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Abstract 

 

Digital RF phase shifters fabricated using additive manufacturing processes are presented 

and studied. The purpose is to explain the performance differences between phase shifters 

fabricated using additive manufacturing and those fabricated with conventional subtractive 

techniques. All phase shifters are designed to operate at a center frequency of 2.45 GHz with a 

100 MHz bandwidth. The 1-bit 45° switched line phase shifters have an average insertion loss of 

1.3 dB and a 220 mm2 footprint, while the 1-bit 180° high-pass low-pass phase shifters have an 

insertion loss 1.56 dB and a 180 mm2 footprint. The 4-bit high-pass low-pass, switched line 

hybrid phase shifters on the other hand show an average state insertion loss of 5.4 dB and have a 

660 mm2 foot print. By carefully analyzing the performance of the various phase shifter designs 

it is shown that the limiting factors of additive manufacturing technology are the low 

conductivity of CB028 silver ink in comparison to copper, and the inability to print dielectrics 

with low surface roughness. Finally, parallel plate capacitors and a spiral inductor designed to be 

fabricated using additive manufacturing techniques are studied. This is done in order to better 

understand the advantages and disadvantages of such a design. By analyzing the component’s 

simulated performance it is shown that 3D printed capacitors and inductors are feasible as long 

as the capacitance or inductance values needed are low. Large value 3D printed components are 

impractical for RF applications due to their large size.
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Chapter 1: Introduction 

 

In the last few years Three Dimensional (3D) printing also known as additive 

manufacturing has evolved from an almost unknown technology into a very popular subject of 

public interest. Inexpensive table-top 3D printers have made additive manufacturing technology 

readily available, becoming very popular with artists, hobbyists, and garage inventors 

everywhere. Industry has also benefited greatly from this technology. Additive manufacturing is 

currently being used by the automotive, space, defense and medical industries in applications 

ranging from the printing of low-cost prosthetic parts, to the development of inexpensive medical 

equipment (Figure 1.1) [1] [2]. The RF and Microwave industry has also taken a special interest 

in this technology. Additive manufacturing has been used to fabricate a broad range of RF and 

microwave devices such as antennas, transmission lines, and phase shifters [3] [4]. This thesis 

will focus on the latter, taking special emphasis on the performance of RF phase shifters 

fabricated using 3D printing technology.  

 

Figure 1.1- Inexpensive 3D printed medical equipment 
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 Significant research has been conducted on the topic of 3D printed microwave phase 

shifters. Digital RF phase shifters like the 4-bit switched-line phase shifter shown in Figure 1.2 

have been fabricated using printed conductive inks on thermoplastic substrates [4]. These circuits 

include packaged switches and several passive lumped components. Although these 3D printed 

devices have been shown to perform well, their performance has not been able to match that of 

similar circuits constructed in more conventional technologies such as PCB.     

 

 Even though 3D printed RF phase shifters like the one shown above have been fabricated 

and tested, a detailed examination of their performance has not previously been conducted. The 

detailed loss analysis presented in the main body of this thesis explains the differences in 

performance between circuits fabricated using additive manufacturing techniques and 

conventional subtractive techniques. It also provides valuable insight on the design of parallel 

plate capacitors and spiral inductors fabricated using additive manufacturing technology.            

 

Figure 1.2- 4-bit switched-line phase shifter fabricated using silver ink on ULTEM™. 
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1.1 Thesis Contribution and Overview 

The primary goal of this thesis is to study the performance of digital RF phase shifters 

fabricated using additive manufacturing techniques. Chapter 2 contains a brief overview of the 

advantages and limitations of Direct Digital Manufacturing (DDM) technology. Chapter 2 also 

reviews the most popular digital RF phase shifter designs with the aim of understanding their 

advantages and disadvantages. Chapter 3 and Chapter 4 contain the main contributions of the 

thesis. Chapter 3 conducts an in depth loss analysis of 3D printed digital RF phase shifters in 

order to better understand the performance differences between 3D printed and PCB devices. In 

Chapter 4 a 1-bit 180° RF phase shifter with 3D printed lumped components is designed and 

simulated with the intention of developing a better understanding of 3D printed lumped 

components and their limitations. Chapter 5 concludes the thesis and summarizes the information 

gathered within.         
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Chapter 2: Direct Print Additive Manufacturing and Phase Shifter Background 

 

2.1 Introduction  

Before venturing into the study of 3D printed digital RF phase shifters it is of great 

importance to at least have a rudimentary understanding of the advantages and limitations of 

Direct Digital Manufacturing (DDM) technology. An in-depth knowledge of digital RF phase 

shifters designs is also required in order to understand the behavior and performance of 3D 

printed phase shifters. The goal of this chapter is to provide a summary of both topics. 

