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A Remanufacturing news-vendor

with pricing and take-back pricing

Lu Keyu

Abstract

This paper analyzes the problem of a remanufacturing news-vendor with

selling and take-back price decision. In our model, the remanufacturer

decides selling price, take-back price, and order quantity for new ma-

terials. She then uses the stochastic take-back quantity and the new

material to meet the stochastic demand comparably to a news vendor

setting. We allow demand and take-back supply to be correlated.

In this thesis, we study a production problem with dual input sources:

raw materials and recycled or remanufactured take-back items. To an-

swer when mixed-sourcing is best, we analyze the model under deter-

ministic setting first, provide criteria for different sourcing strategies,

and give corresponding joint optimal solutions. Assuming that a mixed

strategy is optimal, we then analyze the stochastic case, and find the

optimal joint decision for raw-material order quantity, selling product

price and take-back price.

We find that, when the selling price remains fixed, the optimal take-

back price and thus the expected take-back quantity does not change

with increased demand and take-back supply variance. Also, the take-

back price can exceed the net savings achieved by remanufacturing if

consumers take this price into account when purchasing new products.

And, the adding of randomness of demand and take-back supply will

lower the optimal selling price and thus lower the take-back price.
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In future research, we will provide numerical analysis to report the

impact and performance if a required recycling level is imposed in the

problem; study the remanufacture problems with multiplicative demand

function; multiple customer classes, such as the trade-in consideration;

or multiple order opportunities, such as postponing the raw material

procurement.
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Chapter 1

Introduction

Remanufacturing is an industrial process to manufacture ”as good as

new” products from used products. The potential environmental ben-

efits of remanufacturing are obvious. Remanufacturing a product can

save about 85% of the energy that would otherwise have been used in

the production process. Since less new raw materials and energy are

consumed, remanufacturing reduces air pollution and lowers greenhouse

gas emissions. And the reuse of items reduces water pollution and other

environmental impacts by reducing the need for ”conventional” waste

disposal.

There also exists a big market for remanufacturing. In the United

Kingdom, the remanufacturing industry employs more than 50,000 peo-

ple and contributed around £5 billion to GDP in 2008. In the United

States, 25% of plastic beverage containers, 52% of aluminum cans, and

55% of major appliances were recycled in 2008. Shaw Industry, Kodak,

and Xerox etc. have shown that remanufacturing can be profitable.

Shaw Industries, in 2008, re-launched the Evergreen plant in Geor-

1
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gia, USA, the world’s largest Type 6 Nylon recycling facility. Used

carpet is collected across the United States, brought to the Evergreen

Nylon Recycling facility and then recycled back to caprolactam, the

main precursor for Nylon . This material can be used to make new

nylon products that are as soft, aesthetic, and durable as before. More

than 95 percent of all material entering Evergreen is now recovered

([Shaw industries(2008)]). Kodak also uses a recycling strategy for

their single-use-cameras. Kodak pays photo-finishers a fee to return

used single-use-cameras to a collection center. The cameras are then

sent to a Kodak factory in Guadalajara, Mexico for recycling and reuse.

The rate of recycling for Kodak Single Use Cameras was 84% in 2008

([Kodak(2008)]). In general, closed-loop remanufacturing or closed-

loop recycling seems to be a viable strategy in industries and compa-

nies where the useful life of a single product is much shorter than the

life-cycle of the recyclable component.

When companies consider a closed-loop remanufacturing strategy

they face a range of questions. One such question that we will address

in this paper regards the take-back price: should it reflect only potential

cost savings or does the take-back price have wider implications? An-

other question regards the impact of demand and supply uncertainty on

the remanufacturing strategy. How does it affect prices, raw material

ordering and profits?

To answer these questions we formulate an extension of price-setting

news-vendor models [Petruzzi and Dada(1999)] in a closed-loop supply

chain setting. According to the recent survey paper by [Guide and

Van Wassenhove(2009)], the joint decision for pricing and news-vendor
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framework with remanufacturing consideration has not been addressed

in the literature,

In our model, the remanufacturer decides selling price, take-back

price, and order quantity for new materials. She then uses the stochastic

take-back quantity and the new material to meet the stochastic demand

comparably to a news vendor setting. We assume supply and demand

are sensitive to both selling and take-back price, and we allow demand

and take-back supply to be correlated.

We then provide the criteria for different sourcing strategies under

the deterministic case, and find the optimal joint decision for stochastic

demand and supply. We find that, when the selling price remains fixed,

the optimal take-back price and thus the expected take-back quantity

does not change with increased demand and take-back supply variance.

And when the selling price and the impact of the take-back price on

demand, and thus revenues, is large enough, it is possible that the

optimal take-back price exceeds the difference between the cost of raw

material and cleaning/recycling cost. We also find our model can be

translated to a special version of classical news-vendor model plus a

quadratic term, and the appearance of randomness of demand and take-

back supply lowers the optimal selling price, thus the take-back price.

We briefly review related literature in chapter 2. We describe and

formulate our model in chapter 3, and give the optimal solution in

chapter 4. In chapter 5, we report on the solution algorithm and its use

on a constructed example for Kodak’s single-use cameras. In chapter 6,

we summarize the contribution and limitation of this work and possible

directions for future.



Chapter 2

Literature Review

[Guide and Van Wassenhove(2009)] formulate the five phases of CLSC

research as: (i) Remanufacturing as a technical problem (ii) From re-

manufacturing to valuing the reverse-logistics process (iii) Coordinating

the reverse supply chain (iv) Closing the loop (v) Prices and markets

. Our paper, is located at phase iv and phase v. We consider an inte-

grated closed-loop supply chain, and focus on the joint decision of price,

take-back price, and virgin material inventory, in a newsvendor setting.

To capture all pricing effects, we let supply and demand be sensitive to

both selling and take-back price in a linear fashion.

The remanufacturing literature has been expanding since the 1990’s

and describes various business models.

raw ma-
terial

Manu-
facture

Dis-
tribution

Users

Figure 2.1: Remanufacturing Model 01

4



CHAPTER 2. LITERATURE REVIEW 5

[Martijn Thierry(1995)] and [Guide et al.(2000)] describe an ideal

remanufacturing System (Figure 2.1). In this framework, used item

are collected, processed and combined with new raw material to create

inputs to manufacturing process. Later, at the distribution stage, the

demand is satisfied. In our paper, we follow this model.

Few models in the literature use this closed-loop recycling frame-

work. [Atasu and Çetinkaya(2006)] discuss the inventory decision for

new and remanufactured product, where the remanufactured products

are perfectly substitutable for the new product, by consider the impact

of shipping delay time and quantity of used items in a deterministic set-

ting over a finite life-cycle. [Guide et al.(1998)] examine the impact of

different delay buffers on a closed-supply-chain. [R. Teunter, E. van der

Laan(2002)] show that an average cost model may not be appropriate

for reverse logistics inventory. [Toktay, Wein, and Zenios(2000)] study

the ordering policy using a queueing network model in the context of

Kodak’s single-use camera. However, these papers are based on the con-

tinuous time review model, and only focus on inventory management

and not on pricing decisions.

raw ma-
terial

Manu-
facture

Dis-
tribution

Non-
green
Users

Remanu-
facture

Dis-
tribution

Green
Users

Figure 2.2: Remanufacturing Model 02
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Based on the periodic review model, the literature can further be

split into two main streams.

One stream splits the market into two parts: Non-green customers

and green customers (Figure 2.2). The non-green customer only buys

the item made from virgin raw materials, and the green customer will

buy the item made from take-back items. Game theoretic models are

used to analyze the competition between the two kinds of product and

the competition with other manufacturers. E.g. [Ovchinnikov(2009)]

studies the joint pricing and remanufacturing strategy of a firm that

offers both new and remanufactured products in a deterministic setting.

