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Abstract

Network virtualization allows operators to host multiple client services over their

base physical infrastructures. Today, this technique is being used to support a wide range

of applications in cloud computing services, content distribution, large data backup, etc.

Accordingly, many different algorithms have also been developed to achieve efficient mapping

of client virtual network (VN) requests over physical topologies consisting of networking

infrastructures and datacenter compute/storage resources. However as applications continue

to expand, there is a growing need to implement scheduling capabilities for virtual network

demands in order to improve network resource utilization and guarantee quality of service

(QoS) support.

Now the topic of advance reservation (AR) has been studied for the case of scheduling

point-to-point connection demands. Namely, many different algorithms have been developed

to support various reservation models and objectives. Nevertheless, few studies have looked

at scheduling more complex “topology-level” demands, including virtual network services.

Moreover, as cloud servers expand, many providers want to ensure user quality support at

future instants in time, e.g., for special events, sporting venues, conference meetings, etc.

In the light of above, this dissertation presents one of the first studies on advance

reservation of virtual network services. First, the fixed virtual overlay network scheduling
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problem is addressed as a special case of the more generalized virtual network scheduling

problem and a related optimization presented. Next, the complete virtual network schedul-

ing problem is studied and a range of heuristic and meta-heuristic solutions are proposed.

Finally, some novel flexible advance reservation models are developed to improve service

setup and network resource utilization. The performance of these various solutions is eval-

uated using various methodologies (discrete event simulation and optimization tools) and

comparisons made with some existing strategies.
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Chapter 1 Introduction

This dissertation studies advance reservation scheduling of virtual network services in

cloud-based infrastructures. This chapter presents an overview of some recent developments

in the field along with the key motivations for the work. Subsequently, the major contribu-

tions of the research are presented in a high-level manner along with an outline of the rest

of the dissertation.

1.1 Background Overview

Recent decades have seen numerous developments in networking technologies, both

wired and wireless. These many advances have delivered very high bandwidth scalability

at reduced price-points, enabling ultra-high bandwidth connectivity across extended geo-

graphic domains, i.e., gigabits over 100-1,000 km ranges. At the same time computing

and storage technologies have also seen rapid evolutions and much-improved cost efficien-

cies. These collective developments have facilitated high-bandwidth interconnection between

large-scale storage/computing datacenter sites and led to the emergence of modern cloud-

computing service paradigms. Namely, cloud-based services use advanced software virtu-

alization techniques (at the server, storage, and network levels) to provision virtualized

infrastructures/applications over physical substrate infrastructures consisting of datacenters

and interconnecting high-speed networks. This provision allows organizations to “outsource”
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their internal datacenter needs to software-based services hosted by external cloud provider

organizations, Figure 1.1 [NI01]. Namely, these providers aggregate resources from infras-

tructure providers (InP) to provide end-to-end cloud services for clients and organizations.

Figure 1.1: Virtual Network Service Infrastructure

Overall, cloud-computing services offer many benefits. Foremost, cloud providers can

host multiple customers over a common physical infrastructure, leading to unprecedented

cost efficiencies for their clients. Meanwhile, client organizations can heavily reduce (even

eliminate) the higher costs associated with maintaining and interconnecting their own in-

ternal datacenter facilities, i.e., capital and operational expenditures. Furthermore, cloud

users can also leverage abundant datacenter resources to scale their own service offerings,

critical for increased market competitiveness. Finally, the distributed nature of the cloud

allows client organizations to distribute their resource allocations and achieve much better

responsiveness and reliability.
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To date several key cloud-computing services have emerged, i.e., infrastructure-as-

a-service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS). Namely,

IaaS offerings provide an interconnected set of virtualized storage/computing facilities, i.e.,

appropriately abstracting out details relating to physical locations, processor types, storage

data partitioning, etc. Meanwhile PaaS goes a step further by provisioning a generalized

development platform for clients, i.e., operating system, database, web server, etc. Finally,

SaaS supports full turn-key applications and databases, i.e., highest level of specialization.

Overall, the IaaS model is the closest to the networking layer and offers the most flexibility

for users, i.e., in terms of hosting different operating systems, applications, etc. Some popular

IaaS services are also shown in Figure 1.2.

Now consider the actual hosting of virtualized infrastructure (IaaS) services in dis-

tributed cloud environments. Here, end-user clients/organizations will usually specify a

given set of computing and storage resources (to be interconnected across physical cloud

substrates) to meet their business needs. On a high level, these demands can be formulated

as virtual networks (VN) overlays which must be appropriately “mapped” or “embedded”

onto underlying substrate infrastructures. Namely, a VN is a set of virtual nodes (VN nodes)

interconnected by a set of virtual links (VN links). Here, VN nodes have specific storage

and computation resource requirements which must be reserved at the mapped datacenter

sites/nodes. Moreover, these mappings may be fixed or variable, depending upon specific

customer needs. Similarly, VN links have specific bandwidth and delay requirements which
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Figure 1.2: Cloud Infrastructure-as-a-Service (IaaS) Model

must be mapped to underlying network layer connections.

In light of the above, cloud providers must carefully provision user requests (VN

demands) in order to maximize their revenues and lower costs. Now given the immense

interest and focus on cloud-based service provisioning, the VN provisioning problem has

been well-studied in recent years, i.e., also termed as VN embedding (VNE), see surveys in

[AF01]. Additional studies have also looked at survivable VNE designs to improve (IaaS)

service reliability under a range of single and multi-failure conditions [MR01]. In general,
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these studies have used a wide range of techniques, including optimization, graph-theoretic

heuristics, meta-heuristics, and various approximation strategies, see [MA01] for details.

1.2 Motivations

Current research work on network virtualization has focused on “on-demand” service

provisioning, i.e., immediate reservation (IR). Namely, incoming requests are provisioned

immediately based upon the current resource levels in the network. However as user needs

continue to evolve, IR models can no longer suffice for all scenarios. For example, some

users may want VN resources at very specific future points in time, i.e., fixed start/stop

windows. Others may accept some flexibility as to when and how the VN requests are

provisioned, e.g., when combined with a corresponding price incentive [LM01]. Indeed,

traffic patterns measurements from [DX01] confirm that many popular cloud applications

exhibit higher usage during specific intervals. Hence there is a growing need to support

more time-sensitive VN demands, where users specify a desired time interval, i.e., advance

reservation (AR). Namely, a request start time is typically specified at some time in the

future and the holding time is finite. In general, this capability will provide new avenues to

improve cloud infrastructure resource utilization and user performance guarantees.

Overall, AR scheduling is a well-studied area which has seen some notable contri-

butions in recent years. For example, researchers have developed a range of service models

for point-to-point (P2P) connection demands with fixed start/stop times, variable start/stop

times, and fixed transfer volumes, see survey in [NC02]. Since many of these scheduling sub-
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problems are known to be NP-complete, both optimization and heuristics-based solutions

have been proposed as well. A few studies have also looked at scheduling more complex

service types. For example, [TE01] studies multi-cast connection scheduling in wavelength-

routing optical networks, whereas [FG01] introduces the virtual overlay network scheduling

(VONS) problem to schedule fixed mesh topology overlays.

Building upon the above, this thesis is motivated by the growing need to develop

network scheduling algorithms for more generalized cloud services, particularly those relying

on VN designs (such as IaaS). These services will play a key role in supporting applications

such as cloud backup or mirroring, scientific workflow computing, and event broadcasting

(sports, conventions, etc). Although existing VNE schemes can be used as a guide here, the

added timeline dimension (coupled with node placement concerns) presents a major challenge

here. To date, this problem area remains largely unaddressed and there is significant room for

new contributions. This need forms the key motivation for the research in this dissertation.

1.3 Problem Statement

Early AR studies have only looked at scheduling simpler point-to-point connection

services, with some limited studies on multi-cast demands [TE01]. However, despite these

contributions, few efforts have looked at scheduling more generalized “topology-level” IaaS

demands, e.g., such as fixed overlay networks and virtual networks. Indeed there is a growing

need to consider these expanded service models within the network scheduling context.
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Foremost, new formalized optimization models are required to define the problem

space along with scalable solution strategies to derive meaningful performance bounds. A

key concern here is to handle high variable count and constraint complexities, i.e., as arising

from the added timeline and node placement dimensions (for VN demands). Furthermore,

computationally-efficient heuristic strategies also have to be developed in order to provide

more viable solutions for realistic “on-demand” processing scenarios. Finally, most existing

AR schemes simply provide binary (yes/no) acceptance decisions, leading to higher request

rejection rates. Hence, flexible service models also need to be considered in order to improve

customer satisfaction and operator’s revenue.

To address these concerns, a range of AR schemes are presented for scheduling larger

“topology-level” demands, including VN demands with fixed and variable node placement.

The proposed strategies include optimization, heuristic, and meta-heuristic algorithms. As-

sociated performances are also analyzed for a range of network testcase scenarios using

discrete time event simulation and optimization techniques.

1.4 Proposed Work

This dissertation addresses a range of open issues in the area of VN demand schedul-

ing. In particular, the key contributions here include the following:

1) Novel integer linear programming (ILP) optimization models and improved re-routing

heuristic algorithms for the special case of virtual overlay network scheduling, i.e.,

fixed/pre-defined network site mappings.
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2) Generalized VN scheduling problem formulation along with a range of meta-heuristic

and graph-based heuristic provisioning schemes.

3) Novel advance reservation models for partial virtual network services.

The remainder of this dissertation is organized as follows. Chapter 2 presents a de-

tailed survey of existing advance reservation techniques and related VN embedding schemes.

Chapter 3 then studies the fixed overlay scheduling (VONS) problem and introduces some

dynamic ILP schemes and improved re-routing strategies. Building upon this, Chapter 4

details the generalized VN scheduling problem formulation, as well as a range of solutions.

Finally, Chapter 5 studies novel AR scheduling models to improve blocking performance and

network resource utilization. Last but not least, conclusions and directions for future work

are presented in Chapter 6.
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Chapter 2 Background and Related Work

There is a growing need for scheduling network services at future time intervals.

This approach allows providers to arrange/distribute incoming user requests over time and

improve overall resource utilization. Service reservation is also critical for supporting live

events and broadcasts. Now research in network service reservation has been going on for

over a decade, and a range of schemes have been proposed here including heuristic and

optimization-based strategies. Hence, this chapter reviews the main AR service models and

presents some of the latest work in this area. Open challenges are also presented to motivate

the overall research work in this dissertation.

In general, user service requests can be classified as either immediate reservation

(IR) or advance reservation (AR) types. Namely, IR requests require “immediate” resource

reservation to commence data transmission shortly after arrival. By contrast, AR requests

require data transmission at the future time intervals. Hence AR resources can be reserved

upon arrival, but do not need to be allocated until later (service activation). Overall, a range

of IR and AR service provisioning schemes have been studied, and some of these works are

classified in a high-level manner in Figure 2.1. Further details are now presented.
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Figure 2.1: A Summary of Reservation Models and Service Type

2.1 Immediate Reservation

In general, IR service reservation is a very well-studied topic area. Namely researchers

have looked at provisioning many different demand types, including point-to-point connec-

tions, multicast connections, and broader “topology-based” demands, e.g., virtual networks.

Some of these contributions are now surveyed.

2.1.1 Point-to-Point Connection Routing

The point-to-point IR model basically requires bandwidth connection provisioning

between two nodes in a network. Now given the history of contributions in this area, a full
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survey would clearly be out of scope for the focus of this dissertation. In general, many

IR studies have used graph-based heuristic methodologies such as Dijkstra’s shortest path

[ED01] and Eppstein’s k-shortest path [DE01] as a basis to provide improved throughput

or low latency. Furthermore, many solutions have also developed intelligent dynamic link

weighting schemes to improve load distribution/resource efficiency [CC02]. More formal

studies have also considered a wide range of optimization techniques to bound network

performance when processing batch connection requests. Overall, this problem is termed as

the unsplittable flow problem (UFP) and is known to be NP-complete. In general, point-

to-point IR provisioning is a very mature field and many solutions are already deployed in

operational network settings.

2.1.2 Fixed Overlay Network

As application demands have grown, more advanced service models have also been

introduced, i.e., beyond basic point-to-point connections. For example, overlay services have

been developed to support dedicated bandwidth connections between pre-specified client

premise sites/locations. These services are commonly used by larger corporate clients to

setup customized topology overlays and support specific application types, e.g., voice over IP

(VoIP), video streaming, distributed datacenter backup, etc. For example, the earlier service

overlay network (SON) [ZD01] study presents an optimization model to statically allocate

bandwidth resources for overlay topologies (defined as sets of connection routes between

gateway nodes). This formulation uses queueing models to incorporate oversubscription

11



(in terms of load parameters) and pursues a revenue maximization objective by solving

an approximate solution. Meanwhile, the resilient overlay network (RON) scheme [DA02]

adds failure provisions to improve resiliency and IP routing convergence behaviors. Namely,

virtual links are provisioned between designated routers to run dedicated link-state routing

protocols and achieve various objectives, such as delay or loss minimization, rapid recovery,

etc. Overall findings confirm notable reduction in failure recovery times versus the legacy

border gateway protocol (BGP).

Other studies have also considered overlay topology design for more specialized sce-

narios. For example, [CX02] presents several graph-based heuristic schemes to map Ethernet

local area network (LAN) services over synchronous optical networking (SONET) and syn-

chronous digital hierarchy (SDH) networks using full-mesh, star, and tree overlays. These

algorithm also leverage the SONET/SDH inverse-multiplexing capability to implement path

splitting and achieve partial (i.e, tiered) service recovery. Meanwhile, other efforts have

proposed optical overlay provisioning in fiber-based networks with specialized physical-layer

constraints, e.g., wavelength continuity, fixed/flexible spectrum, regeneration/amplification,

etc [RN01]. For example, [JP01] presents ILP-based schemes for maximizing carried loads

with both fixed and flexible spectrum grids. Findings indicate higher carried loads with the

flexible spectrum approach, albeit the associated ILP model is less scalable.

12



2.1.3 Virtual Network

More recently, evolutions in cloud service paradigms have led to a blurring between

traditional networking and datacenter domains. Hence evolved virtual network (VN) service

types have emerged to provision more capable infrastructures, i.e., IaaS model. Namely

these offerings comprise of distributed pools of computing/storage resources (VN nodes)

interconnected by bandwidth connections (VN links). Clients can essentially leverage these

scalable virtualized infrastructures to rapidly deploy their own services and applications

across wide geographic domains. Now most VN users are not necessarily concerned about

the exact physical location of their resources, i.e., as long as they meet required quality of

service (QoS) and policy constraints. Hence this flexibility allows VN nodes to be mapped

onto a range of potential data-center sites, as opposed to network overlay services where node

mappings are fixed/pre-determined by client premise locations. Along these lines, researchers

have studied many different VN embedding (VNE) schemes. Namely, this procedure involves

mapping VN nodes onto data-center sites and routing VN links over substrate network

connections. Now earlier work in [NC03] has shown the VNE problem to be NP-hard.