In Section 2.2 an overview of the fundamentals of DDM technology is given. Section 2.3 

examines the most popular digital RF phase shifter designs with the aim of understanding their 

advantages and disadvantages. Section 2.4 takes a brief look at digital multi-bit phase shifters. 

Section 2.5 gives a summary of the information presented in this chapter.  

2.2 Direct Digital Manufacturing (DDM)  

Three Dimensional (3D) printing also known as additive manufacturing is any of the 

numerous fabrication processes used to make three-dimensional objects [5]. Using DDM 

technology multi-layer, multi-material RF structures such as filters and antennas are easily 

fabricated [6]. The most common 3D printing technology is Fused Deposition Modeling (FDM). 

In FDM, structures are manufactured one layer at a time by fusing together filaments made of 

thermoplastic materials such as Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene 

(ABS). This process is clean, simple to use, and geometries that are very difficult to manufacture 
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with subtractive techniques are easily achieved [7]. Table 2.1 shows the limitations of FDM 

technology.   

Conductive inks can be used to form transmission lines for RF circuitry. This printing can 

be done using micro-dispensing tools such as nScrypt’s SmartPump. This system uses a 

computer controlled valve to accurately control the deposition of material onto a substrate [8]. 

The limitations of this system are also shown in Table 2.1. Figures 2.1 (a) and (b) show a state of 

the art 3D printer, and SmartPump system made by nScrypt [8] [9].       

 

 

 

 

 

Table 1.1- Limitations of FDM and micro-dispensing technologies 

FDM Limitations Micro-Dispensing Limitations 

Layer Thickness 100 μm Line Thickness 75 μm 

 Line Separation 50 μm 

 

 

Figure 2.1- NScrypt’s 3Dn 3D printer (a) and SmartPump (b) 
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2.3 Overview of Common Phase Shifter Topologies  

2.3.1 Loaded Line Phase Shifter 

The loaded line phase shifter is a relatively simple phase shifter design. This type of 

phase shifter works on the premise that by adding a shunt capacitor or inductor to a transmission 

line the incident wave undergoes a phase shift [10]. By adding a negative susceptance (inductor) 

the incident wave undergoes a positive phase shift, while by adding a positive susceptance 

(capacitor) it experiences a negative phase shift. Figure 2.2 below shows a shunt loaded line 

phase shifter, the most common topology for this design.  

 

 

 

 

 

 

The normalized susceptance B can be calculated with the following equation: 

                                                                   𝐵 =  
𝑍˳

2tan (𝛥𝜃)
                                                            (2.1) 

where Zo= characteristic impedance of the system, and Δθ is the desired phase shift.        

While the capacitor and inductor values can be calculated by: 

                                                            𝐿 =
𝐵

2𝜋𝑓
                 𝐶 =

1

2𝜋𝑓𝐵
                                           (2.2)  

 

 

Figure 2.2- Shunt loaded line phase shifter. 
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The insertion loss of the phase shifter is given by: 

                                                                𝐼𝐿 = 10𝑙𝑜𝑔10(1 +
𝑏2

4
)                                                (2.3)                                     

Loaded line phase shifters are best used in applications where the required phase shift is 

45° or less. They offer low insertion loss, and good power handling capability. Their large foot 

print on the other hand makes this design impractical for applications where space is limited.       

2.3.2 Quadrature Reflection Phase Shifter 

The quadrature reflection phase shifter as seen in Figure 2.3, is one of the most common 

reflection type phase shifter designs. It consists of a quadrature hybrid coupler that splits the 

incident signal into two separate signals of equal amplitude and 90° phase difference [10][11]. 

These two signal reflect from two switchable loads and add up in phase at the phase shifter’s 

output if both of the loads are identical.       

 One of the best qualities of the quadrature reflection phase shifter is that it can be 

designed to provide any desired phase shift [11]. The coupler used in the phase shifter design can 

be as simple as the quadrature (90°) hybrid shown above, or as involved as a Rat-Race, or 

 

Figure 2.3- Quadrature reflection phase shifter topology 
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Lange- coupler. The bandwidth of the phase shifter is dependent on the bandwidth of the coupler 

used [11]. The drawbacks of this phase shifter design is that at low frequencies the phase shifter 

can be somewhat large. The overall insertion loss of the circuit is also usually high [11]. 

2.3.3 Switched Line Phase Shifter 

The switched line (delay line) phase shifter is the simplest phase shifter to design and 

implement, because it uses the time delay difference between two separate transmission lines to 

provide a phase shift. Figure 2.4 shows the general topology of this type of phase shifter design. 

 

 

 

 

 

 

It is common practice is to use a Single Pole Double Throw (SPDT) switch to digitally 

control the switching action between the reference and delay paths of the phase shifter. The 

switches can range from PIN diode switches to as involved as a transistor switch or a MEMS 

device. The switched line phase shifter can provide any desirable phase shift, but one must be 

careful when selecting line lengths to avoid choosing line lengths multiples of 180° which will 

act as a resonator when the line is in its off state [10] [11] [12].   