Remanu-
facture

Dis-
tribution

Users

Figure 2.3: Remanufacture Model 03

The third stream considers the case that the inventory only comes

from used-items (Figure 2.3). They focus more on how to set the sorting

policy based on the condition of take-back item. [Guide et al.(2001)]

consider a price sensitive multi-grade model in a deterministic set-

ting. In their model, they split the take back item into n grades

by quality, with the supply of each grade independent and increased

by acquisition price. There is only one grade for sale, and the de-

mand is a decreasing function of selling price, independent of sup-

ply. [Galbreth and Blackburn(2006)] analyze used products quantity

and recovery rate to meet both deterministic and stochastic demand.
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[Bakal and Akcali(2006)] investigate the effects of recovery yield rate

on pricing decisions under deterministic demand and supply.

There are two papers related closely to our paper. [Ferrer and

Swaminathan(2006)] consider a two/multi period remanufacturing prob-

lem under deterministic setting with demand sensitive to price. In their

model, the manufacturer sells new products in the first period, and sells

both new and remanufactured items in the second period. The available

remanufacturing quantity is a fixed rate of last period’s demand. And

they decide the selling price and inventory level. Our model is different

from theirs as (i) we consider acquisition(take-back) price, (ii) remanu-

facturing quantity is sensitive to both selling and take back price, and

(iii) our demand and supply are random. [Ray, Boyaci, and Aras(2005)]

study the optimal price and trade-in rebates to meet deterministic de-

mand. Our model is different from theirs as (i) [Ray, Boyaci, and

Aras(2005)] only take back used items when the customer buys a new

one (our model do not have this constraint), (ii) in our model the

demand is also affected by the take-back price, and (iii) we consider

stochastic demand and supply.

Table 2.1 provides an overview of this literature. Our paper con-

tributes to literature since we are the first to consider the pricing and

inventory issue with remanufacturing under stochastic setting.

The model we present clearly is also an extension of pricing in the

newsvendor problem. [Petruzzi and Dada(1999)] review pricing in the

newsvendor problem. They point out that under certain assumptions,

a unique optimal solution exists. Our paper adds the remanufacturing

factor into the model and also shows that the unique optimal solution
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-review model Frame† Selling Price Take-back Price Demand

[Atasu and Çetinkaya(2006)] Continuous time Frame 01 Fixed Fixed Deterministic

[Guide et al.(1998)] Continuous time Frame 01 Fixed Fixed Deterministic

[R. Teunter, E. van der Laan(2002)]Continuous time Frame 01 Fixed Fixed Deterministic

[Toktay, Wein, and Zenios(2000)] Continuous time Frame 01 Fixed Fixed Stochastic

[Ovchinnikov(2009)] Periodic Frame 02 DV None Deterministic

[Guide et al.(2001)] Periodic Frame 03 DV DV Deterministic

[Galbreth and Blackburn(2006)] Periodic Frame 03 Fixed DV Stochastic

[Bakal and Akcali(2006)] Periodic Frame 03 DV DV Deterministic

[Ferrer and Swaminathan(2006)] Periodic Frame 01 DV Fixed Deterministic

[Ray, Boyaci, and Aras(2005)] Periodic Frame 01 DV DV Deterministic

Our paper Periodic Frame 01 DV DV Stochastic

Table 2.1: Overview of remanufacture model

†Frame 01 represents Figure 2.1, Frame 02 represents Figure 2.2, Frame 03 represents Figure 2.3.

††DV here is short for ‘Decision Variable’.
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exists when certain conditions are satisfied.



Chapter 3

Model

We consider the problem faced by a remanufacturer that must deter-

mine the selling price of its product pN , the take-back price for used

items pR, and raw material order quantity q in a one period news-vendor

environment. At the beginning of the period, we decide pN , pR and q.

Later, we collect take-back items. Let R be the quantity of take-back

items and R is a random variable. After cleaning and refining these

take-back items at a cost cR per unit, we use them to add to our inven-

tory of raw materials that cost c per unit, thus we have R + q items in

our inventory. In the end, we use these items to meet our demand D

that is also a random variable. We sell all the inventory at a price pN if

the demand exceeds inventory, otherwise, we sell the leftover inventory

at a salvage price s. The flow of the model can be viewed in figure 3.1.

Our objective is to maximize the expected profit. To build the

inventory, we pay c · q for raw materials and (pR + cR) ·R for take-back

items. After the demand is realized, we earn pN × min{D, q + R} for

selling products, and we obtain s×max{q + R−D, 0} salvage revenue

10



CHAPTER 3. MODEL 11

raw ma-

terial

c

Manu-

facture

Dis-

tribution
Users

pN

Leftover

s

Cleaning

cR

Take-back

items

pR

q R + q min{R + q,D}

max{R + q − D, 0}

RR

+

R

Figure 3.1: Remanufacture Model with Control Flow

pN Selling price of a new unit Decision variable
pR take-back price of a used unit Decision variable
c Collecting price of a raw material
cR Remanufacture cost of a used unit
s Salvage value of a unit, s < c
D number of new-item-Demand Random variable
µD the mean of Demand D Dependent variable
R quantity of take-back item Random variable
µR the mean of supply R Dependent variable
q Order quantity of raw materials from

other supplier
Decision variable

εD Random variable represent the variance
of demand. Assume E[εD] = 0

Random variable

f1(·) Probability density function of εD

F1(·) Cumulative distribution function of εD

εR Random variable represent the variance
of supply. Assume E[εR] = 0

Random variable

f2(·) Probability density function of εR

F2(·) Cumulative distribution function of εR

Table 3.1: Parameters and Function Used

for leftover inventory.

The objective function can be formulated as equation (3.1).
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max E[Π(pN , pR, q)] = E
[

pN · min{D, q + R} + s · max{q + R − D, 0}

−(pR + cR) · R − c · q
]

(3.1)

We express demand D and take-back supply R in an additive form

of selling price pN and take price pR. That is, we let demand be a

linear decreasing function of selling price, and take-back supply a linear

increasing function of take-back price.

D = α0
D − β0

D · pN

R = α0
R + γ0

R · pR

Consider further that a customer who wants to buy a new product,

will view a high take-back price as a positive factor in their buy decision.

First, the take-back price can be viewed as a future bonus; second, a

customer who wants to replace their used product, could think of the

take back price as a discount. So the take-back price can affect the

demand for new products. A reciprocal effects holds as well. A higher

selling price pN will stop customers from replacing their unit, and thus

shrink the take-back supply market. We refine the demand and take-

back supply as a linear function of both selling price and take-back price.

By adding the random effect εD and εR, we have the final version of

demand and take-back supply functions.

D = αD − βD · pN + γD · pR + εD (3.2)

R = αR − βR · pN + γR · pR + εR (3.3)
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We also assume that:

βD > γD, βD > βR

γR > γD, γD > βD

This dominant assumption is very common in literature ([Talluri and

Ryzin(2005)], [Maglaras and Meissner(2006)]). 1 In our model, it means

the demand is more sensitive to the selling price than the take back price

and that the selling price has more effect on demand than supply, and

vice versa.

Now we have three decision variables(pN , pR, q), and two dependent

variables (D and R). We analyze the constraints on them one by one.

• Order quantity, q In the classical news vendor problem, q should

be greater than zero. However, in our case, things change. We

have two input resources: raw materials and take back items.

In some situations, we will have too many take-back items, thus

besides satisfy the demand, we also have extra units. To simplify

our model, we assume the remanufacturer can clean the remaining

items and turn them into raw materials, then sell them to the

market at the same price of the raw material cost, c. And we can

use a negative q to denote this situation. Thus, we do not have

constraint on order quantity.