Hence most studies have developed optimization and heuristic-based strategies to minimize

substrate network resource usages or maximize carrier revenues, see [NC03], [ZZ02], [MY01],

[HY01]. Some key contributions are now surveyed.

An early VNE optimization scheme is presented in [NC03] based upon a mixed in-

teger linear programming (MILP) approach. Namely, each VN node here is treated as a

13



“meta-node” with infinite-capacity “meta-links” connecting to all substrate nodes. The op-

timization scheme then selects a meta-node to effectively “map” the VN node to a substrate

node and also route its links. However, due to the intractability of the MILP formulation, the

authors also propose two relaxation techniques using rounding algorithms to transform the

formulation to a linear multi-commodity flow (MCF) problem. Overall results show that the

node mapping phase combined with MCF-based link mapping outperforms various existing

schemes in terms of acceptance ratios, revenue, and provisioning cost.

In general, finding optimal solutions for large network problems is quite difficult.

Hence a wide range of scalable VNE heuristics have also been proposed to find “near-optimal”

or acceptable solutions. For example, [ZZ02] uses a discrete particle swarm algorithm to solve

the VNE problem. Here the position vector of a particle is defined as a possible VN embed-

ding solution, and the velocity vector of the particle is used to guide the algorithm towards

a better solution. The algorithm starts by randomly initializing the position and velocity of

one particle within a set of candidate nodes, and then updates them in an iterative manner.

If a VN link mapping fails, the position of the particle is re-initialized. After a pre-defined

maximum number of iterations, the best position in the swarm is chosen as the optimal

VNE solution. This particle swarm method is compared to the best relaxation solution in

[NC03] via simulation, and results indicate higher average revenues and acceptance ratios. A

more recent study in [SA01] also combines two meta-heuristic techniques, namely the greedy

randomized adaptive search procedure (GRASP) and reduced variable neighborhood search

14



(RVNS) scheme. Here VNE provisioning is modeled as a GRASP minimization problem to

reduce load imbalance (no path-splitting). A feasible solution is then found by solving two

sub-problems, i.e., node embedding and link embedding. In order to apply the RVNS meta-

heuristic, two neighborhood structures (to re-allocate a virtual link and re-allocate a node

with its links) are devised to move to a better solution. Multiple structures are explored

iteratively, until no improvement is achieved after five rounds. Overall simulation results

show this combined meta-heuristic approach achieves higher acceptance ratios and average

revenues as compared to the greedy and rounding scheme in [NC03].

Finally, a number of graph-based algorithms have also been developed for more realis-

tic “on-demand” VNE provisioning scenarios. In general these schemes can be classified into

two key categories, i.e., separate node/link mapping (two-stage) and joint node/link map-

ping (single-stage). Namely, two-stage VN embedding algorithms first map a subset of the

VN nodes and then route their VN links. For example, [MY01] first embeds each VN node

onto a candidate substrate node with the maximum amount of resources. Next, k-shortest

path routing is used to find a path with sufficient bandwidth to route the corresponding

virtual links. By contrast, single-stage mapping schemes jointly map VN nodes and all their

adjacent VN links. Carefully note that the neighboring VN nodes (for the VN links) must

already be mapped here. For example, the algorithm in [HY01] iterates and computes a

set of candidate nodes with sufficient node resources and adjacent link bandwidth for each

VN node. Each candidate node is then assigned a cost by considering its resources and the
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communication costs from this potential location to already-mapped adjacent VN nodes.

Finally the substrate node with the minimum cost is chosen for mapping, and adjacent VN

link connections are routed using a shortest-path algorithm. Simulation results show that

this single-stage scheme provides better resource efficiency and lower blocking versus the

two-stage scheme in [MY01].

Finally, many studies have also looked at VNE survivability. For example, this work

includes pre-protection provisioning schemes for single node [HY02] and single link [MR01],

failure recovery. Others have also looked at more resource-efficient post-fault re-mapping

restoration strategies [FG02], as well as large-scale disaster recovery solutions for VNE, see

[FG03]. However, these schemes are not surveyed further as they are largely out of scope for

the VN scheduling problem herein.

2.2 Advance Reservation

Research work on network scheduling (AR services) started over a decade ago and

many contributions have emerged. Compared to traditional IR services, these services re-

quire users to provide some time-related bounds/parameters for their requests, i.e., desired

arrival/departure times or windows, holding time durations, etc. In general staggering de-

mands over future time intervals can allow operators to achieve improved resource utilization

and revenues. Furthermore, users willing to accept delayed service start times can also realize

improved QoS support at lower service price points.
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Conceptually, the major difference between IR and AR services is the time between

the arrival of the request and the start of the service/transmission, termed as book-ahead

time. In this regard IR can be classified as a “zero book-ahead” AR service. Additionally,

the holding times for IR requests are usually not known in advance and/or assumed to be

infinite. By contrast, most AR service holding times are known in advance, which allows

operators to achieve more efficient resource allocation. Hence AR services can be classified

into several types according to their start/stop times or durations see [JZ01]. For example,

demands that request a specified start time and duration are denoted as specified start

specified duration (STSD) Figure 2.2(a). Meanwhile, a slight variation of this scheme is also

defined to allow variable start times, i.e., termed as flexible STSD, Figure 2.2(b). Note that

this service type can also be represented by an earliest start-time and latest end-time. In

general, flexible request timings can provide improved support for large file transfers and

result in better network resource usage. Furthermore, [JZ01] also presents a specified start

unspecified duration (STUD) service which defines a fixed start time but no request duration,

Figure 2.2(c). Expectedly, this service model is best suited for users requiring long-steady

transfers. Finally, the unspecified start specified duration (UTSD) service model specifies a

fixed duration but no start times, Figure 2.2(d). These services may suit users who want

to achieve a given amount of throughput/transfer in a variable time interval. Overall, most

AR studies assume the STSD model.
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Figure 2.2: AR Service Models

Now earlier work in [RG01] has shown that the basic AR connection scheduling (rout-

ing) problem is NP-complete, owing to the additional “time-line” dimension in the provi-

sioning process. As a result most solutions have proposed optimization and heuristic-based

strategies to either derive theoretical bounds or improve scalability. Furthermore, studies

have also been done for regular bandwidth provisioning, i.e., multi-protocol label switching
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(MPLS) networks and optical dense wavelengths division multiplexing (DWDM) networks.

Some of these works are now surveyed.

2.2.1 Point-to-Point Connection Scheduling

Earlier work on network scheduling in [TW01] proposes a novel mixed integer program-

ming (MIP) model for optical lightpath connection reservation, i.e., routing and wavelength

assignment (RWA). Although the requests follow an STSD model, services can start at any

time after a basic request’s start time. Here the objective function is defined to minimize

the time difference between the service start time and the request time. However due to

high MIP computational complexity, the optimization is only solved and tested for a small 4

node network. Findings show the MIP scheme can achieve improved acceptance ratios and

resource utilization versus other strategies using fixed AR service models. Meanwhile a non-

linear scheduling optimization is also proposed in [DA01] to maximize the acceptance ratios

for a fixed number of wavelengths. This model tries to jointly solve the request schedul-

ing and RWA problems by using a set of pre-computed paths. Furthermore two heuristic

schemes are also proposed, i.e., one using k-shortest path selection and the other using a

Lagrangian relaxation of the integer constraints. Overall simulation results show improved

resource efficiency with joint scheduling/RWA heuristic versus other “two-step” algorithms.

In general, optimization methods impose sizable computational complexities for larger

network sizes or longer lookahead windows. Hence various heuristic AR scheduling algo-

rithms have also been developed. Many of these schemes apply graph-theoretic techniques
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and are designed for “on-line” provisioning. For example, [JZ02] presents a simple heuristic

for STSD services arriving/departing at discretized time-slots. Namely, a k-shortest path

algorithm is used to compute the route for each connection over a reduced graph (that

precludes any links that are not available during the required fixed window). However this

scheme is not analyzed. Meanwhile, the authors in [EJ01] study the STSD reservation model

and assign flexible sliding windows to reduce blocking probability. This model assumes con-

tinuous time and maintains reservation state for each link using a time-bandwidth list. A

start-time vector is also defined for each wavelength on a link to record its usage at any

possible start time. Two initial heuristics are then proposed to find the path with the least

start time first, along with two others to find the shortest (min-hop) path in a scheduling

window. Overall results show improved performance with the latter scheme.

Finally, some researchers have also proposed meta-heuristic techniques to achieve

near-optimal results for the RWA scheduling problem in optical DWDM networks. For

example, the authors in [JK01] propose two algorithms for optical networks with wave-

length continuity constraints and continuous time requests. Namely, the first algorithm

pre-computes k-shortest paths for connections and uses a branch-and-bound algorithm to

find the best routes. Meanwhile, the second algorithm uses a tabu-search meta-heuristic to

reduce the excessive complexity of the branch-and-bound approach and find a set of feasible

routes. A graph coloring heuristic is then used to select the wavelength. Overall results

indicate that the meta-heuristic approach gives notably better results than greedy heuris-
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tic schemes and even approaches optimal performance (in terms of setup success rates and

reduced wavelength usage).

Accepted AR reservations are only active at future time intervals. As a result, these

demands can also be re-routed beforehand without causing any service disruptions. Along

these lines, researchers have also investigated AR re-routing schemes by leveraging from

earlier work on IR re-routing and restoration. For example, some early AR re-routing stud-

ies have looked at survivable connection requests. Namely, [LB01] proposes a “load-based”

re-routing scheme to improve connection survivability against link failures with unknown du-

rations. Results show lower termination/failure rates with increased levels of flow re-routing

(but overheads are also higher). Meanwhile, [CX01] considers regular (working-only) AR re-

quests and develops a re-routing algorithm to improve acceptance ratios while reducing the

amount of capacity perturbed (during re-routing). Namely, a “dynamic” ILP optimization is

formulated for each arriving request with the goal of re-optimizing some existing reservations

in conjunction with the incoming request, i.e., maintain a level of “optimally”. To improve

scalability, this scheme only considers accepted, inactive, time-overlapped requests within

a maximum look-ahead time, i.e., versus all demands (global optimization). The authors

also propose some additional heuristic schemes which are triggered if a regular scheduling

algorithm fails. Namely, these methods identify a subset of inactive time overlapping con-

nections for re-routing and use shortest path computations. Overall results confirm that

both of these schemes perform notably better than existing “non-re-routing” strategies.
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Finally, studies here have also looked at scheduling more complex multicast con-

nections. For example, [TE01] studies the multicast lightpath RWA problem in optical

wavelength routing networks. Here the authors propose two solutions that allow different

point-to-point requests in the same multicast request to re-use the same wavelength amongst

each other at destination node/any node. Hence multicast connections are setup using mul-

tiple “logical” hops instead of being treated independently. This approach prevents a single

request from competing with itself for wavelength links. Both ILP optimization and heuris-

tics are proposed here, and overall results show a notable reduction in wavelength usage

compared to a naive approach that routes multiple independent unicast connections. Mean-

while, [TS01] studies advance reservation of anycast workflows. The model here assumes

deadline-driven service requests, where transfers must be completed before a given deadline.

The authors first transform the problem of finding a route and destination node into a multi-

cost routing problem and consider both IR and AR requests. For the latter case, an optimal

algorithm is proposed to jointly schedule communication (routing) and computation (des-

tination selection) of tasks. The overall algorithm consists of three phases: non-dominated

path computation between sources and all the network nodes; candidate path selection; and

final path pair selection. However due to exponential complexity, a polynomial-time heuris-

tic is also proposed and evaluated, and findings show that AR scheduling gives notably lower

blocking versus IR provisioning (with a trade-off in end-to-end delay).
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2.2.2 Virtual Network Service Scheduling

As customer requirements continue to evolve, there is a further need to schedule more

complex “topology-level” demands. Key examples here include virtual overlay networks

(VON) interconnecting a set of network (or datacenter) sites or more flexible virtual network

(VN) demands with added flexibility of node placement. However, only a handful of studies

have looked at actually scheduling these service types. For example, [FG01] introduces the

VONS problem for scheduling arbitrary mesh overlay topologies, i.e., sets of virtual links

between designated (fixed) network nodes. A “global” ILP formulation is presented here

but not solved due to excessive complexity. Instead, some more practical greedy heuristics

are presented to handle the “on-line” case, i.e., one incoming VONS request at a time.

Also several link weighting schemes are tested here, including static (equal) link weights

for achieving resource minimization and dynamic usage-based weights for load-balancing.

Overall results show reduced blocking rates with the latter strategy.

Finally, some researchers have done initial work on the more generalized VN schedul-

ing problem. Recall, VN demands impose additional node-level constraints (storage, compu-

tation) and hence require placement of VN nodes as well as routing of VN link connections.

As a result, [MR02] formulates a temporal VNet embedding problem (TVNEP) for a set of

a-priori VN requests, each specifying an earliest start time and latest end time (flexible win-

dow). The authors introduce the concept of abstract event point model in order to deal with

continuous time requests. Namely, each event (VN start or stop time) causes a state change
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in the substrate network, which in turn is reflected in the constraints of the optimization

formulation. Three different types of state models are also proposed here, i.e., ∆-model

representing only state changes, Σ-model representing each state explicitly, and cΣ-model

maintaining state for each VN request start event while reducing unnecessary variable num-

bers from the Σ-model. To further increase scalability, a greedy heuristic based upon the

cΣ-model is also proposed. Nevertheless, these algorithms are only evaluated for the limited

case of fixed (pre-mapped) VN nodes, i.e, equivalent to VONS problem with sliding window.

2.3 Open Challenges

Although [FG01] and [MR02] present some initial contributions on “topology-level”

demand scheduling, many future problems and challenges remain. For example, proper op-

timization solutions are required for the simpler VONS scheduling problem with static/fixed

nodes. Improved heuristics also be developed to extend the baseline greedy schemes in

[FG01]. Moreover, generalized VN request scheduling is an even lesser-explored topic area,

i.e., in terms of optimization, heuristic, or meta-heuristic solution strategies. Indeed there

is much room for new contributions here. Furthermore, VN scheduling can also benefit

from partial demand provisioning strategies, i.e., as opposed to binary all/nothing provi-

sioning strategies. Hence more flexible provisioning models need to be investigated in order

to improve network operator revenues and lower customer blocking rates.
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Chapter 3 Virtual Overlay Network Scheduling 1

As surveyed in Section 2.2, the ability to schedule bandwidth connectivity between

multiple sites is becoming an important concern, i.e., as it can benefit applications in cloud

computing, data backup, scientific computing, etc. Along these lines, the VONS study

[FG01] has looked at scheduling connections between fixed endpoint nodes, equivalent to a

special case of VN scheduling. Namely, three basic greedy heuristic schemes are analyzed

along with an unsolved ILP formulation.

Building upon this preliminary work, this chapter presents a more detailed study of

the VONS problem and provides some improved bounds/benchmarks for overlay network

scheduling. Specifically a novel “dynamic” ILP optimization formulation is presented and

solved, greatly reducing overall complexity compared to the global optimization in [FG01].

