SoS framework for flexibility evaluation. It is based on three generic

measures of flexibility from the literature. The cost or time delay associated with im-

plementing a beneficial change, the loss of performance due to a detrimental change,

and the excess resources in the system that can be used for adapting to changes. The

final potential measure of flexibility was a count of the number of available options

for performing the capability. For example, the number of missions that an SoS is

capable of will make it less costly to add another mission that is somewhat simi-

lar. Alternatively, the number of ways that there are to perform a single capability

will make it more resilient to disruptions. This kind of redundancy is relevant for

the maintenance planning problem as the more available sites there are to perform

maintenance the less likely a single disruption will significantly impact performance.

However, the number of available options in the system will not be considered an

independent measure of flexibility as it can be used to quantify any of the three other

measures in some way. Therefore, upgrade cost, resilience to failures, and excess

capacity are assumed to be an independent set of flexibility measures.

The literature on flexibility measurement generally requires that the methods of

changing the system be defined. That is difficult for an SoS, however if it is described

by an abstract network then the number of possible changes is finite. The most basic

57

change to a network is the addition or removal of nodes or edges. The purpose of

an SoS is to provide a capability therefore, the addition of elements will tend to

have a positive effect on performance since it is giving the system access to more

resources. There will be a cost associated with an added element, therefore this

will be categorized as the cost of changing the network. Conversely, removing an

element will tend to inhibit the system, therefore it will be considered as a loss of

performance due to change. Alternatively, the elements may be rearranged to enable

a new capability. This can also be assumed to be a beneficial change. The second

category of changes involves the weights on the edges. This will generally effect the

magnitude of the flow through the SoS therefore, this will be used to measure the

excess capacity of the SoS.

To summarize there are three changes that correspond to three measures of flex-

ibility, and they correspond to the maintenance planning problem in the following

ways.

1. Cost of implementing the change

This applies to the addition or rearrangement of elements in the network. For

example, the cost of adding maintenance depots would factor into a measure-

ment of flexibility, or the cost of upgrading components.

2. Loss in performance due to the change

This applies mostly to the removal of elements in the network. For example,

when a depot fails or a route is disrupted the performance will drop while items

are prevented from reaching their destinations as efficiently.

3. Excess capacity of the system

This would apply to changes in the edge weights. For example, when new

platforms are added to the system or the operational frequency is increased the

load on the network will change and must be accommodated.

58

From these three categories of changes that apply to a maintenance network, three

measures of flexibility can be defined. The purpose of doing so is to define flexibility

in the context of the multi-platform maintenance planning problem as well as provide

recommendations for how these definitions can apply to other systems of systems.

1.6.5.1 Growth flexibility

Borrowed from manufacturing systems [137], growth flexibility, is a measure of the

ease of implementing a change to the system. This is generally done for the purpose

of improving the system or adapting to a change in requirements. For example,

obsolescence of a component is a change in technology that necessitates an upgrade

of the platform. While it is conceivable that such an event will not significantly

disrupt the system, it is more likely that an imperfect replacement will be found and

the logistics network will have to adapt slightly. In the example that will be described

later on, this will result in a change to the location where maintenance is performed.

The time it takes for the system to recover from this change is a measure of flexibility.

There will be an initial dip in performance as the platforms are removed from service

temporarily and new components are purchased, however it can be assumed that a

more flexible system will get everything up and running sooner. Another example

would be a system that no longer has the capacity to perform due to a change in its

operational environment such as a marine task force that has discovered a much more

capable enemy than expected. In this case the measure of flexibility will be the time

it will take to call for reinforcements. Alternatively, it could be a supply chain that

cannot keep up with increasing demand in which case growth flexibility would be the

cost of building a new production plant or shipping center.

Graph theory can be used to attempt a generalization of growth flexibility for an

SoS network. It can be assumed that the faster a network can reach a steady state

the easier it will be to change. Synchronization of a network is the case where all

59

the elements are interacting properly and on time and the ability of the network to

synchronize is how well it reaches a steady state. A synchronized network will reach

stability faster and thus more likely to adapt to changes in a timely manner. [124] The

second smallest eigenvalue of the Laplacian matrix of the network is also called the

algebraic connectivity and is an indicator of the graph’s connectivity. It’s associated

eigenvector is called the Fiedler vector (FV) and is an indicator of how easily the

network will synchronize.[120] (see appendix on graph theory for more definitions)

Similarly the stability of the network is the the ability to maintain a steady state,

which is important as an indicator of how consistently the network is able to provide

the desired capability. It can be assumed that it will be easier to change a network

that is already stable, therefore, the sum of the absolute values of the eigenvalues of

the adjacency matrix of the network is called the graph energy and is a measure of

the dynamic instabilities. [16]

The largest real eigenvalue is called the functional cyclicity and its eigenvector is

called the Perron Frobenius Eigenvector (PFE). It is commonly used as an indicator

of the number of cycles in the graph.[29] Cycles are paths that start and end at the

same node, and like paths they can frequently be used to describe the completion of

a task chain or the successful transfer of resources in the system. The Coefficient of

network effects (CNE) is that eigenvalue normalized by the total number of nodes

and is a measure of the networked effects per node which is an indicator of how well

distributed the network is.

1.6.5.2 Divisibility

The term is borrowed from the works of Feitelson and Salomon [62], who define

flexibility in terms of ”the extent to which investments in the network are divisible”.

This is essentially a measure of the modularity of the system. It is based on the

assumption that the more decisions that are available at each point in a process

60

the more flexible it is. For the maintenance example, consider an architecture with

multiple depots that can service the same components. If one depot gets disrupted or

has a back log of jobs, broken components can go to the other depots instead and the

system continues to function. Another illustrative example would consider a typical

morning commute taking the highway. If there is an accident and traffic backs up

you risk showing up to work late. However, you decide to bail out at the nearest

exit and take side streets the rest of the way. The more possible exits along the way

the less likely you will be to get stuck for a significant amount of time in the case of

bad traffic. For an engineering design related example, consider the average desktop

computer. In the very early days of home computing there were no standard sized

components. If a part broke, such as the keyboard, and it was no longer available on

the market it was very likely that it would be cheaper to simply replace the entire

computer. Now with standardized connectors between each component, there are

thousands of options on the market for every part of the computer. If something

breaks it is a trivial task to go to the nearest electronics store and buying something

with similar functionality.

In the context of systems of systems, divisibility will be defined as the system’s

resilience to the removal of elements. An SoS’s purpose is to provide a capability,

which is usually categorized as a series of tasks that allow resources or information to

pass through the system. Therefore, it can be assumed that a measure of divisibility

would be the number of disruptions required to fully impede the functionality of the

SoS. For the maintenance planning problem, this would be the minimum number of

depots that the system needs in order to keep the aircraft operational.

From a network perspective it can be assumed that the more paths that the

resources can flow through, the more likely it will be that the capability will still

be performed even after some number of disruptions. Therefore, an analysis of the

number of possible paths will also provide a measure of divisibility. The generic

61

definition of a path does not distinguish between nodes. However, it is frequently the

case in an SoS that the task chain or resource flow must start and stop at a predefined

node. For example, information starts at the sensors it is then routed through the

command base to the strike assets who use the information to deliver a payload to

the target. Therefore, a more specific definition of paths would specify a source and a

sink node for the capability. Alternatively, in the maintenance logistics example, the

aircraft generally exists at an operational site, however when a part breaks it must go

to a depot to be repaired. The capability is only performed once the aircraft returns

to the operator. In this case the source and the sink are the same node, which is

the definition of a cycle, therefore a measure of cyclicity, defined as the number of

complete cycles in the network would make sense. The largest real eigenvalue of the

adjacency matrix of a network is called the functional cyclicity and its eigenvector is

called the Perron Frobenius Eigenvector (PFE). It is commonly used as an indicator

of the number of cycles in the graph.[29] The Coefficient of network effects (CNE)

is that eigenvalue normalized by the total number of nodes and is a measure of the

networked effects per node which is an indicator of how well distributed the network

is. Both of these values may be useful for measuring network divisibility. It should

be noted that there can exist systems without defined sources and sinks, such as a

communications network where information needs to be able to travel between any

two nodes. In these cases a traditional definition of paths should be used.

Unlike cyclicity, there is no indicator of specific paths in the network, therefore

the following is an algorithm for counting paths in an SoS network. In general,

algorithms for counting paths do not exist since the possibility of getting stuck in a

cycle will result in infinite solutions. However, in the case of systems of systems it

can be assumed that getting stuck in an infinite loop is not going to actually happen,

since the agents involved will realize and set themselves back on the correct path.

Therefore a modified depth first search algorithm is proposed for counting paths from

62

all source nodes to all sink nodes in a network. A depth first search decomposes the

network connections into a tree and searches down each branch of the tree. [60] The

modification that is added is that when a node is repeated the branch is terminated

so as not to consider cycles.

1. Start at the source

2. End a branch when the sink is reached or when a node is revisited

3. Explore all possible branches

4. Count the number of branches that end at the sink

5. Repeat for all combinations of sources and sinks

Having counted the paths it is now possible to examine their criticality to the sys-

tem. One possibility is by assessing the cost of rerouting should a path be disrupted.

It would follow then that the measure of criticality would be related to the number of

paths that pass through a certain edge. Additionally, if the capacity of the edge and

the expected load on it is known then these can be taken into account as well. It will

be assumed that when a path is disrupted that the load that was initially intended

to pass along it will be redistributed across all other available paths. The criticality

of the edge can be defined as the ratio of the load on the path to the number of

alternative paths that do not use that edge. For edge i with load Li, there is a set of

paths P that accomplish the same capability. The number of paths that use edge i

is pi, therefore the number of paths in P that don’t use edge i can be called poi and

the criticality is Li

poi
.

Alternatively, a modified definition of connectivity can be used here to count the

minimum number of elements that must be removed before no possible path remains.

This path connectivity problem can be reformulated as a min-cut problem between

63

a source node and a sink node, where all edges have value 1. This way the value of

the minimum disconnecting cut will be the total number of edges removed.

1.6.5.3 Volume flexibility

Also borrowed from manufacturing systems [137], volume flexibility refers to the abil-

ity of the system to handle a wider range of demands than it is expected to experience.

Consider the marine task force again. In the case where they encounter a larger enemy

force than expected, a system with higher volume flexibility would already possess

the necessary resources to handle the larger situation and wouldn’t need to call for

reinforcement. Alternatively, in the case of the aircraft maintenance system, when

the frequency of maintenance actions increases such as when the operators transition

from peace time operations to war time, volume flexibility describes the extent to

which the system is already capable of handling the change. This can be easily quan-

tified as the difference between the maximum capacity of the system and the current

expected demand. One way to measure this would be to find the level of demand that

causes the system to cease functioning properly. Alternatively, if it is assumed that

the capability can be quantified by the flow of resources through the system, then

the max-flow in the network (appendix A) may be a good generic measure, where

the edges of the network represent the capacity to pass resources between entities.

Additionally, if a distribution is known for the demand on the system then the prob-

ability that the demand exceeds the maximum capacity can be calculated using the

cumulative distribution function of the demand.

Fv = P (demand < maximum capacity) (2)

1.6.5.4 Section Summary

In conclusion, it can be hypothesized that including a measure of flexibility in an

evaluation of an SoS will result in designs that perform better in the presence of

64

disruptions and changes. To do this, three categories of flexibility are defined that

primarily apply to the multi-platform maintenance planning problem, but are also

generalizable to other SoS problems. The first category is growth flexibility which

is defined as the ease of implementing a change in the system. The second category

is divisibility which is defined as the system’s modularity which is closely related to

the system’s resilience to the loss of elements. Finally, volume flexibility is defined as

the range of capabilities that the system can perform. For the maintenance system,

growth flexibility is the cost of adding depots or the cost of upgrading a component,

divisibility is the number of depots that the system can lose before failing, and volume

flexibility is the maximum number of platforms or the maximum operational frequency

that the system can reliably handle. Experiments will be conducted in chapter 4 to

show how these three flexibility measures relate to the cost and performance of the

system when disruptions are considered and to determine whether these measures are

redundant or not.

1.7 Modeling and simulation

Given a set of objectives for the design process the next step is to define a method

for evaluating those objectives for each alternative system architecture. In general,

actually implementing each design and testing it is too expensive and time consuming

therefore, systems engineers tend to rely on mathematical models. As George E.P.

Box is famously known for saying “all models are wrong, some models are useful.” [32]

In order to evaluate designs, implement the methodology, and conduct experiments a

modeling method must be chosen for the multi-platform maintenance problem. The

field of modeling and simulation is very broad, therefore the purpose of this section is

to review some of the literature in this area in order to justify the choice of methods

that were used for this thesis.

65

First, to review some definitions, the DoD defines a model as ”a physical, math-

ematical, or otherwise logical representation of a system, entity, phenomenon, or

process”. Modeling is defined as ”the application of a standard, rigorous, structured

methodology to create and validate a physical, mathematical, or otherwise logical

representation of a system, entity, phenomenon, or process”, and simulation is ”a

method for implementing a model over time”. [52]. Ideally when developing a model,

it would be attractive to match the details as closely as possible. However, including

too many details may make determining the cause of a particular behavior difficult,

due to confounding between factors. In reality, the act of modeling is the act of

walking a fine line between the amount of detail and the ability to draw meaningful

conclusions.

Since the problem chosen for this thesis is notional, it would be wise to err on the

side of fewer details in order to make the results more generalizable. As mentioned

earlier, the primary assumption that differs between this work and previous studies is

the consideration of disruptions to the system. Where previous work could consider

a static aggregative model of service costs, this study intends to look at the effects

of one-time events on system performance. Gustafsson [80] categorizes simulations

into four categories distinguished by either stochastic or deterministic behavior and

static or dynamic time scales. The discontinuity in performance caused by disruptions

implies that a dynamic model must be used which requires the use of a simulation.

Additionally, the exact nature of the disruptions is unknown therefore they must

be modeled as random events. In general, the presence of stochasticity introduces

variance into the response, which requires that each case must be repeated in order

to obtain a statistically significant sampling of the model. This indirectly increases

the computational cost of the method. However, deterministic simulations tend not

to capture as much of the behavior. If the deterministic model can be defined in

such a way as to capture sufficient behavior then it is the preferred method. For the

66

time being though, it must be assumed that the disruptions are random events, so in

order to sufficiently capture that behavior, a stochastic/dynamic simulation must be

chosen.

Balestrini [18] identifies several simulation options for the purpose of modeling

complex military systems. Since, complex military systems tend to exhibit many SoS

properties, the following list should apply well to this problem.

• Network

Network models focus on the connections between entities in the system. Most

of the methods for evaluating network properties involve assessing the entire

network at once thereby requiring the assumption at any given point in time

the network is static. Stochasticity can be introduced fairly easily by assigning

random distributions to the weights of the edges, or by randomly removing and

adding elements to the network. Network models tend to be good descriptions

of systems of systems, but their static nature makes it difficult to use them

for evaluating objectives. However, in some cases graph theory has be shown

to efficiently evaluate certain network properties that sufficiently capture the

behavior of the system.

• Dynamical systems

Dynamical system simulations use ordinary differential equations of the system

to model its behavior [33]. As such they tend to be best suited to physical system

where the dynamics are well understood and where the number of differential

equations is relatively small. Similar in both name and concept, systems dy-

namics models are also essentially a system of differential equations. However,

the key difference is the inclusion of feedback and its effect on the aggregate

behavior of the system. It was originally designed by the engineering controls

community for application to business strategy.[69, 70] For systems with many

67

moving parts and complex behaviors defining the exact differential equations is

likely to be very difficult, therefore this method is unlikely to be useful here.

• Discrete event

In a discrete event simulation (DES) the system state is updated at discrete

time intervals corresponding to the occurrence of specific events.[161, 75, 76] It

is particularly well suited to model supply chains and manufacturing processes,

where it can be assumed that no two events truly happen at the same time, and

that nothing particularly interesting happens in between events. [81, 150, 158]

A maintenance system shares many characteristics of a supply chain therefore

this is likely to be a good method for this study. Additionally, disruptions

are easily described as discrete events making DES a good option for modeling

disruptive environments.

• Markov chain

Based on the Markov principle that the current state of the system is only

dependent on the previous state, Markov chain models represent the transition

logic between discrete states in the system. As a generalized version of a discrete

event simulation, Markov chains require the enumeration of all the possible

states of the system and their transition probabilities. As such they are ill

suited to modeling systems with a large number of state variables, such as

having many discrete entities moving around.

Similar to Markov chains in that it represents state transitions of the system,

Petri nets [127] consider the states of individual entities and resources in the

system which are represented by tokens moving on the net. Stochastic petri

nets [160, 17] have been shown to be good for modeling reliability and resource

management, and are much better suited to large problems than Markov models.

• Agent based

68

A cellular automata model is constructed of a grid of cells where each cell can

have one of a finite number of states. The states change according to a set of

rules that check the states of the neighboring cells. For example, in Conway’s

game of life, each cell is either ”alive” or ”dead” and looks only at the eight

neighboring cells when determining when to change state. There are three rules

corresponding to overcrowding, under-population, and reproduction.[44] The

goal of the simulation is to observe emergent behaviors in the system, therefore

it is best suited for problems with large populations of interacting stationary

entities. [102].

Agent based simulations are similar to cellular automata but they add a layer of

complexity by decoupling the entities from their environment. In this way the

model considers mobile agents and stationary patches that each manage their

own state transitions by following a given set of rules. Having the assumptions

implemented from the bottom up means that they are capable of representing

systems in near complexity to the system itself. [19]. As such they are well

suited to modeling unpredictable systems that are strongly dependent on the

independent decision making capabilities of individual agents such as combat

systems. Given that maintenance depots can be considered stationary and are

not expected to make complex decisions, agent based modeling may be a bit

excessive for this thesis.

There are two other models that were specifically used to simulate systems of

systems.

• Aggregation models

Iacobucci [86, 85]proposes a framework that is designed to handle large system

of systems alternatives spaces. In order to handle the entire design space, the

generality of the model must be increased which means that it ignores many of

69

the details that help define a unique system of systems. The Rapid Architecture

Alternative Modeling (RAAM) method provides the capability to evaluate large

architectural alternative spaces in a reasonable amount of time, and to a level of

fidelity appropriate for conceptual phase decision making. The backbone of the

RAAM computational model is based on aggregation functions that combine

subtask performance metrics to obtain higher level task metrics, and continuing

on until one overall score remains. While it is fairly typical to decompose

a SoS capability into a series of tasks and subtasks, the problem is that the

methodology provides no criteria by which to create the aggregation functions.

• Information theory models

ARCNET was developed by Domerant [53, 54] as a simplified engagement model

to be used within the ARCHITECT methodology. It was developed for the

purpose of modeling SEAD architectures and take into account the effects of

collaboration between systems on the overall performance. The basic principle

upon which the model is based is derived from Perry’s method [125] which uses

information theory to quantify the knowledge in a C2 system. The method

starts by quantifying the mission uncertainty with a probability distribution,

then using information entropy to measure the ”average amount of information”

in the distribution. This can then be related to the overall probability of success

of the mission, which is a useful metric of effectiveness for a military architecture.

Since collaboration between systems generally involves sharing information it

can be assumed that collaboration will affect the average amount of information

in the system which will affect the overall performance. The result is a function

relating the mission performance to the architecture. While ARCNET is a full

engagement model where information theory is used to quantify the probability

of finding and successfully engaging an enemy unit, the method can be expanded

to apply to a larger scope.

70

To summarize, the linear programming models for traditional LoRA are not suffi-

cient, because they fail to model the effects of discrete changes to the system such as

obsolescence or depot failure. Therefore, a dynamic simulation is preferred. Lacking

a well defined model for how the changes will happen requires that the simulation be

stochastic. Of the methods listed by Balestrini, a network model could be used to

evaluate designs but might not be detailed enough to capture meaningful measures of

system value. Therefore, discrete event modeling was chosen due to its suitability for

supply chain modeling, a problem that is fairly similar to maintenance logistics. How-

ever, systems of systems are generally dependent on a large number of independent

decision making entities, meaning that an agent based model will be the appropriate

simulation method the majority of the time.

1.8 Discrete Event Simulations

DEVS, Discrete EVent Simulation is a formal method for modeling systems where

the state only changes as a result of an ”event”. The system is then modeled by only

considering the events and not the static time in between. [161]

The simulation requires four elements:

1. A discrete set of state variables

For this problem each component has a number of state variables associated

with it including its condition(functional, broken, or obsolete), location, and

remaining lifespan. If it is a component then its location is tied to the platform

that it belongs to which is tracked as a state variable instead.

2. Simulation time

Every time an event occurs the simulation time counter is updated to match

the time associated with that event. By tracking the total time a maximum

simulation time can be set. For this problem the simulation tracks time in

71

days and simulates 10 years worth of operations. It is assumed that this time

span would allow for each component to go obsolete at least once, given that

computer components are generally only on the market for 5 years [126].

3. A synchronizer to maintain the list of events

The synchronizer it the primary driving force in the simulation. It iterates

through the list of events, one at a time, in chronological order, and runs the

appropriate functions associated with each event. After it is done it updates

the time counter.

4. Events representing state changes

Each event represents a different set of state changes governed by its own logic.

For this problem, the basic flow of logic can be summed up as follows. Platforms

exist mainly at the operators until at some point a part breaks. The platform

with the broken part is then shipped to a depot to receive a working replacement

at which point it is sent to the warehouse to await future operations. This is

because in the meantime the operator has requested that a working platform

be sent from the warehouse to replace the one with the broken part. Once the

broken part has been removed from the operator it is determined whether it

can be repaired or not. If it is repairable it is sent off to be repaired otherwise it

is discarded. After being repaired it is held at the depot until another platform

arrives that needs a replacement of the same type. Figure 16 summarizes that

behavior.

That described the typical behavior of the system, events that trigger due to

state changes internal to the simulation. However disruptions are also modeled

as discrete events. For example obsolescence causes all the components of one

type to change state. Other types of disruptive events would an increase in op-

erational frequency, depot failure or the procurement of additional platforms.

72

The technical difference between disruptive events and regular events is that the

disruptive events are not necessarily triggered by state changes within the sys-

tem rather they are determined by criteria external to the simulation. As such,

external events must be defined by the analyst either specifically or randomly

during simulation initialization.

Platforms at the operator Platform with broken part Replace the broken part

Repaired platform at the

warehouse
Repair the broken part

Replacement platform from the

warehouse

Repaired part can be

reused

Begin

Repeat

R
e
p
e
a
t

Figure 16: Overall logic flow of FLoRA DES

At this point it is sufficient to state that a discrete event simulation can be formu-

lated for assessing the system’s performance, cost and flexibility. Chapter two will go

into much greater detail on the formulation of the Fleet-wide Level of Repair Analysis

Discrete Event Simulation (FLoRA DES).

1.9 Heuristic evaluation

For small scale problems using a discrete event simulation or an agent based simu-

lation may be feasible. However, typical runtimes for these types of models range

from a couple second to several minutes per case. For higher fidelity versions the

computational cost can be even greater. In general for a system with the complexity

73

level of an SoS the number of moving parts and decisions that must be considered

at each time step in the simulation requires an enormous amount of computational

power. Given the expected size of the design space, even a simulation that takes a

fraction of a second to run will result in a design space exploration that takes months

to finish. While a few months is frequently acceptable, increasing the scope of the

problem even slightly can result in an analysis that could take lifetimes. For example,

some military capabilities require on the order of one hundred different tasks. If the

decision making process is reduced to simply two choices for each task the resulting

design space has 2100 (about 1030) alternatives. Given that even the best simulations

on the best computers can only do several thousand runs per second, even a very op-

timistic estimate of the total run time (between 1015 and 1020 years)would be greater

than the age of the universe (13 billion years). The same logic would apply to a

maintenance planning problem with 100 different component, each of which has two

possible maintenance options. In general, this issue of excessive simulation costs is a

very real issue for large scale complex systems. Therefore, if the goal is to implement

an architecture as quickly as possible analysis methods that take years to complete

are not preferable, rather there must be an alternative to computationally expensive

dynamic simulations.

Cares [36], in discussing complex adaptive military systems, suggests that “when

assessing complex systems, it is not possible to know the odds, regardless of the

amount of information,” he recommends that “it is better to understand a system’s

dynamics”. This recommendation leads one to believe that no matter how well one

models the system’s behavior it will always deviate in some un predictable way. The

best that can be done is to develop indicators of favorable emergent behaviors and

design for those. This would indicate that lower fidelity methods would be acceptable

here.

74

As mentioned earlier, traditional LoRA prescribes the use of heuristics to quali-

tatively down select the number of alternatives before using more quantitative com-

putational methods. In this way the number of architectures that get fully evaluated

is down selected in order to minimize the computational cost. To define heuristics,

“heuristics are strategies using readily accessible, though loosely applicable, infor-

mation to control problem solving in human beings and machines”.[123] In essence

solving a problem with a heuristic is the process of using less than optimal solutions,

experience, and time saving approximations to make a decision when using more ac-

curate methods is not efficient enough. It is a trade off between optimality, accuracy

and precision for efficiency and speed. As Koen states in his definition of the engi-

neering method,“The engineering method is the use of heuristics to cause the best

change in a poorly understood situation within the available resources.”[94] This is

doubly true of SoS problems where they are never fully understood and the available

resources are never truly enough. Therefore, if suitable heuristics can be formulated

than they could be used to perform the initial design space down selection before

higher fidelity simulations get used. While rules of thumb and qualitative guidelines

frequently make good heuristics, the goal of this thesis is to develop a quantitative

and repeatable method.

The field of computational problem solving has a number of ways of using heuris-

tics to solve problems that are too big for brute force. Some example problems

include, the 8-puzzle, and the traveling salesman problem.

1.9.1 8-puzzle

Most children are familiar with this simple puzzle game. (figure 17)

The goal is to arrange the tiles in order from 1 to 8 with the blank spot in the

corner by moving one tile at a time. Since the average number of moves to solve

the puzzle is 22 and the average number of possible moves at any step is about 3, a

75

Figure 17: Initial state and end state of the classic 8-puzzle

search through every possible path would have 322 ˜1010 different possibilities. The

problem to be solved is what is the minimum number of moves required to solve the

puzzle from a given state. This is similar to SoS design problems in that evaluating

each solution is computationally difficult and there are too many possible solutions to

evaluate them all in a reasonable amount of time. Therefore heuristics are used to get

a solution that is close enough. Two commonly used heuristics are used for this type

of problem by solving a simplified version of the problem with relaxed constraints.

1. Removing the constraint for the tiles to stay on the board allows one to solve

the puzzle by moving each tile exactly once. The solution is then equal to the

number of tiles out of place.

2. Alternatively by removing the constraint that only one tile be moved at a time,

allows one to solve the puzzle by moving each tile equal to the number of spaces

it is distant from its desired location. Therefore the solution is equal to the

total displacement of all tiles.

The heuristics are used to reduce the number of solutions fully evaluated by dis-

carding solutions that are heuristically poor. While far from accurate in terms of the

76

actual number of moves required to solve the puzzle, both of these heuristics provide

a conservative estimate on the solution, and algorithms implemented with them have

been shown to perform several orders of magnitude better than the brute force ap-

proach in terms of the total number of alternatives evaluated and the computation

time. [133]

1.9.2 Traveling salesman problem (TSP)

Another classic computational problem, that is solved using heuristics is the traveling

salesman problem. TSP models the shortest path a salesman could take to visit every

city on a map. To demonstrate how large the solution space is, a TSP with 20 cities

has 20! possible solutions which is about 1016. The accepted heuristics for solving this

problem revolve around the method for searching the solution space. For example,

one could use a greedy heuristic and assume that starting at any city the next city

to visit is the next closest one. This is a simplified version of the problem and

tends to perform well up until the last few steps which tend to be less than optimal.

Alternatively a better heuristic would be that at each city, choose the next city based

on a TSP solution of the remaining cities. This heuristic is determined by solving a

sub-problem, the TSP of fewer cities, and tends to work better than the first option.

[133][65]

For any problem where the solution space is too large to evaluate directly, heuris-

tics can be developed to make the search viable. This can be done in one of two ways:

relaxing the problem or solving a sub-problem. Either way as long as the heuristic

is easier to compute than the true solution, and is reasonably related to the actual

value, the resulting search will be much more efficient. Therefore, the next question

is what types of heuristics are suitable to SoS evaluation and more specifically to the

multi-platform maintenance planning problem.

To summarize, the first possible source of heuristics is by asking the subject matter

77

experts (SMEs) that would’ve been making the down selection decisions themselves.

Their qualitative input could be used to inform a quantitative set of rules to use in

estimating the performance of each solution. The problem with this is that SMEs

capable of providing that kind of information for an SoS are few and far between,

making this approach unreliable at best and certainly not repeatable.

Moving on, the field of computational problem solving suggested two possible

methods for developing heuristics. The first method is solving a sub-problem or only

solving part of the problem. This would indicate one of two options: either only

evaluating some of the metrics, or only running a partial simulation. If the metrics

are sufficiently unique then only evaluating a partial set of them will result in a poor

design space analysis, therefore running partial simulations would be a more feasible

method here. The basic formulation of such a measure would be to run the simulation

until a point where it can be sufficiently determined that the performance will likely be

strictly worse than another option, similar to the way split times are used in downhill

ski racing as an indicator of where on the leader board the current skier is on pace to

finish. In this case it should be possible to discount most of the solutions by arguing

that they are unlikely to succeed in the long run without fully evaluating them.

However, at best this is only likely to reduce the computational cost by one order of

magnitude, and does not guarantee the multiple orders of magnitude improvement

in evaluation time that is promised by the use of heuristics. The second method,

simplifying the problem, can be accomplished by evaluating a simplified version of

the SoS. Although such a model would tend to be overly abstract, it might give a

reasonable estimation. It was mentioned earlier that a static network model could

describe an SoS but would not provide high fidelity estimates. However, such a model

would rely on graph theory to calculate network properties which may relate to the

system’s performance and would be several orders of magnitude less computationally

costly than dynamic simulations.

78

To summarize, the requirement on a heuristic measure can be stated as follows:

• Partial description of the problem

• More computationally efficient than the other available methods

The possible available methods for generating heuristics are:

• Ask subject matter experts

• Evaluating a simplified model

• Partial simulation

• Partial evaluation of metrics

Of the four options, a simplified model would be ideal if it could be shown that

such a model sufficiently represented the problem. One such abstraction of an SoS

that has shown some merit in the literature is the network of connections between the

actors in the system. This makes a fair amount of sense given that an SoS is defined

as a set of independent entities that must work together to achieve a goal. A network

is a mathematical description of those interactions that can be evaluated using graph

theory, which is more computationally efficient than a dynamic simulation. Therefore,

it can be hypothesized that network properties are heuristic measures of SoS value

and can be used in place of computationally expensive dynamic simulations.

Chapter 3 will describe a network based framework for measuring SoS flexibility.

This will be used along side the simulation described in chapter 2 to conduct the

experiments in chapter 4 comparing simulated measures of performance to network

properties. If a relationship can be found, then the network properties will be used to

conduct a design space exploration and hypothesis 2 will be considered substantiated.

79

Figure 18: Design-oriented network analysis framework

1.10 Network modeling

If networks are to be used to describe systems of systems, then a guidelines for doing

so must be defined, therefore the following will be a brief survey of the literature on

SoS network modeling. The purpose of doing this will be to gain insight for how a

network model of the multi-platform maintenance system can be formulated.

