
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

11-16-2016

Optimal Demand Response Models with Energy
Storage Systems in Smart Grids
Mohemmed Masooud Alhaider
University of South Florida, malhaide@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Electrical and Computer Engineering Commons, Oil, Gas, and Energy Commons,
and the Operational Research Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Alhaider, Mohemmed Masooud, "Optimal Demand Response Models with Energy Storage Systems in Smart Grids" (2016). Graduate
Theses and Dissertations.
http://scholarcommons.usf.edu/etd/6451

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarcommons.usf.edu%2Fetd%2F6451&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


Optimal Demand Response Models with Energy Storage Systems in Smart Grids

by

Mohemmed Alhaider

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Lingling Fan, Ph.D.
Bo Zeng, Ph.D.

Selcuk Kose, Ph.D.
Fangxing Li, Ph.D.
Zhixin Miao, Ph.D.

Date of Approval:
October 17, 2016

Keywords: Battery Systems, Switchable Loads, HVACs, Renewable Energies, Demand Side
Management

Copyright c© 2016, Mohemmed Alhaider



DEDICATION

To my father and my mother, to my borthers and my sisters, to my wife and my kids.



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my major advisor Dr. Lingling Fan for support-

ing, encouraging, and guiding me throughout my previous years accomplishing this dissertation.

She was always available to help me whenever I face any research problem. I would also like to

thank Dr. Zhixin Miao who with Dr. Lingling Fan provided me with the necessary tools which

were required to develop this research. I would like to thank the rest of my committee members:

Dr. Selcuk Kose, Dr. Fangxing Li, and Dr. Bo Zeng for their encouragement and constructive

comments.

I would also like to thank my recent colleagues from the smart grid power system lab Ahmed

Tazay, Hossein Ghassempour, Yin Li, Yan Ma, Yi Zhou, Mingyue Ma, Yangkun Xu, and my former

colleagues Dr. Yasser Wehbe, Dr. Ling Xu Dr. Vahid Rasouli, Dr. Lakshan Piyasinghe, Dr. Javad

Khazaei, for all the discussions, help and enjoyable time I spent with them.



TABLE OF CONTENTS

LIST OF TABLES iv

LIST OF FIGURES v

ABSTRACT vii

CHAPTER 1 INTRODUCTION 1

1.1 Background 2

1.1.1 Smart Grid 2

1.1.1.1 Smart Grids Goals 3

1.1.2 Demand Side Management (DSM) 3

1.1.2.1 Energy Efficiency 4

1.1.2.2 Load Management (Demand Response) 5

1.2 Energy Storage System 8

1.2.1 Energy Storage and the Smart Grid 8

1.3 HVACs Loads 9

1.4 Problem Identification 10

1.5 Scope of Work 11

1.5.1 Energy Storage System Planning 11

1.5.1.1 Tasks 11

1.5.2 Modeling HVACs for DSM 12

1.5.2.1 Tasks 12

1.5.3 Operation Considering Stochastic Renewable Energy Sources 12

1.5.3.1 Tasks 13

CHAPTER 2 LITERATURE REVIEW 14

2.1 Research on Demand Response Applications with Storage Energy 14

2.2 Research on Demand Response Applications with Residential Loads 15

2.3 Research on Demand Response Applications with Hybrid PV/Energy Storage/H-
VAC System 16

2.4 Research on Large-scale MIP Solving 18

2.4.1 General Benders Decomposition 19

2.4.2 Benders Decomposition Example 20

2.4.2.1 Objective Function 21

2.4.2.2 Constraints 21

2.4.2.3 Procedures to Solving the Problem 22

i



CHAPTER 3 BATTERY STORAGE SYSTEMS FOR DEMAND RESPONSE APPLICA-
TION 25

3.1 Introduction 25
3.2 Utility Applications: Minimizing Operation Cost with a BESS and Switchable

Loads 28
3.2.1 Optimization Problem 28
3.2.2 Decision Variables 29
3.2.3 Objective Function 29
3.2.4 Constraints 30

3.3 Demand Side Application: Peak Shaving 32
3.3.1 Decision Variables 32
3.3.2 Objective Function 33
3.3.3 Constraints 33

3.4 Case Studies and Numerical Examples 34
3.4.1 BESS Applications in Utility Side 34

3.4.1.1 Simulation Results 37
3.4.2 BESS Applications in Demand Side 44

3.5 Conclusion 47

CHAPTER 4 HVAC AND ENERGY STORAGE SYSTEMS 48
4.1 Introduction 48
4.2 Thermal Dynamics Models of an HVAC Unit 50
4.3 Optimization Models of HVAC Applications 52

4.3.1 HVAC Responding to a Varying Price 52
4.3.1.1 Decision Variables 52
4.3.1.2 Objective Function 53
4.3.1.3 Constraints 53

4.3.2 Comfort/Cost Trade-Offs 54
4.3.2.1 Decision Variables 54
4.3.2.2 Objective Function 54
4.3.2.3 Constraints 54

4.3.3 Battery and HVAC Applications in Demand Response 55
4.3.3.1 Decision Variables 55
4.3.3.2 Objective Function 55
4.3.3.3 Constraints 56

4.4 Case Studies and Numerical Examples 57
4.4.1 The Study System 57
4.4.2 HVAC Responding to a Varying Price 58
4.4.3 Comfort/Cost Trade-Offs 61
4.4.4 Battery and HVAC Applications in Demand Response 63

4.5 Conclusion 63

CHAPTER 5 SMART BUILDING/ PLANNING WITH UNCERTAIN PV ENERGY 65
5.1 Introduction 65
5.2 Thermal Dynamics Models of an HVAC Unit 68
5.3 Optimization Problem Formulation 69

ii



5.3.1 Treatment of Uncertainty in PV-Output 69
5.3.2 Optimization Model 71

5.3.2.1 Decision Variables 72
5.3.2.2 Objective Function 72
5.3.2.3 Constraints 73

5.4 Large-scale Problem Solving Using Benders Decomposition 73
5.4.1 Benders Decomposition with a Single Subproblem 74
5.4.2 Benders Decomposition with Multiple Subproblems 76
5.4.3 Benchmark of the Algorithms 82

5.5 Case Studies and Numerical Examples 83
5.5.1 The Study System 83
5.5.2 Result and Analysis 83
5.5.3 Computational Time 86

5.6 Conclusion 90

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 91
6.1 Conclusions 91
6.2 Future Work 92

REFERENCES 93

APPENDICES 99
Appendix A Matlab Code for Benders Decomposition 100
Appendix B Reuse Permissions of Published Papers 107

ABOUT THE AUTHOR End Page

iii



LIST OF TABLES

Table 3.1 Specifications of the generators I 37

Table 3.2 Specifications of the generators II 37

Table 3.3 Summary of BESS applications in the utility side scenarios 39

Table 3.4 Summary of BESS applications in the demand side scenarios 46

Table 4.1 Parameter values for HVAC 57

Table 4.2 HVACs behaviors considering dynamic price 59

Table 4.3 HVACs behaviors considering comfort/cost trade-offs 62

Table 4.4 HVACs behaviors considering installing BESS 63

Table 5.1 Parameter values for HVAC units 83

Table 5.2 Cost function parameters 84

Table 5.3 Simulation results 84

Table 5.4 Problem size and computing time 89

iv



LIST OF FIGURES

Figure 1.1 Smart grid components ;FACTS ’flexible AC transmission systems’ ;CRAS ’cen-
tralized remedial action scheme’; [1]. 3

Figure 1.2 Peak clipping. 5

Figure 1.3 Valleys filling. 7

Figure 1.4 Load shifting. 7

Figure 3.1 Peak and valley period for a battery sited with a 1.6 kW PV panel. 26

Figure 3.2 The study system for BESS with utility. 34

Figure 3.3 Load profile for a day. 35

Figure 3.4 Electricity price for a day. 36

Figure 3.5 Generator dispatch level; five switchable loads are considered; penalty of switch-
ing off: $1 for 3 kW. 38

Figure 3.6 BESS power and energy level; five switchable loads are considered; penalty of
switching off: $1 for 3 kW. 40

Figure 3.7 BESS power and energy level; ten switchable loads are considered; penalty of
switching off: $1 for 3 kW. 41

Figure 3.8 Switchable load effect on load profile; five switchable loads are considered. 42

Figure 3.9 Switchable load effect on load profile; ten switchable loads are considered. 42

Figure 3.10 Switchable load status; five switchable loads are considered. 43

Figure 3.11 BESS power and energy level in demand side applications. 45

Figure 3.12 Purchased power versus the scheduled power in demand side applications. 46

Figure 4.1 The study system of thermal model. 50

Figure 4.2 The study system of HVAC with power grid. 57

Figure 4.3 Energy price. 58

v



Figure 4.4 Ambient temperature. 59

Figure 4.5 Loads profile comparison between the base study and case-A. 60

Figure 4.6 Loads profile comparison between case-A and case-B. 61

Figure 4.7 HVACs behaviors considering comfort/cost trade-offs case-C1. 62

Figure 4.8 HVACs behaviors considering installing BESS case-D3. 64

Figure 5.1 The HVAC model. 68

Figure 5.2 PV-output of a random day. 70

Figure 5.3 Histogram of PV-output at 12 pm based on three months’ data. 70

Figure 5.4 Tree scenarios. 71

Figure 5.5 Flowchart of strategy-1. 80

Figure 5.6 Flowchart of the strategy-2. 81

Figure 5.7 The study system of HVAC with PV and power grid. 81

Figure 5.8 (a) Lower and upper bounds of strategy-1 for a small case; (b) lower and upper
bounds of strategy-2 for a small case. 82

Figure 5.9 Energy price and ambient temperature of 8 hours (32 periods). 83

Figure 5.10 (a) Lower and upper bounds of strategy-1 for a large case; (b) lower and upper
bounds of strategy-2 for a large case. 85

Figure 5.11 HVAC on/off schedule and temperature. 86

Figure 5.12 PV output power, battery power, battery energy and purchased power for two
extreme cases. 87

Figure 5.13 PV output power, battery power, battery energy and purchased power for two
extreme cases when battery price is low. 88

vi



ABSTRACT

This research aims to develop solutions to relieve system stress conditions in electric grids. The

approach adopted in this research is based on a new concept in the Smart Grid, namely demand

response optimization. A number of demand response programs with energy storage systems are

designed to enable a community to achieve optimal demand side energy management.

The proposed models aim to improve the utilization of the demand side energy through load

management programs including peak shaving, load shifting, and valley filling. First, a model is

proposed to find the optimal capacity of the battery energy storage system (BESS) to be installed in

a power system. This model also aims to design optimal switchable loads programs for a community.

The penetration of the switchable loads versus the size of the BESS is investigated. Another model

is developed to design an optimal load operation scheduling of a residential heating ventilation and

air-conditioning system (HVACs). This model investigates the ability of HVACs to provide optimal

demand response. The model also proposes a comfort/cost trade-offs formulation for end users. A

third model is proposed to incorporate the uncertainty of the photovoltaic power in a residential

model. The model would find the optimal utilization of the PV-output to supply the residential

loads.

In the first part of this research, mixed integer programming (MIP) formulations are proposed

to obtain the optimal capacity of the (BESS) in a power system. Two optimization problems are

investigated: (i) When the BESS is owned by a utility, the operation cost of generators and cost

of battery will be minimized. Generator on/off states, dispatch level and battery power dispatch

level will be determined for a 24-hour period. (ii) When the BESS is owned by a community

for peak shaving, the objective function will have a penalty component for the deviation of the

importing power from the scheduled power. MIP problems are formulated and solved by CPLEX.

vii



The simulation results present the effect of switchable load penetration level on battery sizing

parameters.

In the second part, a mixed integer programming (MIP) based operation is proposed in this

part for residential HVACs. The objective is to minimize the total cost of the HVAC energy con-

sumption under varying electricity prices. A simplified model of a space cooling system considering

thermal dynamics is adopted. The optimization problems consider 24 hour operation of HVAC.

Comfort/cost trade-off is modeled by introducing a binary variable. The big-M technique is adopted

to obtain linear constraints while considering this binary variable. The MIP problems are solved by

CPLEX. Simulation results demonstrate the effectiveness of HVAC’s ability to respond to varying

electricity price.

Then, in the final part of this research, two Benders Decomposition strategies are applied to

solve a stochastic mixed integer programming (MIP) formulation to obtain the optimal sizing of a

photovoltaic system (PV) and battery energy storage system (BESS) to power a residential HVACs.

The uncertainty of PV output is modeled using stochastic scenarios with the probability of their

occurrence. Total cost including HVAC energy consumption cost and PV/battery installation cost

is to be minimized with the system at grid-connected mode over eight hours subject to a varying

electricity price. The optimization problem will find the optimal battery energy capacity, power

limit, number of PV to be installed, and expected HVAC on/off states and BESS charging/dis-

charging states for the next eight hours. This optimization problem is a large-scale MIP problem

with expensive computing cost.
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CHAPTER 1

INTRODUCTION

Several developments in the power and energy industry have been increasingly growing recently

to face the challenges arising from the increased power demand by the industrial, commercial

and residential loads. Any mismatch between the power demand and power supply can create

many difficulties to the power utilities. Smart Grid technology is considered the most important

one between those developments which aim to help mitigate those challenges. Smart Grids have

provided many opportunities and created on the other side many challenges regarding the power

systems security and reliability and efficient operation [1, 2, 3, 4]. Smart Grid simply is a vision that

can make effective integration between transmission networks, distribution networks, and various

distributed energy sources. Smart Grid accomplishes this integration using intelligent substation

and distribution equipment, frequency monitoring devices, and smart sensors. At the customer

level, Smart Grid implement intelligent control strategies for operation smart home appliances.

One of the smart grid’s components is renewable energy sources. Recently, the renewable energy

sources have been increasingly growing and penetrating the electric grids. Most of those sources are

small decentralized units having variable sizes and connected to power grids. This penetration can

threat the reliability of the power grid as its uncertain generation may cause imbalance between

supply and demand. The grid operators must ensure to make a backup reserve available in case

of emergencies. Therefore, the investments for energy storage systems have been growing and

becoming an important part of any smart grid. Some energy storage technologies include flywheel,

pumped storage water plants, or compressed air storages. Integrating those technologies with smart

grids can mitigate the power fluctuation that could cause serious problem to grid stability. Demand

Side Management (DSM) is another function that can be achieved by smart grids. Smart home,

1



smart appliances, and smart meters can help manage loads by shaving loads during the peak hours

or by shifting them from peak hours to off-peak hours [5, 6, 7].

1.1 Background

1.1.1 Smart Grid

As stated by the DOEs general report, The Smart Grid: An Introduction, ’a smart grid uses

digital technology to improve reliability, security, and efficiency of the electric system from large

generation and delivery systems to electricity consumers and a growing number of distributed-

generation and storage resources’ [2].

The Energy Independence and Security Act of 2007 has given more descriptions about the Smart

Grid. Based on these descriptions, Smart Grid can be described as a combination of technologies

and strategies that can modernize the power system grids. It can improve several functions such as

monitoring, protecting and operating and controlling optimally. It can integrate various parts of the

electricity network to enhance the overall performance. All grid levels, generation, transmission,

distribution, and customers, can collaborate via many components that Smart Grids adopt and

deploy throughout its coverage areas [3].

Smart grids offer many advantages such as: two-way communications, advanced controls, mod-

ern sensors, micro-grids and two way power flow. Changes have to be made in the production,

distribution, and consumption of electricity, in order to keep up with increased demand. Econom-

ically, the electricity industry is one of the largest industrial sectors in the U.S, with the value of

assets in excess of trillions of dollars. The number of utilities in the US exceeds 3,273, and provides

electricity to over 144 million customers [3], [4],[5]. The primary goal of these utilities is to provide

reliable and efficient electricity to consumers. Even with the highest power quality, the direct and

indirect losses attributed to power interruptions, voltage sags, surges, etc. are tremendous [5].

