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ABSTRACT 

 

Radio Frequency (RF) filters are among the key components of today’s multifunctional 

devices and test equipment. However, the multifuctionality need significantly drives the required 

filter number and causes large areas to be allocated for filters. To alleviate this issue, over the 

recent years, reconfigurable filters have been proposed as an attractive alternative. Nevertheless, 

existing reconfigurable filter technologies demonstrate degraded performances in terms of loss, 

frequency tunability bandwidth, and power handling capability. This work investigates, for the 

first time, microfluidic based reconfiguration techniques for implementation of RF bandpass 

filters. Specifically, microfluidics is shown to provide mechanisms for achieving compact RF 

bandpass filters that can exhibit low loss, high power handling, and high frequency tunability. 

First, we present the utilization of liquid metals for realization of a frequency-agile microstrip 

bandpass filters consisting of broadside coupled split ring resonator (BC-SRR). In this design 

approach, one of the loops of the BC-SRR is realized from liquid metal to be able to 

microfluidically change the resonator shape and associated resonance frequency. The filter 

exhibits a 29% frequency tunable range from 870 MHz to 650 MHz, with insertion loss <3 dB, 

over the entire frequency tuning range, for a fractional bandwidth (FBW) of 5%. To the best of 

our knowledge, this filter design is the first in available literature that shows a continuously 

frequency reconfigurable microfluidic RF band-pass filter. To overcome the oxidization and 

lower conductivity issues associated with liquid metals and enhance the frequency tuning range 

further, subsequently, we introduce a filter design technique in which microfluidically 
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repositionable metallized plates are utilized within microfluidic channels with ultra-thin insulator 

walls. Specifically, this technique is employed to design a two pole microstrip bandpass filter 

where microfluidically repositionable metalized plates are used to capacitively load printed open 

loop resonators. To operate the filter (and control movement of multiple metalized plates) with a 

single bi-directional micropump unit, a strategically designed meandered microfluidic channel is 

implemented. The filter exhibits a 50% tuning range (from 1.5 GHz to 0.9 GHz), with an 

insertion loss <1.7 dB for a fractional bandwidth (FBW) of ~5%. Following this success, the 

concept of microfluidic based reconfigurability is generalized to the implementation of higher 

order filters, for the first time in available literature, by designing two different fourth order 

bandpass filters. These filters exhibit linear and diagonal layout arrangements to demonstrate that 

microfluidic based reconfigurable RF filters can meet different footprint requirements as well. 

Selectively metallized plates are also employed for the first time to alleviate synchronized 

movement issues. The filters operate with 60% frequency tuning range, 5% (+/- 1%) FBW, and 

<4.5 dB of insertion loss. Finally, we demonstrate that microfluidically repositionable selectively 

metalized plates can also be used to dynamically redefine the lengths of the microstrip line half 

wavelength resonators when resorted to ultra-thin microfluidic channel walls. By using this 

approach, a microstrip line combline filter is designed to realize a low loss and highly tunable 

(~2.7:1) RF bandpass filter that can also operate with near constant insertion loss performance. 

The fabricated prototype exhibits a 90% (2.7:1, 4 GHz to 1.5 GHz) frequency tuning range with 

5% (+/- 1%) FBW and insertion loss below 3 dB. Since microfluidics presents an opportunity for 

high power RF applications, power handling capabilities of these novel combline filters are 

computationally and experimentally demonstrated. The filters can handle above >15 W input 

power without the need of thick ground planes and/or heat sinks. 
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CHAPTER 1: INTRODUCTION 

 

 In the recent years, the demand for compact multifunctional devices has increased 

significantly. This has placed stringent restrictions in the size of RF front-ends, where filters tend 

to represent a significant portion of the RF front-end, occupying large areas [1]. Also, with the 

introduction of LTE bands, the amount of filters utilized in RF transmitter and receiver systems 

has increased more than double and it is expected to continue on this trend [2]. Therefore, 

reconfigurable filters have recently been presented as a promising alternative to replace the large 

filter banks within RF front-ends [3]-[4]. Filters capable of handling high power level have 

become of great interest due to increasing demand for base station and satellite communications 

[5]. In addition, RF systems, like test equipment, require high-frequency and widely tunable 

bandpass filters [6]. With reconfigurable filters the footprint needed could be reduced, and the 

power consumption could be significantly improved. The existing literature on reconfigurable 

filter technologies can be classified as “ferromagnetic resonances in yttrium iron garnet (YIG) 

spheres” [7]-[9], “semiconductor varactors” [10]-[13], “ferroelectric varactors” [13]-[15], “RF 

micro-electromechanical systems (MEMS) varactors and switches” [17]-[20], and “evanescent 

mode cavity resonators” [21]-[23]. However, this literature also shows that achieving 

reconfigurable filters that can simultaneously provide high frequency tuning range (i.e. 50%), 

low loss, small footprint, and high power handling capability is still very challenging. To address 

these issues, “microfluidically reconfigurable devices” has also recently attracted interest in 

electromagnetics community. Therefore, to emphasize the novelty and importance of this 
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dissertation work, the following sub-sections present a detailed literature review of these existing 

reconfigurable RF filter technologies:  

1.1 Semiconductor Varactors 

Semiconductor varactors are popular in designing compact and fast tuning filters [10]-

[13]. For example in [10], a varactor diode based filter is presented. The filter is designed 

utilizing suspended line resonator with an interdigital topology. Except for the first and last 

resonator, all the resonators are loaded with commercially available semiconductor varactors. 

The filter layout, and fabricated prototype, can be seen in Fig. 1(a) and Fig.1(b), respectively. A 

challenge for semiconductor varactor technology is to achieve a wide frequency tuning range 

with stable insertion loss performance. In addition, insertion loss significantly increases at higher 

Figure 1: Varactor based tunable bandpass filter. a) Filter layout; b) Fabricated prototype; c) 

S11 measurements; d) S21 measurements and predicted loss. Images were taken from [10]  

(a) (b) 

(c) (d) 
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frequency implementations due to the equivalent series resistances of varactors. For example the 

shown filter presents a frequency tunable range of 60% (1.3 GHz to 0.7 GHz), however, the 

fractional bandwidth and insertion loss remains relatively constant as 16% and <3 dB, 

respectively, only within a small frequency tuning range range of 30% (1.3 GHz to 1 GHz). In 

addition, 3dB insertion loss from a 16% wide fractional bandwidth implies a low resonator 

quality factor and this is associated with the large series resistance (~1Ω) of the semiconductor 

varactors (see Fig. 1(c) and (d)).  

In general,  filters loaded with semiconductor varactors exhibit a frequency tuning range 

that is proportional to the capacitance variation range of the varactors. By using diodes with 

higher capacitance variation (1.6 pF to 10 pF), reference [13] shows a 60% (2:1) tunable filter. 

However, such varactors are not available at high frequencies (>1GHz) or exhibit high series 

resistance. Consequently, the filter in reference [13] was designed at a lower frequency of 0.6 

GHz. Hence, achieving low loss performance over a wide frequency tuning range (>50%) at 

higher operational frequencies (>1GHz) remains a challenge in this technology. 

1.2 Ferroelectric Varactors 

Ferroelectric materials are attractive for obtaining RF reconfigurable devices as applied 

external voltage across a ferroelectric material can reduce the value of its relative dielectric 

constant. Hence, ferroelectric materials can be utilized to form capacitors that can change their 

capacitance with applied bias voltage (i.e. ferroelectric varactors). Specifically, ferroelectric 

varactors are found attractive for realizing reconfigurable filters at higher frequency bands (e.g. 

X-band) since they exhibit better insertion loss and high power handling performances as 

compared to semiconductor varactors. Nevertheless, existing filter examples in literature 

demonstrate high level of insertion loss as a major limitation. In addition, frequency tuning 
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ranges are generally below 50%.  As a typical example, we consider reference [15] that presents 

the design of a quasi-elliptic ferroelectric tunable filter. The filter is enabled by open-loop 

resonators loaded with high-Q ferroelectric barium strontium titanate (BST) varactors (Fig. 2(a)). 

