
A COMPUTATIONAL MODEL OF ENGINEERING DECISION
MAKING

A Thesis
Presented to

The Academic Faculty

by

Collin M. Heller

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
Daniel Guggenheim School of Aerospace Engineering

Georgia Institute of Technology
December 2013

Copyright c© 2013 by Collin M. Heller

A COMPUTATIONAL MODEL OF ENGINEERING DECISION
MAKING

Approved by:

Professor Brian German, Advisor
Daniel Guggenheim School of Aerospace
Engineering
Georgia Institute of Technology

Professor Karen Feigh
Daniel Guggenheim School of Aerospace
Engineering
Georgia Institute of Technology

Professor Chris Paredis
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: 30 July 2010

ACKNOWLEDGEMENTS

I am very grateful to the many people who helped me reach this milestone. Specifically

to my adviser, Dr. Brian German. His constant support, guidance, and patience have

made the last two years a truly valuable experience. I owe many thanks to members of my

committee, Dr. Karen Feigh and Dr. Chris Paredis, for their feedback and guidance.

I would also like to thank the members of the German Research Group (GRG); Matt

Daskilewicz, who offered invaluable insight and assistance over the last two years, and who

is always there to remind me of how little I know; Michael Patterson and David Pate, for

their guidance and for putting up with my constant barrage of questions related to my

research; Xiaofan Fei, who helped get me through my first year; Marc Canellas, who was

always willing to listen and to share ideas. Also, a special thanks to Sean Chait for his

assistance with navigating the literature.

This material is based upon work supported by the National Science Foundation under

Grant No. 1130222. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author and do not necessarily reflect the views of the

National Science Foundation.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . 4

LIST OF FIGURES . 5

SUMMARY . 8

I INTRODUCTION AND MOTIVATION 10

1.1 Scope and Motivating Requirements . 13

II LITERATURE SURVEY . 17

2.1 Design Theory . 17

2.2 Empirical Studies of Designers . 19

2.2.1 Designer Behavior . 19

2.2.2 Designer Cognition . 19

2.3 Modeling the Design Process in Organizations 20

2.3.1 Computational Organization Theory 20

2.3.2 Design Structure Matrices . 21

2.3.3 Game Theory . 21

2.3.4 Multidisciplinary Design and Optimization (MDO) Architectures . 22

2.4 Other Relevant Models . 22

2.5 Gaps in the Literature . 23

III MIMICKING ENGINEERING DECISION MAKING 25

3.1 Decision Making Framework . 25

3.2 Design Problem . 27

3.2.1 Design Alternatives . 28

3.2.2 Design Attributes and Incentives 28

3.2.3 Reality Model . 29

3.3 Knowledge Model . 29

3.3.1 Gaussian Process Models . 30

3.3.2 Beliefs in Extrapolation . 38

3.3.3 Transforming Beliefs into Gaussian Processes 44

1

3.3.4 Alternatives Knowledge Models . 48

3.4 Preference Model . 49

3.4.1 Utility Theory Background and Assumptions 49

3.4.2 Formulating a Designer Utility Function 54

3.4.3 Alternative Utility Function Forms 65

3.5 Integrating the Elements . 67

3.5.1 Expected Utility Maximization . 67

3.5.2 Alternate Forms . 68

3.5.3 Approximating Exploratory Behavior 69

IV ISOLATED DECISION DEMONSTRATIONS 72

4.1 Single Dimension Decision . 72

4.1.1 Decisions and Results . 72

4.1.2 Analysis of Decisions . 76

4.2 Multi-Dimension Decision . 78

4.2.1 Baseline Designer . 79

4.2.2 Experienced Designer . 85

4.2.3 Inexperienced Designer . 86

V SEQUENTIAL DECISION MAKING . 90

5.1 Illustrative Example . 92

5.2 Calculating the Utility of Actions . 95

5.3 Generalizations of Alternatives and Attributes 100

5.4 Design Process Influences on Utility . 102

5.4.1 Generalized Form . 103

5.4.2 Example Utility Models of Time . 107

5.4.3 Other Influences on Utility and Alternatives 111

VI IMPLEMENTATION AND DEMONSTRATIONS 113

6.1 Implementation . 113

6.1.1 Expected Utility Calculation . 113

6.1.2 Sequential Decision Making . 114

6.2 Computational Issues . 115

2

6.2.1 Adaptive Sampling . 116

6.2.2 Elimination of Dominated Alternatives 118

6.2.3 Eliminating Duplicate Information State and Expected Utility Cal-
culations . 119

6.3 Investigations of Time . 121

6.4 Strategy in Variable Fidelity Analysis . 125

6.4.1 Implementation of Demonstration Problem 127

6.4.2 Results . 128

VII POTENTIAL VALIDATION METHODS 132

7.1 Limitations . 132

7.1.1 Sequential Decision Making . 132

7.1.2 Knowledge Model . 135

7.1.3 Preference Model . 136

7.2 Usage Applications . 137

7.3 Experimental Validation . 139

7.3.1 Potential Pitfalls . 140

7.3.2 Suggested Guidelines Experiments 143

VIIICONCLUSION AND FUTURE DIRECTIONS 146

8.1 Summary of Contributions . 146

8.2 Directions for Future Work . 147

8.2.1 Model Improvements . 147

8.2.2 Organization Simulation . 147

8.2.3 Mechanism Design . 148

APPENDIX A — DERIVATION OF GAUSSIAN PROCESS MODEL
COVARIANCE FUNCTION . 149

APPENDIX B — DERIVATION OF SEPARATED EXPECTED UTIL-
ITY EQUATION . 153

3

LIST OF TABLES

1 Designer’s prior beliefs regarding the design alternatives 126

4

LIST OF FIGURES

1 Exponential growth in aircraft production cost over time 11

2 Comparison of weight growth in F-22 and F-18E/F 12

3 Network of 2566 engineering change requests 12

4 Engineering organization as a coupled dynamical system 13

5 Conceptual flowchart of decision making framework 26

6 A simple Gaussian process model with four training points 31

7 Each point in the Gaussian process model is a normal probability distribution 32

8 Random selection of functions from basis 33

9 All basis functions that do not pass through the training points are eliminated 33

10 Learning a new training point . 35

11 Gaussian process with an exponential utility function 37

12 Designer’s beliefs regarding how CFD error relates to mesh fineness 39

13 How might a designer extrapolate based on the given points? 40

14 Designer’s beliefs in extrapolation . 41

15 Effect of mean function on extrapolation . 42

16 Custom covariance function designed for extrapolation 43

17 Gaussian process with noisy information . 45

18 Gaussian process with slope information . 46

19 Low fidelity model represented as a Gaussian process 47

20 Different information combined into a single Gaussian process model 48

21 A decision between two lotteries . 50

22 Eliciting a utility function for money . 51

23 Risk behavior . 52

24 Demonstrating utility independence . 54

25 Requirements based utility function . 58

26 A very strict requirement . 59

27 Risk behavior of utility function . 60

28 Utility independence of requirements . 61

29 Notional utility functions for requirements 66

5

30 Low fidelity model of y with respect to x . 73

31 Expected utility of each alternative and outcome of decision 74

32 Expected utility and outcome of second decision 74

33 Expected utility and outcome of third decision 75

34 Comparision of low fidelity model and true function 76

35 Belief update after outcome of first decision is revealed 77

36 Belief update after outcome of second decision is revealed 78

37 Designer’s utility function . 80

38 Low fidelity model of TSFC . 81

39 Comparison of beliefs and reality in regards to engine weight 81

40 Comparison of beliefs and reality in regards to production cost 82

41 Expected utility of the design space for the designer’s first decision 83

42 Updated uncertainty in beliefs after result of first decision is revealed (shown
in % of expectation) . 84

43 Expected utility of the design space for the designer’s second decision . . . 84

44 Expected utility of more experienced designer 85

45 Discrepancy between the inexperienced designer’s beliefs and reality in re-
gards to engine weight . 86

46 Expected utility of inexperienced designer 87

47 Expected utility for designer’s second decision and location of second, third,
and fourth decisions . 88

48 Expected utility fails to capture the best choice for exploration 90

49 Simple decision between two designs . 92

50 Decision between two actions: (I) making a decision and (II) running a high
fidelity model . 93

51 Example of several possible decision trees which a designer might consider . 97

52 Two-level decision tree with three alternatives and two possible outcomes . 99

53 Utility independence of time and design performance is only valid if utility
is calculated at the designer’s final decision. 105

54 Time utility function for strict deadline with discounting 109

55 Time utility function for strict deadline with discounting 109

56 Time utility function misaligned with the interests of the organization . . . 110

6

57 Expected utility variation for a notional probability space with two require-
ments . 117

58 Coarse mesh of probability space . 118

59 Refined adaptive mesh of probability space 119

60 Duplicate information state and expected utility calculations 120

61 Designer beliefs based on low fidelity model 121

62 Expected utility of x if the designer was given only one decision 122

63 Expected utility of x for different values of γ 123

64 Shape of expected utility curves . 124

65 Expected utility for each alternative available to the designer 128

66 Designer’s second decision based on the outcome of the low fidelity model . 130

67 Prior beliefs and new information . 136

69 Uncertainty is zero at reference point even in the absence of training data at
the reference . 151

7

SUMMARY

The research objective of this thesis is to formulate and demonstrate a computational

framework for modeling the design decisions of engineers. This framework is intended to be

descriptive in nature as opposed to prescriptive or normative; the output of the model repre-

sents a plausible result of a designer’s decision making process. The framework decomposes

the decision into three elements: the problem statement, the designer’s beliefs about the

alternatives, and the designer’s preferences. Multi-attribute utility theory is used to capture

designer preferences for multiple objectives under uncertainty. Machine-learning techniques

are used to store the designer’s knowledge and to make Bayesian inferences regarding the

attributes of alternatives. These models are integrated into the framework of a Markov

decision process to simulate multiple sequential decisions. The overall framework enables

the designer’s decision problem to be transformed into an optimization problem statement;

the simulated designer selects the alternative with the maximum expected utility. Although

utility theory is typically viewed as a normative decision framework, the perspective in this

research is that the approach can be used in a descriptive context for modeling rational and

non-time critical decisions by engineering designers. This approach is intended to enable the

formalisms of utility theory to be used to design human subjects experiments involving en-

gineers in design organizations based on pairwise lotteries and other methods for preference

elicitation. The results of these experiments would substantiate the selection of parameters

in the model to enable it to be used to diagnose potential problems in engineering design

projects.

The purpose of the decision-making framework is to enable the development of a de-

sign process simulation of an organization involved in the development of a large-scale

complex engineered system such as an aircraft or spacecraft. The decision model will allow

researchers to determine the broader effects of individual engineering decisions on the aggre-

gate dynamics of the design process and the resulting performance of the designed artifact

8

itself. To illustrate the model’s applicability in this context, the framework is demonstrated

on three example problems: a one-dimensional decision problem, a multidimensional tur-

bojet design problem, and a variable fidelity analysis problem. Individual utility functions

are developed for designers in a requirements-driven design problem and then combined

into a multi-attribute utility function. Gaussian process models are used to represent the

designer’s beliefs about the alternatives, and a custom covariance function is formulated to

more accurately represent a designer’s uncertainty in beliefs about the design attributes.

9

CHAPTER I

INTRODUCTION AND MOTIVATION

This thesis concerns the development of a computational framework for modeling engineer-

ing decision making. The effort to develop this framework was inspired by the needs of

a separate research project to simulate the dynamics and performance of an engineering

organization1. Since our models are designed to fit within the context of the organizational

dynamics simulation, the requirements for these models are largely driven by the needs of

the simulation. This section will outline the motivation behind the simulation which will in

turn define the requirements for this research.

While the aerospace industry has developed numerous successful programs in the past

several decades, it has also had its share of setbacks and problems. Cost and schedule

overruns are becoming a ubiquitous part of large-scale aerospace development programs.

Figure 1 shows Norman Augustine’s famous plot of aircraft unit cost over time which has

been updated with more recent information from the United States Naval Institute [7, 15].

The cost of military aircraft is growing exponentially, far outpacing inflation. A 2009

Government Accountability Office report found DoD acquisition programs to be an average

of 42% over initial budget estimates and delayed by an average of 22 months. Commercial

development programs share a similar trend in cost growth, albeit less pronounced than

military programs. To maintain competitiveness, the aerospace industry needs to both

better estimate and control cost and schedules.

The extant literature identifies many potential causes for these problems, and it is

unlikely that all issues are attributable to just a single cause. One relatively unexplored

area of research investigates the dynamics of large engineering organizations. Consider the

weight growth of the F/A-22 and the F/A-18E/F development programs shown in Figure 2

[73]. The figure shows the percent increase in the aircraft weight from the original desired

1NSF Grant 1130222

10

Year
1940 1950 1960 1970 1980 1990 2000 2010 2020

$10K

$100K

$1 Mil

$10 Mil

$100 Mil

$1 Bil

A
ir
cr

af
t

U
n
it

C
o
st

(T
h
en

-Y
ea

r
D

ol
la

rs
)

P-51

F-86

F-100

F-104

F-5

F-111A
F-15

A-10

F-22
F-35

Figure 1: Exponential growth in aircraft production cost over time

takeoff weight over time. The square and circle denote preliminary (PDR) and critical design

reviews (CDR), respectively. The dynamics of the two programs have some similarities but

also some striking differences. The F-22 remains above the desired weight during the entire

design phase and exhibits more pronounced fluctuations; notice the sharp decreases in

weight just before PDR and the growth immediately after. The behavior of the F-18E/F

remains closer to its target and is generally more tame. At the same time, both programs

feature steady weight growth after CDR. These curves share many similarities to plots

of a dynamical system’s response over time. Theoretically, we could view an engineering

organization from the perspective of a dynamical system. If we could identify the features

of the program that led to a particular set of dynamics, perhaps we could “design” the

organization to behave more like than F-18E/F development program than the F-22.

Modeling an organization in such a way can be challenging, since an organization is

made up of numerous entities which are constantly interacting. Figure 3 shows a network

of engineering change requests taken from a study regarding change propagation [27]. The

research team studied change requests in a US government contract program involving a

complex globally distributed system of both hardware and software. Overall the research

11

Year

%
C

h
a
n
g
e

in
A
T

D
W

ei
gh

t
fr

o
m

O
ri

g
in

a
l
D

T
W

1992 1994 1996 1998 2000 2002 2004
−10

0

10

20

30

40

F−22
F−18 E/F
PDR
CDR

Figure 2: Comparison of weight growth in F-22 and F-18E/F

team documented over 41,500 change requests during the course of eight years. The dia-

gram shows the largest network of change requests, a total of 2,566. This figure illustrates

the complexity of large-scale engineering systems; even seemingly isolated design decisions

can have extraordinary consequences. Yet, designers are likely unable to perceive the conse-

quences of their own decisions far beyond their own discipline. The research team summed

up the complexity of the problem with the following quote:

“Through the change network analysis we found that change propagation in large

technical systems is actually much more complicated than we thought initially.”

Figure 3: Network of 2566 engineering change requests

The focus of the overarching organization simulation is represented graphically in Figure

4. The performance of an organization and the resulting value of the designed system

12

are influenced by three major elements: the design problem which includes requirements,

organizational goals, and external influences; the decisions of the individual designers and/or

design teams; and the dynamics of the organization. These elements, however, are not

independent from one another; each is coupled and provides feedback to the others as

shown by the bi-directional arrows in the figure. Our ultimate goal is to understand the

center of Figure 4, the organization performance and the resulting system value. To enable

this capability, this thesis will focus on developing a model of the decision element with the

intention of later combining it with the other two elements. In order maintain flexibility

within the simulation, the framework was developed to be independent of any specific design

problem or design strategy. The simulated designer can make decisions under multiple

objectives with or without uncertainty. The framework is robust enough to manage decisions

with many feasible solutions as well as decisions without feasible solutions.

System
Value

Design
Problem

Design
Decisions

Organization
Dynamics

Organization
Performance

Figure 4: Engineering organization as a coupled dynamical system

1.1 Scope and Motivating Requirements

Before examining the details of the framework, I would like to explicitly define the intended

scope. The models used in this framework are intended to be descriptive of human designers,

where the word “descriptive” is used as an antithesis to normative and prescriptive. This

13

framework attempts to mimic the decisions that engineers make in reality, not necessarily

the decisions that they should make. Similarly, the framework is not intended to be a formal

prescriptive method for arriving at a decision to an actual design problem.

At the same time, this model is not intended to replicate a designer’s cognitive reasoning

process about the design problem. At no point do I claim that designers follow the process

outlined in this thesis when making decisions, nor will I claim that the human brain operates

in this manner. Rather, this model is intended to mimic the outcome of the reasoning

process.

If this model does not accurately represent the manner in which humans reason, then of

what use is the model for predicting decisions? In his book, The Sciences of the Artificial,

Herbert Simon makes an important distinction between the inner environment and the outer

environment of a system [64]. To borrow his example, consider both a grandfather clock

and a digital wristwatch. These artifacts have completely different inner environments;

the parts and mechanisms of one have almost no similarity to the other. However, at the

interface of the inner and outer environment, where the user looks at the clock-face to read

the time, both clocks provide the exact same functionality. Though they operate in entirely

different ways, they are both capable of accurately displaying the time. As long as the

inner environment of each clock is well suited for its outer environment, their function will

be indistinguishable. This will not be the case at the extremes of their outer environment;

for example, if we took both clocks out to sea in a violently rocking ship, the grandfather

clock would struggle to keep proper time, while the digital wristwatch would hardly notice

the difference. Simon’s point is that our models do not have to accurately reflect the

inner environment, so long as we are cautious when placing them in an appropriate outer

environment.

For this framework, this “interface” between the inner and outer environment is the

outcome of the designer’s reasoning, his or her final decision which leads to an irrevoca-

ble allocation of resources. The outer environment consists of the designer’s knowledge,

incentives, and the details of the engineering organization. Two major challenges of this

research are (1) to determine the appropriate outer environment for the model and (2) to

14

validate the behavior at the interface. For this reason, care will be taken to list all pertinent

assumptions used when formulating the models and their fundamental limitations. To reit-

erate, the inner environment of this model is not intended to match the inner environment

of human thought. This model is at best an approximation of decisions that one might

plausibly expect from a decision maker.

In order to replicate human decision making for a variety of design problems, the simu-

lation should share some of the characteristics and abilities of its human counterpart. The

following requirements were identified as essential characteristics of the framework:

• Models decisions that a human designer would actually make, not necessarily the

decision he or she should make (ideally, the framework would also allow for testing of

both normative and descriptive models).

• Capable of including the influences of the design problem and organizational dynamics

on the designer’s decision.

• Independent of a particular ruleset or strategy employed by a designer.

• Of sufficient specificity for computation.

• Capable of specifying relative preferences for designs with multiple attributes. This

is especially important when the designer is faced with trade-offs between attributes.

• Capable of storing relevant knowledge about the design alternatives.

• Capable of updating knowledge in the presence of new information.

• Capable of making a decision in both the presence and absence of a feasible design

space.

• Capable of developing a strategy when making multiple sequential decisions.

The goal of this thesis is to formulate a framework with appropriate models that meet these

requirements.

This thesis is organized as follows: Chapter 2 provides a brief overview of relevant

literature on this topic. Chapter 3 introduces the proposed framework for isolated decisions

and derives models for implementation. Chapter 4 then demonstrates the framework on two

example problems. Chapter 5 extends the framework to account for sequential decisions.

This extension is then tested on two sequential decision problems in Chapter 6. Chapter

15

7 explores the limitations of the model and provides recommendations for improving the

model with a human subjects experiment. Finally, Chapter 8 summarizes the contributions

and proposes directions for future research.

16

CHAPTER II

LITERATURE SURVEY

This chapter provides a summary of relevant literature. Our research encompasses a variety

of topics from design theory to artificial intelligence. For this reason, a complete and detailed

description of all the relevant literature falls beyond the scope of this document. Several

pertinent topics are identified and their relationship to the research goal is established. The

purpose of this chapter is to provide a concise overview of past research, illustrating the

ways in which models from the literature fulfills aspects of the motivating requirements

while also showing the ways in which these models are insufficient. After examining the

literature I will identify noticeable gaps which this thesis intends to fill.

2.1 Design Theory

For this project, it is important to have a clear understanding of the nature of design

and the processes it entails. Forming a clear definition allows for the development of a

concise model while still encompassing all the pertinent characteristics of the design process.

Although numerous definitions and theories abound, this section will focus only on the work

of Hazelrigg, Gero, and Simon. For additional models, schema, and definitions of design,

see References [59, 68, 70].

Hazelrigg defines design as a decision-making process [30]. This stands in contrast to

other definitions of design which often characterize it as a problem-solving process. Hazel-

rigg argues that problems are independent of the designer’s resources and preferences; the

solution to a problem is only dependent on the problem statement. Decisions, on the

other hand, incorporate human values in order to rank alternatives. Since designers must

also manage their resources, they are more appropriately viewed as decision makers than

problem solvers.

Gero defines design as a process to “transform requirements, which embody the expecta-

tions and purposes of the resulting artifact, into design descriptions [25].” Gero’s definition

17

is based on his Function, Behavior, Structure model of design: the function represents the

purpose of the artifact; the artifact’s behavior encompasses the characteristics that allow

it to perform the desired function; finally, the structure is a description of the artifact,

usually in the form of engineering drawings. Hence, the purpose of design is to transform

requirements (function) into a design description (structure). The difficulty of design lies

in the mapping between these three constructs; while a structure maps to a behavior and a

behavior fulfills a function, there typically is no direct mapping between function and struc-

ture. Gero proposes that designers use “prototypes,” canonical mental models of designs

that fulfill specific functions, to create this mapping.

Additionally, Gero makes a distinction between different types of design, which he de-

notes as routine, innovative, and creative. Routine design occurs in a well-defined space of

potential designs, a space in which the designer has experience. Innovative design uses the

same design variables as routine design, but considers values outside their typical range.

Finally, creative design adds to the design space, incorporating entirely new design variables.

One can find similarities between Gero’s classification and Simon’s distinction between

a well-structured and an ill-structured problem [63]. Rather than drawing a distinct bound-

ary, Simon views the structure of problems as a continuum. Well-structured problems are

usually characterized by their precisely defined components: the problem statement and

goal are clear and explicit, and the problem-solver has a definite procedure for testing each

alternative. Ill-structured problems are simply the opposite of well-structured problems. Si-

mon considers most design activities to be closer to the ill-structured end of the spectrum.

Simon also introduces the concept of bounded rationality, the idea that humans often

must make decisions with incomplete information, limited computation ability, and a finite

amount of time [62]. Since exploring the design space requires allocation of resources,

designers are not willing to search indefinitely for an optimal solution; often they know an

optimal design is not necessary, and finding the true optimal may not be possible. Instead,

Simon argues that humans often use satisficing over optimization; designers are interested

in finding a satisfactory answer rather than the best answer. While there is much debate

over the use of optimization versus satisificing, empirical evidence shows that practicing

18

engineers tend to satisfice [28, 29].

2.2 Empirical Studies of Designers

Numerous studies have been performed of practicing engineers and design teams to better

understand their needs and behavior. This section highlights just a few relevant articles

from this large body of literature. The literature has been divided into two very broad

categories: designer behavior and designer cognition.

2.2.1 Designer Behavior

There is a large body of literature observing students and practicing engineers both in the

field and in a laboratory setting. To give just a few examples, much research has focused

on the differences between expert and novice designers [6, 4, 3, 2] and the effects of time

and deadlines on performance [58, 51, 61, 49, 72]. Many of these studies do not attempt to

explain the mechanisms behind the phenomena but rather give insights into the designers’

needs with a goal of developing tools to assist the engineers in designing. Mehalik and

Schunn provide a review of numerous empirical design studies [46].

2.2.2 Designer Cognition

In addition to observing designer and team behavior, researchers have also tried to under-

stand the mental processes behind the designer’s behavior. A well-known example is design

fixation, a designers’ tendency to replicate designs that they have already seen and resis-

tance to departing from their original ideas [33, 54]. Other researchers have examined the

designers’ processes through diaries or think-aloud studies [8, 18]. Cross provides a broad

review of research into the cognitive processes of design [17].

The design cognition and behavior literature provide many insights into specific behav-

iors of engineers. However, the literature is still far from developing a robust model of design

decision-making. While this research can be used to validate certain aspects of a model, it

likely cannot be used to formulate a decision-making model. For this reason, our models

are developed at a higher level of abstraction than designer cognition; our framework does

not model the designer’s thoughts but artificially mimics the designer’s behavior and the

19

resulting design outcome from this behavior.

2.3 Modeling the Design Process in Organizations

Many researchers have developed models of the design process in organizations using various

theories and techniques. This section provides an overview of the most relevant models.

2.3.1 Computational Organization Theory

Perhaps the most relevant literature for this research comes from the field of Computational

Organization Theory (COT). COT represents members of an organization as information

processors, where the role of the members is to transfer information from one form to an-

other. Several platforms have been developed for computationally modeling organizations;

Virtual Design Teams [34], for example, was specifically designed to model engineering

organizations. Carley and Gasser provide a thorough review of this subject [11].

Virtual Design Teams (VDT) is a computational platform that originated from Stanford

in the 1980s [34], and it is likely the closest model to our research topic. VDT was designed

with a conscious effort to maintain a relatively high-level of abstraction. Based on research

by Galbraith [23], people inside the organization are modeled as information processing

units, and the length of each of the organization’s tasks is calculated by estimating the time

for information processing. The model defines numerical parameters for capturing elements

of the problem and organization such as “task complexity” and “skill of the designer”. Tasks

are encoded in terms of work volume, a unit that represents the amount of information

processing work.

While VDT has been successful in modeling organizations, it is unable to capture specific

design decisions. The model abstracts away the actual design problem and treats the design

process simply as a task to be performed. Setbacks and rework are more or less seen as

random events with no tenable cause. In this way, VDT is able to capture the overall

dynamics of the organization but gives little insight into the performance of the designed

system. The models also rely considerably on the modeler’s ability to specify all the relevant

tasks and their characteristics ahead of time.

20

2.3.2 Design Structure Matrices

Design Structure Matrices (DSM) are a visual representation of information dependencies

and feedback in a system [21]. Tasks in the system are represented in both rows and

columns of a square matrix. The diagonal matrix entries represent task completion times.

Off-diagonal terms represent dependencies among tasks. Smith and Eppinger use the design

structure matrix extensively to model sequential iteration in engineering design [65, 66].

Each task has a probability of repetition related by the strength of task coupling; this

allows for an estimation of rework in an engineering design. DSM allows for the reordering

of tasks and restructuring of design decomposition in a system to reduce feedback and can

provide estimates of total development time [20, 52].

2.3.3 Game Theory

Certain authors have studied decentralized design in the context of game theory. Lewis

and Mistree use various communication protocols from game theory such as cooperative,

non-cooperative, and Stackelberg leader-follower [43, 42]. From these protocols, the authors

simulate organizations and analyze characteristics such as convergence and performance of

the resulting design. Given a non-cooperative design “game,” authors have investigated the

conditions under which the design problem will converge [12, 13].

The use of game theory seems intuitive, since the design process in a large organization

is composed of many players with potentially conflicting interests, each bearing an influence

on the final design. However, the validity of the use of game theory lies in the extent to

which designers perceive their actions as a game. As Rasmusen states, “Game theory is

not useful when decisions are made that ignore the reactions of others or treat them as

impersonal market forces [55].” If designers do not perceive their actions as being part of

game, then the resulting behavior is more typical of a dynamical system. In fact, the authors

of this research consider only relatively näıve strategies and not optimal strategies since the

designers are given incomplete information. While this research ostensibly captures all three

elements in Figure 4, the current literature tends to ignore formulating how a designer comes

to a particular solution and assumes arbitrary problems and objective functions.