Smart grids focus on introducing communication to all components of the grid. If everything is

communicating, energy efficiency can be maximized. In addition, a smart grid expands on the ways

that power is routed through the grid, and ultimately adjusts pricing of the energy used during

peak hours. In essence, DSM is only possible if a Smart Grid system is implemented.
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Figure 1.1: Smart grid components ;FACTS ’flexible AC transmission systems’ ;CRAS ’centralized
remedial action scheme’; [1].

1.1.1.1 Smart Grids Goals

• Providing a model that can allow users to provide new services into the market.

• Establishing a feasible economical model that can provide keys to renew the power grids.

• Maintaining the grid reliability and ensuring its security.

• Providing a model that can support a liberalized market.

• Establishing a model that ensures great renewable energy sources integration.

• Ensuring the best utilization of current power generation.

• Establishing a model that considers the environmental impact.

• Creating a model that encourages more participation from the demand side.

1.1.2 Demand Side Management (DSM)

Utilities always encourage consumers to improve the pattern of their electricity usage. Utilities

plan, implement and monitor all those operation activities that can ensure reliable service and

encourage customers to participate in programs that help them modify their usage. Those programs

are called Demand-side management programs (DSM). Several methods can be used to encourage

consumers to participate and be more effective in those programs. Financial incentives method is
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one tempting way that can make consumers reduce their usage during the peak hours or to shift

their usage to later hours which would result in reducing their energy bills or making some money.

Utilities also reach out their consumers by through educational programs that can make behavioral

change to use electricity. Therefore, utilities do not expect that total energy consumption would

be decreased, but they expect they can shift loads from peak hours to off-peak times and this can

fill up the valley periods during the day. This modification can help utilities achieve one of the

ultimate goals the DMS programs which is to reduce the investment in or defer the need to building

more power plants, transmission lines, and distribution networks. A very simple example is the

battery energy storage systems usage. These systems can be used to store the energy during the

off-peak hours and discharge during peak hours to meet the demand. Today, DSM programs are

even more effective in balancing the mismatch between the demand side and supply side in those

networks where the renewable energy resources are heavily penetrating and generating intermittent

power. Usually DSM is accomplished by various strategies. Two basic strategies are: Developing

energy efficient products and systems in order to reduce energy consumption. Load profile shaping

is another strategy that can manage the demand and plan the operation in order to better utilize

all utility components.

1.1.2.1 Energy Efficiency

Energy efficiency means using less energy without affecting or reducing the service. It is one

of DSM aims and can be achieved through using specific efficient appliances, systems, or end-user

devices. Energy efficiency strategy can reduce the consumer consumption without even taking

consideration of the time during the day or the night and it can induce savings. Some examples of

energy efficiency can be seen with the HVACs loads. Those systems can be manufactured with high

efficient components and equipped with advanced control methods. The buildings can be efficiently

designed with more efficient material including glass window and walls insulations. This can help

HVACs to use less energy while maintaining the required service without any change.
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Figure 1.2: Peak clipping.

1.1.2.2 Load Management (Demand Response)

Load management programs have been increasingly growing and in some cases, they can be

called Demand Response programs (DR). The main goal of those programs is to manage the power

on the demand side via implementing various economic methods. When implementing those pro-

grams, the result can be seen in the shape of the load profile [5]. It can be applied at different scales

either small or relatively large such as a large community or a region. The demand consumption

will be optimized to improve the system load factor. The definition of the load factor is the ratio of

the average demand during a defined period over the maximum demand during that defined period.

This ratio is between 0 and 1 and the greater this value is, the better the demand management

plan is implemented. Therefore, when the load factor value is 1, it means that value is the best.

However, this is still impossible in practice. When the load factor value is low, it indicates that

there would be great fluctuations in the load profile and that is not preferred by utilities as it will

increase their operation costs. Therefore, utilities use several methods that can help improve the

load factor and various measures to ensure the grid is secure, reliable and stable.
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1. Peak shaving:

This technique is one of the more traditional forms of load management, it helps the grid

operator to shave the peak load by switching off interruptible loads during peak load periods

during the day. The most common loads included in the interruptible loads are the controlled

thermostatically loads that can be directly controlled by the grid operator or the aggregator.

Utilities implementing this practice try to gain a direct control over their customers thermo-

statically controlled load. The load profile will be affected by this practice and the result of

it is shown in Fig. 1.2. Recently, this practice has been a popular method for many utilities

when they are trying to achieve great economic dispatch and can help them avoid operating

those expensive units to just meet the demand during the peak times. This practice can

also be used by those utilities which are not having enough generation to meet the maximum

demand during the peak times.

2. Valley filling:

This technique is also considered as one the common practices used by utilities to achieve

great load management. Usually, the daily load profile would show that there are some

periods where is less than the daily average demand. Those periods are still costly as the

utilities still run their units as they will not simply switch-off those units during those periods

and switch them on during the peak periods. The starting-up and shutting-down of units is

costly, therefore, the utilities prefer to fill up those periods by increasing the demand by either

encouraging people to plan for their usage during those periods. This can be done through

making a dynamic energy price that can be high during the peak hours and low during the

off-peak hours. Some loads that consumers can plan to use during off-peak periods are water

heaters, dish washers, washing machines, or dryers. The load profile will be affected by this

practice and the result of it is shown in Fig. 1.3.

3. Load shifting:

This technique is another practice utilities use to achieve great load management. This

practice is a combination of both peak shaving and valley filling practices. Here, consumers

6



Figure 1.3: Valleys filling.

still use the same daily consumption, however, they need to change their usage pattern. They

will shift their usage to be during the off-peak hours instead of peak hours. Utilities can

achieve this by creating demand response programs that allow customers to participate and

get some incentives or by implementing a dynamic energy price that can make customers

change their usage pattern to avoid paying more money. The shape of a load profile using

load shifting techniques is given in Fig. 1.4.

Figure 1.4: Load shifting.
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1.2 Energy Storage System

Energy storage has been used for decades in the United States utility grid and now integration

of renewables is creating a need for more distributed storage energy. Also, the recent advances

in storage technology have led to wider deployment of storage technologies in todays electricity

networks. Based on A report released in December 2013 by the United States Department of

Energy, at present, the U.S. has about 24.6GW (approx. 2.3 % of total electric production capacity)

of grid storage. Europe and Japan have notably higher fractions of grid storage.

1.2.1 Energy Storage and the Smart Grid

A great smart grid must be featured with reliability and security at high level. It must consider

all variables and dynamics that can affect demands side or generation side. To develop more

intelligent grid, it is really crucial to handle the balancing challenge between demand side and

supply side carefully. A smart grid must consider all variables associated with operation and control

of the supply sides including the growing renewable energy sources, and all variables associated with

the implementation of the demand response programs in the demand side. The balancing challenge

can be tackled by utilizing amount of energy storage units throughout the smart grid.

1. Peak clipping in Low Voltage (LV) grid:

Energy storage systems can be used to store the energy during the off-peak hours when the

energy price and demand is low; then, it can dispatch power during the peak hours when the

energy price and the demand is high. This can be implemented in the low voltage networks

and can help the system operators and utilities to defer building power plant and transmission

lines.

2. Load shifting in LV grid:

Energy storage systems can allow grid operators to shift loads during anytime the grid could

go through any overloaded event, and this can this can mitigate and reduce the probability

that fatal faults can occur and produce unwanted damage to the power grid devices.
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3. Integration of renewable energy into the grid:

Energy storage systems can be integrated with a renewable source to solve the intermittent

issue and to form a remote area power supply. It can allow the grid operator to minimize

the fluctuation of the supply resulting from faults or from the unreliable renewable sources.

This can also give the grid operators more flexibility to control the voltage level and make the

grid more stable. This function can help the system operators and utilities to defer building

power plant and transmission lines.

4. Frequency regulation:

Due to the increasingly growing renewable generation and the nature of uncertainty associated

with such sources, the grid frequency is highly expected to be instable in case that the grid

is not prepared for such penetration. When utilized with grids, the energy storage systems

can ensure the availability of reserve power generation that can help mitigate any frequency

instability events. Therefore, the energy storage systems are considered to be a great source

to allow the grid operator to control the frequency within the defined limits.

5. Voltage control:

The voltage level of the grid must be maintained with a specific limits and any instability could

lead to serious and fatal faults. The energy storage systems can achieve great performance

controlling the voltage level by storing the energy during the time when and voltage is high

and releasing it during the time when voltage level is low.

1.3 HVACs Loads

The main characteristic of HVACs loads is ability to work like energy storage systems. Here

the main objective of using HVACs loads in DSM is to switch those loads on and store the thermal

energy during off-peak hours and switch them off during the peak hours and get benefits of the

thermal stored energy. Aggregating a large number of those unites can benefits the grid to achieve

a great load management shaping the load profile using any technique of the above mentioned.
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1.4 Problem Identification

Electricity supply and demand must be balanced all the time in an electricity grid. Failures

within the grid, instability or sever voltage fluctuations are consequences for any significant im-

balance between supply and demand. The imbalance could occur because of shortage in supply

side. In addition, with the increasing and rapid growth in renewable resources and due to their

uncertainty nature, it is highly expected to observe imbalance if the utilities are not taking the

necessary precautions of dealing with such uncertain variable sources. Therefore, utilities always

optimally size their generation to meet and match the peak demand plus the required spinning

reserve to ensure more reliability. In some cases the peak demand period is short; however, the

utilities still have to meet this demand to avoid any imbalance. Due to the high costs associated

with starting-up and shutting-down generation units, utilities are forced to keep some units running

but generating their minimum output during the periods when the demand is low. Utilities always

try to find solutions to minimize the total operating costs by determining the optimal schedule for

dispatching the generation units. Another solution for this problem is load shedding and paying

penalties to consumers in order to reduce the peak demand. Utilities may also consider other

solutions by utilizing energy storage systems to store energy during the off-peak hours where the

demand is low whereas supply is excessive and then dispatch it when during the peak hours when

the demand is high. Utilities may also investigate creating demand response programs that can

allow customers to participate by modifying their usage pattern or allowing the utilities to control

over their loads such as HVAC loads. Customers can get engaged in demand response programs

such as incentive based programs where they receive money for switching off their loads during

specific events or price based programs where the utilities use pricing mechanism depending on the

supply and demand quantity.
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1.5 Scope of Work

1.5.1 Energy Storage System Planning

The objective here is to find the optimal size of the energy storage system to be installed in

utility to minimize the total operating cost while meeting all load demand considering that the

utility has the option to purchase power from another grid at varying energy price.

1.5.1.1 Tasks

1. Energy Storage System Applications in Utilities (Supply-Side) The Objective here is to find

the optimal size of the energy storage system to be installed in utility to minimize the total

operating cost while meeting all load demand considering that the utility has the option to

purchase power from another grid at varying energy price

(a) Determine the optimal unit commitment schedule considering the quadratic cost function

of the thermal generating units and the associated costs with starting-up and shutting-

down of the units.

(b) Determine the optimal size of the energy storage system and the optimal charge/dis-

charge power schedule

(c) Determine the optimal purchased power which can be imported from another grid

(d) Determine the optimal number of the interruptible loads and the optimal time they

would be interrupted.

2. Energy Storage System Applications in Communities (Demand-Side) A Community can par-

ticipate in Demand Response program by being committed to purchase constant power for

all periods of the day from the grid at competitive price. The community will pay a penalty

for any deflection from that constant power. Now, the objective is to minimize the total cost

paid by the community to meet its demands which is varying throughout the day.

(a) Determine the constant power which can be purchased from the grid.
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(b) Determine the optimal size of the energy storage system which can be installed in the

community and determine the optimal charge/discharge power schedule.

(c) Investigate the effects of different amounts of penalties on the optimal size of the battery

and the total cost.

1.5.2 Modeling HVACs for DSM

Electricity service providers consider demand response (DR) and DSM programs to better

manage the electricity usage patterns of customers. The biggest percentage of electrical loads of

most commercial facilities, such as large office buildings, hotels, etc. is comprised of the lighting and

HVACs. Here, the objective is to investigate the potential benefits to either utilities or consumers

from optimizing the operation of HVACs

1.5.2.1 Tasks

1. Develop mixed integer programming to find the optimal operating schedule of HVACs in order

to minimize the total operating cost.

2. Investigate the response of HVACs loads when utilities aim to shave peak demand.

3. Investigate the effect of adding battery bank to the system which can store energy from the

grid and supply it to HVACs when needed.

4. Adjust the formulation to provide optimal comfort/cost trade-offs for the resident based on

the varying prices of the energy.

1.5.3 Operation Considering Stochastic Renewable Energy Sources

HVAC loads account for a large portion of the peak loads that could reach to 40%-60% of the

loads in commercial and residential buildings. Also during the day time, there is much of unex-

ploited solar energy that could be utilized to enhance DSM functions. Therefore, it is essential to

use Photovoltaic cells (PV) to harvest the sun energy and convert it into electricity that can power

the HVAC units. However, the stochastic nature of intermittent PV output complicates the inte-
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gration of operation and planning purposes. Here, the objective is to address the uncertainty issues

which are associated with the PV-output and to investigate the potential benefits of optimizing

PV-BESS to provide HVACs with power.

1.5.3.1 Tasks

1. Address the uncertainty issues of PV-output through developing different PV-output scenarios

using real world data.

2. Develop Benders Decomposition formulation for solving a Stochastic Mixed Integer Program-

ming to find the optimal size of PV-BESS considering purchasing power from the grid at a

varying energy price.

3. Determine the optimal operating schedule status ON-OFF of HVACs

4. Determine the optimal Charge/Discharge schedule of PV-BESS.

5. Compare the results of the stochastic models to the results of the deterministic models.
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CHAPTER 2

LITERATURE REVIEW

2.1 Research on Demand Response Applications with Storage Energy

Authors in [8] have presented a sizing methodology based on peak shaving similar as the indus-

try practice illustrated in Fig. 1.2. In [9], Monte Carlo simulation methods are used to find the

suitable size for a BESS while meeting the demand and considering outages of generators. Com-

putational simulations were used in [10] to find the optimal size of battery systems for mitigating

the fluctuations of a PV power plant output. Optimization problems related to a battery energy

storage system (BESS) operation have been formulated for BESS operation. For example, in [11],

a mixed integer linear programming was introduced to find the optimal operation scheduling of a

BESS in order to reduce the effect of intermittence of the renewable generation units. The size

of the battery is assumed known and the objective function does not include battery cost. An

optimization problem to find 24-hour dispatch pattern for a flow battery is presented in Reference

[12]. The flow battery is used for peak shaving and the objective function is the sum of the power

deviation between net load profile and the scheduled power. The optimization program considers

battery constraints but does not consider other decision variables. Variety of other optimization

methods can also be found in the literature. In [13] and [14], dynamic programming was used to find

the optimal size of the BESS in a power system. In [15], linear programming was used to optimize

the energy storage dispatch schedule. Particle swarm optimization was used in [16] to determine

the optimal schedule a BESS dispatching for an end user consuming energy at a varying price and

having a wind power system. In [17], the authors developed a model to determine the optimal

operating schedule for energy storage systems. They used a method that combines the genetic

algorithm and linear programming. Many problems related to the scheduling of the charging and
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discharging of an ESS have been studied recently [18, 19, 20, 21]. Various optimization techniques

can be applied to the operation of BESS. The most frequently used method is dynamic program-

ming, which was used by the author in [22]. They tried to minimize electricity cost for an BESS

with a given battery capacity, without unnecessarily reducing battery life. The author in [23] aimed

to minimize the capital cost of an BESS subject to user demand and prices, as a Markov decision

process, which can be solved using dynamic programming. In [24], the author addressed the optimal

BESS control problem from the point of view of a utility operator and solved the off-line problem

over a finite period by dynamic programming. In [25], the author investigated stochastic dynamic

programming for energy management of a hybrid BESS for electric vehicles. They aimed to control

the power flow to the BESS online, while taking into account the stochastic influences of traffic

and the driver. The author in [26] applied adaptive dynamic programming to the management of

a residential BESS, with an emphasis on domestic electricity storage systems. Their scheme was

designed to learn during operation as the environment of the BESS changes unpredictably. While

those paper investigated the optimal scheduling for BESS charging-discharging, they did not con-

sider the impact of the battery efficiency. In that paper, we investigated the impact of the battery

charging and discharging efficiencies by formulating mixed integer linear programming model and

implementing big-M technique to decompose the battery dispatching in two variables representing

charging power and discharging power instead of considering only one variable denoting the battery

in charging mode when that variable is positive and in discharging mode when it is negative.