This 4
th

 order filter provides a 6% frequency tunable range centered at 8.35 GHz with an 

insertion loss (IL) and return loss (RL) performances varying between 5.7 – 3.5 dB and 10.2 – 

7.9 dB, respectively (Fig. 2(b)). The correspondent 1 dB FBW varies from 5.5% to 7.3%.  The 

overall footprint of the filter was measured as 5.7 x 5.5 mm
2
. As can be seen, ferroelectric 

varactors allow for realization of this compact tunable filter. However, the insertion loss is 

significantly high and frequency tuning range is very small due to the limited capacitance 

variation in ferroelectric varactors.  

S
2

1
(d

B
)

Frequency (GHz)

S
1
1

(d
B

)

Frequency (GHz)

Figure 2: Ferroelectric varactor based tunable bandpass filter. a) Fabricated prototype; b) S11 

measurements; c) S21 measurements and predicted loss. Images were taken from [15]  

(a) 

(b) 

(c) 
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1.3 RF Micro-ElectroMechanical Systems (MEMS) Varactors and Switches 

In order to further reduce the losses obtained from ferroelectric varactors, MEMS 

technology has been utilized to obtain miniaturized low-loss frequency tunable filters at high 

operational frequencies. As an example for the performance of MEMS technologies, we consider 

reference [17] that presents a coplanar waveguide (CPW) MEMS based tunable filter. The filter 

is formed by resorting to three CPW short-ended half-wavelength resonators loaded with high-Q 

MEMS bridge capacitors. The capacitance obtained with MEMS technology is very small (in the 

femto scale). Therefore, as shown in Fig. 3(a), to obtain the required capacitance value, to load 

each resonator with 70fF, six bridges needed. As can be seen in Fig. 3(b), the filter was capable 

of providing a frequency reconfigurable filter at 20 GHz with a low IL <4.15 dB with a constant 

FBW of 7.5%. The tuning speed of the filter was characterized as 150 MHz per μs. However, 

Figure 3: Continuously tunable MEMS based filter. a) Fabricated prototype; b) S
21

 

measurements; c) S
11

 measurements and predicted loss. Images were taken from [17]  

(a) 

(b) (c) 
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Figure 4: Discretely tunable RF MEMS based filter. a) 4-bit capacitor unit cell circuit model; 

b) Fabricated 4-bit capacitor unit cell; c) Fabricated Filter; d) S
21

 measurements; e) S11 

measurements. Images were taken from [20]  

(a) (b) 

(c) 

(d) (e) 
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due to the limitations in capacitance variation of MEMS capacitors, a small frequency tuning 

range (14%) was obtained. The continuous frequency tuning range of MEMS based filters is 

generally small, therefore, filters employing discrete MEMS switches have also been proposed to 

enlarge the frequency tuning range. As an example, we consider reference [20], where a 

capacitor bank with four unit cells (see Fig. 4(a) for circuit model and Fig. 4(b) for fabricated) is 

used as the digital tuning mechanism. In Fig. 4(a), CM, RM and LM represent the MEMS 

capacitor, while RB represents the bias resistor. More specifically, this 4-bit differential filter 

(Fig. 4(c)) is capable of tuning 44% (from 6.5 GHz to 10 GHz) in 16 different discrete states. 

The insertion loss performance of the filter was measured to be <5.6 dB at the smallest frequency 

of operation (Fig. 4(d)) with better than 16 dB return loss over the entire frequency range (Fig. 

4(e)).  

MEMS technology still presents several limitations in terms of continuous frequency 

tuning range and poor power handling capabilities (~100 mW). In addition, MEMS capacitors 

present a degraded performance in time. This makes their operational lifetime significantly 

shorter than semiconductor and ferroelectric varactor technologies. 

1.4 Evanescent Cavity Resonator Filters 

Evanescent cavity resonators have been known for providing very high unloaded Q 

(~650). Thanks to their high-Q performance, evanescent cavity resonators can be combined with 

MEMS to achieve high tuning range, with very low insertion loss performance. For example, 

reference [22] utilized a MEMS membrane to change the capacitive loading on the post of an 

evanescent cavity resonator. This resonator topology is shown in Fig. 5(a). The resonance 

frequency can be varied from 1.9 GHz to 0.5 GHz while keeping a high-Q value (>300). 

Utilizing the resonator shown in Fig. 5(a), a two pole filter bandpass filter was designed (Fig. 
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5(b)). The filter performance, as shown in Fig. 5(c) and (d), is less than 3.5 dB of insertion loss 

for a 0.7% FBW over 40% (4.71 GHz to 3.04 GHz) frequency tuning range. However, as 

compared to printed microstrip line filters, the size of the filter is significantly large for a 4.5GHz 

filter by being 42 × 18 mm
2
 . Also, since the tuning mechanism is based on MEMS, the 

operational lifetime and mechanical stability remains an issue. 

1.5 Microfluidically Reconfigurable Devices 

Since the end of the 20
th

 century, and the beginning of the 21
st
 century, microfluidics 

have been utilized in a variety of areas such as medical research [24]-[30], cooling systems [31], 

and optical devices/sensors [32]-[34], among others. It did not take long before microfluidics 

S
2

1
(d

B
)

Frequency (GHz) Frequency (GHz)

S
1

1
(d

B
)

Figure 5: MEMS loaded evanescent-mode cavity resonator based filter. a) Tunable resonator; 

b) Fabricated two-pole tunable filter; c) S
21

 measurements; d) S11 measurements. Images 

were taken from [22]  

(a) 
(b) 

(d) (c) 
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caught the interest of RF and microwave researchers [35]-[36]. More specifically, microfluidics 

have been used to obtain a variety of RF devices such as antennas [37]-[40], frequency selective 

surfaces [41]-[43], and beam steering [44]. Fig. 6 shows some of the fabricated devices. More 

recent studies have shown that microfluidics can be utilized to accomplish reconfigurability in 

RF filters [45]. Use of microfluidics in reconfigurable RF filters is especially attractive for 

obtaining low-cost, low loss, and highly reconfigurable filters capable 

Figure 6: Microfluidically reconfigurable devices. a) CPW folded slot antenna; b) Frequency 

selective surface; c) Monopole array with beam-steering. Images (a), (b), and (c) were taken 

from [37], [42], and [44] respectively.  

(a) 

(b) 

(c) 
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of handling high RF powers. So far, the most common microfluidic based reconfiguration 

approach has been the utilization of liquid metals to reshape, load, or change dielectric properties 

of RF devices. The earliest work demonstrated the potential of microfluidics in realizing 

reconfigurable RF filters, but these filters were only one-time reconfigurable. For example, in 

[46] a microstrip bandstop filter is shown to be capable of operating at three different 

frequencies. The filter consists on a transmission line made out of liquid metal with an open stub. 

In the first state, the open stub is empty, and therefore, not seen by the signal. To prevent the 

liquid metal from flowing into the open stub, a row of post is utilized to work as a Laplace 

barrier Fig. 7(a). As a certain pressure is applied, the liquid metal will break the Laplace barrier 

and will flow into the open stub generating the stopband respond as seen in Fig. 7 (a). The same 

Figure 7: Microfluidically reconfigurable bandstop filter. a) 3-D representation of the filter; 

b) Measured and simulated S21; c) Measured and simulated S11. Images were taken from [46] 

(a) 

(b) 

(c) 
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principle is utilized to divide the open stub in two regions (state 2 and state 3). Fig. 7 (b) and (c) 

show the simulated and measured S21 and S11 responses, respectively. However, once the liquid 

metal is flown to fill a channel it cannot be taken back to reverse the frequency reconfiguration 

due to sticking of the liquid metal to the channel. A different approach to obtain a one-time 

tunable bandstop filter was presented in [47]. The filter operated by filling out different 

reservoirs with liquid metals (see Fig. 8(a)) to reconfigure an electromagnetic band-gap structure 

coupled to a microstrip line. The filter was designed to operate at 10.1 GHz, and results showed 

good agreement between measurements and simulations at the initial state (state 1) and at state 2 

(~5.5 GHz) (see Fig. 8(b) and (c)). More recently, a reconfigurable filter was presented in [48] 

by parasitically loading coplanar waveguide (CPW) resonators with liquid metals flown in 

microfluidic channels that are in close proximity of the resonators (Fig. 9). Due to the physical 

Figure 8: Liquid metal electromagnetic band-gap. a) Fabricated prototype; b) Measured and 

simulated S
21

 c) Measured and simulated S
11

. Images were taken from [47] 

(a) 

(b) (c) 
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separation between liquid metal and the resonator metallization, the filter is capable of 

reconfiguration by changing the liquid metal configuration. When the channel is filled with 

liquid metal, a capacitive loading effect is generated. Different states would represent different 

capacitive values. Therefore, in this filter, the tuning was accomplished in discrete steps by 

loading each resonator with the four variable liquid metal bridges. By filling, and emptying, the 

Figure 9: Liquid metal CPW bandpass filter. a) Fabricated prototype with 4 different states; 

b) Measured and simulated S
21

 and S
11

. Images were taken from [48] 

(a) 

(b) 
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bridges, the filter in [48], was capable of providing a 47% discrete frequency tunable range 

through four different states. The insertion loss performance was <5 dB with a relatively constant 

FBW of 5% as can be seen in Fig. 9(b). It is also important to note that reliable actuation of 

liquid metals is an on-going research effort and there is currently not a well-established solution. 