21

2.3.4 Multidisciplinary Design and Optimization (MDO) Architectures

Several types of MDO architectures were inspired by the protocols and hierarchies of en-

gineering organizations. Collaborative Optimization (CO) is an optimization scheme that

divides the optimization along disciplinary lines, similar to the divisions in an engineering

organization [38]. Each disciplinary analysis has its own optimizer and is only concerned

with its local design variables and constraints. Coordination and consistency are maintained

by a system level optimizer.

Analytic Target Cascading (ATC) is an optimization scheme similar to CO [40]. In this

framework, a top-level optimizer sends children nodes a set of targets, both for objectives

and consistency requirements. Each child node can run a unique optimizer, specifically

tailored for its design sub-problem. The child nodes can also send targets to its own children,

allowing for an unlimited number of hierarchical levels.

While not an MDO architecture, Compromise Decision Support Problem (DSP) is a

optimization technique from the goal programming literature [47]. Compromise DSP uses

goals rather than objectives, similar to the way that engineers are often given requirements.

“Hard” goals, or rigid requirements, are used as constraints on the optimizer. “Soft” goals

are then rank ordered by importance; the optimizer uses a lexicographic minimum to de-

termine the “optimal” design.

2.4 Other Relevant Models

Researches have also constructed models of specific problem-solving behavior. For example,

Cagan and Kotovsky observed people repeatedly playing Tower of Hanoi problems and

used simulated annealing-based algorithms to mimic the observed behavior [10]. Olson

used a combination of simulated annealing and genetic algorithms to create a multi-agent

simulation of an organization based on observations of a design team [50].

The field of Artificial Intelligence was explored with mixed results. Machine learning

techniques were found to be useful for certain aspects of the framework, as described in

Section 3.3. Artificial intelligent systems are becoming more commonplace as decision

22

support systems. Expert systems were prolific in the 1980s and are highly effective for well-

structured problems with a relatively narrow focus [45]. Schank and Abelson’s scripts, plans,

and frames construct for storing and recalling knowledge is still widely used in systems today

[60]. For modern design support systems, the concept of knowledge-based engineering, or

the process of integrating expert knowledge into computer systems, has become increasingly

popular with tools being developed for industry such as Adaptive Modeling Language. In

general, the Artificial Intelligence community has been most successful in decision making

when focused on a relatively narrow and domain-specific problem. Few, if any, models exist

for robust automated design decision-making for generalized design problems.

Perhaps the most significant unanswered question in the modeling literature is in regards

to the designer’s objectives. In almost all the examples, the model assumed an objective

function was already given or ignored the concept of objectives altogether; in other words,

the designer had already determined what the “best” design would be in terms of just a

single numerical attribute. Each technique represents more or less a method for searching

and moving through a design space. Most of the models described do not account for

uncertainty and are only concerned with a single attribute, despite the fact that designers

often face multiple objectives and an uncertain future.

2.5 Gaps in the Literature

Based on the analysis of the literature, we can identify several key areas where the extant

research falls short of the motivating requirements:

• Connection with the Design Problem: Much of the outlined literature treats the design

problem as an abstract task. This is especially true with VDT and Design Structure

Matrices; in both these examples the tasks can consume a variable amount of time,

but the outcome of the task is unknown. Since the details of the problem are not

accounted for, we are unable to compare the quality of designs between simulations.

• Appropriate Level of Abstraction: Other areas of research examine design at a level

too detailed for practical simulations. Gero’s prototypes, for example, require very

detailed knowledge of the designer’s process; if one were to implement such a model,

23

they would need to develop a large number of prototypes, even for relatively simple

design problems. The quality of the designer’s decision would be highly dependent on

the modeler’s ability to create effective prototypes.

• Capturing Designer Preferences: For the literature that examines the quality of the

resulting design, the preferences and/or objective function of the designer is either

pre-defined or unaccounted for. None of the above examples detail how a designer’s

preferences are developed. Lewis’s game theoretic approach, for example, assumes

arbitrary objective functions in implementations. Much of the empirical research

focuses on the designer’s behavior but does not address what influences specifically

drive his or her behavior.

• Accounting for Uncertainty : A practicing designer must sometimes make decisions

without perfect knowledge of the future and the implications of their decisions. In

almost all the models outlined above, the information available to the designer is

assumed to be deterministic and to perfectly model reality.

24

CHAPTER III

MIMICKING ENGINEERING DECISION MAKING

From the literature survey, it is evident that the extant research is largely insufficient in

satisfying all the needs of the simulation outlined in the motivation on page 15. The purpose

of this chapter is to systematically develop a framework for mimicking decisions made in

isolation. The first section of this chapter will outline the decision making framework

along with the necessary models and information required for the simulation. Subsequent

sections will expound on these models: Section 3.2 explores the relevant information needed

about the problem to form a decision; Section 3.3 proposes a particular knowledge model

and illustrates its potential uses; Section 3.4 leverages utility theory to derive a preference

model for a requirements-driven organization. Finally, Section 3.5 synthesizes these models

into a single equation. Chapter will 5 expand the framework to encompass situations in

which a designer is able to make multiple sequential decisions where the result one decision

may influence the next.

3.1 Decision Making Framework

In his book, Fundamentals of Decision Making, George Hazelrigg identifies three elements

shared by all decisions [32]: (1) alternatives, (2) an expectation of the future, and (3) pref-

erences. Fundamentally, the task of this thesis is to develop a framework that incorporates

each of these elements. This thesis will take a modular approach to this problem; each ele-

ment can substituted or refined without affecting the others. The following three sections

will develop each of these elements further and propose a model to represent them. For the

purposes of this thesis, I have redefined Hazelrigg’s three elements as follows:

1. The design problem: Contains the alternatives, incentive structure, relevant design

attributes, and any additional information which the designer can access.

2. The designer’s knowledge: Provides a mapping between the alternatives and the de-

signer’s beliefs about the attributes of each alternative.

25

3. The designer’s preferences: Captures the designer’s risk behavior and controls how

he/she manages trade-offs in conflicting objectives.

Representing each of these elements in a computationally tractable manner is the main

challenge of developing this framework.

Alternatives

Gaussian
Process
Model

A

B

C

Beliefs Expected Utility

p(yA)

Utility
Function

uA = 0.7

Incentive
Structure

p(yB)

p(yC)

Knowledge Model

uB = 0.8

uC = 0.3

Designer
Knowledge

Preference Model

Figure 5: Conceptual flowchart of decision making framework

The overall premise of this chapter is represented by the flowchart in Figure 5. The

task of the framework is to transform a set of design alternatives, which I will refer to as

x, into a design decision, π (shown in the figure as the shaded alternative). As Hazelrigg

states, a designer’s choice should be dependent on his or her expectation of the future and

his or her personal preferences. These components comprise the two essential models in

the decision-making framework: the knowledge model and the preference model. As the

flowchart indicates, the purpose of the knowledge model is create a mapping between the

alternatives and the designer’s beliefs about their attributes given the designer’s knowl-

edge. If the designer’s beliefs are uncertain, then the designer assigns a probability to each

outcome, and his or her beliefs are represented by probability distributions; these probabil-

ity distributions are subjective and based on the information and biases in the designer’s

knowledge. Once the beliefs are represented in this probabilistic form, they serve as inputs

to the preference model to obtain the designer’s decision based on the his or her incentives

and values. The output of the preference model is a scalar value for each design alternative.

The designer’s decision, π, is the alternative with the highest value from the preference

26

model. I hypothesize that if appropriate models can be developed to represent knowledge

and preferences, then human behavior can be approximated in this manner.

We can summarize this strategy in the equation of subjective expected utility [22]. Given

a set of alternatives, x, each with a set of possible outcomes, y, the decision maker will

choose the alternative with the highest expected utility:

E[u(x)] =
∑
i

u(yi)p(yi) (1)

where u is the decision maker’s personal utility function and p is a subjective probability of

achieving an outcome based on the designer’s beliefs. From the equation, we can see that

different designers can make different decisions if they have different preferences, u(yi), or

different beliefs about the alternatives, p(yi). In this way, we can model designers on an

individual level by uniquely specifying their personal beliefs and preferences.

Before proceeding, it is important to have a clear understanding of what decision the

designer is actually making. In this chapter, the designer will be making a final design

decision. In other words, after the designer makes his or her decision, he or she irrevocably

allocates resources towards developing the chosen artifact. We could imagine that the design

goes into production after the designer’s decision or proceeds to the next phase of design.

The designer does not anticipate that any changes will be made to the design after his or

her decision. The derivation of sequential decision making in Chapter 5 will more clearly

show why the assumptions in this chapter constrain the framework to only final decisions.

3.2 Design Problem

The first element of any design decision is the design problem itself. In this thesis, I will

assume that the design problem is given to the modeler. As we will see in this chapter, this

assumption greatly simplifies the framework, but also introduces some limitations. Since

the design problem is given to the modeler, I will not develop any “model” of the problem;

instead, I will identify the necessary information required to represent the problem in the

framework.

27

3.2.1 Design Alternatives

The alternatives represent the choices available to the designer. In this chapter, our def-

inition of alternatives will be limited strictly to discrete and continuous design variables.

In the most general form of the framework, the alternative space can be much larger, en-

compassing the set of all possible actions that a designer could perform. However, in the

context of this formulation, performing actions and receiving outcomes strictly applies to

sequential decision making and falls outside the scope of isolated decisions. Therefore, I

will defer a full discussion of alternatives until Section 5.3.

One limitation of this framework is that all the designer’s choices must be predefined.

The designer may choose a design in a rarely explored portion of the design space, but he

or she is still confined to the design space and the parameterization embodied therein. To

borrow Gero’s terminology, this restriction limits the designer to routine and innovative

designs while precluding creative designs.

3.2.2 Design Attributes and Incentives

The designer has preferences for one alternative over another based on the alternatives’ at-

tributes. The relevant attributes and the designer’s preferences are driven by the designer’s

own goals and by the incentive structure of the organization. For example, an engineering

organization often issues requirements for specific design attributes to its design engineers.

The designer is incentivized to meet the requirements, and will therefore prefer alternatives

that meet design requirements over alternatives that do not meet the requirements. Like

the alternatives, attributes could also be indirectly related to the design. For example,

the organization’s management may give the designer a schedule deadline. Meeting the

deadline is typically not considered an intrinsic property of a design, but the deadline may

still influence which alternative the designer chooses. In this chapter, all attributes and

preferences will be driven solely by requirements on the characteristics and performance of

the design itself. In Chapter 5, the preference model is expanded to account for time and

budget.

28

3.2.3 Reality Model

A reality model returns an outcome to a designer in response to an action. This model is

only applicable in the context of sequential decision making introduced in Chapter 5 but

is included here for completeness. This model returns a deterministic outcome for a given

action. For example, if a designer runs an analytical model, the reality model will return the

results of the analysis. If the modeler has a model of the designer’s external environment,

this model can be used to determine the final outcome of the design after multiple decisions.

3.3 Knowledge Model

In the context of this framework, we can view the simulated designers as information proces-

sors: they have information about the design alternatives before beginning the design pro-

cess (their prior knowledge); they obtain knowledge throughout the design process (learning

from models, experts, etc...); and they make design decisions based on the information avail-

able to them. In order to model a human decision maker, the framework requires a knowl-

edge model that can store, retrieve, and make inferences from information. Specifically, a

knowledge model should be capable of:

• Representing the designer’s beliefs including uncertainty : The designer has beliefs

about the relationship between alternatives and attributes based on his or her expe-

rience, education, and resources. These beliefs may be uncertain, especially if the

designer lacks experience with a particular design problem. A designer might be more

certain of one belief than another.

• Inferring the properties of alternatives given information regarding similar alterna-

tives: A designer might not have specific knowledge of a particular design, but may

have knowledge about similar designs. For example, if a designer has analyzed two

airplane designs, one with a wing aspect ratio of 10 and another with an aspect ratio of

9, he will likely estimate that than airplane with an aspect ratio of 9.5 has properties

in between the two analyzed designs, assuming all other properties are the same.

• Updating knowledge in the presence of new information: The design process is typ-

ically a learning process; the designer is constantly receiving and processing new

29

information that enables him or her to make a more informed decision. To accurately

model the design process, the knowledge model should be capable of receiving new

information and combining it with prior information to form inferences.

• Storing knowledge obtained from multiple sources: A designer may draw on multiple

resources to obtain information about a design. These could include, among others,

analytical and computational models, prior design experience, and expert opinions. A

model should have the flexibility to store information obtained from these resources

both individually and combined.

In this section, I propose the use of Gaussian process models as a technique for rep-

resenting a designer’s knowledge. Section 3.3.1 will introduce the fundamental concepts

behind Gaussian process models. Section 3.3.2 will customize these models to more ac-

curately represent a designer’s beliefs. Section 3.3.3 will demonstrate how varying forms

of knowledge can be encoded into a Gaussian process model. Finally, Section 3.3.4 will

explore some limitations of the models and explore alternative candidates for representing

knowledge.

3.3.1 Gaussian Process Models

One possible method for storing and learning information is through the use of Gaussian

process models. In the optimization and geostatistics community this method is primarily

known as kriging. However, since this research draws heavily on literature from the statistics

and robotics communities, I will refer to these models as Gaussian process models. Although

there are slight differences between the specific forms of kriging, these terms are generally

interchangeable. Rasmussen and Williams have written a comprehensive book on Gaussian

process models which serves as the primary resource for this section [56].

Rather than encode specific rules and equations of design analysis, Gaussian process

models encode the designer’s knowledge at a higher level of abstraction. When determining

the designer’s decision we are concerned with only two types of beliefs: (1) the designer’s

expectation of how the alternatives relate to the attributes and (2) the designer’s confidence

in his or her expectation.

30

The mapping between the alternatives and expectations is dependent on the designer’s

knowledge, available information, and the tools he or she can access. Using Gaussian process

models, we can model different designers with varying levels of “experience”. An expert

designer will have more accurate expectations about the mapping between alternatives and

attributes. Expert designers will also tend to have less uncertainty in their beliefs. Novice

designers will have inaccurate expectations and large uncertainty. A novice designer might

have inaccurate beliefs with low uncertainty, thinking their beliefs to be correct when, in

fact, they are incorrect.

3.3.1.1 Model Basics

A Gaussian process model is a non-parametric, supervised-learning, regression technique.

The goal of this model is to infer the value of a function, f(x), at a set of test points, X,

using a set of training data which I will denote as Xtr and ftr. Unlike many other regression

techniques, Gaussian process models do not return a single value at a test point, but rather

a probability distribution. Since the model assumes a normal (or Gaussian) distribution at

every location, these models are referred to as a Gaussian process models.

x

f
(x

)

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

Figure 6: A simple Gaussian process model with four training points

Figure 6 illustrates a basic example of a Gaussian process model. Four training points

31

are used to define the model shown as the black rectangles. In between these training

points, the Gaussian process model infers the shape of the function. Each point in the

model is a normal probability distribution; the expected value is shown as the black line

and a 95% confidence interval is shown in the shaded region. In Figure 7 the Gaussian

process in Figure 6 has been rotated, and the normal distributions are drawn explicitly.

Notice that the probability distributions at the training locations collapse to a single point

as the values are known with certainty. In between training points, the uncertainty grows

since the function value at these locations is known with less certainty.

−5

0

5

−4

−2

0

2

4
0

1

2

3

x
f(x)

p
(y
)

Figure 7: Each point in the Gaussian process model is a normal probability distribution

Rasmussen and Williams outline two interpretations of Gaussian process models [56]: the

function-space view and the weight-space view. For this discussion, I will use the function-

space interpretation as it more intuitively aligns with our purpose. Gaussian process models

assume a prior distribution on a (often infinite) set of basis functions. Figure 8 shows

numerous basis functions chosen at random from the infinite set. As in Figure 6, the shaded

gray region represents a 95% confidence interval; in other words, 95% of all basis functions

at any point will lie within the gray region. Any of these functions shown could potentially

be the “true” underlying function. Depending on the prior chosen, certain functions are

assumed to be more likely than others to be the true function. When training points are

added to the model, all functions that do not pass through those particular points are

32

eliminated from the set of possible functions. This is done through a Bayesian inference;

if a function does not pass through a training point, the probability of it being the true

function is zero. The probability distribution for the remaining functions is updated via

the Bayesian inference, yielding a probability distribution at each location. In Figure 9,

three training points have been added, and all basis functions that do not pass through the

training points have been eliminated. Notice that the confidence interval has been updated

accordingly.

x

f
(x

)

−5 0 5
−3

−2

−1

0

1

2

3

Figure 8: Random selection of functions from basis

x

f
(x

)

−5 0 5
−3

−2

−1

0

1

2

3

Figure 9: All basis functions that do not pass through the training points are eliminated

The function-space interpretation makes a convenient analogy with the knowledge and

information that engineers typically use. Consider an engineer designing the wing of an

33

airplane. A designer may not know the precise relationship between aspect ratio and drag,

but the designer probably knows that drag tends to decrease with increasing aspect ratio.

Therefore, any function between these attributes should have a negative slope; we can

eliminate the set of all functions that have positive slope (or consider them highly unlikely),

because a positive slope does not fit the designer’s “training data,” his experience and

education. See Section 3.3.3 for more examples of capturing types of knowledge.

The prior distribution of basis functions is entirely determined by a mean function and

a covariance function. For our purposes, we will assume that the mean is always zero

(this particular instantiation is known as simple kriging). Therefore, in the absence of

any training information, the model would predict each test point to have a mean of zero

and a variance given by the covariance function, k(x, x∗). Loosely speaking, the covariance

function specifies the relationship between the function value of two points based on their x-

coordinate location. In Figure 6, a one-dimensional squared-exponential covariance function

was used:

k(x, x∗) = σ2exp
(
−θ2(x− x∗)2

)
(2)

This function essentially states that the covariance between two points is a function of their

Euclidean distance; the closer the two points, the more strongly correlated the function

values are at those points. σ and θ are referred to as hyperparameters. A general discussion

of hyperparamters and covariance functions is deferred to the next section.

A covariance matrix, K, is formed by determining the covariance between two sets of

points. For example, the (i, j) element of K(X,X∗) is equal the covariance of the ith element

of X and the jth element of X∗. For concise notation the covariance matrix K(X,X∗) will

be written as KX,X∗ , and K(X,X) will simply be written as KX . A full derivation of the

Gaussian process model equations is not contained in this text; however, it can be shown

that any set of test points has the following distribution [56]:

f
∣∣∣X,Xtr,ftr ∼ N

(
KX,XtrK

−1
Xtr
f , KX −KX,XtrK

−1
Xtr

KXtr,X

)
(3)

If the training points are not known with absolute certainty (such as in physical experiments

34

or robotic sensing applications), a noise parameter, σn, can be included in the formulation:

f
∣∣∣X,Xtr,ftr ∼ N

(
KX,Xtr(KXtr + σnI)−1f , KX −KX,Xtr(KXtr + σnI)−1KXtr,X

)
(4)

where σn represents the standard deviation of the function from the training data. In opti-

mization involving computer experiments, this term is often set to zero since the computer

models are deterministic. However, including a small amount of noise at each point can

greatly improve the numerical stability of the calculations.

x

f
(x

)

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

Figure 10: Learning a new training point

In Figure 10, another training point has been added to the original training set shown

in Figure 6. Gaussian process models are quite flexible to adding information; although this

point falls outside the original 95% confidence interval, the model adjusts to account for it.

Notice that, in certain areas, the uncertainty has grown in the updated model even with

the additional information. Since the new training point was much lower than predicted,

the model has learned to expect the true function to have more variation than it originally

believed.

From the examples shown, we can already see that Gaussian process models meet many

of the requirements outlined at the beginning of this section:

35

• Representing the designer’s beliefs including uncertainty : Since the output of a Gaus-

sian process model is a probability distribution, the model is capable of representing

the designer’s subjective beliefs even if those beliefs are uncertain.

• Inferring the properties of alternatives given information regarding similar alterna-

tives: Since Gaussian process models are a regression technique, the model can make

inferences about designer variables for which it may not have explicit information.

Furthermore, the model recognizes that there is uncertainty in its inferences.

• Updating knowledge in the presence of new information: As depicted in Figure 10,

the model can update its beliefs if given new information.

Section 3.3.3 will demonstrate how knowledge can be stored from multiple sources.

3.3.1.2 Covariance Functions

As mentioned above, the covariance function is critical in determining the shape of the

Gaussian process model. Each covariance function has specific properties that make it

well-suited for modeling certain types of underlying functions and poorly suited for others.

The covariance function chosen for a particular application depends on the modeler’s prior

knowledge about the underlying function.

One of the most commonly used covariance functions is the squared exponential covari-

ance function shown earlier in Equation 2. This covariance function is an example of a

stationary covariance function: stationary covariance functions depend solely on the dis-

tance between two points. In other words, they are invariant to translations in the design

space. The most common non-stationary functions use the dot product of the training

points; these functions are invariant to rotations about the origin.

The squared exponential covariance function also assumes a continuous and infinitely

differentiable underlying function. The exponential covariance function, on the other hand,

is a stationary covariance function that allows the slope to be discontinuous.

k(x, x∗) = σ2exp
(
−θ|x− x∗|

)
(5)

Figure 11 shows this covariance function used for the same set of training points as in

Figure 6. Notice that the expectation is not smooth and that the uncertainty is much

36

higher than in Figure 6. Reference [56] contains numerous examples of commonly used

covariance functions.

x

f
(x
)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Figure 11: Gaussian process with an exponential utility function

In Equations 2 and 5, σ and θ are called hyperparameters. These terms control certain

characteristics of the shape of the Gaussian process model. For the squared exponential

covariance function, θ is a measure of how quickly the function can change and controls

the non-linearity of the function; large values of θ indicate that the underlying function

can have rapid curvature changes. σ sets the maximum possible variance at a point and

controls how rapidly the variance grows. Since these parameters can have a strong influence

on the shape of the Gaussian process model (and the resulting design decisions), we require

a robust method of determining an appropriate value for them.

In the optimization community, a common method for setting hyperparameters is to

maximize marginal likelihood. By maximizing marginal likelihood, we are finding the value

of hyperparameters that best explains the training data. For numerical stability, many

authors recommend maximizing the log likelihood [56], given by the equation below:

log p(ftr|Xtr,Θ) = −1

2
fTtrKtrftr −

1

2
log|Ktr| −

m

2
log2π (6)

where m is the number of training points.

37

When selecting a method for setting hyperparameters, the fundamental questions to

ask are, “To what extent does this method replicate the way humans transform information

(training data) into beliefs?” and “To what extent do the value of the hyperparamters

affect the design decision.” Without validating data from a human subjects experiment, any

argument for a particular method would be based largely on speculation. In the examples

shown in this thesis, the value of the hyperparameters were set via maximizing marginal

likelihood. This method was chosen since it naturally forms a balance between fitting

accurately fitting the training data (the first term in Equation 6) and penalizing complexity

(the second term in Equation 6). The method is also easily implemented computationally.

For other methods of fitting hyperparameters, refer to Reference [56].

3.3.2 Beliefs in Extrapolation

When used in optimization, most optimization algorithms recommend a warm start : a

space filling design of experiments to provide the Gaussian process model with training

data [35]. In an actual design scenario, the designer may not have information over the

range of design variables in question, especially at the outset of the design process. This

is especially true when the designer is considering design variables outside a typical range

(such as an turbofan designer developing an engine with a larger bypass ratio than previous

models) or using novel design variables altogether (such as an airframe designer considering

a blended-wing body design). If a designer has information over a subset of the range of

design variables, how does this knowledge influence his or her beliefs over the unknown

range?

The answer to this question depends largely on the designer and the specific situation.

In many cases, the designer may have some general knowledge and intuition, even if he or

she has not dealt with the specific design problem at hand. For example, a aerodynamics

expert knows that increasing the fineness of a Computation Fluid Dynamics (CFD) mesh

will result in a more accurate solution, and the expert can estimate this increase in accuracy.

However, the designer likely knows that this trend will not continue indefinitely; at some

point, the introduction of round-off error from the numerical approximation will dominate

38

Mesh Fineness

T
o
ta
l
E
rr
o
r

E
x
p
erien

ce

N
o

E

x
p
er
ie
n
ce

Figure 12: Designer’s beliefs regarding how CFD error relates to mesh fineness

the reduction in error from using a finer grid. In other words, the designer knows that

the relationship between error and fineness, while initially decreasing, will reverse. Perhaps

the designer’s beliefs can be represented by the plot in Figure 12; the designer has run the

model for a different levels grid fineness and has seen the data converge. However, passed

the dotted line, the designer is inexperienced. He knows that eventually round-off error will

dominate, but does not know the exact shape of the error curve in Figure 12. The dashed

lines show two possible shapes that the underlying function could have; the designer would

consider each of these shapes plausible. In scenarios like the example given, the designer’s

knowledge in extrapolation can be encoded as noisy training data, representing an estimate

of the underlying shape of the function, but with uncertainty regrading the true value of a

function.

Consider, however, the scenario where the designer has absolutely no knowledge of the

trend in extrapolation. Perhaps the relationship between the alternatives and attributes

is a black box, so convoluted that the designer is unable to infer a general underlying

relationship. An example is shown in Figure 13; the designer only knows the points shown

by the squares and is trying to infer the value at x > 3 and x < −4. In this case,

the designer might draw on the Principle of Indifference; when faced with n mutually

exclusive and exhaustive possibilities, the probability of each possibility is equal to 1/n

39

x

f
(x

)

−6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12

?

Figure 13: How might a designer extrapolate based on the given points?

in the absence of information to suggest otherwise. However, a designer would not be

indifferent to the numerical value of an attribute; he or she still has knowledge of the

numerical value of the function based on the training points and his or her continuity

assumption. Instead, I hypothesize that the designer would be indifferent of the trend ; it

is possible that the trend continues, but it is also possible that the trend reverses. In the

absence of information, the designer does not know whether the function is increasing or

decreasing. Therefore, in extrapolation, the slope of the expectation should tend towards

zero and the uncertainty in the function value should grow as the designs become further

from the designer’s knowledge. This is represented by the notional plot in Figure 14. The

designer’s knowledge and confidence interval is represented by the shaded region and the

dashed lines represent possible function shapes that the designer would consider plausible.

The designer believes that the function could continue to increase, but the designer also

believes it possible that the function could reverse – or any combination in between.

3.3.2.1 Extrapolation Behavior of Gaussian Process Models

Ideally, we would like to be able to retain the previously described capabilities of Gaussian

process models while replicating the belief structure shown in Figure 14. Unfortunately, the

40

x

f
(x

)

−6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12

Figure 14: Designer’s beliefs in extrapolation

behavior of most Gaussian process models departs radically from this concept. As stated

earlier, the shape of the Gaussian process model is determined entirely by the training

data, mean function, and covariance function. In many cases, the covariance function

primarily affects the non-linearity of the Gaussian process; the behavior in extrapolation is

more heavily influenced by the mean function. Figure 15 displays several Gaussian process

models, each utilizing identical training information and the squared-exponential utility

function but calculated with a different mean function.

Figure 15a shows a Gaussian process model with an assumed mean of zero. In the

optimization community, this scenario is known as simple kriging. Notice the behavior

of the function in the absence of training data; the mean rapidly returns to zero, and

the variance asymptotically reaches a maximum value. The slope of the expectation does

return to zero, but encountered a rapid trend reversal beforehand. From the perspective

of designer beliefs, the designer has ruled out the possibility that the trend continues to

increase, as shown by the dashed line. This belief would be especially problematic if the

simulated designer were looking for the high value of y;. The designer would expect the

highest value to be around x = 3 and would not look at higher values of x. In contrast,

I believe many people would consider it reasonable that the highest value of y lies at high

41

x

f
(x

)

−5 0 5 10
−4

−2

0

2

4

6

(a)

x

f
(x

)

−5 0 5 10
−4

−2

0

2

4

6

(b)

x

f
(x

)

−5 0 5 10
−4

−2

0

2

4

6

(c)

x

f
(x

)

−5 0 5 10
−4

−2

0

2

4

6

(d)

Figure 15: Effect of mean function on extrapolation

values of x.

