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ABSTRACT 

This dissertation is composed of two independent studies: Cellular research and WBAN (Wireless 

Body Area Network) research. Both investigations are directed towards improving the system 

performance in wireless communication systems in terms of Quality of Service (QoS) and system 

capacity. 

For the Cellular research part, this dissertation will present novel user-specific QoS requirements 

as defined by their respective Mean Opinion Score (MOS) formulas, and associated schedulers for 

wireless applications and systems that optimize spectral allocation. User-specific QoS requirements are 

defined and several methods to make use of such requirements to maximum the spectral utilization are 

presented. Five User-Specific QoS Aware (USQA) schedulers are proposed that consider the user-specific 

QoS requirements in the allocation of spectral resources. Schedulers are introduced that dynamically 

adapt to the user-specific QoS requirements to improve quality as measured by the MOS, or the system 

capacity, or can improve both the quality and system capacity. 

Due to the different cell deployment arrangements and inter-cell interference in heterogeneous 

networks in comparison to homogeneous networks, the USQA scheduling is also analyzed and the system 

performance is evaluated in such networks. Throughput improvements of File Transfer Protocol (FTP) 

applications benefiting from the rate adaptation and MAC (Media Access Control) scheduling algorithms 

for video applications that incorporate user-specific QoS requirements to improve system capacity are 

demonstrated. 

Another novel approach recognizes that the user-specific frequency sensitivity can be used to 

improve capacity. There is considerable variation in the audible range of frequencies that can be 

perceived by individuals, especially at the high frequency end, which is primarily affected by a gradual 

decline with age. This can be utilized to improve the system performance by personalizing the VoIP 
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codecs and decreasing the user’s source data rate for people from an older age group and thus increase the 

system capacity.  

Given the potentially substantial system performance gain resulting from the USQA schedulers, it 

is critical to analyze their feasibility and complexity in practical LTE (4G cellular) and future wireless 

systems. From the LTE system perspective, LTE QoS end-to-end signaling procedures are addressed, and 

corresponding protocol adaptations are analyzed in order to support the USQA schedulers. In addition, the 

optimal scheduling period is analyzed that trades off between performance gain and implementation 

complexity. 

In the WBAN research, MIMO (Multiple Input Multiple Output)  in vivo antenna technologies are 

introduced and are motivated by the high data rate requirements of wirelessly transmitted low-delay High 

Definition (HD) video during Minimally Invasive Surgery (MIS). MIMO in vivo technologies are 

proposed to be used in the in vivo environments to enhance and determine the maximum data 

transmission rate while satisfying the Specific Absorption Rate (SAR) power limitations. Various factors 

are considered in the MIMO in vivo study including antenna separation, antenna angular positions, human 

body size, and system bandwidth to determinate the maximum data rate that can be supported. 
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CHAPTER 1. INTRODUCTION 

Maximizing utilization of the limited spectral resources and satisfying the ever-increasing 

requirements for higher data rates are among the main research challenges in wireless communications. 

Numerous research studies are focused on various aspects of improving the spectral efficiency and 

maximizing the system capacity for these conditions. For example, in LTE-Advanced [1], [2], key 

wireless physical layer technologies such as small cells [3], [4], multi-antennas [5], CA (Carrier 

Aggregation) [6], and CoMP (Coordinated Multi-Point operation) [7] are introduced to improve the 

system performance to meet the 4G LTE-Advanced requirements [8], [9]. Spectral efficiency can also be 

improved in the upper layers via efficient MAC resource scheduling algorithms [10], [11]. 

The research presented in this dissertation is directed to improve the system performance in 

Cellular and WBAN by using novel user-specific QoS requirements in wireless resource scheduling for 

cellular systems and MIMO in vivo technologies in the WBAN physical layer respectively. 

In this chapter, motivation for both the cellular research and WBAN research is presented, along 

with the research objectives for both type of networks. 

1.1 Research Motivation 

1.1.1 Motivation for Improving Cellular Utilization 

In today’s wireless 4G LTE networks, the spectral allocation of resources is either independent of 

the application’s specific Quality of Service (QoS) requirements and of the users’ specific perceived QoS, 

or at most relies on a set of pre-defined fixed priorities [12], [13]. Although in these standards, the MAC 

and the PHY layers have an increased role in optimizing the usage of the spectral resources and 

implementing link quality-aware techniques, nevertheless, optimization is still largely independent of the 

application context, the users’ requirements, and the users’ perception of performance degradation. In 

particular, the standards do not take into account the QoS required by different applications and their 
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users, beyond simply assigning fixed priorities to traffic classes. Indeed, from the user’s perspective, the 

QoS required by different applications can be quite variable. Similarly, for a given application type, 

different users may require different levels of QoS.  

 

Figure 1.1 Hearing loss [HL] as a function of frequency and age [14] 

For Voice over IP (VoIP) applications, as a motivating example, consider the fact that the 

perceived voice quality of different languages may differ substantially with the same data rate and BER 

(Bit Error Rate), because of the different spectral content of such languages and because of a particular 

user’s auditory spectral response (with variations typically due to aging, as shown in Figure 1.1) [14], 

making the user more or less sensitive to a particular type of distortion or frequency band. Consequently, 

the same amount of degradation, as experienced by individual applications and their users, may have 

substantially different perceptual effects. Another example is the varying talking environments, where 

some users have a conversation under very noisy conditions, whereas some other users converse under 

very quiet conditions, thus making users more or less sensitive to packet losses. If the same spectral 

resource is allocated to users in very noisy and quiet backgrounds, then quite a different user experience 

will likely be incurred. As another example, consider that people from different age groups normally have 
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different sensitivity to high frequency sound content [14], which can be exploited to maximize the system 

capacity by reducing the bit rate for users with reduced frequency sensitivity.  

 

Figure 1.2 Video sensitivity as a function of different age group [15] 

For video applications, older individuals, compared to young adults, are less sensitive to spatial 

forms defined by a temporal structure [15], as shown in Figure 1.2. So for many older people a lower 

video data rate provides the same user experience (i.e., QoS) as the full rate video does for younger 

people. Hence, the user-specific QoS requirements can be utilized by the scheduler to differentiate 

between the users and make better use of the wireless spectral resources.  

According to the statistics for the population distribution by age done by the United States Census 

Bureau [16], about 25.8% of the population are older than 55 and 79.2% of the population are older than 

15. So about 1/3 of the population among the people who can potentially use mobile phones (i.e., older 

than 15) are older than 55, and these people can be potentially identified as users with less sensitivity to 

distortion for VoIP applications and less sensitivity to frame rate for video applications. In fact, since the 

number of older people is continuously increasing, and more and more young people are subject to the 

hearing loss at high frequencies, this ratio can be higher [17], [18] as shown in Figure 1.3. 
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Figure 1.3 U.S. age pyramid 

Furthermore, we observe that some previous studies (e.g., [19]–[22]), which use the QoS 

characteristics of an underlying application (typically expressed as a function of the MOS), allocate 

average spectral resources to applications, independently of the application’s actual specific QoS 

requirement. In the literature, there are MAC schedulers that take into account instantaneous data rates 

and user’s QoS [23]–[27]. In [28], content adaptation techniques and protocol adaptation techniques are 

used to optimize the interactions between applications/content and the underlying networks to accelerate 

the content delivery. However, in these schemes, no user-specific and age related QoS requirements have 

been considered in the MOS functions and the scheduling algorithms. Thus, in such schemes, especially 

for applications with widely varying QoS requirements (even for the same type of application), either the 

spectral resources are not efficiently utilized or the MOS is significantly degraded.  

1.1.2 Motivation for Improving WBAN Performance 

One appealing aspect of the emerging Internet of Things is to consider in vivo networking as a rich 

application domain for wireless technology in facilitating wirelessly enabled healthcare. Wireless 

technology has the potential to synergistically advance healthcare delivery solutions by creating new 

science and technology for in vivo wirelessly networked cyber-physical systems of embedded devices. 
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In vivo wireless networks have certain characteristics and requirements such as low complexity, 

limited transmission and processing power, low latency, high reliability, and transmission characteristics 

such as being a highly lossy [29] and dispersive radio frequency (RF) channel [30], with possible near-field 

operation [31]. It is the purpose of this dissertation to demonstrate that owing to the highly dispersive 

nature of the in vivo channel, achieving stringent performance requirements will be facilitated by the use of 

multiple-input multiple-output (MIMO) communications [32] to achieve enhanced data rates. For example, 

one potential application for MIMO in vivo communications is wirelessly transmitted low-delay High 

Definition video during Minimally Invasive Surgery (MIS) [33], as shown in Figure 1.4. With surgical and 

technological breakthroughs pioneered at the University of South Florida (USF) and Florida Hospital by 

our surgical colleagues, Alexander Rosemurgy and Sharona Ross, for certain procedures MIS has evolved 

into LESS (Laparoscopy-Endoscopy Single-Site surgery) [34]. Our research group has created a Miniature 

Anchored Remote Videoscope for Expedited Laparoscopy (MARVEL) robotic camera module, which is a 

wireless research platform for advancing MIS and requires high bit rates (~80–100 Mbps) for HD video 

transmission and low latency for proper operation during surgery. 

It is widely recognized that MIMO technology, the use of multiple antennas both in transmitter and 

receiver, can significantly improve the capacity and performance of the communication system in 

comparison to the conventional system with single antenna. In modern communications systems, the 

combination of MIMO and OFDM technology [35] is extremely popular and takes advantage of multipath 

to materially improve the radio transmission performance. There has been some research that focuses on 

MIMO for WBANs, i.e., there are a few models for MIMO system that can be applied to WBANs. In [36], 

the authors place the antennas on human clothing and analyze the performance of the proposed wearable 

MIMO system, which has a significantly better performance than the previous system on a handheld 

platform. The wideband body-to-body radio channel with MIMO was investigated in [37] and the authors 

also present several characterizations of the channel such as path loss, body shadowing, and small-scale 

fading. However, to the best of our knowledge, MIMO system for in vivo environments has not been fully 

studied in the literature, and due to the tremendous opportunity to increase the reliability and the 
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communications efficiency for the in vivo channel and support novel applications (e.g., transmitting HD 

video from inside the human body) for the in vivo environment, in this dissertation, we present a detailed 

study of the performance of MIMO system in the in vivo environment. 

1.2 Research Objectives 

1.2.1 Cellular Objectives 

• Either improve user satisfaction, as measured by the MOS, by adapting MAC scheduling 

algorithms to user-specific QoS requirements, and/or 

• Improve system capacity by trading off the spectral resource allocations for the user-specific 

QoS requirements, while still maintaining acceptable levels of MOS. 

1.2.2 WBAN Objectives 

• Improve in vivo system performance by utilizing MIMO technologies; i.e., MIMO in vivo. 

• MIMO in vivo performance optimization via antenna placement to achieve stringent 

requirements such as enhanced data rates and specified specific absorption rate (SAR) levels. 

 

Figure 1.4 Minimally Invasive Surgery (MIS) 

1.3 Dissertation Outline 

The dissertation is organized as follows: 

• CHAPTER 2 provides an overview of Cellular 4G LTE and WBAN networks that is a useful 

background to understand the subsequent chapters. In the LTE network overview, the 
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network architecture, QoS-related policy and charging control architecture, QoS parameters, 

and QoS parameters mapping functions are described. Another very important protocol, i.e., 

the Session Initiation Protocol (SIP), is also addressed, which is critical for the initial QoS 

negotiation during session initiation. In the WBAN network overview, the system 

characteristics, representative applications, design challenges, and application scenarios are 

described. 

• CHAPTER 3 presents the MOS definitions in the existing literature for VoIP, video, and FTP 

applications. The user-specific MOS formulas are defined for these applications considering 

user-specific QoS requirements. To make better use of the user-specific QoS requirements 

and optimize the spectral allocation of wireless resources correspondingly, two alternatives to 

improve the system capacity are proposed, i.e., a user-specific MCS1 selection method and a 

user-specific QoS aware scheduling method. The user-specific QoS aware scheduling method 

is the main focus of Chapter 4.  

• CHAPTER 4 describes the user-specific QoS aware schedulers for VoIP, video, and FTP 

applications, considering the user-specific QoS requirements. These schedulers are proposed 

to either improve the MOS, the system capacity, or both the MOS and system capacity. 

Extensive system simulation has been done to verify the benefits of these schedulers in both 

the homogeneous and heterogeneous scenarios. Another very promising area of research 

described in this chapter is a user-specific frequency sensitivity QoS study, which maximize 

the system capacity by decreasing the user’s source data rate through personalized VoIP 

codecs. 

• CHAPTER 5 presents the implementation details of user-specific QoS aware schedulers in 

current LTE systems. These implementation details cover the protocol adaptation that must 

occur to support the user-specific QoS method including the scheduling period that relates to 

the complexity of user-specific QoS aware schedulers. 

                                                      
1 MCS = Modulation and Coding Scheme. 
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• CHAPTER 6 provides the detailed analysis and performance evaluation of MIMO 

technologies used in human’s in vivo environments based upon the ANSYS HFSS software 

that contains a complete human body model, and OFDM-based IEEE 802.11n. Different 

scenarios considering varying antenna separation distances, angular positions, human body 

size, and system bandwidth are analyzed and evaluated to determine the maximum 

supportable data transmission rate with specified SAR [Specific Absorption Rate] power 

limitations satisfied. 

• CHAPTER 7 summarizes the research contributions in this dissertation, along with 

recommendations for future work. 
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CHAPTER 2. LTE AND WBAN NETWORK OVERVIEW 

This chapter presents an overview of the LTE network with an emphasis on QoS and a WBAN 

network overview that provide the background materials for the subsequent chapters. The rest of the 

chapter is organized as follows. Section 2.1 gives an overview of the LTE network. The WBAN network 

overview is provided in section 2.2. Finally in section 2.3, we conclude this chapter. 

2.1 LTE Network Overview 

In the past decades, we have witnessed significant exciting progress in wireless communication 

systems from the first generation of the analog mobile systems, to the second generation of digital mobile 

systems, to the third generation (3G) of the first broadband data mobile system, to the current fourth 

generation (4G) LTE (Long Term Evolution) communication system. The evolution of 3G systems into 

LTE system is driven by the creation and development of new services for mobile devices, and is enabled 

by the advancement of technologies available for mobile systems [1], [10]. 

LTE is a standard for wireless communication based on and evolved from the GSM/EDGE 

2G and UMTS/HSPA 3G network technologies, aimed to providing higher data rate, higher capacity and 

lower delay using an OFDM radio technology and improved all-IP core network technology. The LTE 

standard is developed by the 3GPP  (3rd Generation Partnership Project) and its first release is specified 

in the Release 8 series, and continuously evolved to the current Release 12 series. 

2.1.1 LTE Network Architecture 

The LTE network architecture (non-roaming) including the network elements and the 

standardized interfaces [38] is presented in Figure 2.1. The LTE network is comprised of the EPC 

(Evolved Packet Core) and the E-UTRAN (Evolved Universal Terrestrial Radio Access Network). The 

EPC consists of many logical nodes, and the E-UTRAN is made up of eNodeBs (evolved NodeB) --- base 

stations. Each of these network elements is interconnected by means of standardized interfaces. 
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Figure 2.1 LTE network architecture (non-roaming) 

The EPC is responsible for the overall control of the UE (User Equipment) and the establishment 

of the bearers. It is composed of the following major network elements: the S-GW (Serving Gateway), the 

PDN-GW (PDN [Packet Data Network] Gateway), the MME (Mobility Management Entity), the PCRF 

(Policy and Charging Rules Function), and the HSS (Home Subscriber Server). The EPC is connected to 

the external networks such as the IP Multimedia Subsystem (IMS) [39]. The S-GW is the point of 

interconnection between the eNodeB and the EPC. It serves the UE by routing and forwarding the IP 

packets from the eNodeB to the EPC. The PDN-GW is the point of interconnection between the EPC and 

the packet data network. The packet data network may be an operator external public or private packet 

data network or an intra-operator packet data network, e.g., for provision of IMS services. The PDN-GW 

routes packets to and from the external networks. The MME deals with the control plane. It handles the 

signaling related to mobility and security for E-UTRAN access. The HSS is a database that contains 

subscriber-related information. The PCRF is a logic entity in the EPC. It is mainly responsible for 

charging and policy control (e.g., QoS control) to the functionalities in the PCEF (Policy Control 
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Enforcement Function) that resides in the PDN-GW. The IMS is an architectural framework for 

delivering Internet Protocol (IP) multimedia services.  

The following are the standardized interfaces in the LTE network: 

• S1-MME: Reference point for the control plane protocol between the E-UTRAN and the 

MME. 

• S1-U: Reference point for the data plane protocol between the E-UTRAN and the S-GW. 

• S5: Provides user plane tunneling and tunnel management between the S-GW and the PDN-

GW.  

• Gx: Provides transfer of (QoS) policy and charging rules from the PCRF to the PCEF in the 

PDN-GW [40]. 

• S10: Reference point between MMEs for MME relocation and MME to MME information 

transfer.  

• S11: Reference point between the MME and the S-GW. 

• SGi: The reference point between the PDN-GW and the packet data network.  

• Rx: The Rx reference point resides between the PCRF and the AF (Application Function) 

[41]. It is used to exchange application level session information between the PCRF and the 

AF. 

2.1.2 Policy and Charging Control Architecture 

The PCC functionality is comprised by the major functions of the Policy and Charging 

Enforcement Function (PCEF), the Policy and Charging Rules Function (PCRF), the Application 

Function (AF), and the Subscription Profile Repository (SPR) [13]. The PCC (Policy and Charging 

Control) architecture is shown in Figure 2.2. 

The Sp reference point lies between the SPR and the PCRF. The Sp reference point allows the 

PCRF to request subscription information related to the transport level policies from the SPR based on a 

subscriber ID, a PDN identifier etc. 
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Figure 2.2 Policy and charging control architecture (non-roaming) 

2.1.3 LTE QoS Parameters 

The QoS parameters are QCI (QoS Class Identifier), ARP (Allocation and Retention Priority), 

GBR (Guaranteed Bit Rate), and MBR (Maximum Bit Rate) [13]. 

The term bearer refers to an edge-to-edge association between the UE and the Gateway, which 

uniquely identifies packet flows that receive a common QoS treatment between the UE and the Gateway 

[12], [42].  

Each bearer is assigned a QCI by the network. Each QCI is characterized by a set of 

characteristics of resource type (GBR or Non-GBR), priority, packet delay budget and acceptable packet 

loss rate. The QCI is used in the eNodeB to determine the way it is handled (e.g., scheduling weights, 

admission thresholds, queue management thresholds, link layer protocol configuration, etc.) [1],[10]. 

QCIs have been standardized to ensure that applications / services mapped to that QCI receive the same 
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minimum level of QoS in multi-vendor network deployments. The set of standardized QCIs and their 

characteristics are provided in Table 2-1 [13]. 

The ARP specifies the control plane treatment that the bearers receive. More specifically, the 

ARP is used to decide whether a bearer establishment or modification request can be accepted or must be 

rejected due to resource limitations. 

The MBR and GBR are defined only for GBR bearers. The MBR is defined as the bit rate that the 

bearer traffic may not exceed, and the GBR is the bit rate that the network guarantees (e.g., through the 

use of an admission control function). 