In addition, some more capable heuristics are also developed using re-routing strategies to

improve resource utilization and acceptance ratios. The work herein provides a good basis

from which to develop further generalized VN scheduling schemes for cloud-based services.

The details are now presented.

1This chapter was previously published in [HB01]. Permission is included in Appendix B.
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3.1 Network Model and Description

Consider a substrate network modeled as a graph, G(V,E), where V is the set of

router/switches nodes and E is the set of network links. Without loss of generality, all

links are assumed to have fixed bandwidth capacity (bandwidth), B, and connectivity is

bi-directional, i.e., there are two opposing uni-directional links between neighboring nodes.

Each link e ∈ E also has an associated capacity function, reme(t), which represents its

available (used) capacity as a function of time (future intervals). Meanwhile an overlay

network request is denoted by the 5-tuple, rn = (Sn, Ln, tns , t
n
e , b

n
l (t)), where n is the request

index, Sn is the set of nodes/sites (Sn ⊆ V ), Ln is the set of overlay (virtual) links, tns

is the request start time, and tne is the request stop time. Note that this is equivalent to

a STSD demand model, as shown in Section 2.1 (Figure 2.2). It is also assumed that all

overlay links in a VN{l = lnij|i, j ∈ Sn} ∈ Ln request bnl (t) units of bandwidth at time t,

bnl ≤ B and tns < t < tne . Technically, the bandwidth request for each overlay link can also be

varied as a function of time, i.e., users request different amounts of bandwidth at different

times in the request interval. However, to simplify the VONS model, it is assumed that

bnl (t) is constant during the whole interval tns < t < tne , i.e., resulting in the 5-tuple request

rn = (Sn, Ln, tns , t
n
e , b

n
l ).

An example of an overlay network is shown in Figure 3.1. Here, two overlay networks

(one with 5 nodes and the other with 4 nodes) are mapped onto the 16-node substrate

network. Meanwhile, the virtual nodes are already assigned to substrate nodes, and hence
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Figure 3.1: Virtual Overlay Network Services Overview

the main objective is to route the link inter-connections between the virtual nodes.

3.2 Optimization Formulation

As noted in [NC02], the point-to-point connection AR scheduling problem is NP-

complete. Hence by extension the overlay scheduling problem is also at least polynomial-

degree higher complexity than NP-complete. In light of this, it is very difficult to find

tractable global optimization-based solutions, particularly for larger network sizes. For ex-

ample, [FG01] presents a “global” ILP formulation to schedule a complete batch of a-priori

overlay requests, but this model cannot be solved due to excessive variable counts. To ad-
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dress these scalability limitations, a novel “dynamic” optimization scheme is now presented

for the VONS problem.

Using the notation in Section 3.1, an overlay request is specified as a set of directional

connections, i.e., nodes in Sn are interconnected by a set of “virtual” overlay links given in

Ln (see examples in Figure 3.1). Carefully note that this formulation only incorporates

bandwidth resources, but can also be extended to include data-center (i.e., computing, stor-

age) resources at the nodes. Now in order to satisfy integer constraints, time is discretized

into fixed time-slots of duration T , and all tns and tne values are chosen as integral multiples

thereof. In addition, several other variables are also defined here as follows:

• rw: Incoming overlay request: (Sw, Lw, tws , t
w
e , b

w
l (t))

• vni ∈ Sn: The i-th node in Sn

• v → e: Egress node of link e ∈ E if v ∈ V

• e→ v: Ingress node of link e ∈ E if v ∈ V

• Rt2
t1 : Set of admitted but inactive reservations from timeslot t1 to t2, i.e., rn ∈ Rt2

t1 iff

start time tns ≥ t1 and tns ≤ t2

• Tw: Current time at which ILP is triggered and time when request rw arrives

• Tm: Maximum look-ahead time allowed for ILP run Tm = max
n
{tne |rn ∈ R

twe
Tw
∪ {rw}}

• Lni,j: Virtual link between vni and vnj , vni 6= vnj , vni ∈ Sn, vnj ∈ Sn

• pn,e,ki,j : Binary flag for overlay link usage in time slot k, i.e., pn,e,ki,j = 1(0) if l = Lni,j does

(not) use link e ∈ E in timeslot k
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Now consider a reduced optimization time window, an example of which is shown

in Figure 3.2. Here, Tw denotes the arrival time of the new request rw, which also happens

to be when the ILP computation is triggered. Meanwhile, Tm is defined as the maximum

look-ahead time, and this value is set to the maximum stop time across all overlapping

inactive reservations in set R
twe
Tw
∪ {rw}. Hence any request that starts after request rw ends

will not impact it. Based upon this maximum look-ahead time, the ILP (re)optimization

only considers accepted but inactive reservations in the interval [Tw, Tm]. For the example

in Figure 3.2, only requests r1, r2 and r3 are included in the ILP formulation (but not

request r4). Overall, reducing the number of time-slots in the optimization greatly improves

computational scalability, but can also result in a locally-optimal (sub-optimal) solution.

Figure 3.2: Example Set of Admitted Inactive Reservations in ILP
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Using the above notation, the overall objective function is defined as:

min
∑

rn∈Rtwe
Tw
∪{rw}

∑
vni ∈Sn

∑
vnj ∈Sn

∑
e∈E

∑
Tw<k≤Tm

bnl p
n,e,k
i,j (Eq. 3–1)

subject to the following constraints:

∑
vni →e

pn,e,ki,j = 1 tns ≤ k ≤ tne , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–2)

∑
e→vni

pn,e,ki,j = 0 tns ≤ k ≤ tne , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–3)

∑
e→vnj

pn,e,ki,j = 1 tns ≤ k ≤ tne , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–4)

∑
vnj→e

pn,e,ki,j = 0 tns ≤ k ≤ tne , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–5)

∑
e→v

pn,e,ki,j =
∑
v→e

pn,e,ki,j

tns ≤ k ≤ tne , v ∈ V \ {vni , vnj }, vni ∈ Sn, vnj ∈ Sn (Eq. 3–6)

∑
rn∈Rtwe

Tw
∪{rw}

∑
vni ∈Sn

∑
vnj ∈Sn

bnl p
n,e,k
i,j ≤ B

e ∈ E, Tw ≤ k ≤ Tm (Eq. 3–7)

pn,e,ki,j = pn,e,k+1
i,j

rn ∈ Rtwe
Tw
∪ {rw}, e ∈ E, tns ≤ k < tne , v

n
i ∈ Sn, vnj ∈ Sn (Eq. 3–8)
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Here the objective function in Eq. 3-1 tries to minimize resource utilization across all requests

in set R
twe
Tw
∪ {rw}, and thereby reduce request blocking rates. Meanwhile, the remaining

equations specify some necessary constraints. For example, Eqs. 3-2 and 3-3 (Eqs. 3-4

and 3-5) ensure flow conservation at the respective substrate source (destination) nodes.

Meanwhile, Eq. 3-6 ensures input/output flow conservation at the transit nodes. Finally,

Eq. 3-7 limits the total provisioned bandwidth on a link to below its maximum capacity,

whereas Eq. 3-8 ensures route consistency, i.e., a connection between two overlay nodes must

follow the same route in the request interval.

The pseudo-code listing of the dynamic optimization solution is also shown Figure 3.3.

The scheme first identifies the set of time-overlapping scheduled reservations to (re)optimize

when a new request arrives and then frees up their reserved capacities. To do this, a tem-

porary working copy of the residual bandwidth graph, i.e., G′(V,E), is generated and the

maximum look-ahead time window is used to identify the overlapping demands. An ILP

formulation is then run for the request along with its set of overlapping reservations over

the substrate graph G′(V,E). If this ILP is successful in finding a valid mapping for all

reservations in the set, then the request is accepted and the respective resources are reserved

in G(V,E). Otherwise the incoming request is dropped.

Overall, the dynamic ILP model greatly reduces run-time complexity versus the

“global” ILP formulation in [FG01]. For example, consider a 10-node mesh substrate net-

work with 100 overlay requests. If each request has an average holding times of 10 timeslots
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1: Given new overlay request rw = (Sw, Lw, tws , t
w
e , b

w)

2: Identify set of accepted inactive reservations R
twe
Tw

3: Generate temporary graph, G′(V,E)=G(V,E), remove all resource reservations in R
twe
Tw

4: Generate ILP formulation for set R
twe
Tw
∪ {rw} in G′(V,E)

5: if ILP solution found
6: Setup success, reserve resources in G′(V,E), copy G′(V,E) to G(V,E)
7: else
8: Drop request rw and discard G′(V,E)

Figure 3.3: ILP Formulation Framework

and the average request inter-arrival time is 5 timeslots, then approximately 500 timeslots

are required for the global optimization scheme in [FG01]. Furthermore, if each overlay re-

quest demands 3 nodes and 3 links, the total number of variables in the global optimization

is approximately 15,000,000 (i.e., 3 × 100 total links, 10 × 10 node-to-node topology, and

500 timeslots). Clearly this value poses insurmountable complexity for most modern servers.

Now assume instead that on average, only 2 requests will overlap in time. Hence by using

a maximum look-ahead time of 10 timeslots in the dynamic optimization, the total number

of optimization variables drops to about 9,000, i.e., 3 × 2 × 10 × 10 × 15 = 9,000 (i.e.,

3 × 2 total links, 10 × 10 node-to-node topology, and 15 timeslots). This figure is more

than three orders of magnitude lower than that for the global optimization and makes the

solution much more tractable.
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3.2.1 State-Based Abstract Model

In general, the timeslotted model for AR service demands, i.e., as used in [CX01]

and [JZ02], can pose notable concerns for users and network providers. Namely, using

longer/more granular time-slots can result in a loss of precision and flexibility for users. For

example, defining time-slot durations in days will obviously be less efficient for users only

wanting a few hours of service. On the other hand, using smaller time-slot durations will

impose high computational complexity when dealing with long-standing requests, i.e., even

though user requests remain flat while only substrate network resource levels change.

To overcome these obstacles, a modified state-based abstract model is also developed

to further reduce computation complexity while bypassing the time-slot granularity concern.

Namely, instead of defining start/stop times-slot intervals, this model only computes state

changes at request start/stop times. This is shown further in Figure 3.4 for three sample

time-overlapping requests, R1, R2, and R3. Here an event is defined for each AR request

start or stop time. Clearly, the resource levels in the underlying substrate network will not

change in the interval between any two sequential events here, i.e., regardless of its duration.

Hence state changes (events) only need to be defined for specific time-slots on a given link.

This implies a total of up to 2|R| − 1 states given a total of |R| overlapped requests. Note

that another auxiliary array list is also needed here to map the abstract state timeline to

real time in order to reserve bandwidth resources in substrate network (if the ILP is solved).

Furthermore, if the start/stop times of one or more requests coincide, then multiple events
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can be combined into one. Now consider a modified ILP formulation using this state-based

abstract model. Here, overlapping inactive requests will be calculated the same way as before,

and the associated states and auxiliary list will be formulated accordingly afterwards. Hence

consider some new variables:

Figure 3.4: State-Based Abstract Model: 3 Requests Mapped to 5 States, 6 Events

• S = {s1, s2, ...s|R|−1}: Sets of states abstracted from overlapping requests

• Arn : Auxiliary state array for overlay request, i.e., A−rn ∈ S is the start state for request

rn, and A+
rn ∈ S is the end state for request rn

• pn,e,s̄i,j : Binary flag for overlay link usage in state s̄, i.e., pn,e,s̄i,j = 1(0) if l = Lni,j does

(not) use link e ∈ E in state s̄.

• Bs̄
i,j: Bottleneck bandwidth (minimum available bandwidth) on link l = Lni,j during

state s̄
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Based upon this, a new objective function is defined as:

min
∑

rn∈Rtwe
Tw
∪{rw}

∑
vni ∈Sn

∑
vnj ∈Sn

∑
e∈E

∑
Tw<k≤Tm

bnl p
n,e,s̄
i,j (Eq. 3–1a)

Accordingly the new constraints are:

∑
vni →e

pn,e,s̄i,j = 1 A
−
rn ≤ s̄ ≤ A+

rn , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–2a)

∑
e→vni

pn,e,s̄i,j = 0 A
−
rn ≤ s̄ ≤ A+

rn , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–3a)

∑
e→vnj

pn,e,s̄i,j = 1 A
−
rn ≤ s̄ ≤ A+

rn , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–4a)

∑
vnj→e

pn,e,s̄i,j = 0 A
+
rn ≤ s̄ ≤ A+

rn , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–5a)

∑
e→v

pn,e,s̄i,j =
∑
v→e

pn,e,s̄i,j

A
−
rn ≤ s̄ ≤ A+

rn , v ∈ V \ {vni , vnj }, vni ∈ Sn, vnj ∈ Sn (Eq. 3–6a)

∑
rn∈Rtwe

Tw
∪{rw}

∑
vni ∈Sn

∑
vnj ∈Sn

bnl p
n,e,s̄
i,j ≤ Bs̄

i,j

e ∈ E,A−rn ≤ s̄ ≤ A+
rn (Eq. 3–7a)

pn,e,s̄i,j = pn,e,s̄+1
i,j

rn ∈ Rtwe
Tw
∪ {rw}, e ∈ E,A−rn ≤ s̄ < A+

rn , v
n
i ∈ Sn, vnj ∈ Sn (Eq. 3–8a)

Again, the objective function in Eq. 3-1a tries to minimize resource utilization across all con-

sidered requests and all abstracted states, just as the previous ILP formulation. Meanwhile,
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Eqs. 3-2a - 3-6a ensure flow conservation at the respective substrate source and destination

nodes, as well as transit nodes. Also, Eq. 3-7a constrains the total provisioned bandwidth

on a link to below its maximum remaining capacity during each state time. Finally, Eq.

3-8a ensures route consistency in the request interval state(s).

The state-based abstract optimization model follows the same pseudo-code as shown

in Figure 3.3. Namely if the ILP is successfully solved, the request is accepted and respective

resources are reserved. Otherwise the incoming request is dropped and the temporary graph

is discarded. Overall, the new state-based model further reduces run-time complexity by

replacing the number of timeslots with abstract states. Namely, the total number of variables

and computation overheads are now independent of the real duration of each request in ILP

formulation. As an example, consider a 10-node mesh topology with 100 overlay requests.

With the new state-based model, the request durations do not matter any more, i.e., only the

number of overlapping requests count. Hence if only 2 requests (3 nodes and 3 links) overlap

in time, the total number of optimization variables will drop from 9,000 to about 1,800, i.e., 3

× 2 × 10 × 10 × 3 = 1,800 (3 × 2 total links, 10 × 10 node-to-node topology, and 2×2-1=3

states). This approach makes it much easier to handle larger request holding times/durations

and also increased network sizes. More importantly, the state-based abstract model can also

be used as an extension to continuous-time requests, with no need to round continuous time

to the nearest timeslot.
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3.3 Re-Routing Heuristic

Although dynamic optimization greatly reduces run-time complexity compared to a

global optimization, it is still very high. Hence some novel overlay scheduling heuristics are

also presented here to improve upon the greedy schemes in [FG01]. The overall goal here is

to use re-routing techniques to re-map accepted overlay requests in order to free up resources

for new demands, i.e, much in the same way the dynamic ILP operates. This approach is

motivated by earlier work on AR connection re-routing, which has shown good blocking

reduction, see [CX01]. Consider the details below.