One strategy for mitigating these problems is to consider alternative mean functions.

Figure 15b displays a Gaussian process model where the mean is assumed to be stationary

and is calculated with a maximum likelihood estimator. Unfortunately, this example suffers

from similar problems as the example if 15a. The designer has ruled out the possibility of

an increasing function, shown by the dashed line.

In universal kriging, the mean function is assumed to be a polynomial. Two examples

are shown in Figure 15c and 15d of a linear and quartic mean, respectively. In the absence

of training data, the Gaussian process follows the mean function, and the covariance tends

towards its maximum value. While these assumptions have fixed some of the problems

seen with simple and ordinary kriging, the have introduced additional inaccuracies. In the

linear example, the designer assumes that the trend continues towards infinity, ignoring

42

the possibility shown by the dashed line. The quartic polynomial is perhaps the worst fit,

assuming that the trend sharply decreases towards infinity.

Additional mean and covariance formulations were explored, each with similar problems.

The resulting conclusion is that no combination of mean and covariance function currently

exists that matches all the desired characteristics described in this section. Because of this,

an effort was undertaken to derive a suitable combination with the desired properties. Due

to the underlying mathematical depth of the covariance function, an exhaustive derivation

is located in Appendix A.

To meet the desired characteristics outlined above, the following covariance function

was derived:

cov(yi, yj) =
σ2

2

[
√
π
(

2αm + δ(0,x) + δ(0,x∗) + δ(x,x∗)erf
(
δ(x,x∗)

))
− exp

(
−δ(x,x∗)2

)
− 1

]
(7)

The Gaussian process model is then calculated in the limit as α tends toward infinity.

Therefore, Equation 3 is modified as follows:

f |X,Xtr,ftr ∼ N
(

lim
α→∞

KX,XtrKXtrf , lim
α→∞

KX −KX,XtrKXtrKXtr,X

)
(8)

x

f
(x

)

−6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12

Figure 16: Custom covariance function designed for extrapolation

43

Figure 16 shows the derived covariance function in Equation 7 for the same training

points in Figure 13. Notice that the resulting Gaussian process model has all the desired

characteristics in extrapolation: the mean of the expectation tends towards zero, the un-

certainty continues to grow as the distance from the training points increases, and the

designer has not ruled out the possibility of the function continuing to increase or reversing

to decrease. Additionally, this covariance function can be used in any number of dimen-

sions and with any number of training points. This covariance function represents a novel

contribution of this thesis.

3.3.3 Transforming Beliefs into Gaussian Processes

This section outlines several methodologies and capabilities for modeling potentially dis-

parate types of knowledge about a design. The goal of this section is to illustrate methods

for building Gaussian process models under a variety of situations. Some of these methods

are further illustrated in the example problems in Chapter 4.

3.3.3.1 Past Experience: Point Designs

Known designs are the simplest information that can be encoded into a Gaussian process

model. If the designer knows the attributes of a design point with certainty, this knowledge

becomes a training point in the Gaussian process model. This data could represent the

designer’s past experience, a model that the designer trusts, or previous design information

that the decision maker can access.

However, the designer does not necessarily need to know the function value at a point

with certainty. In Figure 17, the training points in blue have noisy information, while the

other training points are known with certainty. Notice that the uncertainty at the noisy

locations does not collapse to zero. Noise in the data has two possible interpretations: either

the designer is unsure of the accuracy of the information or he/she doubts the reproducibility

of the information.

44

x

f
(x

)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

Figure 17: Gaussian process with noisy information

3.3.3.2 Trends: Slope Information

Since a linear transformation of a normal distribution is also a normal distribution, the

derivative of a Gaussian process model is also a Gaussian process model. Solak et al.

[67] derives a method for encoding derivative information into a Gaussian process model.

Training points of slope information are treated exactly like a training point containing

function values. The covariance between a training point with slope information and a

regular training point is given by the following equation:

cov

(
∂f

∂xi
, f

)
=

∂

∂xi
k(xi, xj) (9)

Similarly, the covariance between two training points containing slope information is given

by the following equation:

cov

(
∂f

∂xi
,
∂f

∂xj

)
=

∂2

∂xi∂xj
k(xi, xj) (10)

Figure 18 shows a Gaussian process model with both function value information and

slope information. The training points in blue have both sets of information, while the

training point shown in black has only function value information. Notice that, in the

presence of slope information, the uncertainty around the training point is much smaller

45

than when slope information is not present. Like the training points with function value

information, the slope training points can contain noise. Therefore, if the designer has an

approximate idea of what the slope is, that information can be encoded into the Gaussian

process model. In this example, all the training points with slope information also have

function value information, but this is not a general requirement; one could generate a

Gaussian process model with only slope information and no function value information.

x

f
(x

)

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

Figure 18: Gaussian process with slope information

Additionally, Riihimäki and Vehtari have developed a method for encoding monotonicity

information into Gaussian process models [57]. To do this, they use training points with

“virtual” slope information. At these points, the probability of a negative slope is either

zero or very small (if the function is assumed to be monotonically increasing). By using

enough virtual points, one can demand this behavior everywhere. This capability has many

practical applications, since many engineering functions are monotonic over their useful

range.

3.3.3.3 Analytic and Computer Models

In addition to having knowledge at specific design points, a designer might also have infor-

mation over a continuous range of design variables. This data may be certain or uncertain.

46

Figure 19 represents an example of a low-fidelity design model. The expectation is the value

that the model returns, while the error represents the designer’s uniform uncertainty in the

model. This model was created with numerous “virtual” training points with noise.

x

f
(x

)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

Figure 19: Low fidelity model represented as a Gaussian process

3.3.3.4 Combinations of Information

Often a designer has multiple sources of information; he or she uses knowledge and past

experience in conjunction with computational models and empirical data. Perhaps the

most useful feature of Gaussian process models is its ability to handle multiple types of

information and make sense of it. In Figure 20a, the designer has three different types

of information: a low-fidelity model with a range from -5 to 2.5, a known design point at

x = −2, and a rough idea of the slope at two locations after the low-fidelity model ends.

The low fidelity model is shown in gray, the known point in blue, and the slope information

in red. Figure 20b shows a single Gaussian process model that was created with this suite

of information. The known data point is able to correct the error in the low-fidelity model.

The slope information guides the designer’s beliefs in the absence of the low-fidelity model.

Notice that the uncertainty begins to steadily grow after the designer can no longer use the

low-fidelity model.

47

x

f
(x

)

−5 0 5
−5

0

5

(a)

x

f
(x

)

−5 0 5
−5

0

5

(b)

Figure 20: Different information combined into a single Gaussian process model

3.3.4 Alternatives Knowledge Models

In some cases, the use of the covariance function derived in Section 3.3.2 would not be

appropriate for a particular simulation. For example, if the designer does not believe the

underlying function to be continuous and smooth, then Equation 7 would be a poor choice

for a covariance function. Fortunately, use of the framework does not rely on any particular

covariance function; the modeler can choose a function which best matches the designer’s

beliefs. Since the designer has a unique Gaussian process model for each attribute, the

modeler can choose different covariance functions for each attribute.

For certain classes of problems, the use of a regression technique itself might not be

appropriate. This is especially true if the attribute in question is discrete. Fortunately,

Gaussian process models can be reformulated for classification problems. Rasmussen and

Williams [56] provide a derivation of this formulation. For brevity, it is not included here.

In general, the framework is not limited to the use of Gaussian process models. Any

machine learning process that meets the requirements outlined at the beginning of this

section would be a sufficient knowledge model. In its simplest form, a knowledge model is

not required and the designer’s beliefs can be represented by static probability distributions.

This strategy is employed in the second example problem in Chapter 6.

48

3.4 Preference Model

The final enabling component of the framework is a method of encoding the preferences of

the designer. Since the designer may not always know the exact consequences of his or her

decisions, we require a method of eliciting preferences in the presence of uncertainty. We

also require a method that allows the designer to negotiate trade-offs between preferences,

since the designer is usually concerned with more than one objective.

This framework utilizes multi-attribute utility theory to capture the designer’s prefer-

ences. The remainder of this section will address the methodology for developing a utility

function. The first subsection outlines some fundamentals of utility theory: utility func-

tions, risk, and multi-attribute utility theory. Specific attention is paid to the underlying

assumptions and their validity in our context. The next section documents the derivation

of a requirements-driven utility function: defining the underlying assumptions, forming a

single attribute utility function, and combining multiple functions into a multi-attribute

utility function.

3.4.1 Utility Theory Background and Assumptions

Utility theory is based on von Neumann and Morgenstern’s four axioms regarding prefer-

ences under uncertainty [71]: completeness, transitivity, continuity, and independence. For

brevity the mathematical definition of these axioms is not presented here; a thorough discus-

sion of the axioms of utility theory can be found in Reference [39]. If a decision-maker’s pref-

erences conform to the these axioms, then he or she is said to be von Neumann-Morgenstern

rational ; it should be noted that this definition of rationality is different from definitions

used in other contexts. Rationality is not concerned with what one specifically prefers, but

rather the consistency of their preferences. Preferring cake to ice cream is not irrational;

however, preferring cake to ice cream, ice cream to cookies, and cookies to cake is irrational.

If one’s preferences align with the four axioms, the following theorem can be proved:

There exists a utility function, u, that assigns a real number to each outcome,

such that

A � B iff E[u(A)] > E[u(B)] (11)

49

To put Equation 11 in words, the alternative A is strictly preferred to the alternative B if

and only if the expected utility of A is greater than the expected utility of B. This utility

function is unique up to a positive linear transformation.

A simple way to understand utility theory is through the use of lotteries. Figure 21

gives an example of two lotteries. In this document, a lottery will be denoted as a circle

with the name of the lottery inscribed in the circle. Each branch of a lottery contains

an outcome and the probability of that outcome. The square in Figure 21 represents a

decision; in this case, the decision maker must choose lottery A or B. Equation 11 states

that, if the designer conforms to the axioms on utility theory, then every lottery outcome

has a definable expected utility. If the decision maker were indifferent between the two

lotteries, then each lottery would have the same expected utility.

0.1
A

B

0.4
0.5

0.4
0.5
0.1

$100
$10
$0
$20
$10
$0

Figure 21: A decision between two lotteries

How might one determine which lottery has the highest expected utility? This choice

depends entirely on the preferences of the designer. The axioms of utility theory tell us

that we can replace any complicated lottery with an equivalent lottery containing only the

best and worst alternatives. The simple lottery in Figure 22 can assist us with the more

complicated decision in Figure 21. For this simple lottery, the decision maker is given a

choice between lottery C and an outcome with absolute certainty, lottery D. Notice that we

have used the best and worst outcomes from the lotteries in Figure 21 to populate lottery

C. This decision enables us to determine the decision maker’s utility function.

Since utility functions are only unique up to linear transformations, we can arbitrarily

define the utility at two locations. Let us suppose that u($0) = 0 and u($100) = 1. We

can then set the value of y to any number between 0 and 100. The pertinent question for

the designer is, “What value of probability, p, would make you indifferent between lotteries

50

1

C
p

1 - p

D

$100

$0

$y

Figure 22: Eliciting a utility function for money

C and D?” Because we have rescaled our utility function between 0 and 1, whatever value

of p the designer selects is equal to the utility of y. In this manner, we can determine the

utility of $10, $12, and $20, then calculate the expected utility of each of the lotteries in

Figure 21. The lottery with the highest expected utility is the preferred lottery.

In Chapter 1, we identified this framework as a descriptive model of human decision-

making. Since utility theory is typically considered a normative tool in decision making,

is utility theory a valid choice for this model? Perhaps a more fundamental question is,

to what extent do designer’s preferences conform to the the fundamental axioms of utility

theory? Empirical evidence shows large holes in this assumption; interested readers should

consult the Allais paradox [36] and the Ellsberg paradox [19]. Fundamentally, the use of

utility theory in a descriptive model is incorrect; humans do not tend to have consistent

preferences that conform to the four axioms. However, utility theory can still be used as

an approximation to human behavior; while the framework cannot exactly model decisions

humans may make, in many cases it can provide similar decisions. At the same time, utility

theory enables us to capture a variety of preference structures based on multiple incen-

tives. If our ultimate goal is to understand how these incentives and their corresponding

decisions affect the dynamics of a larger organization, this approximation may be sufficient.

Regardless, it should remain clear that this is a fundamental limitation of the framework.

3.4.1.1 Quantifying Risk

The process outlined in the previous subsection for determining utility may seem rather

trivial and unnecessary; one could just calculate the expected value of each lottery and

choose the option with the highest expected value. In practice, however, people often do

not reason in this manner. Consider again the set of lotteries shown in Figure 21. Both

51

lotteries have the same expected value of $14. If we chose the lottery solely on expected

value, the decision maker should be indifferent between the two lotteries. However, most

people would select lottery B; lottery B has a 90% chance of making money, while lottery

A only has a 50% chance. Utility theory does not claim that the choice of lottery B is

irrational; it simply implies that utility is not linear with money. Consequently,

E[u(y)] 6= u(E[y]) (12)

y

u
(y

)

$0 $20 $40 $60 $80 $100
0

0.2

0.4

0.6

0.8

1
Risk Averse
Risk Neutral
Risk Seeking

Figure 23: Risk behavior

Figure 23 shows an example of three different utility functions, each with different risk

behavior. Risk averse behavior implies a concave utility function, while risk seeking implies

a convex utility function. We can quantify this behavior using the Arrow-Pratt measure of

absolute risk aversion [5, 53].

r(y) = −u
′′(y)

u′(y)
(13)

Positive quantities of r imply that the decision maker is risk averse, while negative quantities

imply risk-seeking behavior. From Equation 13 and Figure 23 it is clear that curvature in

a utility function determines the risk behavior and has important implications for decision

making. The slope in the denominator of Equation 13 serves to normalize the risk value,

since utility functions are invariant to linear transformations.

52

It is important to note that the risk behavior outlined in this section was originally

derived for money; care must be taken when applying these principles to situations of risk

that involve quantities that cannot be expressed monetarily. However, this theory is still

valid for monotonically increasing utility functions [37]. For a discussion of risk with respect

to deceasing or non-monotonic utility functions, see Reference [37].

3.4.1.2 Multi-Attribute Utility Theory

Suppose we are in a situation in which we care about more than one attribute, as is often

the case with designers. Eliciting preferences consistently for such a complicated problem

may be difficult. However, suppose we could identify a utility function for each attribute

individually, assuming the other attributes remained unchanged. Is it possible to combine

these utility function into an aggregate utility function that still reflects the designer’s

preferences?

Multi-attribute utility theory deals with the problem of multiple objectives. Since multi-

attribute utility theory is an extensive subject area, this thesis will only cover a few select

topics that are pertinent to our discussion. See Keeney and Raiffa’s comprehensive book

for more information on this subject [37]. For our purposes, creating this combined utility

function is much simpler if we can demonstrate two properties of the designer’s preferences:

mutual preference independence and mutual utility independence.

Preference independence implies that the decision maker’s preference for one outcome

over another is consistent regardless of the other attributes. For example, I tend to prefer

$100 to $10. This preference would be consistent on any day of the week. Therefore, my

preference for money is preferentially independent of the day of the week.

While preferential independence is fairly easy to demonstrate, utility independence can

be far more nuanced. Utility independence states that the utility of an outcome is the same

regardless of the outcome of another attribute (up to a linear transformation). Consider

the two decisions outlined in Figure 24; suppose that our risk averse decision maker is

indifferent between lotteries A and B. Said another way, the utility of $40 on Monday is

equal to 0.6. Now consider lotteries C and D. If the probability, p, that would make the

53

decision maker indifferent between these alternatives is still 0.6, then the decision maker’s

preferences for money are utility independent of the day of the week. Why might p not

equal 0.6? Suppose a decision maker must pay rent on Tuesday and finds that he is $100

short of making the payment. On Monday, the utility of $40 might have been quite high.

On Tuesday, however, the utility of $40 may be quite low, since the designer might take a

riskier option that gives him a chance a making the rent payment. Utility independence

implies preferential independence, but preferential independence does not necessarily imply

utility independence.

1

A
0.6

0.4

B

$100,

$0,

$40,

Monday

Monday

Monday 1

C
0.6

0.4

D

$100,

$0,

$40,

Tuesday

Tuesday

Tuesday

Figure 24: Demonstrating utility independence

If two attributes are mutually utility independent, then the risk behavior, r, of each

individual utility function remains unchanged when combined into a multi-attribute utility

function. Equation 13 implies that the most general form of a multi-attribute utility function

with n mutually utility independent attributes is the multilinear form:

umultilinear =
n∑
i=1

kiui+
n−1∑
i=1

n∑
j>i

kijuiuj+
n−2∑
i=1

n−1∑
j>i

n∑
l>j

kijluiujul+ ... +k123...nu1u2u3...un (14)

Therefore, if we can prove mutual utility independence for a set of attributes, then we know

that the multi-attribute utility function must be of the form represented in Equation 14.

The only remaining challenge is to determine the value of the unknown constants, k.

3.4.2 Formulating a Designer Utility Function

The following section documents the derivation of a utility function for a designer faced with

a multivariate and multi-criteria decision in a requirements-driven organization. Implicit in

this formulation are the following assumptions:

• The designer is only given inequality requirements

• The designer is influenced only by his/her incentive to meet the requirements

54

• The designer’s preferences remain constant over time

• The designer does not anticipate that the requirements will change

• The designer does not believe that meeting the requirements is impossible

We assume the designer is a given a set of inequality requirements, f∗, for a set of

attributes, f . We define a unitless variable, g, such that

g =


f
f∗ − 1 if f is required to be greater than f∗,

1− f
f∗ if f is required to be less than f∗

(15)

Since f is a function of x, g will also be a function of x. g is a measure of how well a

requirement is met; a requirement is met if g > 0 and unmet if g < 0. When used in

lotteries, g will be shown as a percent.

For the remainder of this section, we will first investigate the form of a utility function

for one requirement only as a function of g. We will then demonstrate that the mutual

preference and utility independence properties from Section 3.4.1.2 appear to be reasonable

assumptions for these decisions. Finally, we will illustrate how to combine individual utility

functions into a unified multi-attribute utility function.

3.4.2.1 Single Requirement Utility Function

Given the assumptions above, we can postulate the form of a utility function. This utility

function is for a single-requirement and is dependent only on how well this single requirement

is met. We are conceptualizing how ui changes with gi as if gi were completely independent

of all gj 6=i. In reality, all values of g are related by the alternatives, x, they represent.

This dependence will be captured in the aggregate multi-criteria utility function, not in the

individual utility functions.

The form of the utility function used in the remainder of this document was constructed

by first postulating the following list of general attributes of a designer’s decision-making

preferences given the assumptions listed at the beginning of this section.

1. A designer will always prefer a higher value of g.

Justification: g is a measure of how well a designer meets the requirements.

For g < 0 this assumption is obvious, since the designer would always prefer

55

being closer to meeting a requirement. For g > 0, we suspect this to also be

the case. A designer often prefers to have margin on requirements. Exceeding

a requirement is often increasingly beneficial to the organization; for example,

an organization would always prefer to come in under cost. One might disagree

with this assumption on the basis that exceeding requirements usually implies

additional unwanted costs. Recall, however, that we are examining this require-

ment in isolation, assuming all other requirements remain constant. If a designer

can add margin to a design without incurring additional costs, it is likely that

he/she would prefer to do so.

2. As |g| becomes large, the designer becomes increasingly closer to being indifferent

between alternatives.

Justification: Consider the difference between a design where g = −5% and a

design where g = 0%. A designer would strongly prefer the latter, since it meets

the requirements. The designer would be more indifferent between two designs

with g = 50% and g = 55%. Even though the designs in the two scenarios

have the same ∆g, both designs in the second scenario meet the requirements;

therefore, the designer perceives these designs as being more equivalent than the

other two.

3. When g is near zero, the change in utility with g is higher than at values of g above

zero.

Justification: Suppose the best theoretically-possible design could exceed the

requirement by 20% and the worst design would miss the requirement by 20%.

One might imagine that this is a cost requirement, and the percentages represent

how far under cost the project is. Consider the following decision:

1

A
p1

B

20%

-20%

-6%

1-p1

For most people and requirements, the value of p1 in this lottery is likely closer

to 0.5 than it is to 1 or 0. The expected value of the lottery is 0%. If the

56

designer were risk neutral the value of p1 would be 35%. However, the designer

would likely be quite worried of coming in 20% over budget, so they might prefer

the certain option which would make the value of p1 higher. Now consider the

following decision:

1

A
p2

B

20%

-20%

4%

1-p2

In this example, the value of p2 is likely closer to 1 than it is to 0.5. The designer

is guaranteed to meet the budget requirement, so the designer would require a

fairly high probability of being under budget in order to take the risk. Now

consider a third decision:

1

A
p3

B

20%

-20%

 14%

1-p3

Once again, the value of p3 is likely very close to 1. Since, the difference between

p3 and p2 is smaller than the difference in p2 and p1 for the same change in g, the

designer is becoming increasingly closer to indifference between the alternatives.

A similar argument can be made for when g approaches -20%.

4. When g is near zero, the change in utility with g is higher than at values of g far

below zero.

Justification: See the justification for (3).

If we accept the premises above, this implies the following properties of the utility function:

1. u monotonically increases with g

2. lim
g→±∞

du
dg = 0

3. There exists a quantity g∗ such that g∗ ≤ 0 and du
dg

∣∣
g=g∗

> du
dg

∣∣
g>g∗

4. There exists a quantity g∗ such that g∗ ≤ 0 and du
dg

∣∣
g=g∗

< du
dg

∣∣
g<g∗

57

From the properties listed above, we can see that the designer’s utility function is re-

stricted to the class of sigmoid-like curves.1 Specifically, I propose the following function to

approximate the designer’s preferences for meeting a requirement, shown in Figure 25 and

represented by the following equation:

u =

(
exp
(g∗ − g

b

)
+ 1

)−1
(16)

where g∗ and b are designer-specific parameters described in detail below. This function

satisfies all the postulates outlined above and has a convenient analytical form which assists

in simplifying certain computations. It is likely that the shape that best represents a

designer’s preferences is more intricate and nuanced than the simple function shown here.

However, for the examples and demonstrations performed during the research in this thesis,

it was found that Equation 16 was sufficient in demonstrating plausible and reasonable

designer behavior. See Section 3.4.3 for further discussion regarding the shape of a designer’s

utility function.

g

u
(g
)

−20% −15% −10% 0% 5% 10% 15% 20%

0

0.2

0.4

0.6

0.8

1

g*

b

Figure 25: Requirements based utility function

The utility function in Equation 16 contains two parameters, g∗ and b. These parameters

control the shape of the designer’s utility function and, therefore, can affect the designer’s

1A true sigmoid function is assumed to be differentiable, which may not strictly be true for the designer’s
utility function. Hence, the phrase sigmoid-like is used to imply the general shape of the curve.

58

behavior. Mathematically, g∗ is the inflection point in the curve and the value of g at which

u = 0.5. The parameter b represents the distance from g∗ to 73.1% of maximum utility.

From a behavioral perspective, the reader can imagine that g∗ represents the value of g

at which the design is close enough to the requirements that the design is “good enough.”

When combined with other requirements, g∗ is usually the value of g at which the designer

focuses his attention on other requirements that are performing poorly. In conjunction with

g∗, b represents how tolerant the designer is to missing the requirement by small amounts.

I will adopt the terms strict and lax to describe the shape of a particular utility function.

For lax requirements, b is “large” and g∗ is negative. For strict requirements, the value of b

is very small and g∗ is very near zero. In the limit as b→ 0 and g∗ → 0, the utility function

becomes the Heaviside function shown in Figure 26.

g

u
(g
)

−20 −15 −10 −5 0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Figure 26: A very strict requirement

A strict requirement implies that the designer receives no reward for that specific re-

quirement if the requirement is missed even slightly (the designer may still receive a reward

for the other requirements). For a lax requirement, a designer will still receive a partial

reward for coming close to the requirement. Strict and lax depend largely on the designer’s

motivation and perception of what management finds acceptable. For example, if an engine

manufacturer has a contract with an airframe manufacture specifying a particular value for

thrust-specific-fuel-consumption (TSFC) at a particular operating condition, the engineers

employed by the engine manufacture will probably view the TSFC requirement as strict;

missing the requirement can have severe consequences for their company. At the same time,

59

an engineer working on a specific part may view a weight requirement as lax; if the designer

is slightly overweight, it might not severely affect his reward since the weight of his part

will not contribute significantly to the overall weight of the engine. Note that strict and lax

are not binary designations but represent a continuum of b values.

Using Equation 13, we can analyze the risk behavior of the designer which has been

plotted in Figure 27. The designer is risk averse for values of g > g∗ and risk seeking for

g < g∗. At g = g∗, the designer is risk neutral. This risk behavior for designers in the

context of requirements has been observed by other researchers [16]. The maximum value

of risk aversion is equal to the reciprocal of b.

g

r
(g

)

−20 −15 −10 0 5 10 15 20
−40

−30

−20

−10

0

10

20

30

40

g*

1
b

Figure 27: Risk behavior of utility function

3.4.2.2 Combining Utility

Designers are often concerned with more than one requirement. Given the requirement-

based utility function derived above, the goal of this subsection is to determine: (1) under

what conditions can the single-requirement utility function be aggregated into a multi-

attribute utility function and (2) the form of a requirements-driven multi-attribute utility

function.

60

For this discussion, we will make the distinction between hard requirements and soft re-

quirements. A hard requirement is critical to the design; failing to meet a hard requirement

would result in a non-functional artifact. A factor of safety requirement on a key structural

member could represent a hard requirement. Soft requirements, while highly desired, may

not critically impact the functionality of the design. Aircraft range might be considered a

soft requirement, since failing to meet a range goal would not impair the aircraft’s basic

ability to fly. This distinction is similar to concepts of hard and soft goals in goal pro-

gramming [47]. A more formal definition of soft and hard requirements will be derived in

this section. Like the parameters in the utility function, whether a requirement is hard or

soft is a subjective question; it depends entirely on the beliefs of the designer. Note that

a requirement being strict or lax has no bearing on whether it is considered hard or soft.

Strictness relates to the shape of the individual requirement’s utility function, while hard

and soft embody the requirements relationship to other requirements.

Preferential independence of requirements-based utility functions is an easy assumption

to justify; a designer will always prefer higher values of gi regardless of the value of gj .

Keep in mind that we are assuming that the value of gj remains constant; any decision that

might affect the value of gi has no impact on gj .

1

A
0.5

0.5

B

 5%,

-5%,

-1%,

g1 g2

 5%

5%

5% 1

A
p

1-p

B

 5%,

-5%,

-1%,

g1 g2

 -5%

-5%

-5%

Figure 28: Utility independence of requirements

For utility independence, consider the decisions in Figure 28. Suppose that the designer

is indifferent between lotteries A and B; when g2 is 5% the designer is indifferent between

a certain design that misses the requirement by 1%, and a design that has an equal proba-

bility of meeting or missing a requirement by 5%. If the requirements are mutually utility

independent, then the value of p that would make the designer indifferent to lotteries C and

D would remain 0.5. Recall that the choice of p has no bearing on the value of g2; g2 is fixed

61

for both lottery C and lottery D. In general, I believe the risk behavior of most engineers

would not change due to independent changes in other attributes, especially if that decision

has no impact on the other attributes.