2.1.4 QoS Parameters Mapping 

Several QoS parameters mapping functions are needed during PCC interaction. These functions 

are located at the AF, PCRF, PCEF and UE. The main purpose of these mapping functions is the 

conversion of QoS parameters from one format to another.  

The general QoS mapping framework is shown in Figure 2.3 and the network initiated QoS 

control procedures [43] is as follows:  

• The AF can map from SDI (Session Description Language) within the AF session signaling 

to service information passed to the PCRF over the Rx interface. 

• The PCRF shall map from the service information received over the Rx interface to the 

Authorized IP QoS parameters that shall be passed to the PCEF/BBERF (Bearer Binding and 

Event Reporting Function) via the Gx/Gxx (Gxx reference point is located between PCRF 

and the BBERF) interface. The mapping is performed for each IP flow. Upon a request from 

the PCEF/BBERF, the PCRF combines per direction the individual Authorized IP QoS 

parameters per flow. 

• The PCEF/BBERF shall map from the Authorized IP QoS parameters received from the 

PCRF to the access specific QoS parameters, which are the QoS parameters that the MAC 

layer can access. 
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Table 2-1 Standardized QCI characteristics 

QCI 
Resource 

Type 

Priority 

Level 

Packet 

Delay 

Budget 

Packet 

Error Loss 

Rate 

Example Services 

1 

 

GBR 

2 100 ms 10-2 Conversational Voice 

2 4 150 ms 10-3 
Conversational Video (Live 

Streaming) 

3 3 50 ms 10-3 Real Time Gaming 

4 5 300 ms 10-6 
Non-Conversational Video 

(Buffered Streaming) 

65 0.7 75ms 10-2 

Mission Critical user plane 

Push To Talk voice (e.g., 

MCPTT) 

66 2 100 ms 10-2 
Non-Mission-Critical user 

plane Push To Talk voice 

5 

Non-

GBR 

1 100 ms 10-6 IMS Signalling 

6 6 
 

300 ms 

 

10-6 

Video (Buffered Streaming) 

TCP-based (e.g., www, e-mail, 

chat, ftp, p2p file sharing, 

progressive video, etc.) 

7 7 100 ms 
 

10-3 

Voice, 

Video (Live Streaming) 

Interactive Gaming 

8 8 300 ms 10-6 

Video (Buffered Streaming) 

TCP-based (e.g., www, e-mail, 

chat, ftp, p2p file 

9 9   sharing, progressive video, etc.) 

69 0.5 60 ms 10-6 

Mission Critical delay sensitive 

signalling (e.g., MC-PTT 

signalling) 

70 5.5 200 ms 10-6 

Mission Critical Data (e.g. 

example services are the same 

as QCI 6/8/9) 

 

2.1.5 SIP Protocol 

The Session Initiation Protocol (SIP) [44] is an application-layer control protocol for creating, 

modifying, and terminating sessions such as Internet multimedia conferences, Internet telephone calls, 

and multimedia distribution. The SIP messages used to create sessions carry session descriptions that 

allow participants to agree on a set of compatible media types. These session descriptions are commonly 

formatted using SDP (Session Description Protocol). When used with SIP, the offer/answer model 

provides a limited framework for negotiation using SDP. 
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Figure 2.3 Framework for QoS mapping 

SIP is not a vertically integrated communications system. SIP is rather a component that can be 

used with other IETF (Internet Engineering Task Force) protocols to build a complete multimedia 

architecture. Typically, these architectures will include protocols such as the Real-time Transport Protocol 

(RTP), described in the  RFC 3550 [45], for transporting real-time data and providing QoS feedback, the 

Real-Time streaming protocol (RTSP) (RFC 2326 [46]) for controlling delivery of streaming media, and 

the Session Description Protocol (SDP) (RFC 4566 [47]) for describing multimedia sessions. Therefore, 

SIP should be used in conjunction with other protocols in order to provide complete services to the users. 

However, the basic functionality and operation of SIP does not depend on any of these protocols. 

A SIP message is either a request from a client to a server, or a response from a server to a client. 

The details of the session, such as the type of media, codec, or sampling rate, are not described using SIP. 
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Rather, the body of a SIP message contains a description of the session, encoded in some other protocol 

format such as SDP (RFC 4566 [47]). 

2.2 WBAN Network Overview 

The increasingly aging population in many countries and the rising costs of healthcare have 

triggered the emergence and rapid development of a novel wireless network [48]–[50], referred to  a 

WBAN (Wireless Body Area Network), to enhance current healthcare practices. A WBAN is a network 

typically formed by a collection of miniaturized, low-complexity, and low-power devices that are located 

on, in or around the human body that are used to continuously monitor human vital signs and advance 

human healthcare. Compared with traditional networks, WBANs have their own characteristics such as 

highly lossy communication medium, and very stringent application requirements in terms of high 

reliability, low energy efficiency, and low device complexity that constitute major challenges to the 

design and application of WBAN networks.  

2.2.1 WBAN Applications 

WBAN applications span a wide area such as medical care, military, and entertainment. Typical 

applications include [33], [49]: 

• Wirelessly transmitted low-delay High Definition video during Minimally Invasive Surgery 

(MIS). 

•  Patient Monitoring including transmitting vital signals such as ECG/EMG/EEG, body 

temperature, respiration rate, blood pressure, body implant parameters, chest sounds, and 

glucose monitoring. 

• Monitoring and program changes for pacemakers and implantable cardiac defibrillators, 

control of bladder function, and restoration of limb movement.  

• Entertainment and gaming. 

• Military applications such as assessing soldier fatigue and battle readiness.  
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2.2.2 WBAN PHY Layers 

The IEEE Std 802.15.6 [51], [52] is a standard for short-range, wireless communications in the 

vicinity of, or inside, a human body (but not limited to humans). It uses the ISM (Industrial, Scientific and 

Medical) and MICS (Medical Implant Communication Service) bands, as well as frequency bands in 

compliance with applicable medical and communication regulatory authorities. It allows devices to 

operate on very low transmit power for safety to minimize the SAR into the body and increase the battery 

lifetime. It supports QoS, for example, to provide for emergency messaging. Since communications 

sessions can involve sensitive information, it also provides strong security. Three PHYs have been 

defined in IEEE Std 802.15.6 [52]: 

• HBC (Human Body Communications) PHY:  

HBC PHY uses the human body itself as the communication medium. The center frequency 

is 21 MHz, with a bandwidth of 5.25 MHz. 

• NB (Narrowband) PHY:  

NB PHY device support transmission and reception in at least one of the following optional 

frequency bands: 402-405 MHz, 420-450 MHz, 863-870 MHz, 902-928 MHz, 950-958 MHz, 

2360-2400 MHz, and 2400-2483.5 MHz. 

• UWB (Ultra-wide Band) PHY:  

UWB PHY is divided into a low (3.25-4.75 GHz) and a high (6.6-10.25 GHz) band, both 

having operating channels of 500 MHz bandwidth. UWB PHY is specifically used to provide 

performance for high quality, low complexity and ultralow power operations.  

2.2.3 WBAN Design Challenges 

The WBAN design challenges are as follows [48], [50], [53]: 

• Antenna Design 

Antenna design for WBAN applications is a challenging issue due to restrictions on the 

antenna size, antenna material, shape of the antenna and hostile RF environment. 
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• Channel Model 

Determining an accurate and statistical channel model plays a crucial role in the design of PHY 

technologies. Experimental channel modeling for implants and wearable devices is difficult due 

to the necessary involvement of human subjects. 

• PHY Layer Protocol 

Physical layer protocol design requires minimizing power consumption and high reliability, 

without compromising the quality of communications. 

• Low Power Consumption 

When one or more devices need to be implanted in or worn on a human body, it is of outmost 

importance to reduce the inconvenience and stress caused by the battery replacement or 

recharge, which in some cases may involve surgery. 

• Security 

The communication of health related information between nodes in a WBAN and the 

communication from the WBAN to servers in other networks should be strictly private, 

confidential, and should be encrypted to protect the patient’s privacy. 

2.2.4 WBAN Scenarios 

A list of WBAN scenarios are identified in IEEE 802.15.4 TG6 [54] as illustrated in Figure 2.4. 

The scenarios are determined based on the location of the communicating nodes (i.e., implant, body 

surface and external). The communication link can occur from an implanted node to an implanted node 

(i.e., CM1), an implanted node to a body surface node (i.e., CM2), a body surface node to a body surface 

node (i.e., CM3), or a body surface node to an external node (i.e., CM4).  

2.3 Concluding Remarks 

In this chapter, an overview of LTE and WBAN networks, which serves as a basis for the 

subsequent chapters was presented. The LTE network architecture, LTE QoS mechanisms and SIP 
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protocol were presented for the LTE networks. In WBAN networks, the WBAN applications, WBAN 

PHY layers, WBAN design challenges, and WBAN scenarios were described. 

 

Figure 2.4 Communication links for WBANs 
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CHAPTER 3. USER-SPECIFIC QOS REQUIREMENTS 

3.1 Introduction 

As described in Chapter 1, from the user’s perspective, the QoS required by different applications 

can be quite variable. Similarly, for a given application type, different users may be able to properly 

operate with different levels of QoS. In order to make better use of the user-specific QoS requirements to 

optimize the system performance, it is important to characterize the different user-specific QoS 

requirements, which is the aim of this chapter2. 

We begin by presenting MOS formulas for VoIP, video, and FTP applications from the literature. 

Based upon the existing MOS formulas, user-specific QoS formulas for VoIP, video, and FTP 

applications are proposed that consider different user QoS requirements. To make use of the user-specific 

QoS requirements to improve the system capacity, two such methods are proposed, where either the MCS 

index selection (user-specific MCS selection method) or the source data rate (user-specific QoS aware 

scheduling method) are optimized by considering user-specific QoS requirements.  

The rest of the chapter is organized as follows. Section 3.2 presents the existing MOS formulas 

for VoIP, video, and FTP applications. Correspondingly, the user-specific QoS formulas for VoIP, video, 

and FTP applications are proposed in sections 3.3, 3.4, and 3.5 respectively. Section 3.6 gives two 

potential alternatives to improve system capacity by doing user-specific MCS selection or user-specific 

source data rate adaptation. Finally in section 3.7, we conclude this chapter. 

3.2 MOS Formulas 

3.2.1 VoIP Applications 

The traditional method of assessing voice quality is to conduct subjective tests by groups of 

human listeners [19]. The results of these subjective tests are averaged to get a MOS value. However, it is 

                                                      
2 Portions of this chapter were previously published in [70]. Permission is included in Appendix A. 
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not practical for such subjective tests to be done online to assess the voice quality. Because of this, the 

ITU-T has standardized a perceptual evaluation of speech quality (PESQ) model [55] that predicts with 

high correlation the MOS that would be given in a typical subjective test. The PESQ measures one-way 

voice quality, a signal is injected into the system under test and the degraded output is compared by PESQ 

with the input reference signal. The output of the PESQ algorithm is a numerical value of MOS. The 

mapping between MOS and user satisfaction is presented in Table 3-1. The PESQ algorithm is 

computationally too expensive to be used in real-time scenarios. 

Table 3-1 Relation between the MOS and user satisfaction 

MOS  

(Lower Limit) 
User satisfaction 

4.34 Very satisfied 

4.03 Satisfied 

3.60 
Some users 

dissatisfied 

3.10 
Many users 

dissatisfied 

2.58 
Nearly all users 

dissatisfied 

 

The Adaptive Multi-Rate (AMR) audio codec is an audio data compression scheme that is used in 

wireless communication systems (e.g., LTE, as well as 3G UMTS and 2G GSM) and is optimized for 

Voice Over IP (VoIP) speech coding. AMR consists of a multi-rate speech codec that encodes speech 

signals at variable bit rates ranging from 4.75 to 12.2 Kbps [56].   

The E-Model algorithm [57] is a computational model for objective call quality assessment, as 

described in the G.107 recommendation by the ITU-T. The computation of the MOS is defined as follows: 

 � = � − �� − ���� (3-1) 

where � is the basic signal-to-noise ratio which has a default value of 93.2 [58], [59], �� represents the 

impairments due to delay, which is the same for all the codec modes, and ���� represents the effect of 

packet losses and depends on the codec (e.g., AMR, G.711, G.729) that is used. The parameter ��  is 

calculated as [59]: 
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 �� = 0.024� + 0.11�� − 177.3���� − 177.3� (3-2) 

where � is the end-to-end delay in milliseconds and � is the unit step function [59].  

For AMR codecs [57], 

 ���� = �� + �95 − ���� 100�� 100�� !"#$%� + !� & (3-3) 

where ��  represents packet loss ratio, !"#$%�  is the Average length of observed bursts in an arrival 

sequence to the Average length of bursts expected for the network under "random" loss ratio. In this 

dissertation we assume the packet loss is independent and hence we set	!"#$%� = 1. The parameter	!�  is 

the robustness factor which is set to 10 for all AMR codec modes. The parameter �� is defined for all AMR 

codec modes in Table 3-2 [60], where eight AMR-NB codec modes are defined for LTE as in [56]. 

Table 3-2  �� value for all AMR codec modes 

AMR codec mode �� 

AMR12.2K 5 

AMR10.2K 9 

AMR7.95K 15 

AMR7.4K 16 

AMR6.7K 20 

AMR5.9K 23 

AMR 5.15K 27 

AMR 4.75K 29 

 

For G.711 codecs [59], 

 ���� = 0 + 30 ()*1 + 15�� + (3-4) 

For G.729 codecs [59], 

 ���� = 11 + 40 ()*1 + 10�� + (3-5) 

The parameter � is converted to ,-. according to the following equation: 

 ,-. = / 1,																																				when	� < 01 + 0.035� + ��� − 60��100 − ��																7 ∙ 1078,																																	when	�	9	:0, 100;4.5,																																				when	� > 100  (3-6) 
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With AMR10.2K VoIP users as an example, according to the ITU-T G.107 E-model, the MOS 

value depends upon both the packet loss ratio and delay. Figure 3.1 illustrates the relationship between the 

MOS value and the delay and packet loss ratio. The higher the delay, or the higher the packet loss ratio, the 

lower the MOS value. Thus, users’ MOS can be improved either through the optimization of the time 

domain scheduler or frequency domain scheduler to reduce the delay or packet loss ratio, respectively. 

 

Figure 3.1 VoIP MOS as a function of packet loss and delay for AMR12.2K 

For a given acceptable mouth-to-ear end-to-end delay of 150 ms [61], Figure 3.2 shows the MOS 

as a function of packet loss ratio for different VoIP codec types. From Figure 3.2 we can see that as the 

AMR codec rate decreases, the MOS value decreases, given the same packet loss ratio. If a lower AMR 

codec rate is used by the UEs, more users can be supported by the system if fewer allocated physical 

resources and a similar channel coding rate is assigned for each user, thus capacity improvement can be 

achieved, but the MOS will probably decrease.  

3.2.2 Video Applications 

In the current literature, there are several methods to objectively estimate the video quality. 

However, they are either dependent upon the reference video (i.e., original video) to compute the 

distortion [62]–[64] or too complex to be used in practical systems [65]–[67]. 
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Figure 3.2 MOS as a function of packet loss ratio for different VoIP codec modes 

In this dissertation, a simplified video MOS model [19], [68], [69] is used, where the distortion, 

as measured by the MSE (Mean Square Error), is assumed to be composed of two additive components, 

namely the source distortion => and the loss distortion =?: 

 ,.@ =	=> + =? = A ∙ �B + C ∙ �@� (3-7) 

where A,	D ,	and	C  are model parameters and �@� is the packet loss ratio. For different types of video 

sources, A,	D, and	C take different values. In this study, we assume A = 1.76 ∙ 10G, D = −0.658, and C =
1750 as in [68]. The PSNR (Peak Signal-to-Noise Ratio) is a widely used objective measurement of video 

quality, and is related to the MSE by: 

 �.H��dB� = 	10 ∗ logN 255O,.@ (3-8) 

A piecewise linear mapping [19] from the PSNR to MOS is: 

 ,-. = / 1,																														when	�.H� < 201 + 3.520 ��.H� − 20�,when	�.H�9	:20, 40;	4.5,																											when	�.H� > 40  (3-9) 
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Figure 3.3 illustrates the relationship between the MOS value and the data rate and packet loss 

ratio. From Figure 3.3 and (3-7) to (3-9), the higher the data rate, or the lower the packet loss ratio, the 

higher the MOS value. 

3.2.3 FTP Applications 

As described in [19], the MOS of FTP users can be estimated based on the current rate R offered to 

the user by the system and packet error probability (PEP): 

 ,-. = 	R ∗ lSTN�U ∗ � ∗ �1 − �@��� (3-10) 

where R and U are determined from the maximum and minimum user perceived quality. The parameter � 

is the data rate a user is subscribed. Then, in case of no packet loss, user satisfaction on the MOS scale 

should be maximum, that is 4.5. On the other hand, a minimum transmission rate can be defined and 

assigned a MOS value of 1.0. 

The �@�  can be regarded approximately equivalent to one minus the ratio of the FTP file 

download time without packet loss to the actual FTP file download time. Therefore, (3-10) becomes: 

 ,-. = 	R ∗ lSTN�U ∗ � ∗ VWX	YZ[	\]^X	_`ab^`c_	V]dX	a]VW`eV	fcghXV	^`ii	VWX	cgVec^	YZ[	\]^X	_`ab^`c_	V]dX �        (3-11) 

Since � ∗ 	the	FTP	file	download	time	without	packet	loss	 ≈ the	FTP	file	siz, (3-11) becomes: 

 

Figure 3.3 MOS as a function of data rate and packet loss ratio for video applications 
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 ,-. = 	R ∗ lSTN�U ∗ VWX	YZ[	\]^X	i]wX	VWX	cgVec^	YZ[	\]^X	_`ab^`c_	V]dX�               (3-12) 

Figure 3.4 shows the FTP MOS as a function of the actual FTP file download time assuming the 

FTP file size is 5 Mbytes. When a user’s actual FTP file download time is 20 seconds, this user’s MOS is 

set to 4.5. When a user’s actual FTP file download time is 100 seconds, this user’s MOS is set to 1.0. 

Based upon these two assumptions, the coefficients a and b in (3-9) can be determined as 5.0074 and 

3.9595e-6, respectively. 

 

Figure 3.4 FTP MOS as a function of file download time given a file size of 5 Mbytes 

3.3 User-Specific QoS Formulas for VoIP 

It is assumed that different people have similar sensitivity to the end-to-end delay for VoIP 

applications, so that only user specific sensitivity to packet loss is studied. Therefore, User-specific QoS 

requirements are characterized by their different sensitivities to packet losses among other factors. To 

reflect this sensitivity, we introduce a user-specific packet loss sensitivity factor, α, to the ITU-T G.107 E-

Model equation [70], [71]: 

 � = � − �� − α ∙ ���� (3-13) 

Without loss of generality and also for simplicity of illustration, the packet loss sensitivity factor 

α  takes values from the following set y0.8, 1.0, 1.2z . Correspondingly users are classified into 3 
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categories: users with higher sensitivity factors (1.2), users with normal sensitivity factors (1.0), and users 

with lower sensitivity factors (0.8). The higher the value of the sensitivity factor α, the more the user is 

sensitive to packet loss.  