 

 

Figure 2.4- Switched line (delay line) phase shifter topology 
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To calculate the length difference between the reference and delay arms the following 

equations can be used: 

                                                                        𝛥𝐿 =
𝛥𝜃

𝛽
                                                              (2.4) 

where:                                   𝛽 =
2𝜋

𝜆
,                                        𝜆 =

𝐶

𝑓√𝜀𝑟
                                (2.5-6)          

The insertion loss of this phase shifter design is very low, mostly because no lumped 

components are used. The main disadvantage of this design is that for large phase shifts such as 

90° or 180° the delay line can be quite large for low frequencies, making the design impractical 

for applications where space is limited.  

2.3.4 High-Pass Low-Pass Phase Shifter  

The high-pass low-pass phase shifter is another popular phase shifter design. As the name 

indicates, this phase shifter is made up of a low-pass and a high-pass filter sections. The high-

pass and low-pass filters can be implemented in either the π- or T- network configurations [10] 

[11] [12]. Figure 2.5 shows the general topology of a low-pass high-pass phase shifter in the T-

network configuration. 

       

 

 

 

  

Figure 2.5- High-pass low-pass phase shifter in T-network configuration. 
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 The capacitor and inductor values for both the high and the low pass lines are calculated 

by:  

                     High-Pass Tee                                                 Low-Pass Tee 

          𝐿1 =  
𝑍0

𝜔𝑆𝑖𝑛(𝜃)
     𝐶1 =

𝑆𝑖𝑛(𝜃)

𝜔𝑍0(1−𝐶𝑜𝑠(𝜃))
         𝐿2 = 𝑍0

(1−𝐶𝑜𝑠(𝜃))

𝜔𝑆𝑖𝑛(𝜃)
         𝐶2 =

𝑆𝑖𝑛(𝜃)

𝜔𝑍0
              (2.7-10) 

Lumped, distributed, or even 3D printed components can be used to form the high-pass 

and low-pass paths of the phase shifter. High-pass low-pass phase shifters offer low insertion 

loss, small size, and large phase shift capabilities making it one of the most popular phase shifter 

designs.         

2.4 Digital Multi-Bit Phase Shifter  

Digital multi-bit phase shifters are made by combining multiple single-bit phase shifters. 

Typically the phase shifters are cascaded in series with increasing phase shift angle [8]. The 

greater the number of cascaded bits, the larger the number of phase states that the phase shifters 

can produce. For example, a 2-bit phase shifter made up of 22.5° and 45° bits can produce 22 or 

4 states at 22.5° increments (0°, 22.5°, 45°, 67.5° ). On the other hand a 4-bit phase shifter as the 

one shown in Figure 2.6 [12] produces 24 or 16 states (from 0° to 360° in 22.5° increments).        

 

 

 

 

 

 

Figure 2.6- 4-bit switched-line phase shifter. 
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The shifting between states is typically done by turning a specific combination of 

switches ON and OFF. This switching action is generally performed by a digital microcontroller.  

The main constraint of digital multi bit phase shifters is that with a higher number of bits the 

complexity of the system and RF loss also increase.  

2.5 Conclusion  

The fundamentals of DDM technology and digital RF phase shifter design are reviewed 

in this chapter. In Section 2.2 the advantages and limitations of DDM technology are presented. 

Section 2.3 reviews several common digital RF phase shifter designs paying special attention to 

their performance. Section 2.4 gives a brief overview of digital multi-bit phase shifters. Table 2.2 

shows a comparison of the performance and characteristics of different types of Digital RF phase 

shifters [12].  

 

  

Table 2.1- Comparison of performance of different types of digital RF phase shifters  

Type Power 

Handling 

Insertion Loss Phase Shift Capability Size 

Loaded Line High Low Low (~45°) Large 

Quadrature Low High  Large Large 

Switched Line Medium Low Large Large 

High-Pass Low-

Pass 

Medium Low Medium Small 
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Chapter 3: 3D Printed 4-bit Phase Shifters 

 

3.1 Introduction  

In the previous chapter the advantages and disadvantages of various digital RF phase 

shifter types were examined in order to choose the design that is best suited for the fabrication of 

a 4-bit RF digital phase shifter using DDM technology. By taking a close look at the information 

gathered there, it is obvious that the switched line phase shifter topology would be the best 

candidate for the small phase shift (22.5° and 45°) bits due to its ease of manufacturability and 

low loss [11]. On the other hand the high pass/low pass phase shifter topology is better suited for 

the larger phase shift (180° and 90°) bits due to its large phase shift capability and small size 

[11]. This chapter will look at the performance of digital RF phase shifter fabricated using 3D 

printing technology1.  