If we accept the premise of mutual utility independence, the total utility function, utotal,

is multilinear in its most general form. For reasons that will later become clear, we will now

divide the requirements into soft and hard requirements. Without any loss of generality,

we can group the soft requirement utility functions into an aggregate utility function, usoft;

the form of this function will be explored later. Suppose that the designer has n hard

requirements and m soft requirements, the latter having been combined into usoft. The

multilinear form of utotal is

utotal =

n+1∑
i=1

kiui +

n∑
i=1

n+1∑
j>i

kijuiuj + ... + k123...nu1u2u3...unun+1 (17)

where un+1 = usoft. To simply the analysis, we will also make an approximation for the

utility function derived earlier: we will consider any met requirement to have a utility of 1

and any unmet requirement to have a utility of 0 (this is equivalent to g∗ and b being very

close to zero).

Consider the scenario in which only the soft goals are met and none of the hard goals

are met. Equation 17 simplifies to

utotal = kn+1 (18)

We can analyze this same scenario through the use of lotteries, as shown below:

1

A
kn+1

B

All�Requirements�Met

No�Requirements�Met

Only�Soft�Requirements�Met

1-kn+1

To determine the value of utility in Equation 18, we must postulate the probability,kn+1,

that would make the designer indifferent between the two lotteries. To give a more direct

example, this is equivalent to asking “What is the utility of an airplane that can neither

takeoff nor land, but can comfortably seat 300 passengers?” For the majority of decision

makers, the value of kn+1 is approximately zero; most people would take any chance that

62

could yield a functional airplane over a design that would yield a useless airplane with

certainty. Therefore, kn+1 must equal 0.

Now consider the scenario where only one hard requirement is met and all the remaining

hard requirements are unmet. Once again, the utility function simplifies to

utotal = ki (19)

By similar logic, the utility of this design is very close to zero; an airplane that can takeoff but

not land is equally as useful as the airplane that could neither takeoff nor land. Therefore,

ki must also equal 0.

We can extend this concept and consider the scenario where all requirements are met

with the exception of a lone hard requirement.

1

A
p

B

All�Requirements�Met

No�Requirements�Met

All�Except�1�Hard�Requirement�Met

1-p

Consider the example of an airplane that can theoretically takeoff, land, comfortably seat

300 passengers, but whose fuselage skin would fail under pressurization. As in the previous

examples, I would contend that the utility of this design is also very small, and that we

can assume that it is approximately zero. A designer would still take virtually any chance

of a functioning airplane over an airplane that is known not to function. Making this

an assumption further simplifies the analysis and leads to a more formal definition of a

hard requirement: a requirement is considered “hard” if failing to meet said requirement

results in a design of near-zero utility. Recall that the labeling of a requirement as hard or

soft is up to the judgment of the designer being modeled. A designer may not consider any

requirement to be a hard requirement, while another designer may consider all requirements

to be hard requirements.

If we eliminate all the terms that do not include the utility of every hard requirement,

we are left with the following equation

utotal =
(
k123...n + k123...n+1usoft

) n∏
i=1

ui (20)

63

By constraining the range of the utility function between 0 and 1, we gain an additional

requirement that k123...n and k123...n+1 must sum to 1. Therefore, the final form of the total

utility function is

utotal =
[
kh + (1− kh)usoft

] n∏
i=1

ui (21)

where kh is the utility of meeting only the hard requirements and can be determined via

the following lottery:

1

A
kh

B

All�Requirements�Met

No�Requirements�Met

Only�Hard�Requirements�Met

1-kh

In practice, the value of kh is likely very high.

While an equation incorporating the hard requirements has been derived, the functional

form for usoft has yet to be addressed. Unfortunately, without information specific to the

design problem, little more can be said about the form of a soft requirement multi-attribute

utility function. With soft requirements, the relation between them is more complex. There

can exist complementary requirements in which the requirements have a net higher utility

when both of them are met than the sum of their utilities when they are met individually. In

its most general form, usoft will be of a multilinear form since the requirements are mutually

utility independent.

Two commonly used utility functions are the additive and multiplicative utility functions.

Both are special cases of the multilinear utility function. The additive utility function is

given by the following equation:

u(y) =
∑
j

kjuj(yj) (22)

where kj is the utility of meeting only that requirement. Note that the sum of all kj must

be equal to 1. The additive utility function has the most strict assumptions of all the utility

function forms. If two utility functions are additive, it implies that the designer is indifferent

to the following lotteries:

64

A
0.5

B

0.5

0.5

0.5

Unmet,

Met,

Unmet,

Met,

Unmet

Met

Met

Unmet

Requirement�1 Requirement�2

Obviously hard requirements cannot be additive since both outcomes in lottery B are useless

to the designer. An additive utility function assumes that none of the requirements are

complimentary; the reward the designer receives for meeting a particular requirement is the

same regardless of whether the other requirements are met.

The multiplicative utility function is given by the following equation:

u(y) =
1

k

[∏
j

(
kkjuj(yj) + 1

)
− 1

]
(23)

where k is the value that satisfies the following relation:

k + 1 =
∏
j

(
kkj + 1

)
(24)

Each soft requirement has its own kj which is approximately equal to the utility of only

meeting that requirement. Once again, the particular form is dependent on the perceptions

of how the designer views he will be rewarded; if neither of these equations capture the

designer’s preferences, then the modeler should refer back to the multilinear utility function

and determine the values of the unknown constants through the use of lotteries.

3.4.3 Alternative Utility Function Forms

The utility function represented by Equation 16 was designed to be computationally simple

yet flexible; it satisfies all the requirements outlined in Section 3.4.2.1 and can be adapted

to different designers and requirements by varying the values of g∗ and b. At the same time,

this utility function may not accurately represent a designer’s preferences in all situations.

The utility function that best approximates a designer is likely more complex than the

simple form given and may be highly dependent on the situation.

65

−0.2 −0.1 0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

g

u
(g
)

(a)

−0.2 −0.1 0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

g

u
(g
)

(b)

Figure 29: Notional utility functions for requirements

Figure 29 shows two notional examples of utility functions that might represent a partic-

ular designer’s preferences. Unlike the utility function in Figure 25, Figure 29a is not rota-

tionally symmetric; The slope is relatively gradual up to g = 0, but then rapidly asymptotes

to 1 after meeting the requirement. This curvature implies that the risk seeking behavior is

not symmetric; the designer is much more risk averse after meeting the requirement than

he or she is risk seeking when not meeting the requirement.

Figure 29b shows a utility function that may be specific to certain classes of require-

ments. The utility function is equal to zero for g < 0, but then discontinuously jumps to a

nominal value at g = 0. From there the designer exhibits risk averse behavior. This partic-

ular utility function could reflect a designer’s preferences for a safety factor requirement. If

the safety factor is below the requirement of 1, then the design has no utility. After meeting

the requirement, the designer prefers high safety factor values, but approaches the problem

from a risk averse perspective.

The modular structure of the framework gives the modeler immense flexibility when

modeling a particular designer. As with the covariance function in the previous section, if

the utility function demonstrated in this document does not accurately reflect the beliefs

of the designer, then the modeler is free to substitute his or her own. As long as the utility

function remains monotonically increasing, the equations derived for the multi-attribute

utility function will still hold, regardless of the particular shape of the single attribute

66

utility function.

3.5 Integrating the Elements

In many real world applications, design is an under-determined problem; multiple designs

exists that would satisfy the requirements. Rarely does the design process yield a single,

obvious design point. In other cases, the design problem is over-determined, and no design

exists that simultaneously satisfies all requirements. This presents a challenge when creating

a decision algorithm. If the algorithm is given many feasible designs, it needs a logical

method of choosing one of them. At the same time, if we restricted the designer’s decision

to only the feasible design space, the designer would not be able to make a decision when

no feasible space existed.

Optimization can be viewed as a method of automating a decision. If the designer can

express his preferences in the form of an objective function, he or she can run one of many

optimization algorithms to determine the “best” alternative. Our approach has been to

reformulate the designer’s decision in the form of an optimization problem statement. The

entire decision-making process is replaced with a single, albeit complex, objective function.

Since the optimization problem is unconstrained, all alternatives have an objective function

value; therefore, in the absence of feasible alternatives, the designer is still able to return a

decision.

3.5.1 Expected Utility Maximization

Given a design alternative, the designer’s beliefs about that alternative, and the designer’s

preferences, the expected utility of an alternative can be calculated using the following

equation:

E[u(x)] =

∞∫
−∞

u(g)p(g|x)dg (25)

The designers decision, π, is the alternative with the maximum expected utility:

π = argmax
x

(∞∫
−∞

u(g)p(g|x)dg

)
(26)

Since the probabilities of each g are calculated in independent Gaussian process models,

the probabilities of each attribute are independent. Therefore, the equation for expected

67

utility becomes:

E[u(x)] =

∞∫
−∞

∞∫
−∞

...

∞∫
−∞

u(g1, g2, ..., gn)p(g1|x)p(g2|x)...p(gn|x)dg1dg2...dgn (27)

In reality, the designer may not perceive the probabilities in Equation 27 as independent,

since certain attributes may be correlated. For example, consider a designer who is given

a requirement for aircraft weight and range. The designer knows that if the weight of the

aircraft is heavier than expected, then the range will probably be lower than expected.

Gaussian process models can account for attribute correlations, and the interested reader

is referred to the literature of cokriging.

Equation 27 brings together all three elements of the framework: the alternatives x

and the relevant attributes g; the designer’s knowledge of each alternative in the form of

probabilities; and the designer’s preferences in the form of a utility function.

Since all alternatives have an expected utility, we are able to see not only what the

designer’s best decision is but also how indifferent he is between the alternatives. If the

expected utility of many alternatives is very close, then the designer would be largely indif-

ferent between the alternatives. Additionally, we can examine the different components of

the equation to deduce the designer’s “reasoning” for choosing one alternative over another.

3.5.2 Alternate Forms

The functional form of Equation 27 is computationally troublesome, since no analytical so-

lution exists for the derived utility function form. Furthermore, the expected utility calcula-

tion is a multi-dimensional integral with a dimension for each requirement; if a deterministic

numerical approximation technique is used, then sampling a large multi-dimensional space

can be computationally expensive since the sampling grid grows exponentially.

Fortunately, if Equation 21 is used to model the designer’s preferences, then Equation

27 can be broken up as follows:

E[u(x)] =

∞∫
−∞

(
kh + (1− kh)us(gs)

)
p(gs)dgs

∏
i

∞∫
−∞

u(gh,i)p(gh,i)dgh,i (28)

See Appendix B for a derivation. The first integral containing usoft can also be further split

into single integrals if multiple soft requirements exist. The particular equation, however,

68

depends on the function form of usoft. If usoft is of the multiplicative form of Equation 23,

then the first integral is equivalent to:

∞∫
−∞

(
kh + (1− kh)us(gs)

)
p(gs)dgs =

kh −
1− kh
k

+
1− kh
k

∏
j

∞∫
−∞

(kkju(gs,j) + 1)p(gs,j)dgs,j (29)

For additive form of Equation 22, the integral is equivalent to:

∞∫
−∞

(
kh + (1− kh)us(gs)

)
p(gs)dgs = kh + (1− kh)

∑
j

(∞∫
−∞

kju(gs,j)dgs, j

)
(30)

For large amounts of requirements, Equation 28 can drastically reduce the amount of compu-

tation time. Alternatively, a Monte Carlo integration technique can be used as the variance

in the solution is independent of the number of dimensions.

3.5.3 Approximating Exploratory Behavior

Without the sequential decision making technique described later in Chapter 5, the designer

will always make a decision as if it were his final decision. In some cases, however, sequential

decision making behavior can be approximated using only the techniques described in this

chapter. Specifically, we can entice the designer to explore uncertain design alternatives by

changing the lottery formulation.

Suppose a designer is choosing designs to analyze in order to determine the values of

their attributes. One strategy that a designer might choose is to investigate the “best”

alternative (i.e., the alternative with the highest expected utility) first. For a designer with

a heavily discounted utility function, this could be a reasonable approximation. Were the

designer to choose a second design point to analyze, one could adopt the same strategy:

investigate the design with the highest expected utility given the information obtained from

the first analysis. However, in many cases the design analyzed first will continue to have the

highest expected utility even after the new information is available. This is often true due

to the uncertainty in the other alternatives; the risk averse shape of the designer’s utility

function around g = 0 causes the designer to prefer designs will less uncertainty. Were one

69

to adopt this strategy of choosing design points, the designer would analyze the same design

point repeatedly.

In practice, a human designer would never pick to run the same point through an analysis

twice (unless the designer believed the first analysis to be incorrect). The fundamental

discrepancy between the human and simulation lies in the lotteries each is considering.

Recall that the formulation in this chapter is for final decisions. The designer assumes that

he is stuck with whatever he chooses. The designer is looking at his or her situation as if it

were the following lottery:

1A

p

1 - p
B

2%

-20%

-3%

The designer has already analyzed Design A, and knows its attributes with certainty, but,

due to the formulation, the designer does not want to analyze Design B due to the possibility

of receiving a design that misses the requirements by 20%.

However, when the designer is exploring, he can always fall back on a previous design

if the one chosen proves to be poor. If Design B did miss the requirements by 20%, the

designer could always choose Design A for his final decision. Therefore, the designer is

actually faced with the following lottery:

1A

p

1 - p
B

2%

-20%

-3%

-3%

Mathematically, we can represent this by altering the form of Equation 25. Suppose that

umax is a previously analyzed alternative with the maximum expected utility. If the design

point with umax has no uncertainty, then the expected utility of exploring any other design

is equal to:

E[u(x)] =

∫ ∞
−∞

max(u(g), umax)p(g)dg (31)

70

If the outcome of an analysis does not have zero uncertainty, then the following equation

should be used (assuming the beliefs are normal distributions):

E[u(x)] =

∫ ∞
−∞

max(u(µ+ zσ), u(µmax + zσmax))φ(z)dz (32)

where µ is the mean of the distribution of g, σ is the standard deviation, φ is the standard

normal distribution, and z is a dummy variable. These equations state that if an alternative

returns less utility than a point already run, then the designer can still select the previous

design with higher utility.

It is important to note that there are several limitations to this utility function and

many scenarios where this utility function will differ from human behavior. This method

only applies to selecting design alternatives, since actions themselves do not have utility

outside the sequential decision making framework that will be presented in Chapter 5. If

the designer does not analyze the design with highest expected utility first, then the first

decision will be inaccurate. In certain time critical situations with large uncertainty, this

may be the case; a designer may examine a very uncertain design first in order to weed out

candidates.

71

CHAPTER IV

ISOLATED DECISION DEMONSTRATIONS

In this chapter, we show two test examples of the decision-making framework described

in the previous chapter: a single-attribute, unidimensional-design-space problem and a

multi-attribute, multidimensional-design-space problem. The purpose of this chapter is to

demonstrate an implementation of the framework and to show how the assumptions made

lead to certain design decisions.

The first example involves a designer choosing the value of a single continuous variable

in order to satisfy one requirement. For this example, we will adopt the perspective of

the designer and will only view the information the designer is aware of. This allows

us to analyze and evaluate the designer’s decisions without any unfair bias. The second

example problem involves the conceptual design of a turbojet engine. The designer can

select values for overall pressure ratio (OPR) and the turbine inlet temperature (T4). The

designer must deal with often conflicting requirements on cost, weight, and thrust-specific

fuel consumption (TSFC). For this example, we will assume an omniscient perspective and

will be able to view “reality” in addition to the designer’s beliefs.

4.1 Single Dimension Decision

Suppose a designer must choose a design variable x such that a design attribute y is greater

than 0.91. Any physical meaning of x and y are purposefully omitted; this allows for a

more objective analysis and prevents us from subconsciously reasoning with any additional

information not available to the designer in our analysis.

4.1.1 Decisions and Results

The designer’s source of knowledge for the decision is a low-fidelity model, shown in Figure

30. Note that Figure 30b is just a zoomed version of Figure 30a. The designer trusts the

model for low values of x. One could imagine that past designs included low values of x,

72

x

f
(x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

x

f
(x
)

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

(b)

Figure 30: Low fidelity model of y with respect to x

and the model has been validated in that region. For high values of x, the uncertainty in

the model grows. The requirement is shown by the dashed gray line. Note that the de-

signer’s uncertainty about the true function falls below the requirement; from the designer’s

perspective, it would be entirely plausible that the requirement cannot be met.

The designer also possesses a high-fidelity model. However, this model is incredibly

expensive and time consuming to run. We will assume that the designer only has enough

allotted time to run at most two high-fidelity cases before making a final decision. His

task in this example is to choose which high-fidelity cases to run. To simplify the problem,

we will assume that the designer trusts the high-fidelity model to represent reality with

complete accuracy. For the first and last decisions, the standard expected utility formulation

given by Equation 25 is used to calculate the decisions. For the designer’s second decision,

the exploratory approximation from Section 3.5.3 will be used since the designer has the

opportunity to explore the design space.

Figure 31 demonstrates the designer’s first decision and the designer’s rationale behind

the decision. Figure 31a shows the designer’s expected utility at each x. The designer’s

knowledge has been superimposed for reference. The utility function matches our intuition

about the problem. Low values of x have almost no utility, as they do not meet the re-

quirements. Utility is highest in the region where the designer is most likely to meet the

73

x

E
[u
(x
)]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

x

f
(x
)

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

(b)

Figure 31: Expected utility of each alternative and outcome of decision

requirements based on the information given to him. As the low fidelity model passes below

the requirement, utility drops rapidly. Notice that the utility function never reaches its

maximum of one; the designer is not guaranteed that these designs will meet the require-

ment.

Figure 31b shows the result of the designer’s decision; the designer has run the high

fidelity model which has returned the new information shown by the plus sign in the figure.

To the designer’s dismay, the point he ran does not meet the requirement. However, the

designer still has enough time to run one more high fidelity point.

x

E
[u
(x
)]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

x

f
(x
)

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

(b)

Figure 32: Expected utility and outcome of second decision

74

Figure 32 shows the designer’s second decision. The expected utility is shown by the

black line at the bottom of the figure. The dotted line is the same line, but has been

magnified 10X to show detail. There are two interesting things to note about this plot.

First, the utility function has many local maxima, all of which have very similar expected

utility. This implies that the designer was largely indifferent between multiple options;

specifically to the left and the right of his first decision. Second, the expected utility of

all options is relatively low. This implies both that the designer does not believe it likely

that any value of x will do better than his first decision, and that the designer is largely

indifferent between his options. Slight perturbations to the utility function parameters

could have resulted in a different decision.

Figure 32b shows the result of the designer’s second decision. Notice that the high

fidelity model returned a value outside of the designer’s original beliefs about the model.1

Put another way, the designer would be surprised by this result.

x

E
[u
(x
)]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

x

f
(x
)

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

(b)

Figure 33: Expected utility and outcome of third decision

Although the designer’s second decision was a worse design than his first, he can still

use the new information for his final decision. Figure 33 shows the designer’s final decision.

The designer chose a point to the left of his original high-fidelity decision. As we can see in

1Note that “outside the designer’s beliefs” is meant to imply outside the two sigma boundary. Since the
designer’s beliefs are normal distributions, nothing is outside the realm of possibility, but some outcomes
are extremely unlikely.

75

the figure, this design was successful in meeting the requirements.

4.1.2 Analysis of Decisions

Figure 34 shows the true function compared to the designer’s low fidelity model. As the

designer expects, the true function matches the model for low values of x. However, his

beliefs are mistaken at higher values of x; he trusts the model too much. In many regions,

the true function falls well outside his belief structure.

x

f
(x

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 34: Comparision of low fidelity model and true function

The first decision occurred largely as one would expect; the low-fidelity analysis in-

formed the designer of where good designs might exist, and he chose the design most likely

(according to the model information) to meet the requirements.

In order to understand the designer’s next decision, we need to understand how his

belief structure updates in response to the new information. The first high fidelity point

returns lower than his expectation, but still within the bounds of plausibility. Figure 35

shows in magenta the designer’s updated belief structure after receiving new information.

For comparison, the designer’s original belief structure is still shown in blue. Notice that the

76

uncertainty collapses at the high fidelity point. The uncertainty in the region immediately

surrounding the point has greatly diminished. Notice also that the expectation is now

below the low fidelity model. Overall the designer believes that the low-fidelity model

simply overestimated the original function; recall that the designer does not expect large

deviations from the low-fidelity model (even though his model is grossly inaccurate in this

region).

x

f
(x
)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

Original�Beliefs
Updated�Beliefs
Reality

Requirement

Figure 35: Belief update after outcome of first decision is revealed

To the left and right of his first decision, the designer believes it possible (but rather

unlikely) that a design could meet the requirements. The shape of the Gaussian process

model illustrates why the designer was relatively indifferent to a designs on both sides of

the first decision: he believes that the “optimum” point in the low fidelity model is still the

optimal point in reality.

Once the designer obtains his second piece of information, he realizes the inaccuracy

of his low fidelity model. As can be seen in Figure 36, the designer has to make radical

changes to his belief structure in order to adapt to new information. The designer is able to

seamlessly combine the trusted information at low values of x with the certain information

77

at high values of x. This allows him to infer that the ideal design lies to the left of his

original guess.

x

f
(x
)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

Original�Beliefs
Updated�Beliefs
Reality

Requirement

Figure 36: Belief update after outcome of second decision is revealed

Overall, I believe this example illustrates the robustness of the framework. Although

he was given poor initial information, the designer was still able to recover and learn from

mistakes. At the same time, each of his decisions was plausible; I believe many people given

similar information would make similar decisions. Obviously this assertion requires further

validation, which will likely require a more thorough visit of the psychology literature for

empirical evidence of how decision makers behave in a similar context.

4.2 Multi-Dimension Decision

For the multidimensional decision problem we will adopt an omniscient perspective, capa-

ble of seeing both reality and the designer’s beliefs simultaneously. This problem will be

conducted three times with varying amounts of initial information given to the designer.

The designer’s preference structure will remain the same for each case. For brevity, we will

analyze only the first case in detail, but the differences in behavior and their underlying

78

causes in the other examples will be discussed.

4.2.1 Baseline Designer

This example problem involves the conceptual design of a subsonic turbojet engine. The

designer is tasked with selecting the design overall pressure ratio (OPR) and turbine inlet

temperature (T4) for the engine. The design has three requirements:

1. Thrust Specific Fuel Consumption (TSFC) < 0.9 lbm/lbf/hr

2. Cost < $800,000

3. Weight < 2,400 lbs

The engine is sized for a design thrust of 20,000 lbs. The “reality” models of engine perfor-

mance were created using ENGGEN [24]. Surrogate models were created of these variables

to smooth out any of the noise in the program. The production cost was calculated using

Reference [48].

For this problem, the designer is given the following information:

• A low fidelity model of TSFC which the designer trusts to be accurate to within 5%.

• Weight data from historical designs of past engines. The designer trusts this informa-

tion to be both accurate and reproducible.

• Production cost information from the aforementioned past designs. Since costs tend

to change over time, the designer does not trust this information to be completely

reproducible but trusts it as an estimate within ±5%.

In order to examine sequential decisions and learning, the designer can obtain point

design information after he has made a decision. One can imagine that the designer has

access to a high fidelity model; alternatively, we could imagine that the designer is asking

other engineers to perform an initial design and return performance and cost estimates. We

will assume that obtaining this information is very expensive, and the designer wants to

minimize the number of times he samples a point design.

Figure 37 shows a map of the design space overlayed with both the requirements and

the designer’s multi-attribute utility function. In this example, the designer perceives all

the requirements as soft requirements. Since at least one requirement is being met in the

79

T
4
(R

)

OPR

10 15 20 25 30 35

2200

2400

2600

2800

3000

3200

3400

0

0.2

0.4

0.6

0.8

1

COST

WEIG
HT

TSF
C

Figure 37: Designer’s utility function

entire design space, no portion of the design space has zero utility. The actual requirements

are shown as the labeled hatched lines; the overall feasible design space is relatively small.

The optimal design is marked by the white plus sign. Were the designer omniscient of the

entire space, this would be his selection. However, as we will see, the designer only has

rough approximations of the design space, so his choice will be much more difficult.

Figure 38a shows the designer’s low-fidelity model of TSFC. Figure 38b shows the 95%

confidence interval in both dimensions. For ease of interpretation, the confidence interval

is shown as a percentage of expectation. Therefore, for TSFC, the designer trusts the low-

fidelity model nearly uniformly to be accurate to within ±5%. Figure 38c shows the actual

error between reality and the model. While the model is better in some areas than others,

the error stays relatively consistent between 2 and 4%. Therefore, unlike the last model,

the designer’s beliefs about the accuracy of this model are in line with reality.

Figure 39a shows the “true” weight model for the engine (the scale is in 1,000 lbs).

Figure 39b and 39c show the designer’s beliefs about how weight varies with OPR and T4.

The known past designs are indicated by the x’s; note that at these points the uncertainty

(Figure 39c) collapses to zero. Overall, the designer is able to form a reasonably accurate

80

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0.8

1

1.2

(a) TSFC model (lbm/lbf/hr)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

5

10

(b) TSFC uncertainty (% of expectation)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

5

10

(c) Percent error between model and reality

Figure 38: Low fidelity model of TSFC

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

2

4

6

(a) Weight reality (1,000 lbs)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

2

4

6

(b) Weight expectation (1,000 lbs)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

20

40

60

80

(c) Weight uncertainty (% of expectation)

Figure 39: Comparison of beliefs and reality in regards to engine weight

81

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

5

10

15

(a) Cost reality ($100,000)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

5

10

15

(b) Cost expectation ($100,000)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

10

20

30

40

50

(c) Cost uncertainty (% of expectation)

Figure 40: Comparison of beliefs and reality in regards to production cost

model of reality in the region where he knows point designs. However, there are discrep-

ancies, especially in regions outside the three known designs. Specifically, the designer

underestimates the weight at very low T4 and high OPR. The designer also cannot infer

the non-linearities in weight at low OPR and high T4.

Figure 40 shows a comparison of reality and the designer’s beliefs about cost. Notice

that the designer’s uncertainty about his beliefs never decrease to zero, even at the “known”

points. This is due to the designer’s distrust of the cost figures; he believes them to be a

good estimate, but not entirely accurate.

Figure 41 shows the designer’s expected utility for his first decision. For reference, the

actual constraints are still shown, but recall that the designer can not actually see the exact

location of these constraints. The past designs with weight and cost information are marked

with a black x. The designer’s decision is marked by the circle. At the decision point, the

designer’s expected utility of 0.940 indicates a relatively high confidence that this point

meets the requirements. In fact, the designer is very close; he barely misses the weight

82

T
4

(R
)

OPR

10 15 20 25 30 35

2200

2400

2600

2800

3000

3200

3400

0

0.2

0.4

0.6

0.8

1

COST

WEIG
HT

TSF
C

Figure 41: Expected utility of the design space for the designer’s first decision

requirement by 1.1%.

If we compare Figure 41 with Figure 37, we can see that the designer’s beliefs about

reality do not differ drastically from reality itself. The designer’s error generally lies in

estimating the weight requirement; the designer is unable to infer the curvature of the iso-

contour lines seen in Figure 39a. Hence, the region where the designer expects to meet

all requirements is much larger than reality. The designer is able to get very near the

TSFC constraint, because he knows this constraint with the most certainty. Notice that

the designer chooses to stay away from the cost constraint, which is known with the least

certainty. The designer believes that he would still meet the weight requirement in this

area, but this belief is mistaken.