Figure 3.5 shows the MOS as a function of different AMR codec data rates for different 

sensitivity factors α, given an end-to-end delay of 150 ms [14] and packet loss ratio of 0.05. For a 

comparison between AMR12.2K mode and α = 1.0 with AMR10.2K/7.95K mode and α = 0.8, we find 

the latter case may, under certain conditions, have a higher MOS than the former one. If the scheduler can 

know, or adaptively learn, each user’s specific sensitivity factor, it can degrade the AMR mode for users 

with a lower sensitivity factor, while maintaining a comparable MOS as that of users with higher AMR 

mode but a normal sensitivity factor. With this approach, more users can be supported, thus achieving the 

target of improving system capacity. 

 

Figure 3.5 VoIP MOS as a function of AMR data rate given a packet loss ratio of 0.05 and end-to-end 

delay of 150 ms 

3.4 User-Specific QoS Formulas for Video 

To reflect users’ different sensitivity to the data rate, a user-specific sensitivity factor � to the data 

rate was introduced in (3-7), which becomes [71], [72]: 
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 ,.@ =	=> + =? = � ∙ A ∙ �B + C ∙ �@� (3-14) 

Without loss of generality and also for simplicity of illustration, the data rate sensitivity factor � 

takes values from the following set y0.8, 1.0z. Correspondingly users are classified into 2 categories: users 

with normal sensitivity factors (1.0) and users with lower sensitivity factors (0.8). When � takes the value 

1.0, it is a normal user. When � takes the value less than 1.0, it is less sensitive to the data rate compared 

with a normal user. The higher the value of the sensitivity factor �, the user is more sensitive to the data 

rate.  

For simplicity, in order to illustrate the main idea of the algorithm, 10 levels of data rate are used 

in this dissertation, which loosely correspond to the application requirements. For Level I, where I ∈ {1, 

2,,,10}, the corresponding data rate is 135 * 128 pixels * (11-I) frames/s * 8bytes/pixel with data rates 

ranging from 138.2 Kbps to 1.382 Mbps.  

Figure 3.6 shows the MOS as a function of data rate for different sensitivity factors � under a 

given packet loss ratio of 0.001. From the figure, we observe that users’ MOS differs even with the same 

data rate but with different sensitivity factors. 

3.5 User-Specific QoS Formulas for FTP 

To reflect user sensitivity to the FTP file download time, a UE specific sensitivity factor � is added 

to (3-12), and (3-12) becomes: 

 ,-. = 	R ∗ (STN�U ∗ the	FTP	file	size	�the	actual	FTP	file	download	time� ∗ �� (3-15) 

Without loss of generality and also for simplicity of illustration, the data rate sensitivity factor � 

takes values from the following set y1.0, 1.2z. Correspondingly users are classified into 2 categories: users 

with normal sensitivity factors (1.0) and users with higher sensitivity factors (1.2). The higher the value of 

the sensitivity factor �, the user is more sensitive to the FTP download time. When � takes the value 1.0, it 

is a normal user. When � takes the value greater than 1.0, the user is more sensitive to the FTP download 

time compared with a normal user. Figure 3.7 shows the MOS as a function of FTP file download time 

given a file size of 5 Mbytes for different sensitivity factors. From Figure 3.7 we can see that users with a 
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higher sensitivity factor may even have a lower MOS than users with a normal sensitivity factor even if 

they have the same file download time. So, this category of user with a higher sensitivity factor need to be 

treated differently in order to achieve a similar MOS as users with a normal sensitivity factor. 

 

Figure 3.6 Video MOS as a function of data rate for different sensitivity factors, �, given a packet loss 

ratio of 0.001 

 

Figure 3.7 FTP MOS as a function of file download time given a file size of 5 Mbytes for different 

sensitivity factors � 
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3.6 Alternatives for Improving System Capacity 

There are two alternatives to improve system capacity considering user-specific QoS 

requirements. The first method is to optimize the spectral allocation of physical resources by utilizing the 

user-specific MCS selection method, where users with lower sensitivity factors are allocated less 

resources, and users with higher lower sensitivity factors are allocated more resources. The other method 

is to optimize the user’s source data rate by dynamically adapting the data rate to the user-specific QoS 

requirements and network conditions. The first method is illustrated in this section, and the second 

method will be described in detail in the following chapters. 

3.6.1 User-Specific MCS Selection Method 

Before proceeding to the major part of the proposed user-specific QoS aware scheduler in the next 

section and the following chapters, in this section, a user-specific MCS selection method is introduced.  

When considering the user-specific QoS requirements, it is straightforward and intuitive to 

considering allocating less wireless resources to users with lower sensitivity factors while maintaining the 

same source bit rate for these users, since these users can tolerate larger end-to-end delay and/or higher 

packet loss ratio. So in the user-specific MCS selection method, a higher MCS index, rather than a 

normally selected MCS index, can be designated for this class of users, so that fewer Physical Resource 

Blocks (PRBs)3  may be assigned, and some wireless resources can be saved for use by other users. 

However, the user-specific MCS selection method has the following drawbacks: 

• A higher MCS index doesn’t necessarily mean fewer RBs (resource blocks) [73], [74], as seen 

in Figure 3.8. In this figure, the row stands for the required number of PRBs, while the column 

stands for the selected MCS index. Assuming the number of TB (Transport Block) bits to be 

transmitted in one TTI (Transmission Time Interval) is 515 bits, the normally selected MCS 

index and number of PRBs will be 9 and 4 respectively. If a higher MCS index (i.e., normally 

selected MCS index plus 1) is used, the selected MCS index and number of PRBs will be 10 

                                                      
3 A PRB is the smallest resource entity assigned by the LTE resource scheduler. A PRB is defined as consisting of 12 consecutive subcarriers 

for one slot (0.5 msec) in duration.  
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and 4 respectively. That means there is not any savings on the number of PRBs, and thus the 

bit rate is not reduced. 

• A higher MCS index than the normally selected MCS index, especially for high MCS indices, 

will result in a much higher BLER, thus many more frequent retransmissions, therefore even 

higher PRB consumptions, larger end-to-end delay and/or higher packet loss ratio, thus 

degraded voice quality (Figure 3.9 illustrates this case). Assuming a target BLER of 10% [73], 

[74] for the MCS index to be selected, when the MCS index 4 is used, the BLER is 10%. But 

when the MCS index 5 is used, the BLER is close to 50%.  

A system simulation verified the above. The setup was 3 macro cells with 24 VoIP users in each 

macro cell, and a 10 MHz system bandwidth for both the normal and the user-specific MCS selection 

methods. The results showed that similar PDSCH loads (~4%) are incurred, which verified the inefficiency 

of this user-specific MCS selection method and motivated us to seek other user-specific QoS aware 

scheduling methods to improve system capacity as described in the following section and next chapters. 

 

Figure 3.8 User-specific MCS selection method 
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3.6.2 User-Specific QoS Aware Scheduling Method 

The user-specific QoS aware scheduling method optimizes a user’s source data rate by 

dynamically adapting the data rate to the user-specific QoS requirements and network conditions. It 

consists of two components: a data rate adaptation algorithms and a MAC scheduling algorithm, which 

are described in the next chapter. 

3.7 Concluding Remarks 

In this chapter, quantitative metrics of the MOS for VoIP, video, and FTP applications were 

presented. User-specific QoS formulas for VoIP, video, and FTP applications were proposed that consider 

users specific QoS requirements. Two methods to improve system capacity were described, where either 

the MCS index selection (user-specific MCS selection method) or the source data rate (user-specific QoS 

aware scheduling method) are optimized by considering user-specific QoS requirements. It was shown 

that the user-specific MCS method is not very efficient in improving system capacity, which motivates us 

to investigate user-specific QoS aware scheduling methods that will be addressed in the following 

chapters. 

 

Figure 3.9 BLER comparison for different MCS values 
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CHAPTER 4. USER-SPECIFIC QOS AWARE SCHEDULER 

4.1 Introduction 

In this chapter4, five user-specific QoS aware schedulers (USQA-M1, USQA-M2, USQA-MC, 

USQA-C, and USQA-F) that consider the user-specific QoS requirements in the allocation of spectral 

resources are proposed. Schedulers that dynamically adapt scheduling to the user-specific QoS 

requirements to improve quality as measured by the MOS (i.e., user experience), the system capacity (i.e., 

maximum number of supportable users), or both quality and capacity are introduced. Depending on 

whether the MOS, the system capacity, or both the MOS and system capacity are the optimization target, 

it is shown that appreciable MOS, system capacity improvement, or both appreciable MOS and system 

capacity improvement can be achieved when user-specific QoS requirements are utilized. 

Compared with homogenous networks, the different cell deployment and different intra-cell and 

inter-cell interference distributions in heterogeneous networks may impact the system performance gain 

of the user-specific QoS aware schedulers. In this chapter, the system performance gain of the user-

specific QoS aware scheduler (the USQA-C scheduler) is also analyzed and evaluated in heterogeneous 

networks. As the metric to measure the system capacity gain, the throughput improvement of FTP 

applications benefits from the rate adaptation and MAC scheduling algorithms for video applications that 

incorporate user-specific QoS requirements. These improvements are achieved while user satisfaction for 

video applications, as measured by the MOS, is maintained at an acceptable level.  

Furthermore, user-specific QoS frequency QoS study is also addressed. It is found, when targeted 

to maximize spectrum utilization and combined with VoIP codecs matched to the auditory characteristics 

of users, higher system capacity as well as a comparable MOS level may be achieved. 

                                                      
4 Portions of this chapter were previously published in [70]. Permission is included in Appendix A. 
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The rest of the chapter is organized as follows, section 4.2 gives the motivation for the MOS and 

data rate optimization. Several classical LTE MAC schedulers are provided in section 4.3. We present the 

currently existing rate adaptation mechanism of LTE systems in section 4.4. The overview of user-

specific QoS-aware schedulers is given in section 4.5. The user-specific QoS-aware rate adaptation 

algorithms are described in section 4.6. The user-specific QoS-aware MAC scheduling algorithms are 

proposed in section 4.7. Section 4.8 presents the user-specific QoS frequency sensitivity QoS study. The 

USQA-C Scheduler in Heterogeneous Networks is presented in section 4.9. We present the simulation 

results in section 4.10. Finally in section 4.11, we present the concluding remarks of this chapter. 

4.2 Motivation 

4.2.1 Motivation for VoIP Optimization 

Figure 4.1 shows the decreased or increased MOS percentage due to the different sensitivity 

factors α for different users. The MOS of VoIP users with α of 1.2 is decreased by ~15%, whereas the 

MOS of VoIP users with α of 0.8 is increased by ~15%, when a packet loss ratio of 5% and end-to-end 

delay of 150 ms are assumed. As the packet loss ratio increases, the MOS will decrease or increase even 

more depending on the user’s sensitivity factor α. 

 

Figure 4.1 Decreased/Increased MOS as a function of packet loss ratio given an end-to-end delay of 150 

ms and vocoder AMR12.2K 
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Therefore, the MOS of VoIP users with α of 1.2 needs to be improved to the corresponding MOS 

value with α of 1.0 and given a higher scheduling priority in the MAC Scheduler, whereas the MOS of 

VoIP users with α of 0.8 can be decreased to the MOS value of α of 1.0, as depicted in Figure 4.1. There 

are three approaches to deal with the MOS of VoIP users with α of 0.8:  

• Approach I:  

This category of users can be deprioritized, that is, given a lower scheduling priority in the 

MAC scheduler. The MOS optimization-only scheme I in section 4.5 uses this method to 

optimize the MOS. 

• Approach II:  

This category of users has the same scheduling as those normal users. Only the MOS of users 

with sensitivity factors α  of 1.2 is optimized. The MOS optimization-only scheme II in 

section 4.5 uses this method to optimize the MOS. 

• Approach III:  

The data rate (i.e., AMR mode) of this category of users can be degraded, so that a higher 

system capacity can be achieved. However, these users are scheduled as normal users in the 

MAC scheduler. The MOS optimization-plus-capacity improvement scheme and capacity 

improvement scheme in section 4.5 use this method to optimize the MOS. 

4.2.2 Motivation for Video Data Rate Optimization 

Similar to Chapter 3, 10 levels of data rate are used in this dissertation, which loosely correspond 

to the application requirements. For Level I, where I ∈ {1, 2, …,10}, the corresponding data rate is 135 * 

128 pixels * (11-I) frames/s * 8bytes/pixel with data rates ranging from 138.2 Kbps to 1.382 Mbps.  

An important observation that can be made from Figure 3.6 in Chapter 3 is that a user with a 

lower sensitivity factor of � and a lower data rate may achieve a higher MOS value than that of users with 

a normal sensitivity factor and a higher data rate. If the user-specific QoS aware scheduler knows and 
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makes use of this user-specific sensitivity factor information to optimize the scheduling, it can decrease 

the data rate for users with a lower sensitivity factor to support more users with an acceptable MOS value.  

4.3 LTE MAC Scheduler Overview 

The MAC Scheduler is a key component of the eNodeB and is illustrated in Figure 4.2. The 

function of the scheduler is to facilitate the allocation of the available spectral resources (e.g., time and 

frequency resources), while striving to satisfy the QoS requirements for all the users. The MAC scheduler 

interfaces with the HARQ (Hybrid Automatic Retransmission Request) and Link Adaptation modules to 

acquire the related HARQ information and selected MCS value respectively. It also requires other inputs 

such as QoS related parameters and buffer status.  

 

Figure 4.2 LTE MAC scheduler structure 

The packet scheduling comprises two scheduling components. They are done sequentially in each 

scheduling time unit, known as Transmission Time Interval (TTI) in LTE (TTI = 1ms). The first 

component is the Time Domain Scheduler (TDS) and the second is the Frequency Domain Scheduler 

(FDS). Such a split is driven simply by the consideration of lower complexity and independent 

configurations for both domains. The objective of the Time Domain Scheduler is to choose a subset of all 

users requesting frequency resources, while the objective of Frequency Domain Scheduler is to allocate 
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physical resources for the candidate users provided by the time domain scheduler. Several classical MAC 

scheduling algorithms exist both in time and frequency domains [23]–[25]:  

• Round-Robin scheduling algorithm 

Users are served in a Round-Robin way so that each user is served fairly, but at the expense 

of system throughput and spectral efficiency. 

• Blind Equal Throughput (BET) scheduling algorithm 

The BET algorithm uses the reciprocal of the past average throughput achieved by each user 

as the metric. Throughput fairness can be achieved, but at the expense of system throughput 

and spectral efficiency. 

• Maximum C/I scheduling algorithm 

Users with the maximum C/I (Carrier-to-Interference power ratio) are served first. This kind 

of scheduling aims to achieve maximum benefits in terms of system throughput and spectral 

efficiency but comes at the expense of fairness. 

• Proportional-fair (PF) scheduling algorithm 

PF scheduling algorithm aims to trade off the system throughput for the users’ fairness. The 

PF priority metric is calculated by dividing the predicted user’s throughput, which is the 

instantaneous supportable data rate, by the estimation of the user’s past average throughput.  

4.4 Rate Adaptation for LTE 

It is beneficial (from the OpEx [Operational Expenditure] and CapEx [Capital Expenditure] 

points of view) for operators to be able to control the data rate based on load criteria. At peak hour there 

could be a desire to trade off some quality for additional capacity [75], [76].  

Adaptive mechanisms that act upon measured or signaled changes in the transport channel 

characteristics may be used in a conservative manner. Examples of measured changes in transport 

characteristics are variations in Packet Loss Rate (PLR) and delay jitter. An example of signaled changes 

in transport characteristics is ECN (Explicit Congestion Notification) Congestion Experienced (ECN-CE) 
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marking in IP packet headers. A conservative use of adaptation is characterized by a fast response to 

degrading conditions, and a slower, careful upwards adaptation intended to return the session media 

settings to the original default state of the session. The long-term goal of any adaptive mechanism is 

assumed to be a restoration of the session quality to the originally negotiated quality. The short-term goal 

is to maximize the session quality given the current transport characteristics, even if that means than the 

adapted state of the session will give a lower session quality compared to the session default state if 

transported on an undisturbed channel [76]. 

The E-UTRAN/UTRAN and the UE support ECN in the RFC 3168 [77]. The IP level ECN 

scheme enables the E-UTRAN/UTRAN to trigger a rate adaptation scheme at the application / service / 

transport layer. To make sufficient time available for end-to-end codec rate adaptation the E-

UTRAN/UTRAN should attempt to not drop any packets on a bearer for a default grace period of at least 

500 ms after it has indicated congestion with ECN on the bearer for packets within the packet delay 

budget. During this ECN grace period the E-UTRAN/UTRAN should also attempt to meet the QCI 

characteristics / QoS class associated with the bearer [76], [78]. 

The rate adaptation mechanism relies on existing end-to-end schemes for rate adaptation to 

dynamically adapt an individual real-time media component to changing conditions in the network. The 

receiving side can use RTCP (Real-time Transport Control Protocol) or RTP to explicitly control the data 

rate at the sending side, for example, CMR (Codec Mode Request) command for VoIP applications and 

TMMBR (Temporary Maximum Media Bit-rate Request) command for video applications [76], [79], 

[80].  

4.5 User-Specific QoS Aware Scheduler 

In the following text, the term USQA scheduler is shorthand for User-Specific QoS Aware 

Scheduler. There are five USQA schemes presented, with correspondingly five USQA schedulers. 

Depending upon whether improving the MOS or system capacity or both the MOS and system capacity is 

the goal, the following user-specific QoS aware schemes for the USQA schedulers are proposed. The 

novelty of the proposed user-specific QoS aware schedulers is the incorporation of user-specific QoS 
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requirements into the scheduling and personalized individual user’s scheduling that uses this user-specific 

QoS information to improve system performance. The proposed scheduling algorithms are composed of 

two parts, the source (e.g., AMR, video) data rate adaptation algorithm and the MAC resource scheduling 

algorithms. The rationale of the proposed algorithms to improve the system capacity is by trading off the 

spectral resource allocations for the user-specific QoS requirements, while still maintaining acceptable 

levels of MOS. To be more specific, the system capacity can be improved through dynamically adapting 

the data rate of video users by considering user-specific QoS requirements, and allocating the saved 

spectral resource resulting from the degraded data rate of video users to other users as described in section 

4.6. The rationale of the proposed algorithms to improve the MOS is through the MAC scheduling 

differentiation between users with different QoS requirements as described in section 4.7. 

4.5.1 MOS Optimization only Scheme I 

The MOS of users with α = 1.2 will be increased, that is, given a higher scheduling priority, 

whereas users with α = 1.0 have a normal scheduling priority, and the MOS of users with α = 0.8 are 

decreased a little and given a lower scheduling priority, as described in section 4.7. This scheme is 

denoted as the USQA-M1 scheme. It is used in heavily loaded scenarios. 

4.5.2 MOS Optimization only Scheme II 

The MOS of users with α = 1.2 will be increased, given a higher scheduling priority, whereas 

users with α = 1.0 and α = 0.8 have a normal scheduling priority, as described in section 4.7. This scheme 

is denoted as the USQA-M2 scheme. It is used in lightly loaded scenarios. 