• Selling price, pN Customers pay pN to acquire the product. The

1[Talluri and Ryzin(2005)] and [Maglaras and Meissner(2006)] use it to describe
the relationship between multiple price and demand, then they can grantee the
matrix is invertible and that its eigenvalues have positive real parts.
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selling price should not be smaller than salvage value, s, otherwise,

the remanufacturer would like to keep the product to the end of

the period instead of satisfying demand. On the other hand, since

we can sold things back to raw material market, we would prefer

to sold thing to the raw material market if pN is lower than c.

And we have c > s > 0, the constraint on selling price is pN > c

• Take-back price, pR In our model, to acquire a used item we need

to pay pR to customers. However, we note that in the real life,

people need to pay a recycling fee to deal with their used items

sometimes (in Europe, car, IT product, etc.). To contain this

situation, we allow pR be smaller than zero. A negative pR denote

the customer will pay a recycling fee to the remanufacturer to deal

with their used items instead of that the remanufacturer give the

customer a take-back fee. Thus, we do not have constraint on

take-back price.

• Demand quantity, D & Take-back quantity, R Clearly, the neg-

ative demand and supply are meaningless. Thus, both quantity

should be greater than zero, that is D > 0 and R > 0.

We summarize this chapter by given the mathematic version of our
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model.

max
pN ,pR,q

E[Π(pN , pR, q)] (3.4)

Subject To

Π(pN , pR, q) = pN · min{D, q + R} + s · max{q + R − D, 0}

−(pR + cR) · R − c · q

D = αD − βD · pN + γD · pR + εD

R = αR − βR · pN + γR · pR + εR

D ≥ 0

R ≥ 0

pN ≥ c



Chapter 4

Solution

As we have mentioned in chapter 3, our model has dual input sources:

(i) raw materials, and (ii) take-back items. It will be really useful to

know when to use both sources and when to use only one of them. We

use the deterministic case to answer this question. Once we have en-

sured that we would like to use both sources, we move to the stochastic

case, which allows us to study closed-loop supply chains with a higher

degree of realism.

4.1 Deterministic Case

For deterministic case, we let

ǫD ≡ 0

ǫR ≡ 0

As we have noted in chapter 3, there is no constraint on order quan-

tity, q, which follows Lemma 1.

16
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Lemma 1. For fixed pN and pR, the optimal order quantity q∗ equal to

D − R.

By using Lemma 1, we can eliminate our problem to fix two vari-

ables, pN and pR. And to find the optimal solution of pR and pN , we

first need to know the feasible space.

We draw an example of feasible space in Figure 4.1. The feasible

pN

pR

q = 0(D = R)

R = 0

D = 0

pN = c

Figure 4.1: An example of feasible space in the deterministic setting

space of (pN , pR) is constrained by R = 0 (red line), D = 0 (green line),

and pN = c (blue line). Furthermore, we split the feasible space into

three parts by pR = 0 and q = 0. Different part of the feasible space

represents different strategy. We explain the strategies one by one.

• Green part. The solution within green part satisfies R ≥ 0,

q ≥ 0, pN ≥ c, pR ≥ 0, and D ≥ 0. Under this situation, the best

strategy is to buy used-items from users and buy raw material

from the market at the same time , then use both resources to

build inventory, thus satisfying the demand.

• Dark green part. The solution within dark green part satisfies



CHAPTER 4. SOLUTION 18

R ≥ 0, q ≥ 0, pN ≥ c, and D ≥ 0, but with a negative take-back

price, pR. The negative take-back price should correspond to the

situation that the customer pay a disposal fee to the manufacturer.

The existence of recycling fees charged by some companies suggest

the validity of this solution.

• Light green part. The solution within the light green part

satisfies R ≥ 0, pN ≥ c, pR ≥ 0, and D ≥ 0. However, the order

quantity q is negative. Thus, instead of buying raw material from

the market, we recycle the used item back to raw material, then

sell it to the market. Shaw Industry, for example, recycles used

carpets back to caprolactam in their Evergreen Nylon Recycling

facility. They have the choice to sell caprolactam back to the

market, if they have higher inventory.

• Red Line. The red line represent the line that there is no take-

back items. This can be driven by two sides. From the customer

side, a high price for new items or a low price for take-back items

would lead to a reduced willingness for people to sell their used

item. From the manufacture side, a high cleaning / transportation

fee would lead to lower incentives for remanufacturing. Under this

situation, we should only want to produce new product from raw

material. The behavior under this strategy is well-studied. The

solution of this line can be found in Appendix B.1

• Green Line. The green line represents the line that there is no

demand. Still, this can be driven by two sides. A high price for

the new item will stop people from buying, and a high cost of raw
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material will make the manufacture had no willing to produce.

Under this situation, the remanufacturer should only recycle take

back items back to raw material and sell them to the raw-material-

market. The solution of this line can be found in Appendix B.2

• Blue Line. Blue line represent the line that the optimal sale price

is equal to the raw material cost. This could caused by low cost

(c or cR) or small demand market size (αD). Under this situation,

the manufacturer has no interest in satisfying customers’ demand.

They could either lower their raw-material-order-quantity, or sold

their refined take-back item to the market. This would lead to

a negative raw-material-order quantity. The strategy should be

taken here is clearly. We collect take-back items, recycle them

back to raw material, and then sold all of them to raw-material-

market. The solution of this line can be found in Appendix B.3

Now we focus on the solution of light green, green and dark green

area. And we have theorem 1.

Theorem 1. By letting order quantity q equal to D − R, profit Π is

jointly concave in pN and pR under the dominant assumption.

Thus, we know the ideal optimal solution is

pN = 2γR · A − (γD + βR) · B + γR · (γD − βR) · C + c

pR = (βR + γD) · A − 2βD · B + [2βD · γR − (βR + γD) · βR] · C
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where

A =
αD − c · βD

4βD · γR − (βR + γD)2

B =
αR − c · βR

4βD · γR − (βR + γD)2

C =
c − cR

4βD · γR − (βR + γD)2

By comparing the ideal optimal take-back price p∗R with the difference

of raw material cost c and remanufacture cost cR, we have Properties

1.

Properties 1. If

βR + γD) · αD + [(βR + γD) · γD − 2βD · γR] · (c − cR)

≥ 2βD · αR + (γD − βR) · βD · c

holds, then the optimal take-back price pR exceeds the difference between

the cost of raw material c and cleaning/recycling cost cR.

4.2 Stochastic case

Moving to the stochastic case, we assume the manufacturer has already

decided to use both sources, raw material and take-back items, to pro-

duce. And we do not consider the boundary constraints here.

4.2.1 Rearrange and Simplify

Rethink the profit. Before, we assumed every unit in our inventory

could be sold. The profit is (pN − c) per unit for raw material, and
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(pN − cR − pR) per unit for take back item. We let the summation be

our revenue function, Ψ(pN , pR, q).

Ψ(pN , pR, q) = (pN − c) · q + (pN − cR − pR) · µR (4.1)

However, we cannot always sell every unit we have. When the de-

mand is smaller than our inventory, we have (q+R−D)+ in our storage.

Instead of selling them at pN per unit, we only get salvage value, s, and

it “costs” us (pN − s) per unit. We use leftover function, L(pN , pR, q),

represent this part.

L(pN , pR, q) = (pN − s) · E[(q + R − D)+] (4.2)

Now, we can rewrite our objective function as revenue function mi-

nus leftover function.