83

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

5

10

(a) TSFC

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

20

40

60

80

(b) Weight

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

10

20

30

40

50

(c) Cost

Figure 42: Updated uncertainty in beliefs after result of first decision is revealed (shown in
% of expectation)

T
4

(R
)

OPR

10 15 20 25 30 35

2200

2400

2600

2800

3000

3200

3400

0

0.2

0.4

0.6

0.8

1

COST

WEIG
HT

TSF
C

Figure 43: Expected utility of the design space for the designer’s second decision

84

Since we have incorporated models of “reality”, we can let the designer see the outcome

of his decision and make a different selection. Figure 42 shows the designer’s uncertainty

with respect to each attribute after the first decision. For TSFC in Figure 42a, the Gaussian

process model is able to seamlessly integrate the point-design information with the low-

fidelity model. In the cost model in Figure 42c, the new data point is assumed to be fully

reproducible, so the designer associates zero uncertainty with it.

Figure 43 shows the designer’s second decision. With the new information, he realizes

the error in his beliefs about the true weight function and updates his selection accordingly.

As a result, his new decision meets all the requirements.

4.2.2 Experienced Designer

Figure 44 illustrates the designer’s decision if we add another reference point for the cost and

weight models. As mentioned in Section 3.3.1, the designer’s experience is characterized by

his accuracy in expectations and uncertainty in his beliefs. An additional design point will

give him a more accurate representation of the design space and will reduce his uncertainty

in the feasible region of the design space. This new data point is at a lower OPR and

T
4

(R
)

OPR

10 15 20 25 30 35

2200

2400

2600

2800

3000

3200

3400

0

0.2

0.4

0.6

0.8

1

COST

WEIG
HT

TSF
C

Figure 44: Expected utility of more experienced designer

85

higher T4 value than his previous data points. It is also incredibly useful, since it allows the

designer to base his inferences on interpolation rather than extrapolation. The designer can

make a better decision, since the feasible space is largely within his domain of knowledge. As

the figure indicates, the designer is able to make a decision that meets all the requirements

on his first attempt.

4.2.3 Inexperienced Designer

In this example, one of the designer’s three original data points from the baseline example

has been removed. Figure 45 shows the designer’s belief about the variation in engine weight

across the design space. The lack of information seriously inhibits the designer’s ability to

understand the shape of the design space, especially since the two points he has are nearly on

an iso-weight line. Based on the available information, the designer is unable to determine

if OPR and T4 have any large effects on the weight of the engine. In fact, the designer has

inferred a trend that is almost 90◦ out of sync with reality. The designer’s beliefs regarding

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

2

3

4

5

6

(a) Weight reality (1,000 lbs)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

2

3

4

5

6

(b) Weight expectation (1,000 lbs)

T
4
(R

)

OPR

10 15 20 25 30 35

2500

3000

3500

0

20

40

60

80

(c) Weight uncertainty (% of expectation)

Figure 45: Discrepancy between the inexperienced designer’s beliefs and reality in regards
to engine weight

86

cost are not seriously inhibited since the data points are nearly perpendicular to the iso-cost

contour line. The designer also retains the low-fidelity model of TSFC.

Figure 46 shows the designer’s expected utility of each point in the design space. Notice

the striking difference between this figure and the baseline designer’s utility in Figure 41.

For clarity, the designer’s decision has been marked by the arrow. In this figure, the utility

at every point is generally low; no point has an expected utility of above 0.57. This demon-

strates the designer’s general uncertainty in his decision; unlike the previous two scenarios,

at no point does he expect to meet all three requirements. For reference, this particular

designer would have been indifferent between choosing this design, and a design where every

requirement was missed by 1.2% with certainty. The designer would also be indifferent to

a design where two requirements are barely met, and one is missed by 3%.

T
4

(R
)

OPR

10 15 20 25 30 35

2200

2400

2600

2800

3000

3200

3400

0

0.2

0.4

0.6

0.8

1

COST

WEIG
HT

TSF
C

Figure 46: Expected utility of inexperienced designer

By examining the shape of the utility function, we can infer his reasoning for the choice

he made. The designer is fairly confident about TSFC. We can see how the expected utility

has a sharp drop that mirrors the TSFC requirement; the offset is due to the fact the

low fidelity model underestimates the actual TSFC. At both known locations, the designer

87

knows the weight is well outside the requirements; the upper right point is 8% overweight

and the lower left point is 18% overweight. Meanwhile, the designer is confident that he

meets the cost requirement at the lower left point and knows that he misses it at the upper

right point.

This puts the designer in conflict as he knows that if he chooses the lower left design

point, he is virtually guaranteed to exceed two of the requirements by a wide margin: TSFC

and cost. However, he is also guaranteed at this point to miss the weight requirement.

Therefore, the designer decides to compromise; he will move away from the certain point

to an area of uncertainty. The designer chooses a direction which he is fairly confident will

still meet cost. It is possible in this region that the weight will get worse. However, the

certain design is so far from meeting the weight requirement that being further away would

not be too detrimental, and the designer is willing to take the risk.

Unfortunately for the designer, he completely misses the feasible space. Like the baseline

designer, we can give this designer the information at the point he chose and see how he

corrects himself. Figure 47 shows the designer’s expected utility for his second decision

T
4
(R

)

OPR

10 15 20 25 30 35

2200

2400

2600

2800

3000

3200

3400

0

0.2

0.4

0.6

0.8

1

1

2

3

4

Figure 47: Expected utility for designer’s second decision and location of second, third, and
fourth decisions

88

and the results of his subsequent three decisions. He now has a better understanding of

the variation of attributes with design variables, but the understanding is still weak; the

information he has added is relatively far from the feasible design space. The designer’s

second decision is still outside the requirements. As the figure shows, it takes the designer

a total of four decisions in order to find a feasible design. This behavior demonstrates

the value of information close to the feasible design space. As in real design problems,

the designer’s information needs to be relevant to designs near the requirements if he is to

effectively solve the problem.

89

CHAPTER V

SEQUENTIAL DECISION MAKING

The formulation outlined in Chapter 3 can be effective for capturing design decisions in

isolation when the outcome of the decision has no bearing on the designer’s future decisions.

When future possibilities are considered, however, the model tends to yield inaccurate

results. Consider the notional two-dimensional design space shown in Figure 48. The

design space is composed of three distinct regions. Most of the design space, shown in

white, is characterized by low expected performance. The dark gray region is characterized

by moderate performance with low uncertainty. Perhaps the designer knows that all hard

requirements in this region will be met, but not all soft requirements. The lighter gray

region is characterized by high uncertainty; it is possible that this region performs better

than dark gray region, but it is also possible that the region performs poorly. If the designer

had to choose the “best” design based solely on the information above, most designers would

choose the dark gray region; the expected utility would be highest in the dark gray region,

significantly lower in the light gray region due to the large uncertainty, and near zero in the

white region where poor performance is expected.

High�Uncertainty

Low
Uncertainty

x1

x
2

Figure 48: Expected utility fails to capture the best choice for exploration

90

Suppose, however, we gave the designer a perfectly accurate model which could sample

the entire design space, and allowed the designer to run the model once at any point in the

space. After receiving the new information from the high fidelity model the designer would

then be asked for his or her final decision. Given the option to obtain new information, how

would the designer choose?

In this scenario, a human designer may choose a design point that is very different from

the region of highest expected utility. If the designer’s uncertainty in the dark gray region

is low enough, and he believes the light gray region might contain a better design, it may

be more helpful to the designer to run the high fidelity model in the light gray (uncertain

region). Were the designer to discover that the light gray region contained better designs

than the dark gray region, the designer would choose a design in the light gray region.

Otherwise, the designer could default back to the dark gray region. Running the high

fidelity model in the dark gray region yields little to no new information; the designer

already has high confidence in his beliefs in this area.

Thus we see a fundamental disconnect between the expected utility formulation and the

reasoning of a human designer. As we will see in Section 5.2, the formulation in Chapter 3

assumes that the designer is making a final decision; there is no mechanism to account for

the possibility of future actions. In this manner, the designer only maximizes the utility of

each step as if it were his last. The goal of this chapter is to extend the expected utility

formulation to account for long-term expected utility. To do this, the expected utility of

actions will be calculated, and the utility function will be altered to account for time and

budget. Section 5.1 will illustrate this next extension with a simple example designed to

show how the underlying equations coincide with the reasoning a designer might use to

make his or her decision. Section 5.2 formalizes the mathematics of the decision process.

Section 5.3 will generalize the concepts of alternatives and attributes, freeing our models

from the confines of simple design variables. Finally, Section 5.4 will address the inclusion

of time in the utility function and proposes some example models.

91

5.1 Illustrative Example

We can develop a method for modeling sequential decision making behavior by examining

how one might reason through the example shown in Figure 49. Suppose a designer were

choosing between two designs, A and B. The designer knows with absolute certainty that

Design A misses the requirement slightly. Design B is uncertain and could be significantly

better or worse than Design A. If this were the only information available to the designer, we

would simply calculate the expected utility of each alternative to determine which design the

designer chose. Suppose, however, that the designer was given a third option; the designer

could run a high fidelity model that would tell him or her the attributes of Design B with

certainty. Under what conditions would the designer run the high fidelity model?

1A -2%

p

1- p

 5%

-10%
B

Figure 49: Simple decision between two designs

To answer this question, we will transform the decision between designs into a decision

between actions as shown in Figure 50. In this thesis, actions in a decision tree are repre-

sented by diamonds. If the designer chooses Action I, he or she will make a decision without

running the high fidelity model. Under Action II, he or she will run the high fidelity model

and then make a decision. For now, we will assume that the cost of running the high-fidelity

model is negligible. To determine which action the designer will choose, we will calculate

the expected utility of each action.

If the designer performs Action I, he or she will choose the design with the highest

expected utility based on his or her prior knowledge. Therefore, the expected utility of

Action I is equal to the maximum of the expected utilities of the designs.

E[u(I)] = max
(

E[u(A)],E[u(B)]
)

(33)

= max
(
u(−2%), pu(5%) + (1− p)u(−10%)]

)
(34)

92

-2%
 5%

-10%

A

B

A

B

A

B

I

-2%

-2%

-10%

 5%

p

1-p

1

1

1

1

1

II

p

1-p

Scenario 1

Scenario 2

Figure 50: Decision between two actions: (I) making a decision and (II) running a high
fidelity model

Which alternative has the highest expected utility depends on the specifics of the designer’s

utility function. For this example, we will not make any assumptions about the functional

form except for monotoncity; this will allow us to generalize the results.

To calculate the expected utility of Action II, we will examine the ends of the decision

tree and propagate the utility backwards. Consider the first possible decision shown after

Action II, labeled Scenario 1; in this scenario, the designer ran the high fidelity model which

determined Design B to exceed the requirements by 5%. Were this to occur, the designer

will obviously choose Design B, regardless of the details of his or her utility function. In the

alternative scenario (labeled Scenario 2), Design B was found to miss the requirement by

10%. In this scenario, the designer will obviously choose Design A. Note that the designer

does not know which of these two scenarios will happen until after he or she runs the high

fidelity model. Therefore, the designer must base the likelihood of these scenarios on his or

her beliefs before deciding between the actions. In the designer’s mind, the likelihood of the

Scenario 1 is simply the likelihood of Design B exceeding the requirement, the probability

p. The utility of Action II can be determined by calculating the utility of the final decision

in each scenario multiplied by the probability of reaching that scenario.

E[u(II)] = pu(5%) + (1− p)u(−2%) (35)

Comparing Equations 34 and 35, it is clear that the expected utility of Action II will

always be larger than the expected utility of Action I for any monotonically increasing utility

93

function. In other words, if the cost of running the high fidelity model is negligible to the

designer (i.e. not included in the utility function), then the designer will always choose to

run the high fidelity model. Similarly, if running the high fidelity model were negligible in

terms of cost and time, we would expect a human designer to make the same decision.

If we remove this assumption of negligible model cost, we can examine the conditions

under which the designer would and would not run the model. Suppose that the high fidelity

model takes a very long time to run and that the designer’s preferences are influenced

primarily by this temporal effect. The cost does not strictly have to be temporal, but the

mathematics will yield similar results regardless. Equations 34 and 35 now become functions

of time.

E[u(I)] = max
(
u(−2%, t1), pu(5%, t1) + (1− p)u(−10%, t1)]

)
(36)

E[u(II)] = pu(5%, t2) + (1− p)u(−2%, t2) (37)

If Action I is chosen, the designer will finish sooner at time t1. If the designer chooses

Action II, he or she will have to wait until time t2 to make a final decision where t2 > t1.

For simplicity, we will assume that the effect of waiting until t2 is utility independent from

meeting the requirements and is represented by a factor, γ < 1 (the utility independence

assumption will be more thoroughly examined in Section 5.4):

u(g, t1) = u(g) (38)

u(g, t2) = γu(g, t1) = γu(g) (39)

Combining Equations 36 and 37 with Equations 38 and 39, respectively, we arrive at a more

generalized form of expected utility:

E[u(I)] = max
(
u(−2%), pu(5%) + (1− p)u(−10%)]

)
(40)

E[u(II)] = γpu(5%) + γ(1− p)u(−2%) (41)

Examining these equations, it is now not always true that the utility of Action II is greater

than the utility of Action I. We can identify three parameters that, in conjunction, would

deter the designer from choosing Action II:

94

• u(5%)−u(-2%) ≈ 0: If the designer’s preferences for a g = −2% design and a g = 5%

design are similar, then it likely that the designer will choose not to run the high

fidelity model.

• Small values of p: If the possibility of achieving a 5% design is small, then the designer

may prefer not to run the high fidelity model.

• Small values of γ: If the cost of running the high fidelity model is high, the designer

may prefer not to run the model.

Each of these parameters represent a valid concern for the designer; we could imagine a

human designer contemplating the same considerations when making this decision. Note

that the sequential-decision making problem in this example enticed the designer to explore

the design space, even though exploration was not an explicit parameter in the utility

function. Exploration had inherent value to the designer because it assisted the designer in

choosing a better design. This convenient feature allows the framework to retain the simple

utility functions derived in Section 3.4 with only small modifications.

5.2 Calculating the Utility of Actions

Until this chapter, decisions have been viewed in isolation; the current decision was assumed

to have no impact on future decisions, and no future decision could alter the outcome of the

current decision. To look at this another way, the decisions examined have been formulated

in the context of final decisions; the designer returns his or her decision and cannot perform

any actions in the future that would change the final outcome the design. In this chapter, we

will extend the framework to include all decisions. As we will see, this allows the framework

to incorporate new alternatives which the framework was previously unable to model.

The methods described in this section are similar to normative methods developed in

a variety of fields. Like the formulation in this chapter, many of these methods focus on

determining the value of an action or activity. Many of these methods value activities based

on the information they provide. Information Economics, for example, studies how infor-

mation affects economic decisions. Loch and Terwiesch applied the findings of information

economics to the design process [44]. In their paper, several heuristics are developed that

95

can guide an engineer’s decision making process based on the cost of information. Browning

et al. examine the value of activities in the product develop process [9]. Their risk value

method assigns a value for an activity based on how the information reduces performance

risk. Most closely related is work by Thompson, Lee and Paredis [69, 41]; decision trees

are used to analyze the trade-offs between the quality of the artifact being designed and

the cost of the design process itself. The formulation in this chapter will also incorporate

decision trees in order to calculate the expected utility of actions.

The sequential decision making process can be generalized by viewing the design process

as a decision tree and back-propagating expected utility. To simplify the analysis and to

leverage the previously outlined models, two assumptions are required:

• The designer is concerned with only the final outcome of the design: The designer is

making decisions based on trying to improve the performance of the final design and

not any intermediate result or reward. If the designer had a performance review in

the middle of a design, this assumption may be inaccurate.

• The time required to decide between a set of actions is much smaller than the time

it takes to perform those actions: In other words, the designer is not making this

decision under any time pressure.

The validity of the former assumption is analyzed in greater detail in Section 7.1.1. For

most design situations the latter assumption is easily defensible.

At each decision, the designer is in an information state, s, which defines all the in-

formation the designer has obtained up until that point. In each state, the designer has

a set of possible actions. These actions are not restricted to selecting a design variable; a

designer can choose to meet with another team, run a computer model, perform an experi-

ment, or any other action that influences his knowledge about the design alternatives. Each

action may lead to one of several possible outcomes. In most cases, the designer does not

know the outcome ahead of time with absolute certainty. This uncertainty is represented

as a probability distribution of outcomes. In other words, there is a probability, P (s, a, s′),

that action a in state s will lead to state s′ Note that we are viewing these probabilities

from a Bayesian perspective; each action may have a deterministic outcome, but the lack

96

Consult an
expert

Analyze
Design A

Analyze
Design B

Expert provides
information

Expert provides
no information

ard

Analyze
Design B

Analyze
Design A

B Meets
Requirements

B Misses
Requirements

A Misses
Requirements

A Meets
Requirements

B Meets
Requirements

B Misses
Requirements

A Misses
Requirements

A Meets
Requirements

sreward

I

I

II

II

III

Figure 51: Example of several possible decision trees which a designer might consider

of knowledge regarding the outcome is represented by the designer’s subjective probability

distributions.

For every design problem, the designer has a final state which I will define as sreward.

Here the use of reward is synonymous with utility. The designer can enter this state at any

time by selecting a final design. I will refer to this action as the return decision action, or

ard. Based on the first assumption outlined above, expected utility is only calculated when

the designer returns a decision.

Figure 51 shows a notional set of decision trees that a designer might consider.1 In this

figure, states (or decisions) are represented as squares, with actions again being represented

by diamonds. Note that although sreward is represented by a square, no decision is made

in this state. Each state is uniquely defined by the time at which the designer enters the

state, and the information which the designer possesses in that state.

1Note that numerous additional branches and states exist given this set of actions. I have only listed a
few possibilities.

97

Since expected utility is calculated when the designer returns a decision, the expected

utility of ard is simply equal to the expected utility given the information in the final state:

E[u(ard)] = E[u(x|s)] (42)

If returning a decision is the only action available for the designer in a given state, then

the expected utility of that state is the expected utility given by Equation 42. For all other

states, the expected utility of that state is equal to action with the highest expected utility.

E[u(s)] = max
a

(
E[u(a|s)]

)
(43)

This assumes that the designer will always select the action with the highest expected

utility at each stage of the design process. The expected utility of an action is calculated

by summing the expected utility of each outcome state by the probability of that outcome

occurring:

E[u(a|s)] =
∑
s′∈S

P (s, a, s′)E[u(s′)] (44)

Therefore, the expected utility of any state is given by the following recursive equation:

E[u(s)] = max
a

(∑
s′∈S

P (s, a, s′)E[u(s′)]

)
(45)

The expected utility of actions is calculated in this manner for two reasons: (1) following

this policy leads to logical decisions in regards to performing actions and managing the

designers resources, and (2) this policy provides a clear, mathematically-defined mechanism

for automating the decision process. In regards to the first reason, propagating the possible

outcomes promotes a natural balance between exploration and exploitation. Notice that no

“utility of exploration” parameter was added to the utility function; the designer explores

when it is beneficial to the final design. These calculations also lead the simulated designer

to use resources in a way that mimics human behavior. Given the option of a low fidelity

model and a high fidelity model, the designer typically selects the low fidelity model to

obtain useful information before running an expensive high fidelity model. In regards to

the second reason, this mechanism provides a method of down-selecting a decision from a

(potentially infinite) set of alternatives that is simple to define. In reality, a designer may

98

adopt a different strategy for choosing a design, and this strategy may be dependent on

the particular design scenario. In my opinion, the use of this strategy provides a balance

between realism and generalizability; the policy provides reasonable decisions and can be

used for virtually any set of actions and outcomes.

In practice, one computes Equation 45 by propagating the designer’s decision tree and

working backwards. Consider the case where a designer is choosing to run an analysis on

one of three different alternatives: x1, x2, and x3. Suppose that the analysis returns only a

binary result, α or β. We will assume that the designer has enough time to run the analysis

on only one of the alternatives. After the designer receives information from the analysis,

he or she will choose one of the design alternatives for the final design.

x1

x2
x3 x1

x2
x3 x1

x2
x3 x1

x2
x3 x1

x2
x3 x1

x2
x3

x1 x2 x3

α2 β2α1 β1 α3 β3

p1 1-p1 p2 1-p2 p3 1-p3

Alternative
Space

Probability
Space

Alternative
Space

Information
State

Figure 52: Two-level decision tree with three alternatives and two possible outcomes

The full listing of his or her possible decisions and outcomes is shown in Figure 52. Using

this example, I will define several terms which I will use to describe different locations in the

decision tree. The decision tree starts at the top of the figure, and the designer can choose

to run the analysis on any one of the design alternatives (shown as the diamonds). When

the designer is making a decision, I will refer to the set of all alternatives and information

states as the alternative space. For the designer’s first decision, there are three alternatives,

each of which has the same information state (the designer has only his prior knowledge,

since no other actions have been performed). For a particular alternative, the analysis can

99

return one of two possibilities, α and β (shown as the decision squares). I will refer to

the set of all possible outcomes as the probability space. Note that each probability space

has a parent alternative space. In this example, there are six different possible outcomes

in the probability space. An information state is a unique set of information that the

designer possesses based on his previous actions and the outcomes of those actions. For

example, running an analysis of x3 can lead to information state α3 or β3 depending on

the information the analysis returns. Once the designer has this information, he or she

chooses a final design alternative (shown as the circles). Since the designer is making a

decision of which analysis to run and which design to choose, I will refer to this as a two-

level decision problem where the level is the maximum number of actions that a designer

could sequentially perform.

While Equation 44 and the example in Figure 52 are shown for discrete alternatives and

outcomes, the framework is still effective for continuous alternatives and outcomes. In this

case, Equation 44 becomes an integral which can be numerically approximated:

E[u(a|s)] =

∞∫
−∞

p(s, a, s′)E[u(s′)] (46)

5.3 Generalizations of Alternatives and Attributes

In Section 3.4, utility was defined only in terms of meeting requirements on the attributes

of the design itself. This definition restricted the modeler’s choice of alternatives to design

variables, since only design variables could be related to requirements. In this section, the

set of alternatives will be expanded to encompass the set of all actions that a designer can

perform. The important question for the modeler is: for any given action, what information

is required to accurately model the designer’s preferences for that action?

We can determine the necessary information by examining the equations that lead to a

decision, specifically Equations 25 and 45 which have been repeated below for clarity:

E[u(x|s)] =

∞∫
−∞

u(g)p(g|x, s)dg (25)

E[u(s)] = max
a

(∑
s′∈S

P (s, a, s′)E[u(s′)]

)
(45)

100

From the equations we can see that the designer can only be influenced in three ways:

• Changing the designer’s utility function, u(g).

• Changing the probability of reaching a state, P (s, a, s′).

• Changing the designer’s beliefs about the relationship between alternatives and at-

tributes, p(g).

Altering the designer’s utility function is the most rare influence that an action can exert.

The utility function is typically derived from the incentive structure of the organization

which is passed down to the engineer from management. For an action to influence the

utility function, the action would have to interact with the incentive structure in some way.

An example of this would be an engineer requesting more time. If management grants the

engineer an extension, the designer’s temporal utility function has changed.

Actions can also influence the probability of reaching a new state. Consider an engineer

designing an artifact in a large engineering organization. Suppose that the engineer must

obtain approval from his manager on his design ideas before moving forward in the design

process. We can encode this into the framework by including “approved by manager”

as a binary hard requirement in addition to the other performance requirements. In the

designer’s current state, he can perform the action “submit to manager for approval” and

there is a certain probability, P (s, asubmit, sapproved), that the designer will move to the

“approved” state and a (1 − P (s, asubmit, sapproved)) probability that the manager will not

approve the design. The designer knows that the manager is much more likely to approve

the design if he submits a technical drawing instead of a napkin sketch. Therefore, the action

“draft a technical drawing” will increase the probability of moving to approved state. In

other words, the drafting action will increase P (s, asubmit, sapproved). Therefore, actions can

influence the probability of reaching a particular state.

Most often an action will influence the designer’s beliefs about the relationship between

alternatives and requirements. Mathematically, the action is changing the shape of the

probability distribution. Actions will likely influence both the mean and uncertainty of

p(g). However, in most situations, the designer will only be able to specify ahead of time

the change in uncertainty, not the change in mean. Consider the case of running a high

101

fidelity model; after the designer runs the model, the designer’s uncertainty about the

relationship between design alternatives and design attributes will decrease (if the designer

trusts the model to be completely accurate, his or her uncertainty will go to zero). It is

also likely that the high fidelity model will return results that are different than designer’s

expectation; this represents a mean shift in the designer’s beliefs. However, the designer

knows only the change in uncertainty ahead of time; the designer does not know what the

high fidelity model will return.

In certain situations, the designer might have an idea of how an action will shift the

mean of a distribution. Consider the scenario in which a designer on Team A works in

tandem with design Team B. Suppose that Design Team B controls a design variable, z,

that influences the performance of Team A’s design; high values of z will have positive

effects on Team A’s design and low values of z could be detrimental to Team A’s design.

Team A knows from past experience that Team B typically picks low values of z, but does

not know with certainty what Team B will choose in this case. If Team A were to meet

with Team B and discuss the effects of z on performance, it is more likely that Team B will

choose a higher value of z. Therefore, the action “meet with Team B” shifts the mean of

Team A’s beliefs to higher values of z. Team A may still be uncertain of what Team B will

decide, but they now believe it to be more likely that Team B will choose a high value of z.

By viewing actions from an information perspective as outlined above, the modeler can

incorporate virtually any action a designer can perform as long as the effect of the action

can be expressed in one of these three ways. Analytic models and experimental tests are

changes in mean and uncertainty. Requests for time extensions are potential changes to the

utility function. Meetings with other engineering teams can result in changes in the mean

and uncertainty of a distribution.

5.4 Design Process Influences on Utility

In Chapter 3, utility was specified only as a function of the attributes of the alternatives.

In this section, I will refer to that utility function as a performance utility function, since

it is based on the performance of the artifact. To account for the designer’s decisions in a

102

sequential decision making scenario, the utility function must also depend on the attributes

of the design process itself. Since time and budget are typically the most powerful influences

in any organization, this thesis will focus specifically on these influences.

For designers in an engineering organization, time and resources can have a powerful

effect on people’s decisions. The specific effect of time on behavior depends largely on the

incentive structure and the designer’s perception of what constitutes an acceptable pace.

In many cases, a designer might be faced with a deadline. In other cases, a designer might

not have a specific deadline, and his temporal preferences are based on his own internal

pacing schedule. The resulting conclusion is that a person’s preferences in regards to time

is both very specific to the problem and to the individual. This makes the formulation

of a utility function with the inclusion of temporal influences difficult, and, unlike the

requirements based utility function in Section 3.4, it is unclear whether the utility function

can be summarized in a single specific form. However, the utility of time can still be

examined in a general form, and many useful conclusions can be made. For this reason,

I will propose several forms of a temporal utility function, two of which will be tested in

Chapter 6.

5.4.1 Generalized Form

We will begin the derivation of a time-based utility function by defining a dimensionless

variable, τ , which represents the fraction of time available to the designer to perform actions:

τ = 1− t

t0
(47)

where t0 is any arbitrary unit of time. If the designer is faced with a deadline, t0 is the

amount of time from the beginning of the decision making process to the deadline. In

this manner, τ is equal to 1 at the beginning of the decision-making process, 0 at the

deadline, and can theoretically range to −∞. Note that τ is decreasing with increasing

time. Similarly, we can define a parameter, β which represents the amount of budget

remaining.

β = 1− b

b0
(48)

103

where b is the amount of cost incurred at a given time, and b0 is the allotted budget given

to the designer. As with g, I will commonly refer to τ and β in percentages. For most of

this discussion, I will examine utility only as a function of τ . However, all the claims I make

about τ will be equally valid for β.

Recall that utility is only calculated on the last transition when the designer chooses

action ard. This implies that the utility function is valid only after the designer is locked into

a final design. After reaching state sreward, the designer is unable to perform any action that

might change the design. While this might appear to be a subtlety of the framework, this

fact greatly simplifies the formation of a utility function; we need only consider the effects

of time, budget, and design performance at the end of a design, not at any intermediate

time.