4.5.3 MOS Optimization plus Capacity Improvement Scheme 

The MOS of users with α = 1.2 will be increased, that is, given a higher scheduling priority, 

whereas users with α = 1.0 or � = 1.0 have a normal scheduling priority, as described in section 4.7, and 

users with α = 0.8 or � = 0.8 are used to improve the system capacity by degrading their AMR codec 

modes or video data rates as described in section 4.6. 
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This scheme is denoted as the USQA-MC scheme. It is used in heavily loaded scenarios to be 

capable of supporting more users in the system. 

4.5.4 Capacity Improvement Scheme 

This scheme is denoted as the USQA-C scheme, a variant of the USQA-MC scheme where all 

users are assumed to be characterized as α = 0.8 and 1.0 or � = 0.8 and 1.0. So the scheduling of these 

users with lower sensitivity factors is used to improve the capacity by degrading their AMR codec modes 

or video data rates as described in section 4.6.  

The USQA-C scheme is used in heavily loaded scenarios to be capable of supporting more users 

in the system. 

4.5.5 MOS Improvement Scheme for FTP Users 

The MOS of users with � = 1.2 will be increased, that is, given a higher scheduling priority, 

whereas users with � = 1.0 have a normal scheduling priority. This scheme is denoted as the USQA-F 

scheme. 

4.5.6 USQA Scheduler Summary 

The USQA Schedulers are summarized as follows and in Table 4-1: 

Table 4-1 USQA scheduler summary 

Scheduler Features Descriptions 

USQA-M1 
VoIP MOS 

Optimization only 

Improve the MOS of VoIP users with α of 1.2 

 Decrease the MOS of VoIP users with α of 0.8 

USQA-M2 
VoIP MOS 

Optimization only 

Improve the MOS of VoIP users with α of 1.2 

Maintain the MOS of VoIP users with α of 0.8 

USQA-MC 
VoIP MOS and 

capacity improvement 

Improve the MOS of VoIP users with α of 1.2 

Degrade the data rate of VoIP users with α of 0.8 

Degrade the data rate of video users with � of 0.8 

USQA-C 
Capacity improvement 

only 

Degrade the data rate of VoIP users with α of 0.8 

Degrade the data rate of video users with �of 0.8 

USQA-F 
FTP MOS 

improvement only 
Improve the MOS of FTP users with � of 1.2 

 

• USQA Schedulers: USQA-M1, USQA-M2, USQA-MC, USQA-C and USQA-F. 

• USQA-M1, USQA-M2 optimizes VoIP MOS only. 
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• USQA-MC optimizes both VoIP MOS and Capacity. 

• USQA-C optimizes capacity only. 

• USQA-F optimizes MOS for FTP users only. 

• The symbols used in the USQA schedulers denote: M for MOS, C for Capacity, MC for MOS 

and Capacity, and F for FTP. 

4.6 User-Specific QoS Aware Rate Adaptation Algorithms 

4.6.1 VoIP Rate Adaptation Algorithm 

In order to illustrate the main idea of user-specific QoS capacity improvement scheduling for 

VoIP users, in this algorithm, we only consider three AMR modes (i.e., AMR 12.2K, 10.2K, and 7.95K), 

and the extension to other AMR modes (bit rates) is straightforward. The work flow of the AMR mode 

adaption is shown in Figure 4.3 [71]. The algorithm starts with the AMR12.2K mode. The thresholds to 

degrade the AMR mode can be configured to control the desired MOS levels. In this dissertation, they are 

set to 0.02, that is, the AMR mode will be degraded if the MOS is decreased by less than 0.02, compared 

with that of the MOS value for the non-degraded AMR mode with α= 1.0. The input to the AMR mode 

adaption algorithm is the packet loss ratio in the receiver UE, while assuming an average end-to-end 

delay of 150 ms.  

4.6.2 Video Rate Adaptation Algorithm 

Similarly the work flow of the video data rate adaptation is shown in Figure 4.4 [71], [72]. For 

simplicity of illustration, four levels of data rate are assumed in the video data rate adaptation. The 

algorithm starts with the data rate of level 3. The video data rate level to be selected depends upon the 

respectively calculated MOS for each level of data rate. Similar to VoIP users, the thresholds to degrade 

the video data rate can be configured to control the desired MOS levels. In this dissertation, they are set to 

0.01, which means that the data rate will be degraded when the MOS is not decreased by more than 0.01 

compared with that of the MOS value for the non-degraded rate with � = 1.0. The input to the video data 

rate adaption algorithm is the packet loss ratio in the receiver UE. 
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Figure 4.3 AMR mode adaptation work flow 

 

Figure 4.4 Video data rate adaptation work flow 
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4.7 User-Specific QoS Aware MAC Scheduling Algorithms 

4.7.1 Time Domain Scheduler 

The following is for GBR services. 

GBR services refer to VoIP and video applications that are sensitive to the delay.Users with 

higher metrics can receive higher scheduling priority in the time domain. The metric for user k is defined 

as: 

 ,{ = |�}~ ∗ �|{ ∗ =-� (4-1) 

where |�}~ is the priority factor for different GBR applications (|�}~ = 1.0	for VoIP users, and |�}~ =
0.8 for video users). The parameter �|{  is the user-specific time domain weight for user k. For the 

baseline scheduler, �|{ = 0.8	for all VoIP users, and  �|{ = 1.0 for all video users, which means users 

are not differentiated by their user-specific QoS requirements. For the USQA-M1 scheduler, 	�|{ = 1.0 

for VoIP users with α = 1.2, �|{ = 0.7 for VoIP users with α = 0.8, whereas for the USQA-M2 and 

USQA-MC schedulers, 	�|{ = 1.0 for VoIP users with α = 1.2 and �|{ = 0.8 for other VoIP users. In 

(4-1) =-� is the packet delay in milliseconds in the MAC buffer. All VoIP users with ,{ greater than 20 

ms will be selected as the candidate users if the resource is available. The parameter �|{ is configurable 

based upon different application scenarios. 

The following is for Non-GBR services. 

Non-GBR services in this chapter refer to the FTP application that is a best effort application and 

not sensitivity to delay. 

FTP Users are served in a Round-Robin way so that each user is served fairly. In this chapter, in 

each TTI, a maximum of 3 users are scheduled. 

If a given user is more sensitive to the FTP download time, then this user will be scheduled in each 

TTI with a predefined probability P1 (e.g., P1 = 33.33% in this chapter) instead of normally waiting in 

queues to be served in a round-robin way. 
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FTP applications as Non-GBR services have lower scheduling priority than VoIP and video 

applications as GBR services in the time domain. That is, only if there are remaining resources after the 

GBR users are served, the Non-GBR services will be scheduled. 

4.7.2 Frequency Domain Scheduler 

Each user also has a frequency domain metric for each sub-band and this is sorted for each sub-

band among all the scheduled users. Each sub-band is first allocated to the user that has the highest 

metric, then to the user with the second and third highest metric, and so on until all the resources of this 

given sub-band are allocated, as illustrated in Figure 4.5. The metric for user k in each sub-band n is 

defined by: 

 ,�,{ = H{ ∗ �,�.�,{ − ,�.��,{ + �|�,{� (4-2) 

where H{ is the number of PRBs (Physical Radio Blocks) allocated to user k. The parameters ,�.�,{ and 

,�.��,{ are the MCS index of user k in sub-band n and wideband respectively. The parameter �|�,{ is 

the user-specific frequency domain weight for user k in sub-band n. For the baseline scheduler, �|�,{ =
0	 for all users, which means users are not differentiated by their specific QoS requirements. The 

parameters are introduced in order to allocate high priority users their preferred sub-bands, instead of other 

sub-bands. For the USQA-M1/M2 and USQA-MC schedulers, 	�|�,{ = 1 and �|�,{ =	−1 for VoIP 

users with α = 1.2 in their best sub-band and other sub-bands respectively, and �|�,{ = 0 for other users 

including video users. The parameter �|�,{ is configurable. In scenarios with video users where video 

users typically require more PRBs, �|�,{ = 25 and �|�,{ =	−25 for VoIP users with α = 1.2 in their 

best sub-band and other sub-bands respectively. For the USQA-F scheduler, �|�,{ = 10 and �|�,{ =
	−10 for FTP users with �  = 1.2 in their best sub-band and other sub-bands respectively with a predefined 

probability P2 (e.g., P2 = 50 % in this chapter). 

4.8 User-Specific Frequency Sensitivity QoS Study 

Another very promising area of research is a user-specific frequency sensitivity QoS study. For 

humans, the audible range of frequencies is usually between 20 Hz and 20 kHz. However, there is 
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considerable variation between individuals - especially at the high frequency end, which is affected by a 

gradual decline with age. Elderly people normally are less sensitive to high frequencies, while younger 

people are more sensitive to higher frequencies. 

 

Figure 4.5 Frequency domain scheduler work flow 
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This difference in the sensitivity to higher frequencies can be utilized to further increase system 

capacity. A frequency sensitivity factor β is defined as the ratio of highest sensitive frequency of a given 

user to the standard sampling rate 8 KHz. If a user has a frequency sensitivity factor less than 1, the 

sampling rate can be reduced to 	8β KHz, the data rate will be reduced, then the system capacity (i.e., 

maximum number of supportable users) will be increased correspondingly. An OPNET experiment in was 

setup to verify the capacity improvement. Details of the experiment are given in section 4.10.3. 

4.9 USQA-C Scheduler in Heterogeneous Networks 

Heterogeneous networks have been introduced in the LTE-Advanced standard. Driven by smart 

phones, tablets, and other data-hungry devices, data traffic demand in cellular networks is increasing 

exponentially. Since radio link performance is approaching theoretical limits with 3G/4G enhancements, 

the next performance leap in wireless networks will come from the network topology optimization as a 

means to provide higher network capacity and better coverage. A heterogeneous network uses a mixture of 

macrocells and small cells such as microcells, picocells, and femtocells, where small cells are overlaid in 

macro cells. These smallcells in heterogeneous networks can potentially improve system capacity and 

coverage by allowing future cellular systems to achieve higher data rates [81]–[85]. 

Compared with homogenous networks, the different cell deployment and different intra-cell and 

inter-cell interference distributions in heterogeneous networks may have a different impact on the system 

gain of the user-specific QoS aware scheduler. However, to date, no analysis and performance evaluation 

of user-specific QoS requirements and its applications in heterogeneous networks have been done. 

Figure 4.6 describes the decrease in MOS percentage for different packet loss ratios calculated for 

a user with a lower sensitivity factor of 0.8 but a lower data rate of level 5, 6 and for a user with a normal 

sensitivity factor of 1.0 but a higher data rate of level 3, which corresponds to  
��>N7��>���>N   and  

��>N7��>O��>N  

respectively in the rate adaptation work flow in Figure 4.4 [72]. From Figure 4.6 it can be seen that, for a 

user with a lower sensitivity factor of 0.8 but a lower data rate of level 6 (red curve), the decreased MOS 

percentage decreases as the packet loss ratio increases. In order to maintain the target degraded MOS level 
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of 1%, the packet loss ratio needs to be greater than about 1%. That means, to maintain the desired 

degraded level of MOS, the higher packet loss ratio can result in a lower user data rate and the lower 

packet loss ratio can result in a higher user data rate. Therefore, in heterogeneous networks, if the SINR of 

video users can be improved, with a lower packet loss ratio, due to the deployment of LTE picocells and 

closer distances to the picocells, then the selected data rate of video users will be higher compared with 

homogeneous networks, as verified in the simulation results in section 4.10.4. 

 

Figure 4.6 Decreased video MOS as a function of packet loss ratio for sensitivity factors � of 0.8 and data 

level 5 and 6 

4.10 Simulation Results 

The system simulation was run using the OPNET 17.5 Modeler with the LTE modules [86]. The 

simulation was performed to evaluate the downlink scheduling, with an ideal uplink receiver.  

The simulation environment is shown in Figure 4.7. The OPNET simulation project is composed 

of the following nodes: 

• UE/eNodeB/EPC nodes 

The UE/eNodeB/EPC nodes represent the basic three network elements in LTE networks. 

• LTE Attributes node 
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The LTE Attributes node is used to store PHY configurations and EPS bear definitions, 

which can be referenced by all LTE nodes in the network. 

• Mobility Config node 

The Mobility Config node is used to define mobility profiles that individual nodes can 

reference to model mobility. It controls the movement of nodes based on the configured 

parameters.  

 

Figure 4.7 System environment setup 

• Application Definition node 

The Application definition node is used to specify applications using available application 

types. We can specify a name and the corresponding description in the process of creating 

new applications. The specified application name will be used while creating user profiles on 

the Profile Definition node. 
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• Profile Definition node 

The Profile Definition node is used to create user profiles. These user profiles can then be 

specified on different nodes in the network to generate application layer traffic. The 

application defined in the Application Definition nodes is used by this object to configure 

profiles.  

4.10.1 USQA-M1 & M2 & MC &C Schedulers 

The system simulation configuration is partly based upon LTE macrocell system simulation 

baseline parameters [87] and Table 4-2. 

Table 4-2 System simulation configuration for USQA schedulers 

Parameter Assumption 

Cellular layout 1 macrocell 

Cell radius 1kilometer 

Path loss model 3GPP suburban macrocell 

Mobility model Random Way Point 

 (30km/h)  

Carrier frequency 
Uplink:1920MHz 

Downlink:2110MHz 

System bandwidth 10MHz 

Channel model ITU Vehicle A 

Total BS TX power 40dBm 

UE power 23dBm 

VoIP codec modes 

AMR12.2K, 

 AMR10.2K, 

 AMR7.95K 

Video data rates 

1105.920 Kbits/s (Level 3) 

967.680 Kbits/s (Level 4) 

829.440 Kbits/s (Level 5) 

691.200 Kbits/s (Level 6) 

Number of users 
54 VoIP users w/o 12 video 

users 

Scheduler 

Dynamic scheduling 

USQA-M1/M2 scheduler, 

USQA-MC/C scheduler, 

 and Baseline scheduler 

Other assumptions 
Ideal uplink receiver(no block 

error and packet loss) 
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1) Simulation Cases 

Eight cases were simulated for user-specific QoS aware schedulers as described in Table 

4-3. Cases 1-3 are used to evaluate the performance of the USQA-M1 and USQA-M2 schedulers, 

whereas cases 4-8 are used to evaluate the performance of the USQA-MC and USQA-C 

schedulers. In these cases, there are either 54 VoIP users having different sensitivity factors α, or 

both 54 VoIP users and 12 video users having different sensitivity factors α or �.  

Table 4-3 System simulation cases for USQA schedulers 

Cases Assumption 
USQA 

scheduler 

Case 1 54 VoIP users (18 users’ α = 0.8, 18 

users’ α = 1.0, 18 users’ α = 1.2) 

USQA-M1 

scheduler 

Case 2 

54 VoIP users plus 12 video users (18 

VoIP users’ α = 0.8, 18 VoIP users’ α 

= 1.0, 18 VoIP users’ α = 1.2, all 

video users’ � = 1.0) 

USQA-M1 

scheduler 

Case 3 
Same as Case 1 

USQA-M2 

scheduler 

Case 4 
Same as Case 1 USQA-MC 

scheduler 

Case 5 Same as Case 2 
USQA-MC 

scheduler 

Case 6 

54 VoIP users plus 12 video users (18 

VoIP users’ α = 0.8, 18 VoIP users’ α 

= 1.0, 18 VoIP users’ α = 1.2, 6 video 

users’ � = 1.0, 6 video users’ � = 0.8) 

USQA-MC 

scheduler 

Case 7 
54 VoIP users  with α = 0.8 

USQA-C 

scheduler 

Case 8 
54 VoIP users with α = 0.8 plus 12 

video users with � = 0.8 

USQA-C 

scheduler 

 

To evaluate the impact of the ratio of users with lower sensitivity factors (i.e., 0.8) α or � 

on the capacity improvement, 9 more cases are simulated as described in Table 4-4. Cases 1-3 are 

used to evaluate the VoIP performance for scenarios where all users are VoIP users, but differ in 

the ratio (i.e., 1/3, 2/3, 1) of users with lower sensitivity factors α of 0.8. Cases 4-6 are used to 

evaluate the VoIP performance in scenarios where normal video users exist, but VoIP users differ 

in the ratio (i.e., 1/3, 2/3, 1) of users with lower sensitivity factors α of 0.8. Cases 7-9 are used to 
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evaluate the video performance for scenarios where all VoIP users have sensitivity factors α of 

0.8, but video users differ in the ratio (i.e., 1/2, 2/3, 1) of users with lower sensitivity factors � of 

0.8.  

Table 4-4 System simulation cases for performance impact of the ratio of users with sensitivity factor of 

0.8 

Cases Assumption 
USQA scheduler 

Case 1 
54 VoIP users (18 users’ α = 0.8, 18 users’ α 

=1.0, 18 users’ α = 1.2) 

USQA-MC 

scheduler 

Case 2 
54 VoIP users (36 users’ α = 0.8, 18 users’ α 

= 1.2) 

USQA-MC 

scheduler 

Case 3 54 VoIP users (all users’ α = 0.8) 
USQA-C 

scheduler 

Case 4 

54 VoIP users plus 12 video users (18 users’ α = 0.8, 18 users’ α = 1.0, 18 users’ α = 1.2,  

all video users’ � = 1.0) 

USQA-MC 

scheduler 

Case 5 

54 VoIP users plus 12 video users (36 users’ α = 0.8, 18 users’ α = 1.2,  all video users’ � 

= 1.0) 

USQA-MC 

scheduler 

Case 6 
54 VoIP users plus 12 video users (all VoIP 

users’ α = 0.8,  all video users’ � = 1.0) 

USQA-C 

scheduler 

Case 7 

54 VoIP users plus 12 video users (all VoIP 

users’ α = 0.8,  6 video users’ � = 1.0, 6 

video users’ � = 0.8) 

USQA-MC 

scheduler 

Case 8 

54 VoIP users plus 12 video users (all VoIP 

users’ α =0.8,  4 video users’ � = 1.0, 8 

video users’ � = 0.8) 

USQA-MC 

scheduler 

Case 9 
54 VoIP users plus 12 video users (all VoIP 

users’ α =0.8,  all video users’ �  = 0.8) 

USQA-C 

scheduler 

 

2) Simulation Results 

In this dissertation, the downlink MAC throughput is used to derive the approximate 

system capacity improvement. System capacity improvement is measured by the increase in the 

maximum supportable number of users by the system. A rough mapping from the downlink MAC 

throughput to the system capacity improvement can be done based upon (4-3): 

 
1/�MAC	throughtput	for		USQA�1/�MAC	throughput	for	Baseline	� − 1 (4-3) 
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The simulation results for the MOS value and capacity improvement are shown in Tables 

4-5, 4-6, and 4-7.  

Table 4-5 shows the MOS value for the proposed schedulers of USQA-M1 and USQA-

M2. Approximately 9%, 10%, and 6.5% MOS improvement can be achieved for users with a 

sensitivity factor α of 1.2 in cases 1, 2, and 3 respectively where the USQA-M1, USQA-M1, and 

USQA-M2 schedulers are used respectively. For cases 1-2, where the USQA-M1 scheduler is 

used, the MOS for users with a sensitivity factor α of 0.8 decreases by about 2.0% and 3.6% 

respectively. For case 3, where the USQA-M2 scheduler is used, the MOS for users with a 

sensitivity factor α of 0.8 decreases only by 0.7%. We can conclude that the USQA-M1 and 

USQA-M2 schedulers can greatly improve the MOS for users that have a sensitivity factor α of 

1.2.   