Rapid oxidization of liquid metals (significantly severe for non-toxic liquid metal Galinstan) 

causes them to stick to the channel walls irreversibly. Hence, life time of such filters are quite 

limited unless the liquid metal volume in use periodically gets replenished with new liquid metal 

volume free of oxidization [49]. 

Our research group has been a major contributor in the emerging area of microfluidically 

reconfigurable RF filters. When this dissertation work started, microfluidic based reconfigurable 

filters were at infancy with significant limitations, but with high promise for addressing the 

limitation of the previously mentioned technologies. More specifically, microfluidic 

reconfiguration was promising for obtaining widely tunable, low loss, and high power handling 

RF filters. The following sections of this dissertation will detail our contributions in this area and 

the evolution of our work throughout the last 4 years. Our initial work in [50] focused on 

implementation and miniaturization of band-stop microstrip filters by utilizing thin film 

fabrication procedures (such as benzocyclobutene (BCB)). It was found that thin-films can be 

used to achieve significant capacitance enhancement. The initial work in [50] utilized this 

capacitance enhancement to achieve a compact X-band filter with a wideband band-stop 

response. From this work, it became obvious that if thin-film fabrication techniques are applied 

for reconfigurable filters, a high frequency tuning range can be accomplished if a mechanism can 

be utilized to alter this capacitance during the device operation. This motivated us to investigate 

microfluidics potentially with thin film fabrication aspects. Our early work in microfluidically 
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reconfigurable RF filters dates back to 2013 [51] when one-time reconfigurable liquid metal 

based RF filters were being introduced. In contrast, we have (to the best of our knowledge) 

demonstrated for the first time the possibility of using microfluidics to realize frequency 

reconfigurable RF filters. This demonstration was carried out by designing and implementing a 

two-pole frequency-agile bandpass filter based on microfluidically reconfigurable broadside 

coupled split ring resonators (BC-SRRs). In these resonators, the top loop was constructed from 

liquid metal that can be flown inside Teflon microtubes. Hence, the resonance frequency of the 

filter could be changed repetitively by redefining the shape of the top loop of the resonator. A 

meandered microfluidic channel was also designed to be able to operate the filter with a single 

bi-directional micropump unit. The filter was shown to provide a continuous frequency tuning 

range from 650 to 870 MHz with a constant fractional bandwidth (FBW) of 5% and <3 dB of 

insertion loss. The frequency tuning range of the filter was shown to be limited by the wall 

thicknesses of the tubes as the wall thickness affects the capacitive coupling between the two 

loops of a BC-SRR (i.e. capacitive loading of the resonator). In addition, the liquid metal based 

construction (Galinstan or Mercury) caused a reliability issue due to the aforementioned issues. 

For example, oxidization issue can be reduced by using mercury but its toxicity rules the 

technology out from commercial applications. A non-toxic liquid metal is Galinstan, however it 

oxidizes very fast and cause sticking within the tubes, potentially resulting in breakdowns in the 

liquid metal volume. Although several techniques have been presented to prevent the oxidization 

of Galinstan, such as covering the inside of the microfluidic channel with liquid Teflon solution 

[52], none of the techniques had proven success to completely remove the oxidization problem 

for a long device life time.  
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To overcome the limitations found with liquid metals, in [53] we took a major step by 

replacing liquid metal volumes within microfluidic channels with metalized plates that can still 

be moved within the channels. We demonstrated this novel technique by realizing a two pole 

reconfigurable bandpass filter with open-loop resonators where the open ends were loaded with 

microfluidically movable metalized plates. In this approach, the metalized plate acts as a 

capacitive load at the open ends of the open loop resonator. By microfluidically repositioning the 

metallized plate, the capacitive loading can be varied. To maximize the capacitance variation, 

microfluidic channels were constructed by utilizing 25.4 μm thick Liquid Crystal Polymers 

(LCP) in order to exhibit a very thin wall above the printed filter area. As compared to prior 

liquid metal and tubed implementation, this novel two-pole bandpass filter exhibited a decrease 

of ~1.3 dB to 1.7 dB improved insertion loss and a 50% frequency tuning range that is 60% more 

than the previous implementation. The toxicity and oxidization drawbacks associated with liquid 

metals were successfully addressed with the metalized plate approach.  

The microfluidically reconfigurable metalized plate based filters exhibit multiple 

resonators each having their own metalized plate. In order to use a single bi-directional 

micropump, a single microfluidic channel was meandered over multiple resonators. This 

necessitated to have a synchronized motion of multiple plates within the microfluidic channels. 

Experiments performed with the two-pole filter mentioned above demonstrated that the 

metalized plate technique can suffer from synchronization issue due to the customized 

fabrication/placement of metalized plates. The synchronization issue is expected to be much 

more challenging for higher order filters exhibiting several resonators. Therefore, in [54], we 

introduced the concept of “microfluidically reconfigurable selectively metalized plates” to solve 

the synchronization issues and applied this concept to realize higher (4
th

) order bandpass filters. 
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To the best of knowledge, these were also the first higher order filters demonstrated with any 

microfluidic reconfiguration technique. Moreover, we also demonstrated that selectively 

metalized plate approach can be utilized for meeting different footprint requirements. A hybrid 

(EM + Lumped) circuit model was utilized in design of these filters in contrast to lengthy full-

wave simulations employed for our prior filter designs. The filters were also controlled 

electronically with external micropumps. To the best of our knowledge, all the previous literature 

on microfluidic filters was done utilizing syringes, and no speed characterization can be found. 

With this set-up speed characterizations were performed and novel microfluidic channel shapes 

were introduced for speed improvements. The fabricated prototype was measured to provide a 

5% (+/-1%) FBW over a 61% frequency tuning range with a worst case insertion loss of 4.5 dB. 

Extending the frequency tuning range of open loop resonators that are loaded with 

microfluidically repositionable metalized plates beyond 2:1 is possible. However, high level of 

capacitive loading needed to lower the operational frequency of the resonator significantly 

reduces the unloaded quality factor of the resonator (Qu) and therefore the filter’s insertion loss 

performance. A traditional approach to solve this issue would be to employ resonators with 

higher Qu factors and perform microfluidic based reconfigurable capacitive loading to tune the 

resonance frequency. However, resonators employing higher Qu factors are volumetric (such as 

evanescent cavity resonators and suspended microstrip line resonators) and therefore 

significantly increases filter size. As an alternative solution, in our most recent work, we 

introduce a novel approach for reconfiguration of conventional printed half wavelength 

microstrip resonators using microfluidics. Specifically, by placing a microfluidically 

repositionable selectively metalized plate on top of a conventional half wavelength microstrip 

resonator, the physical length of the resonator is dynamically redefined. This is accomplished by 
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utilizing an ultra-thin channel wall between the plate metallization and printed resonator so that 

an RF short is created. Since resonator is not externally loaded, the resonator exhibits a close to 

constant Qu throughout the entire tuning range. To enlarge the frequency tuning range of the 

resonator beyond 2:1, a transition between open ended and short ended half wavelength 

microstrip resonators is also employed. By combining this two tuning approaches (i.e. extend the 

length of the resonator and transition from open ended to short ended structure), a resonator 

tunable over a wide frequency tuning range is accomplished. Utilizing this novel resonator, a 4
th

 

order bandpass filter was designed at 4 GHz. The presented results show that the filter operates 

with a 90% (2.7:1) tuning range, constant 5% FBW, and insertion loss performance less than  <2 

dB. To demonstrate that microfluidically reconfigurable filters are promising for high power RF 

applications, power handling characterization of the filter was also performed. Experimental 

results showed that this filter is capable of handling >15 W of input RF signal power at the 

highest operation frequency which also represents the lowest unloaded quality factor within the 

frequency tuning range. The power handling capability is  limited by the highest temperature the 

materials within its construction can withstand to. The power handling capabilities of the filter 

can be significantly increased with addition of thicker ground planes, heat sinks, and/or by 

utilization of ceramic substrates. 