2.2 Research on Demand Response Applications with Residential Loads

Regarding HVAC optimal operation models, several models have been developed to determine

the potential benefits when implementing the demand side management and demand response

strategies. Authors in [27] proposed an analysis for demand response that considers modeling loads

as single components rather than lump model. They argued that when considering loads as single

components, this would give more realistic operation for some complex components which have

so complicated operational constraints. Therefore, the authors developed a dynamical model for

HVAC loads based on simulations and performance tests on an actual unit. The HVAC parameters
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are collected based on historical data. Those models are used to investigate the impacts that HVAC

loads can provide to demand side management programs. Authors in [28] proposed an algorithm

that can help demand response programs aggregators automatically schedule the energy consumed

by thermostatically controlled loads and make better decisions to dispatch their events. The authors

used Karush Kuhn Tucker (KKT) conditions to model the optimization problem. Here, the authors

did not consider practical operating constraints when modeling HVAC models. This study did not

investigate the impacts of the optimal scheduling on the demand response or on the consumers

comfort settings. In [29], the authors have investigated a design of a residential HVAC system

whose objective function is to respond to energy received from the utility to determine an optimal

plan for trading off between comfort and cost. They used a stochastic dynamic programming to

develop an HVAC control strategy where it can permit the controller to make the best decision

responding to varying power prices. Then, the thermal dynamics of the HVAC system and the house

were represented and simulated using physics-based models to be more practical for the system

control purposes of the residential HVAC system. Finally, the economic effects of this trade-off

formulation were investigated to explore their feasibility. In [30], the possibility that aggregating

a large number of HVAC loads can provide intra-hour load balancing services was investigated

using a direct load control algorithm. In [31], a linear-sequential-optimization-enhanced, multiloop

algorithm was proposed to solve the appliance commitment problem concerning the thermostatically

controlled household loads. Electric water heater was modeled to simulate those loads. In [32],

the authors investigated the efficiency of a hybrid system combining renewable energy source and

battery system to power a controllable HVAC load. They used a genetic algorithm approach to

minimize the cost and increase the efficiency.

2.3 Research on Demand Response Applications with Hybrid PV/Energy Storage/H-

VAC System

Addressing the issues of uncertainty of renewable energy has been studied in the literature, e.g.,

[33, 34, 35, 36]. In the aforementioned papers, optimal design and operation of wind/solar hybrid

systems is discussed. In [32], the authors investigated the feasibility of meeting controllable HVAC
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loads by a hybrid energy system combining renewable energy sources and battery energy system.

This study did not consider on/off status. To address uncertainty, stochastic programming problems

are usually formulated where numerous scenarios with probability are created. This results in large-

scale optimization problems. Heuristic method, e.g., genetic algorithm, is sought in [32] to solve

the problem. A major disadvantage of heuristic methods is that they may arrive at a local optimal

solution. To complicate the matter, when optimal sizing and HVAC on/off are considered, integer

variables are introduced. This makes problem solving a challenging issue. Prior research related

to stochastic MIP can be found in [37, 38]. Branching and bound solving strategy is applied in

[37], while Benders decomposition is applied in [38]. In [37], two-stage stochastic programming is

employed to determine the optimal scheduling problems for processes of chemical batch. In [39],

the authors employed two-stage stochastic programming to determine the optimal offering strategy

plans that wind generation plant should consider for its production. The nature of uncertainty

of wind power and the uncertainty of energy market price was considered. In [40], Time-of-use

(TOU) rates are designed to find the optimal demand response programs options. The authors

used two-stage stochastic MIP to accomplish the study. In literature, there are several studies that

investigated the battery scheduling problems. In [41], a deterministic mixed integer programming

is used to develop an optimal charging schedule by solar panels. In [42], the authors developed an

optimal discharging schedule for battery system based on a decision-making algorithm. Commercial

solvers such as CPELX or Gurobi are usually adopted. However, very long computing time is

expected. For example, in [36], the model was run using 4 parallel CPU threads on a 256 GB RAM

server running GAMS 23.0.2 and CPLEX 11.2.1 and the maximum execution time is 10 hours. The

second option is heuristic methods. Heuristic methods, e.g., genetic algorithm [32], has the similar

scalability issues. The third option is to use commercial solvers through customized algorithm. For

example, branching and bound solving strategy is applied in [37] while Benders decomposition is

applied in [38]. Compared to branching and bound method, Benders decomposition is a known

efficient algorithm to handle large-scale mixed-integer problems. Benders decomposition has been

applied in many power system applications, e.g., unit commitment problems considering wind [38] or

transmission constraints [43], transmission planning considering wind [44]. The essential technique
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is to decompose decision variables into multiple sets [45], e.g., a set of mixed integer variables and

a set of continuous variables. For each set of variables, optimization solving will be conducted.

2.4 Research on Large-scale MIP Solving

Stochastic Mixed Integer Programming problem is considered one of the Large-scale optimiza-

tion problems. Those Large-scale optimization problems are investigated in the literature review

widely using different methods. Some of these methods are heuristics that have been applied to

large scale problems to determine different objectives. In [46], the author applied simulated anneal-

ing to determine the optimal size of a PV/wind/ hybrid energy system with battery storage. In [47]

the author applied genetic algorithm to determine the optimal power generated from a renewable

generation system in an isolated island considering the nature of the uncertainty. In [48], Tabu

search method was used to find the optimal size of small hybrid power systems. A major disadvan-

tage of heuristics methods is that they may reach to local optimal solution and here the solution

quality is not. That may lead to adopt a solution but it is not the optimal one. Those problems

can still be formulated and solved using commercial MIP. However, those solvers are available for

many researchers, need large computers, and must be paid at high cost. There are other methods

which are more applicable and used within the literature. Those methods depend on the cutting

plan algorithms. In [49] , algorithms based on Benders decomposition method) are considered to

be the most effective methods to be applied and used to tackle various SMIP problems. An en-

hancement and improvement strategies have been applied to those algorithms to reach to better

solution. Pareto-optimal cuts in [50] are among those enhancements. In [51], the author modified

the previous methods and introduced more efficient optimality cuts with higher quality. In [52],

another modification is introduced to give more efficient optimality cuts. Here, a strategy to create

maximum feasible region for multi subproblems and that can reduce the number of feasibility cuts

generated in Benders algorithm.
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2.4.1 General Benders Decomposition

In this section the structure of the general bender decomposition is shown. Model.2.1 describes

the original problem

min
x,y

cTx+ qT y (2.1)

s.t. Fx+Wy ≤ b

x ∈ X

y ≥ 0

c,x are n1 vectors; q,y are n2 vectors;b is m vector; F is an (m×n1) matrix; W is an (m×n2) matrix.

Now, the original problem can be decomposed in two problems. The problem(2.2) describes the

master problem:

min
x

Zlower (2.2)

s.t. Zlower ≥ cTx

x ∈ X

The subproblem structure is described by primal and and dual structures. The primal structure is

described by (2.3)

min
y

qT y (2.3)

s.t. Wy ≤ b− Fx

y ≥ 0

while the dual structure is described by (2.4)

max
u

[−(b− F (x))Tu] (2.4)

W Tu ≥ −q

u ≥ 0
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For general bender decomposition, (2.2) is solved to find the optimal solution x and then proceed

to (2.3) to solve it with the obtained optimal values of x in (2.2). Here, the subproblem could be

infeasible. In this case, a feasibility cut is generated and added to the master problem. The steps

to do that are as the following:

min
y,s

1T s (2.5)

Wy + 1s ≥ b− Fx

s ≥ 0

For generating this cut, ur,the dual associated with this problem, must be calculated. The general

form of this cut is:

[(b− Fx)Tur] ≤ 0 (2.6)

In the case, the problem is feasible, then Zupper is calculated and the convergence behavior is tested.

If the convergence is not approached, then an optimality cut is generated and added to the master

problem. The optimality cut is generated from the following form:

Zlower ≥ cTx+ (b− Fx)Tup (2.7)

In the following section, a simplified example illustrated in [53] is introduced to give the reader

more understanding about applying Benders decomposition algorithm.

2.4.2 Benders Decomposition Example

In this example a general Benders decomposition is applied to Security Constraint Unit Com-

mitment (SCUC) problems in power system. SCUC can be decomposed in two separate structures.

The first structure is a mixed integer programming problem and the second structure is linear

programming. Those structures are called master problem and subproblem structures. The master

problem is solved first and its optimal solution will be used to solve the subproblem and the con-

vergence is tested. In case the subproblem is infeasible, then an infeasibility cut is generated and
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added to the master problem. In case the subproblem is solved but there is no convergence, then

an optimality cut is generated and added to the master problem. This process will continue until

the convergence is achieved. The procedures to solving this problem are explained in details.

2.4.2.1 Objective Function

min
Pi,t,αi,t,βi,t

T∑
t=1

g∑
i=1

Ci(Pi,t) + stiαi,t + sdiβi,t (2.8)

2.4.2.2 Constraints

1. Power balance
Ng∑
i=1

Pi,t = Dt (2.9)

2. Generators Limits

P iIi,t ≤ Pi,t ≤ P iIi,t (2.10)

P i refers to the minimum power output of the i− th generator.

P i refers to the maximum power output of the i− th generator.

3. Start-up/Shut-down limits

stiαi,t − sdiβi,t = Ii,t − Ii,t−1 (2.11)

Pi,t refers to power dispatched by the i− th generator at t− th hour.

αi,t is a binary variable to equal 1 if i− th generator is started at t− th hour.

βi,t is a binary variable to equal 1 if i− th generator is shut down at t− th hour.

Ii,t is a binary variable to equal 1 if i− th generator is ON at t− th hour.

Ci refers to cost of producing 1 kW from the i− th generator.

sti refers to cost of starting the i− th generator.

sdi refers to cost of shut down the i− th generator.

4. Network constraints

−Fk,m ≤ fkm,t ≤ Fk,m (2.12)
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Fk,m refers to the maximum line capacity from bus k to bus m.

fkm,t refers to the power flow on the line from from bus k to bus m at t− th hour.

2.4.2.3 Procedures to Solving the Problem

In the first step, we form the master problem and find its optimal solution as follows:

min
αi,t,βi,t

Zlower (2.13)

subject to:

Zlower ≥
T∑
t=1

g∑
i=1

stiαi,t + sdiβi,t (2.14)

stiαi,t − sdiβi,t = Ii,t − Ii,t−1 (2.15)

constraint(2.15) ensures that any unit that is online can be shut down and can’t be started

up. It also ensures that any unit that is offline can be started up but not shut down where:

αi,t is a binary variable to equal 1 if i− th generator is started at t− th hour.

βi,t is a binary variable to equal 1 if i− th generator is shut down at t− th hour.

Ii,t is a binary variable to equal 1 if i− th generator is ON at t− th hour.

g∑
i=1

Pi,max ∗ Ii,t ≥ Dt +Rt (2.16)

In the second step, we form the subproblem and use the obtained optimal solution for the integer

variables from the master problem to solve and find the optimal solution for the other variables.

There are going to be a subproblem for each hour:

min
Pi,t

w =

g∑
i=1

Ci(Pi,t) (2.17)

Ng∑
i=1

Pi,t = Dt (2.18)

−Pi,t ≤ P iIi,t (2.19)
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Pi,t ≤ P iIi,t (2.20)

−Fk,m ≤ fkm,t ≤ Fk,m (2.21)

In this step, the subproblem could be infeasible when the available power cannot meet the total

demand. In this case, a feasibility cut is generated and added to the master problem. In the

case, the problem is feasible, then Zupper is calculated and the convergence behavior is tested. If

the convergence is not approached, then an optimality cut is generated and added to the master

problem. For the SUCU problem, the feasibility is checked for each hour t. This can be accomplished

by checking if the decision variables made in the master problem can provide enough power for the

demand or not. So, the loss load or the curtailed load is minimized in an optimization model and

if it is greater than zero, that means the decision variables made in master problem are not feasible

for the demand. Now, model 2.17-2.21 can be rewritten as following:

min vt =
∑

rt (2.22)

s.t:
Ng∑
i=1

Pi,t = Dt + rt (2.23)

−Pi,t ≤ P iIi,t (2.24)

Pi,t ≤ P iIi,t (2.25)

−Fk,m ≤ fkm,t ≤ Fk,m (2.26)

We assume that λ and λ are the dual variables associated with constraints 5.11a and 2.25 If vt is

greater than zero then an feasibility cut is generated based on the following:

vt +

Ng∑
i=1

λ.P i(Ii,t − Îi,t)− λ.P i(Ii,t − Îi,t) ≤ 0 (2.27)

If vt equals zero then the problem is feasible and we proceed to the check the optimality problem.

We assume that π and π are the dual variables associated with constraints 5.11a and 2.25. The
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optimality cut is formed as the following

Zlower ≥
T∑
t=1

g∑
i=1

stiαi,t + sdiβi,t +
∑
t

(2.28)wt +

Ng∑
i=1

π.P i(Ii,t − Îi,t)− π.P i(Ii,t − Îi,t)


In the third step, the master problem with the added constraints from step 2 will be solved and

Form the subproblem and use the obtained optimal solution for the integer variables from the

master problem to solve and find the optimal solution for the other variables. There is going to be

a subproblem for each hour.
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CHAPTER 3

BATTERY STORAGE SYSTEMS FOR DEMAND RESPONSE APPLICATION

3.1 Introduction

In this chapter1, A mixed integer programming formulation (MIP) is proposed to obtain the

optimal load operation scheduling of a Residential Heating Ventilation and Air-Conditioning System

(HVAC) to minimize the total cost of the HVAC energy consumption under varying electricity

prices. A simplified model of a space cooling is used while considering the thermal energy. Three

optimization problems will be investigated: (i) When the HVAC is adjusted to respond to the

varying price and satisfying all comfort settings (ii) When the HVAC is adjusted to provide optimal

comfort/cost trade-offs for the resident based on the varying prices of the energy (iii) When a

battery energy storage system BESS is installed and can supply the HVAC with power. HVAC

on/off states, BESS states will be determined for a 24-hour period for each case where it applies.

MIP problems will be formulated and solved by CPLEX. The simulation results present the effect

of HVAC it can have on the load profile such as peak shaving or load shifting. It also presents the

effect of the battery on the total cost of consumption.

Advanced energy storage systems range from flywheel based energy storage to batteries (Lithium

Ion, Nickel Metal Hydride, etc.). Large-scale battery storage is now attracting considerable interest.

For example, Duke Energy installed a 36 MW battery storage system at the 153 MW Notrees wind

power project near Kermit Texas [54] . The important role of a battery energy storage system

(BESS) is listed as follows [55, 56]. (i) A BESS can help eliminate the need for a peaking generator.

A peaking generator is very expensive and is only used when demand is at its highest. (ii) A BESS

can be integrated with a renewable source to solve the intermittent issue and to form a remote area

1This chapter was published Energy Systems, Springer, vol.5, no.4. Permission is included in Appendix B.
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power supply. (iii) A BESS can also provide backup energy when a blackout occurs by pumping

the grid with stored electrical energy.

The size of a BESS is determined by both the power limit (Cb) and the energy limit (Eb). To

determine the size of a BESS, there are couple of ways.In [57], a battery is sited along with a 1.6

kW Photovoltaic (PV) to generate constant output power. The mean value of the PV is first found

for a 24-hour period. The power size of the battery is then determined by the difference between

the maximum PV output or minimum PV output versus the mean value. The energy size of the

battery is determined by integrating the expected battery discharging power over the valley period

or the charging power over the peak period. Fig. 3.1 gives an illustration diagram to show the

valley period and the peak period. The author in [8] presented sizing methodology based on peak
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Figure 3.1: Peak and valley period for a battery sited with a 1.6 kW PV panel.

shaving similar as the industry practice illustrated in Fig. 3.1. In [9], Monte Carlo simulation

methods are used to find the suitable size for a BESS while meeting the demand and considering

outages of generators. Computational simulations were used in [10] to estimate battery capacity

for suppression of a PV power plant output fluctuations.