A high-level view of the proposed re-routing framework is shown in Figure 3.5 along

with a more detailed psuedocode description in Figure 3.6. Overall, this heuristic is com-

prised of two stages. The first stage (Stage 1) attempts a regular VONS setup for a new

request. If this stage fails, then the second stage (Stage 2) tries to re-route a subset of time-

overlapped (virtual link) VONS requests to create enough free resources to accommodate the

new request. One of the key objectives here is to achieve a balance between computational

complexity (i.e., number of re-routing attempts) and request blocking rates (i.e., network

usage utilization). The two stages are now detailed further.

3.3.1 Baseline Scheduling (Stage 1)

The initial stage simply runs a baseline heuristic to setup an incoming VONS request

(steps 4-5, Figure 3.6). Although any overlay scheduling heuristic can be re-used here, the

load-balancing strategy from [FG01] is chosen as it gives lower blocking (higher carried loads)
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Figure 3.5: Two-stage Overlay Network Scheduling Re-routing Strategy

versus the resource minimization strategy. Specifically, this approach assigns dynamic “load-

based” weights to links in G(V,E) and then uses them to compute minimum cost routes for

virtual link connections using Dijkstra’s algorithm (sequential manner). Namely, the weight

of link e in request rw is computed as inversely-proportional to its bottleneck capacity in the

request interval, as follows:

ωe = 1/(bmine + ε) (Eq. 3–9)

where the bottleneck capacity for link e, i.e., bmine is defined as:

bmine = min
t∈[tws ,t

w
e ]
reme(t) (Eq. 3–10)

where reme(t) is the earlier-defined link capacity function, and ε is a small value chosen to

avoid division errors. Figure 3.7 shows an example of time-varying capacity levels on a link,

38



1: Given new overlay request rw = (Sw, Lw, tws , t
w
e , b

w)
2: Generate temporary graph, G∗(V,E)=G(V,E)

/* Loop and provision all overlay links in request */

3: for j = 1 to |Lw|
4: /* Stage 1: Regular attempt */

Generate another temporary graph G′(V,E)=G∗(V,E), remove all non-feasible links,
bmine < bw in [tws , t

w
e ]

5: Run connection scheduling algorithm for j-th virtual link over G′(V,E)
6: if success
7: Reserve path resources for j-th link in G∗(V,E)
8: else
9: /* Stage 2: Re-routing */

Compute candidate path for j-th virutal link in G∗(V,E) via MHR, MNR, or THR
approach

10: if fail
11: Drop rw, discard G′(V,E) and G∗(V,E), exit
12: else
13: - Sort reservations on candidate path (decreasing order)
14: - Compute re-routing connection set
15: - Free resources for reservations in re-routing set
16: - Reserve path resources for j-th virtual link
17: - Re-route each connection in re-routing set
18: if success
19: Reserve candidate path resources in G∗(V,E) for j-th virtual link
20: else
21: Drop rw, discard G′(V,E) and G∗(V,E), exit
22: if all overlay (virtual) link connections lwij ∈ Lw routed
23: Setup successs, copy G∗(V,E)→ G(V,E)

Figure 3.6: Overlay Demand Re-routing Heuristic

reme(t), as well as the bottleneck capacity, bmine , if the new request rw overlaps with some

existing requests r1 and r2.
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Figure 3.7: Sample Link Capacity Function reme(t) and Bottleneck Link Capacity bmine

Note that all the above computations are done using a temporary copy of the residual

bandwidth graph, termed G∗(V,E), see steps 1-2, Figure 3.6. This copy is used to track/store

all accepted connection reservations, i.e., virtual links, while the request is being processed.

Now if the overall setup is successful, then the original capacity graph G(V,E) is replaced

by G∗(V,E), i.e., steps 22-23, Figure 3.6. To further reduce computational complexity,

Dijkstra’s algorithm only considers substrate links in G∗(V,E) with sufficient capacity to

provision the requested bandwidth for rw, see also Figure 3.7 (step 4, Figure 3.6). Here all

links with bmine < bw in G∗(V,E) are removed to generate a reduced sub-graph for routing

computation, labeled as G′(V,E). This approach tries to achieve better load distribution by

preventing specific substrate links from becoming overloaded.

3.3.2 Re-routing Scheduling (Stage 2)

The re-routing stage is triggered if the virtual link connection attempt in Stage 2 is

unsuccessful, i.e., steps 9-21, Figure 3.6. Specifically, a candidate path is first computed for
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the failed overlay link request. Next, a subset of the existing reservations on the candidate

path links are re-routed to free up capacity for the failed request. However since multiple

reservations can be perturbed by this re-routing/re-scheduling phase, it is important to

limit the number of re-routing attempts, i.e., generally a divergent objective versus blocking

reduction. Hence several candidate path selection approaches are proposed here:

• Minimum Hop Re-Routing (MHR): This scheme selects the candidate path with the

shortest hop count path between the (failed) overlay link end-point nodes using Di-

jkstra’s algorithm. Choosing the shortest path indirectly tries to minimize re-routing

disruption.

• Minimum Number Re-Routing (MNR): This scheme selects a candidate path to min-

imize the disruption of scheduled demands (re-routing complexity). Namely, the k-

shortest paths (k-SP) between requested overlay link’s end-point nodes are computed,

and the path with the fewest number of (virtual link connection) re-routings is chosen.

This is done by ordering all connection reservations on a link by decreasing bandwidth

and then counting the minimum number needed to meet the requested capacity, bw.

• Threshold Re-Routing (THR): This scheme tries to minimize the amount of pertur-

bation by selecting a path that already has a fraction ρ (0 ≤ ρ < 1) of the requested

overlay link capacity (in the request interval). Namely, Dijkstra’s shortest-path algo-

rithm is re-run overG∗(V,E), and all links with bottleneck capacity below the fractional

amount are precluded from consideration, i.e., link e with bmine ≥ ρbw in [tws , t
w
e ] is kept.

This approach is similar to the connection-level AR re-routing scheme in [CX01].
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Once a candidate path has been chosen, a subset of the existing (overlay link) connec-

tion reservations on its links are selected for re-routing, termed as the re-routing connection

set. Carefully note that these reservations can include multiple overlay demands. Hence

to minimize the disruption of accepted demands, connections on the candidate path (links)

are first sorted in terms of decreasing bandwidth size. The re-routing procedure then loops

through all candidate path links, and for each, iteratively moves a sufficient number of sched-

uled connections (with time-overlapping durations) to the re-routing connection set to free

up capacity. Specifically, for each iteration at a candidate path link, the bottleneck link

bandwidth, bmine , is recomputed until enough capacity is freed for the new request (step

15, Figure 3.6).

Finally, the heuristic scheme tries to sequentially re-schedule all reservations in the

re-routing connection set (steps 17-21, Figure 3.6). This step basically re-runs the regular

Stage 1 setup algorithm (from Section 3.3.1) for each request over the temporary G∗(V,E)

graph. If all reservations in the re-routing connection set can be successfully re-scheduled,

then re-routing is deemed successful and the request is accepted. Otherwise, the request is

rejected and the setup attempt terminated.

3.3.3 Complexity Analysis

Now consider the overall run-time complexity of the heuristic approach, starting

with Stage 1. Foremost, the bottleneck link capacity filtering step is of O(|E|) complex-

ity. Meanwhile, Dijkstra’s shortest path algorithm (used in the min-distance scheme) is
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of O(|E| + |V |log(|V |)) complexity [TC01]. Hence the aggregate run-time complexity for

scheduling each virtual link is O(|E|+ |V |log(|V |)).

Next consider the re-routing stage, Stage 2. The first step focuses on candidate path

selection where both the MHR and THR schemes use Dijkstra’s shortest path algorithm to

compute a candidate path, i.e., O(|E|+ |V |log(|V |)) complexity, akin to Stage 1. However,

the MNR strategy is more involved since it first computes k -shortest paths and then selects

one with the smallest number of overlay links to re-route. This latter step requires sorting

all reservations along each of the k -shortest paths. Now k-SP computation is of O(|E| +

|V |log(|V |) + k) complexity [DE01]. Hence in the worst case, the MNR scheme may have

to process all O(|E|) links in G∗(V,E), and each link may have up to O(|V |2) reservations

[CX01]. Sorting these reservations in decreasing order of bandwidth size adds an additional

O(|E||V |2log|V |) complexity, yielding an aggregate O(|E| + |V |log(|V |) + |E||V |2log|V |)

bound for the MNR scheme.

Finally, to compute the re-routing connection set, both the MHR and THR schemes

have to sort the previously-scheduled reservations in decreasing order, i.e., O(|E||V |2log|V |)

complexity. However since the MNR scheme already performs this sorting step earlier, it

has constant time complexity here. Leveraging the above, the total number of re-routing

attempts (across all three candidate path selection strategies) is upper-bounded by O(|V |2),

i.e., the same as the maximum number of reservations on each link. This yields a compu-

tational complexity bound of O(|V |2|E| + |V |3log|V |) for all three heurisitcs. In practice,

43



however, the number of active connections on a link will be well below |V |2, and this will

give much lower run-time complexity. These overall bounds are summarized in Table 3.1.

Table 3.1: Heuristic Complexity Comparison

Heuristic MHR MNR THR

Stage 1 O(|E|+ |V |log|V |)

Stage 2

Candidate path selection O(|E|+ |V |log|V |)
O(|E|+ |V |log(|V |)

+|E||V |2log|V |)
O(|E|+ |V |log|V |)

Re-routing connection

set selection

O(|E||V |2log|V |) O(1) O(|E||V |2log|V |)

Re-routing computation O(|V |2|E|+ |V |3log|V |)

3.4 Performance Evaluation

The performance of the various overlay scheduling schemes is now analyzed using

an Intel(R) CoreTM i5-4300U CPU @1.90GHz server with 8.00GB RAM. Namely, advanced

discrete event simulation models are developed in the OPNET ModelerTM toolkit to generate

and process overlay requests/demands. Meanwhile, the dynamic optimization model (Section

3.2) is also solved by generating external file-driven calls to the CPLEX optimization solver

tool. To further prevent this optimization tool from consuming all usable memory or taking

too long to find an optimal solution, at most 2.00 GB memory is allocated and the maximum

time limit for each iteration of the optimization is limited to 600 seconds. This constraint

implies that a request is turned down if an optimization solution is not found in time.

Moreover, two topologies are tested here, including the NSFNet backbone with 16 nodes/25

links (3.12 node degree) and a larger network with 24 nodes/43 links (3.58 node degree),
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see Figure 3.8. All nodes are assumed to be regular packet-switching routers with advance

bandwidth provisioning capabilities.

Figure 3.8: Test Network Topologies, (a) 16 Nodes/25 Links, (b) 24 Nodes/43 Links

Meanwhile, all overlay requests are randomly generated with 4-6 nodes each and an

average node degree of 2.5. The corresponding overlay link capacities are also chosen in a

random manner, ranging uniformly between 100 and 1,000 Mbps. Furthermore, incoming

requests have exponentially-distributed holding and inter-arrival times with means µ and λ,

respectively. In particular, the mean holding time is set to 600 time units, and the mean
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inter-arrival time is varied according to the desired input load. Carefully note that network

load is commonly measured using the dimensionless Erlang metric, defined as the ratio of the

service rate to the arrival rate [RW01]. However, to properly account for varying numbers

of virtual links (i.e., connections) in an overlay request, a slightly-modified load metric is

proposed here as follows [FG01]:

Modified Erlang load =
1

3

6∑
n=4

(n− 1)× µ/λ (Eq. 3–11)

for overlay topologies ranging from n=4-6 nodes.

Sensitivity tests are first done to select the fractional bandwidth parameter ρ, for the

THR scheme. Namely, three different ρ values are tested for both network topologies, i.e.,

ρ=0.1, 0.5, and 0.9. These tests are done using 500,000 random VONS requests for both 16-

node and 24-node topologies. The overall blocking results (not shown) indicate very minimal

variations between the different ρ values, i.e., smaller ρ values give approximately 1% lower

blocking versus larger ρ settings at any given input load. Meanwhile the average overlay

connection path lengths are also shown in Figure 3.9 and show slightly higher utilization

with smaller ρ values (particularly at higher loads). Given the nearly identical blocking

rates here, shorter average path lengths (for larger ρ values) indicate more efficient resource

usage. Nevertheless, the respective differences between the ρ values still fall within 1% of

each other at any given input load.
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Next, the number of re-routed reservations and re-routing success rates are also plot-

ted in Figure 3.10 for varying ρ values. These results show notably higher overheads (total

number of re-routing attempts) with smaller ρ values, i.e., due to reduced re-route trigger-

ing thresholds. Finally, re-routing success rates are also plotted in Figure 3.11 and indicate

improved setup performance with larger ρ values. This is expected since these values will

result in fewer, more successful re-routing attempts. Based upon these findings, a median

value of ρ=0.5 is chosen to maintain a balance between re-routing overheads and blocking

reduction. The various schemes are now tested, including the dynamic ILP approach.

3.4.1 Blocking Rate Performance

The overall request blocking rates are shown in Figure 3.12 for all other schemes. A

total of 1,000 VONS requests are simulated for both topologies. Foremost these findings

confirm that the dynamic ILP scheme gives the highest setup success rates, averaging about

20% higher than the re-routing schemes, especially at lower loads. Similar separation can

also be seen in the larger topology (24-node). In general, these behaviors are expected since

the ILP scheme can re-configure more routing resources in a larger topology, giving better

overall performance. Moreover as a trade-off, larger topologies also yield more optimization

variables, resulting in additional computation time (for the same number of states and over-

lapping requests as compared to the smaller topology). Meanwhile, the separation between

the re-routing and non-re-routing heuristics is generally lower, but still notable, i.e., aver-

aging around 10% lower blocking depending upon input load. However, these results also
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indicate very little separation between the individual re-routing schemes, with the respective

blocking ratios falling to within 2% of each other for both topologies.

The corresponding run times for the dynamic ILP scheme are also shown in Table

Table 3.2. Although these values increase with load, they mostly fall within the tens of

seconds range, indicating good applicability in real-world on-line settings.

Table 3.2: Average Run-Time Comparison

Schemes Heuristic Heuristic ILP

No Re-Routing Re-Routing Optimization

Single Request <1 second <1 second 3-10 seconds

All Requests 15-20 seconds 20-30 seconds 30-180 minutes

3.4.2 Average Overlay Connection Path Lengths

The average overlay connection path lengths are also plotted in Figure 3.13. As

expected, the dynamic ILP scheme gives the lowest resource utilization, followed by the

non-re-routing heuristic schemes. In particular, the optimization approach gives about 5-

10% lower hop count utilization than the baseline min-distance scheme. By contrast, the

re-routing schemes give slightly longer path lengths, indicating higher resource utilization.