 In the following chapters, the contributions of this dissertation will be detailed. These 

contributions can be briefly summarized as: 

 First time realization of a microfluidically reconfigurable frequency-agile bandpass 

filter. 

 Introduction of microfluidically controlled metallized plates technique to alleviate 

reliability and high losses related to liquid metals. 
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 First time realization of higher order (4
th

 order) microfludically reconfigurable 

frequency-agile bandpass filters. These filters also show superior frequency tuning 

(~2:1) and high power handling capability. 

 Introduction of a novel technique for synchronously tuning several resonators with a 

microfludically repositionable selectively metallized plate. 

 Introduction of strategically designed microfluidic channel and selectively metalized 

plate shapes for tuning speed improvement. 

 Introduction of a novel half wavelength microfluidically reconfigurable resonator 

structure performing with close to constant unloaded quality factor across a very wide 

frequency tuning range (2.7:1, 1.5 GHz to 4.0 GHz).  

 Realization of higher order frequency-agile bandpass filters with 90% frequency 

tuning range exhibiting low and close to constant insertion loss performances. 

 Power handling characterization of microfluidically reconfigurable filters showing 

capability for handling >15 W of power. 
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CHAPTER 2: WIDEBAND BAND-STOP X-BAND FILTER USING ELECTRICALLY  

 

SMALL TIGHTLY COUPLED RESONATORS
1
 

 

 Filter size becomes especially important when the receive/transmit circuits of large 

antenna arrays need to be tightly integrated. For this work, a critical performance requirement 

was a very narrow footprint (<2.5 mm) for a bandstop filter in the X-band region with a broad 

bandwidth of 25%. To address the contending size and bandwidth demand, the presented filter 

employed electrically small capacitively-loaded open loop resonators over a 7 µm thin 

Benzocyclobutene (BCB, εr=2.4, tanδ=0.0015) layer in order to bring them in close proximity of 

the microstrip signal line and maximize the coupling. Consequently, a compact wideband band-

stop filter with a footprint of 15.7 x 2.5 mm
2
 (i.e. λ0/2 × λ0/13 at 9.2 GHz) was realized. The 

fabricated filter demonstrated >25 dB IL from 8.1 GHz to 9.64 GHz. Moreover, it operated with 

<1.5 dB measured IL within its passband (i.e. <7.3 GHz and >11.2 GHz) and satisfied the 

desired selectivity criteria. 

2.1 Filter Design 

 A microstrip implementation was utilized to be compatible with the desired installation 

requirements. To keep the size and passband IL small, the substrate material was selected as 

99.9% Alumina (Al2O3, εr=9.8, tanδ = 0.0004). The circuit layout of the band-stop filter 

consisted of λg/4 separated resonators coupled to a uniform microstrip signal line. As detailed in 

[55], the adjacent resonators are alternated on each side of the signal line to minimize their 

mutual coupling (see Fig. 10). Since the selected substrate thickness of 0.508 mm results in a 

                                                           
1
 This chapter was previously published in [50]. Permission is included in Appendix B. 
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0.4947 mm wide 50 Ω signal line, the width of the resonator footprints had to be <1 mm to meet 

the overall filter width specification of 2.5 mm. In addition, the λg/4 separation limits the 

maximum resonator length to 3.1 mm. To address this size limitation, we considered the spiral 

(SR), split-ring (SRR), and capacitively-loaded open-loop resonators in an elongated rectangular 

shape (see Fig. 10(b)) as potential choices of electrically small designs. The coupling coefficient 

Resonator
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Figure 10: Stopband filter. (a) Substrate stack-up; (b) Capacitively-loaded (14 fingers) open 

loop resonator; (c) Filter layout. The dimensions (in µm) are: T
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studies with the conventional single layer realizations revealed that the desired 25% FBW was 

unattainable regardless of which type of resonator was used. For example, a separation of 0.5 µm 

between any resonator type and the signal line leads to a small coupling coefficient that can only 

provide about 12% FBW.  Consequently, a low loss thin film BCB layer was introduced between 

the signal line and the resonators to increase the coupling by overlapping the resonators and the 

signal line as shown in Fig. 10(c). 

 The performance evaluation of the resonators was carried out over a 20 µm-thick BCB 

layer. For all resonators, it was found that the coupling was maximized as the line width of the 

overlapping trace of the resonators (Tw) gets closer to that of the signal line. The layouts of the 

resonators were modified to fit into the specified area of 3.1×1.5 mm
2
 and the one that provides 

the highest amount of coupling with the signal line was selected for the implementation. The 

normalized reactance slope (X/Z0 = f0/2Δf3dB, f0: resonance frequency and Δf3dB: 3dB IL 

bandwidth of a loosely coupled resonator) was extracted using the Momentum suite of the 

Agilent’s Advanced Design System (ADS). SR and SRR resonators were able to fit into the 

given footprint area when smaller trace widths were utilized, however, this also resulted in larger 

X/Z0 values implying a smaller coupling level. The area of the open-loop resonator was 

miniaturized with the capacitive loading and by employing a trace width (Tw) that is slightly 

narrower (i.e. 406 µm) than the signal line. With this configuration, the capacitively-loaded open 

loop resonator was found to provide the smallest X/Z0 value. 

Having decided on the resonator type, the thickness of the insulator was investigated to 

realize the desired X/Z0 values. Fig. 11 presents the X/Z0 as a function of the insulator thickness 

when the resonator is positioned directly above the signal line (Sn=0) for maximum coupling. 

Since X/Z0 must be smaller than 1.8 for the desired 25% BW, it is observed that the BCB layer 
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thickness should be kept below 8 μm. Therefore, to accommodate fabrication tolerances of up to 

10% while still remaining below the maximum 8 µm thickness, and to reduce the impact of the 

resonators on the passband IL performance, a 7 μm BCB layer thickness was chosen for the filter 

implementation. With this choice of BCB thickness the resonator dimensions representing the 

capacitive loading was first modified to tune the resonance frequency to 9.2 GHz. The desired 

X/Z0 values were realized by adjusting the position of the resonators relative to the signal line 

(i.e. Sn as indicated in Fig. 10(c)). As shown in Fig. 11, X/Z0 increases almost linearly with a 

rate of 0.0453 per µm as the resonator is moved away from the signal line. It is important to 

mention that since the desired selectivity values were not identical for the upper and lower 

passband edges, the final step in the design was to optimize the location of the resonators relative 

to the signal line to meet these specifications. This resulted in asymmetric resonator spacing 

within the filter layout as seen in Fig. 10(c). Additionally, optimizing the width of the signal line 

beneath the resonators was found to improve the passband IL. This is likely due to the variation 

in the characteristic impedance of the signal line due to the close proximity of the resonators. 

Specifically, the signal line width optimization resulted in a line width of 0.406 mm and 

improved the computed IL performance from 3 to 1.5 dB by improving the impedance matching 

within the filter, resulting in a better return loss. The finalized layout dimensions of the filter are 

given in Fig. 10(c). The filter implementation was carried out with 3 μm thick gold to minimize 

the skin-effect loss. 