26



Optimization problems related to a battery energy storage system (BESS) operation have been

formulated for BESS operation. For example, in [11], a mixed integer linear programming was

introduced to find the optimal operation scheduling of a BESS in order to reduce the effect of

intermittence of the renewable generation units. The size of the battery is assumed known and the

objective function does not include battery cost. An optimization problem to find 24-hour dispatch

pattern for a flow battery is presented in Reference [12]. The flow battery is used for peak shaving

and the objective function is the sum of the power deviation between net load profile and the

scheduled power. The optimization program considers battery constraints but does not consider

other decision variables.

Variety of other optimization methods can also be found in the literature. In [13] and [14],

dynamic programming was used to find the optimal size of the BESS in a power system. In [15],

linear programming was used to optimize the energy storage dispatch schedule. Particle swarm

optimization was used in [16] determine the optimal schedule a BESS dispatching for an end

user consuming energy at a varying price and having a wind power system. In [17], the authors

developed a model to determine the optimal operating schedule for energy storage systems. They

used a method that combines the genetic algorithm and linear programming.

The focus of this work is to adopt mixed linear integer programming to solve a battery sizing

problem. Due to the availability of commercial solver such as CPLEX, optimization problems with

a large dimension of decision variables can be solved in a fast way. Therefore, using mixed linear

integer programming, we can make decision for a comprehensive problem. In this work, two types

of applications will be investigated: utility application and demand side application. For each type

of application, optimal size for a BESS will be decided. For the utility side applications, the main

objective is to minimize the total operating cost of the utility considering switchable loads. For the

demand side applications, a community with a 24-hours load profile is considered. The community

purchases scheduled power from the utility and pays penalty if the imported power deviates from

the scheduled imported power. The contribution of this work is twofold:

1. The studied BESS sizing problem is comprehensive and of practice value. This research con-

siders a BESS, generators, controllable loads, and dynamic pricing. Two practical operation
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problems are formulated based on utility point of view to save cost and based on consumer’s

point of view for peak shaving.

2. Mixed integer programming models for BESS sizing are developed and solved. Compared to

many other model formulations [58, 59], where a BESS’s size (power and energy) is treated as

parameters and a battery’s cost is not included in optimization model, in this work, battery’s

power size and energy size are treated as decision variables. Using the developed models,

utilities can make decision to choose a suitable energy and power size for a battery system to

save operation cost while considering cost of battery itself.

The chapter is organized as follows: The optimization model for the utility application is presented

in Section 3.2. The optimization model for the demand application is presented in Section 3.3.

Case studies and numerical examples are shown in Section 3.4. The conclusion of the chapter is

presented in Section 3.5.

3.2 Utility Applications: Minimizing Operation Cost with a BESS and Switchable

Loads

3.2.1 Optimization Problem

The objective function is to minimize the total cost over a horizon N , including cost of the

dispatched power from the generators (Pi), the cost of the imported power from other areas (Pin),

and the cost of the battery to be installed in the system. The battery cost includes cost related to

its converter (power size) and the cost of its storage unit (energy size) [60]. In this research, we

choose β1 = $.20/kW , while β2 = $.25/kWh. The battery cost is expressed as:

β1Cb + β2Eb (3.1)

β1 refers to the cost of 1 kW rating of the BESS;

β2 refers to the cost of 1 kWh rating of the BESS.
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The switchable loads are assumed to have same size and there are Ns of them. Status of the

k − th switchable load at j − th hour is notated by:

Wlk,j =


1 offline

0 online

(3.2)

3.2.2 Decision Variables

In this optimization problem the vector of the decisions variables is as follows:

X = [· · ·Pin,j Pb,j Cb Eb Pim,j Wgi,j Wlk,j · · · ]T (3.3)

The decision variables for the optimization problem are listed as follows:

Pi,j refers to the dispatched power from the i− th generator at the j − th hour.

Pb,j refers to the discharged from or charged to the battery system at the j − th hour.

Pim,j refers to the imported power at the j − th hour.

Cb refers to the power rate of the battery energy system.

Eb refers to the energy rate of the battery energy system.

Wgi,j refers to the binary variable that is equal to 1 if the generator i− th is online and

0 otherwise.

Wlk,j refers to the binary variable that is equal to 1 if the switchable load k − th is offline

and 0 otherwise.

3.2.3 Objective Function

The objective function is as follows:

min

Pi,j , Pb,j ,Wgi,j

Wlk,j , Cb, Eb, Pin,j

N∑
j=1

 Ng∑
i=1

Ci(Pi,j) + λjPin,j +

(
Ns∑
k=1

αWlk,j

)+ β1Cb + β2Eb (3.4)
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Ng refers to the number of generator.

Ns refers to the number of switchable loads.

N refers to the number of hours.

i is the index of the generator.

j is the index of the hours.

k is the idex of the switchable loads.

Ci refers to the quadratic function of the production cost of the i− th generator.

λj refers to the price of the imported power at the j − th hour.

α refers to the penalty for switching switchable loads off.

In this research, the size of a switchable load is 3kW. The penalty of turning off 3kW switchable

load (α) is given as $0.33/kWh. This value is based on the evaluation of the average value of the

electricity and also based on trying different penalty. Given the average electricity is 0.25 cent/kWh,

we choose the penalty to be $1 to turn off a 3-kW switchable load for each hour.

3.2.4 Constraints

The optimization problem is subject to the following constraints:

1. Power balance
Ng∑
i=1

Pi,j + Pb,j + Pin,j = Dj − (

Ns∑
k=1

LsVk,j) (3.5)

Ls refers to the power size of each switchable load.

2. Generators Limits

P iWgi,j ≤ Pi,j ≤ P iWgi,j , (3.6)

P i refers to the minimum power output of the i− th generator.

P i refers to the maximum power output of the i− th generator.
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3. Ramping Constraints The generators outputs are constrained by ramp-up and ramp-down

rates. They also are constrained by startup ramp rates and shutdown ramp rates.

Pi,j ≤ Pi,j−1 +RUiWgi,j−1 + SUi[Wgi,j −Wgi,j−1] + P i[1−Wgi,j−1] (3.7)

Pi,j ≤ P iWgi,j+1 + SDi[Wgi,j −Wgi,j+1] (3.8)

Pi,j−1 − Pi,j ≤ RDiWgi,j + SDi[Wgi,j−1 −Wgi,j ] + P i[1−Wgi,j−1] (3.9)

RUi refers to ramp-up rate.

RDi refers to ramp-down rate.

SUi refers to start up ramp rate.

SDi refers to shutdown ramp rate.

4. Minimum Up and Down Time Constraints

j+UTi−1∑
n=j

Wgi,n ≥ UTi [Wgi,j −Wgi,j−1] (3.10)

j+DTi−1∑
n=j

[1−Wgi,n] ≥ DTi [Wgi,j−1 −Wgi,j ] (3.11)

UTi refers to minimum up time of the i− th generator.

DTi refers to minimum down time of the i− th generator.

5. Power rating limits of battery energy system

−Cb ≤ Pb,j ≤ Cb (j = 1, ..., N) (3.12)

6. Energy rating of the battery energy system

Eb ≤ E0 +
n∑
j=1

Pb,j ≤ Eb, (n = 1, ..., N − 1) (3.13)

31



E refer to the minimum energy limit of the battery unit.

E refer to the maximum energy limit of the battery unit.

E0 refers to the initial energy stored in the battery.

7. Imported power limits

P in ≤ Pin,j ≤ P in, (j = 1, ..., N) (3.14)

P in refer to the minimum imported respectively.

P in refer to the maximum imported respectively.

For utility applications, the imported power is limited to 15 kW. The minimum imported

power is zero kW. For the demand side applications, no limit will be imposed.

8. Integer and binary variables

Wgi,j ,Wlk,j ∈ [0, 1] (3.15)

Wgi,j refers to a binary variable and takes either 0 or 1 value.

Wlk,j refers to a binary variable and takes either 0 or 1 value.

3.3 Demand Side Application: Peak Shaving

In this scenario we assume that the BESS is owned by a community. The main purpose of

BESS is peak shaving or to keep the imported power constant. We assume that the community

has no other energy sources but it has a BESS and switchable loads. The optimization problem is

formulated to minimize the cost of power purchasing and penalize any deviation from the scheduled

power. The scheduled power is assumed to be the average load for 24 hours.

3.3.1 Decision Variables

In this optimization problem the vector of the decisions variables is as follows:

X = [· · ·Pin,j Pb,j Cb Eb · · · ]T (3.16)
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j refer to j − th hour and N = 24.

Pb,j refers to the discharged from or charged to the battery system at the j − th hour.

Pin,j refers to the imported power at the j − th hour.

Cb refers to the rating power of the battery energy system.

Eb refers to the rating energy of the battery energy system.

3.3.2 Objective Function

The objective function is to minimize the total cost which is the sum of the cost of imported

power, and the cost of the BESS and the penalty due to imported power deviation from the

scheduled power.

min
Pin,j ,Cb,Eb

N∑
j=1

(
λjPin,j + Penalty(Pin,j − Psch)2

)
+ β1Cb + β2Eb (3.17)

Psch refers to the scheduled power to be purchased by the community.

Penalty refers to the penalty for the deviation from the scheduled power.

3.3.3 Constraints

The optimization problem is subject to the following constraints:

1. Power balance

Pb,j + Pin,j = Dj , (j = 1, ..., N) (3.18)

2. Power rating limits of battery energy system

−Cb ≤ Pb,j ≤ Cb (j = 1, ..., N) (3.19)

3. Energy rating of the battery energy system

Eb ≤ E0 +
n∑
j=1

Pb,j ≤ Eb, (n = 1, ..., N − 1) (3.20)
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Cb refers to the power rate of the battery energy system.

Eb refers to the minimum energy limit of the battery unit.

Eb refers to the maximum energy limit of the battery unit.

3.4 Case Studies and Numerical Examples

Figure 3.2: The study system for BESS with utility.

3.4.1 BESS Applications in Utility Side

The study system is shown in Fig. 3.2. BESS applications in utility side and demand side are

presented in two different cases. To investigate the BESS application in utility side, the utility owns

the BESS. The utility also owns generators. In addition, the utility has interconnections with the

external grid to have power imported. Dynamic price for the imported power is give (Fig. 3.4). The

objective of the utility is to minimize the operating cost and meet the load demands (Fig. 3.3 ). For

the demand side applications, the BESS is owned by the community and the community purchases
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and imports power from the utility at a dynamic price (Fig. 3.4). The load profile is shown in Fig.

3.3. The community, however, does not own any generators. The proposed MIP model is tested
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Figure 3.3: Load profile for a day.

using TOMLAB/CPLEX Package. The studied system shown in Fig. 3.2 consists of six generators,

a BESS, and load demands with profile shown in Fig. 3.3. Price of the imported power from the

external is presented in Fig. 3.4. This price profile is obtained from Ameren Corporation website

[61] for a winter day. The specifications of the generators are presented in Table 3.1 and Table 3.2.

Fuel cost of the generators are calculated using following equation:

Fi = aiP
2
i + biPi + ci. (3.21)

In this case, firstly we present the base scenario where no switchable loads are presented. Then, two

scenarios are considered to investigate the impact of the switchable loads on the BESS. In the first

scenario, penalty is imposed on switching off any switchable load without considering any other

constraints. In the second scenario, constraints are imposed on switchable loads: (i) any switchable
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Figure 3.4: Electricity price for a day.

load must run for at least 19 hours each day; (ii) Once the switchable load is on, it must continue

being on for 6 hours consecutively. We assume that each switchable load is represented by 3 kW.

Therefore, the following constraints must be added to the model:

j+DTk−1∑
n=j

[1− Vk,n] ≥ DTk[Vk,j−1 − Vk,j ], (j = 1, ..., N) (3.22)

DTk refers to minimum up time of the k − th switchable load.

j=24∑
j=0

[1− Vk,j ] ≥Mon, (k = 1, ..., Ns) (3.23)

Mon refers to the minimum number of hours which any switchable load should be on.
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Table 3.1: Specifications of the generators I

Unit ai bi ci P i P i(
$

kW 2h

) (
$

kWh

) (
$
h

)
(kW ) (kW )

1 0.01433 27.8893 118.8206 5 20
2 0.01261 24.6637 118.1083 5 20
3 0.00812 18.1000 218.3350 5 50
4 0.00463 10.6940 142.7348 30 70
5 0.00143 10.6616 176.0575 50 100
6 0.00199 7.6121 313.9102 30 120

Table 3.2: Specifications of the generators II

Unit UT DT SU SD RU RD
(h) (h) (kW ) (kW ) (kW ) (kW )

1 8 6 5 10 5 5
2 8 6 5 10 5 5
3 8 6 10 15 5 10
4 8 6 20 15 10 10
5 8 6 30 20 15 15
6 8 6 30 20 20 20

3.4.1.1 Simulation Results

The three scenarios are compared.

• Base scenario without switchable loads

• With switchable loads and imposed penalty. Five switchable loads are considered.

• With switchable loads, imposed penalty and switchable load constraints. Five switchable

loads are considered.

Fig. 3.5 shows the optimal dispatch of each generator for the three scenarios. While three generators

are not committed, it can be seen that all of the other three generators are committed to dispatch

their maximum limits at the time of the peak loads. Fig. 3.6 and Fig. 3.7 present the battery power

dispatch level and energy level for 24 hours. Positive power means the battery is discharging while

negative power means charging. Comparing the price and load profiles, we can find that during

light load and low price periods, the BESS will get charged while during peak load and high price
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Figure 3.5: Generator dispatch level; five switchable loads are considered; penalty of switching off:
$1 for 3 kW.
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periods, the BESS discharges. In addition, with switchable loads, the charge and discharge levels

of the BESS are less than those without switchable loads. In turn, the energy capacity required for

the BESS is much less. Therefore, presence of switchable loads reduces the size of the battery.

Comparing the case of five switchable loads and ten switchable loads, we can find that with

higher penetration of switchable loads, the size of BESS will be reduced even more.

When the constraints for switchable loads are imposed, the requirement for battery power and

energy size will go slightly up. In terms of optimization problem, imposing additional constraints is

equivalent to reducing the feasible region. Therefore, for minimization problem, the cost will go up.

This additional cost is also manifested in the requirement of increasing battery size. Fig. 3.8 and

Fig. 3.9 show the impact of the switchable loads on the load profile. Both figures demonstrate that

switchable loads are effective to shave peak demand. Fig. 3.9 shows that the higher the penetration

of switchable load, the flatter the load profile becomes. Fig. 3.10 presents the switching status

of five loads. It can be observed that without the minimum on time constraints, there is more

flexibility for switchable loads and more loads are switched off during Hour 20 when the demand

is at its second peak. With the minimum on time constraint imposed, at Hour 20, there are less

loads switched off. Table 3.3 shows the results of different scenarios to investigate the impact of the

switchable loads. It can be found that increasing the number of switchable loads can help reduce

the size the BESS. For example, with five switchable loads, the energy size and the power size can

be reduced by 1/3. With more switchable loads, we see more reduction in size. With constraints

imposed, the requirement for the energy size and the power size is higher. It is found that for the

Table 3.3: Summary of BESS applications in the utility side scenarios

Scenario Ns Cb Eb
kW kWh

Base 0 39.11 265.130
Penalty Imposed 5 24.161 169.130
Penalty Imposed 10 9.161 64.130
Penalty Imposed 14 3.11 19.130

Constraints Imposed 5 27.161 190.130
Constraints Imposed 10 16.447 115.130
Constraints Imposed 14 7.876 55.130
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Figure 3.6: BESS power and energy level; five switchable loads are considered; penalty of switching
off: $1 for 3 kW.
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Figure 3.7: BESS power and energy level; ten switchable loads are considered; penalty of switching
off: $1 for 3 kW.
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Figure 3.8: Switchable load effect on load profile; five switchable loads are considered.
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Figure 3.9: Switchable load effect on load profile; ten switchable loads are considered.
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Figure 3.10: Switchable load status; five switchable loads are considered.
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system studied, with 5% penetration of switchable loads (Ns = 5, each switchable load 3kW), the

size of energy storage can be cut down 30%.