1.10.1 A Network Theory-based Approach for Modeling a System-of-
Systems

Han and Delaurentis [82], applied graph theory to the study of aviation transportation

networks. The design problem was to design a network that is cost efficient, robust

and scalable. The approach was to introduce network connectivity analysis into an

optimization framework. An evolutionary algorithm was used to explore the space

of feasible network topologies while each network was evaluated for performance as

well as subjected to a set of disruptive scenarios to determine whether the network

satisfied the robustness and scalability criteria. (Figure 18)

As a case study, a measure of transportation efficiency was developed that is the

80

normalized average weighted shortest path of the network, which in layman’s terms is

a measure of how the demand on the network is distributed over the possible paths,

similar to the measure of divisibility described earlier. Additionally, centrality mea-

sures were used to identify critical airports in the North American air transportation

system. The study concludes by calling for more work to be done in identifying a set

of evaluation metrics for SoS networks. The value of this study is that it suggests

that there are, in fact, network properties that relate to the flexibility of the system.

1.10.2 A Modeling Process to Understand Complex Architectures

Balestrini [18] used graphs as a description of the activities that link together to

provide a capability. He states that “network models are one of the most extreme

forms of models, in that they simplify and abstract to the maximum level possible, yet

retain the essence of the system being studied, and can therefore help in understanding

that system’s behavior and characteristics.” Cycles in the graph represent whether

the capability is achievable or not. Graph theory is then used to calculate a set of

network metrics that are used to compare two alternative systems of systems and

determine with high confidence which one will perform better. Since the focus of

the evaluation is on the cycles in the graph, the measures used are the functional

cyclicity, CNE, PFE, node cyclicity, and the Fiedler vector, which are indicators of

the number of cycles in the graph, and the stability of the network. In addition, the

most important nodes were identified for the purpose of determining which systems

require the most attention when developing a modeling and simulation environment.

The nodes were ranked by, PFE, FV, indegree, outdegree, and clustering coefficient.

The rankings were tested on random boolean networks, and it was found that the

inverse PFE and absolute FV performed the best. (see Appendix A for graph theory

overview) In summary, this work compiled a list of generic graph theory measures

that may relate to the system’s performance.

81

1.10.3 ARC-VM: An Architecture Real Options Complexity-Based Val-
uation Methodology for Military Systems-of-Systems Acquisitions

Domercant [53] developed a measure for SoS architecture complexity using network

properties. Based on the assumption that the complexity is a result of systems col-

laborating and sharing resources, an analysis of the underlying network was logical.

The measurement is broken into four sub-measures

1. Functional distribution complexity is the distribution of functionality across

the unique systems. A functional integration exponent is used to quantify the

difficulty involved in integrating the systems. One approach is to quantify this

by the connectivity. [148]

2. Functional process complexity measures the distribution of systems across the

functions. This is quantified by the number of possible paths through a program

control graph of the process, via a measure called cyclomatic complexity. [108]

3. Resource state complexity measures the interactions based on the number of

resource exchanges. One method for quantifying this effect is to determine how

the resource sharing network will react to local disturbances. A number of

measures can be used including PFE, CNE, CPL, clustering, graph energy and

algebraic connectivity.

4. Resource processing complexity is a measure of the interactions based on the

magnitude of the resource exchanges. It is quantified in the same way as the re-

source state complexity, except using an adjacency matrix weighted by pairwise

interoperability instead of a matrix of need-lines.

To summarize, this work used a similar set of graph theory measures as the

previous work, but also gives some guidelines as to how the network models

should be formulated.

82

1.10.4 The Information Age Combat Model

Cares [37] uses a graph theory approach to analyzing network operations. He proposes

that any military force can be decomposed into four categories. Sensors receive signals

and relay the information to the deciders. The deciders assess the information and

determine the present and future arrangements of the other nodes. The influencers act

on the information received from the deciders. Finally, the targets do not generate or

use information but none the less are still important. The resulting information flow

network can be used to study how different network metrics relate to the behavior of

the military system of systems. This decomposition of networked entities is primarily

relevant to military systems, however the concept categories of entities should be

applicable to the maintenance planning problem.

1.10.5 Department of Defense Architecture Framework

Architectures are a convenient and documented way of describing a system. An SoS

architecture is defined in ANSI/IEEE 1471-2000 [9] to be “The fundamental orga-

nization of a system, embodied in its components, their relationships to each other

and the environment, and the principles governing its design and evolution.” The De-

partment of Defense Architecture Framework (DODAF) [116] was created to aid in

design and decision-making for large and complex systems and systems of systems in

a capability-based context, by providing a repeatable and documented method for de-

scribing the systems. The framework is divided into categories of architectural views:

all-view, operational view, systems view, services view, standards view, data and in-

formation view, project view, capability view. The views are intended to describe

everything from a graphic overview of the functionality of the system, the resource

sharing dependencies, the list of tasks and who must do them, all the way down to

the technical details on the communications systems. Many of the architectural views

are network descriptions, such as some of the operational views and system views.

83

These views can be used to inform a network model of the SoS. In general though,

the problem with using architectures for a design space exploration, is that they tend

to be better for communicating how a SoS works, than for generating alternatives or

performing automated evaluations.

1.10.6 Dynamic network analysis

There is literature on dynamic network analysis [38, 40, 39] that suggests the use

of a network with probabilistic edges for describing complex, dynamic organizations.

It is best suited for use with social networks that are in flux such as terrorist or-

ganizations. An SoS can be considered a dynamic organization in the sense that it

exists in a changing environment and must evolve and adapt, therefore this analogy

makes a certain amount of sense. In this method, the organization is described by a

meta-matrix which is a set of linked networks. Changes in one network are assumed

to cascade into the other networks. Therefore the focus of the analysis is on metrics

derived from multiple cells in the meta-matrix. Each network in the matrix is a com-

bination of the relationships between agents, information, tasks, and organizations.

The relevant sources of change in the system are identified and the corresponding

cells in the meta-matrix are chosen to evaluate. Once the interactions between each

network are defined then they can be evaluated using traditional network evaluation

methods, such as graph theory.

The meta-matrix methodology is based on a previous method by Krackhardt

and Carley [98] for modeling the structure of an organization. The organization is

decomposed into three types of elements: agents, tasks and resources. Agents are the

actors in the organization, the people or groups that use the system. Tasks are actions

that the agents take in order to generate value from the organization. They could

be steps in a process intended to provide a capability, or they could be independent

actions taken by the agents to improve their position in the organization. Finally,

84

Figure 19: DoDAF overview [116]

85

Figure 20: Design-oriented network analysis framework [38]

86

resources are objects of value in the organization. They can be physical resources like

aircraft or spare parts, information, or even skills that are possessed by the agents.

The three sets of elements are then used to generate a multi-layered network

description of the organization. The precedence matrix (P) is a network relating

tasks to each other. Generally it describes the order of the task chain such that if

task i is followed by task j then Pij = 1. The commitment matrix (C) relates tasks to

resources such that if resource j is required or designated for task i then Cij = 1. The

Assignment matrix (A) relates agents to task in a similar way to the C matrix. The

network matrix (N) is called as such due to relationships between people as being the

most common use of the term network. It describes the interrelationships between

agents. This can represent friendship, work groups, resource sharing and many more

relationships. Finally the skill matrix (S) relates agents to resources, describing who

possesses which skills.

The interesting aspect of this methodology is that the basic matrices can be com-

bined using matrix multiplication in order to generate even more detailed descriptions.

Even though three of these five matrices are not square, any matrix can be multiplied

by its transpose because the inner dimensions will match. For example AA’ will be a

square matrix which describes which agents share a task in common. Similarly PP’

will describe the dependencies of tasks on one another. Since P is a square matrix

APA’ is a valid matrix and combines the information in both matrices and describes

which agents are dependent on which other agents to finish their tasks.

1.10.7 Section summary

First, multiple layered networks will likely provide a more detailed description of the

SoS than a single network model. As a general rule, the number of different possible

networks will be all the possible combinations of the different types of entities that

are being modeled. (n
2−n
2

+ n). For example, the PCANS method [98] considered

87

three types of entity, resources, tasks and agents, therefore there are a maximum of

six different matrices. However, Krackhardt considers the resource to resource rela-

tionship to be irrelevant, therefore the PCANS method uses five matrices. Using this

style of method, each matrix can be used to describe a number of different relation-

ships, therefore it is up to the analyst’s discretion to use as few or as many network

descriptions as they like. For the design of systems where architecture definition is a

required product, it would make sense to use something like DoDAF to inform which

networks to generate.

With regards to the minimum number of different entities that should be modeled,

it can be assumed that agents and tasks must be differentiated. Since a capability

is defined by a set of tasks it is logical to require that network model. Additionally,

an argument can be made that agents of some sort must be modeled in order to

determine the performance of specific tasks. As for resources, it is sometimes the

case that they change hands so rapidly that the time scale on changes in the resource

based networks are sufficiently small that they don’t provide meaningful insights on

the problem. This is the case with maintenance systems where the resources are

the actual platforms and spare components. These change location so frequently

compared to the rate at which depots change or components go obsolete that the

resource to agent relationships are transient in comparison. However, in the PCANS

method, resources correspond to skills or knowledge possessed by agents, which tend

to be more static, therefore a network model of resources makes more sense in such

a scenario. To summarize, tasks, agents and resources can be considered the basic

building blocks of an SoS network model. However, it is always possible to model

different types of elements separately, making the possibilities endless.

Finally, when measuring the flexibility of the SoS it is worth being careful as

to which network measures are used and how the edge weights are defined. First,

probabilistic edge weights are good for measuring dynamic parts of the system. For

88

example, when counting paths for the purpose of measuring divisibility, a probabilistic

approach would consider the likelihood that a path exists given a set of possible

changes. Second, when measuring volume flexibility, it is best to define edge weights

by the time or capacity that it will take to move along that edge, such as the mean

time to repair a component and ship it to the next site. In this way the measurement

of resource flow through the network makes more sense. Third, a task chain is in

essence a model of the steady state of the system, therefore the spectral properties

relating to stability and synchronization in the network can logically be applied here.

It should be noted though that spectral properties are only valid on a square graph, as

the eigenvector problem only has a unique solution for square matrices. Only networks

relating like type entities (ex: agents to agents) will result in square matrices.

1.11 Design space exploration

Another alternative to evaluating all possible designs with a simulation would be

to be more selective of the designs that do get evaluated. This would fall into the

category of strategic down selection or design space exploration techniques. Many

of the methods described in this section can be used along side heuristics for even

greater effect.

1.11.0.1 Full factorial

The most basic of design space exploration methods is the brute force method of

just evaluating all the possible solutions. The problem with this is that for design

spaces with continuous variables there are technically an infinite number of solution.

Similarly, for problems with extremely large design spaces such as the maintenance

planning problem, the amount of time to evaluate the entire design space could take

many years, even with a very fast model. However, for fully discrete design problems

of a manageable size, this is clearly the best method.

89

Iacobucci[86], attempted to develop a method for performing a full factorial analy-

sis on SoS design spaces called the Rapid Architectural Alternative Modeling (RAAM).

The basic idea was to decompose the SoS’s main capability into a hierarchical tree of

sub tasks, down to the leaf task which are performed by single systems. In theory, the

performance values for these leaf tasks are known and independent of the architecture

of the SoS since they are single system problems. These values are then aggregated by

a series of functions until only a single high level SoS metric of effectiveness remains.

The aggregation functions are supposed to account for the interactions between the

systems in the effort of performing the capability. The result is a blazing fast evalua-

tion of each architecture that can be used very early in the design process to evaluate

billions and even trillions of architectures in short order. Technically speaking, a tree

is a type of graph which has no cycles, therefore this method has the added bonus of

possibly making good use of the network theory discussed previously. However, the

biggest issue with RAAM, is that a method for developing the correct aggregation

functions was never defined. When the task turned out to be too difficult, RAAM

was abandoned as a viable method.

1.11.0.2 summary

1.11.0.3 Monte-carlo simulation

The next logical step would be to evaluate a fraction of the design space and then

down select from that set, only keeping the solutions that are not strictly worse

than any others. If the evaluated set is chosen randomly, the actual best solution

is assumed to be in the neighborhood of the best evaluated solutions, therefore a

refined search can be conducted on these smaller spaces. However, this assumption

falls apart when the design space is discrete and discontinuous. When it is discrete,

there is not necessarily a relationship between a solution and its so-called “neighbors”

and the discontinuities ensure that there is no way to predict where the actual best

solution will be based on a random sampling. Alternatively, a Monte-Carlo simulation

90

Figure 21: Example of task decomposition for RAAM evaluation

91

assigns probability distributions to the design factors, and the resulting distribution

is a reasonable approximation of the probable performance of the final product. The

problem with this approach is that for very large design spaces there is no good way to

ensure that all areas of the design space are sufficiently sampled, and since the results

are dependent on the input distributions, for SoS problems where those distributions

are frequently unknown, the results make no sense. [51] However, random sampling

can work at times and for the time being will be considered as a baseline method of

design space exploration.

1.11.0.4 Design of Experiments(DoE)

Now consider that one intelligently chooses which solutions to evaluate. A DoE at-

tempts to ensure that the design space is sufficiently sampled from the perspective

of the design variables. The results are then statistically fit to a surrogate model, so

that the performance of the solutions that were not evaluated can be estimated. This

method was applied to a combat SoS problem by Ender and Biltgen [26]. A simu-

lation was developed to evaluate the overall performance of the SoS and the design

space was sampled by varying the design parameters of the individual systems in the

architecture. Surrogate models were made using response surface equations and neu-

ral networks so that trade-off studies could be done. The major difference between

their problem formulation and the multi-platform maintenance planning problem is

that they assumed that the architecture was fixed and proceeded to investigate the ef-

fects of changes to the individual systems in the SoS. However, when the architecture

is the focus of the design problem, since it is assumed that most of the component

systems already exist and cannot be changed, the resulting design space is very dif-

ferent and the use of a DoE and surrogates makes less sense. Once again the discrete

nature of the design space makes this difficult, as a DoE functions by sampling the

design variables within continuous ranges. If the design variables are discrete then

92

the only way to sample the design space is to evaluate every discrete alternative and

no time is saved. Additionally, while there are methods that can generate surrogate

models for discrete inputs and discontinuous outputs, the idea of emergent behavior

implies that the performance of the SoS does not necessarily follow from the sum of

systems that went into it. [111] The assumption of emergent behavior implies that

no strong statistical relationship should exist between the SoS architecture and its

performance, which negates the primary purpose of surrogates. Therefore, if the goal

is to generate heuristics, the relationship that must be explored is the relationship

between different sets of output metrics, such as the relationship between network

properties and flexibility measures.

1.11.0.5 Algorithmic design space exploration

The previous three methods all choose to evaluate solutions regardless of whether they

are good or not, and no decisions are made until after all the cases have been run.

However, when it is possible to use heuristics to assist the search, a more selective

approach can be taken using an algorithm to systematically search for better solutions.

These heuristic approaches are most commonly used for optimization in an attempt

to systematically move through the design space iteratively improving the solution as

they search. The result is that the algorithm stops when it can no longer improve the

solution any further, which in theory will be the best possible solution. In doing so,

these algorithms promise to evaluate a much smaller fraction of the possible designs

than other methods. In general there are two types of approaches, those that evaluate

one solution at a time and those that work on a set of solutions. [65] Ultimately, the

goal here is to find a method that can handle discrete design variables, potentially

discontinuous outputs, multiple objectives and is well suited for very large design

spaces.

The first family of single solution algorithms, evaluate the whole solution each

93

time. The most common heuristic for this family of algorithms is to always move in the

direction of a better solution. The direction of best improvement is usually determined

by taking the gradient of the objective function, and the algorithm stops when there

are no more “up hill” directions to pursue. There are two problems with this approach.

First, the computation of the gradient tends to be very computationally costly, and

the gradient may not exist in the case of discontinuous objective functions. Second,

in the case of a function with many local optima, or if there are multiple objectives,

the algorithm’s inability to go “down hill” means that there is no guarantee that

the result is the global optimum. Even if the algorithm is simplified to not use the

gradient, there is no way to escape the second issue with a hill climbing algorithm,

aside from running it multiple times starting from different initial points. [157]

The other family of single solution algorithms attempts to build a solution one

design decision at a time. These algorithms use a heuristic to determine what the

next best step is, such as a greedy heuristic, or by recursively solving the remaining

sub-problem as described in section 1.9. There are once again two main issues. First,

it requires a logical starting point otherwise the result will depend on that initial

decision. For example, the branch and bound method [99] starts from the optimum

of the continuous space to systematically partition the space in order to find the

optimum within the discrete settings of the continuous design variables. Alternatively,

the traveling salesman must visit all the cities at some point, therefore the TSP

algorithm can start at any city. The second issue is that the algorithm must be able

to evaluate a partial solution at every step. However, in the case of most SoS problems,

the evaluation method is usually a complicated M&S environment where a partial set

of inputs makes no sense. [65] In summary, no single solution algorithms are likely

suitable for the multi-platform maintenance planning problem, or SoS problems in

general.

The second family of heuristic algorithms uses a set of solutions, or a population,

94

to converge on the best possible design. As a result of seeing more of the design

space at once, the algorithm is less likely to get stuck in local optima. The differences

between these types of algorithms mainly depend on the way they vary the solutions

and the way they share information between members of the population. One subset

of these algorithms can be called swarming algorithms, because they model the search

through the design space as a swarm searching for the best solution. For example,

the most basic particle swarm algorithm[92] allows the members of the population to

determine their velocity based on the velocities, locations and best known solutions

of each other member in the swarm. Alternatively, the search can be modeled after

bees looking for pollen [128], where some bees are responsible for finding good search

locations, and others are responsible for exploiting those locations, or fireflies looking

for mates[163], where the perceived luminosity of each firefly is a function of distance

and the value of the objective function, and each firefly is attracted to others that are

the most luminous. The problem is that these methods require a measure of distance

between solutions, which in the SoS case is not always possible due to the discrete

nature of the design space.

Villeneuve[159] applied an ant colony algorithm[55] to a discrete system design

problem. In this approach, the design space is modeled as a graph where each node

represents a design decision and the edges are the other feasible design decisions

remaining. Therefore a path from one end of the graph to the other represents a

complete design. The search is modeled after a colony of ants searching for food,

where each ant leaves pheromone along the path that it took to the food. The

amount of pheromone is proportional to the quality of the solution found, and future

ants will tend to follow a similar path. The problem with this approach is that it

is very hard to introduce any knowledge of the problem into the search, since such

heuristics would be used to guide the ants along the path, and therefore require the

evaluation of partial solutions to compute.

95

The other set of population based algorithms model the search after the theory

of evolution [15]. These evolutionary algorithms (EA) assume that the members of

the population compete against one another to advance to the next generation, in

the same way as the theory of survival of the fittest. The differences between EAs

come from the different ways there are to represent a solution, vary the solutions,

evaluate the fitness of solutions, and select the composition of the next generation.

For example, the classic genetic algorithm[84] represents the solution as a string of

bits, and creates new solutions by combining the bit-strings of two parent solutions

with high fitness. Alternatively, the algorithm can be used to evolve a computer

program[96] by representing the solution as a series of functions applied to the inputs,

and variations are done by adding, removing or combining sets of functions. As such,

EAs are very flexible due to many different options available when constructing one.

1.11.0.6 summary

Figure 22 summarizes the different options available for design space exploration.

Full factorial would work if given infinite time, and a DoE to make surrogates would

work if the design space were less discrete. Therefore, as a baseline, random sam-

pling is the only non-algorithmic method available. As for the available algorithms,

traditional approaches also struggle with the discrete and discontinuous nature, as

do most swarming algorithms, which leaves evolutionary algorithms as the best re-

maining option. They are extremely flexible, and easily adaptable to most problems

if the right configuration is used. To make an analogy, EAs are like the tofu of the

optimization world in that they can be used for any problem as long as the right

seasoning is used. This leads to a conjecture that evolutionary optimization is an

appropriate method for handling large discrete and discontinuous design spaces such

as systems of systems.

96

Random sampling

Design of experiments

Single alternative
(Gradient based)

Full factorial

Swarming algorithm

Evolutionary algorithm

Su
it

ab
ili

ty
 t

o
la

rg
e

de
si

gn
 s

pa
ce

s

H
an

dl
e

di
sc

re
te

a

lt
e

rn
a

ti
ve

s

R
ep

re
se

nt
at

io
n

of

di
sc

on
ti

n
ui

ti
es

Unlikely to
perform well

Likely to perform
well

Figure 22: Summary of design space exploration methods

97

1.12 Evolutionary algorithms

Given that EAs are extremely versatile, some thought must go into how an EA should

be configured. Ultimately, the choices will depend on the nature of the problem,

but some generalizations can be made for most SoS design problems. Each EA is

essentially comprised of the following five functions.

• Solution representation

• Population initialization

• Evaluation

• Selection

• Variation.

1.12.0.7 Solution representation

For the purpose of representing the design space in a way that the EA can understand,

there are two options that make sense for this problem.

• Binary string

Each design variable is encoded in zeros and ones, then the bit-strings are

concatenated to represent a single solution. This type of representation is par-

ticularly efficient for problems with a lot of boolean variables such as, do task A

or not, or system A and B are linked or not. Binary strings are also well suited

for design variables with discrete settings, such as the maintenance site where

a particular component will go to get repaired.

• Real value vectors

Alternatively, each design variable can be represented by its actual value instead

of converting it to a binary string. This is a more logical representation for

continuous variables such as a component’s failure rate or a depot’s labor rates.

98

Fogel and Ghozeil [66] proved that for representations that are bijections (rep-

resentations that can be translated from one to another), there is no advantage in

choosing one type over the other, therefore it makes sense to choose something intu-

itive. For this problem the network topology is easily represented by its adjacency

matrix. This is essentially a real valued matrix, which the EA can handle just as

easily as a vector. For the system specific parameters, some are boolean and some

are not therefore, it makes sense to use a real valued vector.

1.12.0.8 Population initialization

Unless guidelines are used to initialize the algorithm with more favorable solutions,

the only remaining option is to choose a random population. However, there is one

guideline that makes a lot of sense in the context of systems engineering design prob-

lems. The baseline solution, if it exists, should always be in the starting population.

This way an argument can be made to the customer that the resulting best solution

is both an evolution of the baseline and exceeds its performance. [65]

1.12.0.9 Evaluation

The evaluation step of the EA is where the performance metrics are translated into a

measure of solution fitness. For single objective problems, the model evaluation can

be used directly as the fitness function. However, for this problem the model will

return multiple metrics which must be aggregated in some way for fitness evaluation.

The available methods can be separated into three categories as follows.[68]

1. Weighted sum

Each metric is given an importance factor and the fitness is the weighted sum of

the metrics. Additionally constraints can be handled via threshold functions on

the weights such that if a metric does not meet the constraint then its weight is

set to zero. A hard threshold sets the entire fitness value to zero if the constraint

99

is violated.

2. Single criterion

Unlike in the final decision making process where all metrics must be considered

at the same time, an EA will run through many generations making minor

decisions at each point. Therefore, it has the freedom to consider one criterion

at a time. Among the possibilities are that the EA cycles through the metrics

one per generation, uses a randomly selected metric at each step, or even a

randomly chosen linear combination of the metrics. Alternatively, if the metrics

have discrete settings then a lexigraphic approach can be used, where the metrics

are ranked and the solutions are then sorted in a similar way to alphabetization.

3. Pareto based

The Pareto front of a design space describes all the solutions that are not strictly

worse than any other solution. The remaining solutions are considered “dom-

inated”. The simplest form of this would be to simply sort the solutions by

non-dominated ranking. The non-dominated solutions are removed and given

rank 1, then the next set of non-dominated solutions are removed and given

rank 2, and so on and so forth.[74] The problem with this is that for problems

with more than two metrics, the number of rank 1 solutions can be very large

therefore, there are a number of ways of increasing the granularity of the rank-

ing. One way is to determine rank by the number of solutions dominating it

within the population. [67] Another way is to use a hybrid method which ranks

the solutions within each Pareto rank using one of the above two methods. The

issue with increased granularity is that it tends to favor certain regions of the

Pareto front. However, early in the design process, when preferences are still in

flux, it makes the most sense to sample the Pareto front evenly.

100

To summarize, without subject matter experts to determine the weighting sce-

nario or at the very least rank the metrics, only Pareto based methods are viable.

Additionally, since the goal is to down select the design space and keep a small set

of optimal solutions for further analysis, a method that considers multiple solutions

equally is desirable. Therefore, for the maintenance planning problem and most likely

SoS design problems in general, Pareto based methods are ideal.

1.12.0.10 Selection

Once the fitness has been evaluated, the members of the current generation that will

advance to the next generation or at least be allowed to vary must be determined.

There are two types of selection operators, deterministic and stochastic, and the only

functional difference between them is the amount of selective pressure applied to the

population. This relates to the rate at which the population will lose diversity, with

stochastic methods tending toward slower convergence.[14] It can be assumed that

slower convergence favors problems with large design spaces and many local optima

as it allows more time for the algorithm to find the best solutions. In general though

any of the the following methods will work well.[15]

1. Proportional

The solutions advance to the variation step proportional to their fitness com-

pared to the rest of the population. If done deterministically, the proportions

are used to determine the exact make up of the advancing population. If done

stochastically, the proportions are used as a probability distribution of the ad-

vancing population. [84]

2. Tournament

Pairs or groups of solutions are compared, and the better solution is consid-

ered the winner and advances. Alternatively, many tournaments can be con-

ducted with replacement, and the advancing solutions are the ones with the

101

most “wins”. This tends to be a stochastic method because, the competing

pairs are usually determined randomly.

3. Rank-based

Instead of using fitness to determine the probability of reproduction, the solu-

tions are ranked ordinarily and are chosen to reproduce as such.

4. Elitism

While not a true selection operator, it is a possible addition to any selection op-

erator. In this case the N best solutions are automatically advanced to the next

generation and are exempt from the rest of the selection process and variation

as well. This is a way of remembering the current best solution. It was shown

that elitism improves the performance of multi-objective genetic algorithms by

preventing the loss of good solutions. [166, 132] However, it does not always

work well with Pareto based evaluations where there are usually many elite

solutions.

1.12.0.11 Variation

Finally, in order for the algorithm to explore the design space it must have an operator

for varying the population. There are two options for this as well.

• Mutation

Each design variable is given a random chance of mutating. If it mutates, then

a randomly distributed value is added to that variable. If binary strings are the

chosen representation, then this is usually done on a bit to bit basis and instead

of adding a value, it is simply flipped.

• Crossover

First, two parent solutions are selected, then some number of their variables are

swapped to make two offspring solutions. This is modeled after the way genetic

102

material is combined in the process of mating. The offspring get half their genes

from the mother and half from the father. The theory behind crossover’s effec-

tiveness is called the building block hypothesis [84] . It states that the algorithm

identifies segments of the genome, or building blocks, that tend towards good

solutions, and recombine them until the population converges.

The random nature of both variation operators is one way to ensure that the

algorithm is likely to find the global optimum or at least get very close, therefore

either is likely to work. However, consider the idea of emergent behavior in a SoS.

It essentially states that the whole does not equal the sum of the parts, which seems

to be in contradiction to the building block hypothesis that says that the genetic

makeup of the solution, or genotype, determines the optimality. The alternative is

to look at the phenotype, or the manifestation of the genes, to determine optimality,

which seems to be more consistent with the problem definition.

1.12.0.12 Non-dominated Sorting Genetic Algorithm II

To summarize, for this design problem an EA that will return a good sampling of

the Pareto front is preferable. Other than that there were no strong preferences for

what other options should be chosen. Additionally, given that the values that will

be used for the design case study in chapter 5 will be mostly notional, a perfectly

tuned algorithm is not necessary. Therefore, in the interest of not reinventing the

wheel, a well documented EA that has been shown to perform admirably will be

used. For that, the Non-dominated Sorting Genetic Algorithm II is a multi-objective

genetic algorithm that was developed to reduce the computational complexity of

other non-dominated sorting algorithms, include elitism, and eliminate the reliance

on sharing parameters to maintain Pareto front diversity. It was shown to find a

”much better spread of solutions and better convergence near the true Pareto-optimal

front compared to other multi-objective EAs. [50] Additionally NGPM (NSGA-II

103

Program in Matlab) [145] is an NSGAII software package compatible with Matlab

that interfaces very nicely with the discrete event simulation described in chapter 4.

1.13 Flexibility based SoS design methodology

To summarize the chapter, a methodology for designing flexible systems of systems

can be proposed. It is built onto the skeleton of a methodology described in section

1.5 by filling in the gaps with knowledge of the following three hypotheses.

1. Including a measure of flexibility in an evaluation of an SoS will result in designs

that perform better in the presence of disruptions and changes.

2. Network properties are heuristic measures of SoS value and can be used in place

of computationally expensive dynamic simulations.

3. Evolutionary optimization is an appropriate method for handling large discrete

and discontinuous design spaces such as systems of systems.

Problem
definition

Design
evaluation

Design space down
selection

Objectives

Capabilities

Baseline

Models

Performance

Cost

Flexibility

Heuristics

Network
model

Network
properties

Evolutionary
optimization

Pareto front

Apply heuristics

Decision making

Scenario

Multi-objective
decision making

Implementation

Observation and reevaluation

Disruptions

In
cr

ea
si

n
g

m
o

d
e

l f
id

el
it

y

Figure 23: Methodology for designing flexible systems of systems

104

The methodology is made up of four steps that are repeated at intervals for the

lifetime of the system. The four steps are as follows.

1. System definition

The boundaries of the system must be defined, including all the component

systems and how they are intended to behave, and what kinds of capabilities

the system should have. Then, the expected disruptive conditions must be

considered. While it is likely impossible to fully list all the possible disruptions,

a representative list will be used to evaluate the system’s flexibility. Finally, the

baseline of the system must be defined. These are the attributes of the system

that must remain fixed, everything else will be allowed to vary and can be used

to generate alternative designs.

To relate back to the maintenance planning problem, the system is defined by

a network of operators, depots and warehouses that all work together to keep

the fleet of aircraft functional. For this study, the problem has been scoped

down to only consider the maintenance of the on board mission computers of

the aircraft. As for disruptions, it is expected that component obsolescence,

increases in force structure and operational frequency, and the loss of depot

could have serious impacts on the performance of the systems. Finally, while

the primary objectives are to minimize O&S costs and maximize availability,

flexibility is considered as well for which three different measures were defined.

2. Design evaluation

This step describes the modeling process where computational simulations of

the system are developed in order to assess the quality of potential designs

with respect to the objectives. In addition to traditional models of cost and

performance, a model for flexibility is developed here that is used in evaluating

the system’s response to disruptive events. Finally, since it is expected that

105

these simulations will be very computationally inefficient, the second half of this

step involves the formulation of heuristic measures. It was hypothesized that

network properties would be suitable heuristics for the flexibility. Chapter 2 is a

documentation of the discrete event simulation that was developed for the multi-

platform maintenance planning problem, and chapter 3 is a documentation of

the corresponding network model.

3. Design space down selection

In this step an evolutionary algorithm is used to efficiently find the set of non-

dominated designs. This Pareto front is then set aside for further investigation.

If the reduced design space is still too large then the methodology returns to the

previous step for a higher fidelity model and repeats the optimization process

until the design space is sufficiently small.

4. Decision making

Decisions can be made and the chosen system architecture is implemented.

This is done by using knowledge of the current scenario in order to tradeoff

between the different objectives and pick the design that is best suited to the

given customer’s priorities. Lacking a real customer for the multi-platform

maintenance system or the resources to implement it, the analysis done in this

document will not include this step.