Table 4-5 Average MOS value for USQA-M1&M2 

Cases Scheduler 
User 

category 
MOS 

MOS 

improvement  

Case 1 

USQA-M1 VoIP (1.2) 3.86 9% 

VoIP (1.0) 3.84 -1% 

VoIP (0.8) 3.87 -2% 

Basleine VoIP (1.2) 3.54 N/A 

VoIP (1.0) 3.88 N/A 

VoIP (0.8) 3.95 N/A 

Case 2 

USQA-M1 

VoIP (1.2) 2.91 10% 

VoIP (1.0) 3.07 4% 

VoIP (0.8) 2.68 -3.6% 

Video 3.03 -1.3% 

Baseline 

VoIP (1.2) 2.65 N/A 

VoIP (1.0) 2.95 N/A 

VoIP (0.8) 2.78 N/A 

Video 3.07 N/A 

Case 3 

USQA-M2 

VoIP (1.2) 3.77 6.5% 

VoIP (1.0) 3.88 0% 

VoIP (0.8) 3.93 -0.7% 

Baseline 

VoIP (1.2) 3.54 N/A 

VoIP (1.0) 3.88 N/A 

VoIP (0.8) 3.95 N/A 
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Table 4-6 shows the capacity improvement for the proposed schedulers of USQA-MC 

and USQA-C. In this table, capacity improvement for VoIP and video users is listed separately. 

From the table, we find, approximately 4.5%, 8.2%, 7.6%, 15.1% and 25.1% capacity 

improvement can be achieved for VoIP users for case 4-8 respectively, whereas about 17.1% and 

34.1% capacity improvement can be achieved for video users for cases 6 and 8 respectively. The 

capacity improvement gain increases as the ratio of users with sensitivity factors of 0.8 increases, 

which is also verified in the following simulation results of this section. 

Table 4-7 shows the MOS for the proposed schedulers of USQA-MC and USQA-C. For 

cases 4-6, where the USQA-MC is used to optimize the MOS value for users with a sensitivity 

factor α of 1.2, we find approximately 6%, 5.5%, and 5.5% VoIP MOS improvement for users 

with a sensitivity factor α of 1.2 can be achieved respectively, whereas the MOS for users with a 

sensitivity factor α of 0.8 decreases by about 1.3%, 4.6%, and 4.5% respectively. For case 7, 

where the USQA-C scheduler is used, the MOS for users with a sensitivity factor α of 0.8 is 

decreased only by 2.8%. 

Table 4-6 System capacity for USQA-MC&C 

Cases Scheduler 

MAC 

throughput 

(Mbps) 

Capacity 

improvement  

Case 4 

 

USQA-MC 1.000 (VoIP) 4.5% 

Basleine 1.045 (VoIP) N/A 

Case 5 
USQA-MC 0.843 (VoIP) 8.2% 

Baseline 0.912(VoIP) N/A 

Case 6 

USQA-MC 
0.847 (VoIP) 7.6% 

11.456 (video) 17.1% 

Baseline 
0.912 (VoIP) N/A 

13.410 (video) N/A 

Case 7 
USQA-C 0.908 (VoIP) 15.1% 

Baseline 1.045 (VoIP) N/A 

Case 8 

USQA-C 
0.728 (VoIP) 25.1% 

10.005(video) 34.0% 

Baseline 
0.912 (VoIP) N/A 

13.410 (video) N/A 
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Table 4-7 Average MOS value for USQA-MC&C 

Cases Scheduler 
User 

category 

MOS MOS 

improvement  

Case 4 

USQA-MC 

VoIP (1.2) 3.75 6% 

VoIP (1.0) 3.83 -1.3% 

VoIP (0.8) 3.90 -1.3% 

Basleine 

VoIP (1.2) 3.54 N/A 

VoIP (1.0) 3.88 N/A 

VoIP (0.8) 3.95 N/A 

Case 5 

USQA-MC 

VoIP (1.2) 2.80 5.5% 

VoIP (1.0) 2.96 0.4% 

VoIP (0.8) 2.65 -4.6% 

Video 3.12 1.6% 

Baseline 

VoIP (1.2) 2.65 N/A 

VoIP (1.0) 2.95 N/A 

VoIP (0.8) 2.78 N/A 

Video 3.07 N/A 

Case 6 

USQA-MC 

VoIP (1.2) 2.80 5.5% 

VoIP (1.0) 2.98 0.9% 

VoIP (0.8) 2.66 -4.5% 

Video 3.33 7.1% 

Baseline 

VoIP (1.2) 2.65 N/A 

VoIP (1.0) 2.95 N/A 

VoIP (0.8) 2.78 N/A 

Video 3.11 N/A 

Case 7 

USQA-C 

VoIP (1.2) N/A         N/A 

VoIP (1.0) N/A N/A 

VoIP (0.8) 3.79 -2.8% 

Baseline 

VoIP (1.2) N/A N/A 

VoIP (1.0) N/A N/A 

VoIP (0.8) 3.90 N/A 

Case 8 

USQA-C 

VoIP (1.2) N/A N/A 

VoIP (1.0) N/A N/A 

VoIP (0.8) 3.12 4.4% 

Video 3.40 8% 

Baseline 

VoIP (1.2) N/A N/A 

VoIP (1.0) N/A N/A 

VoIP (0.8) 2.99 N/A 

Video 3.16 N/A 

 

We can also observe from Table 4-7 that about 7.1% and 8.0% video MOS improvement 

can be achieved for cases 6 and 8 respectively. The MOS gain mostly comes from the big 

capacity improvement when the USQA-MC&C schedulers are used since the system is heavily 
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loaded. The same MOS improvement can also be observed from VoIP users for case 8, where the 

MOS is increased by 4.4% for users with a sensitivity factor α of 0.8.  

 

Figure 4.8 VoIP capacity improvement as a function of the ratio of VoIP users with α = 0.8 

 

Figure 4.9 Video capacity improvement as a function of the ratio of video users with � = 0.8 

Figure 4.8 illustrates the VoIP capacity improvement as the ratio of VoIP users with 

lower sensitivity factors α of 0.8 in VoIP only scenarios corresponding to cases 1-3 in Table 4-4. 
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From this figure, we can see that the capacity improvement increases from 4.5% to 8.8% to 

15.1% as the ratio increases from 1/3 to 2/3 to 1. 

Figure 4.8 also illustrates the VoIP capacity improvement as a function of the ratio of 

VoIP users with lower sensitivity factors α of 0.8 in VoIP plus video scenarios corresponding to 

cases 4-6 in Table 4-4. From this figure, we can see that the capacity improvement increases from 

8.2% to 15.2% to 25.1% as the ratio increases from 1/3 to 2/3 to 1. 

Figure 4.9 illustrates the video capacity improvement as a function of the ratio of video 

users with lower sensitivity factors � of 0.8 in VoIP plus video scenarios corresponding to cases 

7-9 in Table 4-4. From this figure, we can that see the capacity improvement increases from 

19.5% to 21.0% to 34.0% as the ratio increases from 1/2 to 2/3 to 1. 

4.10.2 USQA-F Scheduler 

Similarly, the system simulation was run using the OPNET 17.5 Modeler [86] with the LTE 

modules. The system simulation configuration is partly based upon LTE macrocell system simulation 

baseline parameters [87] as shown in Table 4-8. One macrocell with 10 FTP users was tested for a 

downlink USQA-F scheduler, with an ideal uplink receiver. 

Table 4-8 System simulation configuration for USQA-F 

Parameter Assumption 

Cellular Layout 1 Macrocell 

Cell Radius 1Kilometer 

Path loss model 3GPP suburban Macrocell 

Mobility model 
Random Way Point (RWP) with a speed of 

0.1km/h 

Carrier Frequency 
Uplink: 1920 MHz 

Downlink: 2110 MHz 

System Bandwidth 10MHz 

Channel model ITU Pedestrian A 

Total BS TX power 40dBm 

UE power class 23dBm  

Number of Users 10 FTP users 

FTP File Size Constant 5MByte for each user 

Scheduler 
Dynamic scheduling: 

USQA-F vs. LTE baseline scheduler 

Other assumptions 
Ideal uplink receiver (no block error and 

packet loss) 
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1) Simulation Cases 

Table 4-9 is the simulation cases used in this section. Case 1 is designed to verify the 

MOS improvement of the MOS targeted scheduler where user 2 have the sensitivity factors of 1.2 

while other users have the sensitivity factors of 1. Case 2 is designed to verify the MOS 

improvement of the MOS targeted scheduler where users 1-2 have the sensitivity factors of 1.2 

while other users have the sensitivity factors of 1. The coefficients a and b in (3-19) are 

determined as 5.0074 and 3.9595e-06 respectively. 

2) Simulation Results 

Table 4-9 System simulation cases for USQA-F 

Cases Assumptions 

Case 1 
User 2 has the sensitivity factor of 1.2 while the remaining 

users have the sensitivity factors of 1 

Case 2 
Users 1-2 have the sensitivity factor of 1.2 while the 

remaining users have the sensitivity factors of 1 

 

From Figure 4.10, we find, with a predefined scheduling probability P1 (33.33 %) in time 

domain and with a predefined scheduling probability P2 (50 %) in frequency domain assigned to 

user 2, a 69 % MOS improvement can be achieved. The scheduler is flexible to control the target 

MOS of a specific user by changing or adapting its probability of the time domain scheduling and 

frequency domain scheduling priority. As we also see from Figure 4.10, some other users have 

somewhat decreased MOS. It is easily understandable since more resources are allocated to user 2 

with a higher sensitive factor. 

From Figure 4.11, we find, with a predefined scheduling probability P1 (33.33 %) in time 

domain and with a predefined scheduling probability P2 (50 %) in frequency domain assigned to 

users 1-2, a 16% and 68% MOS improvement can be achieved respectively for user 1 and 2. The 

scheduler is flexible to control the target MOS of a specific user by changing or adapting its 

probability of the time domain scheduling and frequency domain scheduling priority. As we also 
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see from Figure 4.11, some other users have somewhat decreased MOS. It is easily understandable 

since more resources are allocated to users 1-2 with a higher sensitive factor. 

 

Figure 4.10 Average MOS as a function of UE index (case 1) 

 

Figure 4.11 Average MOS as a function of UE index (case 2) 
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4.10.3 User-Specific Frequency Sensitivity QoS Study 

Similarly, the system simulation was run using the OPNET 17.5 Modeler [86] with the LTE 

modules. The system simulation configuration is partly based upon LTE macrocell system simulation 

baseline parameters [87] as shown in Table 4-10.  

1) Simulation Cases 

Table 4-11 shows the test case for user-specific frequency sensitivity QoS study, where 

24 G.711 VoIP users have different frequency sensitivity factors β of 1.0, 0.75, 0.5, and 0.25 

respectively. 

Table 4-10 System simulation configuration for user-specific frequency sensitivity QoS study 

Parameter Assumption 

Cellular Layout 1 Macrocell 

Cell Radius 1Kilometer 

Path loss model 3GPP suburban Macrocell 

Mobility model 
Random Way Point (RWP) with a speed of 

0.1km/h 

Carrier Frequency 
Uplink: 1920 MHz 

Downlink: 2110 MHz 

System Bandwidth 10MHz 

Channel model ITU Pedestrian A 

Total BS TX power 40dBm 

UE power class 23dBm  

Number of Users 24 G.711 VoIP users 

Scheduler Dynamic scheduling: 

Other assumptions 
Ideal uplink receiver  

(no block error and packet loss) 

 

Table 4-11 System simulation cases for user-specific frequency sensitivity QoS study 

Cases Assumption 

Case 1 

24 G.711 VoIP users with a freqeuncy 

sensitivity factor β = 1, 0.75, 0.5, and 

025 respectively. 

 

2) Simulation Results 

Figure 4.12 plots the approximate capacity improvement (i.e., maximum supportable 

number of users) as a function of frequency sensitivity factor β . In the simulation, a rough 
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mapping from the PDSCH (Physical Downlink Shared Channel) load to the system capacity 

improvement can be done according to the following formula:  

 

Capacity	impovement	for	factor	��%�= 1/�load	for	factor	��1/�load	for	factor	� = 1� − 1 
( 4–4 ) 

From Figure 4.12, we can see that more than 100% capacity improvement can be 

achieved with a sensitivity factor β	of 0.25, while an increase of around 30% can be achieved 

with a sensitivity factor β of 0.5 and 0.75.  

 

Figure 4.12 Approximate capacity improvement as a function of frequency sensitivity factor β 

4.10.4 USQA-C Scheduler in Heterogeneous Networks 

Similarly, the system simulation was run using the OPNET 17.5 Modeler with the LTE modules 

[86], as depicted in Table 4-12. In this section, we consider either one or three macrocell(s) and 2 overlaid 

picocells in each macrocell with 30/24/18 video users and 30/24/18 FTP users in each macro-plus-pico 

area. Video users and FTP users exist simultaneously in order to simulate practical scenarios with high 

traffic system loads. These configurations were evaluated for downlink scheduling, with an ideal uplink 

receiver, and Inter-cell Interference Coordination (ICIC) is not used.  
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1) Simulation Cases 

Three cases corresponding to Configuration 4b of reference [88] were designed and 

simulated as described in Table 4-13. In case 1, 30 FTP users and 30 video users that have a data 

rate sensitivity factor of 0.8 are assumed in the simulation for each macro-plus-pico area. Among 

the 60 users, 10 FTP users and 10 video users are randomly and uniformly spaced within a 40m 

radius of each picocell. The remaining 10 FTP users and 10 video users are randomly and 

uniformly spaced within the remaining area of the macrocell.  

Table 4-12 System simulation configuration for HetNet 

Parameters Assumption 

Cellular layout 1/3 macrocell(s) 

Cell radius 1kilometer 

Pico cells 
0 or 2 picocell(s)/macrocell  

(Configuration 4b) 

Path loss model 3GPP suburban Macrocell 

Mobility model 
Random Way Point (RWP) with speed of 

0.1km/h 

Carrier 

frequency 

Uplink:1920MHz 

Downlink:2110MHz 

System 

bandwidth 
10/20 MHz 

Channel model ITU Pedestrian A 

Total BS TX 

power 

macro: 46 dBm 

pico: 30 dBm 

UE power  23 dBm 

Video data rates 

1105.920 Kbits/s (Level 3) 

967.680 Kbits/s (Level 4) 

829.440 Kbits/s (Level 5) 

691.200 Kbits/s (Level 6) 

FTP file size File size: 15Mbytes 

Number of users 

30/24/18 video Users  

(each user takes a data rate sensitivity 

factor of 0.8), and  

30/24/18 FTP users 

Scheduler 

Dynamic scheduling 

USQA-C scheduler and LTE baseline 

scheduler 

ICIC No ICIC used 

Other 

assumptions 

Ideal uplink receiver(no block error and 

packet loss) 
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In cases 2 and 3, 18 FTP users and 18 video users that have a data rate sensitivity factor of 

0.8 are assumed in the simulation for each macro-plus-pico area. Among the 36 users, 6 FTP users 

and 6 video users are randomly and uniformly distributed within a 40m radius of each picocell. 

The remaining 6 FTP users and 6 video users are randomly and uniformly distributed within the 

remaining area of each macrocell. In case 3, three macrocells and two picocells in each macrocell 

exist. 

For performance comparison, the scenarios where only macro cells are used, without 

picocells, for 30/18 FTP users and 30/18 video users in each macrocell are also simulated and the 

results appear below. 

Table 4-13 System simulation cases for HetNet 

Cases Assumption 

Case 1 

10  MHz, 1 macrocell+2 picocells, 30 FTP users and 

30 video users, each having a value for the data rate 

sensitivity factor γ	of 0.8. 

Case 2 

10 MHz, 1 macrocell+2 picocells, 18  FTP users and 

18 video users, each having a value for the data rate 

sensitivity factor γ of 0.8. 

Case 3 

20 MHz, 3 macrocells+6 picocells, 18  FTP users 

and 18 video users for each macrocell, each having a 

value for the data rate sensitivity factor γ of 0.8. 

 

2) Simulation Results 

In the following figures, green (left), blue (center) and red (right) bars represent, 

respectively, the performance for 1) 1/3 macrocell(s) without picocells and user-specific QoS 

consideration, 2) 1/3 macrocell(s) with 2/6 picocells but without user-specific QoS consideration, 

and 3) 1/3 macrocell(s) with 2/6 picocells and with user-specific QoS consideration. 

a) FTP Throughput 

In this dissertation, FTP throughput per cell is defined as the total received MAC traffic in 

Mbits/sec for all the FTP users divided by the number of macrocells.  
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Figures 4.13–4.15 show the FTP throughput comparison for cases 1, 2 and 3, respectively, 

with and without user-specific QoS considered in heterogeneous networks. For comparison, the 

performance for a reference scenario where no picocells exist is also presented in the figures (i.e., 

green bar).  

From Figures 4.13–4.15 we can see that much better FTP throughput can be achieved 

when picocells are introduced in heterogeneous networks (i.e., between green and blue bars), and 

about 37%, 14% and 11% throughput improvement (i.e., between blue and red bars) can be further 

achieved in cases 1, 2 and 3 respectively when user-specific QoS is considered. The throughput 

improvement of FTP user results from the decreased throughput of video users when user-specific 

QoS is used in the proposed rate adaptation algorithm. 

 

Figure 4.13 FTP throughput comparison for HetNet case 1 

b) FTP Throughput Improvement vs. Number of Video Users 

Figure 4.16 shows the FTP throughput improvement as a function of the number of video 

users. The FTP throughput improvement results from the lower data rate of video users when the 

user-specific QoS is considered. In this figure, 1 macrocell-plus-2 picocells are simulated with 
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varying number of video users and FTP users of 18, 24, and 30. It can be found as the number of 

video users increases, a higher FTP throughput improvement can be achieved. That is because as 

the number of video users increases, more resources can be saved from video users and used to 

convey FTP data. 

 

Figure 4.14 FTP throughput comparison for HetNet case 2 

 

Figure 4.15 FTP throughput comparison for HetNet case 3 
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Figure 4.16 FTP throughput improvement as a function of the number of video users for 1 macrocell-

plus-2 picocells 

c) Video MOS 

Figures 4.17-4.19 show the MOS comparison for cases 1, 2 and 3, respectively, with and 

without user-specific QoS considered in heterogeneous networks. For comparison, the 

performance for a reference scenario where no picocells exist is also presented in the figures (i.e., 

green bar).  

From Figures 4.17-4.19, we can see a much better MOS value (56%, 12%, and 53% 

improvement respectively) can be achieved when picocells are introduced in heterogeneous 

networks  (i.e., between green and blue bars), while similar MOS value (i.e., between blue and red 

bars)  can be maintained when the user-specific QoS is considered. As noted above, FTP 

throughput can be improved significantly. 

d) Homogeneous vs. Heterogeneous Networks 

For case 2, 1 macrocell plus 2 picocells and purely 1 macrocell are compared, both taking 

into account user-specific QoS requirements. The average MAC throughput and SINR comparison 

for video users are listed in Table 4-14. From this table, we can see a ~5dB average SINR increase 
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in heterogeneous networks results in about only less than 1% MAC throughput increase (i.e., 

higher video data rate). Therefore, most of the system capacity gain is maintained in heterogeneous 

networks.  