3.4.2 BESS Applications in Demand Side

In this application, a community is purchasing power from the utility at dynamic price given in

Fig. 3.4 in order to meet its demands shown in Fig. 3.3. The community is requested to schedule

a constant power from the grid. A penalty would be imposed on any deviation in the scheduled

power. The power schedule is usually the average of the daily demand.

The most conservative size for a battery system can be obtained by investigating the load

profile for 24 hours. The BESS is used to compensate the variation of load and the imported power

will be kept constant at the average power level. The power size of the BESS is the maximum

difference between load and the average load value over 24 hours. The energy size can be found by

integrating the power difference over a valley filling period. The computing of power and energy

size is demonstrated in the following two equations:

1. Upper Bound on Energy Rating

Ebatt ≤
∫ 24

0
(PDemand − Pave)dt, PDemand ≥ Pave (3.24)

2. Maximum value of charging or discharging power

Cbatt = max {|Pave − PDemand(j)|} , (j = 1, ..., 24) (3.25)

The computed battery size is 510 kWh for total storage and 88 kW for charging and discharging

power.

For the optimization problem, the community will try to minimize the total cost of purchasing

the power, paying penalty and paying battery. Imposing a penalty on the deviation between the

scheduled imported power (288 kW) and the purchased power may have an impact on BESS sizing.

To investigate that impact the latter two constraints are added to the mathematical model equations
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(14)-(18). Different penalties which are $1, $10, and $ 100 have been considered. Table. 3.4 shows

the results of testing each of those penalties. Fig. 3.11 and Fig. 3.12 show that the heavier the

penalty imposed, the less deviation between the purchased and scheduled power. They also show

that the heavier the penalty imposed, the larger the BESS size is required. With a heavy penalty

on imported power deviation, the size of the battery will be close to the most conservative case:

510 kWh and 88 kW. The penalized cost is dependent on the deviation of imported power from

0 5 10 15 20 25
−100

−50

0

50

100

P
 (

kW
)

Dispatching Battery System

 

 

Case−A
Case−B
Case−C

0 5 10 15 20 25
−200

0

200

400

600
Energy Storage System

Time (Hour)

E
(k

W
h)

 

 

Figure 3.11: BESS power and energy level in demand side applications.

the scheduled power. When the penalty is set to $1, the maximum power deviation observed from

Fig. 3.12 is 4%. The size of the battery is reduced about 10%.

At $10 penalty rate, the imported power is already very close to the scheduled power and the

deviation is insignificant. At $100 penalty rate, the deviation is also insignificant. Therefore, the

related component on power deviation in the objective function has negligible effect on the total
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Table 3.4: Summary of BESS applications in the demand side scenarios

Scenario Penalty Cost Cb Eb Min.Pin Max.Pint
$ kW kWh kW kW

Case A 1 76.239 450.295 275.79 293.74
Case B 10 87.010 500.51 286.56 288.6
Case C 100 88.526 506.034 287.98 288.1
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objective function when the penalty rate increases from $10 to $100. This makes the battery power

size and energy size remain almost the same for $10 and $100 penalty.

3.5 Conclusion

This chapter presents MIP problem formulation to find the size of a BESS. The BESS could

be owned by a utility to reduce the operation cost or owned by a community for peak shaving.

Switchable loads are considered in the problem formulation and unit commitment is also considered.

Objective functions, linear constraints for BESS and switchable load constraints suitable for MIP

solving are defined. The optimization problems are solved by commercial tool CPLEX. Case study

results demonstrate the impact of switchable load penetration on BESS size. It is found that for the

system studied, with 5% penetration of switchable loads, the size of energy storage can be cut down

30%. In addition, the size of the energy storage can also be determined based on multiobjective

optimization of imported power deviation and battery cost. If we can tolerate 4% power deviation,

we can cut down the size of a BESS by 10%.
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CHAPTER 4

HVAC AND ENERGY STORAGE SYSTEMS

4.1 Introduction

A mixed integer programming (MIP) based operation is proposed in this chapter1 for residential

Heating Ventilation and Air-Conditioning Systems (HVAC). The objective is to minimize the total

cost of the HVAC energy consumption under varying electricity prices. A simplified model of a space

cooling system considering thermal dynamics is adopted. The optimization problems consider 24

hour operation of HVAC. Comfort/cost trade-off is modeled by introducing a binary variable. The

big-M technique is adopted to obtain linear constraints while considering this binary variable. The

MIP problems are solved by CPLEX. Simulation results demonstrate the effectiveness of HVAC’s

ability to respond to varying electricity price.

Recently, the implementation and development of a Smart Grid [62] has been increasingly

growing and moving toward this technology will bring about notable modifications to the existing

power grids at all its levels. The modifications will mostly occur in transmission and distribution

grids in terms technology and the way those networks will be operated. Utilities and customers will

have chances play an important role in the control of the grid. From utilities sides, they would use

advanced technologies such as smart meters, phasor measurement units, developed communication

tools, demand response program to implement load management techniques to shave peaks or

to shift loads from peak hours to off-peak hours. By accomplishing that, they aim to increase

the grid reliability and security. From consumers side, they will be encouraged to get chances

from participation in the demand response programs. They can receive money by participating

in incentives demand response programs where they are encouraged by utilities to switch off the

1This chapter was published in Power Energy Society General Meeting, 2015 IEEE, July 2015, pp. 15. Permission
is included in Appendix B.
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loads during the peak hours. They can reduce their usage bills by participating price based demand

response programs where the utilities implement a dynamic energy pricing mechanism to be high

during the peak hours and low during the off-peak hours.

Electricity service providers consider emand response (DR) and Demand Side Management

(DSM) programs to better manage the electricity usage patterns of customers [63, 64, 6, 65, 66].

The DR and DMS systems are applied in many cases, especially when the demand for power is more

than the generated power . The biggest percentage of electrical loads of most commercial facilities,

such as large office buildings, hotels, etc. is comprised of the lighting and HVACs [67, 68, 69, 7]

.The U.S. Department of Energy estimates that HVAC loads account for 40% - 60% of the energy

consumption in U.S. commercial and residential buildings [70]. The power consumed by HAVC

loads can be controlled manually by the customers or automatically by the appliances.

Regarding HVAC optimal operation models, several models have been developed to determine

the potential benefits when implementing the DSM and DR strategies. Authors in [27] proposed

an analysis for demand response that considers modeling loads as single components rather than

lump model. They argued that when considering loads as single components, this would give

more realistic operation for some complex components which have so complicated operational con-

straints. Therefore, the authors developed a dynamical model for HVAC loads based on simulations

and performance tests on an actual unit. The HVAC parameters are collected based on historical

data. Those models are used to investigate the impacts that HVAC loads can provide to DSM

programs. Authors in [28] proposed an algorithm that can help demand response programs aggre-

gators automatically schedule the energy consumed by thermostatically controlled loads and make

better decisions to dispatch their events. The authors used Karush Kuhn Tucker (KKT) condi-

tions to model the optimization problem. Here, the authors didnt consider practical operating

constraints when modeling HVAC models. This study didnt investigate the impacts of the optimal

scheduling on the demand response or on the consumers comfort settings. In [29], the authors

have investigated a design of a residential HVAC system whose objective function is to respond to

energy received from the utility to determine an optimal plan for trading off between comfort and

cost. They used a stochastic dynamic programming to develop an HVAC control strategy where
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it can permit the controller to make the best decision responding to varying power prices. Then,

the thermal dynamics of the HVAC system and the house were represented and simulated using

physics-based models to be more practical for the system control purposes of the residential HVAC

system. Finally, the economic effects of this trade-off formulation were investigated to explore their

feasibility. In [30], the possibility that aggregating a large number of HVAC loads can provide

intra-hour load balancing services was investigated using a direct load control algorithm. In [31], a

linear-sequential-optimization- enhanced, multiloop algorithm was proposed to solve the appliance

commitment problem concerning the thermostatically controlled household loads. Electric water

heater was modeld to simulate those loads. In [32],the authors investigated the efficiency of a hy-

brid system combining renewable energy source and battery system to power a controllable HVAC

load. They used a genetic algorithm approach to minimize the cost and increase the efficiency.

This work will investigate the effects that the optimal scheduling of HVAC operation with and

withouth BESS can have when considering demand response applications. Different models are

investigated in this chapter. First, when the HVAC is adjusted to respond to the varying price and

satisfying all comfort settings. Second, when the HVAC is adjusted to provide optimal comfort/cost

trade-offs for the resident based on the varying prices of the energy. Third, when a BESS is installed

and can supply the HVAC with power. HVAC on/off states, BESS states will be determined for a

24-hour period for each case where it applies.

4.2 Thermal Dynamics Models of an HVAC Unit

Equivalent Thermal Parameters model of a residential HVAC is shown below: where:

Figure 4.1: The study system of thermal model.
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Q refers to heat rate for HVAC unit (Btu/hr or W).

UA refers to standby heat loss coefficient (Btu/oF.hr or W/oC).

R1 refers to 1/UA.

R2 refers to 1/UAmass.

To refers to ambient temperature (oF oroC).

Ti refers to air temperature inside the house (oF or oC).

Tm refers to mass temperature inside the house (oF or oC).

Ca refers to air heat capacity (Btu/oF or J/oC).

Cm refers to mass heat capacity (Btu/oF or J/oC).

A state space description of the ETP model is

ẋ = Ax+Bu (4.1)

y = Cx+Du (4.2)

ẋ =

 Ṫi
˙Tm

 (4.3)

x =

 Ti
Tm

 (4.4)

A =

−( 1
R2Ca

+ 1
R1Ca

) 1
R2Ca

1
R2Cm

−( 1
R2Cm

)

 ,
B =

 T0
R1Ca

+ Q
Ca

0

 , C =

1 0

0 1

 , D =

0

0


A simplified model used in [30] of the space cooling unit is described as following. The temperature

of the room can be calculated when the status of the HVAC is OFF as following

T t+1
room = T t+1

o − (T t+1
o − T troom) ∗ e−∆t/RC (4.5)
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The temperature of the room can be calculated when the status of the HVAC is ON as following

T t+1
room = T t+1

o +QR− (T t+1
o +QR− T troom) ∗ e−∆t/RC (4.6)

Troom refers to room temperature (oF or oC).

C refers to equivalent heat capacity (Btu/oF).

R refers to equivalent thermal resistance (oC/W).

Q refers to equivalent heat rate (W).

t refers to air temperature inside the house (minute).

∆t refers time step (1 minute).

4.3 Optimization Models of HVAC Applications

Different situations are considered to investigate the applications of the HVAC for the optimal

demand response. For computational tractability, the planning horizon of the house resident is

discretized into time periods n= 1,....,N , and the continuous thermal dynamics of the house are

correspondingly discretized. Three models are developed in this chapter.

4.3.1 HVAC Responding to a Varying Price

The optimization model here is developed based on the assumption that the HVAC is adjusted

to respond to varying energy prices and to satisfy all comfort and thermal settings.

4.3.1.1 Decision Variables

The decision variables for the optimization problem are listed as follows:

X = [· · ·Pin,j W k
j · · · ] (4.7)
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j refers to jth period.

k refers to kth No. of HVAC unit.

Pin,j refers to purchased power at the jth period.

W k
j refers to a binary variable that is equal to 1 if the HVAC kth is on at the jth period

and 0 otherwise.

4.3.1.2 Objective Function

min
Wk

j

N∑
j=1

λjPin,j (4.8)

λj refers to the energy price at the jth period.

4.3.1.3 Constraints

• Thermal Constraints

T j+1
room = T j+1

o +W k
j ∗QR− (T j+1

o +Wj ∗QR− T jroom) ∗ e−∆t/RC (4.9)

Tmin ≤ T j+1
room ≤ Tmax (4.10)

Tmin refers to the minimum setpoint of the HVAC thermostat.

Tmax refers to the maximum setpoint of the HVAC thermostat.

• Power Balance Constraints

Pin,j =
k∑
i=1

W k
j ∗ P ka/c (4.11)

Pmin ≤ Pin,j ≤ Pmax (4.12)

Pmin refers to the minimum limit purchased power.

Pmax refers to the maximum limit purchased power.

Pa/c refers to the rated power of the HVAC unit.
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4.3.2 Comfort/Cost Trade-Offs

The optimization model here is developed based on the assumption that the HVAC is adjusted

to provide optimal comfort/cost trade-offs for the resident based on varying prices of the energy.

The resident would define a desired pirce that he would allow to increase the maximum setpoint of

the thermostat in case the energy price is greater than his desired price.

4.3.2.1 Decision Variables

X = [· · ·Pin,j W k
j W k

α · · · ] (4.13)

W k
α refers to a binary variable that is equal to 1 if the energy price is greater than the desired

price and 0 otherwise.

W k
α =

 1, λdesired ≤ λj

0, elsewhere

λdesired refers to the desired price which can be paid to purchase power.

4.3.2.2 Objective Function

min
Wk

j

N∑
j=1

λjPin,j (4.14)

4.3.2.3 Constraints

λdesired − λj +M ∗W k
α ≥ 0 (4.15)

λdesired − λj −M ∗ (1−W k
α) < 0 (4.16)

M referes to a big number.
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• Thermal Constraints

T j+1
room =T j+1

o +W k
j ∗QR− (T j+1

o

+Wj ∗QR− T jroom) ∗ e−∆t/RC (4.17)

Tmin ≤ T j+1
room ≤ Tmax +W k

α ∗ Tα (4.18)

Tα refers to the allowed incremental in the temperature when the energy price is greater

than the desired price.

• Power Balance Constraints

Pin,j =
k∑
i=1

W k
j ∗ P ka/c (4.19)

Pmin ≤ Pin,j ≤ Pmax (4.20)

4.3.3 Battery and HVAC Applications in Demand Response

The optimization model here is developed based on the assumption that there is a BESS which

is installed and can be charged and store the energy from the grid, and can be discharged and

supply the HVAC with power.

4.3.3.1 Decision Variables

X = [Pin,j Pb,j W
k
j ] (4.21)

Pb,j refers to the Battery power at jth period.

4.3.3.2 Objective Function

min
Wk

j ,Pb,j

N∑
j=1

λjPin,j (4.22)
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4.3.3.3 Constraints

• Thermal Constraints

T j+1
room =T j+1

o +W k
j ∗QR− (T j+1

o

+Wj ∗QR− T jroom) ∗ e−∆t/RC (4.23)

Tmin ≤ T j+1
room ≤ Tmax (4.24)

• Power Balance Constraints

Pin,j =
k∑
i=1

W k
j ∗ P ka/c + Pb,j (4.25)

Pmin ≤ Pin,j ≤ Pmax (4.26)

• Battery Constraints

Power rating limits of battery energy system

−Cb ≤ Pb,j ≤ Cb (4.27)

Energy rating of the battery energy system

Eb ≤ E0 +
n∑
j=1

Pb,j ≤ Eb, (4.28)

Cb refers to the power rate of the battery energy system.

Eb refers to the energy rate of the battery energy system.

Eb refers to the minimum energy limit of the battery unit.

Eb refers to the maximum energy limit of the battery unit.
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Figure 4.2: The study system of HVAC with power grid.

Table 4.1: Parameter values for HVAC

Q(W ) R(F/W ) C(J/F )

Values 400 0.1208 3599.3

4.4 Case Studies and Numerical Examples

4.4.1 The Study System

The study system shown in Fig. 4.2 consists of six HVAC units (rated at 5 kW) in their cooling

modes. HVAC units consume electricity from the grid at a varying price, shown in Fig. 4.3, during

known periods. Rooms temperature should be maintained within a defined range by the consumer.