An alternative approach would be to define an inter-temporal utility function, one that

is based on the designer’s current state. At each action, the expected utility would be

calculated based on a new utility function for that specific time. This complicates the form

of the utility function, since the assumptions of utility independence are easily violated.

Consider the following example shown in Figure 53; suppose a designer is deciding between

Designs A and B in Scenario 1. Suppose that, at the deadline, the risk-averse designer

is indifferent between the designs. Now consider the scenario in which the designer has a

significant amount of time remaining. The designer might not be indifferent between these

two designs, since the available time might allow the designer to further analyze Design B.

In this scenario an assumption of utility independence between g and τ would not hold.

However, if each of these decisions was a final decision and the designer could take no action

that would provide further information about the two designs, utility independence would

be a reasonable assumption since the designer cannot utilize the remaining time to improve

the design. In other words, the designer’s risk behavior regarding performance would be the

same regardless of the time remaining, since any remaining time cannot be used once the

designer returns his or her design. Therefore, the utility function is a reasonable assumption

for the final transition into sreward.

The above lottery illustrates that performance can be utility independent of time. To use

104

1A -2%

0.6

0.4

 5%

-10%
B

g τ
0%

0%

0%

1A -2%

0.6

0.4

 5%

-10%
B

g τ
50%

50%

50%

Scenario�1 Scenario�2

Figure 53: Utility independence of time and design performance is only valid if utility is
calculated at the designer’s final decision.

the multilinear utility function, however, mutual utility independence must be shown. In

other words, time must be shown to be utility independent of performance. This assumption

is more difficult to justify; imagine a designer faced with a decision between two actions,

each lasting an uncertain amount of time. If time and performance are utility independent,

then the designer’s choice between actions should be the same regardless of the performance

of the design. The designer’s risk with respect to time may not always be independent of

performance. One could imagine that a particular designer might be more willing to miss

a deadline if he or she knows that the performance of the design is outstanding, and less

likely if the performance is mediocre. However, I believe that this affect of performance

on time is generally small, and that utility independence is a close approximation to a

designer’s behavior. This effect is probably most pronounced at the extremes, i.e. when

the designer is missing multiple important requirements. For more realistic problems where

most requirements are met, the designer’s preference for time is likely very similar for a

nominal range of performance.

If time and design performance are assumed to be mutually utility independent, we can

examine the utility of τ in isolation from g. I will define the utility of time to be the function

uτ . Since a designer prefers to finish sooner than later (for the same design performance,

g), the functional form of uτ is restricted to monotonically increasing functions. Like the

performance utility function, we can arbitrarily define the temporal utility function to be

bounded between 0 and 1. As such, uτ (1) = 1 and uτ (−∞) = 0. Unfortunately, little more

can be said about the nature of uτ without the context of a specific problem. For scenarios

involving deadlines, it is likely that uτ drops significantly across τ = 0; however, this may

105

not be the case for all situations. Section 5.4.2 will explore possible functional forms of uτ .

As previously mentioned, τ and g are assumed to be utility independent. Therefore, in

its most general form, the multi-attribute utility function is of a multilinear form:

utotal(g, τ) = kτuτ (τ) + kgug(g) + kτguτ (τ)ug(g) (49)

Equation 49 has three unknown parameters: kτ , kg, and kτg. However, since we can arbi-

trarily define utotal to range from zero to one, only two of these parameters are independent.

Suppose a designer returned a design decision instantaneously, but none of the require-

ments were met. In other words, ug ≈ 0. In this case, utotal simplifies to

utotal(g � 0, τ ≈ 1) ≈ kτ (50)

which is equivalent to the following lottery:

1A

kτ

1 - kτ

B
All�requirements�met,�on�time

No�requirements�met,�exceedingly�late

No�requirements�met,�on�time

From Equation 50 and the lottery above, it is clear that kτ ≈ 0; the designer would obtain

no benefit from instantaneously picking a design of no value.

Similarly, we can consider the case when all requirements are exceeded, but the designer

has drastically exceeded their allotted time. Equation 49 simplifies to

utotal(g � 0, τ � 0) ≈ kg (51)

which is equivalent to the following lottery:

1A

kg

1 - kg

B
All�requirements�met,�on�time

No�requirements�met,�exceedingly�late

All�requirements�met,�exceedingly�late

Once again, kg ≈ 0. The design is nearly useless if the designer has to wait forever to

obtain it. The elimination of these terms leaves only the term containing both ug and uτ .

106

Since the utility function is defined between zero and one, kτg = 1. Therefore, Equation 49

simplifies to:

utotal = uτug (52)

5.4.2 Example Utility Models of Time

As mentioned in the beginning of this section, the functional form of the utility function is

highly dependent on the individual designer and design situation. Because of this, the class

of temporal utility functions is likely very large, and exploring all possible functional forms

in detail is beyond the scope of this thesis. In this subsection, I will propose functional

forms of two utility functions that are simple to implement and have easily interpretable

meanings. Additional forms will be explored, but are not implemented in this thesis.

Suppose a designer has been given a strict deadline; meeting the deadline is critical to

the designer’s preferences and a design returned after the deadline has zero utility. In the

limit in which the deadline is the only influence on the designer’s temporal preferences (and

not his desire to finish early), the utility function for time becomes.

uτ = H(τ) (53)

where H is the Heaviside step function. Note that this utility function implies that the

designer is indifferent to finishing early. In this situation, we can expect the designer to

always finish at or very near the deadline2; since the actions available to the designer can

only improve his or her final design decision, we can expect him or her to always choose to

perform another action as long as it does not exceed the deadline.

In reality, most designers would prefer to finish the design earlier if finishing early is

not substantively detrimental to the performance of the design. If performing an action

is expected to yield very small amounts of improvement, the designer may decide not to

perform them. In this case, a designer’s preferences could be represented by the following

2Note that this statement assumes the designer has perfect knowledge of how long a task will take. If
there is uncertainty in task length (which, in a realistic scenario, there usually is), then the designer may
finish early to avoid missing a deadline. Even with the Heaviside utility function, it is still possible for a
designer to rationally make decisions that lead to a missed deadline. It is likely that most deadlines are
missed due to the inability to perfectly account for task length, not because the designer is indifferent to
missing a deadline.

107

equation:

uτ (τ) = H(τ)γ(1−τ) (54)

where γ represents the temporal utility at the time of the deadline. This utility function is

displayed in Figure 54 with γ set to 0.9 (note that the x-axis has been reversed to match

the passing of time). The value of γ is equivalent to the following lottery:

1A

γ

1 - γ
B

Finished�instantly,�all�requirements�met

Deadline�exceeded,�all�requirements�met

Finished�at�deadline,�all�requirements�met

Similar to kh, the value γ is likely near one for most designers. Note the similarities between

this utility function and the satisficing paradigm; recall that when a designer satisficies he or

she is more interested in a satisfactory solution than the optimal solution. In the paradigm

of this framework, this behavior arises from the passing of time (τ) and expense of resources

(β) outweighing the expected improvement from continuing the design search. Given the

formulation of the performance utility function outlined in Section 3.4, the designer knows

that most of the utility will be achieved by just meeting all the requirements (a satisfactory

answer). With a discounted temporal utility function such as Equation 54, the designer

will only continue if the cost of the actions is smaller than the expected improvement in

design. Both Equations 53 and 54 are explored in further detail in the demonstrations in

Section 6.3. Discussion of their applicability to modeling human designers is deferred to

that section.

For human designers in most design situations, the temporal utility function is likely

more nuanced and detailed. In many situations, exceeding a deadline by a second, few

hours, or even a few days may not be detrimental to the performance of the artifact. In this

case, the deadline is not represented by the discontinuity of the Heaviside function. Instead,

the slope is likely more gradual with the precise representation specific to the situation and

the risk characteristics of the designer. The solid line in Figure 55 represents a notional

example of this utility function. Note that the utility before the deadline is discounted,

representing the designer’s preference for a satisficing solution. At the deadline, the curve

108

−0.500.51

0

0.2

0.4

0.6

0.8

1

τ

u
τ

Figure 54: Time utility function for strict deadline with discounting

has an initially gradual but then steep slope. This represents the designer’s tolerance for

exceeding the deadline by small amounts but not large amounts. This utility function was

created by combining the discounting function with a logistic function:

uτ (τ) =
γ(1−τ)

exp
(
τ∗−τ
β

)
+ 1

(55)

where γ, τ∗, and β are parameters to personalize the function to a specific designer.

−0.500.51

0

0.2

0.4

0.6

0.8

1

τ

u
τ

Figure 55: Time utility function for strict deadline with discounting

One could also imagine a very conservative designer who highly prefers finishing early

and tends to avoid waiting until the deadline. Perhaps this designer’s utility function is

109

represented by the dashed curve in Figure 55. Similar to the solid curve, this curve’s steep

descent begins before the deadline occurs. Mathematically, this is the same function as

Equation 55 with a larger value of τ∗.

In practice, there may even be times when the designer’s utility function is not aligned

with the interests of the organization. In many organizations, an engineer’s time is billed

to a certain project. If the designer finishes his or her work early, he or she may not have

a project to bill his or her hours. This might incentivize the designer to extend the work

up until the deadline. Perhaps the designer’s utility function is shaped like the curve in

Figure 56. Note that this function violates the monotonically increasing assumption made

in Section 5.4, so the lotteries would need to be changed in order to derive the same general

form of the utility function (the conclusion, however, is identical in this case).

−0.500.51

0

0.2

0.4

0.6

0.8

1

τ

u
τ

Figure 56: Time utility function misaligned with the interests of the organization

For a given design problem, a modeler can obtain a temporal utility function for a specific

designer using lottery questions in the same way that one would create the performance

utility function in Section 3.4. Once again, the accuracy of the utility functions is dependent

on the human’s ability to specify their preferences using lotteries and maintain consistency

with these preferences in an actual design scenario. In practice, this can be very difficult

for a human, and empirical evidence shows that humans are inconsistent as Section 3.4.1

mentioned. However, one can view these utility functions as an approximation of human

110

behavior. If we make a simplifying assumption that the designer will always finish within

the deadline, then Equation 54 may be sufficient to model the human’s behavior. If the

modeler is more interested in the conditions that would cause a designer to miss a deadline,

then Equation 55 is more appropriate. In general, the level of complexity of the utility

function should be consistent with the detail of the behavior being modeled.

5.4.3 Other Influences on Utility and Alternatives

Fundamentally, the designer’s utility function is driven by his or her incentives. In this

thesis, the incentives examined were performance, time, and budget. While these are likely

the strongest and most common influences on a designer’s decision, other influences may

exist.

One potentially strong influence may be a designer’s desire to justify a decision. Since

an engineer is held accountable for their decision, the engineer may see utility in having

information to justify the decision. This could be represented by a utility for reduced

uncertainty; even if a designer knows which uncertain alternative is the “best” from a

performance standpoint, he or she may still desire to reduce the uncertainty in order to

justify the decision to others. This could lead to the appearance of a confirmation bias;

the designer performs the most analysis on the alternative he or she believes to be the

best to raise total utility while disregarding other designs. Note that, given the shape

of the requirements-based utility function, the designer is already incentivized to reduce

uncertainty (he or she is risk-averse). The addition of justification would be an additional

incentive for the designer.

In this thesis, designers are analyzed in isolation. In an engineering organization, how-

ever, designers must also interact with other people. This will likely introduced additional

parameters into the utility function that influence communication. For example, another

design team might request the designer’s assistance; the designer may not see any benefit

(from a design performance standpoint) of assisting the other team. However, from a social

perspective, the designer may still help the other team in order to remain on good terms

with them. These social influences could potentially have large effects on the designer’s

111

ultimate decisions.

Finally, the sequential decision making framework was formulated under the premise

that the designer always selects a final design. In reality, the designer always has the un-

spoken option of choosing none of the alternatives. The designer could inform management

that the design is simply not feasible, or the designer could iterate, generating new alterna-

tives and repeating the design process. The designer’s decision depends ultimately on his

or her beliefs about the success of pursing this final option. In its most simple form, this

alternative could be represented by a utility threshold (recall that utility is always defined

between 0 and 1 in this document). If no alternative meets a certain level of utility, then

the designer does not choose any of them.

112

CHAPTER VI

IMPLEMENTATION AND DEMONSTRATIONS

This purpose of this chapter is to summarize the entire framework and demonstrate how it

can be implemented. Section 6.1 will provide a clear methodology for implementing both the

sequential decision technique in Chapter 5 and the expected utility calculations in Chapter

3. Section 6.2 will address several computational issues that can arise when implementing a

sequential decision making problem. Several techniques will be recommended for mitigating

these problems. The remaining two sections will demonstrate entire framework on two

problems: first, the single dimension problem in Section 4.1 is revisited to show the effect

of the framework on the designer’s decision. Next, a designer is given a set of actions to

choose from in a variable fidelity analysis problem.

6.1 Implementation

Since a description of the framework is developed incrementally in Chapters 3 and 5, this

section is intended to prescribe a concise methodology for implementation. Regardless

of whether or not sequential decision making is used, all steps under “Expected Utility

Calculation” should be performed.

6.1.1 Expected Utility Calculation

Define the Problem

1. Define all design alternatives and requirements.

2. If desired, create a reality model.

Create a Utility Function

3. For each requirement, determine appropriate values of b and g∗ based on the beliefs

of the designer.

4. For each requirement, determine whether the designer views the requirements as hard

or soft. If soft, use lotteries to determine a multilinear utility function. If the set of

113

requirements contains both hard and soft, use the lottery on page 64 to determine a

value of kh.

5. Construct a temporal utility function based on the designer’s beliefs about the con-

sequences of going past a deadline. If the modeler can assume that the designer will

never exceed the deadline, Equation 54 might be an adequate utility function. If the

designer would exceed a deadline to improve the design, a utility function similar to

Equation 55 would be more appropriate.

Create a Gaussian Process Model

6. Determine the designer’s prior knowledge regarding the relationship between alterna-

tives and attributes. Represent this knowledge using a probability distribution or a

Gaussian Process model using noisy training points to represent uncertainty. Refer

to Section 3.3.3 for more information on constructing the designer’s beliefs.

7. If Gaussian process models are used, select an appropriate covariance function based

on the designers beliefs about the underlying relationship between alternatives and

attributes. Determine values for the hyperparameters by maximizing marginal likeli-

hood.

6.1.2 Sequential Decision Making

If the designer is making more than one decision, complete the following steps. If the

designer is making only a final decision, perform only step 11.

8. Define all possible actions that a designer can perform.

9. Determine how each action will influence the designer’s knowledge. Recall from Sec-

tion 5.3 that an action can only affect the utility function, probability of reaching a

state, and/or beliefs about the attributes of alternatives.

10. Given the set of actions, build a decision tree to determine the information states

that the designer can reach. If continuous alternatives or outcomes are used, then the

alternative space and probability space need to be discretized; determine the fineness

of sampling for the alternative space and the probability space.

11. At sreward of each branch of the decision tree, use Equation 28 on page 68 to calculate

114

the expected utility of each alternative.

12. Working backward through the decision tree, use Equation 45 on page 98 in each

probability space to calculate the expected utility in the parent alternative space. In

each alternative space, select the maximum expected utility to feed into the parent

probability space.

13. Repeat step 12 until you reach the beginning of the decision tree (the point furthest

from sreward. At this level, an expected utility is calculated each action. The designer

chooses the action with the maximum expected utility.

14. If a reality model exists, use the outcome from the reality model to determine the

designer’s next decisions.

6.2 Computational Issues

The greatest challenge of the sequential decision making technique outlined in the previous

chapter is the computational effort required. A good estimate of the length of time to

perform the calculation is to find the number of expected utility calculations; in practice,

it was found that the majority of the computational effort was in numerically integrating

Equation 28. Consider again the decision tree shown in Figure 52. For three alternatives

each with two possible outcomes, we are required to perform eighteen expected utility

calculations (three alternatives and six information states).1 Were we to add the possibility

of running a second analysis before making a decision to the previous example, the number

of expected utility calculations increases by a factor of four (assuming the designer does

not choose to run an analysis on the same alternative twice). A three level problem with

four alternatives and three outcomes requires 432 expected utility calculations. From this

example, it is evident that adding levels, alternatives, and outcomes can quickly increase

the amount of expected utility by orders of magnitude.

In a continuous space, this is problem is even more pronounced. The inclusion of the

max operator in Equation 45 precludes the possibility of finding an analytical solution for

1One might recognize that some of the expected utility calculations are the same and need not be repeated.
In this case however, it is possible that all states are unique. For example, if running an analysis on x1

provides the designer with some tangential information regarding x2 and x3, then all the calculations in the
final alternative space might be unique.

115

all but trivial problems. In practice, Equation 46 is solved numerically by dividing the

alternatives and outcomes into discrete possibilities. For realistic problems, this can require

enormous computational effort if a fine mesh of the alternative and probability space is

used. In general, computation increases in polynomial time with number of alternatives

and possibilities and exponential time with number of levels. Equation 56 provides an

estimate of the number of expected utility calculations required for a given problem with

continuous design variables and outcomes:

Expected Utility Calculations = xnlpr(l−1) (56)

where x is the discretization of the design space for each design variable, n is the number of

design variables, l is the number of decision levels, p is the discretization of the probability

space for each requirement, and r is the number of requirements. To give an example of

the computational difficulty, a simple design problem with one continuous design variable

and two continuous requirements analyzed at three levels with both the alternative and

probability space discretized to 50 points requires about 780 billion expected utility cal-

culations. For large values of any variable in Equation 56, the number of calculations can

quickly become unmanageable. The goal of this section is to outline several strategies for

minimizing the computational effort.

6.2.1 Adaptive Sampling2

For continuous probability spaces, finely sampling the entire space of outcomes can be

computationally intractable. Luckily, in many scenarios, the variability in expected utility

across the probability space is generally very small as the space divides into distinct clusters.

Figure 57 shows an example of this phenomena; the x and y axes show the outcome of a

running an analysis on a particular design for two attributes. Movement along each axis

shows the deviation from the designer’s expectation for each attribute in units of standard

deviation. In other words, at the point(0,0) the analysis returns values for each attribute

that perfectly match the designer’s expectation. At (1,-2) the analysis returned a value for

2This section was developed with substantial assistance from Dr. Matt Daskilewicz who
recommended and programmed an adaptive sampling algorithm for this research.

116

attribute 1 that was one standard deviation above what the designer expected and a value

for attribute 2 that was two standard deviations below what the designer expected. Notice

the two distinct regions in the probability space; most of the design space has constant

utility, and only a small region in the upper right corner has any variability. In order to

obtain an accurate measure of the probability space, one only needs to sample the transition.

Attribute 1 (σ2)

A
tt
ri
b
u
te

2
(σ

1
)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 57: Expected utility variation for a notional probability space with two requirements

This phenomena has two causes: (1) the max operator in Equation 45 and (2) the

localized effect of learning. For many actions, the outcome of the action will not affect

the maximum expected utility. For example, suppose a designer is analyzing a design at a

particular value of a design variable, x = 1. If this is far from the optimum value of the

design variable, information obtained about the design at x = 1 will not have a significant

influence on the attribute value at the optimum. Hence, the expected utility remains largely

unchanged.

We can take advantage of this feature by only sampling areas of the probability space

with variation. In this thesis, a simple adaptive sampling algorithm was implemented as

follows:

117

Attribute 1 (σ2)

A
tt
ri
b
u
te

2
(σ

1
)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 58: Coarse mesh of probability space

1. Sample the probability space with a course distribution of points, as shown by the

white circles in Figure 58.

2. For each square of samples, refine the mesh if any variation exists within the square

(i.e., if all vertices are not identical). In this case, the squares in Figure 59 represent

a finer sampling where variation occurs.

3. Repeat step 2 for a pre-specified number of refinement levels. The triangles in Figure

59 represent a second level of refinement.

In the example shown, we were able to achieve a sampling equivalent to 13 sample in each

dimension (169 total samples) using only 52 samples. Further savings could be achieved by

using a more sophisticated adaptive sampling algorithm.

6.2.2 Elimination of Dominated Alternatives

When considering temporal effects, there are many times when stopping criteria can be

determined without evaluating the remainder of a decision tree. One can compare the

utility of choosing action ard to another action by comparing the expected utility of ard to

the maximum possible expected utility of choosing another action. Consider the following

118

Attribute 1 (σ2)

A
tt
ri
b
u
te

2
(σ

1
)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 59: Refined adaptive mesh of probability space

example: A designer is at time step t1. Suppose that if the designer were to return a

decision at t1, his maximum expected value of ug would equal 0.9 and uτ would equal 0.95,

resulting in a total expected utility of 0.855. At time step t2, uτ would equal 0.8 based

on his temporal utility function. Therefore, without calculating ug for any other action, it

is clear that ard would be the optimal decision since no value of ug at t2 could overcome

the decrease in uτ . This observation is especially useful near a deadline, where uτ tends to

decrease rapidly.

6.2.3 Eliminating Duplicate Information State and Expected Utility Calcula-
tions

When two actions are performed whose outcomes are not dependent on each other, the

probability of reaching a particular information state is the same regardless of the order

that the actions were performed. For example, consider a designer faced with two design

alternatives, A and B, shown by the decision tree in Figure 60. For the designer’s first

action, he could choose to (1) analyze Design A, (2) analyze Design B, or (3) return a

decision without analyzing a design. If the designer chooses to analyze a design, then he

119

β1 β2

p2 1-p2

ard ard

B ard

β1 β2

p2 1-p2

ard ard

B ard

α1 α2

p1 1-p1

ard ard

A ard

α1 α2

p1 1-p1

ard ard

A ard

α1 α2 β1 β2

A Bard

A

A B A B

A B

A B A B

A B

A B A B

A B

A B A B

A B

B

Figure 60: Duplicate information state and expected utility calculations

can (1) analyze the other design or (2) return a decision for his second action. Since the

order that designs were analyzed has no bearing on the probabilities of their outcomes, the

information states with the same color are identical. The expected utility calculations and

the designer’s decision in both situations would be identical. In Figure 60, the identical

information states have the same color. Therefore, the expected utility at any orange

information state is the same; these calculations need not be performed twice.

If the designer does not learn anything about Design A from analyzing Design B and

vice versa, then the problem in Figure 60 can be simplified further by eliminating duplicate

expected utility calculations. The expected utility calculations (which occur at the circles

in the decision tree) have been shaded in the figure to show identical calculations. If every

end of the decision tree were calculated, a total of 24 would be required; by eliminating

duplicates, only 6 need to be performed.

Note that this simplification cannot always be performed. To borrow the example from

Section 5.3, the actions “create technical drawing of design idea” and “submit design idea

120

to manager” are not independent. Creating the technical drawing and submitting it to

the manager has a different probability distribution of outcomes than submitting a napkin

sketch to the manager and then creating a technical drawing.

6.3 Investigations of Time

The first experiment was designed to fulfill three goals: (1) demonstrate the methods for-

mulated in Chapters 3 and 5, (2) explore the effects of the temporal utility function on

the designer’s decision making behavior, and (3) compare the results of the sequential deci-

sion making algorithm to the approximation derived in Section 3.5.3 and demonstrated in

Section 4.1.

Recall that, in this example, the designer is choosing a value of x such that y is greater

than 0.91. The designer has been given a low fidelity model, shown again in Figure 61. The

designer can run a high fidelity model at three different locations before making a decision.

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Requirement

Figure 61: Designer beliefs based on low fidelity model

In this example, we will explore the effect of various temporal utility functions on the

designer’s behavior. Specifically we will calculate the expected utility of each alternative

using Equation 54 with varying values for γ. As in Section 4.1, the designer’s performance

utility function follows the form of Equation 16 with g∗ = −0.02 and b = 0.03. Since

the designer is only concerned with one requirement, the concept of “hard” and “soft” are

121

meaningless in this example.

x

E
[u
(x

)]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Figure 62: Expected utility of x if the designer was given only one decision

For comparison, Figure 62 shows the expected utility of each alternative if the designer

could not run a high fidelity model and had to make a decision based solely on the low fidelity

model. This is calculated using only the formulations in Chapter 3 and not including any of

the sequential decision making formulations in Chapter 5. The result of this calculation is

largely as expected; utility is highest in the region most likely to meet the requirement and

near zero everywhere else. Were the designer to choose a design based on the low fidelity

model, he would pick the peak of the low fidelity model.

In terms of the sequential decision making, this example problem is a 3-level problem.

Since both the design variables and attributes are continuous, both the alternative space

and probability space were discretized into 50 points. Through experimenting with different

size grids, it was found that this level of accuracy filtered out almost all the numerical noise

in the curves. However, accurate results can still be obtained in this problem with half the

grid size.

Figure 63 shows the designer’s first decision using the sequential decision making con-

struct for various values of γ. The expected utility from Section 4.1 is represented by the

dashed line. Perhaps the most striking feature of 63 is that all of the expected utility curves

122

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

E
[u
(x

)]

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 63: Expected utility of x for different values of γ

appear to be flat. This represents a general indifference by the designer between alterna-

tives; each of them is approximately as good as the others. In Figure 64, we have zoomed

in on the top four curves. The dotted line shows the maximum expected utility of the

alternatives using the method from Chapter 3. We can interpret the line as a boundary for

continuing the design search; if the expected utility of any curve falls below this dashed line,

the designer would prefer to make a decision rather than run the model. We can see that the

temporal utility function cannot be significantly discounted if the designer is going to run

an analysis. This, however, is consistent with the nature of the problem; the designer has

relatively narrow uncertainty bands about his beliefs. The low fidelity model indicates that

he will achieve high expected utility. Therefore, the designer has little incentive to search.

Were his uncertainty greater, he would likely be more inclined to search for a solution.

The designer’s preferred value x to run in the analysis has been marked by the circles

in Figure 64. Notice that the designer does not pick the optimum of the low fidelity model.

Instead, the designer prefers very high x where the designer has the most uncertainty. This

is a departure from the example in Chapter 4. In the sequential decision making algorithm,

the designer is trying to pick the point that maximizes his information. By choosing a

point all the way to the right, the designer can obtain a better sense of the true shape of

the curve.

123

One might notice that the variation of the curves is very small. In fact, the expected

utility of the most preferred and the least preferred differ only by about 0.005. The reader

might interpret this to mean that the designer thinks that running points at low values of x

is very beneficial, but this interpretation is incorrect. Instead, it implies that the designer

does not think that running multiple points in general is beneficial. If the designer’s prior

beliefs are correct (recall from Chapter 4 that they are not), then the designer has little to

gain from sampling the design space; his uncertainty is already very small and his utility

function is lax. The designer in the next example has much greater uncertainty, and the

differences in utility are more pronounced.

Finally, the demonstration shown here offers a glimpse of a way in which the framework

can improve. The lowest curve in Figure 64 has a pronounced and curious shape. The

optimal design point in the low fidelity model is a local minimum in expected utility with

sequential decision making. When testing the sequential decision making algorithm on

multiple test problems, this was a common occurrence; the point with the highest expected

utility using the framework in Chapter 3 had the lowest expected utility using sequential

decision making. Much of this phenomena can be attributed to the learning model; if the

designer runs the high fidelity model on the “best” point and the design turns out to be

poor, the designer expects the designs to be poor everywhere. However, if the designer

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.84

0.845

0.85

0.855

0.86

x

E
[u
(x

)]

γ�=�1.0

γ�=�0.995

γ�=�0.99

γ�=�0.98

Figure 64: Shape of expected utility curves

124

runs an analysis to the left or the right of the best point and it turns out to be poor, the

designer expects that the “best” point has not changed significantly. The knowledge model

fails to capture the changes in beliefs of human beings. This behavior can be attributed to

the noise in Equation 4. Even if the designer receives data that proves that his uncertainty

estimation is wrong, the noise in the model currently does not update to reflect this. One

potential solution is to treat the noise as a hyperparamter [56]. Then, when maximizing

marginal likelihood, the noise should update to reflect the designer’s increased uncertainty.