2.2 Experimental Verification 

 The first conductor layer representing the feed-line was electroplated using 15 nm and 20 

nm thick seed layers of chrome and gold, respectively. The BCB layer (Dow Cyclotene 3022-35 

dry etch resin) was deposited using a spinner at the appropriate rate to achieve a 7 µm thickness 
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and subsequently cured in a vacuum oven for 2.5 hours at 250° C. A slow temperature ramp 

(100° C per hour) was used to obtain a planar film. To form the second conductor layer 

representing the resonators a sputtering system was used to deposit 3 µm of gold and lift-off was 

performed subsequently with 3000py negative photo resist. Finally, the BCB was removed from 

the ends of the filter using O2 and SF6 plasma in a ratio of 5:1. As the BCB is etched at the same 

rate of the photoresist mask, a thick (17 µm) 4620 positive photoresist was used to protect the 

filter during the plasma etching process. Aluminum and gold were evaporated onto the backside 

of the wafer to obtain a good conductive ground. For RF measurements, the filter wafer and 
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Figure 12: Experimental verification of stopband filter. (a) Fabricated filter and testing 

assembly with J-micro-probes; (b) Close-up snapshot of the resonator. Measured (–––) and 

simulated (x–x–x) S-parameters: (c) & (d) S21; (e) & (f) S11. 
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Jmicro Technology probe points were attached to a brass carrier using silver epoxy and 

interconnected using gold wire bonds. Fig. 12 (a) and (b) shows fabricated filter assembly and 

close-up view of the resonator on top of the BCB layer. 

  As a consequence of using an insulator layer with a thickness comparable to that of the 

conductor layer, a bulge was found to be formed along the length of the filter in the BCB layer 

even though a slow temperature ramp was used for the curing. Profilometer measurements 

revealed the height of this bulge to be ~3.5 µm higher than the nominal 7 µm BCB height on top 

of the TL, with a width of ~0.5 µm.  In order to accurately simulate this feature, the filter was 

modeled using the full-wave electromagnetic solver Ansys HFSSv14 by approximating the BCB 

surface and the overlaid resonators with small sections of rectangular planes. It was found that 

the bulge in the BCB accounted for a 300 MHz shift in the frequency response. Accordingly, 

future designs in need of wider bandwidths should consider an extra polishing step to planarize 

the BCB layer prior to the resonator metallization. 

As shown in Fig. 12(c), (d), (e), and (f), the simulated and measured data are in good 

agreement. The measurements were performed using an Anritsu Lighting VNA and ground 

signal ground Picoprobes by GGB Industries, Inc.  The measured passband IL was <1.5 dB 

below 7.3 GHz and above 11.2 GHz. The 3 dB IL bandwidth extended from 7.62 GHz to 10.37 

GHz, with more than 25 dB rejection between 8.1 GHz and 9.64 GHz and a selectivity of >40dB 

at both stop-band edges. Hence, the prototype successfully met the desired IL and selectivity 

criteria by providing 25% FBW.  

2.3 Concluding Remarks of Chapter 2 

 An electrically small coupled resonator X-band filter capable of exhibiting a 25% 

fractional bandwidth band-stop response was presented. Different than the existing designs, a 7 
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µm thin BCB layer was utilized to bring the resonators within the close proximity of a microstrip 

feed line to achieve the desired wideband response. The resonator shape was specifically 

modified to minimize the width of the filter to 2.5 mm (i.e. λ0/13) at the center frequency of 9.2 

GHz. The coupling level between the resonators and the signal line was presented as a function 

of BCB thickness and resonator position. Layout analysis and optimizations have demonstrated 

that the very thin BCB layer thickness results in variation in the optimum signal line width. In 

addition, the planarization of the insulator surface is important for the accuracy of the measured 

results. With this study it was found that high capacitance value can be obtained with a 

multilayer approach by resorting to thin-film insulators. In the following chapters the realization 

of multilayer filters, and the utilization of thin-film insulators, will be further extended to 

reconfigurable RF filters. 
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CHAPTER 3: FREQUENCY-AGILE BANDPASS FILTER USING LIQUID METAL  

 

TUNABLE BROADSIDE COUPLED SPLIT RING RESONATORS
2
 

 

 Frequency-agile filters are among the key components for fulfilling the stringent 

requirements of emerging wideband and multifunctional RF front-ends. Due to the interest in 

liquid metals for achieving reconfigurable devices with lower loss and higher power handling 

capability, this work has introduced a continuously tunable liquid metal filter for the first time. 

The proposed two pole filter consists on a microstrip line broadsided coupled split ring resonator 

(BC-SRR) in which the top loop is made out of liquid metal. The frequency tuning is 

accomplished by gradually moving liquid metal out of the resonator region by displacing it with 

a low loss dielectric liquid. 

 

3.1 Filter Design 

 To verify the proposed concept without resorting to microchannel fabrication, the BC-

SRRs of the presented filter are realized by making use of PTFE tubing. As shown in Fig. 13, the 

top open loop resonators of the BC-SRRs are constructed from overlaid liquid metal filled PTFE 

tubes having 16 mil (0.4064 mm) inner radius and 6mil (0.1524 mm) wall thickness. The 

                                                           
2
 This chapter was previously published in [51]. Permission is included in Appendix B. 

Figure 13: The tube based coupled line geometry and its equivalent multilayered strip model   
1.2mm
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Figure 14: Liquid metal Qe and K extraction. (a) The geometrical details of the liquid metal 

tunable BC-SRR; (b) Stabilization of the variation in Qe over the frequency using coupling 

inductor as the filter is tuned by moving liquid metal to different positions (d=d1=0, d2=7, 

d3=16.5, d4=26, d5=35.5 mm); (c) Coupling alignment of adjacent resonators; (d) Coupling 

coefficient – k vs. frequency as the filter is tuned by moving liquid metal to different 

positions (d=d1=0, d2=7, d3=16.5, d4=26, d5=35.5 mm). 
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bottom loop of the resonator is formed by a 50 Ω microstrip line with 1.2 mm width. The design 

and parametric optimizations of this geometry through full wave electromagnetic simulation 

software is computationally expensive and quite time consuming. In order to utilize the fast 

planar circuit simulation tools (i.e. circuit schematics and Momentum) of Agilent Advanced 

Design System (ADS), an equivalent multilayered strip model was employed by considering the 

capacitance per unit length between the two conductor lines of the BC-SRR. Ignoring the 

fringing fields, equating the capacitance per unit length of the two structures shown in Fig. 13 

results in an equivalent thickness of h=11.5 mil for the multilayered strips. The resonance 

frequency comparison between the full wave (Ansys HFSSv14) and the ADS model of a BC-

SRR resonator demonstrated that h=13 mil is more accurate for representing the resonance 

frequency. Hence, the filter design was carried out by the equivalent model that represents the 

liquid metal with a 1.2 mm wide line printed on a 13 mil (0.3302 mm) thick PTFE substrate 

(εr=2.2, tanδ=0.0001). 

 Fig. 14 depicts the computational model of the BC-SRR with its substrate stack-up and 

physical dimensions. The BC-SRR is square and its dimensions are adjusted such that its bottom 

open loop resonates at about 850 MHz without the presence of the top loop. When the top loop is 

completely filled up with liquid metal (i.e. d=0 mm), the proposed BC-SRR configuration 

resonates at its lowest frequency of 630 MHz. This frequency is determined by the physical 

separation between the loops of the BC-SRR and can be further reduced if tubes with thinner 

walls or microfabrication techniques are utilized. Moving the liquid metal out of the resonator 

area by displacing it with Teflon solution (εr=2.2) gradually shifts the resonance frequency to 

that of the single loop resonator for d=35.5 mm. 



29 
 

 The required external quality factor (Qe) and coupling coefficient (K) of a second order 

Butterworth coupled resonator filter can be calculated from its lowpass lumped circuit prototype 

(g0=g3=1, g1=g2=1.4142) as Qe = g0·g1/FBW = 28 and K=FBW/√(g1·g2)=0.0354 for a FBW of 

5% [55]. Such a filter can exhibit a well-matched constant FBW performance only if Qe and K 

are maintained relatively constant over the tuning range of its resonators. As depicted in Fig. 

14(c), the Qe of the liquid metal based BC-SRR significantly decreases as it is tuned to higher 

frequencies. This behavior is independent of the tapping location t. To stabilize the variation in 

Qe over the tuning range, a lumped coupling inductor (LM) was introduced to the feed line as 

shown in Fig. 14(c). The reactance of the inductor is proportional to the frequency and counter-

acts the reduction in Qe at higher frequencies. Parametric studies were carried out in ADS and a 

tapping location of t=0 mm with LM=5.5 nH was determined to provide a relatively constant Qe 

over the operational band. These studies were carried out by simultaneously considering five 

different liquid metal locations (d=d1=0, d2=7, d3=16.5, d4=26, d5=35.5 mm) and these are 

identified as data points in the design curves presented in Figures 14(c) and (d). 