E[Π(pN , pR, q)] = pN · E[min{D, q + R}] + s · E[max{0, q + R − D}]

−c · q − (cR + pR) · E[R]

= Ψ(pN , pR, q) − L(pN , pR, q) (4.3)

We also can view the revenue function, Ψ, as the deterministic part

of our objective function, and the leftover function L represents the

stochastic part.

Notice that for the stochastic part, the leftover function (equation

4.2), we only care about the difference between D and R instead of the

exact value of D and R. In that way, we define a new random variable
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to represent the difference of ǫD and ǫR.

ǫ = ǫD − ǫR

and the corresponding p.d.f and c.d.f are f(·) and F (·). The difference

between D and R should be µD − µR + ǫ. The leftover function should

be:

L(pN , pR, q) = (pN − s) · E[(q + µR − µD − ǫ)+]

= (pN − s) ·

∫ q+µR−µD

−∞

(q + µR − µD − x) · f(x) dx

From technical side, replacing ǫD and ǫR with ǫ helps us to simplify

our computation since one random variables is always simpler than two.

Another benefit is we avoid the difficulty of considering the connection

between demand D and take-back supply R. Such a correlation can

be expected since a portion of the people who sold their used items

will buy a new one immediately as a replacement. So, a high volume

of supply will be related to a high volume of demand. We allow this

correlation to exist in our model.

We can now also simplify the remainder of our exposition by trans-

forming the problem into an equivalent problem in which only the de-

mand is uncertain. We do so by letting

ǫN
D ≡ ǫD − ǫR

ǫN
R ≡ 0
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4.2.2 Result

Back to equation 4.3, where we have split the total profit into revenue

part (Ψ) and leftover part (L). We can find the first partial derivatives

of profit function by analyzing the marginal effort on both part.

Order Quantity, q We have more units to sell, and ideally, the rev-

enue will increase by (pN − c). However, the possibility that this item

becomes leftover is F (q +µR −µD), and cost (pN − s) ·F (q +µR −µD).

∂E[Π(pN , pR, q)]

∂q
= pN − c − (pN − s) · F (q + µR − µD) (4.4)

Take back price, pR When the take back price, pR, increases by 1

unit, we need to pay more for every take back item, at a total cost

of µR. And this increment also spurs people to sell their used items,

so we will have γR more take-back units, and increase our revenue by

γR · (pN − cR − pR). On the leftover side, we have γR more units to sell,

and the demand is also increased by γD. Then the (γR−γD) units have

probability F (q + µR − µD) to become leftover, and incur the leftover

cost.

∂E[Π(pN , pR, q)]

∂pR

= (pN − cR − pR) · γR − µR

−(pN − s) · (γR − γD) · F (q + µR − µD)(4.5)

Selling price, pN When the selling price, pN , increases by 1 unit, we

can earn more from every sold item, thus, we earn q + µR more. And

since fewer people want to sell their used items, we collect βR items

less, and lose (pN − pR − cR) · βR. On the leftover side, the increment
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in pN leads to more cost for every unsold unit, E[(q + µR − µD − ǫ)+]

in all. A change in pN also changes the quantity of demand and the

take back quantity. Then the expectation of leftover will increased by

(βD − βR) · F (q + µR − µD).

∂E[Π(pN , pR, q)]

∂pN

= q + µR − (pN − cR − pR) · βR

−E[(q + µR − µD − ǫ)+]

−(pN − s) · (βD − βR) · F (q + µR − µD)(4.6)

The analysis above leads to Lemma Theorem 2.

Lemma 2. The expected profit E[Π] is concave in q and pR for a fixed

pN . And the optimal solution is 1

q∗(pN) = F−1

(

pN − c

pN − s

)

+ µ∗

D(pN) − µ∗

R(pN) (4.7)

p∗R(pN) = pN ·
βR + γD

2γR

−
αR + cR · γR − c · (γR − γD)

2γR

(4.8)

Proof. See Appendix.

Theorem 2. When random variable ǫ satisfies 2r2(·)+r′(·) > 0, where

r(·) = f(·)/[1 − F (·)], the optimal solution is the maximum pN which

satisfy

∆E[Π(pN , p∗R(pN), q∗(pN))]/∆pN = 0

Proof. See Appendix.

1Here, µ∗

D
(pN ) = αD−βD ·pN +γD ·p∗

R
(pN ), µ∗

R
(pN ) = αR−βR ·pN +γR ·p∗

R
(pN )
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4.2.3 Discussion

We have three interesting insights here. First, in Lemma 2, we note

that when the selling price pN fixed, the take-back price pR does not

change with increased demand and take-back supply variance. Second,

it seems that the sum of take-back price and cleaning/recycling cost is

not necessary lower than the cost of raw material. Third, by comparing

Theorem 2 with the result of the classical newsvendor model ([Petruzzi

and Dada(1999)]), we see a same assumption and conclusion. We try

to explain these in this paragraph.

In the classical news-vendor model, the optimal order quantity should

be

q∗Newsvendor = F−1

(

pN − c

pN − s

)

+ µD

compare with equation 4.7, we see our raw-material order quantity is

shrunk by µR, the expected quantity of used-item, this can be explained

by using inventory level. In the classical news-vendor model, inventory

level is equal to the quantity of raw material. However, in our model,

we use both raw material and take-back items to build our inventory

level. The inventory level of these two models are exactly the same

2. In other words, we use raw material order quantity to adjust our

inventory level to fit the randomness in demand. We can view the raw

material order quantity as a buffer to absorb the undesirable affection

from randomness. And under this protection, the optimal take-back

price pR is independent of the randomness for a fixed selling price pN .

2assume that we ignore that F (·) now also captures the randomness of tack-back
supply.
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To find the relationship between the cost of raw material and the

sum of take-back price and cleaning/recycling cost, we first focus on the

marginal benefit of take-back price pR follow the analysis above. By

increasing pN by 1 unit, we need to pay more for one take back item,

and this cost us µR; we have γR more take back item in our inventory

and replace raw material, this will save us (c − pR − cR) · γR; and the

demand also increased by γD, so did our inventory level, we use raw

material to adjust our inventory level correspondingly, and we can earn

(pN − s) · γD. Thus, besides rely on the difference raw material cost

c and cleaning/recycling cost cR, the optimal take-back price should

also depend on the selling price and the impact on demand and supply.

When the selling price is high enough, and the impact of take-back price

on demand is large enough, it is possible that the sum of take-back price

and cleaning/recycling cost higher than the cost of raw material. For

example, if we let

D = 10000 − pN + 0.15 · pR

R = 100 − 0.2 · pN + 0.5 · pR

c = 400, cR = 250, s = 250, and ǫ ∼ Norm(0, 20), the optimal solution

is (pN , pR, q) = (5507, 1842.6, 4887.3). Clearly, cR + pR > c.

Since E[Π] is concave in q and pR for a fixed pN , we can translate our

model to an equivalent one and reducing the optimal take-back price

pR.
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Lemma 3. Our model, is equivalent to

max
pN ,Q

E[Π′(pN , Q)] = E[pN · min{D, Q} + s · max{Q − D, 0} − c · Q]

+X · p2
N + Y · pN + Z

by letting,

Q = q + αR − βR · pN + γR · p∗R(pN)

X =
β2

R − γ2
D

2γR

Y =
c · γ2

D − βR · (αR + γR · (c − cR))

2γR

Z = (
(αR − cR · γR + c · γR)2 − c2 · γ2

D

4γR

)

E[Π′(pN , Q)] is a traditional news-vendor objective function plus a

quadratic term g(pN). In our proof of Theorem 2, 3 the key point is

(d3E[Π]/dp3
N < 0). In that way, (dE[Π]/dpN) is a concave function,

and have at most two zero points. The quadratic term g(pN) do not

change this property since (d3g(pN)/dp3
N = 0). This is the reason why

our model has the same result as the traditional news-vendor model.