In general, this is expected since re-routing procedures result in longer detour routes to

accommodate new demands, i.e., trade-off between blocking and resource efficiency.
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3.4.3 Re-Routing Heuristics Comparison

The individual re-routing heuristics are also compared here. First, Figure 3.14 plots

the number of successful and failed re-routed request attempts for each scheme in order to

gauge overall run-time durations. These findings indicate that the THR (MHR) algorithm

gives the lowest (highest) re-routing overheads. Hence in light of the relatively close blocking

performances for all re-routing heuristics (Figure 3.12), it can be concluded that the THR

scheme gives the most competitive re-routing performance. Meanwhile, re-routing success

rates are also plotted in Figure 3.15 to gauge the efficiency of the re-routing schemes. These

findings show that re-routing is much more effective at lower load regimes since there are

fewer contending users and more available network resources (resulting in fewer re-routing

attempts). Last but not least, the THR scheme gives the highest overall re-routing success

rates. Hence this heuristic is deemed more efficient than the MHR and MNR re-routing

strategies, i.e., even though all variants yields very close blocking and resource utilization

results (see Figure 3.12 and Figure 3.13).
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(a)

(b)

Figure 3.9: Average Overlay Link Connection Length: a) 16-Node Topology, b) 24-Node
Topology
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(a)

(b)

Figure 3.10: Number of Re-routing Requests (Success & Failed): a) 16-Node Topology, b)
24-Node Topology

51



(a)

(b)

Figure 3.11: Re-routing Success Ratio: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 3.12: Request Blocking Rate: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 3.13: Average Overlay Link Connection Length: a) 16-Node Topology, b) 24-Node
Topology
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(a)

(b)

Figure 3.14: Re-routing Requests: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 3.15: Re-routing Success Ratio Among Different Heuristics: a) 16-Node Topology, b)
24-Node Topology
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Chapter 4 Virtual Network Advance Reservation 1

The VONS study in Chapter 3 basically addressed bandwidth demand scheduling

between fixed end-point nodes. However, many organizations using cloud-based applications

will want more flexible service options. For example, many users may require some form

of data center (substrate) resources at the network node sites as well, e.g., computing or

storage. Furthermore, most cloud customers may not necessarily care about exactly where

their services are located or executed, i.e., as long as they meet necessary QoS, policy and

security requirements. As a result, variable VN node placement can greatly improve service

flexibility and help satisfy different user needs.

In light of above, this chapter presents a novel advance reservation framework for

handling more generalized VN requests (with variability of node placement). The goal here

is to provide a baseline model for future related work. Foremost, the VN scheduling problem

is introduced and a global optimization formulation is presented for admitted but inactive

time-overlapping VN requests without a-priori knowledge of upcoming requests. Owing

to high computation complexity (due to the added timeline-dimension), a meta-heuristic

solution is also developed using a simulated annealing (SA) approach to provide a near

optimal solution. Moreover, inspired by the VNE problem, several single- and two-phase

1This chapter was previously published in [HB02]. Permission is included in Appendix B.
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heuristic VN scheduling schemes are also developed to provide a baseline for future work.

Complete details are now presented.

4.1 Network Model and Description

Before detailing the proposed scheduling strategies, the overall model for VN AR

services is presented along with the requisite notation. Note that the overall notation and

network model here is similar to that introduced in Section 3.1, with some additions and

modifications to handle VN node placement/scheduling.

4.1.1 Substrate Network

The substrate network is modeled as an undirected graph Gs = (Vs, Es), where Vs =

{v1
s , v

2
s , ..., v

|Vs|
s } is the set of substrate nodes and Es = {es|es = (vis, v

j
s) : vis, v

j
s ∈ Vs} is

the set of substrate links connecting substrate nodes. Additionally each substrate node

vs ∈ Vs has a fixed amount of computing and storage resources, C units, and each substrate

link es ∈ Es has a fixed bandwidth capacity, B units. Moreover, in order to schedule VN

node/link requests, time-varying capacity levels are also defined for nodes and links, i.e.,

remv(t) and reme(t), respectively. Overall, a sample 10-node substrate network hosting two

3-node VN requests is shown in Figure 4.1. Here the numbers next to each substrate node

(link) represent the minimum node resource (link bandwidth) levels within the requested

time-interval. Meanwhile, the numbers next to each VN node (link) represents the amount

of requested node resource (link bandwidth).

58



Figure 4.1: Physical Substrate Network with Embedded Virtual Networks

4.1.2 VN Scheduling Request

A VN scheduling request is defined by the 5-tuple, i.e., rn = (Gn
v , c

n, bn, tns , t
n
e ), where

n is the request index, Gn
v = (V n

v , E
n
v ) is an undirected virtual graph containing the set of

VN nodes vnv ∈ V n
v and virtual links env ∈ En

v , cn is the requested amount of node resources

(cn < C), bn is the requested amount of bandwidth (bn < B), tns is the start time, and tne

is the stop time. Similar to a substrate link, a VN link connects two VN node end-points.

Furthermore, a VN node-to-substrate mapping is also denoted as < vv, vs >, i.e., VN node vv

mapped to physical substrate node vs. The mapped substrate node for a VN node vv is also

denoted as η(vv). Carefully note that all tns and tne values occur at integral multiples of the
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discrete time-slot value/duration. Furthermore, all requests arrive in an “on-line” fashion

and are processed in a first come first serve (FCFS) manner. Again, Figure 4.1 shows two

sample VN requests with their associated node resource and link bandwidth requirements.

For example VN request A is assigned node mappings {< a, 1 >,< b, 2 >,< c, 5 >} and

request B is assigned node mappings {< d, 5 >,< e, 10 >,< f, 7 >}. Additionally, virtual

link “ac” in VN request A is mapped to a connection along substrate links {< 1 − 3 >,<

3− 6 >,< 6− 4 >,< 4− 5 >}.

4.1.3 Problem Description and Objectives

The VN scheduling problem is defined by a mapping M : Gv(Vv, Ev) → Gs(V
′
s , E

′
s)

from Gv to a subset of Gs, where V ′s ⊂ Vs and E ′s ⊂ Es. The main objective here is

to efficiently schedule VN demands in their requested time intervals. Furthermore, sliding

time-windows are not assumed here.

4.1.4 Performance Evaluation Metrics

The key metrics used for VN scheduling performance are now presented. Foremost,

resource efficiency and revenue generation (cost reduction) are two major operator concerns

[GS01] [XC01]. Hence some related metrics are defined here. First, the modified net revenue

associated with provisioning a VN request is defined as:

REV (Gn
v ) = (tne − tns ) ∗ (

∑
env∈En

v

bn/B+ ρ
∑
vnv∈V n

v

cn/C) (Eq. 4-1)
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where ρ is the fraction of node resource revenue, and B and C are large numbers to normalize

node/link resources. Unlike [MC01], here the modified revenue is dependent upon request

durations, i.e., a request with longer duration but the same node/link resources has larger

net revenue. Next, the cost of accepting a VN request is defined as:

COST (Gn
v ) = (tne − tns ) ∗ (

∑
es∈Es

FGn
v

es /B+ π
∑
vs∈Vs

NGn
v

vs /C) (Eq. 4-2)

where π is the fraction of node resource cost, FG
n
v

es is the total amount of bandwidth allocated

on substrate link es for mapping the VN, and NGn
v

vs is the total amount of node resources

allocated at substrate node vs for mapping the VN. A similar duration-sensitive modification

is also used here, as compared to [MC01].

Now from an operator’s point of view, an efficient and effective on-line VN scheduling

algorithm should maximize long-term revenue in the substrate network. Hence, akin to

[MY01], the long-term average revenue is defined as:

lim
T→∞

∑
nREV (Gn

v )

T
, ∀Gn

v ∈ A (Eq. 4-3)

where A is the set of all accepted VN requests, and T is the total time duration. Similarly,

the long-term average cost is defined as:

lim
T→∞

∑
nCOST (Gn

v )

T
, ∀Gn

v ∈ A (Eq. 4-4)
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Finally the long-term revenue-cost ratio is also defined to quantify the efficiency of resource

utilization in the substrate network as follows:

∑
nREV (Gn

v )∑
nCOST (Gn

v )
, ∀Gn

v ∈ A (Eq. 4-5)

Carefully note that several other performance metrics are also considered here. For

example, the VN request blocking ratio is a well-established measure of lost revenue, and

hence minimizing this figure is a major objective as well. Additionally, the average route

length (of embedded VN links) is also considered in order to gauge network substrate link

utilization.

4.1.5 Load Balancing

In general, most embedding or routing schemes use static node and link weights.

However, these values cannot account for real-time dynamic resource variations at the sub-

strate level and may yield increased congestion at specific nodes or links. Therefore, a

modified time-sensitive load balancing strategy is proposed to alleviate such concerns here.

Namely, substrate link cost (weights) are set as inversely proportional to the load over the

time interval [tns , t
n
e ], as follows:

C(e) =
B × (tne − tns )∫ tne
tns
reme(t) + ε

(Eq. 4-6)

where B is the full (maximum) capacity of a substrate link and ε is a small value (to avoid

division errors). In particular, the denominator term in Eq. 4-6 represents the average

amount of free resources in the interval. Similarly, node resource costs can be defined as:
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C(vs) =
C × (tne − tns )∫ tne
tns
remv(t) + ε

(Eq. 4-7)

where C is the full (maximum) capacity of a substrate node. Overall, the substrate link (or

node) cost is defined as the ratio of total capacity to available bandwidth (capacity) during

requested interval, i.e., links (nodes) with more available resources have smaller cost and are

more likely to be chosen.

Meanwhile Dijkstra’s shortest path using minimum load balance cost (Eq. 4-6) is

denoted as P (v1
s , v

2
s). Hence the cost between two substrate nodes v1

s and v2
s is defined as

cpv1s ,v2s :

cpv1s ,v2s =
∑

e∈P (v1s ,v
2
s)

C(e) (Eq. 4-8)

Similarly, the cost between two virtual nodes v1
v and v2

v is also defined as cpv1v ,v2v , respectively:

cpv1v ,v2v = cpη(v1v),η(v2v) =
∑

e∈P (η(v1v),η(v2v))

C(e) (Eq. 4-9)

4.2 Optimization Formulation

A detailed ILP optimization for VN advance reservation is now presented using

the above notation. This approach pursues a single-objective function to minimize over-

all resource usage per VN request. Akin to the VONS optimization (Section 3.2), this

approach also performs dynamic optimization over a reduced batch of admitted, inactive

time-overlapping VN requests (without a-priori knowledge of upcoming requests). Time is

also discretized into fixed time-slots of duration T . Building upon the VONS model, here

each virtual node vnv ∈ V n
v is mapped to a unique substrate node vs ∈ Vs with sufficient
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node resources, and two virtual nodes in the same request cannot be mapped to the same

substrate node. This enforces a one-to-one mapping between virtual and physical nodes

within a VN request. At the same time, VN links (connections) must be routed between

the mapped substrate nodes. Hence each VN link env is treated as a directional single flow

running between two virtual nodes with no path splitting. VN link bandwidth reservation

is also done in both link directions during [tns , t
n
e ]. As per the formulation, the following

variables are defined:

• R: Set of requests treated in the optimization formulation including the incoming re-

quest and admitted inactive time-overlapping reservations, i.e., ∀rn = (Gn
v , c

n, bn, tns , t
n
e )

∈ R will be considered in the optimization

• f q,n,ki,j : Binary link mapping variable, i.e., f q,n,ki,j = 1(0) if virtual link qn ∈ En
v does

(not) use link (i, j) ∈ Es (direction i→ j) in time-slot k

• sp,n,ku : Binary node mapping variable, i.e., sp,n,ku = 1(0) if virtual node pn ∈ V n
v is (not)

mapped to substrate node u ∈ Vs in time-slot k

• vq,nsrc: Source node (virtual) of virtual link qn which is mapped to egress node of mapped

substrate link

• vq,ndst : Destination node (virtual) of virtual link qn which is mapped to ingress node of

mapped substrate link.
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Using the above definitions, the objective function is defined as:

min
∑
rn∈R

∑
tns≤k≤tne

(
∑
i∈Vs

∑
j∈Vs

bn ∗ f q,n,ki,j /B+
∑
u∈Vs

cn ∗ sp,n,ku /C) (Eq. 4-10)

Accordingly, the related constraints are:

f q,n,ki,j = 0,∀rn ∈ R,∀qn ∈ En
v ,∀i, j ∈ Vs, (i, j) /∈ Vs,∀k ∈ [tns , t

n
e ] (Eq. 4-11)

∑
rn∈R

∑
qn∈En

v

bn ∗ (f q,n,ki,j + f q,n,kj,i ) ≤ B, ∀i, j ∈ Vs, ∀k ∈ [tns , t
n
e ] (Eq. 4-12)

∑
rn∈R

∑
pn∈V n

v

cn ∗ sp,n,ku ≤ C, ∀u ∈ Vs,∀k ∈ [tns , t
n
e ] (Eq. 4-13)

∑
u∈Vs

sp,n,ku = 1,∀rn ∈ R,∀pn ∈ V n
v ,∀k ∈ [tns , t

n
e ] (Eq. 4-14)

∑
pn∈V n

v

sp,n,ku ≤ 1,∀u ∈ Vs,∀rn ∈ R,∀k ∈ [tns , t
n
e ] (Eq. 4-15)

∑
j∈Vs

f q,n,ki,j −
∑
j∈Vs

f q,n,kj,i − sv
q,n
src ,n,k
i + s

vq,ndst ,n,k

i = 0, ∀rn ∈ R, ∀qn ∈ En
v ,∀i ∈ Vs,∀k ∈ [tns , t

n
e ]

(Eq. 4-16)

f q,n,ki,j = f q,n,k+1
i,j ,∀rn ∈ R,∀qn ∈ En

v ,∀i, j ∈ Vs,∀k ∈ [tns , t
n
e ) (Eq. 4-17)
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sp,n,ku = sp,n,k+1
u ,∀rn ∈ R,∀pn ∈ V n

v ,∀u ∈ Vs,∀k ∈ [tns , t
n
e ) (Eq. 4-18)

f q,n,ki,j ∈ {0, 1},∀rn ∈ R,∀qn ∈ En
v ,∀i, j ∈ Vs,∀k ∈ [tns , t

n
e ] (Eq. 4-19)

sp,n,ku ∈ {0, 1}, ∀rn ∈ R, ∀pn ∈ V n
v ,∀u ∈ Vs,∀k ∈ [tns , t

n
e ] (Eq. 4-20)

Overall, the objective function in Eq. 4-10 tries to minimize the cost of scheduling the

overlapping subset of VN requests, i.e., sum of all VN node and VN link mapping costs

normalized by two large numbers across all substrate nodes. Meanwhile, Eq. 4-11 appro-

priately constrains the link mapping variables. Next, Eq. 4-12 and Eq. 4-13 bound link

capacity and node resources, respectively, at any given time-slot. Namely, summing f q,n,ki,j

and f q,n,kj,i ensures that the total flows in both directions do not exceed the total available

bandwidth on link (i, j). Based on this, Eq. 4-13 sums all node mappings to make sure they

do not exceed node capacity. Moreover, Eq. 4-14 ensures that a virtual node is only mapped

to one substrate node, whereas Eq. 4-15 ensures that one substrate node can be allocated

to at most one virtual node in the same VN request. More importantly, Eq. 4-16 ensures

flow conservation at a source, destination, or transit nodes by combining the node and link

mapping variables. Specifically, consider any virtual link qn in the optimization set. Here if

node vi is chosen as the substrate node to map the source node of qn, i.e., sv
q,n
src ,n,k
i = 1 and

s
vq,ndst ,n,k

i = 0, then the total flow for qn leaving node vi is unity. Meanwhile, if vi is chosen as

66



1: Given new VN AR request
2: Identify set of accepted inactive reservations R
3: Remove substrate reserved resources in Gs = (Vs, Es) to generate temporary graph
G′s = (V ′s , E

′
s)

4: Generate ILP formulation for set R
5: if ILP solution found
6: Setup success, reserve resources in G′s = (V ′s , E

′
s), copy G′s to Gs

7: else
8: Drop request and discard G′s = (V ′s , E

′
s)

Figure 4.2: Modified ILP Formulation for VN Scheduling

the substrate node to map the destination node of qn, i.e., sv
q,n
src ,n,k
i = 0 and s

vq,ndst ,n,k

i = 1, then

the total flow for qn entering node vi is also unity. On the other hand, if vi is a transit node,

i.e., sv
q,n
src ,n,k
i = 0 and s

vq,ndst ,n,k

i = 0, the total flow entering and leaving vi is zero. Meanwhile ,

Eq. 4-17 and Eq. 4-18 ensure VN link connection and VN node mapping consistency during

the duration of the request interval, i.e., no time-varying mappings. Finally, Eq. 4-19 and

Eq. 4-20 specify the necessary binary constraints on variables f q,n,ki,j and sp,n,ku .