5. Observation and reevaluation

Finally, since the design of an SoS is never truly complete, once the system is

implemented it must be continually observed. Hopefully, by considering flexibil-

ity, the system will be able to handle most disruptions and changes. However,

at some point it is expected that the system will have evolved past the point

where it no longer truly resembles the original design. At this point, the design

106

methodology should be revisited and the system reevaluated for the next time

a change needs to be made.

107

CHAPTER II

FLEET WIDE LEVEL OF REPAIR ANALYSIS DISCRETE

EVENT SIMULATION (FLORA DES)

2.1 Model Overview

The Fleet-wide Level of Repair Analysis Discrete Event Simulation (FLoRA DES)

tracks the state of items in a maintenance logistics system. The model assumes two

levels of indenture.

1. Platform

The simulation calls them platforms in order to be generic, and can represent

any part of the end item, but in this case it is the complete mission computer

box for a single aircraft. Due to the one-to-one relationship between mission

computers and aircraft it is unnecessary to consider higher levels of indenture.

However, if multiple mission computers can go in an aircraft then a third level

of indenture must be modeled.

2. Components

The lowest level of component considered by the model are the modules of

the mission computer. Failures happen on this level as does obsolescence and

repairs. In some LoRA models the mid level component can themselves fail

however, this model assumes that all components are considered, therefore only

the lowest level of component can fail.

Information describing the components and platforms is tracked in the THING

global variable. Each entry in the THING vector possesses the following variables.

108

Table 2: Contents of the THING global variable data structure

Name Item ID number is generally the index in the

THING vector

condition “functional”, “broken” or “obsolete”

repair (component) The location ID number of the depot where it will

be repaired

replace (component) The location ID number of the depot where it will

be replaced

operator (platform) The location ID number of its operator

mtbf (component) Its mean time between failures

prodCost item unit cost

life (component) The total amount of operational time measured in

days

inopsince The simulation time when the item most recently

began operating

super (supercomponent) The platform that a component belongs to. If the

item is a platform or a lone component then super

= name

components (platform) Vector of component ID numbers

type the type of item (example: ‘C1’, ‘P2’)

weight Item net weight

obsolete (component) Boolean variable, 1 if the item is obsolete

failure (component) The amount of operational time that this compo-

nent will actually last for

109

location Location ID number where the item can currently

be located

To add an item to the THING vector the GenThing function is used. The item is

added to the end of the THING vector, life is set to zero, and failure is set to a value

randomly sampled from the exponential distribution with mean MTBF. Location

must be set manually.

GenThing(name, repair, replace, operator,...

MTBF, production cost, type, components, weight)

THING(end).location = loc;

Information describing each component type is stored in the PARTS global variable.

Each entry in the PARTS vector possesses the following variables.

Table 4: Contents of the PARTS global variable data structure

type component type name (example: ‘C1’, ‘DH8x10’)

unitCost procurement cost of the component

mtbf failure rate

weight component net weight

repair the level at which this component should be re-

paired

replace the level at which this component should be re-

placed

Information describing each platform type is stored in the PLATFORMS global vari-

able. Each entry in the PLATFORMS vector possesses the following variables.

110

Table 5: Contents of the PLATFORMS global variable data structure

type Platform type name (example: ‘P1’, ‘F18C’)

components Vector of PARTS index numbers of each compo-

nent that is required for this platform

The model considers three echelons of maintenance in addition to the storage ware-

house.

1. Operator

2. Intermediate level of maintenance

3. Depot

4. Warehouse

Information describing the state of the locations is tracked in the “PLACE global

variable. Each entry in the PLACE vector possesses the following variables.

Table 6: Contents of the PLACE global variable data structure

Name Location ID number is generally the index in the

PLACE vector

mttr The mean time to perform a maintenance action

queue Vector of item ID numbers representing items that

are awaiting maintenance. For the warehouse a

vector of location ID numbers representing oper-

ators that are awaiting replacement platforms

labor Location labor rate

111

type 0 - warehouse, 1 - operator, 2 - intermediate, 3 -

depot

spares Vector of component ID numbers representing

spare parts

coordinates x & y coordinates

nspares The number of spares that the location ideally

possesses

partsserviced The index in PARTS of each component that can

be serviced at this location

fhPerYr (operator) The operational frequency of the operator mea-

sured in flight hours per year

force Vector of platform ID numbers representing op-

erating platforms at an operator or spares at the

warehouse

functional Boolean variable, 0 if the depot has failed

To add a location to the PLACE vector the GenServer function is used. The location

is added to the end of the PLACE vector with no spares and no jobs waiting in the

queue.

GenServer(name, labor, MTTR, type, coordinates, nspares, partsService, fhPerYr)

The simulation models meaningful behavior using events. Each event represents a

different set of state changes governed by its own logic. For this problem, the basic

flow of logic can be summed up as follows. Platforms exist mainly at the operators

until at some point a part breaks. The platform with the broken part is then shipped

112

to a depot to receive a working replacement at which point it is sent to the warehouse

to await future operations. This is because in the meantime the operator has requested

that a working platform be sent from the warehouse to replace the one with the broken

part. Once the broken part has been removed from the operator it is determined

whether it can be repaired or not. If it is repairable it is sent off to be repaired

otherwise it is discarded. After being repaired it is held at the depot until another

platform arrives that needs a replacement of the same type. Figure 24 summarizes

that behavior.

Platforms at the operator Platform with broken part Replace the broken part

Repaired platform at the

warehouse
Repair the broken part

Replacement platform from the

warehouse

Repaired part can be

reused

Begin

Repeat

R
e
p
e
a
t

Figure 24: Overall logic flow of FLoRA DES

Information describing each event is tracked in the EVENTS global variable. Each

entry in the EVENTS vector possesses the following variables.

• type

The name of the event so the simulation can call the correct event resolution

function. The different types of events are as follows and are described in more

detail in future sections.

113

– repair

– failure

– discard

– ship

– replace

– blockbuy

– obsolete

– upgrade

– fieldmod

– failDepot

– operational shift

• who

The entity that the event is referencing. Can be a location ID number, item ID

number or an item type string

• time

The simulation time at which the event will occur

• cost

The cost associated with this particular event

• amount

Some events require that an amount be specified

• location

Some events require that a location ID number be specified

114

• availability

The platform availability at the time that the event occurs

To add an event to the EVENTS vector the GenEvent function is used. The function

maintains the chronological order of events by adding the new event at the correct

index. That index is returned by the function for reference by the simulation. The

amount and location must be set manually while availability is set when the event

resolves. It should be noted that some events also set cost upon resolution instead of

generation.

N = GenEvent(type, who, time, cost);

EVENTS(N).location = x;

EVENTS(N).amount = y;

Event resolution is controlled by the synchronizer which is a function that iterates

through the list of events, one at a time and runs the appropriate functions associated

with each event. After it is done it updates the time counter which is stored in the

TIME global variable and assesses the availability to be saved for post processing.

In order to set up the initial configuration of the simulation the following input data

structures must be defined.

• platforms = {type, components}

• components = {type, maintenance plan, MTBF, weight, unit cost}

• operators = {location ID, force structure, fhPerYr, labor rate, nspares, MTTR,

parts serviced, location}

Force structure is a vector of length equal to the number of platform types

where each entry represents the number of platforms of the corresponding type

that the operator should get.

115

• depots = {location ID, parts serviced, MTTR, labor rate, nspares, location}

• intermediates = {location ID, parts serviced, MTTR, labor rate, nspares, loca-

tion}

• warehouses = {location ID, force structure, location}

• external events = who, type, time, amount, cost

External events are events that are not triggered by any other event, rather

they are predetermined before the simulation to occur at a specified time.

The set of initialization functions is then run to set up the scenario specified by the

input file. It performs the following operations.

1. Parse the input file to generate data structures that the simulation can under-

stand.

2. Determine each service location’s parts serviced list based on each component

types maintenance plans.

3. Initialize all locations

4. Initialize platforms according to each operators force structure and schedule

their respective failure events.

5. Initialize spare platforms at the warehouses

6. Initialize spare components at each service location

7. Add external events to the event list.

8. Set TIME = 0 and start the synchronizer at event #2, since the first event is a

summary of initialization.

116

At this point the simulation can be run with the predefined stopping conditions.

There are four options for stopping condition as follows.

1. Maximum simulation time, which is the natural stopping condition representing

the life span of the system measured in number of days.

2. Minimum availability, which represents the time of system failure used for mea-

suring flexibility. For example, if the system is considered failed when avail-

ability drops below %65 then 0.65 would be used here. If no minimum value

is desired then a negative value should be used in order to prevent this stop-

ping condition from triggering. This is because zero availability can occur while

negative availability cannot.

3. Maximum number of events, which can be used to specify a condition for iden-

tifying infinite loops in the simulation. If the simulation is working properly

this value should be set to infinity, since guessing the total number of expected

events can be difficult.

4. Errors in the code will cause the simulation to exit unnaturally. At the time of

writing this document there were some errors that occurred infrequently enough

that they were too hard to catch and fix. For example, there were some errors

that occurred approximately once in every 1000 runs of a scenario. When the

sample sizes are only expected to be in the 100-200 case range, it is practical to

skip the failed cases and move on. Therefore, when running the simulation in

repetition mode, the error status output should be checked and all faulty cases

should be discarded.

2.2 Description of individual functions

2.2.1 Repair

117

Table 8: Repair function summary

Variable name Value

type repair

who Component ID number

time TIME + event duration

cost Event duration * Labor rate

amount N/A

t = randexp(MTTR);

GenEvent('repair', 4 , TIME + t, t*laborRate);

This is a fairly simple function since most of the complicated logic is handled before

the component ever arrives at this state. The cost and duration of the repair job is

determined based on the location’s MTTR and labor rate at the time that the event

is scheduled.

repair cost = labor rate ∗ event duration (3)

Event duration = randexp(MTTR) (4)

To repair a component the model assumes that repairing the component essentially

resets its life span. Given the original failure time which is the current age of the

component, the model randomly assigns a new failure time using the exponential

distribution with mean MTBF which is the same way that the original failure time

was chosen. The new life span is added to the old failure time to obtain the new

failure time.

118

new failure time = old failure time + randexp(MTBF) (5)

Next the component is designated as functional once more and is shipped back to

its replace level to be held as a spare until needed. This is done by setting the

condition state variable to “functional” and generating a ship event to the depot

where the component was originally replaced. Finally, the depot checks its queue to

see if there are any jobs waiting. If there are jobs waiting, then an event is generated

corresponding to the entity waiting at the front of the queue.

2.2.2 Replace

Table 9: Replace function summary

Variable name Value

type replace

who platform ID number

time TIME + event duration

cost event duration * labor rate

amount N/A

t = randexp(MTTR);

GenEvent('replace', 5 , TIME + t, t*laborRate);

This function is called when a depot goes to replace a broken or obsolete component

on a platform. The duration is determined using an exponential distribution with

mean equal to the MTTR of the location where the event will take place. The cost

of the job is calculated based on the labor rate of the location. Each of these values

is determined when the event is scheduled and is saved for post processing. (figure

25) The function takes the following steps.

119

1. Find the component in need of replacement

The function locates the first component that is in need of replacement, is

designated to be replaced at this location, and for which a suitable spare can be

found. This is done by looping through the list of components on the platform

and checking the condition and obsolete state variables. If either the condition

is “broken” or obsolete = 1, then the simulation searches the list of spares at

the current location and checks for a component with a matching type. If no

such component exists then skip to step 4.

2. Replace the component

In this step the component is diagnosed to identify the nature of the failure.

The simulation models this behavior by assigning a “cannot duplicate rate” or

“CND rate”. In general this is an estimation of the false alarm rate of failures for

a particular component type, however in order to simplify the problem for this

study the CND rate was assumed to be 0% though the behavior was modeled as

a concession to the research sponsors at NAVAIR. If the failure is successfully

diagnosed the broken component is replaced. The broken component is removed

from the platform by setting its “super” state variable to itself and also removing

it from the list of components on the platform. Then the previously designated

suitable spare is added to the platforms components list and its “super” variable

is set to the ID of the platform. Otherwise, the event “type” variable is changed

to “CND” and the function skips to step 4.

3. Check the broken component

In this step the depot checks to see if the component is repairable, which is

modeled by a percent irreparable rate. This is generally low and from speak-

ing to various subject matter experts it was concluded that 1% was accurate

enough. If the component is repairable, it is shipped to its designated repair

120

location. The designated repair location is determined using the assignDepot

function and a ship event is generated. In the case that the component is

designated to be repaired at the current location, no ship event is generated,

rather the component is added to the back of the current location’s job queue.

If the component is irreparable then it is discarded by scheduling a discard

event. The discard event function simply changes the condition state variable

to “discarded” and the location to “trash”.

4. Check for more components in need of replacement

If there are any more broken or obsolete components on the platform, the depot

will determine where to send the platform next. If one is found, the function

checks three things: whether the component is designated to be replaced here,

whether that location is an operator, and if there are suitable spares here. Figure

26 is a logic table of the possible states and how the simulation determines the

appropriate action. If the the component is designated to be replaced at the

current location then in theory it should stay at the front of the job queue and

immediately get reprocessed. However, if there are no more suitable spares then

it makes sense to send it to a different depot that has spares should one exist.

If no other depots can do the job, then the platform is sent to the back of the

queue instead. This follows the logic that by the time it gets to the front of the

queue again, the depot should have received a new supply of spares. The one

exception is if the current location is an operator. In this case it does not make

sense to send the platform to another operator, since this will result in an a

change to the force structure. Therefore, if no spares are available, the operator

will always send the platform to the back of the job queue.

If the current location is not the designated replace location then it makes sense

to send it to the correct location. However, if the correct location is an operator,

121

then it does not make sense to require that the operators service platforms that

do not belong in their operational force. Due to the nature of the logic of

the model, there can only ever be two components in need of replacement on

one platform at a time; one broken and one obsolete. This happens when

obsolescence occurs when the platform is already in the queue to receive a

replacement component. Therefore, the first component to get replaced will

always be the broken component. In this case, where the obsolete component

will get replaced at the operator, the simulation sends it to the warehouse while

it is still obsolete. When an operator requests a backup platform it will receive

an obsolete one. However, since the platform’s obsolete state variable will still

be equal to 1 the ship function will add it to the operator’s job queue instead

of the operational force. In this way, the obsolete component will be replaced

and then the platform will be functional again.

If no more broken or obsolete components are found the replacement action is

completed by designating the platform as functional. If the current location is

an operator the platform is added directly back into the operational force under

the assumption that when the operator is designated to perform maintenance

it will only perform maintenance on its own platforms and will not send them

anywhere else if it can avoid it. If the current location is a depot, the platform

will be sent to the warehouse to be kept as a spare.

5. Schedule the next job

The final step is to check the queue for the next repair or replace job. If it was

determined that the current platform had another broken/obsolete component

that could be serviced here, the next job will in fact be a continuation of the

current job.

122

Identify a failed

component

Replaced

here?

Spares in

stock?

Replace the

component

CND?

Repairable?

Assign repair depot

then ship

Discard

Yes

Yes

Yes

Yes

No

No

No

No

Additional failed

components?

Determine where to

send the platform

next

Designate as

functional

At an

operator?

Return to operational

force

Ship to warehouse

No

No
Yes

Yes

Schedule next

job

Figure 25: Logic flow diagram for the replace function

Are there spares in

stock here?

Is the component’s

replace level at the

operator?

Is the current

location the correct

replace level?

Ship to the replace

level

false

Ship to the replace

level

true

Ship to the

warehouse

Ship to the

warehouse

Ship to the replace

level

Stay at the front of

the job queue

Go to the back of

the job queue

Stay at the front of

the job queue

Figure 26: Truth table for the replace function when multiple components on a plat-
form need replacement

123

2.2.3 Ship

Table 10: Ship function summary

Variable name Value

type ship

who platform or component ID number

time TIME + shipping duration

cost shipping duration * shipping rate rate

amount N/A

[cost time] = ShipModel(location, destination, who);

GenEvent('ship', who , TIME + time, cost);

The ship function’s primary purpose is to oversee the resource transfer between en-

tities in the simulation. Nothing can change location without passing through this

function, therefore it is designed to handle many different situations. The function is

set up as a series of conditional statements that determine what to do based on the

type of entity being shipped, its condition, current location, and destination.

1. If the entity has no components then it must be a component itself. If its

condition state variable is “broken” then its destination must be the depot

where it will be repaired. In this case it is added to the back of the job queue

at that location.

2. If instead the condition state variable is “functional” then it must have just

been repaired and its destination will be the depot where it was replaced. In

this case it is added to the end of the list of spares at that location.

3. When a component type becomes obsolete, the platform it is on is designated

as obsolete as well. This is done by setting its obsolete state variable to 1. The

124

upgrade function handles where to send the platform next, however the ship

function makes sure that the platform is automatically added to the job queue

of the location it is arriving at. This is relevant when the obsolete component has

been designated to be replaced at the operator to prevent it from accidentally

being added back into the operational force. However, if the destination is a

warehouse then it is added to the warehouse’s “force”.

4. Platforms arriving from the warehouse that aren’t obsolete will always be going

to the operator to resume operations. Upon arrival it is added to the operational

force and the simulation checks its components and schedules the next failure

event. This is done by finding the component with the least remaining life

and determining when that component will fail given the current operational

frequency at the operator. Once determined a failure event is generated and

added to the event list.

time of next failure = min[
time until next failure− current age

operational frequency
] (6)

5. Platforms arriving at the warehouse have always just had a part replaced and

are leaving a depot. The warehouse checks its wait list and if there is an

operator waiting for this particular type of platform it will ship it right away.

The warehouse uses its “queue” vector to hold the waitlist information. In this

case, the queue is an nx2 matrix where the first column is a list of operators that

are waiting for a replacement and the second column is the type of platform

that the corresponding operators are waiting for. If the current platform’s type

matches any of the types in the second column of the waitlist then a ship event

will be generated to send the platform to the first operator waiting for that

platform type. If no operators are waiting for that platform type then it is

added to the warehouse’s supply instead.

125

6. A Platform leaving the operator is always in need of a replacement component

and its destination will always be the appropriate replace depot. Upon arrival

it will be added to the job queue at that location.

As a note, whenever an item arrives at a location and is added to the job queue

there, the simulation checks for any other jobs in the queue. If there are none,

the simulation immediately schedules the arriving item as the next job. (figure

27)

Arrive at designated

location
Component? Broken?

Add to job queue

Add to spares

Add to operational

force

Arriving @

warehouse?

Obsolete?

Arriving

from

warehouse?

Arriving

from

operator?

Anyone in

the wait-list?

Ship to operator

Add to spares

Add to job queue

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 27: Logic flow diagram for the ship function

A short literature review must accompany the formulation of the shipping cost and

duration model. The goal here is not to provide an exhaustive survey of shipping

models but rather to pick one model that works adequately. The first step is to

understand the components of shipping costs which can be taken from a description

of supply chain logistics. The following categories were identified.

• Packing

126

• Shipping

• Documentation

• Inventory

• Warehouse management

• Transportation planning

• Tracking and delivery

[56] Of those only packing and shipping are relevant for the shipping model, since it

is assumed that the shipping support costs are negligible compared to the other costs

being considered in this simulation. As such, Baumol and Vinod [23] identify optimal

shipping as a trade-off between the following attributes for each shipping option.

• Shipping cost per unit

• Shipping time/speed

• Dependability (variance in ship time)

• Carrying cost per unit time

Aggregation of the costs would logically follow as such.

total shipping cost = fixed cost per unit + shipping duration ∗ shipping rate (7)

From the discussion above, it can be assumed that the fixed cost rep-

resents the cost of the packaging and the shipping rate is the cost associated with

the chosen mode of transportation. For this study, the variance in shipping time

is negligible since assuming air transportation, the variance will be on the order of

hours. However, the simulation’s smallest increment of time is in days, therefore the

effects of such small variance will not greatly impact the results.[23] Assuming air

127

travel and since the motivating problem was originally associated with the mainte-

nance of naval mission computers it can be assumed that the items being shipped are

of an order of magnitude equivalent to the AYK-14 mission computer which is the

current standard for the F-18. It is between 36 and 45 pounds and has dimensions

14x10.13x7.63 inches. [156].

Additionally, there is a regulation that when shipping electrical components non-

conductive packaging must be used since the components are electrostatic discharge

sensitive [8]. Depending on the size and weight of the item in question, different

qualities of packaging should be used. For example, the mission computer itself

weighing up to 70 lbs would require a heavy duty box while the component circuit

cards could safely be shipped in a padded mailer. [152]. A quick market search was

done to obtain representative values for these costs [121, 151].

Table 11: Packaging costs

Item value

cost per foot of 24 inch wide antistatic bubble wrap $.2067

amount of bubble wrap per mission computer 16 inches

cost for a 30x20x20 inch heavy duty cardboard box $5.82

cost for a padded antistatic box $4.25

As for transit time and shipping, the model will once again as-

sume air travel exclusively and it will be tuned to the case of naval mission computers.

It is assumed that the typical navy transport jet, the C9B skytrainII, is used. From

this an average cruise velocity can be found which is used along with the distance

traveled to determine the transit time. An assumption is made that it will usually

take about one day extra for processing the package on either end of the transport.

Next a typical cargo load and the cost per flying hour of the particular aircraft can be

found to determine the cost per flying hour per pound of cargo. This is then applied

to the weight of the item being shipped to determine the approximate shipping rate

128

of the item. [41]

Table 12: Air cargo shipping parameters

Item Value

assumed average air speed 500 mph

cargo capacity 60,000 lbs

cost per flight hour $8100 FY14

shipping duration = processing time + distance/speed (8)

shipping cost = packaging cost+(shipping duration)(
item weight

cargo capacity
)(cost per flight hour)

(9)

2.2.4 Failure

Table 13: Failure function summary

Variable name Value

type failure

who component ID number

time -

cost 0

amount N/A

GenEvent(f a i l u r e , 3, 150, 0);

The simulation uses an exponential distribution model of part failure. Each compo-

nent type is assigned an MTBF during initialization. At the same time the functional

life time of each component is calculated by sampling the exponential distribution

129

with mean equal to the component type’s MTBF using the MATLAB randexp func-

tion.

When a platform arrives at an operator to begin operations, the simulation checks

all the components that make up that platform and finds the component with the

least remaining life.

Tfailure = Tlifespan − Toperated (10)

A failure event is then scheduled for only the part that will fail the soonest. This

is in contrast to scheduling the failure of all components in the platform and then

resetting them when one fails. In this case a failure event would be generated for each

component on every operational platform. When one of those components fails the

simulation would have to search the entire event list for the remaining failure events

corresponding to the other components on the same platform, and cancel them. If

the events are not removed then at some later point the simulation would try to fail

a component that is not even at an operator anymore. Even worse would be that

the component has already returned to an operator and has a second failure event

scheduled. When the second failure event triggers, the platform will be asked to be in

two places at once and the simulation will crash. However, to remove the extraneous

events the simulation has to search the entire event list, which is already large due to

all the extraneous failure events for every other platform. This is a computationally

expensive task therefore by only scheduling the soonest failure event, the number of

items in the event vector is minimized, thereby increasing the computational efficiency

of the simulation. When a component fails its state is first set to “broken”, then a

depot is assigned to receive the platform and replace the broken component. If the

part is designated to be replaced at the operator level, the platform stays at its current

location and is put at the end of the job queue, otherwise, it is shipped to the proper

location. Either way it is removed from the operational force of the operator and the

operational life counter is updated for each of the components and the platform itself.

130

This is done by checking the component’s “inopsince” state variable and determining

how long the component was operational for since the last time its life counter was

updated. Since that is the total duration of time in hours, it must be multiplied

by the operational frequency of the operator to determine how long it was actually

running for in days.

life = life+ (TIME − inopsince)fhperyr
365

(11)

If the platform was shipped to another depot, the operator requests a working plat-

form from the warehouse to replace the one with a broken part. Preference is given

to the geographically closest warehouse in order to minimize the wait time. However,

if there are no suitable spares at any warehouse then the operator is placed on a wait-

list to receive a replacement when one becomes available. In this scenario preference

is given to the warehouse with the shortest wait-list. (figure 28)

Component

failure

Assign depot to

perform the

replacement

Replace @

operator?

Add to job queue

Ship to depot

Request replacement

platform from a

warehouse

Yes

No

Remove from

operational force

Figure 28: Logic flow diagram for the failure function

2.2.5 Assign depot

131

Table 14: Assign depot function summary

Variable name Value

action “replace” “repair” or “storage”

who platform or component ID number

depot location ID number

depot = assignDepot(who, action);

This function is called whenever an operator or depot wants to ship a part or platform.

The function takes as inputs the item being shipped and the mode that the assignment

should consider and returns the location where the item should be shipped to. The

three modes are as follows;

1. Replace

When an operator is looking to send a failed platform to receive a replacement

part it assigns a depot based on the required replacement level of the broken

part. The assignment considers the number of jobs waiting in the queue at

each possible location, and the number of spare parts of the correct type in

stock as well. Each location is assigned a score equal to the length of its queue,

but if it has no suitable spares then that value is incremented by an arbitrarily

large (10000 for example). The function will assign the platform to the location

with the lowest score. In this way, the assigned depot will be the one with the

shortest queue and available spares. If no spares exist at any of the suitable

locations then the function will still choose the location with the shortest queue.

In this way jobs are presumably spread evenly between all the available depots

and turn around times are minimized. Another scenario when this function

may be called, is when a platform is already at the depot waiting to receive

a replacement part but there are no spares remaining of the correct type. In

132

this case the depot will check the other available locations and try to send the

platform to one of those instead.

2. Repair

After the broken part is removed from the platform the depot will assign a new

location that can handle the repair job. Once again the function will attempt

to minimize the wait time by checking the queues of all feasible locations, with

the exception that if the repair level matches the replace level of that particular

part, the part will be designated to stay in place at the current location in order

to reduce shipping costs.

3. Storage

Finally, once a working part is placed in the platform, the depot will assign a

warehouse to store the now functional platform at. The function will favor the

warehouse that has the lowest stock of available platforms.

2.2.6 Obsolete

Table 15: Obsolete function summary

Variable name Value

type obsolete

who component type, 0 for random

time -

cost 0

amount N/A

E = {0, o b s o l e t e , 150, 0, 0};

or

133

GenEvent(o b s o l e t e , C 1 , 150, 0);

At this point, the discussion of the normal operations of the system ends and the

discussion of its disruptions begins. The first disruption to the system is component

obsolescence. At this point the condition state variables of all components of the

given type are set to “obsolete”, the obsolete state variables of all the associated

platforms are set to 1, and an upgrade event is generated. It is assumed that the

obsolete components will continue to be used until there is a suitable upgrade for lack

of a better alternative, therefore, the upgrade event is always scheduled to be the

next event. This is done by generating an event with an arbitrarily small duration

(.001 for example). It is theoretically possible to remove this assumption and model

a design process time between obsolescence and upgrading the component. However,

this only makes sense if one also adds a model for the change in behavior during

this interim period. For example, the cost of repairing the component could go up as

could the cost of procuring new components of that type to correspond to obsolescence

due to the original manufacturer discontinuing the product line. For this thesis the

simulation is not set up to handle this assumption. Instead a conservative assumption

is made that the system has planned in advance for the eventuality of obsolescence

and the engineering design process for the upgrade has already been completed such

that all that is left is to put the new components in place. Alternatively, this behavior

also matches the assumption that an already existing commercial component will be

selected as the upgrade naturally reducing the design process time.

2.2.7 Upgrade

This function handles what the upgraded component’s characteristics will be, how

the system handles the obsolete components and how the new components will be

added to the appropriate platforms. The function completes the following steps.

• Determine the new component’s characteristics

134

It can be assumed that there would be an attempt to match the fit, form and

function of the obsolete component when choosing an upgrade, therefore all the

characteristics will vary according to random distributions centered around the

original values. The distributions used and the characteristics varied depends on

the problem being analyzed. In practice, it might even be such that upgrading

one component may trigger obsolescence in other components, however, that

behavior is outside the scope of this thesis and is not considered here. For this

thesis the MTBF can increase by a factor of two, and weight and unit cost

will all vary by up to 50% in either direction. Additionally the maintenance

requirements will change by varying the designated repair and replace levels for

the particular component. In this way the network is forced to evolve in order

to accommodate the new locations that the platform must go to.

Table 16: Component upgrade model

Component attribute Upgrade multiplier

MTBF 1+rand(0-1)

Unit cost .5 + rand(0-1)

Weight .5 + rand(0-1)

Maintenance plan randint(1-6)

• Handling the remaining obsolete components

Obsolete components that are not on a platform are discarded. This is under the

assumption that the system will not try to reuse or re-purpose obsolete components

that are still functional. If for a future study this assumption is deemed invalid then

this behavior must be modified. Additionally, components that are not currently

functional and are awaiting repairs should always be discarded and removed from the

job queue, since it can be assumed that it would be a waste of resources to repair an

obsolete item.

• Restock new components

135

For each depot that will now be servicing the upgraded component, the simulation

will trigger a block buy event to restock the supply of spares at each location. A

block buy event is usually triggered after a replacement takes place and there are

one or fewer spares of a given type left. In this scenario the block buy function will

generate a number of new components equal to the difference in the location’s current

supply and its ideal stock. Those components are immediately added to the location’s

“spares” vector.

Alternatively, the block buy function can be used to add additional platforms which

will be assigned to a random operator. In this scenario an entire new platform is

generated, complete with functional components, and added directly into the opera-

tional force of the designated operator. This is used to increase the force structure

during the runtime of the simulation.

Table 17: Block buy function summary

Variable name Value

type blockbuy

who component or platform type

time -

cost total unit cost

amount nspares - current stock or externally determined amount

Example external event for a new platform

E = { P 1 , b l o c k b u y , 150, 1, 0};

or

Example event generation for a set of new components

136

GenEvent(b l o c k b u y , C 3 , 150, 5);

• Upgrading platforms

When replacing the obsolete components that are on platforms, there are number

of scenarios that must be considered. As mentioned before there are three different

methods for implementing the upgrades and within each one there must be different

protocols for handling the platforms at an operator and at a warehouse. In all sce-

narios the platforms that are in the job queue of one of the depots remain there and

will receive the upgrade when its turn in the queue comes up.

The first and simplest scenario is upgrade by attrition. In this case nothing special is

done, rather each platform will receive the upgraded component at some later point

in time when it is already at a depot in need of a different replacement component.

This is the least disruptive scenario as it allows for a large spread in which to im-

plement the upgrade. However, because it will frequently require the platform to

visit multiple depots before being fully functional once more, this scenario will likely

result in slightly worse performance over time especially when multiple upgrades are

in process at the same time. Finally, in practice, it is often impossible to use this

method due to the criticality of the upgrade.

In the case of a highly critical upgrade, the system can opt for an immediate field mod-

ification team to replace all the obsolete components. In this scenario, all platforms at

an operator or a warehouse will immediately receive an upgraded component on site

without having to travel to a depot. The simulation will accomplish this by creating

the new component at the time of the replacement so as not to impose on the spares

supply of the depots. As with any time a platform is pulled from the operational

force, the simulation pauses the failure time for that platform and when the upgrade

is complete, the failure event is reset. The result is a short dip in availability and a

constant upgrade implementation time regardless of the network topology before the

upgrade. Due to this fact, this method is the ill suited for measuring flexibility.