Similarly, for case 3, 3 macrocells plus 6 picocells and purely 3 macrocells are compared, 

both taking into account user-specific QoS requirements. The average MAC throughput and SINR 

comparison for video users are also listed in Table 4-14. From this table, we can see a ~13dB 

average SINR increase in heterogeneous networks results in ~12% MAC throughput increase (i.e., 

higher video data rate). Therefore, only part of the system capacity gain can be maintained in 

heterogeneous networks. 

4.11 Concluding Remarks 

In this chapter, we introduced the concept of user-specific QoS aware schedulers and 

demonstrated their utility in spectral allocation for MOS and/or system capacity gain. Five user-specific 

QoS aware schedulers are proposed aimed at improving the MOS or system capacity or both the MOS 

and system capacity in wireless systems. Using the OPNET Modeler for LTE, system simulations have 

been performed for a set of Voice over IP (VoIP) users, including cases with additional video users, 

where users have been assigned specific QoS target levels. Simulation results showed that appreciable 

MOS and system capacity improvements could be achieved when user-specific QoS requirements are 

utilized in the user-specific QoS aware schedulers. 

OPNET system simulations were also performed for a set of FTP users and video users that were 

assigned specific QoS target levels in LTE heterogeneous networks Simulation results show that 

significant system capacity improvements and acceptable MOS levels can be achieved for FTP users and 

video users, respectively, if such user-specific QoS requirements are considered in heterogeneous 

networks in the user-specific QoS aware scheduler. 

Moreover, the user-specific frequency sensitivity QoS results or guidelines, when combined with 

VoIP codecs matched to the different high frequency auditory characteristics of users, can achieve higher 

system capacity as well as a comparable MOS levels. 
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Figure 4.17 Video MOS comparison for HetNet case 1 

 

Figure 4.18 Video MOS comparison for HetNet case 2 

Table 4-14 MAC throughput and SINR comparison 

Cases MAC throughput (Mbps) SINR (dB) 

1 macro 14.782 34.3 

1 macro + 2 picos 14.905 39.5 

3 macros 13.176 25.4 

3 macros + 6 picos 14.762 38.7 
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Figure 4.19 Video MOS comparison for HetNet case 3 
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CHAPTER 5. USER-SPECIFIC QOS AWARE SCHEDULER IMPLEMENTATION  

5.1 Introduction 

Since the system performance gain has been shown to be significant in the previous chapters 

when user-specific QoS requirements are considered in the scheduling algorithms, it is important to 

investigate the implementation details, such as the feasibility, complexity and protocol adaptation, so that 

the user-specific QoS aware scheduling algorithms can find application in LTE or future networks. In this 

chapter, these implementation details will be analyzed and the system performance considering the 

scheduling period will also be evaluated. 

The rest of the chapter is organized as follows. LTE end-to-end procedures related to users’ QoS 

are provided in section 5.2. Section 5.3 lists the LTE QoS related protocols that need to be adapted. 

Section 5.4 gives the general idea of how the user-specific QoS parameters can be obtained and used by 

the scheduling algorithms. Section 5.5 gives the system architecture of the user-specific QoS aware 

scheduling implementation. The user-specific QoS optimization process is provided in section 5.6. The 

detailed protocols adaptation related to the implementation of user-specific QoS aware schedulers is 

presented in section 5.7. The scheduler details of rate adaptation triggering, scheduling period, and 

integration with existing rate adaptation algorithms were described in section 5.8. We provided the system 

simulation in section 5.9. Finally in section 5.10, we conclude this chapter. 

5.2 LTE End-to-End Procedures  

In the following sections, for the simplicity of illustration, we consider only the network 

architecture for non-roaming scenarios. The consideration for roaming scenarios is a straightforward 

extension of the methodology that we present. 

LTE end-to-end QoS-related procedures are shown in Figure 5.1 [89], [90] and discussed in the 

following sections. The LTE end-to-end procedures are composed of three major functions: 1) SIP 



70 

 

signaling, 2) AF session establishment/modification, and 3) EPS bearer establishment. These three major 

procedures will be illustrated respectively in detail in the following sections. 

 

Figure 5.1 LTE end-to-end procedures 

5.2.1 SIP Signaling 

A typical SIP signaling to setup a voice call is shown in Figure 5.2 and illustrated as follows [44]. 

Here we ignore the registration procedures and assume the registration procedures have already been 

completed before the voice call setup procedure starts. 

1) UE A sends the INVITE request to the IMS SIP server. The INVITE request contains a 

message body with the SDP media description of the type of session that UE A is willing to 

establish with UE B. 

2) The IMS SIP server receives the INVITE request and forwards the INVITE request to UE B.  

3) The IMS SIP server sends a 100 (Trying) response back to UE A. The 100 (Trying) response 

indicates that the INVITE request has been received and that the IMS is working to forward 
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the INVITE request to the destination. Typically responses in SIP use a three-digit code 

followed by a descriptive phrase. 

4) When UE B receives the INVITE request and is alerted to the incoming call, it sends back a 

180 (Ringing) response. 

5) The IMS SIP server receives the 180 (Ringing) response and forwards it to UE A to indicate 

that UE B is alerted. 

6) When UE B decides to answer the call, it sends a 200 (OK) response to indicate that the call 

has been answered. The 200 (OK) response contains a message body with the SDP media 

description of the type of session that UE B is willing to establish with UE A. 

7) The IMS SIP sever receives the 200 (OK) response, and forwards it to UE A. 

8) Finally, UE A sends an acknowledgement message, ACK, to UE B to confirm the reception 

of the final 200 (OK) response. 

The media session now begins between UE A and UE B, and they can send media packets using 

the format to which they agreed in the exchange of SDP media description. 

 

Figure 5.2 Sip signaling procedures 
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Figure 5.3 AF session establishment/modification procedures 

5.2.2 AF Session Establishment/Modification 

The AF session establishment/modification procedure is shown in Figure 5.3 and illustrated as 

follows [91]: 

1) When a subscriber establish an IMS call using the SIP protocol, the IMS use the mapping 

rules to derive a Media-Component-Description AVP (Service Information) from the SDP 

parameters in the SIP message [43]. 

2) The IMS provides the Service Information to the PCRF by sending a Diameter AAR message 

to set up a new Rx Diameter session (Rx interface). 

3) The PCRF derives the IP QoS information (e.g., QCI, GBR, MBR, ARP) [43] from the 

Service Information received in the Diameter AAR message. 

4) The PCRF sends the Diameter RAR message to trigger the P-GW (PCEF) to request 

Charging Rules (Gx interface). The Diameter RAR message contains the IP QoS information 

derived in the previous step. 
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5) The P-GW (PCEF) sends the Diameter RAA message to acknowledge the Diameter RAR 

message. 

5.2.3 EPS Bearer Establishment 

The EPS bearer establishment procedure is shown in Figure 5.4 and illustrated as follows ([89], 

[92]): 

 

Figure 5.4 EPS bearer establishment procedures 

1) The PDN-GW sends a Create Bearer Request message (containing IP QoS information 

received from the PCRF) towards the S-GW (S5 interface) to initiate the establishment 

process of the dedicated bearer.  

2) The S-GW processes the Create Bearer Request message and forwards it to the MME (S11 

interface) for further processing. 
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3) The MME now sends the E-RAB Setup Request message (containing IP QoS information 

received from the Create Bearer Request message) to the eNodeB (S1-MME interface) to 

allocate the bearer resource between the eNodeB and the S-GW. 

4) The eNodeB allocates the radio resources for the radio bearers using a RRC Connection 

Reconfiguration Request message to the UE.  

5) The UE establishes the radio bearers and sends back a RRC Connection Reconfiguration 

Complete message to the eNodeB. 

6) The radio bearers are established between the eNodeB and the UE, so the eNodeB sends the 

E-RAB (Radio Access Bearer) Setup Response message to the MME. 

7) The MME sends the Create Bearer Response message to the S-GW.  

8) The S-GW forwards the Create Bearer Response message to the PDN-GW to complete the 

establishment process of the dedicated bearers. 

5.3 LTE QoS Related Protocols 

From the analysis of section 5.2, the LTE QoS related protocols are as follows: 

• SIP protocol [44] 

The SIP protocol is used to create, modify, and terminate sessions such as Internet 

multimedia conferences, Internet telephone calls, and multimedia distribution. 

• Diameter based protocol (Rx and Gx interfaces) [90] 

The Diameter base protocol provides an Authentication, Authorization and Accounting 

(AAA) framework for applications such as network access or IP mobility. Diameter is also 

intended to work in both local Authentication, Authorization & Accounting and roaming 

situations. 

• GTP-C (Control) protocol (S5, S11 interfaces) [93] 

The control plane of the GPRS Tunneling Protocol (GTP) is responsible for creating, 

maintaining and deleting tunnels on Sx (e.g., S5, S11) interfaces.  
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• S1-AP protocol (S1-MME interface) [92] 

The S1-AP protocol provides the signaling service between the E-UTRAN and the EPC. 

5.4 User-Specific QoS Parameter Acquisition 

There are two methods to acquire the user-specific QoS parameters to be used by the user-

specific QoS aware schedulers. The first one is to obtain the user-specific QoS parameters dynamically 

through the signaling messages (i.e., SIP, Diameter protocol etc.) that are delivered to the MAC layer. 

The other is to acquire the user-specific QoS parameters through the SPR database in the PCRF that are 

delivered to the MAC layer. The difference between these two methods is in how the PCRF obtains the 

user-specific QoS parameters. After the PCRF acquires the QoS parameters, the subsequent procedures 

will be the same so that the pertinent QoS parameters are conveyed to the MAC layer. These two methods 

will be described in detail in the following sections.  

For the first method, as noted above, the user specific QoS parameters are obtained by the PCRF 

through signaling from the SIP and Rx interface protocols. 

For the second method, no special SIP signaling is required before the PCRF sends the QoS 

parameters further to the PCEF through the Gx interface. In most commercial systems, the network 

operator can obtain the user-specific QoS requirements that are based primarily upon age. When users 

subscribe to a service from the network operator, they often provide their relevant information such as 

age, name, and nationality that can be used by the network to derive the user-specific QoS parameters. To 

be more specific, when a bearer is to be established or modified, the PCRF inquires of the SPR database 

about the relevant information of this user. If the relevant information shows that this user is older than a 

given age (e.g., 55) that can be configurable, this user will be considered as a user with a lower sensitivity 

factor, otherwise, it is regarded as a normal user. 

5.5 System Architecture 

The system architecture and interfaces based on the LTE system are illustrated in Figure 5.5, 

where only relevant modules are shown [94], [95]. In order to implement the user-specific QoS aware 

schedulers described in this dissertation, the AMR mode adaptation and video data rate adaptation 
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algorithms would be implemented in the Rate Adaptation module, whereas the user-specific MAC 

scheduling algorithm would be implemented in the eNodeB MAC layer. These are software only changes 

and can be readily accommodated in future versions of LTE [or in future 5G systems]. 

 

Figure 5.5 System architecture 

5.6 Optimization Process 

As an example of the optimization process, when a voice or video session is to be initialized 

through the SIP protocol [44], [96], the sender and receiver UE applications will negotiate with each other 

the application level QoS parameters such as supported AMR codec modes through the IMS (IP 

Multimedia Subsystem) [76]. User-specific QoS parameters could also be sent to the IMS by UE.  

Next, user-specific QoS requirements will be mapped from the subscription database in the 

network (e.g., SPR [Subscriber Profile Repository]) [13], [39], [43] or user-specific QoS parameters 

obtained from UE during session initiation, as described in section 5.2. The user-specific QoS parameters 

shall be delivered to the MAC/PHY Layer in the eNodeB by the EPC/IMS and used to perform the user-

specific QoS aware scheduling. Channel state information derived from physical layer measurements, 
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available spectral resources and buffer status should also be provided to the MAC scheduler to perform 

channel-dependent scheduling.  

Finally, after the process of rate adaptation, the receiver UE will send the rate control command 

(e.g., CMR [Codec Mode Request] for VoIP) to the sender UE through the RTP or RTCP protocol [76], 

[79], [97] if the data rate is to be changed. Meanwhile the MAC layer in the eNodeB will perform the 

user-specific QoS aware scheduling.  

It should be noted that, due to the changing channel environment for each user and varying 

network condition, the optimization process should be dynamic and periodic to achieve the maximum 

system performance gain. 

5.7 Protocol Adaptation 

Based upon the analysis in sections 5.3 and 5.4, the following protocols adaptation is proposed to 

support the user-specific QoS aware scheduling. As described in sections 5.2 - 5.4, the Gx interface, 

S5/S11 interface, and S1-MME interface protocols need to be adapted for the second user-specific QoS 

parameters derivation method. For the first acquisition method in addition, SIP and Rx interface protocol 

adaptation is needed [98]. Moreover, the RTCP protocol that is used to convey the control command is 

also analyzed to support the user-specific QoS aware scheduling. 

5.7.1 SIP Protocol 

When dynamic user-specific QoS information needs to be conveyed from the UE to the IMS, the 

SIP protocol [44], [96] needs to be adapted accordingly. 

Both the SIP Request and Response messages use the basic format of RFC 2822 [99]. Both types 

of messages consist of a start-line, one or more header fields, an empty line indicating the end of the 

header fields, and an optional message-body, as shown in Figure 5.6. 

One of the message-header (i.e., Content-Type) indicate the content-type of the message-body, 

One of the example is Content-Type: application/sdp, which means the message body is described by a 

SDF language [47].  
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The SDP protocol is intended for describing multimedia communication sessions for the purposes 

of session initiation, session termination, and parameter negotiation. When a session is initiated, the type 

of media, codec, and bandwidth are described using the SDP protocol.  

 

Figure 5.6 SIP message format 

An SDP session description consists of a number of lines of text of the form as in Figure 5.7: 

 

Figure 5.7 SDP format 

An SDP session description consists of a session-level section followed by zero or more media-

level sections. The session-level part starts with a "v=" line and continues to the first media-level section. 

Each media-level section starts with an "m=" line and continues to the next media-level section or end of 

the whole session description. The "v=" field gives the version of the Session Description Protocol. The 

"m=" line is defined as follows in Figure 5.8: 

 

Figure 5.8 SDP media format 

<media> is the media type. Currently defined media are "audio", "video", "text", "application", 

and "message". 

<fmt> is a media format description. The fourth and any subsequent sub-fields describe the 

format of the media, e.g., codec modes. 

The "b=" field denotes the proposed bandwidth to be used by the session or media as in Figure 

5.9: 

 

Figure 5.9 SDP bandwidth format 
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So if user-specific QoS requirements need to be conveyed from the UE to the IMS, one method is 

to implicitly convey the user-specific QoS requirement through the media type field. Figure 5.10 shows 

the current defined media types for the media type field. A user-specific Audio or Video type can be 

added and defined, e.g., 100 indicates the user-specific Audio media type with a lower sensitivity factor, 

200 indicates the user-specific Audio media type with a higher sensitivity factor, and 101 indicates the 

user-specific video media type with a lower sensitivity factor, as defined in Table 5-1. If new media types 

are defined this way, correspondingly, in the network and the peer UE, the media type field needs to be 

parsed differently. 

 

Figure 5.10 SDP media type defintion 

5.7.2 RTCP Protocol 

When an adapted data rate mode needs to be signaled, it uses the RTCP protocol. The current 

RTCP protocol supports the rate adaptation signaling. So it can be reused without any modifications on 

the RTCP protocol. 

Specifically, for voice, the receiver UE can send RTP CMR message or RTCP-APP CMR 

message  [76], [79], [97], to request the data rate adaptation from the sender UE through the RTP or 

RTCP protocol respectively. 

For video, the Temporary Maximum Media Bit-rate Request (TMMBR) and Temporary 

Maximum Media Bit-rate Notification (TMMBN) messages of Codec-Control Messages (CCM) [76], 
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[100] are used in the session to indicate a desired video data rate to the sender UE and enable a dynamic 

video rate adaptation. 

Table 5-1 User-specific SDP media type definition 

User-specific QoS  Media type 

Audio (low sensitivity factor) 0 + 100 

Audio (normal sensitivity factor) 0 

Audio (high sensitivity factor) 0 + 200 

Video (low sensitivity factor) 1 + 100 

Video (normal sensitivity factor) 1 

 

5.7.3 Rx Interface 

The Media-Component-Description AVP (Attribute Value Pair) is conveyed in the Diameter 

AAR message, and it contains Service Information for a single media component within an AF session 

[41]. The AAR message and Media-Component-Description AVP format are shown in Figures 5.11 and 

5.12 respectively. 

If the user-specific QoS parameters need to be conveyed from the UE, the Media-Component-

Description AVP needs to be modified. The media-type field in the Media-Component-Description AVP 

can be used to convey the user-specific QoS requirements as section 5.7.1 describes. Similarly the PCRF 

needs to parse the media-type field differently as section 5.7.1 denotes. 

5.7.4 Gx Interface 

The PCRF may provide authorized QoS information to the PCEF after using the mapping rules to 

map from the Service Information to the authorized QoS information. The authorized QoS information 

shall be provisioned within a CCA or RAR Diameter message as QoS-Information AVP. The 

provisioning of the authorized QoS (which is composed of QCI, ARP and bitrates) is performed from the 

PCRF to the PCEF [40]. 
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The RAR message and Media-Component-Description AVP format are shown in Figures 5.13 

and 5.14 respectively. 

 

Figure 5.11 Diameter AAR message format 

 

Figure 5.12 Media-Component-Description AVP format 
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Figure 5.13 Diameter RAR message format 

 

Figure 5.14 QoS information AVP format 

In the PCRF, the QCI field needs to be derived based upon the SPR database or the Service 

Information obtained from the IMS through Rx interface as shown in section 5.7.3. If the user-specific 

QoS information is conveyed from the Rx interface, the PCRF can derive the QCI value according to the 

media type field in the Service Information. If the user-specific QoS information is not conveyed from the 

Rx interface, the PCRF can use the data from the SPR database to derive the user-specific QoS 
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parameters as shown in section 5.4. Specifically, since the QCI values 0, 10 – 64, 67-68, and 71 – 255 are 

reserved for future use as seen in Table 2-1, the basic QCI value (i.e., the QCI value derived when no user 

specific QoS requirements are considered) plus 100 can be used to denote the user-specific QoS with a 

lower sensitivity factor, while the basic QCI value plus 200 can be used to denote the user-specific QoS 

with a higher sensitivity factor. The mapping from the user-specific QoS information to the QCI value for 

conversational voice and video is shown in Table 5-2. 