Here, the consumer is to set thermostat point settings to 71 F as minimum limit and 75 F as

maximum limit. The ambient temperature is shown in Fig. 4.4. The parameters C , R,and Q

which have been introduced in the above thermal model are shown in Table. 5.1. A BESS will be

added later to investigate its effects on HVAC applications for demand response. The base study

shown in Fig. 4.4 is to operate the HVACs to satisfy the thermal constraints comfortably and

normally without responding to the energy signal price.
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Figure 4.3: Energy price.

4.4.2 HVAC Responding to a Varying Price

In this case, which we would call case-A, we consider operating HVACs while taking the price

signal in our considerations. In another case, which we would call case-B, we consider operating

HVACs while taking the price signal in our considerations and putting limits on the purchased

power. These cases are to be compared with the base study. Table. 4.2 shows a comparison

between all of the three cases. It can be noticed . The total cost of purchasing the energy is

reduced from 18.62 for the base case to 17.74 for the Case-A which represent %4.73 reduction. For

the case-B the reduction is %4.5. Fig. 4.5 shows a comparison between the load profile in the

base case and the case-A. It can be noticed that the case-A (dotted stairs) have a such behavior

to avoid occurring in the peak price periods while the base case (solid stairs) behaves indifferently

to the energy price signals. That behavior is called ”Load Shifting”’ which is one of the popular

forms of load management to achieve demand response. Fig. 4.6 shows a comparison between the

load profile in the case-A and the case-B. It can be noticed that the case-B (dotted stairs) have

58



0 2 4 6 8 10 12 14 16 18 20 22 24
70

75

80

85

90

95

Time

T
em

p
er

at
u

re
(F

)

Ambient Temperature

Figure 4.4: Ambient temperature.

not exceeded 15 kW which is the maximum power limit which can be purchased. The peak load

which is 25kW in the case-A (solid stairs) is shaved to 15 kW in the (dotted stairs). That behavior

is called ”Peak Clipping”’ which is another popular forms of load management to achieve demand

response. All thermal constraints and comfort settings were satisfied while shifting the load in

case-A and shaving the peak in case-B.

Table 4.2: HVACs behaviors considering dynamic price

Scenario ConsumedEnergy PeakLoad Cost
kWh kW $

Base 67.5 25 18.619
Case A 67.5 25 17.74
Case B 67.5 15 17.791
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Figure 4.5: Loads profile comparison between the base study and case-A.
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4.4.3 Comfort/Cost Trade-Offs

In this case, which we would call case-C, we consider the Comfort/Cost trade-offs for consumers.

Here, a maximum desired price of purchasing electricity would be defined. When the energy price

exceeds the maximum desired price, the consumer would prefer to allow the maximum temperature

setting to increase by a defined quantity. Here we investigate two different scenarios. In case-C1

and case-C2, we set the desired price to be 26 Cent/kWh and assume that we can increase the

maximum temperature by 2 degrees and 1 degree for these cases respectively. Changes in the

thermostat settings are assumed to be done only on HVAC-1, HVAC-3, and HVAC-5. Fig. 4.7

presents the result of case-C1 and it shows that when the energy price exceeds the desired price,

HVAC-1, HVAC-3, and HVAC-5 respond to this increase by changing the thermostat setting of

the maximum temperature. Table. 4.4 shows that both energy consumption and total cost are

reduced. The cost reduction represent %11.2 in case-C1 and %8.5 in case-C2.
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Figure 4.7: HVACs behaviors considering comfort/cost trade-offs case-C1.

Table 4.3: HVACs behaviors considering comfort/cost trade-offs

Scenario ConsumedEnergy PeakLoad Cost
kWh kW $

Base 67.5 25 18.619
Case C-1 63.75 25 16.736
Case C-2 66.25 25 17.050
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4.4.4 Battery and HVAC Applications in Demand Response

In this case, which we would call case-D, we consider installing a BESS. Five scenarios are

created considering different capacity and energy ratings which are shown in Table. 4.4. In load

management, ”Valley Filling” is the activity where the system builds load during the off-peak

periods. In Fig. 4.8, the solid ellipse shows that during the low price which is normally the off-peak

periods, the system is building loads by charging the battery. During the peak time, it can be seen

in the dotted ellipse that the battery system is dispatching power to supply HVACs. Cost reduction

represented by % 11.3 can be achieved when using BESS with 6 kW and 25 kWh for Capacity and

energy ratings respectively.

Table 4.4: HVACs behaviors considering installing BESS

Scenario ConsumedEnergy PeakLoad Cost
kWh kW $

Base 67.5 25 18.619
Case D-1 (Cb=3 kW, E=10 kWh) 67.5 25 17.426
Case D-2 (Cb=6 kW, E=10 kWh) 67.5 21 17.385
Case D-3 (Cb=3 kW, E=20 kWh) 67.5 20 17.065
Case D-4 (Cb=6 kW, E=20 kWh) 67.5 30 16.968
Case D-5 (Cb=6 kW, E=25 kWh) 67.5 34 16.718

4.5 Conclusion

The Smart Grid is emerging, and buildings of the future will need Smart Consumption technolo-

gies to fully realize its benefits. In this chapter, models are proposed which can help end users’ to

participate in decision making to better manage their energy consumption in an efficient way. That

would increase their participation to achieve an effective demand response which is one of the main

goals of Smart Grid. The results of installing a BESS has shown that such approach can provide a

different alternative which allows costumers to minimize the total cost of their energy consumption.

Different form of load management are demonstrated as the HVACs show potentiality to be a great

tool for load management purposes while they are still capable to satisfy all of thermal and other

constraints.
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Figure 4.8: HVACs behaviors considering installing BESS case-D3.
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CHAPTER 5

SMART BUILDING/ PLANNING WITH UNCERTAIN PV ENERGY

5.1 Introduction

DSM that can provide fast peak shaving and valley filling is receiving more attention than ever.

A feature of smart building is to be able to realize DSM. The main load component of a building

is heating, ventilation and air-conditioning (HVAC) units. In most places, peak loads occur during

the day with high temperature. HVAC loads account for a large portion of the peak loads that

could reach to 40% - 60% of the loads in commercial and residential buildings [70].

During the day time, there is much of unexploited solar energy that could be utilized to enhance

DSM functions. Therefore, it is essential to use Photovoltaic cells (PV) to harvest the sun energy

and convert it to electricity that can power the HVAC units. Consumers can participate in demand

response programs that utilities design to move their HVAC loads or part of it from the peak loads

hours to the off-peak hours. The utilities provide the consumers with economic incentives and can

postpone their needs for building power generation plants, transmission and distribution networks.

One example is the cool share program designed by NVEnegrys which give them control over 145

MW of their consumers HVACs loads [71].

It is a great idea to develop and implement a model that can reduce and mitigate the mismatch

renewable energy source and controllable HVAC loads. However, the stochastic nature of PV

output uncertainty makes it harder to integrate the operation and planning purposes. Therefore,

a battery system that can be combined with the renewable energy source and power HVACs loads

and mitigate this mismatch. An HVAC system’s control inputs include input air pressure and

temperature setting. Sophisticated dynamic models with air pressure and temperature setting as

the inputs have been adopted in thermal energy storage studies [72, 73]. In electric power planning
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and operation studies, a simplified thermal dynamic model of first-order is usually adopted, e.g.,

[31, 74, 75], where the HVAC control input is simplified as on/off status. The on/off status is

determined simply by a price comparison rule in [31] while in [74, 75], MIP problems are solved by

heuristic methods.

Addressing the issues of uncertainty of renewable energy has been studied in the literature,

e.g., [33, 34, 35, 36]. In the aforementioned papers, optimal design and operation of wind/solar

hybrid systems is discussed. In [32], the authors investigated the feasibility of meeting controllable

HVAC loads by a hybrid energy system combining renewable energy sources and battery energy

system. This study didnt consider on/off status. To address uncertainty, stochastic programming

problems are usually formulated where numerous scenarios with probability are created. This

results in large-scale optimization problems. Heuristic method, e.g., genetic algorithm, is sought

in [32] to solve the problem. A major disadvantage of heuristic methods is that they may arrive

at a local optimal solution. To complicate the matter, when optimal sizing and HVAC on/off are

considered, integer variables are introduced. This makes problem solving a challenging issue. Prior

research related to stochastic MIP can be found in [37, 38]. Branching and bound solving strategy

is applied in [37], while Benders decomposition is applied in [38]. In [37], two-stage stochastic

programming is employed to determine the optimal scheduling problems for processes of chemical

batch. In [39], the authors employed two-stage stochastic programming to determine the optimal

offering strategy plans that wind generation plant should consider for its production. The nature

of uncertainty of wind power and the uncertainty of energy market price was considered. In [40],

Time-of-use (TOU) rates are designed to find the optimal demand response programs options. The

authors used two-stage stochastic MIP to accomplish the study. In literature, there are several

studies that investigated the battery scheduling problems. In [41], a deterministic mixed integer

programming is used to develop an optimal charging schedule by solar panels. In [42], the authors

developed an optimal discharging schedule for battery system based on a decision-making algorithm.

Commercial solvers such as CPELX or Gurobi are usually adopted. However, very long computing

time is expected. For example, in [36], the model was run using 4 parallel CPU threads on a 256

GB RAM server running GAMS 23.0.2 and CPLEX 11.2.1 and the maximum execution time is 10
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hours. The second option is heuristic methods. Heuristic methods, e.g., genetic algorithm [32], has

the similar scalability issues.

The third option is to use commercial solvers through customized algorithm. For example,

branching and bound solving strategy is applied in [37] while Benders decomposition is applied in

[38].

Compared to branching and bound method, Benders decomposition is a known efficient algo-

rithm to handle large-scale mixed-integer problems. Benders decomposition has been applied in

many power system applications, e.g., unit commitment problems considering wind [38] or trans-

mission constraints [43], transmission planning considering wind [44]. The essential technique is to

decompose decision variables into multiple sets [45], e.g., a set of mixed integer variables and a set

of continuous variables. For each set of variables, optimization solving will be conducted.

In this chapter, Benders decomposition technique will be adopted for planning and operation of

PV/battery/HVAC hybrid systems. A program has been developed and implemented in MATLAB

and solved using the CVX solver package [76] and CPELX [77]. The numerical simulation has

been performed on a 3.4-GHz based processor with 8GB of RAM and the maximum execution

time is 35 minutes. Preliminary work of this research has been reported in [78] where an MIP

optimization problem is formulated and Benders decomposition is adopted for solving. In this

chapter, parallel computing structure and maximum feasible subsystem cut generation technique

are further exploited and implemented to advance the computing. Two variations of Benders

decomposition are examined for problem solving. This work proposes an HVAC system powered

by a PV-battery system. The decision making process determines the energy and power size of

the battery, number of PVs to be installed, and the optimal operating schedule of HVAC units

(on/off states). This model is investigated under the uncertainty of the PV-output considering the

grid-connected mode while the electricity price is varying. The main contribution of this chapter

is modeling the uncertainty of solar energy using stochastic scenarios and solving the large-scale

stochastic MIP problem using Benders decomposition. The potential benefits of PV/battery serving

HVAC loads are demonstrated in case studies. The proposed formulation has been shown to have

the capability to deal with a large number of scenarios. Such a problem cannot be handled by
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commercial solvers without applying decomposition methods. The rest of the chapter is organized

as follows. Section 5.2 presents the HVAC model. Section 5.3 presents the optimization problem

formulation. Section 5.4 presents the two variations of Benders decomposition techniques. Section

5.5 presents case studies and Section 5.6 concludes the chapter.

5.2 Thermal Dynamics Models of an HVAC Unit

Figure 5.1: The HVAC model.

The equivalent thermal temeprature model of a residential HVAC is shown below in Fig. 5.1

[30], where:

Q refers to heat rate for HVAC unit (Btu/hr or W).

UA refers to standby heat loss coefficient (Btu/oF.hr or W/oC).

R1 refers to 1/UA.

R2 refers to 1/UAmass.

To refers to ambient temperature (oF oroC).

Ti refers to air temperature inside the house (oF or oC).

Tm refers to mass temperature inside the house (oF or oC).

Ca refers to air heat capacity (Btu/oF or J/oC).

Cm refers to mass heat capacity (Btu/oF or J/oC).
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The above model is further simplified to have one R and one C. When the cooler is turned

OFF, the room temperature at time is described by

T t+1
room = T t+1

o − (T t+1
o − T troom) ∗ e−∆t/RC (5.1)

The temperature of the room can be calculated when the status of the HVAC is ON as the following:

T t+1
room = T t+1

o +QR− (T t+1
o +QR− T troom) ∗ e−∆t/RC (5.2)

Troom refers to room temperature (oF or oC).

C refers to equivalent heat capacity (Btu/oF).

R refers to equivalent thermal resistance (oC/W).

Q refers to equivalent heat rate (W).

t refers to air temperature inside the house (minute).

∆t refers time step (1 minute).

The above two equations will be combined to one thermal constraint through the introduction of

a binary variable W t (1: the cooler is on; 0: the cooler is off).

T t+1
room =T t+1

o +W tQR− (T t+1
o +W tQR− T troom)e−

∆t
RC (5.3)

5.3 Optimization Problem Formulation

5.3.1 Treatment of Uncertainty in PV-Output

Scenarios of PV-output are developed based on real-world data collected from the PV panels

that are installed at the Saint Petersburg campus of University of South Florida. PV output of a

random day is shown in Fig. 5.2.

To reduce computational burden, a tree scenario is created and the probability of each scenario

occur is calculated. Then, 600 scenarios with maximum likelihood of occurrence are considered in

our analysis. The total probability of those 600 scenarios to occur is more than 88%. The rest 12%
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is divided proportionally among them. Fig. 5.4 shows an example for generating scenarios. In this

example, it is assumed that there would be 3 different values of PV-output for the next three time

steps. In the three horizons starting from the beginning, the number of total scenarios is 27.
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Figure 5.4: Tree scenarios.

5.3.2 Optimization Model

The optimization model is developed based on the assumption that there is a battery energy

storage system (BESS) which is installed and can be charged and discharged to store energy from

the grid or supply the HVAC with power. In addition, there are PV panels with fixed rate power

to be installed. The optimization problem is to determine how many PV panels to be installed

and what is the best capacity and power rating for the battery given the system has a number of

HVAC with thermal constraints to meet for an 8-hour horizon. The 8-hour horizon is divided into

32 horizons with each horizon 15 minutes.

The assumption of the operation is that the HVAC on/off sequence is not stochastic. Rather,

the on/off sequence is deterministic. This assumption is realistic as HVAC’s on/off sequence is

usually fixed ahead of time. On the other hand, the battery’s charging/discharging power level, the

smart building’s purchased power Pin are stochastic scenario based. This is due to the stochastic

nature of PV output. The battery power and purchased power level decision is usually made at

real-time.

The following three paragraphs give the decision variables, the objective function and the con-

straints.
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5.3.2.1 Decision Variables

The decision variables of this optimization problem will be as the following:

X =
[
Cb Eb Npv P s,jin P s,jb W j

k

]
(5.4)

j refers to jth period, j ∈ J = {1, 2, · · · , 32}. 8-hour is considered with each period 15

minutes.

k refers to kth No. of HVAC unit. k ∈ K = {1, 2, 3};

s refers to sth scenario. s ∈ S, where S contains 600 scenarios in the case study.

Cb refers to the power rating of the battery energy system.

Eb refers to the energy rating of the battery energy system.

Npv refers to the power rating of the battery energy system.

P s,jin refers to purchased power at the j-th period of the sth scenario.

W j
k refers to a binary variable that is equal to 1 if the k-th HVAC is on at the j-th period

and 0 otherwise.

P s,jb refers to the battery power at j-th period of the s-th scenario.

5.3.2.2 Objective Function

min

β1Cb + β2Eb + αNpv +
∑
j∈J

∑
k∈K

W j
k +

∑
s∈S

∑
j∈J

ρs

(
λjP s,jin

) (5.5)

β1 refers to the cost of 1 kW rating of the BESS.

β2 refers to the cost of 1 kWh rating of the BESS.

α refers to the cost of installation of PV panel.