We know that in the traditional news-vendor model, the optimal

selling price is smaller or equal to the optimal riskless selling price

[Mills(1959)]. We can find the same result in our model.

Properties 2. The optimal selling price is always less or equal to M/N,

3Also in the proof of classical news vendor model.
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where

M = 2βD − βR ·
βR + γD

γR

> 0

N = αD + c · βD

−
(βR + γD) · (αR + c · γD)

2γR

−
(βR − γD) · (c − cR)

2

and p∗N is equal to M/N if and only if the demand if fixed (the riskless

case).
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Numerical Example

Algorithm We have developed an algorithm (Appendix C.1) to find

the best strategy and optimal solution in O(1) time for the deterministic

case; and another algorithm (Appendix C.2) to find the optimal solution

in O(log M) 1 time for the stochastic case.

Deterministic Case A typical profit graph under different αD and

αR should be look as figure 5.1. The corresponding demand and supply

of take-back items is shown in figure 5.2. 2 From figure 5.1, we can

easily see that the basement of αD and αR can change our choice of

1M denote the range of possible value of selling price, pN , and we assume to
compute an integer take us O(1) time.

2In these figures, different color denote different strategies.

Blue. Take both sources, raw material (can be negative) and take-back item, to
produce items.

Light blue. Only use raw material to produce items.

Green. Recycle back take-back item and sold them to raw material market, since
there is no demand.

Orange. Recycle back take-back item and sold them to raw material market, since
the optimal selling price is too low, and we ignore the demand.

Dark red. Do nothing.

29
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(a) Price (b) Strategy

Figure 5.1: Profit & Strategies under different αD and αR

c = 3, cR = 4, s = 1, D = αD − 1200pN + 300pR,
R = αR − 100pN + 1800pR.

(a) Selling price (b) Raw

Figure 5.2: Other variables under different αD and αR

strategies. We first consider the situation that αR is low. Since αR

is low, the acquirement of take-back items will be hard. And when

both αD and αR are low, there is limiting room for the selling price pN

grows, to sell something is profitless, then we would like to do nothing.

As the αD grows, we can increase pN , and now we would like to produce

new product from raw materials, and sold them. Now we move to the

situation that αR is high. Since αR is high, we can acquire take-back

items at a very reasonable price. And we αD is low, we should just

recycle the take-back items back to raw material, then sold them. As αD

grows, the demand begins to appear. However, at the very beginning,
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the corresponding selling price is still low. Thus, we choose to ignore

the demand, and still serve the raw-material-market only. Later, as αD

grows and pN is high enough, we would like to take both sources to

produce items. 3

From figure 5.1(a), we see that without remanufacturing strategy,

the company will do nothing when demand is low, and produce items

when demand is high enough; with the adding of recycling, even at low

level of demand, the company can have revenue by recycle take-back

items, which is showed by green and orange part. And when demand

is relative higher, the adding of remanufacturing can increase the total

revenue significantly. In this experiment, it can reach 30%. Figure

5.2(a) and 5.2(b) also showed that the adding of recycling can reduce

the selling price and shorten the use of raw material.

Stochastic Case As we have said in chapter 4, the introduce of ran-

domness in demand and supply, will decrease the optimal selling price,

and thus decrease the take-back price. Figure 5.3 examine this property.

Figure 5.4 shows the expected profit versus randomness. Here, we

use dash-dot line to show the expected profit by using the price as the

deterministic case. We see that by using the optimal price, the profit

is increased significantly.

An Example We try to set the parameters to represent the Kodak

single-use camera environment. We focus on those small, one-time-use

3Here, if order quantity still smaller than 0, means we use the take-back items
to serve both demand and raw-material markets.
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(b) Take-back price

Figure 5.3: Price under different randomness
c = 12, cR = 5, s = 5, D = 30000 − 1500pN + 1000pR, R = 1100pR
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Figure 5.4: Expected profit under different randomness

cameras that sell for $4 to $10, an area Kodak and rival Fuji dominate.

We simple set the cost of raw material, c, equal to 3 (a slightly lower

than the lowest selling price); the cost of remanufacture, cR, equal to 1

(we only need to replace the cover and the film), and the salvage value is

1 per unit. According to the work of [Toktay, Wein, and Zenios(2000)],
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the demand of Kodak single-use camera is around 18,000 per week in

the United State in 2000. Since the small, one-time-use cameras is

dominate by Kodak and Fuji, simple assume the size of market αD is

36,000 (18, 000×2). The target selling price will around $7 (the middle

number between $4 and $10), thus we let βD = 3200 (36000/(2∗7−3) =

3272.727). γD should be smaller than βD, let it equal to 2000. On the

supply side, Kodak is recycled the camera regardless of the brand, thus

we let the quantity of supply is only sensitive to take-back price. We

assume γR should be more than twice (the market of Kodak and Fuji)

of βD, and let γR = 8000. The demand and supply function should be:

D = 36000 − 3200 · pN + 2000 · pR

R = 8000 · pR

We apply our algorithm for both deterministic and stochastic case.

Table 5.1 shows the expect profit under different setting. Here, Take-

back ignored means we set the selling price as the no remanufacturing

case, but count the optimal take-back price and raw material order

quantity. And uncertainty ignored means we still use the price and

order quantities as the deterministic case.

By comparing the first two cases (deterministic) in Table 5.1, we

can see that by adding remanufacturing part, the profit is increased by

35%. And under stochastic circumstance, by adding remanufacturing

part, the expected profit is increased by 37.8%.

To given an intuitive explanation on the effort of take-back price,

we try to compare the no-remanufacturing case and the take-back ig-
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Order

quantity

Selling

price

Take-back

price

Expected sale Expected sal-

vage

Expected profit

Deterministic

No remanufactur-

ing

13200 7.125 N/A 13200 0 54450

Take-back ignored 4106.25 7.125 1.5156 16231.25 0 72826.95

Remanufacturing 2159.3 7.6179 1.5772 14777 0 73574

Stochastic

No remanufactur-

ing

14295 7.0575 N/A 12982 1313 50047

Take-back ignored 5251.8 7.0575 1.5072 15996 1313.2 68220

Uncertainty ig-

nored

3195.6 7.6179 1.5772 14393 1420.7 68957

Optimal 3452.9 7.5481 1.5685 14593 1407.9 68969

Table 5.1: Numerical Result
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nored case. Under deterministic setting, by adding the take-back part,

the demand is increased by 3031.25, create 12504 (∆D× (pN − c)) rev-

enue; and the recycling part is saving 5873 ((c− cR − pR)×R). Under

stochastic setting, the expected demand is increased by 3014, create

12229 revenue; and the recycling part is saving 5942. Thus, we think

the take-back price should reflect the potential demand increase as well

as the potential cost saving.



Chapter 6

Conclusion

In this paper, we developed and analyzed a pricing and news-vendor

framework for products with recycling or remanufacturing as a sourcing

option. Our model helps managers to decide whether or not to start

remanufacturing, and then determine the optimal selling price, take-

back price and raw material order quantity, for quite a general class of

demand and take-back supply distributions.

We contribute to the literature since we are the first to consider

the pricing and inventory issue with remanufacturing under stochastic

demand and potentially correlated stochastic take-back supply.