In Section 3.2 the behavior of a 1-bit 45° switched-line, a 1-bit 180° high-pass low-pass, 

and 4-bit digital RF DDM phase shifters will be examined. In Section 3.3 a loss analysis of the 

three phase shifter is performed with special emphasis on the loss contributed by the lumped 

components and transmission lines used in the design. Lastly, in Section 3.4 the results obtained 

in the previous sections will be put together in order to generate a better understanding of the 

performance of the 4-bit RF digital DDM phase shifter.   

 

                                                           
1 Portions of this chapter were previously published in [6]. Permission is included in Appendix A. 
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3.2 Printed 4-bit RF Phase Shifter Design and Results   

Before presenting the analysis of a full 4-bit, hybrid phase shifter with both high-pass 

low-pass and switched-line bits it would be of great interest to first observe the performance of 

each phase shifter topology as a standalone circuit. For this reason this section starts by 

demonstrating the performance of a 1-bit 45° switched-line phase shifter (Figure 3.1) and a 1-bit 

180° high-pass low-pass phase shifter (Figure 3.3) before analyzing the performance of a 4-bit 

hybrid phase shifter made by combining four separate phase shifter bits.        

 

Two 2.45 GHz 45° switched line phase shifters were designed (Fig. 3.1). The first circuit 

(CB028 on ABS) was fabricated using a DDM process, while the second (Copper on RO4003) 

was implemented using the conventional subtractive manufacturing PCB approach, so as to 

compare the performance of the two technologies. The measured insertion loss, along with 

relative phase shift of both circuits is shown in Fig. 3.2. The DDM circuit was measured to have 

an insertion loss of 1.55 dB at 2.45 GHz, while the PCB circuit’s insertion loss was 1.25 dB at 

 

Figure 3.1-Switched-line CB028 on ABS and Cu on RO4003 phase shifters. 
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the same frequency. Both circuits are roughly 13 mm by 17 mm. The 0.3 dB difference between 

the insertion losses of the two designs will be analyzed in more detail later in the chapter.   

Two high-pass low-pass phase shifters (Figure 3.3) were also designed and implemented 

using both DDM and PCB approaches. The high-pass (thru-) path is made up of two series 1.2 

pF capacitors along with a 2.2 nH shunt inductor. The low-pass (delay-) path is made up of two 

series 3.3 nH inductors along with a 0.8 pF shunt capacitor as seen in Figure 3.6.     

 

Figure 3.2- Measured IL and phase shift of DDM and PCB 45° phase shifters 

 

Figure 3.3- High-pass low-pass CB028 on ABS and Cu on RO4003 phase shifters 
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Figure 3.4 shows a measured insertion loss of around 1.56 dB and 180° relative phase 

shift for both circuits at 2.45 GHz center frequency. Both circuits are roughly 18 mm by 10 mm. 

The absence of an insertion loss difference between the two circuits will also be analyzed in 

detail.      

Finally 180° and 90° high-pass low-pass bits were combined with a 45° and 22.5° 

switched-line bits to form the 4-bit high-pass low-pass, switched-line hybrid phase shifters 

shown in Figure. 3.5. Once again, the phase shifter was implemented in DDM and PCB 

technologies in order to compare and contrast the performance of the two circuits.    

Figure 3.4- Measured IL and phase shift of DDM and PCB 180° phase shifters. 

 

Figure 3.5- 4-bit high-pass low-pass, switched-line DDM and PCB phase shifters  
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Figure 3.6 shows a simplified schematic of the design while Table 3.1 shows the inductor 

and capacitor values used to construct the 180° and 90° high-pass low-pass bits. Table 3.2 shows 

the transmission line lengths and width used in the 45° and 22.5° switched-line bits. 

The measured insertion loss for all 16 states of both circuits is shown in Figure 3.7. 

Figure 3.8 shows the return loss of the DDM circuit.  The relative phase shift of both circuits is 

shown in Figure 3.9. The DDM circuit was measured to have an average insertion loss of 5.8 dB 

at 2.45 GHz, while the PCB circuit’s average insertion loss was 5.03 dB at the same frequency. 

Both circuits are roughly 51 mm by 13 mm. 

 

Figure 3.6- 4-bit high-pass low-pass, switched-line hybrid schematic 

Table 3.1- 180° and 90° phase shifters capacitor and inductor values 

180°-bit 90°-bit 

High Pass  Low Pass  High Pass  Low Pass  

C1A 1.2 pF C2A 0.7 pF C1B 4.7 pF C2B 0.5 pF 

L1A 2.2 nH L2A 4.7 nH L1B 2.2 nH L2B 2.2 nH 
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Figure 3.7- Measured insertion loss of DDM and PCB 4-bit phase shifters  

 

 

Figure 3.8- Measured return loss for all 16 stages of the DDM phase shifter  

Table 3.2- 45° and 22.5° phase shifters transmission line lengths and widths.  