 To achieve a relatively constant k over the frequency range, different resonator 

alignments were initially considered. Among these, the 180
o
 rotated alignment shown in Fig. 

14(b) was found to satisfy the desired need. As depicted in Fig. 14(b), the separation between the 

resonators was selected to be 1.8 mm to ensure that the minimum filter bandwidth was at least 

5% over the tuning range. Specifically, the k is 0.035 at the edges and 0.04 at the middle of the 

operation band. It should be noted that non-square resonator shapes can be potentially employed 

possibly with lumped coupling capacitors to realize different tunable bandwidth characteristics 

such as increasing/decreasing or constant absolute bandwidth. Such shape modifications may 

also provide better Qe and K stability over frequency and they are currently being investigated. 
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Fig. 14(b) also demonstrates the proposed tubing layout of the filter. As seen, the frequency 

tuning of the resonators can be simultaneously controlled using a single syringe pump or 

micropump unit. This requires an accurately adjusted Teflon solution spacing between the liquid 

metal volumes. 

3.2 Experimental Verification 

 Fig. 15(a) shows the fabricated filter prototype. The PTFE tubing was accurately aligned 

and positioned over the printed open loop resonators by milling cut outs through low loss 1.575 

mm thick Rogers 5880 substrate (εr=2.2, tanδ=0.0009). The tubes were stabilized in their 

locations by using Scotch™ tape. Mercury and Galinstan are the two types of liquid metals that 

can be employed for the proposed filter. Galinstan is known to be sticky due to oxidation, but it 

Figure 15: Liquid metal filter. a) Fabricated filter board; b) Microfluidic channels loaded with 

metalized glass plate; c) Simulated and d) Measured insertion and return loss performances 
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can still be moved within the PTFE tubing with the aid of Teflon solution (AF 400S2-100-1, 1% 

Teflon™ powdered resin dissolved in 3M FC-40, acquired from Dupont). Due to its non-

toxicity, Galinstan (σ=3.46×106) was selected for the experimental verifications. The liquid 

metal and Teflon solution was controlled by two syringes as depicted in Fig. 15(a). The ADS 

simulations of the overall filter for various d values using the LM=5.5 nH coupling inductors 

resulted in a return loss that is not well matched (<8 dB). To alleviate the issue, a parametric 

sweep was carried out over the complete filter models. For t=0 mm, increasing the coupling 

inductors to LM=12 nH was found to provide a return loss performance >10 dB over the whole 

frequency range as shown in Fig. 15(c). The inductors were acquired from the Coilcraft 0805CS 

series and were modeled to exhibit a Q of 50 at 850 MHz. The simulated insertion loss is about 2 

dB throughout the operation band. Fig. 15(d) presents the measured performance of the filter. 

For the filter prototype, LM=10 nH was experimentally determined to provide the best >10 dB 

return loss performance. The measured filter responses are about 20 MHz higher than the 

simulated data. The measured insertion loss is 3 dB at the lowest frequency. These slight 

deviations in measurements can be associated with the imperfections in fabrication, unaccounted 

loss of the PTFE tubing and the overlaid substrate used for guiding the tubing. The filter exhibits 

a measured tunability from 650 to 870 MHz with near constant 5%, -3 dB, FBW. The footprint 

of the resonators is about 20×40 mm
2
. 

3.3 Concluding Remarks of Chapter 3 

 Frequency-agile filters based on liquid metal tunable BC-SRRs were presented. The 

concept is demonstrated through a second order Butterworth filter prototype realized by using 

PTFE tubing filled with Galinstan and Teflon solution. Specifically, a constant 5% FBW 

bandpass filter tunable from 650 to 870 MHz was demonstrated to operate with <3 dB insertion 
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loss. The tunability range of these filters can be significantly extended using microfabrication 

techniques to bring the liquid metal physically closer to the bottom open-loop resonator of the 

BC-SRR. By using ultra-thin micro-channels, the tuning speeds can be less than milliseconds. 

The piezoelectric based micropumps can be utilized for convenient control of the tuning 

mechanism. The presented design is also suitable to be generalized to higher order tunable filters 

that are controlled only with a single pump. Realization of these aspects will be presented in the 

following chapters. However, it is important to mention that its tuning speed will be significantly 

lower as compared with other type of tunable filters like piezoelectric or ferroelectric based. Also 

due to its mechanical properties, lifetime of the filter can be compromised; therefore, in the 

following chapter we demonstrate a filter with metallized plates instead of liquid metal to extend 

its lifetime. Since the tunability is not based on any non-linear device, in future chapters we 

demonstrate the high power capabilities of microfluidically based filters.   
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CHAPTER 4: HIGHLY RECONFIGURABLE BANDPASS FILTER USING 

 

MICROFLUIDICALLY CONTROLED METALLIZED GLASS PLATES
3
 

 

 Even though liquid metal represents a strong alternative to accomplish reconfigurable RF 

filters, it introduces several issues such as its toxicity, low reliability due to quick oxidization, 

and high losses. To overcome these limitations, we resorted to a novel resonator arrangement 

that allows for replacing the liquid metal by metallized glass plates. To enhance the capacitive 

loading of the metallized glass plates, we also resorted to in-house built microfluidic channels 

constructed from thin insulator walls. As expected, this channel construction increased the 

frequency tuning range of the filter considerably as compared to prior liquid metal and tube base 

approach. 

4.1 Filter Design 

 Fig. 16(b) depicts the substrate stack-up used to construct the presented microfluidic 

based reconfigurable filter. A two pole coupled resonator bandpass filter was realized to operate 

at 1.5GHz utilizing the approach explained in [55]. The filter consisted of two open loop 

microstrip resonators printed on a 1.27mm thick Rogers 6010.2LM board (εr = 10.2, tanδ = 

0.0023). The dimensions of the resonator are shown in Fig. 16(a) and they were finalized by 

utilizing the Momentum suite of Agilent Advanced Design System (ADS).  

The tuning mechanism of the filter relied on moving a metallized glass plate over the 

open ends of the resonators as illustrated in the layout shown in Fig. 16(c). The metalized glass 

plate creates a capacitive loading effect across the open ends of the resonator and therefore 
                                                           
3
 This chapter was previously published in [53]. Permission is included in Appendix B. 
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causes a shift in the resonance frequency. Depending on the position of the metallized plate, the 

amount of capacitive loading varies and gets maximized (i.e. Cmax) when the plate is centered 

over the resonator’s arm. Most importantly, this capacitive loading can be completely removed 

(i.e. Cmin=0) by retracting the metalized plate completely out of the resonators’ gap (G). This 

allows for an extended range of tuning capability as compared to varactors. By resorting to a 

25.4 μm thick readily available LCP insulator between the metalized plate and the printed open 

loop resonator, the tuning range was pushed down to 0.9 GHz. To obtain a reconfigurable 

constant FBW response, the glass plates need to be precisely moved on top of the open end of 

the printed resonators by using microfluidics. Positioning the metalized plate 10mm away from 

the edge of the resonator (i.e. P = 10mm in Fig. 16(c)) causes zero capacitive loading and the 

filter operates at 1.5 GHz. On the other hand, when P = 4 mm, the capacitive loading increases, 

and the filter operates at 0.9 GHz, providing 50% frequency tuning range. As expected, the 

Figure 16: Two-pole filter. a) Printed open-loop resonator (G=2mm, T=6.1mm, L=12.4mm, 

W=12.4mm, t=2mm); b) substrate stack-up; c) filter layout (ML=10mm, MT=2mm, 

IM=matching inductor, C=0.4mm, P=Position of top plate.) 
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Figure 17: External quality factor (Qe) extraction. a) Hybrid (schematic + Layout) model for 

extracting Qe; b) Group Delay utilized to determine the center frequency; c) Phase in degrees; 

d) External Qe with and without the matching inductor as a function of frequency for Im = 2.5 

nH (with P=P1=4, P2=4.5, P3=4.7, P4=6, P5=10) 
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insulator layer thickness affects the tuning range of the filter significantly. For example, 

increasing the insulator thickness from 25 μm to 50 μm decreases the frequency tuning range by 

more than half. 