We provide the method to find the optimal solution. We find that,

when the selling price remains fixed, the optimal take-back price and

thus the expected take-back quantity does not change with increased

demand and take-back supply variance. It seems that the raw mate-

rial order quantity has adjusted our inventory level to fit the random-

ness in demand. Also, when the impact of take-back on demand, and

thus revenues, is large enough, it is possible that the optimal take-back

36
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price exceeds the difference between the cost of raw material and clean-

ing/recycling cost. Later, by replacing the optimal take-back price, we

find our model can be viewed as a special version of classical news-

vendor model plus a quadratic term. Also, as the classical news-vendor

model, we find the appearance of randomness would lower the optimal

selling price, and thus the take-back price.

We offer a numerical example that is loosely modeled on the sit-

uation of Kodak’s single-use cameras. We find remanufacturing can

increase the expected profit by 5%.

Although we believe our model is simple, useful and applicable for

single-period problem, we should also see the limitations of this model.

The linear demand/supply function will not be suitable in extreme case,

eg., when demand is near zero. To fix this, we can use a piece-wise linear

function to fit the demand/supply function. Also, our model views all

the take-back items as the same. However, for some kind of product, the

condition of take-back items is an important factor in remanufacturing.

There are plenty extensions beyond this model. One major exten-

sion is to consider a multi-period setting. In that setting, we can incor-

porate the delay time of remanufacturing, and we can investigate the

impact of earlier price setting. Another worthwhile research direction

to consider is multiple customer classes and multiple conditions of take-

back items. This would naturally lead to a multi-price strategy, maybe

dependent on the years of usage.



Appendix A

Proof

Proof of Theorem 1.

Proof. Our objective function is,

Π(pN , pR, q) = pN · min{D, q + R} + s · max{q + R − D, 0}

−(pR + cR) · R − c · q

= pN · (q + R) − (pN − s) · max{q + R − D, 0}

−(pR + cR) · R − c · q

That is, we assume everything in the inventory can be sold first, then

for leftover, we lose (pN−s) per unit. The marginal benefit of increment

in q can be expressed as follow.

Marginalq =











s − c , if q + R ≥ D

pN − c , if q + R < D

Since we have assumed that c > s, we should keep q + R ≤ D. On the

other hand, since we have constrained selling price pN greater than c,

38
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we would like to make q as high as possible. Thus, keep D = q + R is

the best way to maximize our profit. And we have the optimal order

quantity q∗(pR, pN) equal to D −R. We then apply q∗(pR, pN) into our

objective function.

Π = (pN − c) · D + (c − pR − cR) · R

Consider the first partial derivatives of Π taken with respect to pN and

pR,

∂Π

∂pN

= D − (pN − c) · βD − (c − pR − cR) · βR

∂Π

∂pR

= (pN − c) · γD − R + (c − pR − cR) · γR

and the Hessian matrix
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dominant assumption as follows.
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Thus, profit Π is jointly concave in pN and pR.

The optimal solution can be expressed as follows.







p∗N

p∗R






=







γD + βR −2γR

−2βD γD + βR







−1

·







c · γD + αR − (c − cR) · γR

−αD − c · βD + (c − cR) · βR







q∗ = D(p∗N , p∗R) − R(p∗N , p∗R)

We also provide the direct expression of the optimal solution here.

pR = (βR + γD) · A − 2βD · B + [2βD · γR − (βR + γD) · βR] · C

pN = 2γR · A − (γD + βR) · B + γR · (γD − βR) · C + c

D = [2βD · γR − βR · (βR + γD)] · A − βD · (γD − βR) · B

+(βD · γR − βR · γD) · (βR + γD) · C (A.1)

R = γR · (γD − βR) · A + [2βD · γR − γD(βR + γD)] · B

+2γR · (βD · γR − γD · βR) · C (A.2)

q = [2βD · γR − βR · (βR + γD) − γR · (γD − βR)] · A

−[2βD · γR − γD(βR + γD) + βD · (γD − βR)] · B

+(βD · γR − βR · γD) · (βR + γD − 2γR) · C (A.3)
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Here,

A =
αD − c · βD

4βD · γR − (βR + γD)2

B =
αR − c · βR

4βD · γR − (βR + γD)2

C =
c − cR

4βD · γR − (βR + γD)2

D =
1

4βD · γR − (βR + γD)2

Π = D · {γR · (αD − c · βD)2 + βD · (αR − c · βR)2

+γR · (βD · γR − βR · γD) · (c − cR)2

−(γD + βR) · (αD − c · βD) · (αR − c · βR)

+γR · (γD − βR) · (αD − c · βD) · (c − cR)

+[2βD · γR − (βR + γD) · γD] · (αR − c · βR) · (c − cR)}

Proof of Properties 1

Proof.

[4βD · γR − (βR + γD)2] · [p∗R − (c − cR)]

= (βR + γD) · αD + [(βR + γD) · γD − 2βD · γR] · (c − cR)

−2βD · αR − (γD − βR) · βD · c
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Proof of Lemma 2.

Proof. Consider the first and second partial derivatives of E[Π] taken

with respect to q and pR,

∂E[Π(pN , pR, q)]

∂q
= pN − c − (pN − s) · F (q + µR − µD)

∂2E[Π(pN , pR, q)]

∂q2
= −(pN − s) · f(q + µR − µD) < 0

∂E[Π(pN , pR, q)]

∂pR

= (pN − cR − pR) · γR − µR

−(pN − s) · (γR − γD) · F (q + µR − µD)

∂2E[Π(pN , pR, q)]

∂p2
R

= −2γR − (pN − s) · (γR − γD)2 · f(q + µR − µD) < 0

∂2E[Π(pN , pR, q)]

∂q∂pR

= −(pN − s) · (γR − γD) · f(q + µR − µD)

and the determinant of Hessian matrix:

det

∣

∣

∣

∣

∣

∣

∣

∂2E[Π]
∂q2

∂2E[Π]
∂q∂pR

∂2E[Π]
∂q∂pR

∂2E[Π]

∂p2

R

∣

∣

∣

∣

∣

∣

∣

= (pN − s) · f(q + µR − µD)

×(2γR + (pN − s) · (γR − γD)2 · f(q + µR − µD))

−(pN − s)2 · (γR − γD)2 · f(q + µR − µD)2

= 2γR · (pN − s) · f(q + µR − µD) > 0

Thus, the expected profit E[Π] is concave in q and pR for a fixed pN .

The optimal (q∗(pN), p∗R(pN)) should satisfy

0 =
∂E[Π(pN , pR, q)]

∂q
= pN − c − (pN − s) · F (q + µR − µD)

0 =
∂E[Π(pN , pR, q)]

∂pR

= (pN − cR − pR) · γR − µR

−(pN − s) · (γR − γD) · F (q + µR − µD)
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Thus,

q∗(pN) = F−1

(

pN − c

pN − s

)

− µ∗

D(pN) + µ∗

R(pN)

p∗R(pN) = pN ·
βR + γD

2γR

−
αR + cR · γR − c · (γR − γD)

2γR

Here,

µ∗

D(pN ) = αD − βD · pN + γD · p∗R(pN)

µ∗

R(pN ) = αR − βR · pN + γR · p∗R(pN)

Proof of Theorem 2.