45°-bit 22.5°-bit 

Thru 

Length 

4.5 mm Delay 

Length 

15.2 mm Thru 

Length 

4.5 mm Delay 

Length 

9.6 mm 

Thru 

Width 

1.1 mm Delay 

Width 

1.1 mm Thru 

Width 

1.1 mm Delay 

Width 

1.1 mm 
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 Figures 3.10 and 3.11 show the RMS phase error and RMS amplitude error vs. frequency 

of the 4-bit high-pass low-pass, switched-line hybrid DDM phase shifter over a 100 MHz 

bandwidth [13].   

 

Figure 3.9- Measured relative phase shift of DDM and PCB 4-bit phase shifters 

 

Figure 3.10 - RMS phase error vs. frequency of DDM 4-bit phase shifter.  
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3.3 Loss Analysis   

3.3.1 Switch Loss  

The MASWSS0115 GaAs SPDT RF switch was chosen to perform the switching action 

between the phase shifters thru- and delay- paths. This switch was chosen because it offers a 

relatively low insertion loss of 0.4 dB throughout its entire operational bandwidth (DC-3 GHz), 

making the total insertion loss due to switches to be 3.2 dB for the 4-bit phase shifter. The switch 

has a maximum input power of 34 dBm (2.5 W) making it suitable to be used in low power 

phase array applications. The switch is also relatively small having only a 4.2 mm². For proper 

operation of the switch external DC blocking capacitors are required on all RF ports. ATC 600S 

30 pF ceramic capacitors were used as DC blocks on all phase shifter designs.  

 

 

 

Figure 3.11- RMS magnitude error vs. frequency of DDM 4-bit phase shifter. 
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3.3.2 Surface Mount Components Loss 

Throughout the design a multitude of surface mount capacitors and inductors are used, to 

act as DC blocks in the switches’ biasing networks, and to form the high-pass and low-pass 

branches on the 180° and 90° bits. ATC’s 600S capacitors and Coilcraft 603CS inductors were 

chosen for all designs because of their low loss and small size. Modelithics’ models for the 

above components were used in all phase shifter simulations. Table 3.3 shows all of the 

components values and quantities used in the 4-bit phase shifter.     

 

 

 

 

 

 

 

To better understand how the surface mount components contribute to the overall 

insertion loss of the 4-bit phase shifter we can study in detail the 1-bit 180° high-pass low-pass 

phase shifters shown in Figure 3.3.  By conducting a simulation of the high-pass and low-pass 

paths taking only the lumped components into account, an average per-path component loss of 

0.32 dB is calculated. By adding this per-path components loss to the loss contributed by the 

switches and DC blocks a calculated insertion loss of 1.2 dB is obtained for both the DDM and 

PCB circuits. Note that this insertion loss is only 0.36 dB less than the measure insertion loss of 

Table 3.3- Capacitors and inductors values, and quantities. 

ATC 600S Capacitors Value Quantity 

0.5 pF 1 

0.7 pF 1 

1.2 pF 2 

4.7 pF 2 

30 pF 17 

Coilcraft 603CS Inductors Value  

2.2 nH 4 

4.7 nH 2 
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both 180° phase shifters. This 0.36 dB discrepancy can be attributed to a combination of 

transmission line and interconnect loss. Another point worth noting is that because the insertion 

loss of the DDM and PCB circuits is very similar (~1.56 dB), it can be assumed that the majority 

of the loss in a high-pass low-pass phase shifter design comes from the lumped components 

themselves and not from the transmission lines as is expected in a switched-line design.  

3.3.3 Transmission Line Loss   

To gain a better understanding of the transmission line loss contributed to the phase 

shifter a close examination of the 1-bit 45° switched-line phase shifters (Figure.3.1) is presented 

in this section. The single bit 45° switched-line phase shifters were chosen for this type of 

analysis because unlike the 180° high-pass low-pass designs the majority of the insertion loss of 

the circuit (excluding switch loss) can be attributed to transmission line losses, due to the nature 

of the switched-line design.   

 

Figure 3.12- Cu on RO4003 (a), CB028 on ABS (b). Simulated surface current density for Cu on 

RO4003(c) and CB028 on ABS (d). 

 

 

 

(a)

(b)

(c)

(d)

ABS

RO4003C

Copper

CB028
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 In [14] the results of full-wave EM simulations for CB028 on ABS and copper on 

RO4003 transmission lines is described2. The cross section of the two microstrip lines used in the 

simulations are shown in Figure 3.12 (a) and (b).     

The microstrip line lengths and widths used in the simulation are those of the 45° phase 

shifters with DC blocking capacitors and switches removed. The microstrip line dimensions are 

24.8 mm by 0.82 mm for copper on RO4003, and 27.12 mm by 1.12 mm for the CB028 on ABS. 