137

Table 18: Field mod function summary

Variable name Value

type fieldMod

who platform ID number

time TIME + shipping time

cost component cost + shipping cost

amount N/A

GenEvent(f i e l d M o d , 7 , 150, 5000);

Finally, the round robin method of implementation ships all effected platforms to

the designated depots for maintenance action. For the platforms at an operator, the

operator will be added to the wait-list at the warehouse to receive upgraded platforms

when they becomes available. The exception is when the upgraded part is designated

to be replaced at the operator. In this case only the platforms at the operator receive

the upgrade now, and the ones at the warehouse will receive the upgrade when they

arrive at the operator at a later point in time. Once again this makes sense under

the assumption that operators are only capable of providing maintenance to the few

platforms that they are supposed to be operating.

2.2.8 Depot failure

Table 19: Depot failure function summary

138

Yes

Yes

Yes

Component

obsolescence

Upgrade component’s

characteristics

Discard obsolete

spares

Block buy

replacement

components

Round robin?
No

Field mod?

Yes

No
Upgrade by attrition

Schedule field mod

events

Replace @

operator?

Platforms @

operator?

Ship platforms to

replace level

Stay at warehouse

Add to job queue

No

No

Figure 29: Logic flow diagram for the upgrade function

Variable name Value

type failDepot

who location ID number, 0 for random

time -

cost 0

amount N/A

GenEvent(f a i l D e p o t , 4 , 150, 0);

The second type of disruptive event is the failure of a depot. It is assumed for

the purposes of this study that warehouses and operators don’t fail, because in the

event that they would, the availability would immediately drop below the acceptable

threshold regardless of the design and the results would not be meaningful. For

example, if there are two operators each with six platforms. If either operator fails

then the number of operational platforms will immediately decrease by half. While

139

an accurate representation of the behavior of the system, it is also not a meaningful

representation of the flexibility of the system, since the goal of modeling location

failures is to determine how many locations the system can lose before the job queues

start to back up. As such it also doesn’t make sense to model warehouse failures, since

a warehouse failure will automatically result in an eventual deficit in spare platforms

even if there is no back log at any of the maintenance depots.

To summarize, when a depot fails its condition state variable is set to “failed” and the

assign depot function will no longer assign items to be serviced there. The result being

if enough depots fail, the system will eventually run out of functional platforms as

they will be stuck waiting for service at the few remaining depots and the availability

will drop. In theory this will favor architectures where most of the maintenance gets

done at locations with high redundancy. For example if there are three depots and

only one intermediate level of repair, then designating most of the components to be

serviced at the depots will result in a more flexible system.

2.2.9 Operational shift

Table 20: Operational shift function summary

Variable name Value

type operational shift

who N/A

time -

cost 0

amount Magnitude of the change in flight hours per year

Example external event for a new platform

E = {0, operational shift , 150, 100, 0};

140

or

n = GenEvent(operational shift , 0, 150, 0);

EVENTS(n).amount = 100;

The final type of disruptive event is a shift in the operational frequency which is

accomplished by increasing the flight hours per year of each operator by a designated

amount. This is intended to correspond to an increase in demand on the system.

It is assumed that if the platforms are utilized more often they will fail sooner, and

the more frequently the platforms fail the more maintenance jobs will need to be

processed. The expected behavior is that at some point the system will be unable

to process jobs fast enough and the performance will decrease. It should be noted

that since the failure times of each platform are already set in advance when the

operational frequency is changed the simulation must reset the timing of these events

to correspond to the change. This is done by finding the next failure event in the

event list for each operational platform and canceling it. Then because the operational

frequency at each operator was changed the time when that component should fail

will also change and a failure event is generated according to the logic documented in

section 2.2.3. Since the event list must be searched multiple times this function will

require a greater computational cost.

2.3 Choice of variables

In order to sufficiently explore the behavior of the problem a representative subset of

design variables that drive the trade offs that are of primary interest will be chosen.

In this section an argument will be made for why each design variable is either varied

or defaulted to a constant value.

The model inputs can be broken down into four categories.

1. Component properties

141

• Mean Time Between Failures (MTBF) - the rate at which each component

fails

• Unit cost - the cost of procuring a new component

• Weight - component net weight

• Maintenance option - a number between 1 and 6 corresponding to the

alternative combinations of repair and replace level for each component

2. Depot properties

• Mean Time To Repair (MTTR) - the rate at which the depot can process

maintenance jobs

• Labor rate - the cost per day of labor performed at the depot

• Location - the xy coordinates of the depot

• Number of spares - the number of spare components that each location

tries to keep in stock

3. Operator properties

• Operational frequency - the rate at which the platforms are utilized in

flight hours per year

• Force structure - the number of each platform that is operated at each

location (this is also defined for the warehouse)

4. Platform properties

The only independent variable associated with each platform is the number and

type of each component that it requires.

The primary design variable considered by traditional LoRA is the maintenance re-

quirements of each component. The model make the following assumptions.

142

• All components that require maintenance at a given level can go to any location

of that level. For example, if a component gets repaired at the intermediate

level, then it can go to any intermediate level to get repaired. Alternatively,

the model is setup to handle a distinction between the sets of components that

each maintenance location can service. This is handled by a vector associated

with each location named “partsServiced” which is checked by the AssignDepot

function. However, when a component is upgraded, this distinction is lost.

The Upgrade function will determine the new maintenance requirements and

automatically add the component to the partsServiced list of all locations of that

maintenance level without any consideration of where that component used to

be serviced.

• A repair action must be performed at the same level or higher than the replace

was performed. For example, if the replace is supposed to be performed at the

intermediate level then the repair can only be performed at the intermediate

or depot levels. As such, with three levels of maintenance, there are only six

possible combinations of repair and replace levels.

1. replace and repair at the operator

2. replace at the operator and repair at an intermediate level of repair

3. replace at operator and repair at a depot

4. replace and repair at an intermediate level of repair

5. replace at an intermediate level of repair and repair at a depot

6. replace and repair at a depot

As a note the operator is designated as level 1 and is therefore defined as the

lowest level of maintenance in this document.

143

• Discard always happens at the same level as replace. In some models it is

assumed that discard happens after the repair location has failed to repair the

component. In this model it is assumed that the replace level has the diagnostic

capability to determine whether it is worth sending the component to the repair

level in the first place.

This design variable is defined for each component type separately and represents the

primary trade off between the fast turn around time but high cost of maintenance at

the operator and the low cost but slower option of maintenance at the depot level. The

correct choice is likely to depend on the second major component property; MTBF.

If a component has a low MTBF then it is likely to fail more frequently. In this case

it would make sense to service the component at a lower level since it is more likely

that several of that component will be in need of maintenance at the same time and

a faster turn around time will be desirable. Alternatively, the components with the

lower failure rates (high MTBF) will likely opt for maintenance at the highest levels

since the effects of slow turn around times will be less pronounced and the lower

maintenance costs will be desirable.

The other two component properties, unit cost and weight, will be defaulted for this

problem. The reason for defaulting unit cost is that it is only considered when new

components are purchased to determine the cost associated with the block buy event.

As such it has no effect on the performance of the system and only the cost, therefore

it does not contribute to a meaningful trade off and need not be varied. As for

component weight, if the operational performance of the aircraft were a consideration

then the net weight would be a consideration. However, since this is not the case,

weight is only considered when determining the shipping cost of the component. Just

like unit cost this will only effect the total cost of the system and need not be varied.

Of the depot properties, only MTTR will be varied, which is defined individually

for each operator, intermediate and depot. The reason for this is that MTTR is the

144

design variable that determines the maintenance turn around time and as mentioned

earlier varying turn around time results in a meaningful trade off. Location is not

varied since it will only effect the shipping cost and time, but since shipping times

are expected to be very small in comparison to the life of the system, small variations

in location are not expected to matter very much. Additionally, it can be assumed

that the system will attempt to use only existing maintenance assets which is also a

reason why the total number of maintenance locations is not varied. Finally, labor

rate is not varied for the same reason as mentioned earlier regarding component unit

costs. It can also be assumed that if both MTTR and labor rate are allowed to vary

then it would be possible to choose a design where the operators have the fastest

turn around times and lowest maintenance costs, making them the ideal choice for

all components, which does not make sense.

A note about the number of spares. While LoRA can be used to determine the correct

number of spares to purchase for each component type, it is more common to use a

heuristic model. [126] For this model, it was assumed that the initial stock of supplies

be equal to at least 10% of the total number of each component in the operational

force. In practice, the simulation will trigger a block buy event to resupply the stock

of spares in the case that any location runs out. As such the initial allotment of

spares does not significantly effect the performance of the system, only the overall

cost, therefore it is not considered as a significant design variable.

In addition to the maintenance properties, each operator is also characterized by

the operational setup at that location. The first design variable is the operational

frequency of the operator. As described in the section about the failure behavior of

the model, the flight hours per year of each operator will effect the failure rate of

the components operated there. Similar to MTBF, this will result in a meaningful

trade off between cost and performance. However, it effects all components equally

and will not result in a change in maintenance plan for individual components rather

145

it is likely to effect the maintenance choices for all components. For example, if the

operational frequency is high it is likely that the best options will be to reduce the

maintenance levels for all components in order to reduce the turn around times across

the board to correspond to over all higher failure rates.

The second design variable associated with the operators is the force structure of

platforms in operation. In theory the overall failure rate of components at an operator

is also dependent on the number of platforms operated there, therefore, increasing the

force structure would also tend to have a similar effect to increasing the operational

frequency. However, it will be shown in the next section that for purpose of measuring

the maximum capacity of the system, increasing force structure does not produce

meaningful results, therefore only operational frequency will be varied. Alternatively,

the capability of the system can be defined as providing maintenance for a given force

of aircraft. As such, varying the force structure would be outside the scope of this

design problem.

Finally, the platform architectures are not varied, since without a model for the per-

formance requirements of each platform, the choice of components would be arbitrary.

While the trade offs between component commonality would be meaningful in theory

a second model would be needed to define the compatibility relationships between

components and platforms. Additionally, this is a purely discrete design variable,

but unlike the maintenance plans for each individual component, there are an infinite

number of possibilities without a model to define the constraints. This would make

the design space impossible to define, therefore it will be assumed that LoRA can

only be done once the platforms in need of maintenance are defined. This is not

inconsistent with varying component properties since it can be assumed that one of

the purposes of LoRA is to trade off between a set of options for each component

type to determine which one to actually purchase.

In summary, four design variables were chosen to represent the design space.

146

1. Component MTBF

2. Component maintenance requirements

3. Operator flight hours per year

4. Depot MTTR

2.4 Simulated responses

2.4.1 Support/Maintenance Cost

System resources are modeled by the operations and service cost of the system. This

is evaluated whenever a item is replaced, repaired, shipped or purchased.

• Repair & replace cost - section 2.2.1

• Shipping cost - section 2.2.3

• Purchase cost - section 2.2.7

When the simulation terminates, the list of events that occurred is saved and the

costs of all ship, repair, replace and block buy events are summed to determine the

total cost. As such the initial setup cost of the system is not evaluated. It should be

noted that upgrade events do not have a unique cost associated with them instead

they are characterized by a series of replace events and block buy events.

2.4.2 Availability

There are multiple alternatives for system performance metrics, however only one

metric is necessary to show meaningful tradeoffs. For this scenario, availability will

be evaluated as it is generally considered the primary performance metric for main-

tenance systems. Availability is defined as “the average fraction of the time during

147

which the system is able to perform its function” [46]. For this scenario each platform

is considered “available” as long as it is at an operator and in its operational force,

therefore the long term availability (an) would be the % of time that a given platform

is operating.

an =
1

∆t

∫ tf

ti

ak(t)dt (12)

However, the goal is to consider the average availability over the entire system. The

obvious method for measuring this would be to evaluate the individual availability of

each platform and average over all of them.

A =
1

n

n∑
k=1

[
1

∆t

∫ tf

ti

ak(t)dt] (13)

Switching the order of integrals is mathematically valid. Conceptually, this changes

the formulation to averaging the fraction of platforms that are operating at a given

time, which is much easier to implement computationally. Given discrete time inter-

vals, equation 13 becomes

A =
1

∆t

∑
Ak∆tk (14)

where Ak is the number of platforms that are currently operating divided by the

number of platforms that are supposed to be operating at time tk. To simulate this,

the synchronizer will assess the momentary availability for every event and save it for

post processing. Ak is the sum of the lengths of all operator force vectors divided by

the sums of all operator force vectors saved in the “operator” global variable structure.

When the simulation terminates equation 14 is used to evaluate the overall average

availability of the system.

2.4.3 Growth flexibility

As discussed in chapter 1, growth flexibility is the ease or cost of changing the system

and is a measure of the cost of fixing the system once it has already failed. The

generic approach for this would be to take a failure mode of the system and model

148

the process of reversing it. For this scenario the primary failure mode would be a

back log of maintenance jobs caused by either too few depots or too high a component

failure rate. In both cases the logical solution would be to increase the number of

functional depots, either by fixing broken ones or building new ones until the desired

level of availability (ideally %100) is reached. As mentioned earlier modeling the cost

of setting up depots is outside the scope of this particular design problem, however

in future applications of this methodology such models may exist, in which case the

author encourages that they be used to measure growth flexibility.

In the meantime, there is one other disruption to the system that can be simulated;

obsolescence. When a component becomes obsolete, all platforms that use that com-

ponent must receive an upgrade. This causes a dip in the availability until all the

platforms are restored. Measuring the duration of this dip can be equated to the

ease by which the change was administered. It is recommended that a single upgrade

method be used to simulate this response, since allowing for a random choice between

the methods will greatly increase the variance in the response. For example, when the

field mod method is used the duration of the disruption is always the same regardless

of the topology of the network since all the upgrades happen at the current location

and all happen simultaneously. Alternatively, when replace by attrition is chosen,

there is no dip at all, since the platforms are not ever recalled. While there may be a

slight reduction in performance for a period of time, it is hard to distinguish it from

the natural behavior of the system. Therefore, round robin upgrade is the logical

choice of methods for this formulation.

To simulate this one component, chosen randomly, is set to become obsolete at the

start of the simulation. This is done before initializing the simulation, by externally

designating an obsolete event with type = 0 to specify a random component type

and time = .001. The result will be that the first event in the simulation will be the

obsolescence of one component triggering an immediate upgrade event.

149

E = {0, o b s o l e t e , .001, 0, 0}

Since the series of replace events caused by the upgrade will cause an immediate dip

in availability, the time when availability returns to %100 will be the time when all

the replacement events are completed. Therefore, after the simulation has terminated

naturally, the time when availability returned to optimal is found in the event history

as the measure of growth flexibility.

It must be noted that the alternative of causing all components to become obsolete

in sequence and take the average of the response times was not used. While it

would likely reduce the variance in the measurement, it would also be very difficult

to evaluate due to the possibility of multiple response times overlapping with one

another.

Growth flexibility is likely to be primarily related to the average MTTR of all main-

tenance locations. Since, upgrading will require the replacement of all obsolete com-

ponents, and will usually change the replace level of the component, the original

maintenance requirements will not effect the growth flexibility. Rather, a system

with overall low maintenance times at all locations will respond faster on average.

2.4.4 Volume flexibility

Volume flexibility or system capacity flexibility is defined as how much surplus re-

sources are in the system. This is relevant for when the actual demand exceeds the

level that the system was designed to handle. In this case the system is considered

flexible if it can handle the increase in demand. Quantitatively speaking the degree

of flexibility is measured by how much more demand it can handle. As discussed in

chapter 1, demand is defined by the number of platforms requiring maintenance at

a given moment in time, and the system’s capacity is defined by how many of those

platforms can be processed at once. Therefore, in order to measure the flexibility of

the system, one would have to increase the demand until the system fails. In general,

150

failure occurs when there are not enough spare platforms at the warehouse to replace

the ones that are awaiting maintenance at a depot. The easiest way to identify this

behavior is to determine if the current availability is unusually low. In order to distin-

guish between the typical drop in availability caused by a few component failures and

a severe back log of jobs a threshold is defined under which the system is considered

failed. For this study %65 was determined to satisfy that condition.

To increase the demand there are two options; increasing the number of platforms in

the system, or increasing the rate at which they fail. Increases in force structure are

accomplished by defining block buy events. For this study it was set up such that

one random new platform would be added to the force per month for ten years.

for ii = 1:120

E = [E; {0, blockbuy', ii*30, 1, 0}];

End

Increases in operational frequency are accomplished by defining operational shift

events. For this study it was set up such that the operational frequency would increase

by 25 flight hours per year once a month for ten years.

for ii = 1:120

E = [E; {0, 'operational shift', ii*30, 25, 0}];

end

The difference between these two scenarios is that if the force structure is increased

and all the platforms fail at the same time then the back log at the depots will be

151

greater in severity, while if the operational frequency is simply increased the the back

logs will happen more frequently but will be smaller in severity. In practice, both

scenarios were implemented, but increasing force structure did not frequently produce

meaningful results. The reason for this was that the definition of system failure

involves a minimum threshold on availability, and adding more platforms tends to

increase the overall availability. A simple illustrative example would be if there were

two platforms and one fails. This reduces the availability to %50. However, if a third

platform is added then the availability will immediately increase to %66. Therefore,

the more platforms that are added to the system, the larger the back log must be

before the availability threshold is hit. The result was that the failure condition was

frequently never hit before the simulation terminated naturally and a meaningful

measure of volume flexibility would not be found. As such, increases in operational

frequency was used to simulate volume flexibility. In practice this was modeled by

incrementally increasing the flight hours per year at each operator until availability

dropped below %65 at which point the simulation terminates and the total increase

is assessed.

The advantage of not increasing force structure is that increasing the number of

platforms also increases the length of the vector of entities and the vector of events,

resulting in significantly greater computational costs. In conclusion, both behaviors

are consistent with the increase in demand that would accompany a shift from peace-

time operations to war-time, a capability which is expected from a Navy maintenance

system, however one is easier to implement computationally.

2.4.5 Divisibility

Divisibility has to do with the robustness of the paths by which the system can provide

the desired capability. In this scenario, the paths are all viable routes that take a

platform from the operator with a failed component through the maintenance cycle

152

back into operations. To simulate a disruption to the system for this purpose, one

must break the paths until the system fails. There are two ways to describe a path;

by links or by nodes. It can be inferred from the previous section that the connections

between depots cannot fail, since it is unlikely that a connection dependent on air

travel will be disrupted for more than a day, whereas the depots can fail for significant

periods of time. Therefore, to measure divisibility, the depot failure function is used

to disable nodes until the availability threshold of %65 is met and the number of such

events is noted as the measure of divisibility. For this study it was set up such that

one random depot would fail at one year intervals using the following code to set up

the external event vector.

for ii = 1:nDepots

External = [External; {0, f a i l D e p o t , ii*365, 0, 0}]

end

This is not an entirely accurate evaluation since this will always favor scenarios where

most of the components are maintained at the operator level. However, as mentioned

previously this assumption must be made. In general though, this will result in a

system with high divisibility but also very high costs. Alternatively, a system with

multiple depots that service most of the components will also be fairly divisible due

to the high degree of redundancy, but will likely have lower costs than the previous

example. An example of a system with low divisibility would be one where all the

components must pass through a single intermediate level of maintenance. When

that location fails the availability will quickly drop soon after.

153

2.5 Stochasticity of the responses

Since this is a stochastic simulation, some effort must be expended to account for the

variance in the response. Generally this is accomplished by running repetitions of each

case and determining the mean of the responses. To determine the correct number

of samples, a statistical P-test was used to find how many repetitions must be run in

order to place the mean of the response within a given interval with 95% confidence.

For this thesis getting the mean within 5% of the true value was determined to be

sufficient therefore the following equation was used to determine the sample size.

n =
16σ2

(µ/10)2
(15)

Where σ2 and µ are the true variance and mean of the response. In this case where

the true values are unknown they are the variance and mean of a very large sample size

which in this case was 10000 repetitions of the example problem. Since, the scenarios

used to simulate each of the measures of flexibility are different, their required sample

sizes must be evaluated independently. The results can be summarized as follows for

the baseline system architecture.

1. cost & availability - 1 repetition

2. divisibility - 72 repetitions

3. volume flexibility - 159 repetitions

4. growth flexibility - 489 repetitions

This is not entirely unexpected. For cost and availability the response is the ag-

gregation of thousands of random events, therefore it makes sense that the variance

and the required sample size would be small. However, small sample sizes are sus-

ceptible to the effects of outliers, therefore a conservative sample of 100 repetitions

was used, since the variance on the response of other architectures may be higher.

154

Also, when disruptions are considered, it is possible that the system will only fail a

fraction of the time and a single simulation run cannot accurately capture this effect.

This also eliminates the effects of model crashes. With regards to growth flexibility it

was mentioned that the choice of formulation would likely increase the variance (see

section 2.4.3), therefore this result is also not unexpected. In conclusion, It seems

that evaluating flexibility would be computationally more expensive than evaluating

cost and performance. Therefore, in the case that suitable indicators for flexibility

are found but not for performance and cost, a reduction in computational cost by a

factor of over 500 can still be realized by using heuristics for flexibility only.

2.6 Model validation

In order to validate the simulation it is necessary to compare it to real data. In

this case the Deptartment of the Navy PMA209 conducted a study titled Advanced

mission computer and displays (AMC&D) life cycle cost estimate that used a similar

model, the joint aviation model (JAM). [118] It was essentially a multi-platform

LoRA analysis looking exclusively at the mission computer related components in

the F-18 C,D,E, and F with the goal of making a business case for replacing the older

AN/AYK-14 mission computers. [4]. The study considered the four main components

of the mission computer.

1. Mission Processor (MP)

2. Display Processor (DP)

3. Display Head 5”x5” (DH5x5)

4. Display Head 8”x10” (DH8x10)

The distinction between the two sizes of display heads is that the larger one is

exclusively used in the twin seat F-18F super hornet. [156] Up until this point the

information is all publicly available, however the exact quantities of each component is

155

not and cannot be published in this thesis. Suffice it to say the validation experiment

was set up to mirror the AMC&D scenario as closely as possible. The goal was to run

FLORA DES and attempt to match NAVAIR’s value for service costs per aircraft

per year while maintaining an acceptable performance level. The variables that were

copied included the following:

• Mission computer architecture

• Maintenance strategy

• MTBF

• Weight

• Unit cost

• Maximum life span

• Number of operators (aircraft carriers)

• Number of spares

• Distance between operator and depot

• Operational rate

• Number of depots

What is missing from the above list is mean time to perform maintenance, labor

rates, and the transportation assumptions. With regards to shipping, the assumptions

stated earlier in the chapter are used. However, for maintenance costs, an initial run

using the values listed in the NAVAIR study resulted in a very poor approximation.

The depots were getting backed up and the availability was dropping below acceptable

levels. It was presumed that there must be a difference between the way JAM treats

156

maintenance actions and the way FLORA DES does. FLORA DES considers repair

and replace actions to be separate where as it is assumed that JAM treats them as one

event. The result was that using the NAVAIR values for maintenance time, FLORA

DES effectively doubles that value. After making this change results that were on

the same order of magnitude as those documented in the study were obtained. Slight

modifications to some other values in the model resulted in values for cost per aircraft

per year within %10 of the desired values, at which point it was determined that an

exact match could be found given enough time and therefore the FLORA-DES model

was sufficiently validated.

157

CHAPTER III

FLEET WIDE LEVEL OF REPAIR ANALYSIS

NETWORK MODEL (FLORA NET)

The FLoRA Net model is a network model that is intended to represent an abstract

view of how the multi-platform maintenance logistics system should behave. The

model assumes two types of nodes, agents and tasks. The task chain starts with

operations, which is defined for each platform type individually. Second, is replace

which is defined for each component type individually. Third, is repair which is

paired with replace. Finally, storing the spare platforms is defined as a separate task,

as that is where they generally go after being repaired. Then there are four types

of agents, however they are similar enough that for the network description they

will all populate the same graphs. This is because they are all stationary facilities,

however, a distinction will be made when defining the relationships. The first type

is the operator which is the only type of agent that possesses the actual aircraft,

therefore all failures happen at an operator. Second, are the depots, the final level of

maintenance. They are usually responsible for dealing with anything that cannot be

maintained elsewhere. The intermediate levels occupy a space between depots and

operators, as they are generally used to handle the easy jobs and are usually located

closer to the operators in order to reduce shipping time. Finally, the warehouse

represent the location where the spare platforms are stored until they are needed.

Figure 30 contains the definition of the set of agents and resources in the system. In

order to effectively demonstrate the application of the methodology, the number of

elements is kept to a minimum.

The following notation will be used when describing the networks

158

2 platform
types

P1 P2

C1 C3C1

3 component
types

Component repair requirements

I

D

D O

2 operators

O1 O2

2 repair depots, 1 intermediate level of repair, 1 warehouse

D1 D2 I W

DC2

P1 P2 P1 P2 C3C3

spare spare

C1

spare

C1

spare

C2

spare

P1 P2

spare

D

C3C1 C2

Figure 30: A depiction of the elements that make up the example problem

159

• T : the set of tasks

• G: the set of agents

• P : the network relating tasks to one another

• Pij an edge weight in the P matrix

• A: the network relating tasks to agents

• Atg an edge weight in the A matrix

• Ad
ti the degree of a task in the A matrix

• Ad
gi the degree of an agent in the A matrix

• N : the network relating agents to one another

• Nij an edge weight in the N matrix

3.1 Task to task network

Starting with the task to task relationships, they represent the order that events oc-

cur. The basic order is that a platform is operational until something breaks. Since,

each platform contains different components it is necessary to distinguish between

operate tasks. When a component breaks, the platform that it is on is shipped to the

maintenance level where it will receive a replacement component. Since each compo-

nent has different maintenance requirements the replace tasks must be distinguished.

Therefore, for each component type on a particular platform there is a precedence

relationship between the operate and replace tasks. After the replacement component

is placed on the platform, it is sent to the warehouse, therefore links are added from

each replace node to the storage node. However, there is an exception, if a component

is replaceable at the operator then the platform never has to leave and therefore does

not need to go to storage. In this case a link is added returning to the operate node.

160

After that the broken component must go to be repaired. This is represented by links

between the replace and repair nodes for each component type. Additionally, once

repaired the component returns to the replace level to be held as a spare, therefore

those links are bi-directional. Finally, links are added from storage to each of the

operate nodes representing how the operators receive spares when platforms are sent

to other locations. Figure 31 demonstrates this network for the example problem.

Replace C1

Operate P1

Repair C1

Storage

Operate P2

Replace C2
Replace C3

Repair C2 Repair C3

Repair time

Shipping time

Figure 31: The task to task relationship network for the example problem

With regards to the edge weights, this network is a good candidate for modeling the

flow of resources between tasks, therefore the edge weights will represent the capacity

of each relationship in terms of the number of items that can pass along that link per

unit of time. For the links between operate and replace, the limiting factor on these

transitions is only the distance between locations, therefore the capacity of the edge

weight Pij will be defined for platform i and component j as the sum of the inverse of

161

shipping time for all routes that the item can take between n operators and m replace

levels. This relationship also applies to the transition between storage and operate.

Pij =
∑
n=Ad

ti

∑
m=Ad

tj

1

Tshipnm
(16)

For the links between replace and repair, the limiting factor is the turn around time

of the maintenance action. Mean time to repair (MTTR) is often used to denote

this quantity. Additionally, replace and repair are modeled by a queuing process,

therefore the ability of a location to perform a specific task is limited by all the other

tasks it is supposed to be doing that use the same queue. In this case the capacity of

the edge is the sum over all locations that can perform the task of 1/MTTR divided

by the number of other tasks that that are performed at that location.

Pij =
∑
k=Ad

ti

1

(MTTRi)(Ad
gk)

(17)

This relationship applies to all edges leaving the replace and repair nodes. This

network best represents what the system does. When the system is working properly

there is a steady flow of events that is represented by the transitions in this network.

Therefore, a measure of the ability of the system to synchronize its behavior makes

sense here, as does a measure of its stability and for this it was previously stated that

graph energy and algebraic connectivity were useful indicators.

Graph energy is the sum of the absolute values of the eigenvalues of the adjacency

matrix. In MATLAB the “eig” function is used to evaluate the matrixs eigenvalues

and eigenvectors.

[eigVec1 eigVal1] = eig(PP);

GE = sum(sum(abs(eigVal1)));

162

The algebraic connectivity is the second smallest non-zero eigenvalue of the laplacian

matrix. The laplacian matrix is defined as the degree matrix minus the adjacency

matrix. The degree matrix will be a diagonal matrix where the non-zero entries will

be the degree of each node in the graph which is evaluated by summing the columns

and rows of the adjacency matrix with all non-zero entries equal to 1. The eigenvalues

are then computed and the second smallest one is found by first finding the smallest

one and setting its value to infinity before using the min function a second time.

temp = PP;

temp(temp~=0) = 1;

degree matrix = zeros(size(eigVal1,1));

for ii = 1:size(eigVal1,1)

degree matrix(ii, ii) = sum(temp(ii,:)) + sum(temp(:,ii));

end

laplacian matrix = degree matrix - temp;

[eigVec2 eigVal2] = eig(laplacian matrix);

temp = max(eigVal2);

temp = temp(temp ~= 0);

temp(temp == min(temp)) = inf;

AC = abs(min(temp));

Additionally, this network contains a description of how the items go from being

broken to repair back to being operational. This is represented by the cycle of operate,

replace, repair, storage back to operate. As such functional cyclicity was discussed

as an indicator of the number of cycles in the graph which in this case represent the

ideal behavior of the system. Functional cyclicity is the largest real eigenvalue of the

adjacency matrix. These three spectral measures can be calculated since the matrix

163

will be square.

FC = max(max(eigVal1(imag(eigVal1) == 0)));

Alternatively, since the edges are modeled as the capacity of the state transition in

terms of events per unit time, the maximum flow of this network from operate to stor-

age can be evaluated to represent the maximum rate at which the system can process

maintenance requests. This is then compared to the rate at which each platform is

likely to fail to determine a measure of the excess capacity of the system, which is

used to evaluate volume flexibility. To evaluate maximum flow, the matlab bgl graph

theory package is used. For all operate tasks the maximum flow is evaluated using

the max flow function. The volume flexibility for that task is the percentage of excess

capacity that exists which is one minus the load divided by the flow, where the load

is equal to the aggregate failure rate of all platforms of that type. Finally the overall

system volume flexibility is the assumed to be the mean of all operate tasks.

Platform MTBF =
1∑

1
Component MTBF

(18)

Task load = Aggregate failure rate =
N components of type P

MTBFofplatformP
(19)

Task excess capacity = 1− load

max flow
(20)

temp = [];

164

for ii = find(strcmp({tt{:,1}}, 'operate') == 1) % for each operate task

for jj = find(strcmp({tt{:,1}}, 'storage') == 1) % to each storage task

% find the total number of platforms in operations of type ii

nn = 0;

for kk = 1:size(O, 1)

nn = nn + O{kk,3}(tt{ii,2});

end

load = nn/P{tt{ii,2}, 3}; %load = 1/mtbf;

flow = max flow(sparse(PP)*10000, ii, jj)/10000; % find max flow

% the factor of 10000 is because the max flow function rounds the output to the

% nearest whole number.

% This method effectively produces more decimal places in the response.

if flow > 0 % no negative flow allowed

temp(end+1) = 1 - load/flow; % evaluate excess capacity

else

temp(end+1) = 0;

end

end

end

To summarize, the four network properties that result from this model are as follows.