Table 5-2 Mapping from user-specific QoS to QCI 

User-specific QoS  QCI 

Voice (low sensitivity factor) 1+100 

Voice (normal sensitivity factor) 1 

Voice (high sensitivity factor) 1+200 

Video (low sensitivity factor) 2+100 

Video (normal sensitivity factor) 2 

 

5.7.5 S5/S11 Interface 

The Create Bearer Request message shall be sent on the S5 interface by the PDN-GW to the S-

GW and on the S11 interface by the S-GW to the MME as part of the Dedicated Bearer Establishment 

procedure  as seen in section 5.2.3 [93].  The Bearer Quality of Service (Bearer QoS) is transferred via 

GTP tunnels through the Create Bearer Request message. The Bearer QoS IE (Information Element) is 

shown in Figure 5.15. Because the QCI field has been redefined and added additional user-specific QoS 

values as described section 5.7.4, the IE doesn’t need any further modification except different parsing in 

the respective protocols. The PDN-GW and S-GW only needs to forward the Bearer QoS information to 

the subsequent nodes of S-GW and MME respectively. 

5.7.6 S1-MME Interface  

The E-RAB Setup Request Message is sent by the MME to request the eNodeB to assign 

resources on Uu and S1 interfaces for one or several E-RABs [92]. The E-RAB Level QoS Parameters 
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are conveyed in the E-RAB Setup Request Message. Figures 5.16 and 5.17 show the E-RAB Setup 

Request Message and the E-RAB Level QoS Parameters. 

 

Figure 5.15 Bearer Quality of Service (Bearer QoS) 

 

Figure 5.16 E-RAB Setup Request  

Because the QCI has been redefined and added additional user-specific QoS information as 

described in section 5.7.4. The IE of this message doesn’t need any further modification except different 

parsing in the respective protocols. But the MAC layer can make user of this user-specific QoS 

information to perform a more advanced resource scheduling, i.e., user-specific QoS aware scheduling. 
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Figure 5.17 E-RAB level QoS parameters 

5.8 Other Scheduling Details 

5.8.1 Rate Adaptation Triggering 

The UE can trigger the rate adaptation based upon the ECN indication sent by the eNodeB when 

the network is congested as described in section 4.4, or the UE can perform the rate adaptation anyway 

regardless of the ECN indication from the network. 

5.8.2 Scheduling Period 

We assume the scheduling period of the rate adaptation algorithms is the frame rate of 

applications, that is, 20 ms for VoIP AMR applications and video frame rate for Video applications. It is 

necessary to explore what the system capacity gain will be if the scheduling period is increased to acquire 

the tradeoff for the reduced complexity. In section 5.9, the simulation results are shown when the 

scheduling period is increased from 20 to 2000 ms for VoIP users. 

5.8.3 Integration with Existing Rate Adaptation Algorithms 

The rate adaptation in the user-specific QoS aware scheduling can be easily integrated with 

existing rate adaptation algorithms. Figure 5.18 below illustrates the work flow of such an example for 

VoIP applications. In this figure, we assume AMR codec modes of M1, M2, M3,… in the decreasing 

order of AMR codec rates. The work flow starts from the initial AMR codec mode, e.g., M2, performs the 

USQA rate adaptation, and outputs the degraded AMR codec mode (e.g., M3) for VoIP users. During the 

VoIP session, if the transport conditions change and trigger the existing rate adaptation algorithm to 
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degrade or upgrade the AMR codec mode, the work flow will perform the USQA rate adaptation again, 

starting from the M3 or M1 AMR codec mode depending on whether the existing rate adaptation 

algorithm wants to degrade or upgrade the AMR codec mode. After that, this loop was completed and 

next loop will start from the next rate adaptation of existing rate adaptation algorithms. 

 

Figure 5.18 Integration with existing rate adaptation algorithms work flow 

5.9 Simulation Results 

The system simulation configuration is partly based upon LTE macrocell system simulation 

baseline parameters [87] and Table 5-3. 

Fifty four VoIP users with a sensitivity factor of 0.8 are simulated for cases of vehicle speeds of 

30 km/h and 60 km/h respectively. 

Figure 5.19 shows the VoIP capacity as a function of scheduling period from 20 ms to 2000 ms. 

From Figure 5.19, we find that as the scheduling period increases, the performance gain will decrease 

correspondingly. As the scheduling period increases to 1000 ms, the capacity improvement will fall below 

10% for the case of 60 km/h, whereas the capacity improvement is still good for the case of 30 km/h. 
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Table 5-3 System simulation configuration for scheduling period 

Parameter Assumption 

Cellular layout 1 macrocell 

Cell radius 1kilometer 

Path loss model 3GPP suburban macrocell 

Mobility model Random Way Point  

(30/60 km/h)  

Carrier frequency 
Uplink:1920MHz 

Downlink:2110MHz 

System bandwidth 10MHz 

Channel model ITU Vehicle A 

Total BS TX power 40dBm 

UE power 23dBm 

VoIP codec modes 
AMR12.2K, AMR10.2K, 

AMR7.95K 

Number of users 54 VoIP users 

Scheduler 
USQA-C scheduler and 

Baseline scheduler 

Other assumptions 
Ideal uplink receiver(no block 

error and packet loss) 

 

 

Figure 5.19 VoIP capacity improvement as a function of scheduling period 

5.10 Concluding Remarks 

In this chapter, we proposed and presented the user-specific QoS aware scheduler implementation 

details based upon current LTE systems. From the system’s perspective, LTE QoS end-to-end signaling 
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procedures are addressed, and corresponding protocol adaptations are analyzed. It is found that very 

modest modification of the protocols is needed. To be more specific, when user-specific QoS information 

does not need to be conveyed from the UE to the network, user-specific QoS parameters can be obtained 

and derived from the SPR database in the PCRF, and a set of protocols (i.e., the Gx interface, S5/S11 

interfaces, and S1-MME interface protocols) needs to be modified, where the QCI field needs to be 

redefined, added some more user-specific QoS values, and parsed differently in the corresponding 

protocols (i.e., the Gx interface, S5/S11 interfaces, and S1-MME interface protocols). However, when 

user-specific QoS information needs to be conveyed from the UE to the network, a set of additional 

protocols (i.e., the SIP and Rx interface protocols) need to be modified with new user-specific media 

types added. 

Furthermore, the rate adaptation algorithms of the user-specific QoS aware schedulers can be 

triggered by the ECN indication or triggered regardless of the ECN indication, and they are able to be 

integrated very easily into currently existing rate adaptation algorithms. Also, it is shown that the 

scheduling period of rate adaptation algorithms of up to 1000 ms doesn’t significantly impact the system 

performance. 
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CHAPTER 6. MIMO IN VIVO WBAN SYSTEMS 

6.1 Introduction 

In this chapter5, we present the performance of MIMO wireless communications for in vivo 

environments by using the ANSYS HFSS human body model to determine the maximum data rates that 

can be achieved and the optimal placement of antennas using an OFDM-based IEEE 802.11n system 

architecture. In our performance optimization we consider various factors such as antenna separation 

distances, angular positions, human body size, and system bandwidth. We analyzed the performance of 

MIMO in vivo in terms of FER and system capacity statistically with one pair of antennas placed in vivo 

and the second pair placed inside and outside the body at various distances from the in vivo antennas and 

at various angular positions around the human body. The results were compared with a SISO in vivo 

system and we demonstrated that by using MIMO in vivo, significant performance gains may be achieved, 

with maximum SAR levels met, making it possible to achieve target data rates of 100 Mbps with a system 

bandwidth of 40 MHz when receiver antennas are located at the front or back surface of the body. 

Simulating the effect of different human body size by scaling the HFSS human body model, it was shown 

that varying human body size has a great impact on MIMO in vivo performance.  

The rest of the chapter is organized as follows. We describe MIMO in vivo communications in 

section 6.2. In section 6.3, we present the MIMO in vivo capacity formulas based upon the IEEE 802.11n 

system. In sections 6.4 and 6.5 we present the simulation setup and results of the performance of MIMO 

in vivo, respectively. Finally, in section 6.6, we present our conclusions. 

6.2 MIMO In Vivo Approach 

Some in vivo sensor nodes may require high communication bandwidths such as the MARVEL 

platform that, with its camera module (CM), wirelessly transmits high definition (HD) video during 

                                                      
5 Portions of this chapter were previously published in [101], [107]. Permission is included in Appendix A. 
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surgery [101], [102]. A MIMO in vivo system may be required to achieve high data rates using low 

transmission power to comply with the SAR requirements. SAR is the specific absorption rate of power 

absorption by human organs and is limited by the FCC (Federal Communications Commission), which in 

turn limits the transmission power [103]. 

The wireless in vivo channel is an exciting and challenging new environment that has not been 

well documented in the literature beyond limited analyses of signal attenuation and shadowing of human 

tissues limited to the Medical Implant Communication Service (MICS) frequency band (from 402 to 405 

MHz) [54]. Moreover, the current studies use the Friis formula to calculate the path loss [104]. Note that 

the Friis formula is only valid for the far field and free space. The IEEE P802.15 TG6 WBANs channel 

model [54]  provides guidance as to how the channel model should be developed for body area networks. 

For in vivo communications, however this document is limited and only provides the path loss exponent. In 

addition, three types of nodes and several communications links (scenarios) are defined as shown in Figure 

6.1. 

 

Figure 6.1 Communication links for a Wireless Body Area Network 

In the far-field electromagnetic waves behave as plane waves and the total radiated power does not 

change with changing radial distance from the antenna since the distance between transmitter and receiver 

is large and free space is considered (relatively) lossless, as in cellular networks. However, since the in vivo 
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antennas are radiating into a complex lossy medium, the radiating near field will strongly couple to the 

lossy environment [105]. This means the radiated power is strongly dependent on the radial and angular 

position and the near field effects may have to be taken into account when operating in the in vivo 

environment. In the radiating near field, the electric and magnetic fields behave differently compared to the 

far field. Hence, the wireless channel inside the body requires different link equations [106]. Additionally, 

since the wavelength of the signal is much longer than the propagation environment in the near field, the 

delay spread concept and multi-path scattering of cellular network is not directly applicable to (near-field) 

channels inside the body. This will directly affect the correlation between the signals at the antennas, which 

is critically important for MIMO performance. Considering the near-field effect, the impact of various 

factors needs to be explored including antenna position and correlation, human body size, etc. 

The achievable transmission rates in the in vivo environment are simulated using a model based on 

the IEEE 802.11n standard because this OFDM-based standard supports up to 4 spatial streams (4x4 

MIMO). Because of the form factor constraint inside the human body, our current study is restricted to 2x2 

MIMO. Moreover, the standard allows different Modulation and Coding Schemes (MCS) that are 

represented by a MCS index value and uses either a 20 MHz or 40 MHz bandwidth. Due to the target data 

rates for the MARVEL CM (~80–100 Mbps), the MCS index values of interest for MIS HD video 

applications are 13 and up for 20 MHz channels and 10 and up for 40 MHz channels.  

The MIMO in vivo system capacity is the upper theoretical performance limit that can be 

achieved in practical systems, and can provide insight into how well the system can perform theoretically 

and give guidance on how to optimize the MIMO in vivo system. The system capacity for both MIMO 

and SISO in vivo can be calculated theoretically based upon the MIMO and SISO in vivo channels, as 

described in the next section. 

6.3 MIMO In Vivo Capacity 

6.3.1 MIMO In Vivo Capacity 

Assuming two transmitter and receiver antennas are used in the MIMO in vivo system. The 

OFDM system can be modeled as [107]–[109]: 
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 �{ =	�{�{ + |{ ,			� = 	1,2,… ,H���� (6-1) 

where �{ , �{ ,|{ ∈ �O  denote the received signal, transmitted signal, and white Gaussian noise with 

power density of H respectively at subcarrier �. The symbol H���� is the total number of subcarriers 

configured in the system to carry data. The complex frequency channel response matrix at subcarrier � is 

denoted by �{ ∈ �O∗O. 

The SVD (Singular Value Decomposition) of �{ is given as: 

 �{ =	�{�{�{ (6-2) 

where �{ , �{ ∈ �O∗O  are unitary matrices, and �{  is the nonnegative diagonal matrix whose diagonal 

elements are singular values of ��{N, ��{O respectively. 

The system capacity for subcarrier � is:  

 �{ = 	@  ∑ (STO�1 +O~¢N £¤¥¦O§¨∙©ª�«				bits/OFDM	symbol (6-3) 

where � is the total transmit signal power of the two transmitter antennas, !| is the configured system 

bandwidth in Hz, and @  denotes expectation. In this dissertation, we consider only time invariant 

Gaussian channels, so we will ignore the expectation in the capacity calculation. The total system 

capacity is calculated as: 

 � = 1�®¯° ± �{
§²³´³
{¢N 			bits/s (6-4) 

where �®¯° is the duration of each OFDM symbol. 

6.3.2 SISO In Vivo Capacity 

For a performance comparison with MIMO in vivo, the SISO in vivo capacity is also calculated. 

The SISO system model is the same as defined in (6-1) except for the terms �{ , �{ ,|{ ∈ �N. 

The system capacity for SISO in vivo is: 

 � = 1�®¯° @ µ ± (STO ¶1 + �{�H ∙ !|·§²³´³
{¢N ¸ 					bits/s (6-5) 

where �{ ∈ �N, �, H���� and @ mean the same as those for MIMO in vivo. 
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6.3.3 SNR and Bandwidth 

For a 40 MHz system bandwidth, to maintain the similar SAR level, the power for each 20 MHz 

carrier should be half of that for a 20 MHz system bandwidth. The white noise power will also double due 

to the larger system bandwidth of 40 MHz. Hence the SNR (Signal to Noise Ratio) for a 20 MHz system 

bandwidth will be four times as high as that for a 40 MHz system bandwidth. 

As indicated in (6-3) and (6-4), system capacity is basically a logarithm function, and depends 

upon the factors of both SNR (i.e., 
£¤¥¦O§¨∙©ª) and system bandwidth (i.e., !|). Since the logarithm function 

is a concave functions, it has the following two particular properties [108]: 

 (STO�1 + .H�� ≈ .H�(STO¹		when		SNR	≈ 0 (6-6) 

 (STO�1 + .H�� ≈ (STO.H�		when		SNR	≫ 1 (6-7) 

Based upon the properties in (6-6) and (6-7), from (6-3) and (6-4), when the SNR is low, the 

system capacity is proportional with SNR, so that the SNR is the dominant factor in determining the 

system capacity and the system capacity for a 20 MHz system bandwidth may be higher than that for a 40 

MHz system bandwidth. When the SNR is high, the capacity is logarithmically proportional to the SNR, 

so that the system bandwidth is the dominant factor in determining the system capacity, and the system 

capacity for a 40 MHz system bandwidth will generally be higher, but not always, than that for a 20 MHz 

system bandwidth.  

Therefore, as the system bandwidth doubles from 20 MHz to 40 MHz, depending upon different 

application scenarios, the resulting system capacity will not necessarily increase, as verified by the 

simulation result in section 6.5.  

6.4 MIMO In Vivo Simulation Setup 

6.4.1 Human Body Model 

The simulations for the electromagnetic wave propagation were performed in ANSYS HFSS 

15.0.3 using the ANSYS Human Body Model [110]. The model consists of a detailed adult male with over 

300 muscles, organs, and bones with a geometrical accuracy of 1 mm and realistic frequency dependent 
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material parameters (conductivity and permittivity) from 20 Hz to 20 GHz. The antennas used in the 

simulations were monopoles designed to operate at the 2.4 GHz ISM band in their respective medium; free 

space for the ex vivo antennas and inside the body for in vivo antennas. We choose monopoles due to their 

smaller size, simplicity in design and omni-directionality [111]. For the in vivo case, the monopole’s 

performance and radiation pattern will vary with position and orientation inside the body [30], [105], 

making the performance of MIMO in vivo strongly dependent on the antenna placement.  

6.4.2 Simulation Cases 

As shown in Figure 6.2, two in vivo antennas are placed inside the abdomen to simulate placement 

of transceivers in laparoscopic and intestinal medical applications. The two ex vivo antennas are placed at 

varying locations around the body at the same planar height as the in vivo antennas. The Transmitter (Tx) 

antennas are in vivo antennas, whereas the receiver (Rx) antennas can be either in vivo antennas or ex vivo 

antennas depending upon their positions and distances from the in vivo Tx antennas. The locations with 

respect to the in vivo antennas are given in Table 6-1 and Table 6-2. For the performance comparison with 

SISO in vivo systems, the locations of the Rx antennas for SISO cases are also listed in Table 6-1, whereas 

for Table 6-2, no SISO cases are listed for comparison because in these cases only MIMO performance are 

of concern.  

 

Figure 6.2 Antenna simulation setup showing locations of the MIMO antennas 
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It should be noted, since the permittivity of the body is much higher than that of free space, the 

wavelength is smaller inside the body and varies as it passes through various tissues and organs. On 

average, the wavelength is reduced by the square root of the dielectric constant and is approximately six 

times smaller in vivo than in free space. To guarantee the greatest MIMO spatial multiplexing and diversity 

gain, the ex vivo and in vivo antennas are separated by at least half of their respective in vivo and ex vivo 

wavelengths. The two Tx antennas are located 1.4 cm from either side of the origin along the X-axis or Y-

axis, whereas in the SISO cases, the single Tx in vivo antenna is located at the origin. The two Rx antennas 

are located 5 cm from either side of the origin along the X-axis or Y-axis. 

Simulation cases in Table 6-1 are used to evaluate the system performance for MIMO in vivo vs 

SISO in vivo in terms of both FER and system capacity under different Tx and Rx distances and angular 

positions. Cases 1-7 in Table 6-1 are cases with the Rx antennas placed in front of the body with the same 

angular positions, but with varying distances between Tx and Rx antennas. See section 6.5.1 for the 

simulation results for cases 1-7. Cases 7-10 in Table 6-1 are cases with the same distance between Tx and 

Rx antennas, but with different angular positions, which correspond to the front, right side, left side, and 

back of body, respectively. See section 6.5.2 for the simulation results for cases 7-10. 

Table 6-1 Simulation cases for MIMO in vivo vs SISO in vivo with locations of antennas with respect to 

the origin (X=0, Y=0) shown in Figure 6.2 

Cases 

MIMO SISO 

Notes 
Receiver 
antennas 

Transmitter 
antennas 

Receiver 
antenna 

Transmitter 
antenna 

X 
(cm) 

Y 
(cm) 

X 
(cm) 

Y 
(cm) 

X 
(cm) 

Y 
(cm) 

X 
(cm) 

Y 
(cm) 

1 7 ±5 0 ±1.4 7 0 0 0 Front of body 
2 8.5 ±5 0 ±1.4 8.5 0 0 0 Front of body 
3 10 ±5 0 ±1.4 10 0 0 0 Front of body 
4 11 ±5 0 ±1.4 11 0 0 0 Front of body 
5 13 ±5 0 ±1.4 13 0 0 0 Front of body 

6 20 ±5 0 ±1.4 20 0 0 0 Front of body 
7 30 ±5 0 ±1.4 30 0 0 0 Front of body 
8 ±5 30 ±1.4 0 0 30 0 0 Right side of body 
9 ±5 -30 ±1.4 0 0 -30 0 0 Left side of body 

10 -30 ±5 0 ±1.4 -30 0 0 0 Back of body 
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Simulation cases in Table 6-2 are used to evaluate the system performance in terms of system 

capacity for on body MIMO in vivo performance and effect of body size on MIMO in vivo performances. 