6.4 Strategy in Variable Fidelity Analysis

The second demonstration is designed to illustrate the framework’s capability to develop a

strategy for the designer. By strategy, I mean a decision for any given information state.

Unlike the previous demonstration, this problem contains no model of “reality;” we are

more interested in determining how different realities change the behavior of the designer.

In this design problem, the designer is faced with three alternatives which I will label

A, B, and C. The designer is also given two requirements: both y1 and y2 must be above

1. We will assume that Requirement 1 is a soft requirement, and Requirement 2 is a hard

requirement (kh = 0.8). In other words, the designer should be more concerned with meeting

Requirement 2 than Requirement 1. Both requirements are strict (g∗ = 0, b = 0.5%).

The designer has varying levels of prior knowledge about the each of the alternatives; this

knowledge is represented as normal probability distributions for each attribute. Table 1

shows the mean and standard deviation of each requirement. From a qualitative perspective,

the simulated designer knows the least about Design A. The designer suspects that Design

B meets Requirement 1, and that Design C meets Requirement 2. Were the designer to

make a decision based on his prior knowledge, he would choose Design C which has an

expected utility of 0.650. Note that Design C is the most attractive since it is the most

likely to meet the hard requirement. For reference, Design A has an expected utility of

0.433, and Design B has an expected utility of 0.213.

The designer has at his disposal both a low fidelity and a high fidelity model of the

relationship between each alternative and the requirements. Running the low fidelity model

125

Table 1: Designer’s prior beliefs regarding the design alternatives

Requirement 1 Requirement 2
E[y1] σ(y1) E[y2] σ(y2) E[u(x)]

A 0.90 0.30 1.00 0.30 0.433
B 1.10 0.15 0.85 0.20 0.213
C 0.90 0.15 1.15 0.20 0.650

costs the designer 1
5τ . The designer can run only one alternative through the low fidelity

model at a time, but this model returns an estimate for both requirements. One might

imagine that the low fidelity is similar to the aerospace software tool Flight Optimization

System (FLOPS) which returns a estimate for many design attributes in short amount of

time. We will assume that the designer believes the standard deviation of this model to be

0.1, and that this standard deviation remains constant regardless of the value the model

returns. Each run of the high fidelity model costs the designer 1
3τ . Unlike the low fidelity

model, this model returns a value for only one requirement. This is similar to a CFD or

an FEA model which will return only the aerodynamic loads or the structural responses,

respectively. The designer trusts the high fidelity model to be perfectly accurate.

Additionally, we will assume that the alternatives are so different that obtaining infor-

mation about one gives no information about another. In other words, the designer does

not learn anything about one alternative based on the properties of another. In regards to

the models, we will assume that results from a high fidelity model will not influence the

designer’s trust in future runs of a low fidelity model. For example, if the high fidelity model

returns a value that was significantly different from the low fidelity model, the designer will

continue to believe the standard deviation of the low fidelity model to be 0.1. In other

words, the designer suspects this inconsistency to be an outlier. Finally, we will assume

that the designer has perfect knowledge of how long each analysis will take. It is impor-

tant to note that these are simplifying assumptions intended to reduce the computational

complexity and not limitations to the framework. Each of these details and nuances could

be captured in the model. However, as we will see in the demonstration, the framework

provides reasonable designer behavior even when these simplifying assumptions are made.

Equation 54 was used to model the designer’s preferences for time. It is assumed that

126

the deadline given to the designer is very strict, implying no utility for τ < 0. A discount

factor of γ = 0.9 was used in Equation 54. Per the assumptions in Section 5.4.1, it is

assumed that the time of making a decision is negligible compared to the time to run the

models.

6.4.1 Implementation of Demonstration Problem

This demonstration is an example in which some of the strategies outlined in Section 6.2

can be used to minimize the computational load of calculating the expected utility of each

alternative. The simplicity comes from the lack of unique information sets. The information

state is defined by the actions of the designer and the results of those actions. In this case,

however, the order of the actions does not influence the probability of a particular outcome.

From an information state perspective, running the low fidelity on model on Design A

and then B is identical to running the model on Design B and then A. The information

obtained from Design A will not influence the information obtained from Design B. In this

way, the overall number of expected utility calculations is relatively low. In addition, some

information states are obviously poor choices; for example, if the designer ran a high fidelity

model on both requirements for one design, he would not run a low fidelity afterwards; doing

so would provide the designer with no new information. Therefore, we can eliminate sets

of actions that would obviously return poor expected utility.

In the implementation, the expected utility was calculated for each unique information

state. The maximum expected utility of the alternatives from each information state was

then stored in memory. The algorithm then expanded the decision tree, found an identical

information state in memory, and used the stored expected utility in its calculation. In

this way, the most computationally expensive operation, calculating expected utility, is

performed the minimum number of times possible.

The temporal utility function also played a role in simplifying the computation. Since

the future is discounted, there are many instances in which the simulation can determine

that returning a decision will be better than continuing without calculating the expected

utility of continuing. In general, however, this effect was small compared to eliminating

127

duplicate information states.

6.4.2 Results

Figure 65 displays the expected utility of each possible alternative. From the graph, we can

see some general trends that would likely be consistent with a human designer’s reasoning.

The observation that is perhaps the most obvious to the designer is that making a decision

without running a model is the least attractive alternative. This is to be expected, since

the designer has great uncertainty in his prior knowledge. A designer would find it more

beneficial to obtain information at the cost of time, than to make a poor decision instantly.

E[u(x)]
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Return
a
decision

Low
Fidelity
Model:
Design
A

Low
Fidelity
Model:
Design
B

Low
Fidelity
Model:
Design
C

High
Fidelity
Model:
Design
A,
Req.
1

High
Fidelity
Model:
Design
B,
Req.
1

High
Fidelity
Model:
Design
C,
Req.
1

High
Fidelity
Model:
Design
A,
Req.
2

High
Fidelity
Model:
Design
B,
Req.
2

High
Fidelity
Model:
Design
C,
Req.
2

0.650

0.743

0.739

0.739

0.709

0.706

0.718

0.733

0.734

0.728

Figure 65: Expected utility for each alternative available to the designer

In general, the designer found running a low fidelity model to be more beneficial than

a high fidelity model. In the design process, engineers often follow the same practice of

using low fidelity models to learn which alternatives are worth investigating and which

alternatives are inadequate. At the same time, running a high fidelity model on y2 is very

close in expected utility to running a low fidelity model. This can be attributed to y2

being a hard requirement; the designer can obtain almost 80% of his utility be just meeting

y2. However, analyzing Design C has the lowest expected utility of the three alternatives;

Design C has a 77% chance of meeting Requirement 2, so the designer does not want to

128

spend a third of his time confirming something he already believes to be true. As one

would expect, running a high fidelity model on y1 has the lowest utility of all the analyses.

Even if a design meets Requirement 1, this information is virtually useless unless the design

also meets Requirement 2. Design C is a slight exception to this rule; in this case, the

designer already has some confidence that Design C meets Requirement 2, so investigating

Requirement 2 first is not a waste of time.

In the end, the designer decides to analyze Design A with the low fidelity model. Of all

the design alternatives, the designer has the least information about Design A. Recall that

Design A has a 50% chance of meeting Requirement 1, so running a low fidelity model will

allow the designer to determine if Design A is on par with Design C and worth pursuing.

Since the algorithm considers all outcomes of a designer’s decision in order to calculate

the expected utility, we can examine the designer’s second decision based on the information

received from analyzing Design A with the low fidelity model. Figure 66 displays the

designer’s second decision as a function of the outcome of the low fidelity model for both

y1 and y2
3. If the designer finds that y2 of Design A is less than 1, the designer further

analyzes Design C to confirm that y2 does in fact meet the requirement; the designer has

eliminated Design A as a potential candidate, and focuses his attention on the design most

likely to meet the requirements.

If y2 of design A is greater than 1, the designer’s decision depends on the value of y1.

If y1 does not meet the requirements, the designer chooses to run the low fidelity model on

Design C to get an estimate of both attributes. This will allow the designer to compare

Design A and C to better compare the designs. If y1 is greater than 1 and y2 is slightly

greater than 1, the designer will run a high fidelity model on Design A’s y1 to confirm that

the design does meet the requirements. If the low fidelity model returns a value of y1 that

is near 1, the designer will run a high fidelity model on that attribute. If however, both

attributes exceed the requirements, the designer will simply pick Design A. Since his utility

function is discounted, the designer decides to stop early since he has high confidence that

3The actual division of decisions does not fall into perfect rectangles. The sampling of this probability
space was fairly sparse; therefore, the exact boundaries are difficult to ascertain from the data.

129

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Requirement 2

R
eq

u
ir
em

en
t
1

High�fidelity:�
���Design�C,�Req.�2

Return�a�
���decision
(Design�A)

H
ig
h
�f
id
el
it
y
:�

��
�D

es
ig
n
�A

,�
R
eq
.�
2

High�fidelity:�
�Design�A,�Req.�1

Low�fidelity:�
���Design�C

Figure 66: Designer’s second decision based on the outcome of the low fidelity model

Design A meets both requirements.

Extending this idea, we can map out the designer’s strategy for any possibility set of

actions and outcomes independent of a single reality. The independence from a particular

reality is a powerful tool of the sequential decision making method; it allows to consider

a large set of realities and examine the conditions in which the designer would make poor

decisions. For example, were the utility of time function formulated differently, we could

examine the conditions under which the designer would go over the deadline. Note that

this ability is contingent on two conditions: (1) that the designer considered the reality a

possibility and (2) that the probability space is small enough to be stored on the computer.

If reality procures an outcome which was outside the designer’s realm of plausibility, then

the next decision would have to be recalculated with the new information.

In this example, the framework was found to give reasonable results for formulating a

strategy in variable fidelity analysis. The designer begins by running a low fidelity model to

inexpensively obtain information about a highly unknown alternative. The designer then

130

uses the information to inform his next decision; running high fidelity models when he

need more accurate information, and running low fidelity models when he needs a quick

comparison.

At the same time, it is likely that many people would have made a different decision

than the simulated designer. Some of this discrepancy can be explained by the parameters

used in the utility function (g∗, b, γ). For any particular person, the parameters used

in example may be very different than the parameters that best match the individual’s

preferences. Furthermore the differences in expected utility for the first decision are very

small; in fact, the differences are very close to the numerical precision of the model and

running the same scenario with less precision in the probability space can return a different

decision. In an informal poll of several engineers, I received many different responses of

first decisions. While not scientifically rigorous, this poll provides evidence that there are

many “good” responses to this problem. The simulated designer would agree with that

assessment, acknowledging that he is nearly indifferent to many possible alternatives. For

a more thorough discussion on this topic, see Section 7.1.3.

131

CHAPTER VII

POTENTIAL VALIDATION METHODS

As mentioned in Chapter 1, the goal of this framework is to computationally model the

decisions made by human designers. While the framework has been demonstrated on sev-

eral examples, these results have only been compared to intuition and reasoning; a formal

experiment comparing human decision making to the simulated decision making has not

been performed. The purpose of this chapter is two-fold: (1) to explore the limitations and

weaknesses of the framework in the context of its ability to replicate human decision making

and (2) to explore import considerations for designing experiments to validate, invalidate,

or improve the model.

7.1 Limitations

This section explores some theoretical and observed limitations of the model. This section

has two purposes: (1) to identify conceptual differences between actual human beings and

the simulation that could cause differences in design decisions and (2) to indicate areas of

the model that could be improved.

7.1.1 Sequential Decision Making

For most sequential decision making problems, the most pressing limitation is the com-

putational time and effort required to calculate expected utility. Although the integral in

Equation 28 can be quickly computed with high accuracy, the number of expected utility

calculations can easily become overwhelming even for relatively simple problems. This raises

a fundamental question about the ability of the framework to model human decisions: If

the framework requires such large computational power to simulate a decision that humans

make in seconds, how can the framework claim to mimic the designer’s decisions?

In reality, humans do not consciously examine every possible outcome to determine

which action has the highest expected utility. Humans likely perform many simplifications

132

to the problem, substantially reducing the computational power required. Listed below are a

few simplifications that likely cause differences between actual designers and the simulation:

7.1.1.1 Heuristics

The designer might be able to simplify the sequential decision making problem using heuris-

tics learned through education or experience. For example, designer’s usually learn to run

low fidelity models early in the design process, and high fidelity models later in the process.

From an information theory perspective, the sequential decision making algorithm comes to

the same conclusion in most cases. Using simple rules such as these, the designer can easily

eliminate several alternatives from the decision tree, substantially reducing the amount of

computation required.

7.1.1.2 Depth of Search

Examining Equation 56, the most influential contributions to the computational effort is the

number of levels to the decision problem. From a human’s perspective, this is representative

of how far into the future the human can reason. For certain classes of problems, such as

picking specific design points to run in a high fidelity model, examining current decisions in

the context of future results can be very difficult. In the high fidelity model example, the

designer may disregard the value of information and simply run the points he or she believes

to be most likely to return a good design. In Section 6.2.2 it was seen that the discount

factor was one way of reducing number of levels that the designer was required to explore;

for low values of γ, it could easily be shown that returning a decision had higher expected

utility than continuing to search. In this way, the discount factor can represent the ability of

a designer to see into the future. A highly experienced designer might have a high discount

factor, representing his or her ability to intelligently reason how to extract the most useful

information from his actions. A novice designer, on the other hand, may discount heavily,

causing every decision to appear as his or her last without any consideration of the future.

133

7.1.1.3 Memory Recall

It is also possible that expert designers have stored combinations of good actions in their

long-term memory and, rather than evaluating every possibility, draw on their past expe-

rience to make decisions. This phenomenon is similar to the behavior observed in chess

players by de Groot and Simon [14]. In these experiments, chess players of varying skill

levels were observed to compare cognitive differences of expert and novice players. Simon,

summarizing the work of de Groot, write that

de Groot was unable to find any gross differences in the statistics of their thought

processes; the number of moves considered, search heuristics, depth of search,

and so on. [Chess] masters search through the same number of possibilities as

weak players.

Instead, Simon and de Groot find that chess masters possess a strong ability to recreate

chess positions after observing them for only 5 seconds, something weak players were unable

to do. However, this ability was only observed when the pieces were placed in “meaning-

ful” positions; when the chess pieces were placed randomly on the board, the chess master

was no better at reconstruction than the novice. Simon’s hypothesis for what separates

a master from a novice is their ability to draw from experience to recognize combinations

of good moves: “behind this perceptual analysis, as with all skills, lies an extensive cogni-

tive apparatus amassed through years of constant practice.” Perhaps, then, the difference

between the computational effort of the human and the machine is the human’s ability to

use experience to narrow down the best set of actions, whereas the computer examines the

problem for the first time with no prior experience.

7.1.1.4 Inter-temporal Utility

One of the assumptions made in Section 5.2 was that the designer is only concerned with

the utility of their final decision. In reality, this may not always be true. For human

beings, it can be very difficult to consider decisions in regards to the final consequences,

especially if those consequences occur at a much later time. Literature suggests that humans

use transition points to help pace their work. For example, several authors have found

134

in experimental studies that teams given a deadline use the midpoint of their time as a

transition point [26, 49]. This may be one possible way that humans are able to simplify

this computationally intensive problem. By allocating certain tasks to separate blocks of

time, the individual can focus on a small subset of the problem and plan accordingly.

This seems to imply the creation of an inter-temporal utility function; the designer creates

utility functions at certain transition points based on what they would like to accomplish

at a certain time. By dividing the sequential decision making into smaller blocks with fewer

levels, the amount of computation can be drastically reduced.

Overall, the framework’s technique for choosing an alternative in a sequential decision

making problem probably does not match the reasoning of human being. However, like the

Gaussian process model and utility function in Chapter 3, the sequential decision making

algorithm represents an approximation to the designer’s reasoning. Recall that the “inter-

face” of the model between the inner environment and outer environment is the designers’

decisions and not their reasoning; as long as the simulation produces results similar to a

human’s decision, the lack of similitude in reasoning may not be significant.

7.1.2 Knowledge Model

In Chapter 3, Gaussian process models were used to model the designer’s beliefs. These

models have the benefit of being intuitive and computationally simple, they may not accu-

rately reflect a designer’s beliefs. One fundamental limitation of a Gaussian process model

is the use of normal distributions as a representation of beliefs in all situations. In many

cases, the designer’s beliefs may best be reflected by another distribution. Consider the

designer’s beliefs shown in Figure 67. Suppose the designer analyzed a design at x = 3 and

found that the f(x) was lower than the designer’s expected value. How do the designer’s

beliefs change?

If Gaussian process models are used, then the designer’s updated beliefs will appear as

Figure 68a; normal distributions with the mean generally shifted lower than the designer’s

original expectation. The black line shows the designer’s original beliefs and the probability

distributions have been drawn on the z axis. For some designers, however, Figure 68b may

135

0 1 2 3 4 5
0

0.5

1

1.5

2

x

f
(x

)

Figure 67: Prior beliefs and new information

be a more accurate reflection of the designer’s actual beliefs; the designer may find it

very unlikely that the underlying function is above his original expectation. At the same

time, he or she may now find it plausible that the underlying function is much lower than

expectation. Hence, the probability distributions have all be skewed towards lower values

of f(x). While an alternative probability distribution may more accurately represent a

human’s beliefs, implementing such a distribution is computationally difficult since Equation

3 has an analytic solution only for normal distributions.

7.1.3 Preference Model

The limitations of utility theory for articulating human preferences have already been iden-

tified at the end of Section 3.4.1. As the text indicated, humans are known not to follow the

four axioms of utility theory. However, it is possible that improvements can still be made to

the implementation of utility theory in the framework. Prospect theory, for example, offers

several modifications to utility theory that better mimic the behavior of humans [36]. For

example, prospect theory has shown that humans often do not consider events that have

very small probabilities and treat events with high probability as certain events. To model

this, a decision weight function is multiplied by the value of each outcome; this weight

function essentially modifies the tails of the probability distribution, making highly likely

outcomes appear certain and unlikely outcomes appear as impossibilities.

In many of the examples used in this thesis, the utility calculations were carried out

136

0

1

2

3

4

5

0
0.5

1
1.5

2

0

5 x

f(x)

(a) Beliefs represented by normal distributions

0

1

2

3

4

5

0
0.5

1
1.5

2

0

0.2

0.4

x

f(x)

(b) Beliefs represented by skewed distributions

to several decimal places. In reality, a utility function for a human cannot be defined to

such detail; humans would be unable to specify preferences consistently to that degree. The

modeler should keep this in mind when viewing the designer’s decisions. If the expected

utility between two alternatives is very close, the modeler should expect that actual humans

might be indifferent between the two options.

7.2 Usage Applications

At the end of Chapter 1, several characteristics were outlined that the model should possess.

The first of these stated that the framework should model decisions that humans actually

make, not necessarily the decisions they do make. The intention of this requirement is

that the model should be predominately descriptive in nature as opposed prescriptive or

137

normative. With the details of the framework defined, we can now examine whether or not

the framework meets this requirement.

One might notice that the framework contains many normative tools: utility theory is

a normative model of decision-making; the sequential decision-making strategy is optimal

for a given utility function; even the Gaussian Process models define the probabilities in a

mathematically consistent manner. It has already been acknowledged that humans do not

follow these algorithms when making decisions; they typically do not create utility functions,

and they do not exhaust all potential possibilities. From this perspective, the decision

making algorithms appear to be more normative; they represent the optimal decision given

a set of beliefs and a utility function.

Two areas where the framework is descriptive lie in the Gaussian process models and

the utility function. The simulated designer’s Bayesian inferences depend upon the assumed

prior distribution. In Section 3.3, a custom covariance function was developed to better rep-

resent the prior distribution that a designer might have. One can form an analogy between

the prior distribution and the prior knowledge and biases that the designer possesses. By

changing this distribution via variation of the hyperparameters (or the function itself), one

can change the designer’s knowledge and learning. In this manner, the designer’s knowledge

can be seen as descriptive; it may be possible to fit a function and hyperparameters to a

human being in order to model his or her learning.

Similarly, the designer’s utility function is adaptable to a specific human being. In

this thesis, a utility function was derived based on a requirements-driven paradigm. If the

preferences and risk behavior of the designer’s utility function are aligned with that of the

organization, then this representation is normative; the designer will make decisions that the

organization desires. However, researchers have shown that representations similar to the

one presented in this thesis can be misaligned with the risk preferences of the organization

[16, 1]. This representation better aligns with the descriptive category; theoretically we

could design a utility function that closely models the designer’s actual preferences, whether

aligned or misaligned with the organization. Like the Gaussian process models, the utility

function in Equation 16 contains parameters that can be fit to a specific designer.

138

Based on the flexibility of the Gaussian processes and the utility functions, the decision

making framework is perhaps best described as a continuum between normative and de-

scriptive models; by choosing effective prior distributions and appropriate utility functions,

the framework can provide the optimal decisions from the organization’s perspective. At the

same time, these models can be customized to represent a specific designer whose interests

may not align with that of the organization’s.

For the models to be truly descriptive, an element of the framework is likely missing:

a search procedure. Designer’s do not exhaustively search all possibilities, but likely use a

simpler method of deciding which action to perform. This method may involve heuristics

or a simpler a more limited search of the alternative space. The sequential decision-making

technique presented here is only one option for making decisions. In my opinion, it is a

robust method for representing reasonable behavior; at the same time, the computational

costs of this method are far too high. For the model to reach an operational level suitable

for simulation, more research should be invested in better understanding how a designer

chooses between actions.

7.3 Experimental Validation

This section concerns human subjects experiments as a method of validating the framework

and associated models. The goal of this section is not to design the details of an exper-

imental plan, but rather to explore important considerations for creating an experiment

and to suggest strategies for investigating the validity of the model. This section begins

by exploring the underlying research question of the experiment. Section 7.3.1 identifies

potential problems to avoid when creating an experiment. Finally, Section 7.3.2 suggests

experiments for validation on a conceptual level.

Perhaps the most important question to ask before designing the experiment is “what

is the experiment intending to test?” When validating this framework, the experimenter

has at least these two options:

• Validate each of the models individually (i.e., the knowledge model, preference model,

and sequential decision making algorithm)

139

• Validate the simulated designer’s decisions as a whole

In my opinion, the main focus of the test should be on the latter and not necessarily test

for similitude in the individual model. The former test relies on the assumption that an

accurate knowledge model and preference model would lead to an accurate prediction in the

designer’s experiment. This would imply that designers use their beliefs and preferences and

a mathematically consistent way, which may not be true. This question of scope hearkens

back to the discussion in the motivation of the inner environment, outer environment, and

interface. If the ultimate goal of the overarching simulation is to explore how the design

problem, designer decisions, and organization dynamics interact to affect organizational

performance and system value, then the most important aspect of the model is the final

decision as this decision is the interface of this model. The framework is effective if it can

return similar decisions as a human designer given the same prior knowledge, alternatives,

and incentive structure, regardless of whether it is effective in modeling the specific beliefs

and reasoning process of the designer.

At the same time, investigating how the designer views uncertainty and preferences

could give insight into how to improve these models to make them more realistic. Data

that allows for more accurate modeling of preference and knowledge would be incredibly

useful. Instead of asking the question “can a utility function accurately model a designer’s

preferences under uncertainty?” perhaps a better question is “what utility function form

best approximates a designer preferences?” Testing individual models can also give insight

as to why the model might fail to capture human decision making. Experimenting with

individual models would provide a degree of traceability and guide the modeler on which

models need to be improved.

7.3.1 Potential Pitfalls

Throughout the development of the framework, the models and ideas were tested through

informal polls and interviews with engineering graduate students. Although the results are

not rigorously scientific, some of the observations can help inform the development of a

more rigorous human subjects experiment. A major challenge in developing an experiment

140

is creating similar conditions in both the human subject and the computer simulation. This

can be a more challenging problem than it initially appears; designers typically do not think

in terms of uncertainty and utility nor do they describe their actions from an information

perspective. Therefore, care must be taken when creating experiments involving human

subjects as it is difficult to create the same initial conditions in the problem. Specifically,

the experimenter should avoid the following common pitfalls that were found through the

informal experiments I conducted.

7.3.1.1 Controlling Knowledge

As Equation 25 demonstrated, the designer’s beliefs are contingent on his utility function

and beliefs about the alternatives. Therefore, in order to create an experiment under the

same conditions as a simulation, it is important that the designer and simulation begin the

problem with the same knowledge as the simulation.

This can be accomplished in two different manners:

1. Eliciting the designer’s prior knowledge about the design problem for use in the simu-

lation: the human subject can be asked about their knowledge prior to performing the

experiment; this knowledge can then be programmed into the simulation’s Gaussian

process model.

2. Experimenting with an unfamiliar design problem: if a design problem is chosen such

that the designer has no prior knowledge, then the experimenter can easily control

the information that the human subject has at the beginning of the design process.

The former option relies on the human’s ability to specify their knowledge and uncertainty.

This can be challenging, as designers may not think of their beliefs in terms of probability

distributions. It is also contingent upon the ability to transfer that knowledge into the

simulation. The latter option is likely the most effective. By using an unfamiliar problem,

the modeler can accurately control both the designer’s knowledge and the simulation’s

knowledge.

141

7.3.1.2 Unintended Uncertainty

In addition to controlling the designer’s prior knowledge about a design, the experimenter

should use caution when generating this prior knowledge. Practicing designers do not

tend to view their beliefs as probability distributions. If a designer is given probability

distributions as information to use in the experiment, then his or her beliefs can actually

differ significantly from these probability distributions.

Before receiving the results of the computer simulation of the “Strategy in Variable

Fidelity Analysis” example problem, several engineering students were given the same in-

formation in the problem statement and asked to make a decision. The decisions largely

fell into two separate groups; while many chose to run the low fidelity on Design A, sev-

eral people decided to analyze Requirement 2 of Design C with the high fidelity model, an

alternative the simulated designer finds to be relatively poor (his 6th preferred option). In

my opinion, the discrepancy lies in the manner in which I facilitated the human’s beliefs.

When I inquired as to the reasoning behind the designer’s decision, one subject responded

that he would would run the high fidelity model on Design C which would “tell me how

correct my own beliefs were.” Already the designer has uncertainty is his beliefs given the

probability distribution; however, the designer’s comments imply an extra layer of beliefs

which I refer to as “meta-beliefs.” These meta-beliefs are beliefs about the prior knowledge

and an acknowledgment that the designer does not trust the information given in the prob-

lem statement. These beliefs are problematic, since the designer’s knowledge is no longer

represented by the information in Table 1. Instead, the meta-beliefs imply a wider uncer-

tainty over the distributions; while the simulation believes that the probability of Design C

meeting requirement to is approximately 77%, the human now believes this probability to

be smaller. Hence, the human designer makes different decisions than the simulation.

7.3.1.3 Eliciting Preferences

The modeler should use caution when eliciting a designer’s preferences through lotteries.

The ability to create an accurate utility function hinges on two assumptions: (1) that the

designer will be able to determine which lottery he or she prefers and (2) that the designer

142

will have the same preferences when facing an actual design problem. The second assump-

tion is likely the most problematic as designers typically think of designs as deterministic

systems and not lotteries. In general, I discourage the use of pure lotteries with engineers,

such as the one in Figure 22, as the concept is rather foreign. Instead, I recommend rephras-

ing lotteries in a way that designers would find more familiar. Some examples are given in

the next subsection.