1. Graph energy

2. Functional cyclicity

3. Algebraic connectivity

4. Max flow

165

3.2 Task to agent network

The next network model describes the relationship between agents and tasks. In this

case the matrix will not be square making many of the network properties hard to

apply. As such, the edge weights for this graph will be zero or one. For each task a

link will be added to each agent that can perform that task. This network provides

an easy to use mapping of agents to tasks for the purpose of determining redundancy

on the task side and overloading on the agent side. The higher the degree of a task

node, the more agents there are that can perform it, the higher the redundancy and

the more likely it is to get done quickly. Being a measure of the number of options

available for that task makes this useful for measuring divisibility, but it may also

simply be a generic indicator of all kinds of flexibility. In this case the task with the

lowest degree provides a lower limit to the flexibility of the system.

For example, in figure 32 repair C2 has a degree of 2 with either D1 or D2 capable

of performing that task. In the case that one of the depots goes down then the task

can still be performed. Alternatively, for replace C3 the only available location is the

lone intermediate level of maintenance and should that location fail or all the C3s

need replacement at the same time due to an upgrade, there will could a significant

drop in performance.

On the agent side of the graph, the higher the degree of an agent node, the more tasks

it is responsible for, and the more likely it will be to get a backup of maintenance jobs.

In this case the agent with the highest degree is an upper limit on the flexibility of the

system. For example, D1 and D2 have a degree of four meaning they are responsible

for four different tasks. If a backup of jobs would occur it would be logical to look at

the most heavily burdened agents first.

The two network properties for this network model are listed below.

1. Minimum degree of all task nodes

166

2. Maximum degree of all agent nodes

Replace C1

Operate P1

Repair C1

Storage

O1

O2

D1

D2

I

W

Replace C2

Operate P2

Repair C2

Replace C3

Repair C3

Figure 32: The agent to task relationship network for the example problem

3.3 Agent to agent network

The final network contains the relationships between agents. For this problem, there

are some similarities to the task to task network since items tend to change locations

when they transition from one task to another. However, the transition capacities

are harder to quantify since each link must represent multiple different component

types. Therefore, this graph is better suited for showing the loads on the connections

between maintenance locations in terms of the number of component types that use

that edge.

167

I1

W

D1

D2

O1

O2

Same as
O1

Figure 33: The baseline agent to agent relationship network for the example problem

168

There are two different ways to look at this network in terms of how to measure

flexibility. The first is the expected load on each edge given a certain type of change,

which is good for determining the aggregate load on each agent similar to the way the

previous model was used. The second way is to model the probability that the edges

exist after a given type of change, which is good for counting paths in the network.

Additionally, there are two types of changes that can be applied to this network; the

removal of nodes or edges and a change in edge weights . The addition of a node does

not make sense in this formulation since the expected load on any new depots will

be undetermined. As such, there are four sub models that can be derived from this

network.

1. The expected value of the load on the edges

For each edge the number of component types that can travel along it is counted.

For example, a component that is repaired and replaced at a depot will travel

from the operator to the depot and its platform will continue on to the ware-

house, therefore all O-D and D-W edges will be added. If another component is

replaced at the operator and repaired a depot, it will also travel along the O-D

lines but will return to the operator after being repaired along the D-O lines.

In this case all O-D lines would have a weight of 2.

Table 21: Table of edge logic

169

repair level replace level required edges

O O no edges

I I O-I-W

D D O-D-W

O I O-I-O

O D O-D-O

I D O-I-W & I-D-I

This network has two uses. First, similar to the agent to task network, the in-degree

of an agent is a measure of the level of responsibility that it has. As before, the agent

with the highest degree limits the flexibility of the system. The identification of such

a node can be an indicator of a choke point in the network which will result in poor

performance in the face of lost nodes.

The second use is to aid in the formulation of the next three models by being the

baseline loading structure of the system before changes.

2. The probability of an edge existing after the removal of a node

The weight of each edge is the probability that it will exist after one depot is removed.

In this scenario, it only makes sense to remove depots and intermediate levels of

maintenance. If an operator is removed the drop in performance of the system can

deterministically be assessed due to the nature of the way availability is measured.

When an operator fails, so do all its aircraft at which point the operational force of

the entire system drops by the number of aircraft that are stuck at the failed operator.

Additionally, the removal of a warehouse will have a deterministic effect on the system

as well. Without access to a supply of spares the system will eventually run out of

aircraft and the availability will drop to zero. However, depending on the structure

of the network, it is possible that the system could continue functioning with fewer

depots. In this case each depot (I and D levels) has a probability of failing of 1/n.

170

The result is that for every edge that has a load of at least one, the probability of

it surviving is 1 − Pfail which is 1 − 1/n for edges incident on only one depot and

1− 2/n for edges incident on two depots.

With a probability assigned to each edge it is then possible to assign a probability to

each possible path through the network. Using a modified depth first search algorithm

the number of paths from the operator to the warehouse is counted. In general,

algorithms for counting paths do not exist since the possibility of getting stuck in a

cycle will result in infinite solutions. However, in the case of systems of systems it

can be assumed that getting stuck in an infinite loop is not going to actually happen,

since the agents involved will realize and set themselves back on the correct path.

Therefore a modified depth first search algorithm is proposed for counting paths from

all source nodes to all sink nodes in a network. A depth first search decomposes

the network connections into a tree and searches down each branch of the tree. The

modification that is added is that when a node is repeated the branch is terminated

so as not to consider cycles.

(a) Start at the source

(b) End a branch when the sink is reached or when a node is revisited

(c) Explore all possible branches

(d) Count the number of branches that end at the sink

(e) Repeat for all combinations of sources and sinks

Figure 34 demonstrates an example graph where the path finding algorithm identifies

six possible paths. There is one cycle in the graph and the algorithm correctly identi-

fies when the path has gotten stuck in an infinite loop. The MATLAB implementation

of the path finding DFS can be found in appendix C.

For each path, the probability that it exists is the probability that none of its edges

fail.

171

2

1 3

4

21

3 4

6 paths

Source

Sink

1

2

3

1

4

2

Figure 34: Example execution of the path finding DFS

Ppath fail = 1−
∏

Pedge fail (21)

These values are aggregated for all the possible paths and can be used as measure of

divisibility, since in theory as long as at least one path still exists then resources can

flow through the network and platforms can still be maintained to some degree.

% see appendix c for explanation of PathCountDFS

[nPaths, paths] = PathCountDFS(sparse(NN2), o, w);

NN2paths = ones(nPaths,1);

for ii = 1:nPaths % for each path

for jj= 1:numel(paths{ii})-1 % for each edge in path ii

% find the probability that it fails

NN2paths(ii) = NN2paths(ii)*NN2(paths{ii}(jj), paths{ii}(jj+1));

end

end

172

Similarly the graph theory concept of connectivity refers to the number of elements

that must be removed to disconnect the graph. This is analogous to the number of

depots that must fail before there is no longer a viable path for resources to flow

along. This is done by assuming a modified definition of connectivity to count the

minimum number of elements that must be removed before no possible path remains.

This path connectivity problem can be reformulated as a min-cut problem between

a source node and a sink node, where all edges have value 1. This way the value of

the minimum disconnecting cut will be the total number of edges removed. If the

edge weights are probabilities then this will represent the fact that the edges will

only be part of the disconnecting set a portion of the time. The path connectivity is

evaluated for each operator as a source node and the total system path connectivity

is the average value.

NN2conn = [];

for ii = o % for each operator

for jj = w % for each warehouse

% evaluate path connectivity

NN2conn(end+1) = max flow(sparse(NN2)*10000, ii, jj)/10000;

end

end

Finally, the criticality of each edge can be determined by the ratio of its load and

the number of paths that rely on it to the number of alternative paths that exist

that do not use that edge. In this case the most critical edge is an upper limit on

the divisibility of the system. The criticality is a measure of the cost of rerouting

should a path be disrupted. It would follow then that the measure of criticality

would be related to the number of paths that pass through a certain edge, similar to

173

betweenness. Additionally, if the capacity of the edge and the expected load on it is

known then these can be taken into account as well. It will be assumed that when

a path is disrupted that the load that was initially intended to pass along it will be

redistributed across all other available paths. This is analogous to the scenario where

there are two depots and when one of them fail all the jobs that would have originally

been split between the two location must now go entirely to the lone remaining one.

The criticality of the edge can then be defined as the ratio of the load on the path to

the number of alternative paths that do not use that edge. For edge i with load Li,

there is a set of paths P that accomplish the same capability. The number of paths

that use edge i is pi, therefore the number of paths in P that don’t use edge i can be

called poi and the criticality is Li

poi
.

A2B = zeros(nPaths, 2); % A2B is a vector that stores the source and sink of each path so that the alternatives can more easily be found

for ii = 1:nPaths

A2B(ii,:) = [paths{ii}(1) paths{ii}(end)];

end

[i j k] = find(sparse(NN2));

NN2pathcrit = zeros(numel(i), 1);

for ii = 1:numel(i) % for each edge

M = [];

for jj = 1:nPaths % find paths with edge i

if ~isempty(strfind([paths{jj}], [i(ii) j(ii)]))

M(end+1) = jj;

end

end

if ~isempty(M) % if any paths contain edge i

174

altPaths = [];

for mm = 1:numel(M) % for each of those paths

% find alternative paths

a = find(A2B(:,1) == paths{M(mm)}(1));

altPaths = [altPaths setdiff(a', M)];

% paths that start at the same source but end at any sink

% and are not in M

end

% flex i = #alt paths/total edge load

if ~isempty(altPaths)

NN2pathcrit(ii) = NN1(i(ii), j(ii))/numel(unique(altPaths));

else

NN2pathcrit(ii) = 100;

% if no alternative paths then it should be highly critical

end

end

end

3. The probability of an edge existing after an upgrade causes a slight rearrangement in

the network structure

This network uses similar logic to the previous one, except instead of using depot

failures to determine the probabilities, the end state of the network after an upgrade

is used. When a component is upgraded, there is a chance that the location where

maintenance is performed will change resulting in a change in the loading structure of

the network. In this case it is assumed that the repair and replace levels will always

change and be randomly reassigned to one of the six options. Using the logic in the

table above, the probability that a certain edge will change value can be determined.

For this network the probability that the edge will remain after the upgrade is being

considered, therefore an edge with a load greater than one will automatically remain

175

after only one change. For edges with exactly one load, the probability that it loses

its load is the probability that the one component that uses that link is the one being

upgraded and the probability that the new maintenance option does not use that link.

However, for all links that currently have zero load, the probability that they gain a

load is the probability that the new maintenance option uses that edge. Evaluation

of flexibility for this network is the same as that for the previous network.

N3ij = 1 if N1ij > 1

N3ij = 1− 1− Pc

m
if N1ij = 1

N3ij = Pc if N1ij = 0

(22)

Table 22: Table of Pc values

Edge type Pc

D-W 2/6

O-I 3/6

O-D 2/6

I-D 1/6

I-O 1/6

D-I 1/6

D-O 1/6

4. The expected value of the load on the edges after an upgrade

Using the same logic as the previous network, the expected value of the load on each

edge can be determined using the following equation.

N4ij = N1ij +
(m−N1ij)Pc

m
− N1ij(1− Pc)

m
(23)

This network is used in a similar way to N1 as a way to find the most heavily loaded

location and to be used in conjunction with N3 to determine the criticality of the

176

edges.

The eight network properties that are defined for these four network models are listed

below. Combined with the four properties from the P network and the two from the

A network results in a total of fourteen network properties evaluated by the FLoRA

NET model.

1. Maximum degree of all nodes in N1

2. Maximum degree of all nodes in N4

3. Total number of paths in N2

4. Total number of paths in N3

5. Path connectivity of N2

6. Path connectivity of N3

7. Maximum path criticality of edges in N2

8. Maximum path criticality of edges in N3

3.4 Chapter summary

In summary, there are three different network descriptions of the system that are

used to measure flexibility. The first one is the task to task model and will be used

to measure the volume flexibility as the maximum rate that the system can process

events and the growth flexibility as the spectral properties of the system. The second

network is the agent to task model and is mainly used to help formulate the other

two models. However, the degree of the nodes in this graph may provide bounds on

the divisibility of the system although it may no be related to just one measure of

flexibility. Finally, the third network is the agent to agent relationship model and

is used to explore the effects of the different types of changes to the system. The

177

probability and expected loads on the edges are used to count the paths through the

network, determine the path connectivity and identify critical edges as a measure

of divisibility with respect to lost nodes and growth flexibility with respect to the

rearrangement of connections.

178

CHAPTER IV

SIMULATION RESULTS

With the two models set up and running it is now possible to start turning the knobs

and obtaining results. This chapter will describe how each experiment was conducted

and discuss the results and their consequences.

4.1 Model setup

4.1.1 Scenario definition

The baseline scenario that was used to conduct the experiments was as follows. There

are three different types of platforms each with three components. However there are

only five component types therefore there is some overlap between the platforms. To

service these platforms there are two operators, one intermediate, three depots and a

single warehouse. Each of the operators has six total platforms though the number

of each platform type varies between the two operators. Meanwhile the warehouse

keeps two of each platform as spares. As for spare components, each depot will

attempt to keep a stock of five spare components of each type. Finally with regards

to the component properties unit cost and weight are both kept constant with all

components weighing 5 pounds and costing 100 dollars.

To clarify the nomenclature, C1 refers to component type 1. The same logic applies to

P for platforms, I for intermediate, O for operator, D for depot, and W for warehouse.

The distribution of platforms in the network is as follows.

Table 23: Simulated force structure

179

P1 P2 P3

O1 2 2 2

O2 2 1 3

W 2 2 2

The components for each platform are as follows.

Table 24: Platform architectures

Platform Components

P1 C1 C2 C3

P2 C1 C4 C5

P3 C2 C4 C5

The maintenance locations are distributed as follows. All distances are in miles

relative to the warehouse.

Table 25: Maintenance site locations relative to the warehouse

Location Coordinates

O1 1500, 1500

O2 0, 2000

D1 500, 500

D2 0, 1000

D3 500, 1500

I 1000, 1000

W 0, 0

The labor rates for each maintenance location are also fixed in units of dollars per

day.

180

Table 26: Labor rates

Location type Labor rate

Operator $50/day

Intermediate $30/day

Depot $15/day

4.1.2 Design variable ranges

In order to generate alternatives the design variables defined in chapter 2 were as-

signed values according to uniform random distributions on the ranges in the table

below. For the repair and replace location of each component there are only six fea-

sible combinations as was described in chapter 2, therefore those two variables are

combined into one variable and assigned a random integer between 1 and 6. For the

remaining design variables, continuous random distributions were used.

Table 27: List of design variables and ranges

Variable name Type Range

C1 maintenance plan Integer [1,6]

C2 maintenance plan Integer [1,6]

C3 maintenance plan Integer [1,6]

C4 maintenance plan Integer [1,6]

C5 maintenance plan Integer [1,6]

C1 MTBF Double [500, 4000]

C2 MTBF Double [500, 4000]

C3 MTBF Double [500, 4000]

C4 MTBF Double [500, 4000]

C5 MTBF Double [500, 4000]

181

D1 MTTR Double [5, 50]

D2 MTTR Double [5, 50]

D3 MTTR Double [5, 50]

I MTTR Double [1, 20]

O1 MTTR Double [5, 50]

O2 MTTR Double [5, 50]

O1 flight hours per year Double [200, 600]

O2 flight hours per year Double [200, 600]

4.1.3 Data collection and visualization

4.1.3.1 Primary design space

First, a random sampling of the design space was conducted. 5000 random systems

were evaluated by varying the design factors described above. The goal was to obtain

a sample that thoroughly explored the solution space defined by a two dimensional

plane of cost and availability. This process took several weeks due to the slow nature

of the simulation. Even though a typical run of the simulation would run for under a

half of a second, the need to run repetitions of each scenario increased the run time

by two orders of magnitude. Additionally, since each measure of flexibility requires a

unique scenario to simulate, which also require repetitions, this adds another order of

magnitude to the run time. Therefore, assuming it takes between about 500 seconds

per design, 5000 alternatives would take 2.5 million seconds which is about 28 days.

Figure 35 shows how the simulation runtime increases roughly linearly as the total

number of simulated platforms is increased. By the time 100 platforms are considered,

which is a on the low end for real systems, the computational costs have increased to

the point where even this small scale design space exploration would take almost a

182

year to complete.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
Simulation runtime vs. force structure

Number of platforms

S
e
c
o
n
d
s
 p

e
r

s
im

u
la

ti
o
n
 r

u
n

Figure 35: Simulation runtime increases as more platforms are considered

For each design, FLoRA DES was used to evaluate cost, availability, growth flexibility,

volume flexibility and divisibility. Additionally, varying levels of disruptions were

applied to the design and the cost and availability were assessed for each design.

This was done by first randomly applying one of each disruption type to the system

then two of each type, and finally three of each type for a total of three, six and

nine random disruptions. The code sample below demonstrates how the events are

set to happen randomly any time during the simulated ten year life span, and for

operational shifts a random value between 1 and 500 flight hours per year is chosen

for the magnitude of the shift.

183

E = [{0, 'obsolete', randi(10*365), 0, 0};

{0, 'failDepot', randi(10*365), 0, 0};

{0, 'operational shift', randi(10*365), randi(500), 0}];

After that each design is evaluated using FLoRA NET resulting in 14 additional

responses. In contrast to the other simulation, a single evaluation of FLoRA NET

only takes about 20 milliseconds to complete. Additionally, being a deterministic

model, only one evaluation is required per design. In conclusion, the same 5000

designs would only take about 100 seconds to evaluate which is nearly five orders of

magnitude faster than FLoRA DES.

4.1.3.2 Example data points

Table 29: Example of one of the best performing designs: system architecture

Variable set Values

Component maintenance plans 5, 5, 3, 4, 3

Component MTBF 2625, 3920, 2902, 2165, 3025

Average MTBF 3025

Depot MTTR 41, 29, 25

Intermediate MTTR 6

Operator MTTR 6, 7

Operator FH/YR 254, 232

184

Table 30: Example of one of the best performing designs: simulated performance

Simulated response Value

Cost 38579

Availability 0.92

Divisibility 1

Growth flexibility 87.73

Volume flexibility 2292.9

The first thing to note about this design is the relatively high values for component

MTBF meaning that the cost is generally going to be lower because fewer component

failures results in fewer maintenance events that cost money. Similarly, the avail-

ability will also tend to be high. However, this says nothing about the flexibility.

Examining the maintenance requirements for each component will reveal how well

distributed the maintenance jobs will be across the various depots. For this design,

four of the components have some kind of maintenance done at the depot. This is

favorable since there are three depots to handle all the jobs and two of those depots

even have relatively low MTTRs. Additionally, three of the components rely on the

two operators for maintenance and only one component uses the single intermediate.

This distribution of responsibility is resilient hence the high divisibility. As for vol-

ume flexibility, the favorable distribution of responsibility coupled with relatively low

MTBFs and some low MTTRs indicates a high maintenance capacity. Finally, with

respect to growth flexibility, the handful of maintenance sites with low MTTR favors

a quick upgrade response time.

185

Table 31: Example of one of the worst performing designs: system architecture

Variable set Values

Component maintenance plans 4, 1, 1, 4, 4

Component MTBF 547, 605, 3595, 1153, 1870, 1554

Average MTBF 1554

Depot MTTR 49, 28, 9

Intermediate MTTR 12

Operator MTTR 40, 42

Operator FH/YR 347, 426

Table 32: Example of one of the worst performing designs: simulated performance

Simulated response Value

Cost 282000

Availability 0.615

Divisibility 0.181

Growth flexibility 575

Volume flexibility 182.9

In comparison to the best design, this design is significantly worse. The cost is 86%

higher and the performance is 33% lower. The first indicator of this poor behavior

is that the average MTBF is nearly half of the value for the better design, meaning

components are simply failing more often putting greater stress on the system. The

second major difference is in the distribution of responsibilities. For this design all

five components rely on operators and three of them use the intermediate, meaning

that the system is only using half of the available resources. Additionally, the MTTRs

at both operators is particularly high, meaning that with all jobs going through the

operator there is likely to be a serious back up, resulting in very low volume flexibility.

186

Finally, in the case that the intermediate fails, nearly all the platforms will be unable

to receive maintenance, resulting in low divisibility.

4.1.3.3 Secondary design space

A second design space was evaluated that conforms more closely to how traditional

LoRA is done. For this only the maintenance requirements of each of the five com-

ponents is varied resulting in 56 = 7776 possible designs each of which is evaluated.

The results from this design space exploration will be investigated in greater detail in

chapter 5. However, in some cases it will be used to further justify conclusions made

from the first data set. Below are additional baseline attributes that were used for

this evaluation.

Table 33: Defaulted values for component MTBF

Component MTBF

C1 500

C2 4000

C3 750

C4 1800

C5 2500

187

Table 34: Defaulted values for location MTTR

Location MTTR FH/Yr

O1 15 420

O2 15 300

D1 10

D2 10

D3 10

I 5

4.1.3.4 Data histograms

The first method for viewing the results is a response histogram (Figure 36) where

the distribution of each variable is plotted. For example the peak of the availability

without disruptions histogram is around 0.92 meaning that it is the most common

value among the 5000 designs.

It can be inferred from here that the presence of disruptions tends to increase the cost

and reduce the performance of the system. This is an intuitive result, which lends

additional credibility to the behaviors modeled here. Similarly if the histograms

for varying levels of disruptions are overlaid upon one another it further reinforces

the observation that disruptions increase cost and decrease availability on average.

What is interesting however, is that more disruptions tend not to increase cost by as

much while availability continues to drop. This could be because cost is dependent

on components failing, but if availability is low then there are fewer platforms in

operation so there are fewer component failures resulting in less cost increase.

188

Cost w/o disruptions
Cost w disruptions

Availability w/o disruptions
Availability w disruptions

0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 0.66 0.72 0.78 0.84 0.90 0.96

0e+0 2e+4 4e+4 6e+4 8e+4 1e+5 1.2e+5 1.4e+5 1.6e+5 1.8e+5 2e+5

Figure 36: Histograms comparing performance and cost with disruptions and without

189

More
disruptions

No disruptions
3 disruptions
6 disruptions
9 disruptions

Figure 37: Histograms showing the increase in cost due to disruptions

190

More
disruptions

No disruptions
3 disruptions
6 disruptions
9 disruptions

Figure 38: Histograms showing the decrease in availability due to disruptions

191

4.1.3.5 Scatter plots

From the histograms it might seem like it would be possible to simply quantify the

shift in the distributions due to disruptions and plan for the difference. However,

this would not take into account whether some designs are shifting more than others.

The second method for viewing the aggregate characteristics of the design space is

by using scatter plots. For any pair of simulated responses, all 5000 designs can be

plotted on a Cartesian coordinate plane, where each point in the plot represents a

single design. Doing so allows the reader to view trends in the data. For example the

pair of scatter plots in figure 39 show the relationship between the cost and availability

of designs before and after disruptions. While there is some correlation between the

responses the strength of the relationship is not strong enough that disruptions can

simply be ignored. For the purposes of this thesis correlation is defined by Pearson’s

correlation coefficient which describes how close the relationship between two variables

is to being linear. Using similar logic it can be shown that the apparent relationships

weaken significantly the more disruptions are considered, and that availability is more

sensitive to disruptions than cost is.

Table 35: The effect of increasing the number of disruptions on the correlation to an

undisrupted system

Response 1 Response 2 Correlation coefficient

Cost no disruptions Cost 3 disruptions 0.7866

Cost no disruptions Cost 6 disruptions 0.7369

Cost no disruptions Cost 9 disruptions 0.6882

Availability no disruptions Cost 3 disruptions 0.7682

Availability no disruptions Cost 6 disruptions 0.6687

Availability no disruptions Cost 9 disruptions 0.5942

192

ρ = .77

ρ = .75

A
va

ila
b

ili
ty

 n
o

 d
is

ru
p

ti
o

n
s

Availability 3 disruptions

C
o

st
 n

o
 d

is
ru

p
ti

o
n

s

Cost 3 disruptions

Figure 39: Relationships between availability and cost with disruptions and without

193

3 4 5 6 7 8 9
0.55

0.6

0.65

0.7

0.75

0.8
Correlation vs. number of disruptions

Number of disruptions

C
o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

Figure 40: The effect of increasing the number of disruptions on the correlation to an
undisrupted system

194

To further explore this result (figure 41) shows the relationship between cost and

availability for the case of no disruptions on the left and three disruptions on the

right. The first observation is that for this problem, most of the designs have high

availability (> %85) and that cost is highly variable for most values of availability.

This is apparent from the slender vertical distribution. However, when disruptions

are modeled the distribution spreads significantly. If the lower cost solutions are

highlighted then it becomes apparent that some of the designs suffer more due to dis-

ruptions than others. To recall one of the hypotheses, flexibility should help identify

which designs will fare better in the presence of disruptions.

C
o
st

Availability

C
o
st

Availability

Figure 41: Cost vs. availability with disruptions and without, color coded to identify
good solutions

195

4.2 Correlation between flexibility measures

Between growth flexibility and divisibility a slight negative correlation of -.484 is

observed (figure 42). Growth flexibility is measured here as the amount of time it takes

for the system to recover from an obsolescence, therefore low values are desirable. For

divisibility higher values are desirable since it is measured by the percentage of depots

that must go down before the system fails. As such this negative trend indicates that

these two measures of flexibility tend to complement one another. However, the

correlation is not strong enough to warrant using one measure over the other.

	% Depot failures

U
p

gr
ad

e
 r

es
p

o
n

se
 t

im
e

Figure 42: Relationship between growth flexibility and divisibility

For the relationship between divisibility and volume flexibility, a slightly stronger

correlation of .5555 is observed (figure 43). Since volume flexibility is measured

196

as the maximum operational frequency that the maintenance system can support,

higher values are desirable. Therefore, these two measures of flexibility are once

again complementary to one another. However, the slightly exponential relationship

between the responses indicates a diminishing returns effect. For low values of volume

flexibility there are large gains in divisibility. However, one the volume flexibility

exceeds about 700 flight hours per year, the benefit drops off as divisibility cannot

exceed %100. Once again, the correlation is not strong enough to warrant using one

measure over the other.

%
 D

ep
o

t
fa

ilu
re

s

Maximum FH/Yr

Figure 43: Relationship between volume flexibility and divisibility

The final relationship is observed to have a slight negative correlation of -.5636 (figure

44) . The measures are once again complementary since low values of growth flexibility

and high values of volume flexibility are desirable. As with the previous pair, there

is also a diminishing returns effect here as well. This is expected given the slight

197

correlation and exponential relationship between growth flexibility and divisibility.

U
p

gr
ad

e
 r

es
p

o
n

se
 t

im
e

Max FH/Yr

Figure 44: Relationship between growth flexibility and divisibility

In conclusion, all three measures of flexibility are complementary to one another,

meaning there are no major tradeoffs. One explanation for this behavior is that

systems that can process maintenance jobs faster will inherently be able to respond

better to disruptions. However, there is enough variance in the responses that it

still makes sense to consider all three measures. It is likely that this is the result

of allowing location MTTR to vary. However, if only the component maintenance

requirements are allowed to vary then the relationships between flexibility measures is

much weaker and is almost to the point of being totally unrelated. The one exception

is the relationship between divisibility and volume flexibility which has a correlation

coefficient of 0.72 indicating that it may be acceptable in this case to only consider

one of the two measures. (figure 45)

198

Divisibility

Growth
flexibility

Volume
flexibility

Figure 45: Matrix of plots comparing all flexibility measures when only maintenance
requirements are varied

199

Table 36: Correlation matrix for flexibility measures when only maintenance require-

ments are varied

Divisibility Growth Volume

Divisibility 1.0 0.2868 -0.7178

Growth 0.2868 1.0 -0.3812

Volume -0.7178 -0.3812 1.0

4.3 Correlation between network properties

Using the 5000 random designs described in the previous section, the relationships

between the different network properties can be explored. The primary goal here is to

find a set of network properties that does not contain too much redundant informa-

tion. The method for examining the relationships will be via correlation coefficients,

therefore the goal is to find sets of responses with high pairwise correlation. To visu-

alize this, scatterplots will be used to show the grouping of points. In most cases if

the points group along a narrow 45 degree line, this is an indicator of high correla-

tion. Additionally, the grouping will follow an exponential or logarithmic pattern in

which case the correlation coefficient will be lower, but the relationship will still be

considered significant.

From this a few clear relationships stand out. First the functional cyclically and

graph energy of the P matrix show a strong linear correlation indicating that they

are redundant measures. A correlation of 0.9825 indicating that only one of the two

measures is necessary in most cases. (figure 46)

Additionally, max flow for the P matrix shows an exponential relationship with the

previous two measures. This is an interesting result, and an argument could be made

for calling maximum flow redundant as well. However, since the correlation is only

0.6204, maximum flow will remain. (figure 47)

200

ρ = 0.9825

Fu
n

ct
io

n
al

 C
yc

lic
it

y

Graph energy

Figure 46: Relationship between functional cyclicity and graph energy

201

ρ = 0.6204

M
ax

 f
lo

w

Graph energy

Figure 47: Relationship between max flow and graph energy

202

Additionally, many of the measures from the different N matrices are strongly related.

In general all the responses from the N2 and N3 are highly correlated as are N1 and

N4, meaning that only one model is necessary. In this case N1 and N2 are deemed

sufficient. (figures 48 and 49)

ρ = 0.999 ρ = 0.9704

ρ = 0.9704

N
N

2

NN3

N
N

2

NN3

N
N

2

NN3

Figure 48: Three plots describing the relationship between responses for the N2 and
N3 networks

It should be noted that even though the correlation between models of path connec-

tivity is 0.9704 indicating that they are redundant, both responses are retained. This

is due to the highly discrete nature of the responses with only four possible values

from N2 and eight possible values from N3. While in general, the responses from

N2 are used, in this case the response from N3 is also used because it contains more

information. (figure 50)

Finally, it should be noted that the measures derived from the A matrix do not vary

203

ρ = 0.9905

N
N

1

NN4

Figure 49: Relationship between maximum degree in the N1 and N4 networks

204

ρ = 0.9704

N
N

2

NN3

Figure 50: Relationship between path connectivity in the N2 and N3 networks

205

at all for this data set. One interpretation could be that this network does not provide

anything useful. Alternatively, it can be due to the simplicity of the example problem.

Either way, these measures will not be useful for this study and will be ignored.

Through this process 14 measures are reduced to 8. They are as follows:

1. maximum flow through the P network

2. functional cyclically of the P network

3. algebraic connectivity of the P network

4. maximum degree in the N1 network

5. number of paths in the N2 network

6. most critical path in the N2 network

7. path connectivity of the N2 network

8. path connectivity of the N3 network

However, for the remaining network properties the relationships are too difficult to

identify intuitively. In order to further reduce the dimensionality of the problem, the

remaining network properties can be condensed using principal component analysis.

In principal component analysis, the eigenvectors of the covariance matrix are used

to obtain a set of uncorrelated, orthogonal, linear combinations of the responses.

[89, 91](figure 51) In this way, the eigenvectors with the largest eigenvalues account

for most of the variability in the response. In this case the first three components

make up over 80% of the variability and can be used to represent the results of FLoRA

NET to see multi-dimensional relationships when it is compared to the results of the

simulations. For reference, the first three eigenvectors are listed below.