ρs refers to the probability of s-th scenario

λj refers to the energy price at the jth period.
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5.3.2.3 Constraints

Constraint set (5.6) describes the room temperature dynamics and ensures that thermostat set-

ting is enabled where the temperature of the room must be greater than the minimum temperature

and less than the maximum temperature. This constraint set does not contain probability scenarios

since the HVAC operation is assumed to be deterministic for the possible scenarios.

T j+1
k = T j+1

o +W j
kQR− (T j+1

o +W j
kQR− T

j
k )e

−∆t
RC

Tmin ≤ T j+1
k ≤ Tmax ∀j ∈ J (5.6)

Constraint set (5.8) guarantees that there is enough available power when the HVAC unit

is turned on. It also ensures that the purchased power is within the power limits. This set of

constraints are scenario-based.

P s,jin + P s,jb +NpvP
s,j
PV ≥

k∑
i=1

W j
kPac,k (5.7)

Pmin ≤ P s,jin ≤ Pmax ∀j ∈ J, ∀k ∈ K,∀s ∈ S (5.8)

Pac,k refers to a fixed power consumption for k-th HVAC.

Constraint set (5.9) makes sure that at any hour j and any scenario s, the battery charging or

discharging does not exceeding the battery power rating and the energy at any hour will not exceed

the energy limits.

− Cb ≤ P s,jb ≤ Cb ∀j ∈ J, ∀s ∈ S

0 ≤ E0 −
j∑
i=1

P s,ib ≤ Eb ∀j ∈ J,∀s ∈ S (5.9)

5.4 Large-scale Problem Solving Using Benders Decomposition

The optimization problem formulated in Section III is a large-scale problem. The size of the

problem increases as the number of scenarios increase. It includes a mixture of integer and contin-
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uous variables and would depend on the number of HVAC units, time steps, and scenarios. When

3 HVAC, 32 horizons, and 25 scenarios are considered, the problem has 96 binary variables (related

to 3 HVAC units running for 32 time horizons) and one integer variable related to the number

of PV. It would also have 99 continuous variables related to the room temperature and two con-

tinuous variables related to the battery parameters (Cb and Eb). While all previous variables are

independent of the number of scenarios, the number of the other variables depend on the number

of scenarios. Those variables include 800 continuous variables (related to the purchased power

considering 25 scenarios for 32 time horizons) and 800 continuous variables (related to battery

power Pb considering 25 scenarios for 32 time horizons). This formulation is solved using CPLEX

in MATLAB and the main challenge here is the very slow computing time (hours).

With 600 scenarios, CPLEX was tested to solve the problem for 24 hours without giving any

solution. Therefore, Benders decomposition, an effective method of large-scale MIP problem solving

is implemented in this research.

5.4.1 Benders Decomposition with a Single Subproblem

The main philosophy is to separate the decision variables into two sets: those related to HVAC,

and those not related to HVAC. The first set includes integer variables including W (which denotes

HVAC on/off) and the number of PV, as well as the continuous variables (room temperatures).

The second set includes the rest of variables including battery power dispatch level, battery power

and energy ratings. The second set variables are all continuous. The solving procedure is to fix Set

1 variables and solve the subproblem related to Set 2. With the solved subproblem, we generate

a dual cut to reduce the feasible region of the main problem associated with Set 1 variables. The

procedure is kept going until convergence.

In the first step, we assume that the power and energy ratings of a battery, power demand are

all zero. Only the HVAC operation is considered. The master problem is formed and we find its
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optimal solution as follows.

min
Npv ,W

j
k

Zlower (5.10a)

s.t. Zlower ≥ αNpv +
∑
j∈J

∑
k∈K

W j
k (5.10b)

T j+1
k = T j+1

o +W j
kQR− (T j+1

o +W j
kQR− T

j
k )e

−∆t
RC (5.10c)

Tmin ≤ T j+1
k ≤ Tmax ∀j ∈ J, k ∈ K (5.10d)

In the second step, we form the subproblem and use the obtained optimal solution for the

integer variables from the master problem (N̂pv, Ŵ
j
k ).

min
Cb,Eb

P s,j
in P s,j

b

β1Cb + β2Eb +
∑
s∈S

∑
j∈J

ρs

(
λjP s,jin

) (5.11a)

s.t. P s,jin + P s,jb + N̂pvP
s,j
PV ≥

∑
k∈K

Ŵ j
kPac,k (5.11b)

Pmin ≤ P s,jin ≤ Pmax (5.11c)

0 ≤ E0 −
j∑
i=1

P s,ib ≤ Eb (5.11d)

− Cb ≤ P s,jb ≤ Cb ∀s ∈ S, j ∈ J, k ∈ K (5.11e)

In this step, the subproblem could be infeasible when the available power cannot meet the total

demand. In this case, a feasibility cut is generated and added to the master problem as follows:

min
Y,P s,j

in ,P s,j
b

1TY (5.12a)

s.t. P s,jin + P s,jb + Y s,j ≥
∑
k∈K

Ŵ j
kPac,k − N̂pvP

s,j
PV

Y s,j ≥ 0, , ∀s ∈ S, j ∈ J, k ∈ K (5.12b)
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After generating a feasibility cut, usr,j , the dual associated with this problem is taken. The

general form of this cut is:

∑
s∈S

∑
j∈J

usr,j

(∑
k∈K

W j
kPac,k −NpvP

s,j
PV

)
≤ 0 (5.13)

In the case where the problem is feasible, then the upper bound Zupper is calculated and the

convergence behavior is tested. If the convergence is not approached, then an optimality cut is

generated and added to the master problem.

Zupper =

β1Ĉb + β2Êb + αN̂pv +
∑
j∈J

∑
k∈K

Ŵ j
k +

∑
s∈S

∑
j∈J

ρs

(
λjP̂ s,jin

) (5.14)

We assume that usp,j are the dual variables associated with constraints (5.11b). Then the optimality

cut is formed as the following

Zlower ≥αNpv +
∑
s∈S

∑
j∈J

usp,j

(∑
k∈K

W j
kPac,k − P

s,j
PVNpv

)
. (5.15)

In the third step, the master problem with the added constraints from Step 2 will be solved.

The subproblem will again use the obtained optimal solutions for the integer variables from the

master problem to solve and find the optimal solution for the other variables. The procedure keeps

going until convergence is achieved by examining the low bound Zlower and the upper bound Zupper.

Algorithm 1 presents the Benders decomposition strategy. A flowchart of Algorithm 1 is presented

in Fig. 5.5.

5.4.2 Benders Decomposition with Multiple Subproblems

Algorithm 1 separates the original problem into a master problem and a subproblem. In this

subsection, we further explore the parallel computing structure of the problem and separate the

original problem into a master problem with multiple subproblems.
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Algorithm 1 Benders Decomposition Strategy 1

initialize Zlower = −∞ and Zupper =∞.
for all Iteration i do

Step 1 Solve (5.10) to find the optimal (N̂pv,Ŵ
j
k ) and update Zlower

Step 2 Solve (5.11) for the given set of (N̂pv,Ŵ
k
k ).

while (5.11) is infeasible do
Solve (5.12) to add feasibility constraint(5.13) to (5.10).
Go to Step 1

end while
Find the optimal solution (5.11) and update Zupper (5.14).
while Convergence is not met do

Solve (5.15) to add optimality constraint to (5.10)
Go to Step.1

end while
end for

The main philosophy here is to enable the subproblems to become decomposed over scenarios.

Each subproblem is related to a stochastic scenario and the subproblems are independent once the

main problem stage variables are determined.

The battery parameters Cb and Eb will be added to the set of the decision variables in the

master problem. So the subproblem will only include the rest of the variables including battery

power dispatch level and the purchased power for each scenario.

In the first step, we assume that power demand and all battery dispatched level are all zero.

Only the HVAC operation and the power and energy ratings of a battery are considered. The

master problem is formed as follows.

min
Cb,Eb

Npv ,W
j
k

Zlower (5.16a)

s.t. Zlower ≥ αNpv +
∑
j∈J

∑
k∈K

W j
k + β1Cb + β2Eb (5.16b)

T j+1
k = T j+1

o +W j
kQR− (T j+1

o +W j
kQR− T

j
k )e

−∆t
RC

Tmin ≤ T j+1
k ≤ Tmax ∀j ∈ J, k ∈ K (5.16c)

Cb, Eb ≥ 0 (5.16d)
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In the second step, we form the independent subproblems and use the obtained optimal solution

for the integer variables from the master problem (N̂pv,Ŵ
k
j ,Ĉb,Êb). Notice that each subproblem

is solved independently. The formulation of a subproblem for a single scenario is given as follows:

min
P s,j
in P s,j

b

ρs
∑
j∈J

(
λjP s,jin

)
(5.17a)

s.t. P s,jin + P s,jb + N̂pvP
s,j
PV ≥

K∑
k=1

Ŵ j
kPac,k (5.17b)

Pmin ≤ P s,jin ≤ Pmax (5.17c)

− Ĉb ≤ P s,jb ≤ Ĉb (5.17d)

0 ≤ E0 −
j∑
i=1

P s,ib ≤ Êb, (5.17e)

∀s ∈ S, ∀j ∈ J, k ∈ K

Maximum feasible subsystem cut generation is considered here. For any infeasible subproblem,

we would need to generate the feasibility cut from a maximum feasible subsystem [79]. This strategy

makes cut generation highly effective when there are relatively large number of feasibility cuts. The

strategy is to generate additional optimality cuts for the infeasible subproblems. This requires to

first relax the infeasible subproblems. This technique has been used in [44] for individual stochastic

scenarios.

For any infeasible subproblem of Scenario s, we will first relax the problem by finding a binary

variable Y s,j . If Y s,j = 0, that means at j-th horizon the power balance is kept. Y s,j = 1 means

the power supply cannot mean the power demand where Y s,j is a binary variable and M is a big

number. Now, the obtained value Ŷ s,j is used to relax the infeasible subproblem.

min
Y s,j ,P s,j

in ,P s,j
b

∑
j∈J

Y s,j (5.18a)

s.t. P jin + P jb + Y jM ≥
∑
k∈K

Ŵ j
kPac,k − N̂pvP

j
PV
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min
P s,j
in P s,j

b

ρs
∑
j∈J

(
λjP s,jin

)
(5.19a)

s.t. P s,jin + P s,jb + N̂pvP
s,j
PV + Ŷ s,jM ≥

∑
k∈K

Ŵ j
kPac,k (5.19b)

Pmin ≤ P s,jin ≤ Pmax (5.19c)

− Ĉb ≤ P s,jb ≤ Ĉb (5.19d)

0 ≤ E0 −
j∑
i=1

P s,ib ≤ Êb, (5.19e)

∀s ∈ S, ∀j ∈ J, k ∈ K

With the optimal solution is obtained, then Zupper is calculated by (5.20) and the convergence

behavior is tested.

Zupper =

β1Ĉb + β2Êb + αN̂pv +
∑
j∈J

∑
k∈K

Ŵ j
k +

∑
s∈S

∑
j∈J

ρs

(
λjP̂ s,jin

) (5.20)

If the convergence is not approached, then an optimality cut is generated and added to the master

problem. To create the optimality cut, the dual variables must be extracted. The dual variables

are usp,j associated with constraints (5.17b), (5.19b), usC,j associated with (5.17d), (5.19d), and usE,j

associated with (5.17e), (5.19e).

The optimality cut is shown as follows.

Zlower ≥ αNpv +
∑
s∈S

∑
j∈J

usp,j

(∑
k∈K

W j
kPac,k − P

s,j
PVNpv

)

+

β1 −
∑
s∈S

∑
j∈J

usC,j

Cb +

β2 −
∑
s∈S

∑
j∈J

usE,j

Eb (5.21)

Algorithm 2 presents the second Benders decomposition strategy. The flowchart of the second

Benders decomposition is shown in Fig. 5.6. We can see that for each scenario there is a subproblem

to solve and these subproblems can be solved in parallel.
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Algorithm 2 Benders Decomposition

initialize Zlower = −∞ and Zupper =∞.
for all Iteration i do

Step 1 Solve (5.16) to find the optimal (N̂pv,Ŵ
j
k , Ĉb, Êb) and update Zlower.

for all s ∈ S do
Step 2 Solve (5.17) for the given the optimal (N̂pv,Ŵ

j
k , Ĉb, Êb)

while ((5.17) is infeasible do
Solve (5.18) (5.19) to add feasibility constraint(5.21) to (5.16)

end while
end for
Solve (5.19) and find the optimal solution
update Zupper (5.20)
while Convergence is not met do

Go to Step.1
end while

end for
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Figure 5.5: Flowchart of strategy-1.
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5.4.3 Benchmark of the Algorithms

We first use a small-scale problem (3 scenarios, 30 binary decision variables, 318 continuous

decision variables, and 257 equality constraints) to benchmark the two algorithms. The two Benders

decomposition algorithms are programmed and tested against the solution generated by CVX

Gurobi. The results from the two algorithms exactly match the objective function result (13.7695)

obtained from CVX Gurobi as shown in Fig. 5.8.
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Figure 5.8: (a) Lower and upper bounds of strategy-1 for a small case; (b) lower and upper bounds
of strategy-2 for a small case.
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5.5 Case Studies and Numerical Examples

5.5.1 The Study System

The study system shown in Fig. 5.7 consists of three HVAC units (rated at 15 kW) in their

cooling modes. HVAC units consume electricity from the grid at a varying price, shown in Fig.

5.9, during known periods. Room temperature should be maintained within a defined range by the

consumer. Here, the consumer is to set thermostat point settings to 71 F as minimum limit and 75

F as maximum limit. The ambient temperature is shown in Fig. 5.9. The parameters C, R, and

Q are shown in Table 5.1.

Table 5.1: Parameter values for HVAC units

Q(W ) R(F/W ) C(J/F )

Values 400 0.1208 3599.3
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Figure 5.9: Energy price and ambient temperature of 8 hours (32 periods).

5.5.2 Result and Analysis

We consider the system is connected to the grid and can purchase the power from the grid

at a varying price. Three cases would be considered to study the effect of the uncertainty. The

first case, Case-1, is used to study the behavior of the system without PV-BESS. In the second
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case Case-2, PV-BESS installation is considered in the deterministic mode to study the effect of

solar energy. Two scenarios were studied. The first scenario, Case-2A, is assumed to have high

availability of solar energy. The second scenario, Case-2B, is assumed to have poor availability of

solar energy. In the third case, Case-3, stochastic MIP programming problem is considered. The

proposed method based on Benders decomposition is applied to deal with the uncertainty of solar

power. 600 scenarios with the greatest probabilities are considered.

In the fourth case, Case-4, 1500 scenarios are examined. Table 5.2 gives the parameters related

to the cost function.

Table 5.2: Cost function parameters

α β1 β2

$0.5/per panel $0.15 /kW $0.1 /kWh

The study results are presented in Table 5.3. It can be seen that the deterministic case with

high availability of solar energy leads to the cheapest cost.

In Case-3 and Case-4, uncertainty of solar energy is considered. Case-3 and Case-4 lead to the

almost same results with slight difference in cost. The difference is due to the consideration of more

scenarios in Case-4.

Table 5.3: Simulation results

Case BESS Rate BESS Rate Npv Cost
kWh kW $

Case-1 N/A N/A N/A 30.14

Case-2A 34.8 8.7 7 20.80
Case-2B 43.8 10.8 14 25.5

Case-3 37.6 9.40 7 22.32

Case-4 37.6 9.40 7 23.24

Fig. 5.10-a shows that the optimal value converges to $22.32 when Benders decomposition

Strategy-1 method is applied. Fig. 5.10-b shows that the optimal value converged to $23.24 when

Benders decomposition Strategy-2 method applied.
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Figure 5.10: (a) Lower and upper bounds of strategy-1 for a large case; (b) lower and upper bounds
of strategy-2 for a large case.
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Fig. 5.11 presents the HVAC on/off schedule and the room temperature. Fig. 5.12 presents the

numerical results for two extreme cases. The good scenario refers to the scenario when PV output

is high while the bad scenario refers to the scenario when PV output is low.
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Figure 5.11: HVAC on/off schedule and temperature.