The overall pseudo-code for the ILP formulation is shown in Figure 4.2. This scheme

identifies the set of overlapping reservations and formulates the reduced dynamic optimiza-

tion problem for the incoming request. Now the actual ILP is run over a temporary substrate

graph by removing all reserved resources for accepted but inactive requests in the set. If this

ILP is successful in finding a valid mapping for all requests in the set, then the new request

is accepted and its respective resources are reserved in Gs = (Vs, Es). Otherwise the request

is dropped.
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Overall, the above ILP poses significant complexity. For example, consider a 5-

node/10-link VN request with 10 time-slots over a 20-node mesh substrate. The total num-

ber of variables here will be approximately 41,000 (i.e., 40,000 f q,n,ki,j variables, 1,000 sp,n,ku

variables). Now the state-based method in Section 3.2.1 can also be applied to reduce this

variable count. For example, on average this reduces the 10 time-slots to only 2 states.

Hence the revised variable count will now drop to 8,200. However, adding any overlapping

requests will quickly increase this total by multiple factors. Hence more tractable heuristic

schemes are also pursued herein.

4.3 Graph-Based Heuristic Solution

Owing to the high computational complexity of the optimization formulation, more

tractable graph-based heuristic solutions are presented for scheduling VN requests. These

algorithms include several two-stage schemes (which first map VN nodes onto substrate

nodes and then route the VN links) as well as a single-stage scheme that jointly maps VN

nodes and links.

4.3.1 Two-Stage Heuristic

The overall pseudo-code for the two-stage heuristic is shown in Figure 4.3. Here the

VN nodes are first sorted according to their node degree and mapped sequentially, i.e., nodes

with more adjacent VN nodes are mapped first (steps 3-12, Figure 4.3). Next, the virtual

links between the mapped nodes are routed (steps 13-15, Figure 4.3) using Dijkstra’s shortest

path algorithm. Specifically, the link weights here are selected using the earlier-detailed LB
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link weighting strategy defined in Section 4.1.5. Finally, the heuristic only returns success

if all nodes and links are successfully mapped (scheduled). Now consider the virtual node

mapping stage first, where four different strategies are proposed:

• Random Pick (RP): This scheme picks a random substrate node with enough free

resources in the VN request interval. This approach essentially provides a baseline for

comparison purposes.

• Maximum Neighbors (MN): This scheme chooses the substrate node with the maximum

number of available neighbors in G′s(V
′
s , E

′
s). This approach tries to assign the most-

connected substrate nodes first in order to (subsequently) increase the likelihood of

successfully routing virtual links.

• Maximum Bandwidth (MB): This scheme chooses the substrate node with the most

available bandwidth on its adjacent links. This approach tries to achieve link load-

balancing when mapping virtual nodes by avoiding heavily-loaded substrate links.

• Maximum Product (MP): This scheme pursues a median between balancing node and

link loads. Namely, the product of the remaining node resources and total adjacent

link bandwidth levels is calculated for each substrate node in G′s(V
′
s , E

′
s). Each virtual

node is then mapped to the available substrate node with the maximum product.

Carefully note that a temporary copy of the network graph, G′s(V
′
s , E

′
s) is used to perform

all node/link mapping computations, i.e., Figure 4.3, step 2. This graph basically removes

any substrate nodes or links which cannot accommodate a requested VN node or VN link,

i.e., all substrate links with bmine < bn and all substrate nodes with bminv < cn. Again, the
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bottleneck link is defined as per Eq. 3-10 (Figure 3.7). Similarly, the bottleneck capacity for

a substrate node is also defined as:

bminv = min remv(t), t
n
s ≤ t ≤ tne (Eq. 4-21)

Based upon above, all non-feasible links with bmine < bn and nodes with bminv < cn are removed

to generate the reduced sub-graph.

In general, the above heuristics can only provide a baseline for developing further

improved algorithms and do not provide any guarantee of optimal or even near-optimal result.

Now consider the overall computational complexity here. Foremost, removing non-feasible

nodes and links to build the temporary graph (steps 1-2) requires checking all substrate nodes

and links, yielding a complexity of O(|Es| + |Vs|). Unlike the (IR) VNE mapping problem,

here the time-varying capacity levels during overlapping VN request intervals also need to be

considered. In fact, the average number of overlapping VN requests depends on the request

inter-arrival and holding time. Hence assuming that there are M overlapping requests when

a new arrival request arrives, at most N = 2M + 1 time blocks have to be considered

when computing the bottleneck capacity while generating temporary graph. In addition,

sorting the VN nodes requires an average complexity of O(|Vv|log|Vv|). Next, each VN node

mapping approach (steps 4-12) requires O|Vs|, resulting a total complexity of O|Vv||Vs|.

Moreover, assigning link costs in G′s(V
′
s , E

′
s) (step 14) has O(N × |Es|) complexity. Finally,

routing a virtual link connection only requires one instance of the Dijkstra’s algorithm since

the VN nodes have already been mapped, i.e., O(|Es|+ |Vs|log|Vs|). Therefore, the runtime
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1: Given an incoming request rn = (Gn
v , c

n, bn, tns , t
n
e ), generate temporary graph copy

G′s(V
′
s , E

′
s) = G(V,E)

2: Remove non-feasible nodes and links in G′s(V
′
s , E

′
s), i.e., bminv < cn, bmine < bn in [tns , t

n
e ];

/* Loop and map all virtual nodes in the request*/

3: Sort the virtual nodes based upon node degree
4: for every node in V n

v

5: Pick substrate node from V ′s based on given node mapping (RP, MN, MB, or MP)
6: if failed
7: VN request rn failed
8: Discard G′s(V

′
s , E

′
s) and temporary node mapping array

9: Exit loop
10: else
11: Remove substrate node from V ′s
12: Save node mapping in temporary node mapping array

/* Loop and map all virtual nodes in the request*/

13: if All virtual nodes mapping successful
14: Assign load balancing weight to links in G′s(V

′
s , E

′
s)

15: Run Dijkstra’s shortest-path for each virtual link between mapped substrate nodes
16: else
17: VN request rn failed
18: Drop rn, discard G′s(V

′
s , E

′
s) and node mapping array

19: if all VN link connection routed
20: Setup successful
21: Reserve mapped node resources from node mapping array onto Gs(Vs, Es)
22: Reserve routed link resources onto Gs(Vs, Es)

Figure 4.3: Two-Stage Virtual Network Advance Reservation Heuristic Algorithm

complexity of two-stage VN scheduling algorithm is bounded byO(2N |Es|+N |Vs|+|Vv|(|Vs|+

log|Vv|) + |Ev|(|Es|+ |Vs|log|Vs|)).

4.3.2 Single-Stage Heuristic

As noted above, pre-selecting the node mappings without taking into account link

concerns can yield poor performance, i.e., incorporating link traffic load information into the
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node selection process may not suffice (MB, MP schemes). Therefore a more sophisticated

algorithm is required to jointly coordinate between node and link scheduling and provide

improved blocking and revenue performance. Along this lines, a single-stage VN scheduling

scheme is proposed here, as shown in Figure 4.4.

1: Given incoming request rn = (Gn
v , c

n, bn, tns , t
n
e ), generate temporary graph copy

G′s(V
′
s , E

′
s) = G(V,E)

2: Remove non-feasible nodes and links in G′s(V
′
s , E

′
s), i.e., bminv < cn and bmine < bn in

[tns , t
n
e ];

/* Loop and map all virtual nodes in the request*/

3: Sort the virtual nodes based upon node rank
4: for every node in V n

v

5: Compute a set of candidate substrate nodes
6: Compute candidate node cost and pick one with minimum total node cost (Eq. 4-22)
7: Route VN links from this selected substrate node to its mapped neighbor VN nodes
8: if all VN nodes and links mapped and routed
9: Setup successful
10: Reserve node and link resources onto Gs(Vs, Es)
11: else
12: VN request rn failed
13: Drop rn, discard G′s(V

′
s , E

′
s) and node mapping array

Figure 4.4: Single-Stage Virtual Network Advance Reservation Heuristic Algorithm

Overall the single-stage VN scheduling heuristic leverages from existing single-stage

VNE algorithms [HY01]. Specifically, VN node and VN link mappings are done jointly, and

VN node mappings also consider potential (future) link mapping costs. The algorithm starts

by generating a temporary copy of the network graph and removing any non-feasible nodes

and links (step 2 in Figure 4.4). The requested VN nodes are then sorted and mapped in
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decreasing order of their (virtual) node degrees (step 3 in Figure 4.4). For each unmapped

VN node, vv, a set of candidate substrate nodes is then computed. Here the total amount of

available node computational resources cannot be lower than the requested amount cn. In

addition, the maximum and total bandwidth requested between a candidate VN node and

its adjacent VN node(s) must also be considered. Namely, for any candidate substrate node,

vs, the maximum amount of available bandwidth on the links adjacent to vs must not be

less than bn. Additionally, the total available bandwidth on all links adjacent to vs also has

to be satisfied. Based upon this selection, unavailable substrate nodes will be removed from

future consideration.

Now consider minimum cost mapping. Here the cost of a candidate substrate node,

vs, is calculated as the sum of three factors, i.e., node mapping cost C(vs), average link cost

to already mapped neighbor VN nodes, C0 < vv, vs >, and average potential link cost to

unmapped neighbor VN nodes, C1 < vv, vs >, i.e.,

COST < vv, vs >= C(vs) + C0 < vv, vs > +C1 < vv, vs > (Eq. 4-22)

Namely node mapping cost is calculated using load balancing (as in Section 4.1.5) to avoid

congestion. Now assume V ′0 is the set of neighboring nodes (for candidate node vv) that have

already been mapped, and the corresponding mapping set is η(V ′0) ∈ Vs. Additionally, let V ′1

be the set of neighboring nodes that have not been mapped yet. As a result, C0 < vv, vs >

is computed as the sum of path costs between substrate candidate vs and a set of substrate

nodes that have been allocated to V ′0 , see Eq. 4-23. Meanwhile, C1 < vv, vs > is computed
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as the sum of path costs between vs and a set of substrate nodes that may be allocated to

V ′1 , see Eq. 4-24.

C0 < vv, vs >=
∑
∀v′v∈V ′

0

cpv′v ,vv =
∑

η(v′v)∈Vs

cpvs,η(v′v) (Eq. 4-23)

C1 < vv, vs >=
∑
∀v′v∈V ′

1

cpv′v ,vv =
∑

η(v′v)∈Vs\η(V ′
0)

cpvs,η(v′v) (Eq. 4-24)

Based on the above, the candidate node with the least cost (Eq. 4-22) is selected.

Subsequently, the VN links between the chosen substrate node and the nodes corresponding

to its mapped VN neighbors will be routed and scheduled using the minimum cost path

(step 7). The VN request is successful if and only if all VN nodes and their adjacent VN

links are mapped. Otherwise, this request is dropped and the temporary copy of the graph

discarded. Overall, the single-stage mapping algorithm tends to choose feasible substrate

nodes that take into account both node and link costs to mapped and unmapped VN nodes.

Finally, consider the time complexity for single-stage VN scheduling scheme. The

overall procedure in Figure 4.4 starts by generating a temporary graph copy, i.e., akin to the

two-stage scheme, O(N × (|Es| + Vs)). Similarly, VN node sorting requires O(|Vv|log|Vv|)

time complexity. It is also necessary to compute load-balancing link costs for each substrate

link, i.e., O(N |Es|). Meanwhile, the single-stage VN mapping has similar time-complexity

to the NSVIM algorithm in [HY01], i.e., O(|Ev|(2 + |Vs|)|Vs||Es|log|Vs|). Therefore the total

run-time complexity of the single-stage VN scheduling is bounded by O(N(2|Es| + |Vs|) +

|Vv|log|Vv|+ |Ev|(2 + |Vs|)|Vs||Es|log|Vs|).
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4.4 Simulated Annealing Meta-Heuristic Solution

In general, graph-based heuristics cannot provide any sort of optimal performance

guarantee or bounds. Furthermore, the optimization models are not very tractable either

(as per Section 4.2). Hence in order to achieve a balance between performance and com-

putation complexity, additional meta-heuristic strategies are also developed here to achieve

a near-optimal solution in a reasonable and controllable amount of time. Now as discussed

in Section 2.1.3, various studies have used genetic algorithms, ant colony optimization, par-

ticle swarm optimization, and tabu search meta-heuristics for VNE mapping. Along these

lines, a further simulated annealing (SA) solution is introduced to solve the VN AR schedul-

ing problem by considering link costs to adjust node placement, see high-level overview in

Figure 4.5.

Overall, SA methods have been widely used to solve global optimization problems

with large search spaces. This approach defines a system temperature and interprets slow

cooling as a slow decrease in the probability of accepting worse solutions as it searches the

solution base. Hence by establishing the cooling phase and cooling rate, it is relatively

straightforward to control the total number of searches, as well as the overall computation

time. In general, SA schemes are easy to program when the search space is discrete. Consider

some further detailed here.