206

ρ = 0 ρ = 0

ρ = 0

Figure 51: Matrix of scatter plots describing the relationship between the principal
components

207

Table 37: First three eigenvectors of the covariance matrix of network properties

Prin1 Prin2 Prin3

Pmaxflow 0.17834 -0.57873 0.35008

Pfunctional cyclicity 0.27065 -0.37097 0.49493

Palgebraic connectivity -0.29079 0.41706 0.34513

NN1degree 0.09580 0.45293 0.69008

NN2paths 0.38927 0.04389 -0.04549

NN2critical path 0.41811 0.33861 -0.13469

NN2path connectivity 0.48869 0.12934 -0.07330

NN3path connectivity 0.48584 0.12273 -0.10762

4.4 Relationship between flexibility and performance

To reiterate, the first hypothesis was that measuring flexibility is a way to identify de-

signs that perform well even in a disruptive environment. To test this hypothesis, the

first experiment will use the previously described sample set of 5000 random designs

to explore the relationship between flexibility, cost and performance. If the simula-

tions were formulated properly then performance should increase with flexibility and

cost should decrease. Additionally, these relationships should be more pronounced

when there are disruptions than when there are none. This assumes that it is possible

for inflexible designs to still perform well as long as there are no disruptions. Finally,

it should be noted that correlation coefficients will once again be used to characterize

the strength of the relationships and scatter plots will be used to visualize the results.

It is expected that the hypothesis will only apply to some of the relationships between

flexibility and performance, therefore for those relationships flexibility will be a good

indicator of disrupted performance.

208

4.4.1 Flexibility vs. Cost

The first category of flexibility is divisibility, which is a measure of the systems re-

silience to depot failures. Primarily, divisibility is dependent on the distribution of

maintenance responsibility over the sites. In general, if the distribution is fairly even,

then most of the jobs will end up at sites with low MTTR as they will tend to have

the shortest queues and lowest costs. Therefore, high divisibility should correspond

to lower cost resulting in a negative correlation, which is the case in figure 52. How-

ever, when a depot fails, the more flexible systems will tend to continue operations

and incurring costs while the less flexible designs will fail. The result will be that

the systems with high divisibility will tend to have slightly higher costs when depots

start failing. This will manifest as a weakening in the relationship between divisibility

and cost as disruptions are added which is apparent from the reduction in correlation

coefficient as the number of disruptions increases from zero to nine.

The second category of flexibility is growth flexibility which is modeled as the amount

of time it takes the system to fully implement an upgrade. In general, the less time it

takes to implement an upgrade the less it will cost, therefore high upgrade response

time will correspond to high costs resulting in a positive correlation. Additionally,

since the upgrade time is dependent on the MTTR of the maintenance sites the flexible

systems will tend to have lower costs even when there are no disruptions which is

apparent in figure 53. However, it can also be shown that the relationship between

cost and growth flexibility is significantly stronger when there are disruptions. This is

apparent from the increase in correlation coefficient from 0.58 to 0.72 when the number

of disruptions goes from zero to three. It is also interesting that unlike divisibility

the strength of the relationship does not drop off as much as more disruptions are

considered. One possible explanation is that this is caused by the fact that growth

flexibility is measured over a shorter time interval.

The third category of flexibility is volume flexibility, which is the systems maximum

209

ρ = -.62 ρ = -.53 ρ = -.45 ρ = -.38

D
iv

is
ib

ili
ty

No disruptions 3 disruptions 6 disruptions 9 disruptions

Figure 52: Relationship between divisibility and cost with increasing levels of disrup-
tions

210

ρ = .58 ρ = .72 ρ = .70 ρ = .69

G
ro

w
th

 f
le

xi
b

ili
ty

No disruptions 3 disruptions 6 disruptions 9 disruptions

Figure 53: Relationship between growth flexibility and cost with increasing levels of
disruptions

211

capacity as measured by the maximum operational frequency that the maintenance

sites can support. In general, if the sites can process jobs quickly then they will

be able to handle a larger increase in operational frequency. At the same time, the

faster they process jobs the less they cost, therefore high volume flexibility should

correspond to lower costs. This can be shown in figure 54 by the strong negative

correlations. Additionally, in support of the hypothesis, this relationship strengthens

when disruptions are considered as shown by the increase in correlation coefficient

from 0.71 to 0.81. However, the relationship tends to weaken as more disruptions

are considered. This can be explained by the fact that some disruptions, such as

failed depots, will reduce the volume flexibility of the system which will result in

systems that once had high flexibility also having higher costs than they did with fewer

disruptions. It should also be noted that the relationship seems to be logarithmic

indicating a diminishing returns effect where increases in volume flexibility have less

pronounced advantages at some point.

4.4.2 Flexibility vs Availability

Since divisibility is measured as the number of depots that have failed once availability

drops below 65%, high divisibility should naturally correspond to higher availability.

This can be shown in figure 55 by the high correlation coefficients across the board.

In fact for each level of disruptions the correlation between divisibility and availability

is higher than between any other two responses. This would seem to make up for

the fact that divisibility did not relate well to cost. Additionally, to further support

the hypothesis, the relationship strengthens when disruptions are considered, and

similarly to the previous cases the relationship tends to weaken as the number of

disruptions are increased further.

Growth flexibility being defined by the time it takes for the availability to return

to ideal after a component goes obsolete should correspond favorably to the overall

212

ρ = -.71 ρ = -.84 ρ = -.83 ρ = -.78

V
o

lu
m

e
fl

ex
ib

ili
ty

No disruptions 3 disruptions 6 disruptions 9 disruptions

Figure 54: Relationship between volume flexibility and cost with increasing levels of
disruptions

213

ρ = .73 ρ = .88 ρ = .87

ρ = .83

D
iv

is
ib

ili
ty

No disruptions 3 disruptions 6 disruptions 9 disruptions

Figure 55: Relationship between divisibility and availability with increasing levels of
disruptions

214

availability. This can be shown in figure 56 by the negative correlation relating fast

upgrade response times with lower costs. However, the strength of the relationship is

not as high as some of the other measures since growth flexibility is only measured

on a short time frame while availability is measured as an aggregate over the entire

life span of the system. As such, it is also not surprising that the relationship does

not strengthen with the consideration of disruptions.

ρ = -.69 ρ = -.65 ρ = -.56 ρ = -.48

G
ro

w
th

 f
le

xi
b

ili
ty

No disruptions 3 disruptions 6 disruptions 9 disruptions

Figure 56: Relationship between growth flexibility and availability with increasing
levels of disruptions

Finally, since volume flexibility is also related to a 65% threshold on performance, sys-

tems with high maximum capacity should also have higher average availability. While

it can be shown in figure 57 that the correlation coefficients are positive, supporting

this assumption, the relationship is not particularly strong. This can be explained by

the diminishing returns effect due to the fact that availability cannot ever be above

215

100

ρ = .56 ρ = .57 ρ = .53 ρ = .49

V
o

lu
m

e
fl

ex
ib

ili
ty

No disruptions 3 disruptions 6 disruptions 9 disruptions

Figure 57: Relationship between volume flexibility and availability with increasing
levels of disruptions

4.4.3 Summary of results

The scatter plot matrix in figure 58 summarizes the findings of this experiment. The

result is that divisibility tends to correlate strongly with availability and growth and

volume flexibility correlate strongly with cost. For these pairs the first hypothesis

is supported as the relationships tend to strengthen when disruptions are consid-

ered. Additionally, in all cases the relationships tend to weaken when the number of

disruptions is increased further. This can be explained by assuming that the more

disruptions are considered, the more the behaviors of the different designs tend to

converge. In this case all the designs will tend to fail by the time that four depots

216

have stopped working which corresponds to twelve random disruptions, therefore nine

disruptions is the theoretical limit for this example problem.

ρ = -.53 ρ = .72

ρ = -.83

ρ = .58ρ = -.66ρ = .88

ρ = -.62 ρ = .56 ρ = -.71

ρ = .57ρ = -.69ρ = .73

A
va

ila
b

ili
ty

 w
/o

d

is
ru

p
ti

o
n

s
A

va
ila

b
ili

ty
 w

d

is
ru

p
ti

o
n

s
C

o
st

 w

d
is

ru
p

ti
o

n
s

C
o

st
 w

/o

d
is

ru
p

ti
o

n
s

Growth Flexibility Volume FlexibilityDivisibility

Figure 58: Matrix of plots showing cost and performance vs. flexibility with correla-
tion coefficients

On final point is than in essence the correlation coefficient is a measure of the strength

of a linear function fit between the two data sets. It is apparent from the scatter plots

that there may be some non-linear relationships such as the logarithmic relationship

between volume flexibility and cost. For these relationships the measure of strength is

R2 which is the square of the correlation coefficient describing the linear relationship

between the actual data and the values predicted by a functional fit model. In general

if R2 > ρ2 then the relationship between the two responses is better described by a

non-linear function. Two such examples are as follows.

217

Three parameter exponential function

y = a+ becx (24)

Quadratic function

y = a+ bx+ cx2 (25)

Once again the best fits are obtained consistent with previous results. Cost is pre-

dicted by an exponential model of operational shifts with R2 = .83 and availability

is predicted by a quadratic model of the proportion of failed depots with R2 = .78.

The rest of the significant fits are summarized in the scatter plot matrix in figure 59

Quadratic
R2 = .78

Quadratic
R2 = .53

Exponential
3P
R2 = .83

Exponential
3P
R2 = .54

Exponential
3P
R2 = .57

Exponential
3P
R2 = .72

Quadratic
R2 = .54

Quadratic
R2 = .67

Growth Flexibility Volume FlexibilityDivisibility

A
va

ila
bi

lit
y

w
/o

di

sr
up

ti
on

s
A

va
ila

bi
lit

y
w

di

sr
u

pt
io

ns
C

os
t w

d

is
ru

p
ti

o
n

s
C

o
st

 w
/o

di

sr
up

ti
on

s

Figure 59: Matrix of plots showing cost and performance vs. flexibility with goodness
of fit statistics

In conclusion, showing that relationships exist between flexibility and performance

and that some of those relationships are more relevant when subjected to disruptions,

218

is a sufficient condition to substantiate the first hypothesis that flexibility can be used

to identify good solutions.

4.5 Relationship between flexibility and network properties

The second hypothesis was that network properties could be used as heuristics for

flexibility for the SoS maintenance planning problem. Similar to experiment one,

this experiment will use the 5000 random designs to explore the relationship between

flexibility and network properties by means of correlation coefficient. Unlike the rela-

tionships between flexibility, cost and performance, these relationships are expected to

be weaker since, network properties are not physically analogous to flexibility which is

the nature of heuristics. As such, meaningful statements explaining why the observed

behavior is realistic will be hard to make. In summary, even though the correlation

will be lower, if the coefficients are on the order of 0.4 to 0.6 they should still be

usable for a design space down selection. However, if they are more on the order of

0.1 to 0.3 then a weak relationship does exist and a probabilistic approximation of

the relationship might produce better results.

To reiterate, the eight network properties that were calculated for each of the 5000

randomly generated designs are as follows.

1. maximum flow through the P network (MF)

2. functional cyclically of the P network (FC)

3. algebraic connectivity of the P network (AC)

4. maximum degree in the N1 network (Deg)

5. number of paths in the N2 network (Npath)

6. most critical path in the N2 network (Cpath)

7. path connectivity of the N2 network (Pconn2)

219

8. path connectivity of the N3 network (Pconn3)

These will be compared to the following three simulated measures of flexibility.

1. proportion of failed depots

2. upgrade response time

3. maximum operational load

4.5.1 Correlations

There are twenty four possible relationships, and the results are summarized in the

following table. Most of the relationships are very weak therefore, only the notable

ones will be explored in more depth.

Table 38: Correlation between flexibility and network properties for the 5000 random

designs

MF FC AC Pconn3

Divisibility -0.0897 0.0268 0.0794 0.0703

Growth -0.18 -0.2958 0.1495 -0.1124

Volume 0.2252 0.3294 -0.2388 0.1201

Deg Npath Cpath Pconn2

Divisibility 0.1347 0.0419 0.0829 0.0672

Growth 0.1133 -0.0723 -0.0574 -0.1052

Volume -0.1912 0.0615 0.0235 0.1066

The first observation here is that none of the correlations are stronger than 0.4 and

only the relationship between volume flexibility and functional cyclicity in the P

network is stronger than 0.3. To examine that further figure 60 shows the relationships

between the properties of the P network and volume flexibility. From this it can be

shown that higher functional cyclicity tends to correspond to higher volume flexibility.

220

Similarly higher max flow tends to correspond to higher volume flexibility, which is

the expected result as volume flexibility is supposed to be the system’s maximum

resource flow capacity. However, it seems that the values for max flow cluster around

the value of 0.6 meaning that for high values of volume flexibility max flow is not a

good indicator. Finally, while the results show a slight negative correlation between

algebraic connectivity and volume flexibility, nothing is visually apparent from the

scatter plot.

ρ = .225 ρ = .329 ρ = -.239

Figure 60: Scatter plots of evaluated designs comparing volume flexibility and the
properties of the P network

While the results for the 5000 random designs are not particularly useful, it is possible

that this is due to the nature of graph theory. It is reasonable to believe that the net-

work properties will be more dependent on the placement of edges in the graph which

are exclusively determined by the maintenance requirements of the components. As

221

such, varying site MTTR, component MTBF and operational frequency is likely to

confound the relationship between network properties and flexibility. Therefore, it

makes sense to explore the relationships in the context of only varying the mainte-

nance strategies. Below are the correlation coefficients between network properties

and flexibility for the 7776 designs from the second design space evaluation.

Table 39: Correlation between flexibility and network properties when only mainte-

nance strategy is varied

MF FC AC Pconn3

Divisibility -0.4 -0.2431 0.4838 0.4517

Growth -0.1893 -0.2084 0.2767 0.1766

Volume 0.5171 0.5343 -0.6516 -0.4027

Deg Npath Cpath Pconn2

Divisibility -0.0142 0.2055 0.0154 0.0149

Growth -0.1229 -0.0829 -0.1607 -0.1796

Volume 0.3243 0.1553 0.3762 0.4046

It is immediately apparent that many of the correlations are much higher than before.

For example the correlation between volume flexibility and algebraic connectivity is

now 0.65 whereas it was previously 0.24. Algebraic connectivity is supposed to relate

to the network’s stability, therefore when faced with more components to service,

one can assume that a more stable network will handle the change better. A similar

argument can be made for why volume flexibility should relate well to algebraic

connectivity and why functional cyclicity, which is supposed to relate to the network’s

ability to synchronize, should also correlate with the systems response to increases

in operational frequency. Additionally, it was shown in section 4.1 that for this

design space, divisibility and volume flexibility are negatively correlated, therefore it

is expected that some of the same relationships that were found for volume flexibility

222

will also exist for divisibility. (figure 61)

Figure 61: Scatter plots comparing volume and growth flexibility with the functional
cyclicity and algebraic connectivity of the P network

Continuing on, it is no surprise that max flow still correlates well with volume flexi-

bility. It is also not terribly surprising that divisibility and the maximum degree of

nodes in the N network should be related. It was previously assumed that a node

with high degree would be a possible choke point. It was then assumed that a net-

work with choke points would more vulnerable to node failures, therefore it should be

correlated with the system’s response to depot failures. Finally, it should be noted

that none of the network properties correlate particularly well with growth flexibility.

This is not surprising as it was discussed in chapter 1 how growth flexibility is the

hardest to generalize using network properties. (figure 62)

223

Figure 62: Scatter plots comparing volume and growth flexibility with the maximum
nodal degree in the N1 network

224

To summarize, for the 5000 random designs the relationships are weaker than ex-

pected. However, for the design space where only the maintenance requirements are

varied, the relationships are much stronger. The properties of the P network perform

well, as does the maximum degree in the N network. The biggest problem is that

nothing relates particularly well to growth flexibility. Additionally, even though the

correlations indicate relationships of medium strength, it is hard to see more than an

ellipse of dots in the scatter plots. Therefore additional methods will be explored.

4.5.2 Principal components

The next attempt was to look for higher order relationships between combinations of

network properties. To do this, the three highest ranking principal components were

compared to the flexibility measures.

Table 40: Correlation matrix relating principal components of FLoRA Net to flexi-

bility measures

Prin1 Prin2 Prin3

Divisibility 0.0607 0.1305 0.0695

Growth -0.1227 0.205 -0.009

Volume 0.1231 -0.301 -0.0338

Examining the results shows that using principal components did not improve the

correlation at all. Whereas the strongest relationships before were between volume

and growth flexibility and functional cyclicity with a correlation of 0.33 and 0.29

respectively, now the strongest correlation is with principal number two with only

values of 0.3 and 0.2 respectively. This would indicate that principal components are

not a good reduction of dimensionality for this problem.

Alternatively, it is possible that the principal components will perform better with

respect to the 7776 full factorial design space. For reference the eigenvectors of the

three highest ranking principal components are defined below.

225

Table 41: Eigenvectors of the covariance matrix when only maintenance strategy is

varied

Prin1 Prin2 Prin3

P max flow 0.25402 -0.52533 0.45488

P functional cyclicity 0.4133 -0.22343 0.20946

P algebraic connectivity -0.2946 0.44315 0.14298

NN1 degree 0.06025 0.48908 0.78431

NN2 paths 0.36193 0.09071 -0.09413

NN2 path criticality 0.35735 0.42664 -0.30756

NN2 path connectivity 0.45706 0.1597 -0.0533

NN3 path connectivity 0.45457 0.15091 -0.08561

Table 42: Correlation matrix relating principal components of FLoRA Net to flexi-

bility measures when only maintenance strategy is varied

Prin1 Prin2 Prin3

Divisibility -0.112 0.5817 0.1409

Growth -0.2068 0.1881 0.1217

Volume 0.4994 -0.4854 -0.2169

When examining the correlations, the strongest relationship for growth flexibility

decreases from 0.65 to 0.49, indicating that algebraic connectivity would be a better

heuristics. However, the strongest relationship for divisibility increases from 0.48 to

0.58 meaning that principal 2 is a better heuristic than algebraic connectivity was.

The formula for principal 2 is as follows.

−3.1758190659345 ∗ Pmaxflow + −1.33059560885448 ∗ Pfunctionalcyclicity +

14.0070443862538 ∗ Palgebraicconnectivity + 0.161609310889171 ∗ NN1degree +

0.0122158866658684 ∗ NN2paths + 0.00885455968807403 ∗ NN2pathcrit +

0.145289630836606 ∗ NN2pathconn + 0.142895948865611 ∗ NN3pathconn +

226

(−18.6428016501704)

To summarize, in general the principal components correlate worse than the original

network properties. The reason is that only a few of the network properties correlate

strongly to begin with, therefore considering combinations of multiple responses will

usually be worse than just considering the single best correlated one. However, in the

case of divisibility where there are multiple network properties that correlate around

0.4 then principal 2 which is mostly an aggregate of the four strongest correlated

responses will perform best.

4.5.3 Simulation risk

Finally, as was mentioned at the beginning of this section, if the relationships were

not deemed strong enough then a probabilistic method should be used to approximate

the joint probability distributions (JPDF) of the responses. After evaluating the net-

work properties of a particular architecture it is then possible to use the JPDFs to

calculate the probability that the flexibility will be high. To do this the MATLAB

copulafit function was used [7] to fit JPDFs. A copula is a function that describes

the relationship between the marginal distributions of two variables. However, these

relationships cannot be used in the same way that a linear relationship would be.

Being a probabilistic fit, knowing one variable will only result in a probability distri-

bution on the value of the related variable. As such, the copulas cannot be used to

predict the measures of flexibility. However, it may be possible to use the copulas to

manage the risk involved for each design. Risk, in the simplest form is a trade off

between the consequences of bad outcomes and the likelihood that they occur. [114]

In this case the consequence is the expenditure of computational resources to evaluate

a potentially bad design, and the likelihood is the probability that the flexibility is

below a tolerable threshold given network properties. In this way the copula can be

used to reduce the number of times the simulation must be used when conducting

227

the design space exploration, thereby saving time.

The process can be summarized as follows.

• For each flexibility measure fit a multi-variate copula to all the relevant network

properties or principal components. Figure 63 shows what the joint probability

distribution function (JPDF) contours looks like in two dimensions.

• For each flexibility measure determine a threshold that will serve as a cutoff for

what is deemed acceptable. Since the simulation risk function transforms the

response to a unit interval in order to sample the JPDF, the threshold can be

generalized by a normalized value between 0 and 1.

• For each design, evaluate all the network properties. Then sample each JPDF

for every value of the flexibility measure with the network properties fixed. The

result is the marginal distributions of the flexibility measures.

• For each marginal distribution, generate the cumulative distribution function

and determine the probability that the value will be above the previously stated

threshold. The result is the probability that the current design will have an

acceptable level of flexibility

• Determine what an acceptable level of risk is, and only run the simulation if

the probability of acceptable flexibility is high enough.

The expected result should be that this method will filter out the majority of cases

that exhibit less than optimal flexibility. Given the results from the previous chap-

ter, this should in turn select a higher density of solutions with good performance.

Granted it will also throw out many solutions that may be good. However, this is

the cost of being more selective, and given that the goal is to pick a solution that is

sufficient and can be adapted easily in the future, throwing out some good solutions

is an acceptable price to pay for efficiency.

228

x

y

y

th
resh

o
ld

P(Y<threshold)

Figure 63: From left to right: A 2D joint probability distribution with a vertical line
depicting a fixed x value. The marginal distribution on y with a line depicting a
threshold for acceptable values. The CDF of y where the vertical line is the threshold
on y and the horizontal line represents an acceptable level of risk

This was applied to the 5000 random designs and after some tuning of the thresholds,

the following down selection was achieved. Figure 64 shows how the original design

space exploration would have been conducted if simulation risk were used to filter

designs. The parameters for accepting a solution were that it has a 40% chance

of being in the top 10% of the solution space for each category of flexibility. These

values were determined experimentally and in general must be found uniquely for each

different problem. The result was an 8% increase in the average volume flexibility

and a 7% increase in the growth flexibility. What is more striking is the 23% decrease

in average cost and that only 2.8% of the design space was actually simulated.

To summarize, simulation risk is a promising method for selectively choosing which

designs to expend additional computational resources on. It is not a perfect solution

though, since it requires a data set that is a good representation of the solution space

in order to fit distribution functions to. However, this is primarily a cost that is

229

0 0.5 1
0

0.5

1

1.5

2

2.5

3
x 10

5

cost

0 0.5 1
0

0.5

1

1.5

2

2.5

3
x 10

5

cost

a
v
a
ila

b
ili

ty

0 200 400 600 800
0

500

1000

1500

2000

2500

3000

upgrade response time

0 200 400 600
0

500

1000

1500

2000

2500

3000

upgrade response time

o
p
e
ra

ti
o
n
a
l
s
h
if
ts

C
o

st

Vo
lu

m
e

Fl
ex

ib
ili

ty

Growth FlexibilityGrowth Flexibility Availability Availability

Figure 64: Blue: Response space for all solutions. Green: only the low risk solutions.
Left: Comparison of flexibility response spaces. Right: Performance vs cost response
spaces

230

incurred at the very beginning of the design process. Once it is done, all future

analyses can be sped up ideally to the point that they can be done in a fraction of

the time.

4.5.4 Summary of experiment 2

In conclusion, for the original set of 5000 random designs the network properties did

not correlate sufficiently with the flexibility measures. However, when only the main-

tenance requirements of each component were varied the network model correlated

much better with the flexibility measures. This is because the network properties are

dependent on the topology of the graphs which is primarily driven by the maintenance

requirements. It was determined that the task to task network was the best model

of volume and divisibility, while no good heuristic for growth flexibility was found.

It had been discussed in section 4.2 that principal component analysis could be used

to aggregate the network properties and reduce the dimensionality of the problem.

However, this was shown to not be as effective in general. The one exception was

with principal 2 of the 7776 design full factorial data set which correlated best with

volume flexibility.

Finally, a probabilistic method was formulated for quantifying the risk of expending

computational resources to simulate a poor design. While traditional goodness of fit

metrics were not available for this method, it was possible to simulate a design space

down selection on the 5000 random designs. It was found that while the method was

time consuming to set up and required significant tuning of parameters, the results

promised a potential 93% increase in efficiency.

4.6 Comparison of design space down selection methods

The final hypothesis was that an optimization algorithm could more efficiently explore

the design space than the default method. This is more of conjecture than a formal

hypothesis since only two methods will be compared which will likely be insufficient

231

to fully substantiate the above statement. In this experiment, the efficiency of the

5000 random design data set will be compared to a design space down selection using

the NSGA II evolutionary algorithm. The two methods will be compared based on

how many designs are evaluated in total and how well each method finds the best

performing solutions. Finally, since this is a multi-criteria problem, the result of each

method will be a set of non-dominated solutions that will serve as the design space

down selection. It should be noted that since cost and performance are generally

the primary metrics with flexibility being secondary, all the Pareto fronts will be

evaluated from the perspective of cost and availability.

Nomenclature:

• P Performance / availability

• C - Cost

• F - vector of flexibility measures

• F1 Divisibility

• F2 Growth flexibility

• F3 Volume flexibility

Traditional LoRA optimizes cost and availability subject to constraints on a list of

different metrics that are not being considered for this study. Therefore, in this design

paradigm flexibility is not considered at all and for the purposes of this study it can

be assumed that there are no constraints. The baseline optimization problem can be

formally defined as follows.

minimize C,−P

232

Figure 65 is a scatter plot of the results for NSGA2 running with a population size

of 100 for 25 generations. There is a clear Pareto front of designs which seems to

be rather angular (the highlighted points in the bottom left corner). This indicates

that there is a small set of solutions that are likely to be optimal for the majority of

scenarios. There is conceivably a scenario where near perfect performance is desired

and cost is less of an issue, however the increase in cost is quite significant. Addition-

ally, there is a scenario where less performance is needed and reduced cost is desired,

however there are also steep diminishing returns in this scenario.

Cost

A
va

ila
b

ili
ty

Baseline optimization

Figure 65: Results from the baseline optimization. Highlighted points represent dom-
inant solutions.

When including flexibility into the formulation it makes sense to do so by considering

it as an additional objective function. This is in contrast to setting flexibility as

a constraint, since without a good sense as to how much flexibility is needed, the

233

resulting constraints would be arbitrary. The optimization problem for the multi-

platform maintenance planning problem is defined as follows.

minimize C,−P,−F1, F2,−F3

In this case F is a vector of three measures. Divisibility is the proportion of depots

that can be disrupted before performance drops which should be maximized. Growth

flexibility is the time it takes for performance to rebound after a component gets

upgraded which should be minimized. Finally, volume flexibility is the maximum

operational frequency that the system can operate effectively at, which should be

maximized as well.

When comparing the Pareto fronts of the flexibility optimization to that of the base-

line optimization, it appears that optimizing for flexibility is significantly worse (figure

67). While the optimal performance is nearly the same the optimal cost for a flexible

system is 55% higher than the baseline optimum that does not consider cost. How-

ever, this can be explained since it is possible that those solutions have low flexibility

and are therefore discarded by the flexibility optimization. This makes sense assum-

ing that it is possible for some highly inflexible systems to still succeed given that

only a finite number of disruption can be simulated. When the Pareto fronts for the

flexibility measures are considered, it can be shown that the solutions that exist in

the optimal region for flexibility also tend to exist in the region of low cost and high

performance (highlighted points in figure 66).

When comparing the optimizations to the random sampling of designs performed

earlier, the flexibility optimization finds a similar minimum cost but does so with 8%

higher performance. What is most striking though, is that the flexibility optimization

finds the optimal region in the 7th generation while the baseline optimization takes

until the 9th generation, which compared to the random sampling of 5000 designs

results in nearly an order of magnitude improvement.

234

V
o

lu
m

e
Fl

ex
ib

ili
ty

G
ro

w
th

 F
le

xi
b

ili
ty

Growth FlexibilityDivisibility

Cost

A
va

ila
b

ili
ty

Optimization for flexibility

Figure 66: Results from optimizing with flexibility as an objective. Highlighted points
represent dominant solutions in the cost vs availability solution space

235

The fourth down selection method is the one described in the previous section using

a simulation risk filter on the 5000 random designs. As mentioned previously, the

simulation risk filter down selected the design space to just 140 designs which is

80% less than the optimization for flexibility. However, the best performing solution

remaining has 20% higher cost and 8% lower availability than the best performing

solution from the flexibility based optimization. The question remains whether the

reduction in performance is worth the increased evaluation efficiency. The cutoff

point is likely to be different for each problem. In some cases where time is limited

the increased efficiency will be valuable, while for other problems the optimizer will

be efficient enough without sacrificing accuracy.

Random sampling
Random sampling with simulation risk
Baseline optimization
Flexibility optimization

A
va

ila
b

ili
ty

 3
 d

is
ru

p
ti

o
n

s

Cost

Figure 67: Comparing Pareto frontiers from three design space exploration methods

The final optimization paradigm uses the simulation risk formulation to heuristically

select for designs with high flexibility. In this way the simulation risk acts as a

236

constraint on the optimization problem which can be defined as follows.

minimize C,−P,−F1, F2,−F3

subject to risk < x

The constraint is handled by a penalty function that when violated sets the cost arbi-

trarily high and the availability and flexibility to zero. If the constraints are violated

then the simulation is not called at all thereby saving computational resources. The

intended result is that the optimizer will initially throw away most of the bad solutions

then find the regions where the low risk solutions exist and explore those in greater

detail. However, figure 68 shows that the result is not as favorable as the algorithm

fails to find the optimal region. What happens is that the algorithm starts with a

random population of solutions of which only a couple are low risk. The next gener-

ation will start to focus on those favorable solutions and explore the region around

them. After a few generations the algorithm has successfully found low risk solutions

in the region of the original few. However, the population becomes saturated with

these solutions and must simulate all of them thereby losing the initial computational

advantage that was gained by using simulation risk. The problem is that with only a

couple low risk solutions in the initial population there is no guarantee that they will

be anywhere near the optimum. If they are not then the resulting Pareto front will

not be anywhere near the true optimum. To mitigate this it might make sense to use

a larger population size, however then the later generations that have found regions

of low risk will take significantly longer to evaluate thereby negating any advantage

gained by using an optimizer.

To summarize, the baseline version of LoRA uses an optimizer and does not consider

flexibility, therefore as long as disruptions are likely to be a concern this method

is not viable. However, when flexibility is added to the optimization the optimal

cost is slightly higher, due to only considering flexible solutions, but the method is

237

A
va

ila
b

ili
ty

Cost

V
o

lu
m

e
Fl

ex
ib

ili
ty

Divisibility

Figure 68: Results from optimizing with flexibility as an objective and simulation
risk as a constraint

238

slightly more efficient than the baseline. When compared to the original method of

randomly sampling designs, optimization is far more efficient and also produces better

results. It was mentioned in the previous section, that the simulation risk method

could also be used to rapidly down select the design space. However, when compared

to the optimal solutions from the other methods, the results were significantly worse.

Finally, it might make sense to combine the efficiency of simulation risk with the

accuracy of optimization, but it was shown that this does not work well at all. In

conclusion, the choice of down selection method is a trade off between accuracy and

efficiency and will depend on the nature of the design problem and how much time

there is to perform the evaluations.

239

CHAPTER V

APPLICATION OF THE METHODOLOGY TO A

DESIGN CASE STUDY

This chapter will apply the proposed methodology to an example design problem for

two purposes. First, to demonstrate how the methodology should be applied and

second, to quantify the trade offs for using this method over current methods. To

review, the steps of the methodology are as follows.

1. Problem definition

• Definition of objective

• Definition of baseline attributes

• Determination of design variables

2. Evaluation of designs

• Development of models

• Definition of heuristics

3. Design space down selection

• Evolutionary optimization

• Application of heuristics

• Determination of Pareto optimal designs

240

5.1 Problem definition

The first step of the methodology is to define the problem. For this case study, the

problem is a multi-platform maintenance planning problem as described in chapter

one. The need to consider disruptions to the system means that the new methodology

should be used. Several types of disruptions that should be planned for were identified,

including increases in operational frequency, component obsolescence, or maintenance

depot failures.