To simulate the effect of different body size on MIMO in vivo performance, the HFSS human body model 

is uniformly scaled by a scaling size of 1.1 and 0.9 respectively. Cases 1-4 in Table 6-2 are cases where the 

Rx antennas are located on the surface of the body at four angular positions (i.e., front, right, left, and 

back). For a typical human body, the distance from the Tx antennas to the Rx antennas on the surface of 

front body is 11 cm, 9.6 cm to the surface of back body, and 15 cm to the surface of right and left body. 

See section 6.5.4 for the simulation results for cases 1-4. Cases 1, 5-6 in Table 6-2 are cases where the Rx 

antennas are located on the surface of the front body, but the distances of Tx and Rx antennas differ due to 

the different scaling factors of human body size. Cases 5-6 in Table 6-2 are cases where the scaling factor 

of human body size is 1.1 and 0.9 respectively so that the distance from the Tx antennas to the surface of 

front body is 1.1 x 11 cm and 0.9 x 11 cm respectively. See section 6.5.5 for the simulation results for 

cases 1, 5-6. 

Table 6-2 Simulation cases for on body MIMO in vivo and effect of body size on MIMO in vivo with 

locations of antennas with respect to the origin (X=0, Y=0) shown in Figure 6.2 

Cases 
MIMO 

Notes Receiver antennas Transmitter antennas 
X (cm) Y (cm) X (cm) Y (cm) 

1 11 ±5 0 ±1.4 Front on body 
2 ±5 15 0 ±1.4 Right side on body 
3 ±5 -15 0 ±1.4 Left side on body 

4 -9.6 ±5 0 ±1.4 Back on body 

5 1.1x11 ±5 0 
±1.4 Front on body with a human 

body scaling factor of 1.1 

6 0.9x11 ±5 0 
±1.4 Front on body with a human 

body scaling factor of 0.9 

 

6.4.3 System Level Setup 

 The system capacity analysis and FER performance in the in vivo environment have been 

performed based on the IEEE 802.11n standard [112] transceiver. Agilent SystemVue [113] is used to 

simulate the FER performance and the system block diagram is shown in Figure 6.3. Because of the form 

factor constraint inside the human body, our initial study is restricted to 2x2 MIMO. System bandwidths 
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of 20 MHz and 40 MHz are used in the evaluation. The 802.11n standard supports different MCS 

represented by a MCS index. The transmission power is set to be 0.412 mW [11] for a 20 MHz system 

bandwidth, which gives the maximum local SAR level of 1.48 W/kg that will not exceed the maximum 

allowable SAR level of 1.6 W/kg [103]. The thermal noise power is set to -101 dBm for a 20 MHz system 

bandwidth and -98 dBm for a 40 MHz system bandwidth. Hence, in the system capacity analysis, the 

parameters in (6-3)-(6-5) are determined for a 20 MHz bandwidth as follows: 

� = 0.412	½|, H = −174	�!½, !| = 20	,�¾, H���� = 52, �®¯° = 4	"$. 

For a 40 MHz bandwidth, to maintain the similar SAR level to meet the maximum local SAR 

level of 1.6 W/kg, the power for each 20MHz carrier is one half of that for 20MHz bandwidth, that is, 

0.206 mW. Correspondingly, the parameters in (6-3)-(6-5) are determined for a 40 MHz bandwidth as 

follows: 

� = 0.206	½|, H = −174	�!½, !| = 40	,�¾, H���� = 104, �®¯° = 4	"$. 

 

Figure 6.3 Block diagram of system level simulation with HFSS in vivo channel model 

6.5 MIMO In Vivo Simulation Results 

Simulations results have been obtained for a 2x2 MIMO and SISO setup with antennas operating 

at 2.4 GHz. From HFSS and the Human Body Model, the S-parameters between Tx and Rx antennas were 

extracted between 1 and 3 GHz [110]. Then, the FER for the IEEE 802.11n system was obtained by 

running 100 000 frames for each simulation for different MCS index values, for 20 MHz and 40 MHz, for 
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a 800 ns guard interval, and different frame lengths. The system capacity for both MIMO and SISO in vivo 

can be calculated based upon (6-2)-(6-5). 

6.5.1 MIMO vs SISO In Vivo 

Figure 6.4 shows the FER as a function of the MCS index value for both MIMO and SISO in vivo 

cases where Tx and Rx antennas are separated by 7 cm, 10 cm, and 13 cm respectively. Taking the case 

where the Rx antennas are located at 10 cm from the Tx antennas as the example, as observed in Figure 

6.4, the data rate of 78 Mbps at MCS index 12 can be supported by MIMO in vivo for the target FER 

below 10-3, while a data rate of only 19.5 Mbps at MCS index 2 can be supported by SISO in vivo with the 

same distance between antennas as MIMO in vivo case. We also observed that as the Tx and Rx antennas 

distance becomes smaller, the performance gain becomes even bigger.  

 

Figure 6.4 MIMO (2x2) and SISO in vivo FER performance comparison as a function of the MCS index 

value (20MHz channel) 

Figure 6.5 shows the FER as a function of distance between the Tx and Rx antennas at different 

MCS index values equal to 12 and 13 corresponding to 78 and 104 Mbps respectively, which also 

correspond to our MIS data rate requirements of ~80-100 Mbps. When transmitting data at MCS equal to 

13 (i.e., 104 Mbps), the Rx antennas need to be placed within a distance of less than 10 cm from the Tx 

antennas to achieve a minimum FER of 10-3 and to meet the data rate requirement of at least 100 Mbps. 
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Therefore, for our MIS application, it is possible to transmit high definition video with low latency only 

from deep inside the human body during MIS if MIMO in vivo is used. 

 

Figure 6.5 MIMO (2x2) in vivo FER performance comparison as a function of the distance for different 

MCS indexes (20MHz channel) 

Figure 6.6 shows the system capacity for the cases of Rx antennas placed in front of the body 

with varying distances between Tx and Rx antennas. It can be seen that much less capacity will be 

achieved with increased distances. To support the required data rate of 100 Mbps, the distance cannot be 

greater than ~11cm. The system capacity decreases rapidly when the distance becomes greater, making 

necessary a larger system bandwidth or relay (or other forms of cooperative networked communications) 

and placing the receiver antennas as close to, or on, the surface of the body, in the WBAN network.  

6.5.2 MIMO In Vivo Performance under Different Angular Positions 

Figure 6.7 shows the system capacity for different angular positions around the human body with 

the same distance between Tx and Rx antennas of 30 cm. From Figure 6.7, we can observe the significant 

capacity gain compared with corresponding SISO cases, where the greatest capacity gain can be seen in 

the case of both MIMO antennas at the back of the body. We can also see from Figure 6.7 that the system 

capacity of MIMO in vivo for the cases of front and back body is much better than that of the other two 

cases of the side of the body. This is because much higher attenuation exists inside the body due to the 
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greater in vivo distance for the two cases of the side of the body. Furthermore, compared with the other 

three cases, MIMO in vivo for the back of the body case performs the best. From Figure 6.7, we see that 

with the greater distance of 30 cm between Tx and Rx antennas, the system capacity will fall below 25 

Mbps for whatever angular positions the receiver antennas are located. Hence, for a 20 MHz system 

bandwidth, only a maximum data rate of less than 25 Mbps can be supported, which is a motivation to use 

a relay or other forms of cooperative networked communications and place the receiver antennas as close 

to, or on, the front or back of the body to support a data rate as high as 100 Mbps. 

 

Figure 6.6 MIMO (2x2) and SISO in vivo capacity comparison as a function of the distance of the Tx and 

Rx antennas in front of the body (20MHz channel) 

6.5.3 MIMO In Vivo Performance with a Larger Bandwidth 

To support the required data rate as high as 100 Mbps, the Tx and Rx needs to be as low as 10-11 

cm when Rx antennas are located at the front of the body. Since for a human body of average size, the 

distance from the Tx antennas to the front on body is at least 11 cm, even when relay of other forms of 

cooperative networked communications is used to improve the required minimum communication 

distance, the communication from in vivo to the surface of the body needs to be more reliable. In this 

section, we explore the possibility of improving MIMO in vivo capacity by considering a larger system 

bandwidth of 40 MHz [115]. 
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Corresponding to Figures 6.4, 6.5, 6.6, and 6.7 for a 20 MHz bandwidth, Figures 6.8, 6.9, 6.10, 

and 6.11 show the simulation results respectively for a 40 MHz bandwidth. As discussed in section 6.3.3, 

the system capacity depends upon both SNR [which is influenced by the SAR limit] and bandwidth, and 

the system capacity for a 40 MHz system bandwidth will not necessarily be higher than that for a 20 MHz 

system bandwidth. 

 

Figure 6.7 MIMO (2x2) and SISO in vivo system capacity comparison for front, right side, left side, and 

back of the body (20MHz channel) 

 

Figure 6.8 MIMO (2x2) and SISO in vivo FER performance comparison as a function of the MCS index 

value (40MHz channel) 
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Figure 6.8 shows the FER as a function of the MCS index value for both MIMO and SISO in vivo 

cases. To take the case where the Rx antennas are located at 10 cm from the Tx antennas as the example, 

as observed in Figure 6.8, the data rate of 108 Mbps at MCS index 11 can be supported by MIMO in vivo 

for the target FER below 10-3, while only a data rate of 27 Mbps at MCS index 1 can be supported by 

SISO in vivo with the same distance between antennas as MIMO in vivo case. We also discovered that as 

the Tx and Rx antennas distance becomes smaller, the performance gain becomes even bigger.  

Figure 6.9 shows the FER as a function of distance between the Tx and Rx antennas at different 

MCS index values equal to 10 and 11 corresponding to 82 and 108 Mbps respectively, which also 

correspond to our application data rate requirements of  ~80-100 Mbps. In the case when transmitting data 

at MCS 11 (108 Mbps), the Rx antennas can be placed within a distance of 10 cm from the Tx antennas to 

achieve a minimum FER of 10-3 and meet the requirement of at least 100 Mbps, which is an improvement 

from the 20 MHz case. 

Figure 6.10 shows the system capacity for the cases of Rx antennas placed in front of the body 

with varying distances between Tx and Rx antennas. To support the required data rate of 100 Mbps, the 

distance cannot be greater than ~13 cm, which is an improvement from ~11 cm for the 20 MHz case. 

 

Figure 6.9 MIMO (2x2) in vivo FER performance comparison as a function of the distance for different 

MCS indexes (40MHz channel) 
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Figure 6.10 MIMO (2x2) and SISO in vivo capacity comparison as a function of the distance of the Tx 

and Rx antennas in front of the body (40MHz channel) 

 

Figure 6.11 MIMO (2x2) and SISO in vivo system capacity comparison for front, right side, left side, and 

back of the body (40MHz channel). 

Figure 6.11 shows the system capacity for different angular positions around the human body 

with the same distance of 30 cm. Compared with that of the 20 MHz case, contrarily the system capacity 

deceases, that is because transmitting power is reduced by half for each 20 MHz carrier and noise power 

doubles for a 40 MHz bandwidth, the SNR is very small (i.e., due to larger distance) and dominates the 
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system capacity more than the system bandwidth. For the cases of the front and the back of body the 

system performs much better due to the same reason as that of the 20 MHz case. 

6.5.4 On Body MIMO In Vivo Performance 

Compared with the MIMO performance in free space, the in vivo system performance constitutes 

more of a challenge to the system performance, which limits the maximum communication distance as 

described in sections 6.5.1-6.5.3. Therefore, it is necessary that the receiver antennas are placed as close 

as possible to the surface of the body or on the surface of the body, where we can use relay to 

communication from the surface of body to external nodes. 

 

Figure 6.12 MIMO (2x2) in vivo system capacity comparison for front, right, left, and back on body 

This section compares on body MIMO in vivo performance for different angular positions. Figure 

6.12 shows the simulation result for on body MIMO in vivo performance for the corresponding cases 1-4 

in Table 6-2 (i.e., front on body, right on body, left on body, and back on body) for both the 20 MHz and 

40 MHz bandwidths. From Figure 6.12 we find the front and back body cases perform best for both the 

20 MHz (i.e., >80 Mbps) and 40 MHz (i.e., >100 Mbps) bandwidth. This is because much higher 

attenuation exists inside the body due to the greater in vivo distance for the two cases of side on body. 
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Hence we can conclude that the placement of the receiver antennas on the front and back on body is 

optimal and sufficient to support the data rate of 100 Mbps under the larger system bandwidth of 40 MHz. 

6.5.5 Effect of Human Body Size on MIMO In Vivo Performance  

Figure 6.13 shows the performance comparison for different human body size. A default body 

size in the HFSS human body model is an adult male with a height of 183 cm. Scaling factors of 1.1 and 

0.9 are added to the default adult male model to simulate the effect of body size on the MIMO in vivo 

performance. The Rx antennas are placed on the surface of the front body. From the figure, we find a 

significant increase can be achieved for the case of the scaling factor of 0.9 for both 20 MHz and 40 MHz 

bandwidths, while a substantial decrease is incurred for the case of the scaling factor of 1.1 for both 

bandwidths, where even for a 40 MHz bandwidth, the maximum system capacity can only reach as low as 

50 Mbps, which is far lower than the application data rate requirement of 100 Mbps.  

 

Figure 6.13 MIMO (2x2) in vivo system capacity comparison for different body size 

6.6 Concluding Remarks 

In this chapter, we present an extensive study of MIMO for in vivo environments to determine the 

maximum data rate that can be achieved in this challenging environment considering various factors. We 

simulated a MIMO OFDM-based system that complies with the IEEE 802.11n standard. The simulations 
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for the in vivo channel were obtained from the HFSS software that includes the Human Body Model. From 

the simulation result found in this study, the following conclusions can be drawn: 1) As expected, MIMO 

in vivo can achieve significant performance gains compared with SISO in vivo, and it is possible to achieve 

higher data rates when Rx antennas are moved closer to the surface of the body; 2) Significantly better 

system capacity can be observed when receiver antennas are paced at the front or the back of the body than 

when placed at the either side of the body; 3) An increased system bandwidth can help increase MIMO in 

vivo performance only when Tx and Rx distances are not great and SNR in the receiver is relatively good; 

and 4) Human body size can significantly impact MIMO in vivo performance. 
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CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 

In this dissertation we developed and analyzed the innovative concept of user-specific QoS 

requirements for cellular systems and described its realization via novel user-specific QoS-aware 

schedulers to improve the MOS or the system capacity, or both the MOS and system capacity. Part of the 

research on the user-specific QoS aware scheduling study in this dissertation has been published in [70]–

[72], [98]. 

As an independent research, in this dissertation, we also presented the performance of MIMO in 

vivo technology for WBAN systems, using the ANSYS HFSS and their complete human body software 

model and an OFDM-based IEEE 802.11n system, to determine the maximum data rates (i.e., the 

capacity) that can be achieved and the optimal placement of antennas in a wide variety of circumstances. 

Part of the research on the MIMO in vivo study in this dissertation has been published [101], [107] or 

submitted in [115]. 

The main contributions and conclusions for each chapter are summarized and described in the 

following section. 

7.1 Main Contributions and Conclusions 

7.1.1 User-Specific QoS Requirements 

 User-Specific QoS requirements are characterized by their user-specific MOS formulas for VoIP, 

video, and FTP applications. These user-specific MOS formulas are based upon existing MOS formulas, 

and the introduction of novel user-specific sensitivity factors to the packet loss, data rate, or delay. 

Two methods are proposed to improve the system capacity considering user-specific QoS 

requirements: a user-specific MCS selection method and user-specific QoS aware scheduling method. 
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7.1.2 User-Specific QoS Aware Scheduler 

We proposed the user-specific QoS aware schedulers that, depending upon the system 

performance targets, can flexibly improve significantly the MOS (the USQA-M1, USQA-M2, and 

USQA-F schedulers) or system capacity (the USQA-C scheduler), or both the MOS and system capacity 

(the USQA-MC scheduler) when such user-specific QoS requirements are considered. The improvement 

of system capacity results from dynamic source data rate adaptation to the user-specific QoS requirements 

and network conditions. The MOS improvement results from the MAC scheduling differentiation 

between users with different QoS requirements.  

The user-specific QoS aware schedulers used in heterogeneous scenarios were also first analyzed. 

The analysis and system performance evaluation show that the system gain can be mostly or partly 

maintained in heterogeneous networks depending upon different heterogeneous scenarios. 

The novel user-specific frequency sensitivity QoS study where users from different age group are 

more or less sensitive to the high frequency contents was analyzed and evaluated. It was shown that when 

VoIP codecs are designed to be specifically matched to the different high frequency auditory 

characteristics of users, higher system capacity as well as a comparable MOS levels may be achieved. 

7.1.3 User-Specific QoS Aware Scheduler Implementation 

Based upon LTE systems operation, the user-specific QoS parameters can be derived from the 

SPR database in the PCRF or signaled dynamically through the SIP protocol and Rx interface protocol.  

From the whole LTE system perspective, the user-specific QoS end-to-end signaling procedures 

were addressed, and corresponding protocol adaptations are analyzed. The potential protocols to be 

adapted include the SIP protocol, Rx interface, Gx interface, S5/S11 interfaces, and S1-MME interface 

protocols. Some new user-specific QCI values are needed to be defined and parsed differently by the Gx 

interface, S5/S11 interfaces, and S1-MME interface protocols. In addition, some new user-specific media 

type values need to be defined, signaled and parsed differently through the SIP protocol and Rx interface 

protocol if the user-specific QoS parameters are signaled dynamically.  
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The scheduling period and integration with existing rate adaptations algorithms in practical 

environments are also provided. It is shown that when the scheduling period is less than 1000ms, most of 

the capacity gain can be maintained by the user-specific QoS aware schedulers. It is also shown that the 

scheduling algorithms can be integrated very easily into existing rate adaptation algorithms. 

The contributions of sections 7.1.1-7.1.3 constitute the whole user-specific QoS scheduling 

system. 

7.1.4 MIMO In Vivo WBAN Systems 

MIMO technologies are introduced for in vivo environments to improve the system performance 

in WBAN systems. An extensive MIMO in vivo study was done to determine the maximum data rate that 

can be achieved considering various factors such as antenna separation distances, antenna angular 

positions, human body size, and system bandwidth, using ANSYS HFSS and their complete software 

human body model and an OFDM-based IEEE 802.11n system, with the specified SAR satisfied. 

System capacity was first introduced and evaluated in the MIMO in vivo environment to 

determine the maximum potentially achievable data transmission rate. It was found, that compared with 

SISO in vivo, MIMO in vivo can significantly improve system performance, with maximum SAR levels 

met, making it possible to achieve target data rates of 100 Mbps with a system bandwidth of 40 MHz 

when receiver antennas are located at the front or back surface of the body. 

7.2 Future Directions 

Beyond what has been presented throughout this dissertation, there are topics that can be further 

explored. For example: 

• Analyze the impact of the movement of the human body, the dynamics of the human body, 

and the movement of in vivo antennas on MIMO in vivo performance. 

• Research the potential application of other physical layer technologies such as UWB to 

improve in vivo system performance. UWB transmissions have received much attention 

because of its ultra-low power, low complexity, its small antenna size, higher available 
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system bandwidth, and low susceptibility to multipath fading, and the immunity to 

interference [48], [52], [116]. 
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