First let vector M =
(
η(v1), η(v2), ..., η(v|Vv |)

)
define a VN nodes mapping solution,

i.e., vi ∈ V n
v , i = 1, ..., |V n

v |. The feasibility of this solution is also verified by using Dijkstra’s
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shortest path to route all VN links whenever a new M is updated. The SA scheme also defines

a cost COST (M) for each feasible mapping based upon Eq. 4-22, i.e., the smaller the cost,

the better the mapping. Moreover, two mapping solutions are also recorded throughout the

SA process, i.e., the current solution (sCurr), and the best solution (sBest). The overall

SA algorithm in Figure 4.5 entails three key steps:

1) Computing an initial feasible solution

2) Setting up the annealing phase to find a feasible neighboring solution

3) Accepting a better (or possibly worse) solution with a certain acceptance probability

based upon the annealing temperature

Now with regards to initial feasible solution computation (step 2, Figure 4.5), the

SA scheme calls the find feasible solution (FFS) algorithm for the first time, see Figure 4.6.

This algorithm basically re-uses the two-stage heuristic in Section 4.3.1 to compute an initial

feasible solution. In order to avoid the possibility that the basic algorithm does not find a

feasible solution in a single attempt, another parameter iterNum is also introduced to run

the algorithm multiple times until a feasible solution is found. If no feasible solution is found

after iterNum attempts, the request is rejected, otherwise the algorithm proceeds to set up

the annealing phase, i.e., steps 7-9 Figure 4.5.

Next, consider the setup for the annealing phase (steps 7-9, Figure 4.5) Here the

FFS computation routine is called again to generate a new neighbor solution, i.e., steps

9-11 Figure 4.6. Each node mapping in sCurr is first converted into a binary number, and
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1: Given incoming request rn = (Gn
v , c

n, bn, tns , t
n
e ), Create three null solution set, sCurr

and sBest;
2: Call FFS computation routine to find a feasible mapping (see Figure 4.6);
3: if FFS computation fails
4: VN request rn failed
5: Drop rn

6: else
7: for Temp = Tmax;Temp > Tmin;Temp = µTemp
8: Call FFS computation routine again to find feasible mapping from neighbors of

sCurr
9: Update sCurr and sBest for each loop
10: Reserve node mapping of sBest and reserve routed link resources

Figure 4.5: Simulated Annealing Meta-Heuristic Algorithm

a neighboring solution is then generated by randomly shifting bits in sCurr. Finally, the

feasibility of this new (candidate) solution is checked and its acceptability decided upon.

Namely, Dijkstra’s shortest path algorithm is run for each VN link, and the cost of this new

solution is also computed (if all of VN link connections can be routed). As noted above, the

SA algorithm can also accept solutions with higher (worse) cost in a probabilistic manner.

Namely, the acceptance probability depends upon the cost and the “temperature” parameter,

Temp, as follows:

p = exp
(COST (sCurr)− COST (M)

Temp

)
(Eq. 4-25)

where sCurr is the current solution and M is the new neighbor feasible solution of sCurr.

Based upon the acceptance decision, sCurr is updated if the new solution is accepted,

and sBest is also updated if the new solution is better than before. Overall, the system
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1: Given sCurr and sBest, set iteration number iterNum
2: if sCurr = NULL
3: for iterNum times loop
4: Find solution M using two-stage Random Pick (RP) algorithm in Section 4.3.1
5: if Find feasible solution
6: Save M as sCurr and sBest
7: break
8: else
9: for iterNum times loop
10: Convert each node mapping in sCurr to binary coding
11: Randomly shift bits of sCurr to get a new neighbor solution M
12: if (M is feasible) && (COST (M) is acceptable)
13: Save M as sCurr
14: if COST (M) < COST (sBest)
15: Save M as sBest
16: break
17: if Find feasible solution M
18: Return TRUE;
19: else
20: Return FALSE;

Figure 4.6: Find Feasible Solution (FFS) Computation Algorithm

“temperature” is initialized to Tmax. When this value reaches Tmin, the node mappings in

sBest are saved and reserved along with their routed link resources. Note that both the

loop iteration numbers, i.e., parameter iterNum, and annealing phase Temp = µTemp can

be specified manually at each step in order to control the total compute time.
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4.5 Performance Evaluation

The performance of proposed VN advance reservation schemes are now tested using

OPNET ModelerTM for the same 16-and 24-node topologies shown in Figure 3.8. All sub-

strate nodes have 1,000 units of generic resource capacity and all physical links have 10,000

units of bandwidth. Also, client VN request sizes vary between 4-7 nodes with an average

VN node degree of 2.6, i.e., computed as the ratio of VN links to VN nodes. Meanwhile, the

average requested VN node capacity is uniformly distributed between 1-30 units, and the

average requested VN link capacity is uniformly distributed between 100-1,000 units. The

constants B and C in Eq. 4-1 and Eq. 4-2 are also set to 1,000 and 30 respectively, and ρ

and π are set to unity. As per Chapter 3, all requests arrive in a “on-line” manner and have

exponential holding and inter-arrival times, with means µ and λ. Namely, a value of µ = 600

time units is chosen here and λ is varied per desired load. Based on this, the total load is

defined by using a modified Erlang definition (as per Eq. 3-11, Section 3.4) as follows:

Modified Erlang load =
1

4

7∑
n=4

(n− 1)× µ/λ (Eq. 4-26)

Furthermore, all tests are done for 10,000 randomly-generated “on-line” VN requests,

i.e., no a-priori knowledge of upcoming requests. Carefully note that the CPLEX optimiza-

tion tool is also incorporated with OPNET ModelerTM in order to solve the ILP formulation

in Section 4.2. However, due to the massive computational complexity, this ILP is only formu-

lated for the new incoming VN request. Finally, the SA scheme chooses Tmax and Tmin values
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of 100 and 0, respectively. Furthermore, the annealing phase is set to Temp = 0.9Temp,

and for each iteration iterNum = 10, i.e., the FFS computation routine is run at most 10

times to find an acceptable solution for each temperature. Detailed results and findings are

now presented.

4.5.1 Blocking Rate Performance

The request blocking rates for the various VN scheduling schemes are shown in Fig-

ure 4.7. Foremost the findings for both the 16-node and 24-node topologies indicate that

the ILP optimization and SA meta-heuristic schemes give the lowest blocking of all. This

behavior is expected since the ILP is a local optimal strategy. More importantly, the SA

meta-heuristic scheme gives almost identical performance to the optimization scheme. This

indicates that the SA model can achieve a near-optimal performance.

Meanwhile, the results for the graph-based heuristic schemes also indicate improved

blocking rates with the single-stage scheme. Namely, the findings indicate very little sep-

aration between the MN, MP and RP schemes in the 16-node network, i.e., with MN and

MP giving about 15% lower blocking than the RP scheme. Meanwhile, the more selective

(load-aware) MB and single-stage schemes also give better overall performance. More im-

portantly, the blocking gains with these schemes are even more pronounced in the larger

24-node topology, i.e., about 90% lower blocking than the RP, MN and MP heuristics at

low-medium loads. These gains can be attributed to the fact that the larger topology has

more substrate nodes and links, and this allows load-aware schemes to utilize network re-
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sources in a more effective manner. Meanwhile, the MP scheme does slightly better than the

RP and MN schemes. These results clearly indicate that node mapping schemes can have

a huge impact on VN scheduling performance, i.e., jointly taking into account node and

link load-balancing constraints into the node selection process yields better (lower) blocking

ratios. Finally, the SA scheme also gives lower blocking than all the graph-based heuristics

across all input loads, with only slightly longer computation times as a trade-off. Hence the

meta-heuristic strategy offers a very competitive solution to the VN scheduling problem.

4.5.2 Long Term Revenue

The long term revenues are also plotted in Figure 4.8 and again confirm improved

values with the ILP optimization and SA meta-heuristic strategies. For example, in the

smaller 16-node topology, the ILP and SA solutions give over 20% higher revenues than

the two-stage RP scheme (and this separation increases further in the larger topology, see

Figure 4.8b). In addition, the single-stage heuristic scheme also gives significantly higher

revenues versus the MB scheme (the best two-stage scheme). Meanwhile, the two-stage RP

and MN schemes tend to give the lowest revenues in both networks. Since revenue is directly

related to the VN topology, these findings also indicate that the ILP and SA meta-heuristic

schemes can support larger VN request sizes versus graph-based heuristic methodologies.

4.5.3 Network Resource Utilization Efficiency

The efficiency of network resource utilization is also measured by plotting the average

path length for each VN link connection in Figure 4.9. These results indicate that the
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ILP optimization scheme achieves much lower bandwidth utilization cost per successfully-

scheduled VN. However the SA meta-heuristic gives slightly longer VN link routes compared

to the ILP optimization, i.e., about 40% longer in both topologies. On the other hand,

the single-stage scheme gives the lowest utilization amongst all the heuristic methods, i.e.,

approximately 15% longer VN link routes than SA scheme in the 16-node network and less

than 10% longer VN link routes in larger 24-node network. Furthermore, the two-stage MN

scheme also gives the shortest VN link routes across all two-phase schemes. This is expected

since choosing nodes with the maximum number of neighbors tends to schedule the whole

VN in a smaller localized area (which on the other hand also results in congestion and higher

blocking, see Figure 4.7 (a), (b)). Carefully note that the VN link length utilization does

not increase much with larger VN request loads, indicating algorithmic consistency across

all tested schemes.

Finally, to show network resources utilization more clearly, revenue-cost ratios are also

plotted in Figure 4.10, i.e., higher ratios indicating increased network resource utilization.

The findings here show the highest revenue-cost ratio for the ILP scheme, followed by the

SA meta-heuristic and single-stage heuristic. For example, the ILP approach achieves an

average revenue-cost ratio of 90%, whereas the SA meta-heuristic scheme yields one closer to

70% across all loads. These results confirm the same network resources utilization efficiency

as VN link length results (see Figure 4.9). Finally, these findings also indicate that the ILP

optimization and SA meta-heuristic schemes can support more VN requests (customers).
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(a)

(b)

Figure 4.7: Request Blocking Rate: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 4.8: Long Term Revenue: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 4.9: Average VN Link Length: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 4.10: Revenue-Cost Ratio: a) 16-Node Topology, b) 24-Node Topology
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Chapter 5 Flexible AR Models for Virtual Network Scheduling 1

In general, simple binary accept/reject decisions may not provide the most flexible

option for service providers and their clients. For example, many customers may be willing

to accept some form of “partial” VN service setup if their full request cannot be met, i.e.,

reduced VN node or VN link resource levels, even truncated VN topologies, etc. At the

same time, service providers can realize improved revenues and infrastructure utilization by

providing partial services support.

Now earlier studies in AR scheduling have looked at more flexible service models

for point-to-point connections. For example , [JX01] modifies requests by varying both the

time (start, stop) and resource (requested bandwidth) dimensions. The overall aim here

is to introduce added flexibility but still guarantee the total amount of data transfered.

Overall results show significant improvements in acceptance rates and bandwidth usage.

However, as noted this model only considers point-to-point connection demands (single-

path). Indeed, multi-node and multi-link VN requests allow much more flexibility in terms

of service modification.

In light of the above, this chapter presents two generalized AR schemes based upon

more flexible service models. First, a priority-based reservation (PBR) scheme is proposed

1This chapter was previously published in [HB03]. Permission is included in Appendix B.
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to assign different priority levels to VN nodes and VN links within a VN request. Next, a

capacity-based reservation (CBR) scheme is also developed to modify requested VN resource

levels and achieve a trade-off with request durations. Consider the details below.

5.1 Network Model and Description

Overall, the proposed flexible VN scheduling framework re-uses the same notation and

network model introduced in Section 4.1. Furthermore, many of the performance evaluation

metrics defined for VN scheduling are also applicable here, particularly modified revenue/cost

and long term revenue and cost, see Eqs. 4-1 - 4-4. However, some further VN request

definitions are still required in order to properly differentiate the flexible AR service models.

These modifications will be detailed along with their associated provisioning algorithms.

5.2 Flexible AR Model

As mentioned earlier, many clients will be willing to accept some level of service pro-

visioning flexibility. For example, it may be amendable to only provision a portion of an

incoming VN request under high-load or failure conditions. Along these lines, two partial VN

scheduling policies are also proposed here. Namely, the PBR scheme assigns different priori-

ties to VN nodes and VN links, and schedules these priorities in separate stages. Meanwhile,

the CBR scheme adjusts request durations to meet revenue expectations.
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5.2.1 Baseline Algorithm

Technically, any of the schemes introduced in Chapter 4 can be used as a baseline

VN scheduling algorithm. Here the simple RP heuristic scheduling heuristic in Section 4.3.1

is chosen here and used for subsequent comparison purposes.

5.2.2 Priority-Based Reservation (PBR) Scheme

This scheme assumes that all VN nodes/links are assigned two different priority levels,

i.e., high or low, as specified by operators or their clients themselves. The overall pseudocode

for the PBR solution is shown in Figure 5.1. The scheme tries to schedule all higher priority

nodes and links first. If this procedure is unsuccessful, the VN request is turned down.

Subsequently, attempts are made to schedule as many of the lower priority VN nodes and

VN links as possible. Specifically, unmapped VN nodes are first sorted in decreasing order

of their node rank. A set of candidate nodes is also derived for each of these VN nodes

by selecting physical nodes with sufficient available resource levels and available bandwidth

levels on adjacent links. Using this information, an unmapped VN node is mapped to a

candidate physical node with the lowest link costs to each mapped VN neighbor node (see

Eq. 4-8 and 4-9). The VN link connections between this selected node and already-mapped

neighboring VN nodes are then routed/scheduled. Note that evaluation metrics (such as

revenue or cost) can only be calculated for successfully provisioned portions of a VN request

instead of the whole request.
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1: Given incoming request ri = (Gi
v, c

i, bi, tis, t
i
e), generate temporary graph copy

G′s(V
′
s , E

′
s) = G(V,E)

2: Remove non-feasible nodes and links in G′s(V
′
s , E

′
s), i.e., nodes remv(t) < cn and links

reme(t) < bn in [tis, t
i
e];

3: Attempt to schedule higher priority VN nodes any baseline algorithm
4: if Failed
5: VN request ri failed
6: Discard G′s(V

′
s , E

′
s) and temporary node mapping array

7: else
8: Setup Successful
9: Sort the virtual nodes based upon node rank
10: for Each unmapped VN node
11: Compute candidate physical substrate nodes
12: Compute cost (route length) from candidate nodes to mapped VN nodes
13: Select the candidate node with the minimum cost
14: Run Dijkstra’s shortest-path between chosen node and mapped substrate nodes
15: if All VN link connections routed
16: Reserve mapped node and link resource in Gs(Vs, Es)

Figure 5.1: Priority-Based Reservation (PBR) Scheme

5.2.3 Capacity-Based Reservation (CBR) Scheme

This approach pursues a compromise between assigned resource levels and request

durations. Namely, this algorithm is only triggered when an incoming VN request cannot be

reserved using the baseline algorithm. Specifically, all the VN node and VN link resources

requested in ri are scaled by a fraction, σ, 0 < σ < 1. To compensate for this reduction,

the request duration is appropriately extended by a factor of 1/σ as well. Here the baseline

algorithm is used to initially schedule the VN request. If this setup fails, the VN request is

adjusted from ri to rimod = (Gi
v, σc

i, σbi, tis, t
i
s+1/σ(tie− tis)), and the baseline algorithm is re-
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run. Note that this reservation model is very amendable to data transfer services requesting

variable or extended transfer times.