7.3.2 Suggested Guidelines Experiments

For any experiment, it is important that the incentive structure for the designer be clearly

defined. This helps to remove ambiguity in defining preferences. For example, the human

subjects can be given a reward (monetary or otherwise) depending on how well the subjects

meet the requirements for the design. Using a set reward structure, the experiment can

create the appearance of both hard and soft requirements, offering no reward if certain

requirements are not met. The human subject should also have a clear understanding of

the consequences of going over time. Alternatively, instead of time, the designer can be

given a computational “budget”. To model discounting, the designer might be allowed to

keep the portion of the budget that he or she does not use.

At the same time, the modeler should use caution when creating a reward system; this

is especially true if the modeler is trying to mimic an actual engineering organization. With

the reward structure clearly represented, the human subject may start to view the design

process as a game, and his or her behavior may depart from his or her behavior in a normal

design situation. Often the rewards for an engineer are more implicitly understood by the

engineer. For example, the designer knows that strong performance will likely lead to a

promotion in the organization in the future; the designer is not given a specific monetary

reward for a particular performance.

As mentioned above, giving subjects beliefs as probability distributions can create meta-

beliefs and lead to unintended consequences. If any probabilistic data is given to the de-

signer, it should be presented as factual information and not beliefs. In general, the use of

the word “beliefs” should be avoided when presenting information as it can lead the human

143

subjects to develop meta-beliefs. Words can also be used that have an implied uncertainty.

For example, one could tell the designer that induced drag “scales with” the reciprocal of

aspect ratio and that a drag coefficient was “approximated” to equal 0.3. These words

imply that uncertainty exists in the exact relation between alternatives and attributes.

Perhaps the most effective means for generating beliefs would be to let the designer

experiment with information and form their beliefs organically. For example, the subject

could be allowed to use a low fidelity model and a high fidelity model on a “practice”

problem before the experiment begins. By comparing the differences between the models,

the designer can obtain their own ideas about the uncertainty in the low fidelity model. In

this way, the experiment avoids the use of probability distributions which tend to increase

the uncertainty of the designer.

As mentioned earlier, the human subject should be unfamiliar with the problem in

order to control their knowledge. A conceptual design problem would also likely be most

appropriate, since detailed design problems tend to contain less uncertainty. However, the

amount of information given to the designer should be as small as practical; the Gaussian

process model is able to store and parse large amounts of information simultaneously, which

an inexperienced human may not be able to match.

Using the methods described above, the modeler can create a simulation and human

subjects experiment that have very similar initial conditions. This will be helpful when

validating the designer’s decisions. However, this will provide little insight into a designer’s

preferences and beliefs. Follow-up interview questions could be useful in better understand-

ing the designer’s reasoning. However, as mentioned earlier, more accurate results can likely

be obtained if probability distributions and lotteries are avoided. Instead, these questions

can be rephrased in ways which the designer might be more familiar. For example, rather

than asking a designer to draw their beliefs and confidence intervals, the experimenter could

ask the designer “At what values of x do you think it is likely that y is greater than 5?”,

“What is the highest value of y you would expect at this x” and “At what value of x do

you trust the model the least?” If a particular distribution is assumed (such as a normal

144

distribution), these questions can give insight to the general shape. Using the first and sec-

ond questions, the modeler has enough information to determine the mean and variance of

the designer beliefs. The last question can help the modeler determine where the maximum

variance in the model lies. While these questions may not give a precise distribution, they

can provide insight into the shape of the designer’s belief structure.

145

CHAPTER VIII

CONCLUSION AND FUTURE DIRECTIONS

8.1 Summary of Contributions

This thesis has outlined a framework for mimicking engineering decision making computa-

tionally. Chapter 3 described models for representing the designer’s knowledge and pref-

erences. A custom covariance function was derived to better represent the designer’s be-

liefs when extrapolating information. A utility function was proposed for a designer in a

requirements-driven organization. This utility function was then transformed into a multi-

attribute utility function to represent the designer’s preferences in the context of multiple

objectives. This framework was demonstrated on both a single dimension and multiple

dimension problem in Chapter 4.

Chapter 5 extended the framework to account for sequential decision making. Algo-

rithms were derived to calculate expected utility for actions in addition to alternatives.

Guidelines were given for encoding these actions into the framework. The utility function

of Chapter 3 was extended to account for time and budget. In Chapter 6, the single di-

mension example from Chapter 4 was revisited to explore the effect of both the sequential

decision making and utility of time algorithm. Additionally, the sequential decision making

algorithm was demonstrated on a variable fidelity analysis problem involving three alter-

natives, two tools, and two requirements. Finally, the concept of validation with a human

subjects experiment was analyzed with several recommendations made.

Overall, the demonstrations have the shown strong potential for the framework to mimic

engineering decision making. The variable fidelity problem in Chapter 6 shows the designer

develops a clear and logical strategy when choosing actions, accounting for contingencies in

ways shared by its human counterparts. At the same time, there are still opportunities for

significant improvement as demonstrated by the first example in Chapter 6; for example,

improvements can be made to the learning model to better account for the way the designer

146

updates his or her beliefs when encountering “surprising” information. As Chapter 7 indi-

cated, data from a human subjects experiment could lead to substantial improvements in

the models.

8.2 Directions for Future Work

8.2.1 Model Improvements

Many improvements can be made to the models themselves to enhance the validity of the

model. Some of these have already been identified: hyperparamter selection including noise

can be investigated to determine a robust method for learning that mimics how humans

actually learn. The shape of the utility function can be investigated to determine a more

precise for functional form for replicating designer preferences.

In regards to sequential decision making, there is much room for improvement in terms

of computation time. If robust heuristics can be determined that would simplify the decision

tree, then huge gains could be made in speed of computation. Research could also explore

the limits of humans ability to make sequential decision making to determine where the

framework might differ from that of a human.

8.2.2 Organization Simulation

As mentioned in Chapter 1, then ultimate goal of this framework is to incorporate it into an

organizational dynamics simulation. To do so, the simulated designer needs the capability

to interact with other designers and management. Chapter 5 has already shown how actions

such as consulting experts and meeting with other designers can be incorporated into the

action space. However, questions of organizational hierarchy and communication still need

to be investigated. For an individual designer, the framework is formulated in terms of in-

formation. When multiple designers are involved, this information is transferred to different

teams through communication, which can alter the information in unintended ways. These

concepts need to be investigated in order to accurately model real organizations.

The creation of such a simulation could lead to very insightful experiments. The sequen-

tial decision making algorithm’s independence from a specific reality model is especially

147

powerful; running the simulation only once, the modeler can investigate under what con-

ditions the designer would make certain decisions. This enables the framework to answer

many interesting questions about the designer’s behavior, such as:

• Under what conditions would designers go over their allotted amount of time? How

do their interactions with other organization members influence their propensity to

miss a deadline?

• How good are the designers’ final designs compared to what the organization would

consider the “best” design?

• Given multiple tasks, is a designer effective in managing his or her time?

• In what ways does communication between designers improve and impede the design

process?

These are just some of the questions that could be investigated with a model of a full

organization. Similarly, the modular structure of the framework allows the modeler to test

normative models for the same design problem. For example, a normative value model

could replace the designer’s multi-attribute utility function; the results of the value model

could then be compared to the other utility functions.

8.2.3 Mechanism Design

Given the same set of actions and identical prior knowledge about a design problem, the

only thing which differentiates two designers is their utility function. Since the utility

function is derived from the designer’s incentive structure, one could ask the question “What

organization structure and incentives leads to the best organization performance?” In the

field of game theory, mechanism design attempts to design the best game in order return

a desired outcome. Hazelrigg advocates the use of mechanism design in order to align

the interests of the designer with the interests of the organization [31]. In this way, a

designer could experiment with different utility functions to determine which one maximizes

organization performance and system value.

148

APPENDIX A

DERIVATION OF GAUSSIAN PROCESS MODEL COVARIANCE

FUNCTION

As mentioned in Section 3.3.2, current mean and covariance functions fail to capture the de-

sired characteristics of beliefs in extrapolation. The purpose of this appendix to to explicitly

derive the covariance function used throughout the thesis. The following assumptions were

made about the designer’s beliefs regarding the functional relationship between alternatives

and attributes:

• The slope of the underlying function is smooth and infinitely differentiable (this implies

that the underlying function itself is also smooth).

• In the absence of information, the expectation of the slope is stationary and assumed

to be zero (principle of indifference).

• The variability in slope in the extrapolated region is consistent with the variability in

slope in the interpolated region.

Since the assumptions are primarily concerned with the slope of the Gaussian process

model, my strategy for derivation was to define the slope of the Gaussian process model with

the desired properties and then to calculate the resulting mean and covariance functions.

This strategy is effective due to the fact that derivatives are linear operators; since a linear

operation on a normal distribution results in a normal distribution, the derivative of a

Gaussian process is also a Gaussian process.

The second assumption states that the slope of the expectation of the Gaussian process

should return to zero in the absence of information. If the derivative of a Gaussian process

is also a Gaussian process, this implies that the mean function for the slope is equal to

zero (since a Gaussian process returns to its mean function in the absence of information).

With the mean function of the slope defined, the only remaining choice is a selection of a

covariance function for the slope. For this derivation, the squared exponential covariance

149

was chosen to represent the slope. Theoretically, any covariance function could be used; the

squared exponential was chosen primarily for its simple analytic form which can be easily

integrated. This selection implies the first assumption.

Drawing on work by Solak et al. on incorporating derivative observations into Gaussian

process models, I defined the covariance between two derivative observations as the squared

exponential covariance function [67]:

cov

(
dy

dx
,
dy∗

dx∗

)
= σ2exp

(
−δ
(
x,x∗

)2)
(57)

where δ is a weighted Euclidean distance between points:

δ(x,x∗) =

(
m∑
i=1

θ2i (xi − x∗i)2
)1/2

(58)

Note that the validity of using the squared exponential covariance function is contingent

on the designer’s beliefs of the underlying function; specifically, that the slope is stationary

and continuous. If the designer did not believe these assumptions about the underlying

function then a different covariance function should be used.

The training data used in the Gaussian process models is often function value observa-

tions, not slope observations. Therefore, we require a formula for the covariance between

two function value observations. This can be found by integrating Equation 57 twice (this is

equivalent to treating the training points as integral observations on a squared exponential

Gaussian process model):

cov(y, y∗) = σ2
∫ x

−α

∫ x∗

−α
exp
(
−δ
(
x,x∗

)2)
dxdx∗ (59)

Since an integral is defined between two limits, an additional parameter, −α, must be

introduced into the equation. This parameter can be thought of as a reference point, a

known value from which all the observations are based. In other words, all functions whose

integral from −α to x does not equal the observation at x will be eliminated from the prior.

Therefore, in order to make an observation at an x location, the function value at reference

point must be fully defined. At this location, the Gaussian process assigns the mean value

to the reference point.

150

x

f
(x

)

−2 −1 0 1 2 3
−2

−1

0

1

2

3

Figure 69: Uncertainty is zero at reference point even in the absence of training data at the
reference

Choosing this reference point can be problematic, since no points may be known with

certainty. In a way, the Gaussian process model is adding information that we may not have.

Figure 69 represents this problem; The Gaussian process model is given only information

at x = 1. Since the reference point α is set to 0, the Gaussian process assumes a function

value at the reference. Note that this function value was not given as training data; the

Gaussian process has added information to the model that was not explicitly defined.

Fortunately, as the reference point moves infinitely far way from the data, the effect

of the reference point on the Gaussian process model tends towards zero. Therefore, by

setting α to infinity, we can achieve the desired Gaussian process model without having to

define a reference point. To do this, we leave α as variable and carry it through the integral

in Equation 59. Finally, we take the limit of Equation 3.

cov(yi, yj) =
σ2

2

[
√
π
(

2αm + δ(0,x) + δ(0,x∗) + δ(x,x∗)erf
(
δ(x,x∗)

))
− exp

(
−δ(x,x∗)2

)
− 1

]
(60)

f |X,Xtr,ftr ∼ N
(

lim
α→∞

KX,XtrKXtrf , lim
α→∞

KX −KX,XtrKXtrKXtr,X

)
(61)

151

Like the squared exponential function, this covariance function assumes that the under-

lying function is continuous and smooth. Although the equation appears otherwise, this

covariance function is actually stationary; the terms that are not functions of δ(x,x∗) are

eliminated after the limit is applied. Unfortunately, I have been unable to derive an an-

alytical form of Equation 8 with the limit applied for n training points. Therefore, I am

unable explicitly prove that the covariance function is stationary. However, I have derived

an explicit form for up to three training points; since the mean and variance were station-

ary in these cases, I believe this is strong evidence that the function is stationary for any

arbitrary number of training points.

The presence of the limit in Equation 8 can be computationally cumbersome, since most

programming languages are unable to symbolically evaluate the limit as α goes to infinity.

Instead, the Gaussian process model can be approximated by choosing a value of α that

is much larger than the range of x. In general, two orders of magnitude is sufficient to

produce results that are indistinguishable from evaluating the true limit. However, care

must be exercised when choosing a value of α, since values that are too large will result

in an ill-conditioned matrix. This can especially be an issue when maximizing marginal

likelihood; as can be seen in Equation 6, the second term in the equation is the logarithm of

the determinant of a covariance matrix. For ill-conditioned matrices, the determinant can

be very close to zero, resulting in very large fluctuations in marginal likelihood. Because

of this, optimizing marginal likelihood can sometimes be challenging. One strategy for

overcoming this is to use a small amount of noise in all observations, even if the noise

should be equal to zero. This effectively prevents the determinant of the covariance matrix

from reaching zero but does not significantly affecting the shape of the Gaussian process

model.

152

APPENDIX B

DERIVATION OF SEPARATED EXPECTED UTILITY EQUATION

This appendix will demonstrate how the multi-dimensional integral can be transformed into

the multiplication of several single-dimension integrals. If numerical integration methods

are used that involve a grid along each dimension, this alternative form can offer substantial

computational savings.

Consider the following scenario, where the designer is faced with three requirements: u1

and u2 are hard requirements and us is a soft requirement. The expected utility of each

alternative can be calculated using the following equation:

E[u(x)] =

∞∫
−∞

∞∫
−∞

∞∫
−∞

u(g1, g2, gs)p(g1|x)p(g2|x)p(gs|x)dg1dg2dgs (62)

The requirements-driven utility function from Equation 21 can be substituted into Equation

62:

E[u(x)] =

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
kh + (1− kh)us

)
u1u2p(g1|x)p(g2|x)p(gs|x)dg1dg2dgs (63)

If g1 is integrated first, then all variables in Equation 63 are treated as constants:

E[u(x)] =

∞∫
−∞

∞∫
−∞

(
kh + (1− kh)us

)
u2p(g2|x)p(gs|x)

[∞∫
−∞

u1p(g1|x)dg1

]
dg2dgs (64)

The term in brackets is simply the expected utility of x with respect to the first re-

quirement. Since this is a definite integral, this term is a constant for the remainder of the

integrals. Therefore, Equation 64 can be rewritten as:

E[u(x)] =

[∞∫
−∞

u1p(g1|x)dg1

] ∞∫
−∞

∞∫
−∞

(
kh + (1− kh)us

)
u2p(g2|x)p(gs|x)dg2dgs (65)

A similar argument can be made for the remaining hard requirements. Therefore, for n

hard requirements, the expected utility equation becomes:

E[u(x)] =

∞∫
−∞

(
kh + (1− kh)us(gs)

)
p(gs|x)dgs

n∏
i

∞∫
−∞

u(gh,i)p(gh,i|x)dgh,i (66)

153

REFERENCES

[1] Abbas, A. E. and Matheson, J. E., “Normative target-based decision making,”

Managerial and Decision Economics, vol. 26, no. 6, pp. 373–385, 2005.

[2] Ahmed, S. and Wallace, K., “Identifying and support the knowledge needs of

novice designers within the aerospace industry,” Journal of Engineering Design, vol. 15,

pp. 475–492, 2004.

[3] Ahmed, S. and Wallace, K., “Understanding the knowledge needs of novice design-

ers in the aerospace industry,” Design Studies, vol. 25, pp. 155–173, 2004.

[4] Ahmed, S., Wallace, K., and Blessing, L., “Understanding the differences between

how novice and experienced designers approach design tasks,” Research in Engineering

Design, vol. 14, pp. 1–11, 2003.

[5] Arrow, K., “The theory of risk aversion,” in Essays in the Theory of Risk-Bearing,

Markham Publishing Company, 1971.

[6] Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., and

Saleem, J., “Engineering design processes: A comparison of students and expert

practitioners,” Journal of Engineering Education, vol. 96, pp. 359–379, OCT 2007.

[7] Augustine, N., Augustine’s Laws. American Institute of Aeronautics and Astronau-

tics, 1997.

[8] Ball, L., Evans, B., and Dennis, I., “Cognitive processes in engineering design: A

longitudinal study,” Ergonomics, vol. 37, no. 11, pp. 1753–1786, 1994.

[9] Browning, T., Deyst, J., and Eppinger, S., “Adding value in product develop-

ment by creating information and reducing risk,” IEEE Transactions on Engineering

Management, vol. 49, 2002.

154

[10] Cagan, J. and Kotovsky, K., “Simulated annealing and the generation of the objec-

tive function: a model of learning during problem solving,” Computational Intelligence,

vol. 13, no. 4, pp. 534–581, 1997.

[11] Carley, K. and Gasser, L., “Computational organization theory,” Multiagent sys-

tems: A modern approach to distributed artificial intelligence, pp. 299–330, 1999.

[12] Chanron, V. and Lewis, K., “A study of convergence in decentralized design,” in

ASME Design Engineering Technical Conference, pp. 2–6, 2003.

[13] Chanron, V., Singh, T., and Lewis, K., “Equilibrium stability in decentralized

design systems,” International journal of systems science, vol. 36, no. 10, pp. 651–662,

2005.

[14] Chase, W. and Simon, H., “Perception in chess,” Cognitive Psychology, vol. 4, pp. 55–

81, 1973.

[15] Christie, J. D., “DOD on a glide path to bankruptcy.,” Proceedings of the United

States Naval Insitute, vol. 134, no. 1264, pp. 22 – 25, 2008.

[16] Collopy, P., “Adverse impact of extensive attribute requirements on the design of

complex systems,” in 7th Aviation Technology, Integration, and Operations (ATIO)

Conference, 2007.

[17] Cross, N., Designerly Ways of Knowing. Springer-Verlag London Limited, 2006.

[18] Dorst, K. and Cross, N., “Creativity in the design process: co-evolution of prob-

lemsolution,” Design Studies, vol. 22, no. 5, pp. 425 – 437, 2001.

[19] Ellsberg, D., “Risk, ambiguity, and the savage axioms,” The Quarterly Journal of

Economics, vol. 75, no. 4, pp. pp. 643–669, 1961.

[20] Eppinger, S., Whitney, D., and Gebala, D., “Organizing the tasks in complex

dseign projects: Development of tools to represent design procedures,” in NSF Design

and Manufacturing Systems Conference, 1992.

155

[21] Eppinger, S., Whitney, D., Smith, R., and Gebala, D., “A model-based method

for organizing tasks in product development,” Research in Engineering Design, vol. 6,

no. 1, pp. 1–13, 1994.

[22] Fischhoff, B., Goitein, B., and Shapira, Z., “Subjective expected utility: A

model of decision-making”.,” Journal of the American Society for Information Science,

vol. 32, no. 5, pp. 391 – 399, 1981.

[23] Galbraith, J., Organization Design. Addison-Wesley Publishing Co., 1977.

[24] Geiselhart, K., “Enggen engine cycle analysis program release 4.0 user’s guide,”

tech. rep., NASA Langley Research Center, 2009.

[25] Gero, J., “Design prototypes: a knowledge representation schema for design,” AI

magazine, vol. 11, no. 4, p. 26, 1990.

[26] Gersick, C. J. G., “Marking time: Predictable transitions in task groups,” The

Academy of Management Journal, vol. 32, no. 2, pp. pp. 274–309, 1989.

[27] Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., and Clark-

son, P., “Change propagation analysis in complex technical systems,” Journal of

Mechanical Design, vol. 131, p. 081001, 2009.

[28] Hayes, C. and Akhavi, F., “Design decision making: Adapting mathematical

paradigms to fit designer’s actual needs,” in Proceedings of the Human Factors and

Ergonomics Society 52nd Annual Meeting, 2008.

[29] Hayes, C. and Akhavi, F., “Combining naturalistic and mathematical decision aids

to support product design,” in 9th International Conference on Naturalistic Decision

Making, 2009.

[30] Hazelrigg, G. A., “A framework for decision-based engineering design,” Journal of

Mechanical Design, vol. 120, pp. 653–658, 1998.

[31] Hazelrigg, G., Systems Engineering: An Approach to Information-Based Design.

Prentice-Hall, 1996.

156

[32] Hazelrigg, G., Fundamentals of Decision Making for Engineering Design and Sys-

tems Engineering. 2012.

[33] Jansson, D. and Smith, S., “Design fixation,” Design Studies, vol. 12, no. 1, pp. 3–11,

1991.

[34] Jin, Y. and Levitt, R. E., “The virtual design team: A computational model of

project organizations,” Computational & Mathematical Organization Theory, vol. 2,

pp. 171–195, 1996. 10.1007/BF00127273.

[35] Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient global optimization of

expensive black-box functions,” Journal of Global Optimization, vol. 13, pp. 455–492,

1998.

[36] Kahneman, D. and Tversky, A., “Prospect theory: An analysis of decision under

risk,” Econometrica, vol. 47, no. 2, pp. pp. 263–292, 1979.

[37] Keeney, R. and Raiffa, H., Decisions with Multiple Objectives. Cambridge Univer-

sity Press, 1993.

[38] Kim, H. M., Michelena, N., Papalambros, P., and Jiang, T., “Target cascading

in optimal system design,” Journal of Mechanical Design, vol. 125, pp. 474–480, 2003.

[39] Kreps, D., Notes on the Theory of Choice. Westview Press, 1988.

[40] Kroo, I., Braun, R., Gage, P., and Sobieski, I., “Multidisciplinary optimiza-

tion methods for aircraft preliminary design,” in 5th Symposium on Multidisciplinary

Analysis and Optimization, 1994.

[41] Lee, B. and Pardis, C., “Accounting for the duration of analyses in design process

decisions,” in 2010 SAE World Congress, 2010. Detroit, MI.

[42] Lewis, K. and Mistree, F., “Modeling interactions in multidisciplinary design: A

game theoretic approach,” AIAA journal, vol. 35, pp. 1387–1392, 1997.

157

[43] Lewis, K. and Mistree, F., “Collaborative, sequential, and isolated decisions in

design.,” Journal of Mechanical Design, vol. 120, no. 4, pp. 643 – 652, 1998.

[44] Loch, C. and Terwiesch, C., “Rush and be wrong or wait and be late? a model

of information in collaborative processes,” Production and Operations Management,

vol. 14, pp. 331–343, 2005.

[45] McCorduck, P., Machines who think: a personal inquiry into the history and

prospects of artificial intelligence. A.K. Peters, 2004.

[46] Mehalik, M. and Schunn, C., “What constitutes good design? a review of empirical

studies of design processes,” International Journal of Engineering Education, vol. 22,

no. 3, p. 519, 2007.

[47] Mistree, F., Hughes, O., and Bras, B., “Compromise decision support problem and

the adaptive linear programming algorithm,” Progress in Astronautics and Aeronautics,

vol. 150, pp. 251–251, 1993.

[48] Nelson, J. R. and Timson, F. S., “Relating technology to acquisition costs: Aircraft

turbine engines,” tech. rep., Rand Corporation, 1974.

[49] Okhuysen, G. A. and Waller, M. J., “Focusing on midpoint transitions: An anal-

ysis of boundary conditions,” The Academy of Management Journal, vol. 45, no. 5,

pp. pp. 1056–1065, 2002.

[50] Olson, J. T., The Collective Potential: Achieving Organizational Potential by Design.

PhD thesis, Carnegie Mellon University, 2006.

[51] Perlow, L. A., “The time famine: Toward a sociology of work time,” Administrative

Science Quarterly, vol. 44, no. 1, pp. 57–81, 1999.

[52] Pimmler, T. and Eppinger, S., “Integration analysis of product decompositions,”

in ASME Design Theory and Methodology Conference, 1994.

[53] Pratt, J. W., “Risk aversion in the small and in the large,” Econometrica, vol. 32,

no. 1/2, pp. pp. 122–136, 1964.

158

[54] Purcell, A. and Gero, J., “Effects of examples on the results of a design activity,”

Knowledge-Based Systems, vol. 5, no. 1, pp. 82 – 91, 1992. ¡ce:title¿Artificial Intelligence

in Design Conference 1991 Special Issue ¡/ce:title¿.

[55] Rasmusen, E., Games and Information: An Introduction to Game Theory. Blackwell

Publishers, 1989.

[56] Rasmussen, C. and Williams, C., Gaussian Processes for Machine Learning. MIT

Press, 2006.

[57] Riihimäki, J. and Vehtari, A., “Gaussian process with monotonicty information,”

in 13th International Conference on Artificial Intelligence and Statistics, 2010.

[58] Robinson, M., “How design engineers spend their time: Job content and task satis-

faction,” Design Studies, vol. 33, pp. 391–425, 2012.

[59] Roozenburg, N. and Cross, N., “Models of the design process: integrating across

the disciplines,” Design Studies, vol. 12, no. 4, pp. 215 – 220, 1991.

[60] Schank, R. C. and Abelson, R. P., “Scripts, plans, and knowledge,” in Proceedings

of the 4th international joint conference on Artificial intelligence - Volume 1, (San

Francisco, CA, USA), pp. 151–157, Morgan Kaufmann Publishers Inc., 1975.

[61] Seers, A. and Woodruff, S., “Temporal pacing in task forces: Group development

or deadline pressure?,” Journal of Management, vol. 23, no. 2, pp. 169 – 187, 1997.

[62] Simon, H. A., “A behavioral model of rational choice,” Quarterly Journal of Eco-

nomics, vol. 69, no. 1, pp. 99 – 118, 1955.

[63] Simon, H. A., “The structure of ill structured problems,” Artificial Intelligence, vol. 4,

no. 34, pp. 181 – 201, 1973.

[64] Simon, H. A., The Sciences of the Artificial. The MIT Press, 3rd ed., 1996.

[65] Smith, R. and Eppinger, S., “Identifying controlling features of engineering design

iteration,” Management Science, pp. 276–293, 1997.

159

[66] Smith, R. and Eppinger, S., “A predictive model of sequential iteration in engineer-

ing design,” Management Science, vol. 43, no. 8, pp. 1104–1120, 1997.

[67] Solak, E., Murray-Smith, R., Leithead, W., Leith, D., and Rasmussen, C.,

“Derivative observations in gaussian process models of dynamic systems,” in Confer-

ence on Neural Information Processing Systems (Becker, S., Thrun, S., and Ober-

mayer, K., eds.), Advances in neural information processing systems 15, MIT Press,

2003.

[68] Takeda, H., Veerkamp, P., and Yoshikawa, H., “Modeling design process,” AI

magazine, vol. 11, no. 4, p. 37, 1990.

[69] Thompson, S. and Pardis, C., “An investigation into the decision analysis of design

process decisions,” Journal of Mechanical Design, vol. 132, 2010.

[70] Ullman, “A model of the mechanical design process based on empirical data,” Artifi-

cial Intelligence for Engineering Design, Analysis, and Manufacturing, vol. 2, pp. 33–

52, 1988.

[71] Von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behav-

ior. Princeton University Press, 3rd ed., 1953.

[72] Waller, M. J., Zellmer-Bruhn, M. E., and Giambatista, R. C., “Watching the

clock: Group pacing behavior under dynamic deadlines,” The Academy of Management

Journal, vol. 45, no. 5, pp. pp. 1046–1055, 2002.

[73] Younossi, O., Stem, D., Lorell, M., and Lussier, F., “Lessons learned from the

F/A-22 and F/A-18E/F development programs,” tech. rep., Rand Corporation, 2005.

160