Proof. Let

A(pN) =
∆E[Π(pN , p∗R(pN), q∗(pN))]

∆pN

From chain rule

A(pN) =
∂E[Π(pN , pR, q)]

∂pN

∣

∣

∣

∣

pR=p∗
R

(pN ),q=q∗(pN )

Apply equation 4.6, 4.8 and 4.7:

A(pN) = B(pN) + αD − βD · pN + γD · p∗R(pN)

− (pN − cR − p∗R(pN)) · βR

−E
[

(B(pN) − ǫ)+]

− (pN − c) · (βD − βR)
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where

B(pN ) = F−1

(

pN − c

pN − s

)

and

∆B(pN )

∆pN

=
1

f(B(pN))
·

c − s

(pN − s)2

Consider finding the zeros of A(pN):

∆A(pN )

∆pN

=
1

f(B(pN))
·

c − s

(pN − s)2
− βD + γD ·

∆p∗R(pN)

∆pN

−

(

1 −
∆p∗R(pN )

∆pN

)

· βR

−
1

f(B(pN))
·

c − s

(pN − s)2
·
pN − c

pN − s
− (βD − βR)

=
1

f(B(pN))
·

(c − s)2

(pN − s)3

+
∆p∗R(pN )

∆pN

· (βR + γD) − 2βD

=
1

r(B(pN))
·
(1 − F (B(pN)))2

c − s

+
∆p∗R(pN )

∆pN

· (βR + γD) − 2βD
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where r(·) = f(·)/[1 − F (·)]

∆2A(pN)

∆p2
N

=
∆ 1

r(B(pN ))

∆pN

·
(1 − F (B(pN)))2

c − s

−2 ·
1

r(B(pN))
·
(1 − F (B(pN)))

c − s
· f(B(pN )) ·

∆B(pN )

∆pN

=
∆ 1

r(B(pN ))

∆B(pN )
·
∆B(pN )

∆pN

·
(1 − F (B(pN)))2

c − s

−2 ·
(1 − F (B(pN)))2

c − s
·
∆B(pN )

∆pN

= −

[

∆r(B(pN))

∆B(pN )
+ 2 · r2(B(pN))

]

×
1

r2(B(pN))
·
(1 − F (B(pN)))2

c − s
·
∆B(pN)

∆pN

That is, if 2 · r2(·) + r′(·) > 0 always hold, A(pN) is concave in pN , the

optimal solution is the largest pN that satisfies A(pN) = 0

Proof of Lemma 3.

Proof. From Lemma 2, E[Π] is concave in q and pR for a fixed pN , our

model is equivalent to

max
pN ,q

E[Π′(pN , q)] = E[pN · min{D, q + R} + s · max{q + R − D, 0}

−(pR + cR) · R − c · q]

s.t. pR = pN · U − V

where

U =
βR + γD

2γR

V =
αR + cR · γR − c · (γR − γD)

2γR
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Let Q = q + R,

Π′(pN , Q) = pN · min{D, Q} + s · max{Q − D, 0}

−c · Q + (c − pR − cR) · R

= pN · min{D, Q} + s · max{Q − D, 0} − c · Q

+(c − pN · U + V − cR) · (αR − βR · pN + γR · (pN · U − V))

= pN · min{D, Q} + s · max{Q − D, 0} − c · Q

+(c + V − cR − pN · U) · (αR − γR · V + (γR · U − βR) · pN)

= pN · min{D, Q} + s · max{Q − D, 0} − c · Q

+X · p2
N + Y · pN + Z

Here, X, Y and Z are constants.

X = −U · (γR · U − βR)

=
β2

R − γ2
D

2γR

Y = (c + V − cR) · (γR · U − βR) − U · (αR − γR · V)

=
c · γ2

D − βR · (αR + γR · (c − cR))

2γR

Z = (c + V − cR) · (αR − γR · V)

= (
(αR − cR · γR + c · γR)2 − c2 · γ2

D

4γR

)

Proof of Properties 2.
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Proof. In Lemma 3, we have prove our model is equivalent to 1

max
pN ,Q

E[Π′(pN , Q)] = E[pN · min{D, Q} + s · max{Q − D, 0} − c · Q]

+X · p2
N + Y · pN + Z

and in both models the optimal selling prices should be the same. Define

z = Q − µD, and replace Q by z + µD, D by µD + ǫ

E[Π′(pN , z)] = E[pN · min{µD + ǫ, z + µD} + s · max{z − ǫ, 0} − c · (z + µD)]

+X · p2
N + Y · pN + Z

= (pN − c) · (µD + z) − (pN − s) · E[(z − ǫ)+]

+X · p2
N + Y · pN + Z

Consider the first and second partial derivatives of E[Π′] taken with

respect to pN ,

∂E[Π′(pN , z)]

∂pN

= µD + z + (pN − c) ·
∂µD

∂pN

− E[(z − ǫ)+]

+2X · pN + Y

∂2E[Π′(pN , z)]

∂p2
N

= 2
∂µD

∂pN

+ 2X

= −2βD + (γD + βR) ·
βR

γR

By using dominant assumption, we can see that the second partial

derivatives of E[Π′] taken with respect to pN is smaller than zero, thus,

E[Π′] is a concave function in pN for a fixed z. And the optimal selling

1The definition of X, Y, and Z can be found in proof of lemma 3.
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price pN satisfy

0 =
∂E[Π′(pN , z)]

∂pN

= µD + z + (pN − c) ·
∂µD

∂pN

− E[(z − ǫ)+]

+2X · pN + Y

p∗N(z) =
N + z − E[(z − ǫ)+]

M

M = 2βD − βR ·
βR + γD

γR

> 0

N = αD + c · βD

−
(βR + γD) · (αR + c · γD)

2γR

−
(βR − γD) · (c − cR)

2

Clearly, z − E[(z − ǫ)+] ≤ 0, and z − E[(z − ǫ)+] = 0 if and only if

ǫ ≡ 0. Thus, the optimal selling price is smaller or equal to the optimal

riskless selling price.



Appendix B

Boundaries in Deterministic

Case

B.1 No take-back line, R = 0

The scenario that without remanufacture has been well-studied by lit-

erature.

B.1.1 Boundary

R = 0 starts at point (ps
N , ps

R)

ps
N = c

ps
R =

βR · c − αR

γR

49
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ends at point (pe
N , pe

R) satisfies

pe
N =

γR · αD − γD · αR

βD · γR − βR · γD

pe
R =

βR · αD − βD · αR

βD · γR − βR · γD

And this line will existence as a boundary of feasible space if and only

if

c ≤
γR · αD − γD · αR

βD · γR − βR · γD

B.1.2 Solution

The profit should be

ΠNR = D · (pN − c)

The first and second derivatives of ΠNR in pN should be

∆ΠNR

∆pN

= D +
∆D

∆pN

· (pN − c)

∆2ΠNR

∆p2
N

= 2
∆D

∆pN

Since R = 0, we have

−βR + γR ·
∆pR

∆pN

= 0

∆pR

∆pN

=
βR

γR

∆D

∆pN

= −βD + γD ·
βR

γR
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Apply dominant assumption, γR > γD > 0 and βD > βR > 0, we have

γR · βD > γD · βR, thus,

∆D

∆pN

=
−γR · βD + γD · βR

γR

< 0

Now, we know ∆2ΠNR/∆p2
N is always smaller than zero, and the profit

ΠNR should be a concave function in pN . The optimal pN can be found

by letting ∆ΠNR/∆pN = 0.

p∗N =
αD · γR − αR · γD

2(βD · γR − γD · βR)
+

c

2

p∗R =
αD · βR · γR − αR · βD · γR

2γR · (βD · γR − γD · βR)
−

αR − c · βR

2γR

And the corresponding profit is

ΠNR =
[(αD − c · βD) · γR − (αR − c · βR) · γD]2

4γR · (βD · γR − γD · βR)

B.1.3 Conclusion

• If

c ≤
γR · αD − γD · αR

βD · γR − βR · γD

then the optimal solution of pN and pR is

p∗N =
αD · γR − αR · γD

2(βD · γR − γD · βR)
+

c

2

p∗R =
αD · βR · γR − αR · βD · γR

2γR · (βD · γR − γD · βR)
−

αR − c · βR

2γR
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And the corresponding profit is

Π1(pR) =
[(αD − c · βD) · γR − (αR − c · βR) · γD]2

4γR · (βD · γR − γD · βR)

• Otherwise, this line will do not exist as the feasible boundary.