5.1.1 Objective definition

The objectives can be defined as minimize support costs while maximizing platform

availability and overall system flexibility. Flexibility is defined using the three part

definition described in chapter one. The alternative designs are generated by varying

the location where each component type gets repaired and replaced. This is consistent

with a traditional level of repair analysis for fixed platform architectures, constant

force structure and is constrained by having to use only existing maintenance sites.

5.1.2 Baseline definition

The baseline architecture is the one described at the beginning of chapter four. It

has two operators with six platforms each, three depots, one intermediate, and one

warehouse. Each platform has three out of the five different components.

Force structure P1 P2 P3

O1 2 2 2

O2 2 1 3

W 2 2 2

241

Platform Components

P1 C1 C2 C3

P2 C1 C4 C5

P3 C2 C4 C5

Component MTBF

C1 500

C2 4000

C3 750

C4 1800

C5 2500

Location Coordinates Labor rate MTTR FH/Yr

O1 1500, 1500 50 15 420

O2 0, 2000 50 15 300

D1 500, 500 15 10

D2 0, 1000 15 10

D3 500, 1500 15 10

I 1000, 1000 30 5

W 0, 0

5.1.3 Design variable determination

For each of the components the only design variable is the maintenance plan therefore

there are 56 = 7776 possible designs. This is a small number compared to real LoRA

scenarios due to the limited number of components considered. The purpose of using

such a small design space is so that multiple different methods can be implemented

and compared in a realistic amount of time.

242

Variable name Type Range

C1 maintenance plan Integer [1,6]

C2 maintenance plan Integer [1,6]

C3 maintenance plan Integer [1,6]

C4 maintenance plan Integer [1,6]

C5 maintenance plan Integer [1,6]

5.2 Design evaluation

In this step of the methodology a preliminary screening of the design space should be

done in order to determine how the flexibility measures relate to one another, and to

define the relationship between the network model and the higher fidelity performance

model. In general, this will involve sampling a small fraction of the design space at

random. However, for this case study, the design space is small enough, therefore

all 7776 possible designs could be evaluated using the FLoRA DES and FLoRA Net

models. The advantage of using a small scale problem for the case study is that the

best solutions can be known with absolute certainty, which aids in the assessment of

the different down selection methods and the use of heuristics.

Many of the observations from this design space were mentioned in chapter four, and

they will be summarized here.

• At the end of section 4.1 it was shown that for this formulation of the design

problem growth flexibility is only weakly correlated however volume flexibility

and divisibility have a stronger relationship. Therefore, it may be possible to

only consider growth and volume flexibilities.

• In section 4.2 the set of network properties was reduced to eight loosely corre-

lated responses. The same logic used for the extended design space applies to

this case study, resulting in the same eight network properties. Additionally,

243

principal component analysis was used to reduce the dimensionality to three.

• In section 4.4 the relationships between network properties and flexibility mea-

sures was explored. For this design space, it was shown that the algebraic

connectivity was best correlated with volume flexibility and the second prin-

cipal component was correlated with divisibility. For these two measures of

flexibility there were shown to be reasonable network based heuristics, but no

such measure was found for growth flexibility. In this case, either simulation

risk should be used or divisibility could be simulated directly. However, it was

shown in the previous chapter that simulation risk is not compatible with evo-

lutionary optimization. For this case study, optimization will be used, therefore

simulation risk cannot be used. Either way, only simulating one out of three

measures of flexibility is likely to save a significant amount of computational

resources.

5.3 Design space down selection

In the final step of the methodology the Pareto front is set aside and one or two candi-

date solutions are chosen in order to investigate further and eventual implementation.

In general, for multi-criteria problem such as this one, a weighting scenario must be

defined that describes the customer’s priorities with respect to which attributes are

most important. However, scenario definition tends to be a very subjective step in

the methodology. Therefore for this example problem it will be sufficient to say that

since cost and availability are the primary metrics only designs that are on the cost

vs availability front should be kept. However, cost and performance evaluations are

dependent on the actual distribution of disruptions to the system, which is very hard

to predict accurately. Therefore, when flexibility is measured, it will be assumed that

cost and performance values are not available and the decision will be made based on

flexibility alone. After that an estimation of cost and performance can be used as a

244

tiebreaker between similarly flexible designs.

(It should be noted that all optimizations are run using the NSGA II default settings

with a population size of 50 for a maximum of 15 generations.)

5.3.1 Full factorial design space

The first result to look at is the set of all 7776 possible designs and see where the

actual best solutions are. Figure 69 is a scatter plot of cost vs. availability for the

entire design space. The highlighted points are those that lay on the Pareto front and

the circled points are those that lay in the most favorable region of the design space

characterized by the “elbow” in the curve. Of those one is circled that represents a

very good solution that also has fairly high flexibility as can be seen in figure 70. It

is interesting to note that none of the highlighted designs have the highest possible

volume flexibility though most of them are in the next tier down. To comment on the

computational cost of the full factorial design space evaluation requires 777600 runs

of FLoRA DES to evaluate disrupted cost and availability and an additional 5598720

runs to evaluate flexibility. The total of over 6 million runs is estimated to have taken

34 days to evaluate.

5.3.2 Baseline optimization

The second down selection method assumes that only cost and availability are rele-

vant and does not optimize for flexibility. This is consistent with traditional LoRA

methods that don’t consider disruptions at all. The result is a very quickly converging

optimization that succeeds in finding most of the actual Pareto front not consider-

ing flexibility. (figure 71) Once again a couple solutions are circled to represent the

likely best designs. It should be noted that the circled solution from the full design

space is not found by this optimizer. The two circled designs in this scenario have

slightly better divisibility but worse growth and volume flexibility. However, in terms

of computational efficiency, it finds most of the Pareto front in only 133 unique design

245

Availability

C
o
st

Figure 69: The complete design space with non-dominated points highlighted

246

Divisibility

G
ro
w
th

Growth

V
o
lu
m
e

Figure 70: Non-dominated points with respect to all five metrics. Highlighted points
are non-dominated with respect to cost and availability

247

evaluations which requires 13300 evaluations of FLoRA DES taking an estimated 2

hours to complete. Figure 72 is a plot of the number of unique designs that the

optimizer evaluates per generation of the algorithm. It is apparent from there that

the algorithm has mostly converged by around the seventh generation.

Cost 56558 65889

Availability 0.902 0.914

Divisibility 0.931 0.934

Growth 72.22 69.04

Volume 941.5 976.2

Availability

C
o
st

Figure 71: Designs evaluated by the baseline optimization with non-dominated points
highlighted

5.3.3 Optimization with flexibility

The third down selection technique considers the three measures of flexibility as the

primary objective functions. The expected result is that the algorithm will find

solutions that have optimal flexibility, but when cost and availability are estimated

they will be slightly worse than the baseline designs. Figure 73 is a scatter plot matrix

of the three flexibility measures compared to one another. The solutions marked as

248

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
Number of new designs evaluated per generation

133 total designs
evaluated

Generation

N
ew

 d
es

ig
n

s
ev

al
u

at
ed

Figure 72: Convergence of the baseline optimization

249

triangles are all non-dominated with respect to flexibility, and the highlighted ones

are selected assuming an even preference between the three measures of flexibility.

Then disrupted cost and availability is estimated for those nine designs and the two

remaining solutions are circled in figure 74. The results compared to the baseline

optimization are summarized in the table below. The design in the diamond has

better divisibility and growth flexibility but at the cost of slightly worse volume

flexibility and higher cost.

Table 43: Difference between designs found by optimizing for flexibility and the base-

line optimization

Design 1 Design 2

Cost +9.20% +24.60%

Availability 0% 0.88%

Divisibility +2.25% +1.82%

Growth -4.48% +3.81%

Volume -0.66% -0.25%

When considering the convergence rate of this method figure 75 shows that 135 solu-

tions were evaluated which requires 97200 runs of FLoRA DES. Of those, 9 were also

evaluated for cost and availability, requiring 900 additional runs. In total, the 98100

runs are estimated to have taken about 13.5 hours which is nearly 7 times as long as

the baseline optimization, but it is still nearly 60 times more efficient than the full

factorial evaluation.

5.3.4 Flexibility based optimization with heuristics

The final down selection was done using the same objective functions as the previous

method however, instead of evaluating divisibility and volume flexibility directly the

previously defined heuristics were used evaluated with FLoRA Net. For volume flex-

ibility, the algebraic connectivity was used and for divisibility, the second principle

250

Divisibility

G
ro
w
th

Growth

V
o
lu
m
e

Figure 73: Flexibility scatter plots of designs evaluated by the flexibility based opti-
mization. Non-dominated points are in purple. Down selected points are highlighted.

251

Divisibility

G
ro
w
th

Growth

V
o
lu
m
e

Figure 74: Cost and availability of designs evaluated by the flexibility based opti-
mization. Chosen designs are circled

252

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
Number of new designs evaluated per generation

135 total designs
evaluated

Generation

N
ew

 d
es

ig
n

s
ev

al
u

at
ed

Figure 75: Convergence of the flexibility based optimization

253

component of the entire response set was used. It should be noted that since the

correlation between algebraic connectivity and volume flexibility was negative, the

heuristic must be minimized instead. The immediate result is that each design eval-

uation would require 231 fewer runs of FLoRA DES. The expected tradeoff is that

the use of heuristics will prevent the optimizer from finding the same best solutions

as before and the resulting chosen designs will be slightly worse.

Figure 76 shows all the designs evaluated by the optimizer in terms of growth flexibil-

ity and the two heuristic measures. Non-dominated designs are shown as red squares,

and the highlighted ones are the down selected set of solutions. This is done priori-

tizing growth flexibility since it is not a heuristic, and giving equal preference after

that to the volume and divisibility heuristics. The remaining flexibility measures and

estimates for cost and availability are then evaluated for these five solutions, and

while there are two that stand out in terms of flexibility (figure 77), only one has

reasonable cost and availability (figure 78). When compared to the flexibility base

optimization, it preforms slightly worse overall, though it actually manages to get

better growth flexibility.

Table 44: Difference between designs found by optimizing with heuristics and opti-

mizing for flexibility

Cost 2.10%

Availability 0.33%

Divisibility -1.47%

Growth -4.00%

Volume -4.98%

What is more striking is that this optimization evaluated fewer unique designs than

the previous method sand still found comparable solutions. 117 unique designs were

evaluated requiring only 53703 runs of FLoRA DES and 117 runs of FLoRA Net which

are negligible in comparison (figure 79). 860 additional runs were then required to

254

further evaluate the down selected designs, resulting in a total of 54563 runs. This is

estimated to have taken about 7.5 hours to complete which is nearly half the time of

the previous method. However, if a heuristic for growth flexibility could have been

found then the computational savings would have been several orders of magnitude

worth of time.

Divisibility
heuristic

G
ro

w
th

Growth

V
o

lu
m

e
h

eu
ri

st
ic

Figure 76: Heuristic measure scatter plots of designs evaluated by the flexibility based
optimization with heuristics. Non-dominated points are in red. Down selected points
are highlighted.

5.3.5 Summary of observations

Starting with the caveats, first, it is very hard to compare the above methods due to

the fact that the actual chosen design will be heavily dependent on the priorities of

the customers. While each method chose a slightly different set of optimal solutions,

there was some overlap, and for a given scenario any one of those solutions could be

255

Divisibility

G
ro
w
th

Growth

V
o
lu
m
e

Figure 77: Flexibility scatter plots of designs evaluated by the flexibility based opti-
mization with heuristics

256

Cost 74732 99509

Availability 0.905 0.889

Divisibility 0.941 0.958

Growth 63.31 61.89

Volume 921.5 833.3

Availability

C
o
st

Figure 78: Cost and availability of designs evaluated by the flexibility based opti-
mization with heuristics. Chosen designs are circled.

257

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
Number of new designs evaluated per generation

117 total designs
evaluated

Generation

N
ew

 d
es

ig
n

s
ev

al
u

at
ed

Figure 79: Convergence of the flexibility based optimization with heuristics

258

ideal. Figure 80 and figure 81 shows how the chosen solutions relate to one another in

terms of all five metrics. The second issue with the comparisons, is that all of this is

predicated on the assumption that the cost and availability measures are meaningful

which are based on an assumed set of disruptions. However, it is generally not possible

to accurately predict the set of disruptions. In this case one would only be able to

evaluate flexibility and have to make decisions based on that alone.

Availability

C
o

st

Full factorial
Baseline optimization
Flexibility optimization
Heuristic optimization

Figure 80: Cost and availabiltiy of designs chosen by each down selection method

If there are no performance and cost evaluations then there is no means to compare

the flexibility based method with the baseline. That leaves the computational cost as

the most realistic means of comparison. Figure 82 plots the convergence rates of each

of the three optimizers against one another and it appears that all three optimizers

converge around the same time which is generation six or seven. Therefore, the

biggest difference is then in terms of the number of simulation runs required by each

259

Divisibility

G
ro

w
th

Growth

V
o

lu
m

e

Full factorial
Baseline optimization
Flexibility optimization
Heuristic optimization

Figure 81: Flexibility of designs chosen by each down selection method

260

method. It was previously mentioned how the baseline optimization required an order

of magnitude fewer simulation runs than the flexibility based methods. However,

about half of that disadvantage was recouped by using heuristics. In either case

using an optimizer was at least two orders of magnitude more efficient than a full

design space evaluation. In general though, the design space will likely be too big to

evaluate and an optimizer will be the only option. In conclusion, as long as evaluating

performance in a disruptive environment is not a viable option, a flexibility based

assessment should work, and if network heuristics are available then they can provide

significant computational discounts.

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
Number of new designs evaluated per generation

baseline

flexible

heuristic

Generation

N
ew

 d
es

ig
n

s
ev

al
u

at
ed

Figure 82: Comparison of convergence rates for each of the optimization methods

261

CHAPTER VI

CONCLUSIONS

6.1 Summary of findings

To summarize, the overarching purpose of this research was to develop a method for

performing maintenance planning for multiple platforms types that share a set of

common components. The primary objective is to determine where each component

will get serviced in the most cost effective manner. However, a problem was identified

that such an integrated logistics system would be more susceptible to disruptions

such as component obsolescence. The increase in problem complexity made it so that

traditional level of repair analysis methods would no longer apply. By drawing a

comparison between the multi-platform maintenance planning problem and systems

of systems, a new area of design methodologies became available for use. Hence,

the research objective became to improve the existing SoS design methodologies and

adapt them to the current design problem.

The following were three research questions that were posed representing gaps in the

literature for solving the problem.

1. How can the system be evaluated in the context of a disruptive environment?

To answer this question, it was hypothesized that a method based predomi-

nantly on prioritizing flexibility would result in designs that perform better in

the presence of disruptions. It was then determined from the literature that

a single definition of flexibility would not work. Flexibility is a multi-faceted

system attribute and is actually an umbrella term that represents all properties

that relate to how well the system performs with respect to disruptions. As

such, three generic categories of flexibility were identified for the maintenance

262

planning problem and a simulation was developed to measure it.

In order to test this hypothesis, an experiment was conducted to determine how

flexibility relates to the performance and cost of the system. First, it was found

that for some sets of designs the flexibility measures are somewhat correlated,

but that they all generally correspond to better performance and lower cost.

However, when the three flexibility measures are mostly independent, there

are real tradeoffs between them. Finally, it was shown that while flexibility can

correlate with the cost and performance of the system when there are no disrup-

tions, the correlation becomes even stronger when disruptions are considered.

Therefore, when the set of future disruptions is unpredictable, flexibility is a

better measure of the system’s response to the average set of disruptions than

its undisrupted performance.

2. Given that SoS modeling is expensive and the design spaces are large, are there

ways of reducing the cost?

Evaluating a small subset of a relatively small version of the maintenance plan-

ning problem, took nearly a month to complete. This issue of excessive simu-

lation costs is a very real issue for large scale complex systems. Therefore, the

second contribution of this thesis was to develop computational heuristics for

SoS evaluation that are orders of magnitude faster to evaluate than the avail-

able simulations, but at the cost of reduced accuracy. It was hypothesized that

for the multi-platform maintenance planning problem, a network model would

provide a method for generating heuristics. It is likely that such a method

would apply to any system dependent on resource or information flow between

independent entities. A network model was developed that can be used to eval-

uate 14 different network properties 105 times faster than the discrete event

simulation.

263

To test this hypothesis the network model was compared to the discrete event

simulation to explore the relationships between the two. It was determined

that strong relationships do not always exist, however when the design vari-

ables primarily affect the network topology, then the relationships are stronger.

However, it is entirely possible that given a better network model, the relation-

ships could be even stronger. In this case the network properties can be directly

used to explore the design space instead of the computationally expensive sim-

ulation. The best solutions are then simulated in order to get more accurate

estimates of flexibility. However, when the correlation is not strong enough, a

method for using the network properties to determine the probability that the

flexibility is sufficiently high and only simulate designs with high probability

was shown to have some merit.

3. Given that it may not be possible to improve the modeling costs significantly

due to the complexity of systems of systems, are there efficient methods of down

selecting the number of designs so that the computational costs are concentrated

only on evaluating the most promising designs?

This question was in reality part two of the previous question because the litera-

ture on computational problem solving frequently talks about heuristics hand in

hand with optimization algorithms. Therefore, it was suggested that optimiza-

tion would be the appropriate method for down selecting the design space as

an additional way to reduce the computational cost of SoS design space explo-

ration. More specifically, it was proposed that an evolutionary algorithm would

be the appropriate optimization method for the multi-platform maintenance

problem. It is also likely that evolutionary algorithms are the best available

method for SoS problems in general.

Three different versions of optimizations were applied to an example design

264

problem. The first was an optimization of disrupted cost and availability even

though it is assumed that such evaluations are not particularly accurate. As

such this method was considered one baseline method in addition to fully evalu-

ating all possible designs. The second method was to optimize for flexibility and

the third was to optimize for heuristic values of flexibility. The end result was

that all the methods were able to find a similar set of optimal designs, which is

the best possible result. As expected the flexibility based method required the

most simulation runs because it needs to evaluate the most metrics. Finally, the

network heuristics were shown to be effective substitutes when optimizing for

flexibility, and even though heuristics were only available for two of the three

flexibility measures it was still twice as efficient.

6.2 Summary of contributions

The main contribution of this thesis was the development of a methodology for plan-

ning maintenance for multiple platforms with common components subject to dis-

ruptive conditions. This methodology is based on SoS design philosophies that focus

on the need to rapidly implement a design that can be easily changed over time.

In order to do this, a framework for measuring flexibility was proposed and applied

to the maintenance planning problem. By designing flexibility into the system, the

goal is to maximize the time between design updates. At which point, the method-

ology is intended to be repeated and the system is reevaluated in light of the current

environment.

The secondary contribution of this thesis is in the area of modeling and simulation.

Generally speaking, simulations designed to evaluate large complex systems require

an immense amount of computational resources. This was found to be the case

with the discrete event simulation that was developed to evaluate the service costs

and platform availability of a maintenance system. Therefore, it was proposed that a

265

network model would be more efficient, at the cost of greater abstraction and reduced

fidelity. Additionally, it was shown that an evolutionary algorithm would be a suitable

method for exploring the design space and reducing the number of potential designs

to a manageable number.

In conclusion, the multi-platform maintenance planning problem considering disrup-

tions is not a well studied problem and as such there really are not any good methods

for solving it. Therefore, trying to compare this methodology to an existing one would

not be particularly meaningful as this one was designed to answer questions that are

not being answered right now. This is also partly due to the fact that there isn’t a

single consensus SoS design methodology as sufficient data on real systems of systems

is not available yet. However, this thesis proposes a very simple methodology that

attempts to address some of the philosophical issues with current methods.

On a smaller scale, simulation and design space exploration are generically used for

most design problems, and this thesis attempts to make improvements on those meth-

ods. Specifically, using a network model as a heuristic for a more complicated simula-

tion was shown to work very well, when the modeling is done properly. It was shown

to represent a potential five order of magnitude increase in efficiency. To put it in

context, this would reduce an evaluation process that would have originally taken one

year to only taking five minutes.

6.3 Future work

There is definitely room to expand on the work started in this thesis. The author

would like to suggest a couple of areas where future work could be done.

• Explore more types of systems

For this study, the effort involved in implementing the method for a single sys-

tem was large enough. However, demonstrating this method for other systems

266

would do a great deal to solidify the claims made in this document. For exam-

ple, military systems were mentioned a number of times in this document and

would be a good place to start. Alternatively any SoS with a strong dependence

on information or resource flow between elements would be a good candidate

for this method.

• Develop a method for SoS network description

The networks represented here are but a sampling of the many overlapping net-

works that can describe an SoS. Evaluating more of them would likely provide

a more accurate picture and result in network measures that better correlate

with the simulated flexibility measures. This thesis, as well as several other

studies that were surveyed in this document, make the assumption that a net-

work description of the system can be produced such that measurements can

be made. Each of these studies chooses a method for defining a network but

does not make it the focus of the research. It must be assumed that the mea-

surement is only valid if the network description is valid. Therefore, it would be

useful to make a study of the alternative methods for network definition, tak-

ing the measurement methods as constant, in order to develop a better tuned

methodology.

• Further exploration of the iterative nature of the methodology

There are two points in the methodology where iterations are called for and

this document does not do a good job of exploring the effects of such a process.

First, the iterative down selection process could be useful when multiple levels

of model fidelity are available, and even the lowest fidelity models don’t do a

sufficient job reducing the number of alternatives. However, for this study only

one simulation was available and the design space was small enough that it

could be fully explored even at the highest available fidelity. Second, is how the

267

methodology is repeated over the course of the system’s life span. It would be

interesting to know how subsequent iterations of the methodology relate to one

another, and how the system iteratively improves over time. For this study it

was assumed that subsequent iterations can be considered independent and the

issue was not explored.

268

APPENDIX A

OVERVIEW OF GRAPH THEORY

A basic overview of graph theory will be useful for understanding how networks are

represented and evaluated mathematically. [78]

A.1 Graph

A graph is mathematical representation of a set of objects and their interconnections.

The objects are called the “nodes” and the links are called “edges”. If the edges are

given a direction then the graph is called a “digraph”. If the edges are given values

representing something like capacity or transition time, then the graph is called a

“weighted graph” Figure 83 shows the same basic graph as a digraph and again as a

weighted graph. In this way it is possible to model the entities and connections in the

network as well as the direction and properties of the resource flow or relationship.

A.2 Adjacency matrix

It is very hard for a computer to interpret pictures of graphs therefore, it is necessary

to compress the information into a readable format. The easiest method is to generate

a vector of all the edges in the graph described by the starting and ending nodes.

As it turns out this is the sparse form of an NxN matrix for a graph with N nodes,

where the rows and columns represent the nodes and the entries represent the edges

. The entries in the matrix are Aij = 1 if there is an edge from node i to j and zero

otherwise. If the edges lack direction then Aij = Aji and the matrix is symmetrical.

If the edges have weights then the 1’s are replaced by each edge’s weight. Figure 84

takes the three graphs from the previous example and generates adjacency matrices

for them.

269

D

B

C

E

A

D

B

C

E

A

D

B

C

E

A

5.0

2.3

9.1

0.7

2.7
8.0

Figure 83: Example graphs: graph, digraph, weighted graph

270

D

B

C

E

A

D

B

C

E

A

D

B

C

E

A

5.0

2.3

9.1

0.7

2.7
8.0

0 0
0 0

0 1 1
1 1 1

0 1
1 1
1 1

0 0 1
0 0 0
1 0 0

0 0
0 0

0 0 0
0 1 1

0 1
1 0
1 0

0 0 0
0 0 0
1 0 0

0 0
0 0

0 5.0 0.7
8.0 2.7 2.3

0 8.0
5.0 2.7
0.7 2.3

0 0 9.1
0 0 0
9.1 0 0

Figure 84: Example adjacency matrices: graph, digraph, weighted graph

271

A.3 Degree

For each node, the degree is the number of edges incident to it. The indegree is the

number entering the node and the outdegree is the number leaving the node. Nodes

with high degree tend to be more critical to the network than those with low degree.

For example, in figure 85 the green node has a degree of three and is very critical to

the network. Alternatively the red node has a degree of one. It can be assumed then

that the single edge is also critical to the network. The distribution of degree across

all nodes can be an indicator of how connected the graph is, and how easily it will be

to disrupt the network. For example the average degree is very easily evaluated for a

graph with m edges and n nodes m
2n

.

D

B

C

A

Degree = 3

Degree = 1

Figure 85: Example graph with average degree 1

272

A.4 Path length

To get from one node to another, the path consists of the edges that are traversed.

The smallest number of those edges that is needed for that path is called the shortest

path length. The characteristic path length (CPL) is the average over all shortest

paths between any two points and is a good indicator for the time or cost it would

take to get from one point to another. The betweenness centrality of a point is the

number of shortest paths that go through that point which is an indicator of its

centrality, importance, or criticality to the network. [73]

As mentioned in the previous chapter the paths through a network are of relevance

in the measurement of flexibility. Paths in a network can represent the ability to

move resources from one place to another, an unbroken line of communication, or a

successful chain of sequential tasks, the presence of which generally indicates that the

system is working as expected.

Cycles are a subset of paths that begin and end at the same node. They are of

relevance to network theory as they can represent and unbroken feedback loop, or

an iterative process in the network. The drawback for considering cycles is that the

algorithms designed for finding them tend to be less efficient.

A.5 Cliques

A n-clique is any n nodes that are all mutually connected, meaning that each node

is connected to each other node in the clique by an edge. The number of n-cliques

(usually n = 3 is used) is a good indicator of the connectedness of the graph. The

clustering coefficient of a node is a measure of how close its neighbors are to being a

3-clique. The average clustering over all nodes is an indicator of how well distributed

the network is. It can be assumed that well distributed networks are more resilient

to disruptions as the probability that a critical element will fail is less. The global

clustering coefficient is the ratio of completed triples in the graph to the number of

273

D

B

C

E

A

D

B

C

E

A

D

B

C

E

A

Figure 86: Examples of paths and cycles: (from left to right) A path from E to A,
The shortest path from E to A, nodes B,C, and E are a cycle

274

open triples (a set of 3 connected nodes that only has two edges). From figure 83

nodes B, C, and E form a closed 3-clique, and the global clustering coefficient is 0.5.

A.6 Connectivity

As mentioned previously, the connectedness of a network can be used as an indicator

of how easily it will be to interrupt its performance. The property of connectivity is

a direct measure of the redundancy of elements in the network. Edge connectivity

is the minimum number of edges that must be removed to break the graph into at

least two disconnected subgraphs. The same can be said for node connectivity. For

digraphs there is a similar concept called strong connectivity that considers if there

is still a path connecting all nodes. However, if there is no viable path but the graph

is still connected if no directions are considered, then the graph is considered weakly

connected. Connectivity is generally an indication of how resistant the network is

to disruption for networks that must remain connected to function. In figure 84 the

basic graph has connectivity of 2 as either the edges incident to nodes A, D or C

are removed, or nodes B and C are removed. The digraph however, can be weakly

disconnected by removing nodes B, C, or E, or by removing any of the single inbound

edges to nodes B, C, D or E.

A.7 Network flow

Weighted digraphs can be used to model the flow of resources through a network

from one point to another. The max flow through the network can be used as an

indicator of the networks maximum throughput or capacity. As mentioned previously,

the higher the capacity of the network, the less likely it will be to become overload by

changes in demand, making it more flexible. The value of maximum flow is the same

as the total weight of the minimum valued cut disconnecting a source node from its

sink. A cut is the removal of a set of edges that splits the graph into two parts. In

figure 88, the minimum cut is the second from the right with a value of 8.4.

275

D

B

C

E

A

D

B

C

E

A

Edge connectivity = 2
Node connectivity = 2

Weak edge connectivity = 1
Weak node connectivity = 1

Figure 87: Example graph with connectivity

276

D

B

C

EA 5.0

2.3

9.1

0.7

2.7

8.0

16.4 10.0 14.8 8.4 17.1

Figure 88: Cuts through a network flow from node A to node E

277

A.8 Spectral properties

Given that the graph is represented by a matrix, it is trivial to calculate the eigenval-

ues and eigenvectors of the network if the adjacency matrix is square. The spectrum

of a graph is the set of eigenvalues of its adjacency matrix, and the properties of

the graph that correspond to the spectrum are called its spectral properties. The

spectrum can be calculated by solving the set of equations that result from the rela-

tionship Av = vλ, for adjacency matrix A, with eigenvector v and eigenvalue λ. For

a graph with n nodes there will always be n solutions to the system of equations.

For a simple graph, the eigenvalues will always be real. However, for a digraph, the

adjacency matrix will not be symmetrical, therefore some of the eigenvalues may be

complex conjugates of the form A±Bi

The largest real eigenvalue is called the functional cyclicity and its eigenvector is

called the Perron Frobenius Eigenvector (PFE). It is commonly used as an indicator

of the number of cycles in the graph.[29] Cycles are paths that start and end at the

same node, and like paths they can frequently be used to describe the completion of

a task chain or the successful transfer of resources in the system. The Coefficient of

network effects (CNE) is that eigenvalue normalized by the total number of nodes

and is a measure of the networked effects per node which is an indicator of how well

distributed the network is. [35] The sum of the absolute values of all eigenvalues is

called the graph energy and is a measure of the dynamic instabilities. [16] Stability,

the the ability to maintain a steady state, in a network is important as an indicator

of how consistently the network is able to provide the desired capability.

Similar to the incidence matrix is the Laplacian matrix which is defined as

L = D−A where D is the degree matrix and A is the adjacency matrix. The second

smallest eigenvalue of this matrix is also called the algebraic connectivity and is an

indicator of the graph’s connectivity. It’s associated eigenvector is called the Fiedler

278

D

B

C

E

A
0 0
0 0

0 1 1
1 1 1

0 1
1 1
1 1

0 0 1
0 0 0
1 0 0

2 0
0 3

0 0 0
0 0 0

0 0
0 0
0 0

2 0 0
0 2 0
0 0 3

Adjacency
matrix

Degree
matrix

2 0
0 3

0 −1 −1
−1 −1 −1

0 −1
−1 −1
−1 −1

2 0 −1
0 2 0
−1 0 3

Laplacian
matrix

Figure 89: Example graph with adjacency, degree and Laplacian matrices

279

vector (FV) and is an indicator of how easily the network will synchronize.[120] Syn-

chronization of a network is the case where all the elements are interacting properly

and on time and the ability of the network to synchronize is how well does it reach a

steady state. A synchronized network will reach stability faster and thus more likely

to adapt to changes in a timely manner. [124]

In summary, there are many useful and computationally efficient static properties

of a network that have are proven indicators of the actual behavior. One of the

advantages of using graph theory is that most network models are deterministic,

meaning statistical sampling of stochastic effects is not necessary. It is always a

concern that since the system is dynamic and constantly in flux that static measures

will correlate poorly. However, it is hypothesized that they will represent the behavior

well enough to perform some early trade-offs.

280

APPENDIX B

NSGA II

The Non-dominated Sorting Genetic Algorithm II is a multi-objective genetic al-

gorithm that was developed to reduce the computational complexity of other non-

dominated sorting algorithms, include elitism, and eliminate the reliance on sharing

parameters to maintain Pareto front diversity. It was shown to find a ”much better

spread of solutions and better convergence near the true Pareto-optimal front com-

pared to other multi-objective EAs. [50] Additionally NGPM (NSGA-II Program in

Matlab) [145] is an NSGAII software package compatible with Matlab that interfaces

very nicely with FLoRA DES

• Reduce the computational complexity of the non-dominated sorting algorithm.