To design a two pole Chebyshev bandpass filter with 5% FBW, the required external 

quality factor (Qe) and coupling coefficient (K) were calculated from its lowpass lumped circuit 
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Figure 18: Variation of coupling coefficient (K). a) Electric Coupling arrangement; b) 

Magnetic Coupling Arrangement; c) Mix Coupling Arrangement; d) Calculated coupling 

coefficient for electric (green), magnetic (red), and mix (blue). 
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prototype (g0=1, g1=0.6648, g2=0.5445, g3=1.2210) to be 13.296 and 0.0831, respectively. To 

maintain a constant FBW, it is necessary to keep the Qe and K relatively constant over the 

frequency tuning range. The ADS studies were carried out by simultaneously considering five 

different metalized plate locations (P1 = 4, P2 = 4.5, P3 = 4.7, P4 = 6, P5 = 10  mm) and these 

are identified as data points in the design curves presented in Figs. 8 and 9. Using the approach 

explained in [55], which consist on using the S11 group delay (Fig. 17(b)) to determine the center 

frequency and using the S11 phase (Fig. 17(c)) to determine the Qe with the equation 𝑄𝑒 =

𝑓0 𝑓∆+/−90𝑜⁄ , the tapping location that resulted in the required quality factor was found to be T= 

6.1 mm as shown in Fig. 17(a). To stabilize the variation of Qe over the frequency tuning range, 

a lumped inductor based coupling was utilized. The value of this inductor was determined by 

utilizing an iterative approach involving ADS schematics and Momentum layouts. The value that 

provided the nearly required coupling across the entire frequency range was found to be 2.5nH. 

The ADS simulations of the overall filter for various P values using the 2.5 nH coupling 

inductors resulted in a return loss that is not well matched (<8 dB). A parametric sweep was 

carried out over the complete filter model. Increasing the coupling inductors to 7nH was found to 

provide a return loss performance >10 dB over the whole frequency range. However, this 

resulted in 8% constant FBW performance. Due to the proof-of-concept nature of the presented 

work, no further optimizations were pursued to lower the FBW back to 5%. The IL was <1.3 dB 

over the entire frequency tuning range. 

To be able to tune both resonators simultaneously and utilize single pumping unit, a 

meandered microfluidic channel layout was employed by shifting a resonator slightly down to 

prevent overlaps (i.e. MT = 2 mm in Fig. 16(c)). The separation (C) that resulted in the required 

resonator coupling was determined as 0.04 mm. Detailed curves depicting the variation of the 
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external quality factor and the coupling coefficient as a function of frequency are provided in 

Fig. 17(d) and Fig. 18(d) respectively. 

4.2 Fabrication 

 The microfluidic channels were fabricated in Polydimethylsiloxane (PDMS) utilizing the 

micromolding technique explained in [56]-[58]. Metallized glass plates were positioned in a 

precise way inside the microchannels prior to the bonding of the PDMS with the LCP. The 

PDMS mold was bonded to the LCP layer using an APTES (3-Aminopropyltriethoxysilane) 

treatment [59]. The PDMS and LCP bond was then aligned with the PCB board using the 

alignment holes. Plastic screws and clamps were utilized to hold the PCB and microchannel 

layers together. Cubic pieces of PDMS were utilized as microfluidic connectors to interface 

 

Figure 19: Fabricated two-pole filter. a) Fabricated filter board; b) Microfluidic channels 

loaded with metalized glass plate; c) Simulated and d) Measured insertion and return loss 

performances 
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PTFE tubes with the microchannel. To move the plates inside the microchannels, a two syringe 

system was implemented to flow Teflon solution inside the channels. The final filter stack-up, as 

shown in Fig. 16(b), consisted of 1.27 mm thick PCB board, 25.4 μm thick LCP layer, and 2 mm 

thick PDMS substrate with 250 μm deep and 2.1 mm wide microchannels with 1.9 mm wide 

metallized glass plates. For a more detail explanation, refer to appendix A. 

4.3 Experimental Verification 

 The layers of the fabricated filter assembly are shown in Fig. 19(a) and (b). 6.8 nH 

Coilcraft inductors from the 0805CS series were utilized at the input and output of the filter. As 

shown in Fig. 19(c) and (d), the measured insertion and return loss performances are in very 

good agreement with the simulated results. A frequency tunability range of 50% (1.5 GHz to 0.9 

GHz) was accomplished by moving the metallized glass plates a distance of 6mm (i.e. P1 to P5) 

over the open loop resonators. The worst case insertion loss was found to be 1.7 dB at the lowest 

frequency, which differs from the simulation results by 0.4 dB. The difference in IL, between 

simulations and measurements, is due to the lower Q of the inductors (which was modeled as 50 

in ADS simulations). The FBW was measured to vary between 8% and 10% from 0.9 GHz to 1.5 

GHz. Increasing the number of poles of the filter will help to stabilize FBW variation as lower 

coupling and external quality factors will be required. The overall footprint of the filter is 24.4 × 

12.4 mm
2
, which is 0.073 × 0.037 λ0

2
 (λ0 = free space wavelength) at the lowest frequency. 

4.4 Concluding Remarks of Chapter 4 

 A novel approach for realizing a compact, low-loss, and highly tunable bandpass filter 

was presented by utilizing microfluidically controlled parasitic metalized glass plates. By 

resorting to metallized glass plates, it provides a more reliable, highly tunable, non-toxic, and 

low loss performance. Specifically, the bandpass filter provided 50% tuning range with almost 
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constant 8% FBW. In chapter 5, the microfluidic technique will be extended to higher order 

bandpass filters. At the same time, integration with micropumps will be introduced for the first 

time, and speed characterization will be performed.   
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CHAPTER 5: MICROFLUIDICALLY RECONFIGURABLE METALLIZED PLATE 

 

LOADED FREQUENCY-AGILE RF BANDPASS FILTERS
4
 

 

 To extend the utilization of microfluidics to higher order bandpass filters, a 4 pole 

frequency-agile bandpass filter was designed, fabricated, and tested. Two different filter 

arrangements were studied to demonstrate that different footprint requirements can be met with 

the proposed filter approach. To overcome the synchronization issues of multiple metalized 

plates moving within a single meandered microfluidic channel (in order to use a single pump), a 

selectively metallized plate implementation was introduced for the first time. In addition, 

automation of the filters was obtained by introducing a micropump system. The speed of the 

reconfigurable RF filter was characterized and improved by resorting to strategically designed 

channel shapes. 

5.1 Filter Design 

5.1.1 Resonator Model 

 Fig. 20(a) depicts the substrate stack-up used to construct the presented microfluidic 

based reconfigurable filters. A microfluidically repositionable metalized plate is placed in close 

proximity to the gap of a traditional open loop resonator to achieve a variable capacitance based 

frequency tuning mechanism. For a compact filter size, the open loop resonators were placed  on 

a high permittivity 1.27 mm thick Rogers 6010.2LM board (εr = 10.2, tanδ = 0.0023). The 0.3 

mm thick microfluidic channel is located at the bottom surface of a 2 mm thick 

Polydimethylsiloxane (PDMS, εr = 10.2, tanδ = 0.0023) polymer. The microfluidic channel with 

                                                           
4
 This chapter was previously published in [54]. Permission is include in Appendix B. 
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Figure 20: Reconfigurable capacitive loaded microfluidically based resonator. (a) Substrate 

stack-up; (b) resonator dimensions and its equivalent hybrid (circuit + layout) model 

(G=2mm, T=6.1mm, L=12.4mm, W=12.4mm, t=2mm); (c) S
11

 values obtained from 

simulation of hybrid and full wave models (solid lines represent full wave model) as plate 

location varies; (d) S11 smith chart representation.  
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the metalized plate is sealed by bonding a 25.4 μm thick liquid crystal polymer (LCP) based 

flexible Rogers ULTRALAM 3880 (εr = 2.4, tanδ = 0.0025) pregrep with the PDMS layer. The 

Rogers 6010.2LM board and the microfluidic channel are brought together to form the filter. 

Depending on the position of the metallized plate, the amount of capacitive loading varies and 

gets maximized (Cmax) when the plate is centered over the resonator’s arm. Most importantly, 

this capacitive loading can be completely removed (Cmin = 0) by retracting the metalized plate 

half way out of the gap of the open loop resonator. This allows for an extended tuning capability.   