1: Given incoming request ri = (Gi
v, c

i, bi, tis, t
i
e), generate temporary graph copy

G′s(V
′
s , E

′
s) = G(V,E)

2: Remove non-feasible nodes and links in G′s(V
′
s , E

′
s), i.e., remv(t) < cn and reme(t) < bn

in [tis, t
i
e];

3: Attempt to schedule the VN request ri using baseline algorithm
4: if Failed
5: Adjust resource and duration by σ and 1/σ, rimod = (Gi

v, σc
i, σbi, tis, t

i
s + 1/σ(tie − tis))

6: Generate another temporary copy of network G′′s(V
′
s , E

′
s) where remv(t) < σcn and

reme(t) < σbn in [tis, t
i
s + 1/σ(tie − tis)]

7: Attempt to schedule modified VN request rimod using baseline algorithm
8: if Failed
9: VN request failed
10: Discard G′s(V

′
s , E

′
s) and temporary node mapping array

11: else
12: Setup Successful
13: Reserve mapped nodal resources (σci) from node mapping array in Gs(Vs, Es)
14: Reserve routed link resources (σbi) in Gs(Vs, Es)
15: else
16: Setup Successful
17: Reserve mapped nodal resources from node mapping array onto Gs(Vs, Es)
18: Reserve routed link resources in Gs(Vs, Es)

Figure 5.2: Capacity-Based Reservation (CBR) Scheme

5.2.4 Complexity Analysis

Now consider the overall run-time complexity of the flexible AR service provisioning

schemes. As shown in Section 4.3.1, the two-stage baseline scheme has O(2N |Es|+N |Vs|+

|Vv|(|Vs| + log|Vv|) + |Ev|(|Es| + |Vs|log|Vs|)) computation complexity. Similarly, provision-

ing high-priority VN nodes and VN links gives similar complexity for the PBR scheme.

91



Moreover, scheduling low-priority VN nodes and VN links also entails similar computa-

tional complexity as the single-stage VN scheduling scheme (Section 4.3.2), i.e., bounded by

O(|Ev|(2 + |Vs|)|Vs||Es|log|Vs|), where VN node and VN link resources are reserved at the

same stage per un-mapped VN node. Therefore, depending upon the number of high and

low priority VN nodes (links) in a VN, the total run-time complexity of the PBR scheme

is bounded between O(2N |Es| + N |Vs| + |Vv|(|Vs| + log|Vv|) + |Ev|(|Es| + |Vs|log|Vs|)) and

O(N(2|Es|+ |Vs|) + |Vv|log|Vv|+ |Ev|(2 + |Vs|)|Vs||Es|log|Vs|).

Meanwhile, the CBR scheme basically runs the two-stage baseline algorithm twice

with two different VN requests. Therefore the total run-time complexity of this scheme is

the same as the two-stage baseline scheme, i.e., bounded by O(2N |Es|+N |Vs|+ |Vv|(|Vs|+

log|Vv|) + |Ev|(|Es|+ |Vs|log|Vs|)).

5.3 Performance Evaluation

The two flexible VN scheduling models are now tested in OPNET ModelerTM using

the earlier-defined 16-node and 24-node substrate topologies shown in Figure 3.8. Again,

all substrate nodes have 100 units of capacity and all subtrate links have 10,000 units of

bandwidth. Meanwhile, VN requests are also generated by composing random graphs with

4-7 nodes each, with an average node degree of 2.6. The requested VN node capacities

are also distributed uniformly between 1-30 units, and VN link capacities are distributed

uniformly between 100-1,000 units. All VN requests have exponentially-distributed holding

and inter-arrival times, with means µ and λ. Again a value of µ = 600 time units is used
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here, and λ is adjusted accordingly per load as Section 4.5. Accordingly, B is set to 1,000,

and C is set to 30 to normalize revenue and cost computation. Both ρ and π in Eq. 4-1

and Eq. 4-2 are also set to unity. Furthermore, in the PBR scheme up to 3 VN nodes and

VN links are assigned high priority levels, see Figure 5.3. Meanwhile, for the CBR scheme,

3 different values of σ are chosen to gauge performance sensitivity, i.e., 0.2, 0.5, 0.8.

Figure 5.3: Prioritized VN Requests
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5.3.1 Blocking Rate Performance

Initial tests are done to measure VN request blocking rates, see Figure 5.4. Overall

findings show much lower blocking performances with both the PBR and CBR schemes.

Specifically, the PBR scheme yields nearly half the blocking rate of the baseline scheme in

the 16-node topology, and this difference increases further in the larger 24-node topology,

see Figure 5.4 (b). Meanwhile, the CBR scheme gives improved blocking reduction for the

smaller value of σ. Here decreasing requested VN resource levels also creates more available

substrate resources for new requests to be accepted.

5.3.2 Long Term Revenue

The long term revenues are also plotted in Figure 5.5 and show much improved

performance with PBR and CBR schemes. Foremost, smaller σ values for the CBR scheme

yield the highest revenues. Meanwhile, the long term revenues for the PBR scheme in the

smaller 16-node topology are slightly less than those with the CBR scheme (with σ = 0.2).

This reduction occurs since the smaller network can only schedule the high priority portions of

incoming VN requests under higher loads. However, with more available substrate resources

in a larger network, more VN requests can likely be accommodated in the original setup

attempt. These results indicate that the PBR scheme is more effective in larger networks.

Regardless, both of these flexible VN service schemes provide significant performance and

revenue improvements versus the baseline strategy.
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5.3.3 Network Resource Utilization Efficiency

Finally, the average link lengths for successful VN requests (link connections) are

also plotted in Figure 5.6, along with revenue-cost ratios in Figure 5.7 (to gauge network

resource utilization efficiency). These findings indicate that the PBR scheme achieves the

highest overall resource utilization. Namely, this scheme gives approximately 50% shorter

VN link routes, and over 20% higher revenue-cost ratios compared to the RP baseline scheme.

Conversely, the CBR scheme shows very small separation for different values of σ. However,

these values still show notably lower resource utilization (than the baseline scheme) for both

flexible VN AR schemes.
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(a)

(b)

Figure 5.4: Request Blocking Rate: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 5.5: Long Term Revenue: a) 16-Node Topology, b) 24-Node Topology

97



(a)

(b)

Figure 5.6: Average VN Link Length: a) 16-Node Topology, b) 24-Node Topology
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(a)

(b)

Figure 5.7: Revenue-cost Ratio: a) 16-Node Topology, b) 24-Node Topology
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Chapter 6 Conclusions and Future Work

This dissertation presents one of the first studies on AR scheduling for virtual network

(VN) services. First, Chapter 2 presents a review of some related background work in the

field. Next, the VN scheduling problem with fixed node locations is studied in Chapter

3 and several new optimization and heuristic methods are proposed. Subsequently, the

more generalized VN scheduling problem is introduced/formulated in Chapter 4, and several

solution strategies are proposed and evaluated. Namely, these solutions include optimization,

meta-heuristic, and graph-based heuristic methods. Finally, Chapter 5 presents some flexible

VN service scheduling models in order to lower request blocking ratios and improve operator

revenues. The major findings from this research are now presented.

6.1 Conclusions

The work starts by taking a more formal look at the VONS problem in Chapter 3.

This problem is a special case of VN scheduling problem in which virtual nodes locations

are pre-determined and do not require any resources, i.e., only batch scheduling of virtual

link connections. Namely, a modified dynamic ILP formulation is first outlined to pursue an

optimization strategy that minimizes resource usage over a reduced time window. Specifi-

cally, this window spans the request interval and any time-overlapping (accepted, inactive)

requests. To further simplify variable count (computational) complexity, a further state-
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based abstract ILP model is also presented. However, since these optimization formulations

still pose notable scalability challenges, three different heuristic techniques are proposed to

improve upon the greedy schemes presented in [FG01]. In particular the goal here is to use

re-routing techniques to re-map accepted overlay requests in order to free up more resources

for new demands, i.e., much in the same way the dynamic ILP operates. Overall, some of

the key contributions and findings from this study are as follows:

• The modified dynamic ILP optimization model treats a subset of time-overlapping

requests. Here each incoming VONS request is considered in isolation over a reduced

time windows in order to lower variable count complexity.

• The state-based ILP solution greatly improves the computational scalability by reduc-

ing the number of considered time-slot variables. This approach significantly outper-

forms all heuristic methods and can solve relatively larger network sites in a reasonable

time, i.e., up to 24 nodes and 43 links.

• The proposed (VN link) re-routing heuristics give notable improvements over the basic

minimum hop-count heuristic in [FG01]. In particular, the threshold re-routing (THR)

scheme yields slightly lower blocking performance and less re-routing overheads across

all three heuristic strategies, i.e., up to 5% lower blocking rates and 50% less total

re-routing attempts.

In general, bandwidth provisioning between multiple fixed end-points can impose

many service limitations. For example, users may want more capable services that also
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provide some data-center resources at the network node sites. Hence Chapter 4 presents

a novel scheduling framework for more generalized VN requests. In particular, a “dy-

namic” ILP optimization formulation is first detailed to process all accepted but inactive

AR demands. However, due to excessive complexity by – particularly with the added node

placement dimension – alternate heuristic methods are also proposed, i.e., single-stage and

two-stage. Since heuristic methodologies cannot guarantee any type of performance bounds,

a meta-heuristic solution is also proposed based upon simulated annealing (SA) method.

This approach achieves a better trade-off between performance and computation complex-

ity. Overall, the findings here indicate:

• The ILP-based solution gives the best performance in terms of setup success rates,

long-term revenue, and network resource utilization efficiency. In particular, results

from two sample topologies (16 and 24 nodes) indicate up to two times the number

accepted requests versus the two-stage heuristic solution. These findings indicate that

there is room to further develop improved heuristic strategies.

• The SA meta-heuristic gives almost identical blocking and revenue performance as the

ILP optimization scheme with notably lower computation times. Hence this approach

provides a very competitive solution, especially as network sizes increase.

• The single-stage heuristic outperforms the simpler two-stage heuristic since it jointly

incorporates node and link mapping. Furthermore, the two-stage maximum-bandwidth

(MB) scheme (which takes into account link load balancing for node selection) also

outperforms the other two-stage heuristics. This improvement occurs since that load-
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aware schemes tend to distribute VN requests across the network and avoid localized

congestion.

Finally, Chapter 5 develops more flexible service models by modifying VN request

profiles. Namely, the priority-based reservation (PBR) scheme assigns different priorities to

VN nodes and VN links in a request, i.e., in order to improve setup success rates for critical

portions of a VN request. On the other hand, the capacity-based reservation (CBR) scheme

pursues a compromise between the assigned resources and request durations to satisfy total

transfer demands. Overall, some of the key findings here include:

• Both the PBR and CBR schemes provide significant gains in request acceptance rates

and long term revenue. Namely, the PBR scheme accepts two times the number of

requests versus the baseline algorithm across all loads in two sample topologies. Mean-

while, the CBR scheme gives the highest acceptance rates for smaller networks.

• The PBR scheme gives the highest overall network resource utilization, i.e., shorter

average route lengths and higher revenue-cost ratios, especially in larger network sizes.

These results indicate that this scheme is very amendable to realistic environments.

6.2 Future Work

This dissertation introduces some new problems in the area of VN service reservation

and opens up several new avenues for future research. Foremost, ILP relaxation methodolo-
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gies can be investigated to handle larger network sizes. In addition more flexible VN demand

models can also be studied by extending the work in Chapter 5 and considering flexible start

and stop windows.

Furthermore, as cloud scheduling paradigms gain traction, related service survivabil-

ity concerns are also starting to come to the fore. Along these lines, pre-fault protection

and post-fault restoration strategies can be developed for the VN scheduling problem. Fur-

thermore, the added timeline-dimension can also be leveraged here to develop appropriate

migration strategies.

Finally, it is noted that all the VN scheduling schemes presented in this dissertation

only consider single-domain network scenarios. Indeed, there may be an emerging need for

multi-domain VN scheduling across different operator domains as well. This extension will

require more advanced distributed VN scheduling solutions that operate with reduced levels

of “global” network state information. Provisioning requests across multiple domains will

also require further protocol interactions between multiple domains, and these topics can be

investigated further.
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Appendix A: Glossary

AR Advance Reservation

BGP Border Gateway Protocol

CBR Capacity-Based Reservation

DHT Distributed Hash Table

DWDM Dense Wavelengths Division Multiplexing

EC2 Elastic Compute Cloud

FCFS First Come First Serve

FFS Find Feasible Solution

GRASP Greedy Randomized Adaptive Search Procedure

IaaS Infrastructure as a Service

ILP Integer Linear Programming

InP Infrastructure Provider

IR Immediate Reservation

ISP Internet Service Provider

k-SP K-Shortest Paths

LAN Local Area Network

LB Load Balancing

LP Linear Programming

MANETs Mobile Ad-hoc Networks

MB Maximum Bandwidth
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MCF Multi-Commodity Flow

MHR Minimum Hop Re-Routing

MILP Mixed Integer Linear Programming

MIP Mix Integer Programming

MN Maximum Neighbors

MNR Minimum Number Re-Routing

MP Maximum Product

MPLS Multiprotocol Label Switching

NSVIM Non-Survivable Virtual Infrastructure Mapping Algorithm

P2P Peer-to-Peer

PaaS Platform as a Service

PBR Priority-Based Reservation

QoS Quality of Service

RON Resilient Overlay Network

RP Random Pick

RVNS Reduced Variable Neighborhood Search

RWA Routing and Wavelength Assignment description

SaaS Software as a Service

SDH Synchronous Digital Hierarchy

SON Service Overlay Network

SONET Synchronous Optical Networking

SP Service Provider

STSD Specified Start Specified Duration

STUD Specified Start Unspecified Duration

THR Threshold Re-Routing
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UFP Unsplittable Flow Problem

UTSD Unspecified Start Specified Duration

VM Virtual Machine

VN Virtual Network

VNE Virtual Network Embedding

VoIP Voice over IP

VON Virtual Overlay Network

VONS Virtual Overlay Network Scheduling

VPN Virtual Private Network
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Appendix B: Copyright Permissions

Below is the permission for the use of Figure 1.1 in Chapter 1.
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Below is permission for the use of material in Chapter 3.
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Below is permission for the use of material in Chapter 4.
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Below is permission for the use of material in Chapter 5.
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