Older versions of non-dominated sorting algorithms used a simplistic method

for determining Pareto rank. Each solution can be compared with every other

solution in the population to find if it is dominated. This requires O(MN)

comparisons for each solution, where M is the number of objectives. When this

process is continued to find all members of the first non dominated level in the

population, the total complexity is O(MN2). This process is repeated for each

subsequent non-dominated front. The worst case is when there are fronts and

there exists only one solution in each front. This requires an overall O(MN3)

computations.

NSGA2 uses a faster non-dominated sorting algorithm that requires O(MN2)

calculations instead. ”First, for each solution we calculate two entities: 1)

domination count np, the number of solutions which dominate the solution p ,

and 2)Sp, a set of solutions that the solution dominates. This requires O(MN2)

281

comparisons. All solutions in the first non-dominated front will have their

domination count as zero. Now, for each solution p with np = 0, we visit each

member (q) of its set Sp and reduce its domination count by one. In doing so, if

for any member q the domination count becomes zero, we put it in a separate list

Q. These members belong to the second non-dominated front. Now, the above

procedure is continued with each member of Q and the third front is identified.

This process continues until all fronts are identified. For each solution p in the

second or higher level of non-domination, the domination count np can be at

most N −1. Thus, each solution p will be visited at most N −1 times before its

domination count becomes zero. At this point, the solution is assigned a non-

domination level and will never be visited again. Since there are at most N − 1

such solutions, the total complexity is O(N2). Thus, the overall complexity of

the procedure is O(MN2).” [50]

• Include elitism

It was shown that elitism improves the performance of multi-objective genetic

algorithms by preventing the loss of good solutions. [166, 132]

• Eliminate the reliance on sharing parameters to maintain Pareto front diversity.

Previous algorithms relied on a sharing function to maintain diversity in so-

lutions along the Pareto front. This function uses a parameter to govern the

proximity between two members of the solution population. The problem with

this is that the performance of the algorithm would end up being heavily depen-

dent on the users’ choice of sharing parameter and require O(N2) comparisons.

NSGA2 uses a different method to enforce diversity along the Pareto front. ”To

get an estimate of the density of solutions surrounding a particular solution in

the population, we calculate the average distance of two points on either side

of this point along each of the objectives. This quantity idistance serves as an

282

estimate of the perimeter of the cuboid formed by using the nearest neighbors

as the vertices (call this the crowding distance) The crowding-distance com-

putation requires sorting the population according to each objective function

value in ascending order of magnitude. Thereafter, for each objective function,

the boundary solutions (solutions with smallest and largest function values)

are assigned an infinite distance value. All other intermediate solutions are

assigned a distance value equal to the absolute normalized difference in the

function values of two adjacent solutions. This calculation is continued with

other objective functions. The overall crowding-distance value is calculated as

the sum of individual distance values corresponding to each objective. Each

objective function is normalized before calculating the crowding distance” [50]

The algorithm can be shown to have computational complexity O(MNlogN).

In this way the GA will favors solutions from the same non-dominated front

that occupy less crowded areas.

To summarize, NSGA2 was shown to find a ”much better spread of solutions and

better convergence near the true Pareto-optimal front compared to Pareto-archived

evolution strategy and strength-Pareto EAtwo other elitist MOEAs that pay special

attention to creating a diverse Pareto-optimal front.” [50] Since the goal of this design

space exploration is to sufficiently sample the Pareto front of solutions for multi-

objective SoS design problems, NSGA2 promises to be a good choice of algorithm.

Additionally, a MATLAB implementation of the algorithm is readily available [145]

thereby eliminating the need to develop and validate an algorithm specifically for this

study. This is advantageous in that it will integrate easily with the models described

earlier that were also implemented in MATLAB.

283

APPENDIX C

PATH FINDING DFS

Main function

function [nPaths all paths] = PathCountDFS(graph, sources, sinks)

[i, j, w] = find(graph);

nPaths = 0;

all paths = {};

for ii = 1:numel(sources)

% for each sink->source combination

for jj = 1:numel(sinks)

paths = {};

for kk = 1:numel(find(i==sources(ii)))% find the paths

paths = DFS(paths, [sources(ii)], graph, sinks(jj), kk);

end

all paths = {all paths{:} paths{:}};

for kk = 1:numel(paths)% count the paths

if paths{kk}(end) == sinks(jj)

nPaths = nPaths + 1;

end

end

end

end

284

end

Recursive searching function

function [paths] = DFS(paths, path0, graph, sink, n)

[i, j, w] = find(graph);

aa = find(i == path0(end));

%index of first edge leaving the path

if ~isempty(aa) % if the path has not ended

new = j(aa(n));

if new == sink

path1 = [path0 new];

paths{end+1} = path1;

elseif isempty(find(path0 == new, 1))

% if the next node is not a repeat

path1 = [path0 new]; % add it to the path

for ii = 1:numel(find(i == new))

paths = DFS(paths, path1, graph, sink, ii);

% recursively continue the search

end

else

path1 = path0;% otherwise end the path

% paths{end +1} = path1;

285

end

else

path1 = path0;%otherwise return the path

% paths{end +1} = path1;

end

end

286

REFERENCES

[1] “10 usc 2460: Definition of depot-level maintenance and repair.”

[2] COMPASS STAT User’s Manual.

[3] “Mil-std-1390d military standard: level of repair analysis.”

[4] “Navy marks milestone production of key aircraft computer system,” August
2012.

[5] “Open automotive alliance.” http://www.openautoalliance.net/, 2014.

[6] “Hardware open systems technologies (host) conformant secure network server,
navy sbir 2015.1 - topic n151-019,” 2015.

[7] “Matlab ’copulafit ’ documentation,” 2015.

[8] AIR TRANSPORT ASSOCIATION OF AMERICA, PACKAGING OF AIR-
LINE SUPPLIESATA Specification No. 300, 19 ed., July 1996.

[9] ANSI/IEEE, “Recommended practice for architectural description of software-
intensive systems,” Tech. Rep. 1471-2000, ANSI/IEEE, 2007.

[10] Apple, “Apple carplay.” https://www.apple.com/ios/carplay/, 2014.

[11] Ash, G. R., “Dynamic network evolution, with examples from at&ts evolving
dynamic network,” IEEE Communications Magazine, 1995.

[12] Ashton, K., “That ’internet of things’ thing,” RFiD Journal, 2009.

[13] Atkinson, J., “Flexibility: Planning for an uncertain future,” Manpower Pol-
icy and Practice, vol. 1, Summer 1985.

[14] Back, T., “Selective pressure in evolutionary algorithms: a characterization of
selection mechanisms,” in 1st IEEE conf. on Evolutionary computation, 1994.

[15] Baeck, T., handbook of evolutionary computation. Institute of Pysics Publish-
ing, 1997.

[16] Balakrishnan, R., “The energy of a graph,” Linear algebra and its applica-
tions, vol. 387, pp. 287–295, 2004.

[17] Balb, G. and Chiola, G., “Stochastic petri net simulation,” in 1989 Simu-
lation Winter Conference Proceedings, 1989.

287

[18] Balestrini-Robinson, S., A modeling process to understand Complex system
Architectures. PhD thesis, Georgia institute of technology, 2009.

[19] Bankes, S., “Tools and techniques for developing policies for complex and
uncertain systems,” in National Academy of Sciences, vol. 99, pp. 7263–7266,
May 2002.

[20] Barros, L. L., “The optimization of repair decisions using life-cycle cost pa-
rameters,” IMA Journal of Mathematics Applied in Business & Industry, vol. 9,
pp. 403–413, 1998.

[21] Barros, L. L. and Riley, M., “A combinatorial approach to level of repair
analysis,” European Journal of Operational Research, vol. 129, pp. 242–251,
2001.

[22] Basten, R., Designing logistics support systems Level of repair analysis and
spare parts inventories. PhD thesis, Beta Research School for Operations Man-
agement and Logistics, 2009.

[23] BAUMOL, W. J. and VINOD, H. D., “An inventory theoretic model of
freight transport demand,” MANAGEMENT SCIENCE, vol. 16, 1970.

[24] Beamon, B. M., “Measuring supply chain performance,” International Jour-
nal of Operations & Production Management, 1999.

[25] Benjaafar, S., “Models for performance evaluation of flexibility in manu-
facturing systems,” International Journal of Product Research, vol. 32, no. 6,
pp. 1383–1402, 1994.

[26] Biltgen, P. T., Ender, T., and Mavris, D. N., “Development of a collabo-
rative capability-based tradeoff environment for complex system architectures,”
in 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.

[27] Black, F. and Scholes, M., “The pricing of options and corporate liabili-
ties,” Journal of Political Economy, vol. 81, pp. 637–654, 1973.

[28] Boehm, G. W., “A spiral model for software development,” IEEE Computer
Journal, vol. 21, pp. 61–72, May 1988.

[29] Bonacich, P. F., “power and centrality: a family of measures,” the american
journal of sociology, vol. 92, pp. 1170–1182, March 1987.

[30] Bondi, A. B., “Characteristics of scalability and their impact on performance,”
in Second international workshop on Software and performance, 2000.

[31] BOUACHERA, T., KISHK, M., and POWER, L., “Level of repair analysis
based on genetic algorithm with tabu search,” in Proceedings of the World
Congress on Engineering, 2010.

288

[32] Box, G. E. and Draper, N., Empirical Model-Building and Response Sur-
faces. Wiley, 1987.

[33] Brown, F., Engineering System Dynamics: A Unified Graph-Centered Ap-
proach. CRC Press, 2 ed., 2007.

[34] Browne, J., Dubois, D., Rathmill, K., Sethi, S., and Stecke, K.,
“Classification of flexible manufacturing systems,” The FMS Magazine, 1984.

[35] Cares, J., distributed network operations: the foundation of network centric
warfare. newport, RI: Alidade Press, 2005.

[36] Cares, J. R., Distributed Networked Operations. Alidade Press, 2005.

[37] Cares, J., “An information-age combat model,” tech. rep., Alidade Incorpo-
rated, 2004.

[38] Carley, K., “Smart agents and organizations of the future,” tech. rep.,
Carnegie Mellon University.

[39] Carley, K., “Inhibiting adaptation,” tech. rep., Carnegie Mellon University,
2002.

[40] Carley, K., Summary of the NRC workshop on Social Network Modeling and
Analysis, ch. Dynamic Network Analysis. National Research Council, 2003.

[41] CENTER, D. O. T. N. N. H., “C-9 skytrain ii,” 2000.

[42] Chen, I. J. and Chung, C. H., “An examination of flexibility measurement
and performance of flexible manufacturing systems,” International Journal of
Product Research, vol. 34, no. 2, pp. 379–394, 1994.

[43] Congress, U. S., “10 us code 2464 - core logistics capabilities.”

[44] Conway, J., “The game of life,” Scientific American, vol. 223, no. 4, p. 4,
1970.

[45] Correa, H. L., Linking flexibility, uncertainty and variability in manufactur-
ing systems: Managing un-planned change in the automotive industry. Avebury,
1994.

[46] D. P. GAVER, J., “Time to failure and availability of paralleled systems with
repair,” IEEE TRANSACTIONS ON RELIABILITY, 1963.

[47] Dahmann, J., “An implementers view of systems engineering for systems of
systems.”

[48] Das, S. K., “The measurement of flexibility in manufacturing systems,” The
Iraernational Journal of Flexible Manufacturing Systems, vol. 8, pp. 67–93,
1996.

289

[49] de Neufville, R. and Neely, J., “Hybrid real options valuation of risky
product development projects,” International Journal of Technology, Policy
and Management, vol. 1, pp. 29–46, January 2001.

[50] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, vol. 6, 2002.

[51] DeLaurentis, D. A., “Understanding transportation as system-of-systems
design problem,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit,
no. AIAA 2005-123, 2005.

[52] Department of Defense, Dod modeling and simulation (m&s) glossary.

[53] Domercant, J. C., ARC-VM: An Architecture Real Options Complexity-
Based Valuation Methodology for Military Systems-of-Systems Acquisitions.
PhD thesis, Georgia Institute of Technology, 2011.

[54] Domercant, J. C. and Mavris, D., “Measuring the architectural complexity
of military systems of systems,” in IEEE Aerospace Conference, no. 1649, pp. 1–
16, March 2011.

[55] Dorigo, M., Optimization, Learning and Natural Algorithms. PhD thesis,
Politecnico di Milano, 1992.

[56] Duclos, L. K., Vokurka, R. J., and Lummus, R. R., “A conceptual model
of supply chain flexibility,” Industrial Management & Data Systems, vol. 103,
2003.

[57] Edson, B., “Creating the internet of your things,” 2014.

[58] Eswaramurthy, V. and Tamilarasi, A., “Hybridization of ant colony op-
timization strategies in tabu search for solving job shop scheduling problems,”
International Journal of Information and Management Sciences, 2009.

[59] Evans, J. H., “Basic design concepts,” A.S.N.E. Journal, pp. 671–678, 1959.

[60] Even, S., Graph Algorithms. Cambrige University Press, 2 ed., 2011.

[61] Feibleman, J. and Friend, J. W., “The structure and function of organiza-
tion,” The Philosophical Review, vol. 54, no. 1, pp. pp. 19–44, 1945.

[62] Feitelson, E. and Salomon, I., “The implications of differential network fex-
ibility for spatial structures,” Transportation Research Part A, no. 34, pp. 459–
479, 200.

[63] Fiksel, J., “Designing resilient, sustainable systems,” Environmental Science
and Technology, vol. 37, pp. 5330 – 5339, 2003.

290

[64] Fine, C., Logistics of Production and Inventory, ch. Development in Man-
ufacturing Technology and Economic Evalutation Models. Amsterdam, The
Netherlands: North Holland, 1990.

[65] Fogel, D. and Michalewicz, Z., How to solve it: Modern Heuristics.
springer Publishing Company Inc., 2000.

[66] Fogel, D. B. and Ghozeil, A., “A note on representations and variation op-
erators,” IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,
vol. 1, pp. 159–161, 1997.

[67] Fonseca, C. M. and Fleming, P. J., “Genetic algorithms for multiobjec-
tive optimization: formulation, discussion and generalization,” in Genetic Al-
gorithms: Proc. 5th int. conf., 1993.

[68] Fonseca, C. M. and Fleming, P. J., “an overview of evolutionary algorithms
in multiobjective optimization,” Evolutionary Computation, vol. 3, pp. 1–16,
1995.

[69] Forrester, J., Industrial Dynamics. No. ISBN 0262560011, Cambridge, MA:
M.I.T. Press, 1961.

[70] Forrester, J., “System dynamics, systems thinking, and soft or,” System
Dynamics Review, vol. 10, no. 2, pp. 245–259, 1994.

[71] Forsburg, K. and Mooz, H., A visual explanation of development methods
and strategies including the waterfall, spiral, vee, vee+, and v++ models. Center
for Systems Management Inc, 2001.

[72] Forsburg, K., Mooz, H., and Cotterman, H., Visualizing Project Man-
agement: Models and Frameworks for Managing Complex Systems. John Wiley
& Sons, 2005.

[73] Freeman, L. C., “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, pp. 35–41, march 1977.

[74] Goldberg, D. E., Genetic algorithms in search, Optimization and machine
learning. Addison-Wesley, 1989.

[75] Gordon, G., “Simulation languages for discrete systems,” in BM Scientific
Computing Symposium on Simulation Models and Gaming, pp. 101–118, 1966.

[76] Gordon, G., System Simulation. Prentice Hall, 1969.

[77] Griendling, K., The Architecture-based Technology Evaluation and Capability
Tradeoff Method. PhD thesis, Georgia Institute of Technology, December 2011.

[78] Gross, J. L. and Yellen, J., Handbook of graph theory. CRC Press, 2004.

291

[79] Gupta, Y. and Goyal, S., “Flexibility trade-offs in a random flexible man-
ufacturing system: A simulation study,” International Journal of Product Re-
search, vol. 30, no. 3, pp. 527–557, 1992.

[80] Gustafsson, L., “Poisson simulation - a method for generating stochastic
variations in continuous system simulation,” Simulation, vol. 74, pp. 264–274,
2000.

[81] Hamber, B., “T.loads abbreviated systems architecture,” in 2001 Winter Sim-
ulation Conference, pp. 749–757, 2001.

[82] Han, E. and DeLaurentis, D., “A network theory-based approach for mod-
eling a system-of- systems,” in 11th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, 2006.

[83] Hart, A., “Anticipations, uncertainty and dynamic planning,” 1940.

[84] Holland, J., daptation in Natural and Artificial Systems. University of Michi-
gan Press, 1975.

[85] Iacobucci, J. and Mavris, D., “A method for the generation and evaluation
of architecture alternatives on the cloud,” in System of Systems Engineering
(SoSE), 2011 6th International Conference on, pp. 137–142, June 2011.

[86] Iacobucci, J., Rapid Architecture Alternative Modeling (RAAM): A Frame-
work for Capability-Based Analysis of System of Systems Archittectures. PhD
thesis, Georgia Institute of Technology, May 2012.

[87] Inc, M., “Level of repair analysis (lora),” tech. rep., MTain Inc, 2011.

[88] Jamshidi, M., Systems of Systems Engineering: Principles and Applications,
ch. chapter 1. CRC Press, 2009.

[89] JMP, A Business Unit of SAS, SAS Campus Drive Cary, NC 27513, Modeling
and Multivariate Methods, 10.0.2 ed., 2012.

[90] Joint Chiefs of Staff, Joint Publication (jp 1-02): DoD dictionary of Military
and associated terms, 2009.

[91] Jolliffe, I. T., Prinicpal Component Analysis. Springer, 2 ed., 2002.

[92] Kennedy, J. and Eberhart, R., “Particle swarm optimization,” Proceedings
of IEEE international conference on neural networks IV, pp. 1942–1948, 1995.

[93] Kochikar, V. and Narendran, T., “A framework for assessing the flexibil-
ity of manufacturing systems,” International Journal of Production Research,
vol. 30, pp. 2873–2895, December 1992.

[94] Koen, B., Definition of the engineering method. American Society for Engi-
neering Education, 1985.

292

[95] Kotov, V., “Systems of systems as communicating structures,” Hewlett
Packard Computer Systems Laboratory Paper HPL-97-124, pp. 1–15, 1997.

[96] Koza, J. R., Genetic Programming. MIT press, 1992.

[97] Kozan, K., “Work group flexibility: Development and construct validation of
a measure,” Human Relations, vol. 35, no. 3, pp. 239–258, 1982.

[98] Krackhardt, D. and Carley, K. M., “A pcans model of structure in or-
ganizations,” in International Symposium on Command and Control Research
and Technology, June 1998.

[99] Land, A. H. and Doig, A. G., “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, pp. 497–520, 1960.

[100] Luzeaux, D., Ruault, J.-R., and Wippler, J.-L., complex systems and
systems of Systems engineering. ISTE Ltd, 2011.

[101] Magee, C. and deWeck, O., “An attempt at complex system classification,”
Tech. Rep. ESD-WP-2003-01.02, ESD Internal Symposium, 2003.

[102] Malamud, B. and Turcotte, D., “Cellular-automata models applied to
natural hazards,” Computing in Science & Engineering, vol. 2, pp. 42–51, 2000.

[103] Mandelbaum, M., Flexibility in Decision Making: An Exploration and Uni-
fication. PhD thesis, Department of Industrial Engineering, University of
Toronto, 1978.

[104] March, J. and Simon, H., Organizations. New York NY: Wiley, 1958.

[105] Marr, J., “Performing the galileo mission using the s-band low-gain antenna,”
in Aerospace Applications Conference, pp. 145–183, IEEE, February 1994.

[106] Matthews, R. and Sweeney, R., “Future airborne capability enviroment,”
tech. rep., NavAir, 2013.

[107] Mavris, D. N., Bandte, O., and DeLaurentis, D. A., “Robust design
simulation: A probabilistic approach to multidisciplinary design,” AIAA Jour-
nal of Aircraft, vol. 36, no. 1, 1999.

[108] McCabe, T. J., “A complexity measure,” IEEE transactions on software en-
gineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[109] Morlok, E. K. and Chang, D. J., “Measuring capacity flexibility of a trans-
portation system,” Transportation Research Part A, vol. 38, pp. 405–420, 2004.

[110] Moses, J., “The anatomy of large scale systems,” Tech. Rep. ESD-WP-2003-
01.25, ESD Internal Symposium, 2003.

293

[111] Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M., Re-
sponse surface methodology: process and product optimization using designed
experiments, vol. 705. John Wiley & Sons, 2009.

[112] NASA, NASA Headquarters, Washington, D.C. 20546, NASA Systems Engi-
neeing Handbook, sp-2007-6105 rev 1 ed ed., December 2007.

[113] NavAir, “Strategic planning imperatives for industrial depot maintenance
(2010-2017).”

[114] Nelsen, R. B., An Introduction to Copulas. New York: Springer, 1999.

[115] Nilchiani, R., Measuring Space Systems Flexibility: A comprehensive Six-
Element Framework. PhD thesis, Massachusetts Institute of Technology,
September 2005.

[116] of Defense, D., “Department of defense architecture framework, version 2.0
volume ii,” tech. rep., Department of Defense, 2009.

[117] of Staff, J. C., Joint Publication 3-0(JP 3-0) Joint Operations. 2011.

[118] of the Navy PMA109, D., “Advanced mission computer and displays
(amc&d) life cycle cost estimate,” tech. rep., Dept of the Navy PMA109, 1998.

[119] Office of the Deputy Under Secretary of Defense for Acquisition Technology,
Washington, DC: DOD, Systems Engineering Guide for Systems of Systems,
version 1.0 ed., August 2008.

[120] Olfati-Saber, R. and Murray, R. M., “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE transactions on au-
tomatic control, vol. 49, pp. 1520–1533, September 2004.

[121] PackingPrice.com, “Heavy duty cardboard shipping box price list.”

[122] Patrizi, M. D., “Lora and compass,” tech. rep., USAMC LOGSA, 2009.

[123] Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1984.

[124] Pereira, T., “Stability of synchronized motion in complex networks,” arXiv
preprint arXiv:1112.2297, 2011.

[125] Perry, W. L., Button, R. W., Bracken, J., Sullivan, T., and
Mitchell, J., “Measures of effectiveness for the information-age navy: The
effects of network-centric operations on combat outcomes.” RAND, 2002.

[126] peter sandborn, Cost analysis of electronic Systems. world scientific pub-
lishing, 2013.

294

[127] Petri, C., Kommunikation mit Automaten. PhD thesis, Institut fur Instru-
mentelle Mathematik, 1962.

[128] Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and
Zaidi, M., “The bees algorithm,” tech. rep., Manufacturing Engineering Cen-
tre, Cardiff University, UK, 2005.

[129] Preece, D., Managing Advanced Manufacturing Technology, ch. Organiza-
tions, Flexibility and New Technology, pp. 355–373. London, UK: IFS Publica-
tions, 1986.

[130] Rosenhead, J., Elton, M., and Gupta, S., “Robustness and optimality
as criteria for strategic decisions,” Operational Research Quarterly, vol. 23,
pp. 413–431, 1972.

[131] Royce, W. W., “Managing the development of large software systems,” in
IEEE WESCON, pp. 328–338, IEEE, 1970.

[132] Rudolph, G., “Evolutionary search under partially ordered sets,” ci-67/99,
Dept. Comput. Sci./LS11, Univ. Dortmund, Dortmund, Germany, 1999.

[133] Russel, S. J. and Norvig, P., Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd ed., 2010.

[134] Sage, A. and Cuppan, C., “On the systems engineering and management
of systems of systems and federations of systems,” Information , Knowledge ,
Systems Management, vol. 2, 2001.

[135] Saleh, J. H., Weaving time into system architecture: new perspectives on
flexibility, spacecraft design lifetime, and on-orbit servicing. PhD thesis, MIT,
Department of Aeronautics and Astronautics, 2002.

[136] Scott, D. M., Novak, D. C., Aultman-Hall, L., and Guo, F., “Network
robustness index: A new method for identifying critical links and evaluating
the performance of transportation networks,” Journal of Transport Geography,
no. 14, pp. 215–227, 2006.

[137] Sethi, A. and Sethi, S., “Flexibility in manufacturing: A survey,” The In-
ternational Journal of Flexible Manufacturing Systems, pp. 289–328, 1990.

[138] Shaw, G. B., The Generalized Information Network Analysis Methodology for
Distributed Satellite Systems. PhD thesis, MIT, Department of Aeronautics and
Astronautics, 1999.

[139] Sherbrooke, C. C., Optimal inventory modelling of systems. Multi-echelon
techniques. Kluwer, Dordrecht (The Netherlands), 2004.

[140] Shewchuk, J., “A set of generic flexibility measures for manufacturing appli-
cations,” International Journal of Production Research, vol. 37, pp. 3017–3042,
September 1999.

295

[141] Shewchuk, J. and Moodie, C., “Flexibility and manufacturing system de-
sign: An experimental investigation,” International Journal of Production Re-
search, vol. 38, pp. 1801–1822, May 2000.

[142] Slack, N., “Flexibility as a manufacturing objective,” International Journal
of Operations & Production Management, vol. 3, no. 3, pp. 4–13, 1983.

[143] Slack, N., “The flexibility of manufacturing systems,” International Journal
of Operations and Production Management, vol. 7, no. 4, pp. 35–45, 1987.

[144] Slack, N., The Manufacturing Advantage. London: Mercury Books, 1991.

[145] Song, L., NGPM – A NSGA-II Program in Matlab V1.4. Aerospace Struc-
tural Dynamics Research Laboratory, College of Astronautics, Northwestern
Polytechnical University, China, 2011.

[146] Sousa-Poza, A., Kovacic, S., and Keating, C., “System of systems engi-
neering: an emerging multidiscipline,” Int. J. System of Systems Engineering,
vol. 1, 2008.

[147] Suarez, “An empirical study of flexibility in manufacturing,” Sloan Manage-
ment Review, 1995.

[148] Summers, J. D. and Shah, J. J., “Mechanical engineering design complexity
metrics: size, coupling and solvability,” Journal of mechanical design, vol. 132,
pp. 021004–1 – 021004–11, February 2010.

[149] System of Systems Engineering Center of Excellence, sponsored
by the Office of the Under Secretary of Defense for Acquisition,
T. . L. D. S. S. and Mission Integration, J. F. I. U.-A., System of
Systems Engineering Center of Excellence: SoS Engineering”. august 2010.

[150] Technologies, C., “Sea basing pilot assessment project,” tech. rep., CDM
Technologies, San Luis Obispo, CA, September 2006.

[151] Uline.com, “Anti-static shippers.”

[152] UPS, UPS box strength guidlines.

[153] Upton, D. M., “Flexibility as process probability: The management of plant
capabilities for quick response manufacturing,” Journal of Operations Manage-
ment, vol. 12, no. 3, pp. 205–224, 1995.

[154] US Department of the Air Force, AIR FORCE INSTRUCTION 21-101:
AEROSPACE EQUIPMENT MAINTENANCE MANAGEMENT, 2002.

[155] USN, “The united states navy depot maintenance strategic plan 2014-2019.”

[156] USN, “Navy training system plan for the an/ayk-14(v) standard airborne com-
puter n88-ntsp-a-50-8822b/a,” tech. rep., 2000.

296

[157] Vanderplaats, G. N., Multidscipline design Optimization. 2007.

[158] Venkateswaran, J. and Son, Y., “Distributed and hybrid simulations for
manufacturing systems and integrated enterprise,” in Annual Industrial Engi-
neering Research Conference 2004, 2004.

[159] Villeneuve, F., A method for concept and Technology exploration of aerospace
Architectures. PhD thesis, georgia institute of technology, 2007.

[160] Volovoi, V., “Modeling of system reliability using petri nets with aging to-
kens,” Reliability Engineering and System Safety, vol. 84, pp. 149–161, 2004.

[161] Wainer, G. A., Discrete-event Modeling and Simulation: A Practitioner’s
Approach. CRC Press, 2009.

[162] Weber, R. H. and Weber, R., Internet of Things. Springer Berlin Heidel-
berg, 2010.

[163] Yang, X., Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.

[164] Zahran, I., Elmaghraby, A., and Shalaby, A., “Evaluation of flexibility
in manufacturing systems,” in IEEE International Conference on Systems, Man
and Cybernetics, pp. 49–52, November 1990.

[165] Zelenovich, D., “Flexibility–a condition for effective production systems,”
International Journal of Product Research, vol. 20, no. 3, pp. 319–337, 1982.

[166] Zitzler, E., Deb, K., and Thiele, L., “Comparison of multiobjective evolu-
tionary algorithms: Empirical results,” Evolutionary Computation, vol. 8, no. 2,
pp. 173–195, 2000.

297

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	Summary
	Chapter 1 — Background and motivation
	Hardware Open Systems Technologies
	Internet of Things
	Level of Repair Analysis
	Define terminology
	LoRA in practice
	Mathematical LoRA models

	Systems of Systems
	SoS design
	Flexibility measurement
	Definitions of flexibility
	Flexible manufacturing systems
	Space system flexibility
	Network flexiblity
	SoS Flexibility Framework

	Modeling and simulation
	Discrete Event Simulations
	Heuristic evaluation
	8-puzzle
	Traveling salesman problem (TSP)

	Network modeling
	A Network Theory-based Approach for Modeling a System-of-Systems
	A Modeling Process to Understand Complex Architectures
	ARC-VM: An Architecture Real Options Complexity-Based Valuation Methodology for Military Systems-of-Systems Acquisitions
	The Information Age Combat Model
	Department of Defense Architecture Framework
	Dynamic network analysis
	Section summary

	Design space exploration
	Evolutionary algorithms
	Flexibility based SoS design methodology

	Chapter 2 — Fleet wide Level of Repair Analysis Discrete Event Simulation (FLoRA DES)
	Model Overview
	Description of individual functions
	Repair
	Replace
	Ship
	Failure
	Assign depot
	Obsolete
	Upgrade
	Depot failure
	Operational shift

	Choice of variables
	Simulated responses
	Support/Maintenance Cost
	Availability
	Growth flexibility
	Volume flexibility
	Divisibility

	Stochasticity of the responses
	Model validation

	Chapter 3 — Fleet wide Level of Repair Analysis Network Model (FLoRA NET)
	Task to task network
	Task to agent network
	Agent to agent network
	Chapter summary

	Chapter 4 — Simulation results
	Model setup
	Scenario definition
	Design variable ranges
	Data collection and visualization

	Correlation between flexibility measures
	Correlation between network properties
	Relationship between flexibility and performance
	Flexibility vs. Cost
	Flexibility vs Availability
	Summary of results

	Relationship between flexibility and network properties
	Correlations
	Principal components
	Simulation risk
	Summary of experiment 2

	Comparison of design space down selection methods

	Chapter 5 — Application of the methodology to a design case study
	Problem definition
	Objective definition
	Baseline definition
	Design variable determination

	Design evaluation
	Design space down selection
	Full factorial design space
	Baseline optimization
	Optimization with flexibility
	Flexibility based optimization with heuristics
	Summary of observations

	Chapter 6 — Conclusions
	Summary of findings
	Summary of contributions
	Future work

	Appendix A — Overview of graph theory
	Graph
	Adjacency matrix
	Degree
	Path length
	Cliques
	Connectivity
	Network flow
	Spectral properties

	Appendix B — NSGA II
	Appendix C — Path finding DFS
	References