B.2 No demand line, D = 0

Under this scenario, the profit should be

ΠND = R · (c − pR − cR)

B.2.1 Boundary

No demand line start at point (pe
N , pe

R)

pe
N =

γR · αD − γD · αR

βD · γR − βR · γD

pe
R =

βR · αD − βD · αR

βD · γR − βR · γD

B.2.2 Solution

The first and second derivatives of ΠND in pR should be

∆ΠND

∆pR

= −R +
∆R

∆pR

· (c − pR − cR)

∆2ΠND

∆p2
R

= −2
∆R

∆pR
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Since D = 0, we have

−βD ·
∆pN

∆pR

+ γD = 0

∆pN

∆pR

=
γD

βD

∆R

∆pN

= −βR ·
γD

βD

+ γR

Apply dominant assumption, γR > γD > 0 and βD > βR > 0, we have

γR · βD > γD · βR, thus,

∆R

∆pN

=
γR · βD − γD · βR

βD

> 0

Now, we know ∆2ΠND/∆p2
R is always smaller than zero, and the profit

ΠND should be a concave function in pR. The optimal pN can be found

by letting ∆ΠND/∆pR = 0.

p∗N =
αD + γD · (c − cR)

2βD

+
αD · γR − αR · γD

2(γR · βD − βR · γD)

p∗R =
αD · βR − αR · βD

2(γR · βD − βR · γD)
+

c − cR

2

and the corresponding profit is

ΠND =

(

c − cR

2
−

αD · βR − αR · βD

2(γR · βD − βR · γD)

)

·(γR ·
c − cR

2βD

· (γR · βD − βR · γD) −
αD · βR − αR · βD

2βR

)
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B.2.3 Conclusion

• If

αD + γD · (c − cR)

βD

≥
γR · αD − γD · αR

βD · γR − βR · γD

the optimal solution is

p∗N =
αD + γD · (c − cR)

2βD

+
αD · γR − αR · γD

2(γR · βD − βR · γD)

p∗R =
αD · βR − αR · βD

2(γR · βD − βR · γD)
+

c − cR

2

the corresponding profit is

ΠND =

(

c − cR

2
−

αD · βR − αR · βD

2(γR · βD − βR · γD)

)

·(γR ·
c − cR

2βD

· (γR · βD − βR · γD) −
αD · βR − αR · βD

2βR

)

• Otherwise, the optimal solution is

p∗N =
γR · αD − γD · αR

βD · γR − βR · γD

p∗R =
βR · αD − βD · αR

βD · γR − βR · γD

the corresponding profit is 0.
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B.3 Low selling price line, pN = c

Under this scenario, the profit should be

ΠLS = R · (c − pR − cR)

B.3.1 Boundary

pN = c starts at point (ps
N , ps

R)

ps
N = c

ps
R =

βR · c − αR

γR

B.3.2 Solution

The first and second derivatives of ΠLS in pR should be

∆ΠLS

∆pR

= −R + γR · (c − pR − cR)

∆2ΠLS

∆p2
R

= −2γR < 0

Clearly, the profit ΠLS should be a concave function in pR. The optimal

pN can be found by letting ∆ΠLS/∆pR = 0.

p∗N = c

p∗R =
c − cR

2
−

αR − βR · c

2γR
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The corresponding profit is

Π = γR ·

(

αR − βR · c

2γR

+
c − cR

2

)2

B.3.3 Conclusion

• If

c − cR ≥
βR · c − αR

γR

the optimal solution is

p∗N = c

p∗R =
c − cR

2
−

αR − βR · c

2γR

The corresponding profit is

Π = γR ·

(

αR − βR · c

2γR

+
c − cR

2

)2

• Otherwise, the optimal solution is

ps
N = c

ps
R =

βR · c − αR

γR

The corresponding profit is 0.



Appendix C

Algorithm

C.1 Deterministic Optimal Solution Algo-

rithm

This algorithm is based on Theorem 1.

Step 0. Initialize.

We first need to find the optimal solution under each case

• Unconstrained solution







p1
N

p1
R






=







γD + βR −2γR

−2βD γD + βR







−1

·







c · γD + αR − (c − cR) · γR

−αD − c · βD + (c − cR) · βR







D1 = αD − βD · pI
N + γD · pI

R

R1 = αR − βD · pI
N + γR · pI

R

q1 = DI − RI

57



APPENDIX C. ALGORITHM 58

• no recycling (R = 0)

p2
N =

1

2
·

(

αD · γR − αR · γD

βD · γR − βR · γD

+ c

)

q2 =
1

2
·

(

αD − βD · c −
αR · γD

γR

+
βR · γD

γR

· c

)

• no demand (D = 0)

p3
R =

1

2

(

c − cR −
βD · αR − βR · αD

γR · βD − γD · βR

)

q3 =
1

2
·

(

αR −
βR

βD

· αD +
γR · βD − γD · βR

βD

· (c − cR)

)

• too low selling price (pN = c)

p4
R =

βR · c + γR · (c − cR) − αR

2γR

q4 =
γR · (c − cR) + αR − βR · c

2

Step 1. Judge Boundary Condition Compute the corresponding de-

mand, supply and profit under each case, then check the boundary

condition individually. If the boundary condition cannot be sat-

isfied, let the corresponding profit equal to −1.

Step 2. Compare Find the maximum profit among all cases, and the

corresponding strategy is our best choice. If the maximum profit

is −1, means we would better do nothing under these parameters

setting.
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C.2 Stochastic Optimal Solution Algorithm

In this algorithm, we first determine the optimal selling price p∗N , then

compute corresponding collecting price pR and order quantity q, in this

way we can find our optimal profit.

The procedure to find the optimal pN is based on the proof of the-

orem 2. We will use following formulations from that proof.

A(pN) = B(pN) + αD − βD · pN + γD · p∗R(pN)

− (pN − cR − p∗R(pN)) · βR

−E
[

(B(pN) − ǫ)+]

− (pN − c) · (βD − βR)

C(pN) =
∆A(pN)

∆pN

=
1

r(B(pN))
·
(1 − F (B(pN)))2

c − s

+
∆p∗R(pN)

∆pN

· (βR + γD) − 2βD

where

B(pN) = F−1

(

pN − c

pN − s

)

r(·) =
f(·)

1 − F (·)

Please refer the Appendix for the detailed meaning.

Step 0. Initialize.

Let lower = c, upper = 1000, i = 1, Π(1) = Π(2) = −∞.

Step 1. Finding the Middle point.

a. If C(upper) ≥ 0 or A(upper) ≥ 0, then upper = upper × 2,
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jump to step 1.a..

b. if A(lower) < 0 and C(lower) < 0, jump to step 3.

c. pU
N = upper, if A(lower) > 0, pL

N = lower, jump to step 2.

d. Let l = lower, u = upper.

e. middle = (l + u)/2.

f. if C(middle) > 0, then l = middle, jump to step 1.e..

g. if C(middle) < 0, then u = middle, jump to step 1.e..

h. i = 1, ind = 1, pL
N = middle.

Step 2. Binary Search.

a. pM
N = (pL

N + pU
N)/2.

b. If A(pM
N ) < 0, then pU

N = pM
N , jump to step 2.a..

c. If A(pM
N ) > 0, then pL

N = pM
N , jump to step 2.a..

d. Let p∗N = pM
N , and compute corresponding p∗R, q∗ and Π∗.

e. Jump to step 4.

Step 3. No result.

We would better do nothing. STOP

Step 4. Optimal solution.

We have found our optimal solution. STOP.
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