One key aspect to notice from Figure 3.12 (a) and (b) is that although both the conductive 

materials (CB028 and copper) are assumed to be flat on the top surface, on the DDM line the 

CB028 conforms to the irregular surface of the printed ABS. Previously conducted 

measurements show that the effective conductivity of the CB028 on ABS microstrip line is 

directly linked to the surface roughness of the ABS substrate [14]. The surface roughness of each 

of the three DDM phase shifter circuits is shown in Table 3.4.        

 For the purpose of this simulations the conductivity of CB028 was designated to be 1e6 

S/m, which is at the lower end of previously conducted measurements [15]. Figure 3.12 (c) and 

(d) show the current density of the simulated micro strip lines at 3 GHz. Note that the current 

                                                           
2 Simulations performed by Maria Cordoba, USF PhD student  

Table 3.4- Surface roughness of each of the three DDM phase shifter circuits 

Circuit Dielectric Surface 

Roughness 

Conductor Surface 

Roughness 

1-bit 45° Switched-Line 

Phase Shifter (Fig 3.1) 

2.32 μm 1.74 μm 

1-bit 180° High-Pass Low-

Pass Phase Shifter (Fig 3.3) 

3.21 μm 3.73 μm 

4-bit Hybrid Phase Shifter 

(Fig 3.5) 

4.77 μm 4.27 μm 
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density is greater at the edges of the copper and CBO28 as expected, but in the case of the 

CB028 on ABS line, there is also a high current concentration in the crevasses formed in the 

ABS surface. Figure 3.13 shows the simulated insertion loss of the copper on RO4003 and 

CB028 on ABS microstrip lines.  

 One can observe that at the frequency of interest 2.45 GHz, the losses are around 0.32 dB 

higher for the CB028 on ABS that for copper on RO4003 line. This 0.32 dB difference is in 

accordance to the measured difference in insertion loss between both of the 1-bit 45° switched 

line phase shifters shown in Figure 3.2.     

3.4 Conclusion   

A detailed inspection of the performance of the phase shifter shown in Section 3.2 

provides valuable information regarding the behavior of 3D printed digital RF phase shifters. In 

Section 3.3.1 it was shown that the majority of the insertion loss of a phase shifter comes from 

the switches. In Section 3.3.2 it was demonstrated that, not counting the switches the majority of 

the loss in a high-pass low-pass phase shifter comes from the lumped components that make up 

the high-pass and low-pass paths, explaining the similar performance of the 1-bit 180° DDM and 

PCB phase shifters (Figure 3.3). In Section 3.3.3 the detail study of a CB028 on ABS and copper 

 

Figure 3.13- Simulated IL of Cu on RO4003 and CB028 on ABS microstrip lines.  
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on RO4003 transmission lines explains the 0.3 dB difference in the insertion loss between the 

DDM and PCB 1-bit 45° switched-line phase shifters shown in Figure 3.1. Table 3.5 shows 

detailed loss analysis of all three phase shifters designs. The slight differences between the 

calculated and measured losses are due to interconnection losses not accounted by the 

simulations.      

 In conclusion, DDM technology has been shown to be comparable to the more 

conventional subtractive manufacturing processes such as PCB for the presented digital RF 

phase shifters. The main constraining factors to the technology are shown to be the lower 

conductivity of CB028 in comparison to copper, and the inability to print dielectrics with low 

surface roughness.       

 

Table.3.5- Detailed loss analysis of all three phase shifter designs. 

Circuit Total 

Switch 

Loss 

(dB) 

Total 

Component 

Loss (dB) 

Total 

Transmission 

Line Loss 

(dB) 

Total 

Calculated 

Loss (dB) 

Measured 

Loss (dB) 

45° Switched-

Line DDM 

0.8 0.045  0.43  1.27  1.55  

45° Switched-

Line PCB 

0.8  0.045  0.1  0.95  1.25  

180° High-

Pass Low-

Pass DDM 

0.8 0.35  0.1  1.25  1.56  

180° High-

Pass Low-

Pass PCB 

0.8  0.35  0.1  1.25  1.56  

4-bit Hybrid 

DDM 

3.2  0.7  1.55 5.45  5.80  

4-bit Hybrid 

PCB 

3.2  0.7  0.4  4.3  5.03  
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Chapter 4: 1-Bit 180° RF Phase Shifter with 3D Printed Lumped Components 

 

4.1 Introduction  

By comparing the performance of multiple 3D printed and PCB circuits, the previous 

chapter shows that DDM technology is suitable for manufacturing digital RF phase shifters. In 

this chapter a 1-bit 180° RF phase shifter with 3D printed lumped components is designed and 

simulated with the intention of developing a better understanding of 3D printed lumped 

components.  