Then, we this study shows an extreme case that prices of battery are cheap so we can can

investigate its impact on the purchased power. Fig. 5.13 shows that power can be still purchased

at high energy price and that can be explained as the battery price is limitting installing a greater

size. However, Fig. 5.13 shows that when we use low price for the battery, then it can be considered

as relaxation for the battery constraints and can allow for installing greater size of battery. Then,

it can be seen that the power is purchased at the lowest energy price.

5.5.3 Computational Time

A program has been developed and implemented in MATLAB and solved using the CVX solver

package and CPLEX. The numerical simulation has been performed on a 3.4-GHz based processor

with 8GB of RAM. Stochastic Mixed Integer Programming (SMIP) is developed to tackle the
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Figure 5.12: PV output power, battery power, battery energy and purchased power for two extreme
cases.
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cases when battery price is low.
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uncertainty. It is first solved as one original problem without any decomposition. The size of

the problem increases as the number of scenarios increase. It includes a mixture of integer and

continuous variables and would depend on the number of HVAC units, time horizons, and scenarios.

This formulation is solved using CPLEX in MATLAB and the main challenge here is centered in

the large number of the constraints of the power balance with integer variables.

Two Benders decomposition methods are also applied to solve the problem. A comparison of

the three methods on problem size and computing time is shown in Table 5.4. In strategy 1, the

Table 5.4: Problem size and computing time

Variables SMIP Strategy 1 Strategy 2
25 scen. 600 scen. 1500 scen.

Integer 97 97 97
Original Continuous 1701 38501 96101

Integer - 97 97
Master Continuous - 99 101

Integer - 0 0
Sub Prob Continuous - 38402 96000

Time min 390 35 150

problem is decomposed in a master problem and a subproblem. The size of the master problem

is constant and it includes a mixture of integer and continuous variables and would depend on

the number of HVAC units, and the time steps. When considering 3 HVAC and 32 time-steps,the

problem would have 96 binary variables (related to 3 HVAC units running for 32-time steps) and

one integer variable related to the number of PV. It would also have 99 continuous variables related

to the room temperature. The size of the subproblem increases as the number of scenarios increase.

It only includes continuous variables and would depend on the number of time-steps and the number

of scenarios. In our case, we consider 32 time-steps and 600 scenarios. This would yield to 19200

continuous variables related to the purchased power considering 600 scenarios for 32-time steps and

19200 continuous variables related to battery power Pb. It also includes two continuous variables

related to the Battery parameters (Cb and Eb).

This formulation is firstly solved using CVX for both the master and the sub problems. The

advantage of CVX is its ability of returning dual variables along with primal variables. However,

when the number of scenarios increases, CVX starts to have difficulty of solving. Therefore, a
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CPLEX formulation is used for the master problem to tackle this challenge and CVX is used solving

the subproblem. This strategy can work with a number of scenarios up to around 600. When the

number of the scenarios increase, the size of the subproblem gets much larger and solving becomes

more challenging.

Strategy 2 is different from Strategy 1 by moving the two continuous variables related to the

Battery parameters (Cb and Eb) from the subproblem to the master problem. While in Strategy

1, the subproblem is considered as one whole problem including all variables, the subproblem

in Strategy 2 is decomposed into multiple subproblems with each representing a scenario. This

structure allows us to consider greater number of scenarios. Here, we are able to consider 1500

scenarios which would yield to have 48000 continuous variables (related to the purchased power

considering 1500 scenarios for 32-time steps) and 48000 continuous variables related to battery

power Pb. It also includes two continuous variables related to the Battery parameters (Cb and Eb).

In this problem, the computing challenge is tackled by decomposing the subproblem in multiple

subproblems. Therefore, CVX is able to solve those subproblems sequentially. Strategy 2 shows

the capability of handling 1500 scenarios while the Strategy 1 keeps running with no return when

considering the same number of scenarios.

5.6 Conclusion

In this chapter, stochastic mixed integer programming optimization problems are formulated to

determine the optimal sizing of PV-BESS to power HVAC loads. Benders decomposition is used to

solve the problem and deal with the uncertainty of PV-output. The optimization problem can find

the optimal HVAC on/off states, and BESS charging- discharging states for a multi-horizon period.

The main contribution of this chapter is modeling the uncertainty of solar energy and application

of Benders decomposition to investigate the potential benefits of PV-BESS with HVAC loads. This

formulation has shown a great ability to deal with a large number stochastic scenarios.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This dissertation can be concluded in three parts as follows.

First, chapter 3 presents MIP problem formulation to find the size of a BESS. The BESS could

be owned by a utility to reduce the operation cost or owned by a community for peak shaving.

Switchable loads are considered in the problem formulation and unit commitment is also considered.

Objective functions, linear constraints for BESS and switchable load constraints suitable for MIP

solving are defined. The optimization problems are solved by commercial tool CPLEX. Case study

results demonstrate the impact of switchable load penetration on BESS size. It is found that for the

system studied, with 5% penetration of switchable loads, the size of energy storage can be cut down

30%. In addition, the size of the energy storage can also be determined based on multiobjective

optimization of imported power deviation and battery cost. If we can tolerate 4% power deviation,

we can cut down the size of a BESS by 10%.

Second, the Smart Grid is emerging, and buildings of the future will need Smart Consumption

technologies to fully realize its benefits. In chapter 4, models are proposed which can help end

users’ to participate in decision making to better manage their energy consumption in an efficient

way. That would increase their participation to achieve an effective demand response which is

one of the main goals of Smart Grid. The results of installing a BESS has shown that such

approach can provide a different alternative which allows costumers to minimize the total cost of

their energy consumption. Different forms of load management are demonstrated as the HVACs

show potentiality to be a great tool for load management purposes while they are still capable to

satisfy all of thermal and other constraints.
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Third, in chapter 5, stochastic mixed integer programming optimization problems are formu-

lated to determine the optimal sizing of PV-BESS to power HVAC loads. Benders Decomposition is

used to solve the problem and deal with the uncertainty of PV-output. The optimization problem

can find the optimal HVAC on/off states, and BESS charging- discharging states for a multi-horizon

period. The main contribution of this chapter is modeling the uncertainty of solar energy and ap-

plication of Benders decomposition to investigate the potential benefits of PV-BESS with HVAC

loads. This formulation has shown a great ability to deal with a large number stochastic scenarios.

6.2 Future Work

Those models can be extended to study the feasibility of participation of customers in the

power market. Demand response programs can enable the customers to participate and react to

the energy market changes especially to the dynamic pricing mechanism and the changes in the

electricity prices. Utilities which want to compete in the energy market, whose structure at the

current time is competitive, need to consider those programs. By considering such programs, they

can reduce their cost and increase the grid reliability. Locational marginal Price which represents

an important component of the electricity market is sensitive to the generation, congestion and

demand. When demands change then it is expected to have some impacts on the LMP. In future

work, the impacts of demand response penetration and the storage energy that can have on LMP

must explored by utilities. They also need to explore the benefits they can get from those programs

to gain more flexibility to control the voltage level and make the grid more stable. These models

can be extended to investigate the feasibility of deferring building power plants, transmission lines,

or distribution networks. Another work related to frequency control can be studied by extending

those models. The grid frequency is highly expected to be instable due to the increasingly growing

renewable generation and the nature of uncertainty associated with such sources,in case that the

grid is not prepared for such penetration. Therefore, it is a great idea to extend those models to

study how to tackle the frequency control by implementing optimal demand response models.
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Appendix A Matlab Code for Benders Decomposition

clear all;

clc;

load ’PV_DATA’;

RZlow=0;

R2=0;

lambda2=zeros(1,32);

lambda3=zeros(1,32);

DD20=0

CC20=0

Cost_cb=0.15;

Cost_Eb=0.10;

P_ac=15;

CA5=zeros(3200,1);

PriceA=[0.4508 0.4336 0.4204 0.4220 0.5080 0.6256 0.5640 0.5400];

Tout= [79 79 84 85 90 91 93 91 ];

P_b=inf;

Q=-100.5*(1-exp(-15/434));Q1=exp(-15/434);Q2=(1-exp(-15/434));

Cpv=0.5;

n=4

PV=PV(1:600,1:32);

ps=((ps(1:600)+.0002765*ones(600,1)));

for k=1:1:8

for j= 1:1:n

Price(n*(k-1)+j)=PriceA(k);

To(n*(k-1)+j)=Tout(k);

end
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Appendix A (Continued)

end

for k=1:1:8

for j= 1:1:n

Price(n*(k-1)+j)=PriceA(k);

To(n*(k-1)+j)=Tout(k);

end

end

f=[1;ones(8*n,1);zeros(8*n+1,1);ones(8*n,1);zeros(8*n+1,1); ...

ones(8*n,1); zeros(8*n+1,1);Cpv];

T1max=[73.5;75*ones(8*n,1)];T1min=[73.5;71*ones(8*n,1)]; ...

T2max=[73.2;75*ones(8*n,1)];T2min=[73.2;71*ones(8*n,1)]; ...

Emin=[zeros(8*n,1)];

Emax=[25*ones(8*n,1)];

T3max=[73.8;75*ones(8*n,1)];T3min=[73.8;71*ones(8*n,1)];

for MM=1:1:2

t4=[-1 ones(1,8*n) zeros(1,8*n+1) ones(1,8*n) zeros(1,8*n+1) ones(1,8*n)...

zeros(1,8*n+1) Cpv];

for k=1:1:8*n

t1(k,:)=[0 zeros(1,k-1) -Q zeros(1,8*n-k) zeros(1,k-1) -Q1 1 ...

zeros(1,8*n-k) zeros(1,8*n) zeros(1,8*n+1) zeros(1,8*n) ...

zeros(1,8*n+1) 0]; % T2-T1-u1-u2=Tout

t2(k,:)=[0 zeros(1,8*n) zeros(1,8*n+1) zeros(1,k-1) -Q ...

zeros(1,8*n-k) zeros(1,k-1) -Q1 1 zeros(1,8*n-k) ...

zeros(1,8*n) zeros(1,8*n+1) 0]; % T2-T1-u1-u2=Tout

t3(k,:)=[0 zeros(1,8*n) zeros(1,8*n+1) zeros(1,8*n) ...
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Appendix A (Continued)

zeros(1,8*n+1) zeros(1,k-1) -Q zeros(1,8*n-k) zeros(1,k-1)...

-Q1 1 zeros(1,8*n-k) 0]; % T2-T1-u1-u2=Tout

end

for kk=1:1:MM

t5(kk,:)=[RZlow(kk)*-1 (ones(1,32)+(lambda2(kk,:)))*RZlow(kk) ...

zeros(1,8*n+1) (ones(1,32)+(lambda2(kk,:)))*RZlow(kk) ...

zeros(1,8*n+1) (ones(1,32)+(lambda2(kk,:)))*RZlow(kk) ...

zeros(1,8*n+1) (Cpv+DD20(kk,1))*RZlow(kk)];

b5(kk,:)=0;

t6(kk,:)=[0 (ones(1,32)+(lambda3(kk,:)))*R2(kk) zeros(1,8*n+1) ...

(ones(1,32)+(lambda3(kk,:)))*R2(kk) zeros(1,8*n+1) ...

(ones(1,32)+(lambda3(kk,:)))*R2(kk) zeros(1,8*n+1) ...

(Cpv+CC20(kk,1))*R2(kk)];

b6(kk,:)=0;

end

Ctype1=’CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIICCCCCCCCCCCCCCCCCCCCCCCCC ...

CCCCCCCCIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIICCCCCCCCCCCCCCCCCC ...

CCCCCCCCCCCCCCCIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIICCCCCCCCCCC ...

CCCCCCCCCCCCCCCCCCCCCCI’;

ctype=Ctype1;

Aineq=[t4;t5];bineq=[0;b5];

Aeq=[t1;t2;t3];beq=[Q2*To’;Q2*To’;Q2*To’];

lb=[0;zeros(8*n,1);T1min;zeros(8*n,1);T2min;zeros(8*n,1);T3min;0];

ub=[inf;ones(8*n,1);T1max;ones(8*n,1);T2max;ones(8*n,1);T3max;inf];

[X,fval,exitflag,output] = cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[] ...

,lb,ub,ctype);
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Appendix A (Continued)

W1=X(2:33);W2=X(67:98);W3=X(132:163);Npv=X(197);

Z1_lower(MM)=X(1);

Z_lower=X(1);

for ss=1:1:600

CA(:,(ss-1)*32+1:ss*32)=ps(ss)*Price/4;

CA2((ss-1)*32+1:ss*32,:)=W1;

CA3((ss-1)*32+1:ss*32,:)=W2;

CA4((ss-1)*32+1:ss*32,:)=W3;

CA5((ss-1)*32+1:ss*32,:)=PV((ss),:);

end

cvx_begin

cvx_solver Gurobi_2

variables P(19200) Pb(19200) Cb Eb;

dual variables lambda

minimize CA*P+Cost_cb*Cb+Cost_Eb*Eb

lambda: P>=(CA2*P_ac+CA3*P_ac+CA4*P_ac)-Pb-(Npv*CA5);

P>=0

-Pb>=-Cb;

Pb>=-Cb;

Cb<=.25*Eb;

for KL=1:1:600

[-tril(ones(32,32))]*Pb((KL-1)*32+1:32*KL)>=0;

[tril(ones(32,32))]*Pb((KL-1)*32+1:32*KL) >=-Eb;

end

cvx_end

if cvx_optval==inf
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Appendix A (Continued)

cvx_begin

cvx_solver Gurobi_2

variables P(19200) Pb(19200) Y(30) Cb Eb;

dual variables lambda_3

minimize ones(1,30)*Y

lambda_3: P+Y>=([W1;W1;W1]*P_ac+[W2;W2;W2]*P_ac+[W3;W3;W3] ...

*P_ac)-Pb-(Npv*[PV1;PV2;PV3]);

Y>0;

P>=0

P<=4

-Pb>=-Cb;

Pb>=-Cb;

Cb<=.25*Eb;

[-tril(ones(10,10)) zeros(10,20);zeros(10,10) -tril(ones(10,10)) ...

zeros(10,10);zeros(10,20) -tril(ones(10,10))]*Pb>=0;

[tril(ones(10,10)) zeros(10,20);zeros(10,10) tril(ones(10,10)) ...

zeros(10,10);zeros(10,20) tril(ones(10,10))]*Pb>=-Eb;

cvx_end

for WL=1:1:600

B2(:,WL)=lambda_3((WL-1)*32+1:WL*32);

end

lambda3(MM+1,:)=P_ac*[sum(B2,2)];

for WL1=1:1:600

B3((WL1-1)*32+1:WL1*32)=PV(WL1,:);

end

CC20(MM+1,1)=-B3*lambda_3;
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Appendix A (Continued)

RZlow(MM+1)=0;

R2(MM+1)=1;

lambda2(MM+1,:)=zeros(1,32);

DD20(MM+1,1)=0

Z1_upper(MM)=inf;

else

Z1_upper(MM)=ones(1,32)*W1+ones(1,32)*W2+ones(1,32)*W3+Cpv*Npv ...

+cvx_optval;

Z_upper=ones(1,32)*W1+ones(1,32)*W2+ones(1,32)*W3+Cpv*Npv ...

+cvx_optval;;

for WL=1:1:600

B2(:,WL)=lambda((WL-1)*32+1:WL*32);

end

lambda2(MM+1,:)=P_ac*[sum(B2,2)];

for WL1=1:1:600

B3((WL1-1)*32+1:WL1*32)=PV(WL1,:);

end

lambda3(MM+1,:)=zeros(1,32);

CC20(MM+1,1)=0;

DD20(MM+1,1)=-B3*lambda;

RZlow(MM+1)=1;R2(MM+1)=0;

MM

Z_lower

Z_upper

end

end
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Appendix A (Continued)

figure(1)

plot(1:MM,[Z1_lower],’-r*’,’LineWidth’,1.0);

hold on

plot(1:MM,[Z1_upper],’-x’,’LineWidth’,1.0);

Number_of_pv=Npv

Battery_power_rating=Cb

Battery_Energy_rating=Eb
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