In Sections 4.2 and 4.3 the design and simulations of a parallel plate capacitor and a 

spiral inductor are presented. The design and simulations of a 1-bit 180° RF phase shifter is 

shown in Section 4.4. Lastly, in Section 4.5 the data presented in this chapter is analyzed in order 

to understand the advantages and disadvantages of 3D printed lumped components.   

4.2 3D Printed Parallel Plate Capacitor 

In its simplest form a parallel plate capacitor is made up of two parallel plates separated 

by a dielectric.  The capacitance value of a parallel plate capacitor is calculated by the following 

equation [16]:                                                               

                                                                 𝑪 = 𝜺𝒓𝜺𝒐
𝑨

𝒅
   (F)                                                         (4.1) 

where εr is the dielectric constant of the dielectric material, εo is the permittivity of free space or 

vacuum permittivity, A is the area overlapped by the parallel plates, and d is the separation 

between the two plates. In this section a 3D printed 1.3 pF parallel plate capacitor is designed 
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and simulated using Keysight’s Momentum 3D planar EM simulator. The 3D printed capacitor 

dimensions were tuned to match the performance of a 1.3 pF ATC capacitor model. Figure 4.1 

shows the layout (a) and 3D view (b) of the 3D printed parallel plate capacitor. The parallel 

plates are constructed using CB028 silver ink printed on both sides of a 100 μm ABS dielectric. 

The capacitor itself is printed on a 16 mil thick ABS substrate.  

 

 

Figure 4.1- 3D printed parallel plate capacitor layout (a), 3D view (b). 
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In Figure 4.2 the capacitance of the simulated 3D printed parallel plate capacitor is 

compared to the ATC capacitor model of the same nominal value. The insertion loss and S11 are 

shown in Figures 4.3 and 4.4. The phase is shown in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3- Insertion loss of 1.3 pF 3D printed capacitor and ATC capacitor model. 

 

Figure 4.2- Capacitance of 1.3 pF 3D printed capacitor and ATC capacitor model.    
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Figure 4.4- Return loss of 1.3 pF 3D printed capacitor and ATC capacitor model. 

 

Figure 4.5- Phase of 1.3 pF 3D printed capacitor and ATC capacitor model. 
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 The 3D printed parallel plate capacitor has a simulated insertion loss of 1.7 dB at 2.45 

GHz.  Note that losses of the 3D printed capacitor are greater than that of the model. This can be 

partly attributed to the low conductivity (1E6 S/M) of CB028, high loss tangent (0.0078) of 

ABS, the inferior return loss (5 dB at 2.5 GHz) of the printed component and the larger 

dissipation loss in comparison to the ATC capacitor model. Increasing the component’s 

capacitance would reduce the series impedance, thus making the insertion loss lower and the 

return loss higher. Increasing the capacitance is not an option in this case, because by doing so 

the capacitance of the 3D printed component would no longer match that of the ATC model. 

Figure 4.6 shows the capacitor’s loss factor in percentage. This is the energy that is lost due to 

radiation loss and heat dissipation.  The capacitor dimensions are 1.6 mm by 2.67 mm, having an 

overlapping parallel plate area (A) of 4.27 mm2.     

 

 

 

Figure 4.6- Loss Factor of 1.3 pF 3D printed capacitor and ATC capacitor model. 
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4.3 3D Printed Spiral Inductor  

In this section a 3.25 nH 3D printed spiral inductor is designed and simulated. 

Conveniently enough a spiral inductor can be simply drawn in ADS by using the MRIN preset 

component. Once again CB028 silver ink is assumed for all conductor traces. The 3D printed 

spiral inductor dimensions were tuned to match the performance of a 3.25 nH Coilcraft inductor 

model while staying within the physical limitations of DDM technology shown in Table 2.1.  

Figure 4.7 shows the 3.25 nH spiral inductor Momentum layout (b) and dimensions (a). In Figure 

4.8 the inductance of the simulated 3D printed spiral inductor is compared to that of a Coilcraft 

inductor of the same nominal value. Figure 4.9 and 4.10 show the insertion, and return loss of the 

3D printed spiral inductor while Figure 4.11 shows the phase delay.   

Figure 4.7- MRIND component dimensions. Where N= Number of turns, L1= Length of second 

outermost segment, L2= Length of outermost segment, W= Conductor width, and S= Conductor 

spacing.  (a), 3D printed spiral inductor Momentum layout (b) 
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Figure 4.8- Inductance of 3.25 nH 3D printed inductor and Coilcraft inductor model. 

 

 

Figure 4.9- Insertion loss of 3.25 nH 3D printed inductor and Coilcraft inductor model. 
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Figure 4.11- Phase of 3.25 nH 3D printed inductor and Coilcraft inductor model. 

 

Figure 4.10- Return loss of 3.25 nH  3D printed inductor and Coilcraft inductor model. 
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 The 3D printed spiral inductor simulated insertion loss is 0.9 dB at 2.45 GHz. The 

simulated return loss is 8.8 dB at the same frequency. Figure 4.12 shows the loss factor in 

percentage.  

4.4 1-Bit 180° Phase Shifter with 3D Printed Lumped Components 

In this section a 1-bit 180° phase shifter with 3D printed lumped components is designed 

and simulated. The thru-path is made up of 3D printed parallel plate capacitors and spiral 

inductors joined together to form a high-pass filter which offers a phase advance [11]. The delay-

path is made by meandering a 26.7 mm long transmission line which offers a phase delay [2]. 

Figure 4.13 shows the Momentum layout of the 180° phase shifter with 3D printed lumped 

components. Figure 4.14 show a 3D view of the same circuit. The phase shifter is roughly 20 

mm by 10 mm.             

 

Figure 4.12- Loss Factor of 3.25 nH 3D printed inductor and Coilcraft inductor model. 
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 The insertion loss of the thru- and delay- paths, and phase shift is shown in Figure 4.15. 

As expected the 2.5 dB insertion loss of the thru path is greater than the 1.2 dB insertion loss of 

the delay path at 2.45 GHz. The discrepancy in insertion loss is partially due to the loss of the 3D 

 

Figure 4.13- Momentum layout of 180° phase shifter with 3D printed lumped components.  

Figure 4.14- 3D view of 180° phase shifter with 3D printed lumped components.  
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printed capacitors and inductors that make up the high-pass filter path. Figure 4.16 shows the 

return loss of the phase shifter for both the thru and delay paths.  

 

 

 

 

Figure 4.15- IL and phase shift of phase shifter with printed lumped components.   

 

 

Figure 4.16- Return loss of phase shifter with printed lumped components.   
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 The loss factor of the thru- and delay- paths are shown in Figure 4.17. In addition to heat 

and radiation losses the data shown below also includes switch loss which accounts for a good 

portion of the overall loss of the circuit.    

 

 

 

 

 

 

Table 4.1- Performance comparison of 180° phase shifters. 180° phase shifter with printed 

lumped components and 180° high-pass low-pass phase shifter with ATC/Coilcraft lumped 

components 

 

Figure 4.17- Loss factor of phase shifter with printed lumped components.   
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Table 4.1 compares the performance of the 180° phase shifter with printed lumped 

components to that of the 180° high-pass low-pass phase shifter with ATC/Coilcraft lumped 

components shown in Chapter 3.      

4.5 Conclusion   

This chapter demonstrates that a phase shifter with 3D printed lumped components is 

realizable. Section 4.2 shows that parallel plate capacitors can be constructed by combining 

CB028 and ABS layers. Section 4.3 shows that spiral inductors are also easy to fabricate by 

coiling a CB028 transmission line. Lastly, in Section 4.4 it is shown that a phase shifter can be 

fashioned by combining 3D printed lumped capacitors and inductors. The primary advantage of 

designing a monolithic circuit using DDM technology is that by doing so a system can be 

fabricated in a single step. This would decrease per-unit cost, improve production time, and 

greatly simplify the assembly process. The main constraining factors are the increased loss of the 

printed components in comparison to their lumped ceramic counterparts and that although small 

capacitor and inductor values can be reasonably archived using DMM technology, the 

construction of high value inductors and capacitors for RF applications may be impractical due 

to their large sizes.         
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Chapter 5: Conclusion 

 

5.1 Thesis Summary 

The use of direct digital manufacturing technology has proven to be a feasible and cost 

effective process for the fabrication of digital RF phase shifters. As presented in Section 3.2, the 

performance of 3D printed phase shifters comes close, but does not currently match that of their 

PCB counterparts. By conducting a detailed loss analysis of this 3D printed and PCB devices 

Chapter 3 explains the discrepancies in performance between the two technologies. The low 

conductivity of CB028 silver ink in comparison to copper, and the inability to print dielectric 

substrates with low surface roughness are shown to be the main constraining factors to direct 

digital manufacturing technology. 

 By analyzing the behavior of 3D printed parallel plate capacitors and spiral inductors, 

Chapter 4 demonstrates that the fabrication of phase shifters with 3D printed lumped components 

is a possibility. Parallel plate capacitors can be fabricated by stacking layers of CB028 and ABS. 

Spiral inductors can also be constructed by coiling a CB028 transmission line on an ABS 

substrate. The main disadvantages to 3D printed capacitors is that the low dielectric constant of 

ABS makes the fabrication of large capacitance values impractical due to their large size.    

5.2 Recommendations for Future Works 

Further areas of study include: 

1. Fabricating the 3D printed capacitor, and inductor shown in chapter 4 and compare 

their performance to the simulations.  
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2. Fabricate the 3D printed phase shifter design in section 4.4 and compare its 

performance to the simulations. 

3. Investigate ways to integrate materials with higher dielectric constants into a design 

to miniaturize the capacitor design in chapter 4.       
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