The dimensions of the unloaded square open loop resonator are shown in Fig. 20(b). The 
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Figure 21: External quality factor extraction and coupling coefficient for different resonator 

arrangements. (a) Q
e
 as a function of frequency; (b) Modified resonator layout for Q
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resonator is designed to operate at 1.5 GHz by utilizing the Momentum suite of Keysight 

Advanced Design System (ADS) with the extraction approach outlined in [55]. Assuming that 

the metalized plate completely fills the microfluidic channel and overlaps with the entire arm of 

the resonator, the frequency tuning range can be determined to be from 0.61 GHz to 1.5 GHz. 

Designing the filter across this wide (>2:1) frequency range to exhibit a predefined fractional 

bandwidth (FBW) performance requires extensive number of full wave simulations to be carried 

out with changing plate position and results in a time consuming procedure especially for higher 

order filters. To alleviate this issue, a hybrid model that represents the metalized plate as a 

lumped circuit network is utilized for design purposes as shown in Fig. 20(b). Since the 

metalized plate can have a different overlap area on the open arms of the resonator, its 

interaction with the resonator is represented with two series capacitors (i.e. C1 and C2). Due to 

the selected resonator configuration, the metalized plate always completely covers the left arm of 

the open loop resonator resulting in 𝐶1 = 𝜖 𝑀𝑡(𝐿 − 𝐺)/2ℎ, where Mt is the width of the plate, L 

is the side length of the resonator, G is the width of the gap, h is the separation between the plate 

and the resonator, and ϵ is the permittivity of the material between the plate and the resonator. C2 

depends on the position of the plate and can be expressed as 𝐶2 = 𝜖 𝑀𝑡 ((𝐿 − 𝐺)/2 − 𝑃)/ℎ,, 

where P denotes the distance between the plate and the right edge of the resonator. The parallel 

RLC circuit in series with C1 and C2 represents the RF parasitics of the metalized plate located 

between the open ends of the resonator. The values are initially approximated from the open 

ended transmission line resonator equations [60]. Subsequently, the values are optimized to 

match the S11 response of the resonator simulated using full-wave analysis when the metalized 

plate completely overlaps with the resonator arm. The open loop resonator was full wave 

simulated without the metalized plate by placing ports to the open ends of the resonator. The 
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hybrid model was formed in ADS schematic by combining the lumped circuit model with the 

open end ports of the full wave simulated resonator. Fig. 20(c) and (d) shows that the full wave 

simulations performed with metalized plate agree well with the equivalent hybrid model. 

Throughout this paper, to keep the discussion brief, filter performance simulations and 

experimental verifications are provided at 5 specific plate positions (P1 = 6 mm, P2 = 4.25 mm, 

P3 = 3.5 mm, P4 = 2 mm and P5 = 0 mm). 

5.1.2 External Qe and Coupling Coefficient 

 To proceed with design of a 4
th

 order Chebyshev bandpass filter with 5% FBW, the 

required external quality factor (Qe) and coupling coefficient (K) values were calculated from the 

corresponding low pass lumped element circuit prototype (g0 = 1, g1 = 0.7654, g2 = 1.8478, g3 = 

1.8478, g4 = 0.7654, g5 = 1) as 15.308, K1,2 = K3,4 = 0.04204 and K2,3 = 0.02706, respectively 

[55] (where a subscript integer i represents the resonator number). To maintain an almost 

constant FBW, it is necessary to keep the Qe and K relatively stable over the tuning range. For 

the filter implementation, the hybrid resonator model was utilized to extract the Qe and K using 

the approach explained in [55]. As shown in Fig. 21(b), Qe decreases as the resonator is tuned to 

higher frequency and this behavior is independent of the tapping location (T). To stabilize the 

variation in Qe over the tuning range, a lumped coupling inductor LM was introduced to the feed 

line as shown in Fig. 21(a) [51]. Through parametric studies, tapping location and the inductor 

value were determined as T = 6 mm and LM = 6 nH, for TL = 6 mm, for a relatively flat Qe 

response (Fig. 21(b)). 

Two different resonator alignment configurations were found to provide stabilized K 

variation over the wide tuning range as shown in Fig. 21(c) and (d). To prevent overlapping of 

the metalized plate with the adjacent resonators, resonators were offset with respect to each other 
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by MT. The configuration in Fig. 21(c) was by itself suitable to implement a 4
th

 order Chebyshev 

filter having its resonators linearly aligned. To accomplish the required K1,2 and K3,4 at 1 GHz, 

the separation  (g12) between the resonators was set to 0.98 mm. The gap g23 was 1.58 mm to 

obtain K2,3 = 0.027. The configuration in Fig. 21(d) was utilized to realize K12 and K34 in a 4
th

 

order Chebyshev filter with resonators aligned in a diagonal form (K23 was realized again with 

the configuration in Fig. 21(c)). The separation between the resonators (g12) was set to 0.1 mm 

for achieving the desired coupling at 1 GHz. These resonator configurations exhibit a mixture of 

electrical and magnetic couplings. It was observed that for the selected configurations, K still 

varied as the frequency was tuned across the wide frequency range. The variation of these 
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coupling curves could potentially be further stabilized by resorting to non-square resonator 

shapes. However, since this may potentially complicate the operation of the filters with the 

proposed selectively metalized microfluidically controllable plates, it was not investigated for the 

proof-of-concept filters implemented in this paper. The K variations shown in Fig. 21(c) and (d) 

were therefore expected to change FBW around the desired 5% goal. According to equation 

𝐾𝑖,𝑖+1 = 𝐹𝐵𝑊 √𝑔𝑖𝑔𝑖+1⁄ , varying K1,2 from 0.04 to 0.07 could generate a FBW variation from 

3.36% to 5.8%. It is also important to mention that other resonator configurations that relied 

extensively on electrical or magnetic coupling were found to exhibit a null coupling coefficient 

at certain frequency within the desired wide frequency tuning range no matter how the resonators 

were spaced with respect each other. Consequently, these resonator configurations were not able 

to exhibit a continuous impedance matching across the tuning range. 

5.1.3 4
th

 Order Filter with Linear Resonator Arrangement 

Fig. 22 depicts the 4th order filter with linear resonator arrangement. This filter can be 

realized with the meandered microfluidic channel approach introduced in our previous work [53] 

in order to achieve frequency tuning with a single bidirectional micropump unit. However, as 

will be explained in Section IV, this topology will be further improved with the selectively 

metalized plate approach to avoid possible movement synchronization issues. Since the 

simulated unloaded Q (Qu) of the resonators varies from 190 at 1.5 GHz to 90 at 0.61 GHz, the 

worst case IL can be estimated as 5.04 dB using the equation 𝐼𝐿 = 4.343 ∑ 𝑔𝑖 ∆𝑄𝑢𝑖⁄𝑛
𝑖=1 . As 

shown in Fig. 22(b), the filter FBW is maintained between 3.5% and 7% across the tuning range. 

As expected, the IL increases from 3.03 dB to 4.8 dB as the filter is tuned from 1.5 GHz to 0.61 

GHz. The overall footprint of the filter is 51.54 × 14 mm
2
. Fig. 22(c) shows the performance of 

the filter across 0.5 GHz to 5.5 GHz. An out of band rejection >40 dB is achieved. 
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5.1.4 4
th

 Order Filter with Diagonal Resonator Arrangement 

 The 4
th

 order filter designed with the diagonal resonator arrangement is shown in Fig. 

23(a). The design is based on the Qe and K study discussed in Section 5.1.2. Similar to the filter 

with the linear resonator arrangement, this layout could also be operated with a meandered 

microfluidic channel to use a single bi-directional pump unit as shown in Fig. 23(a). The filter 

FBW is maintained between 3.5% and 7.2% across the tuning range. The IL increases from 3.03 

Figure 23: Designed 4
th

 order filters with diagonal resonator arrangement. (a) Layout 

(ML=12, MT=2, MCW=2.05, Roff=6, g12=0.1, g23=1.58) units in mm; (b) Simulated S21 and 

S11; (c) Wideband S21 and S11 performance. 
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dB to 4.8 dB as the filter is tuned from 1.5 GHz to 0.61 GHz (Fig. 23(b)). The overall footprint 

of the filter is 37.58 × 34.2 mm
2
. Fig. 23(c) shows the performance of the filter across 0.5 GHz to 

5.5 GHz. An out of band rejection >40 dB is achieved. 

5.2 Microfluidic Channel Design 

 Although the resonators of the designed filters can be simultaneously tuned with a single 

pump due to the meandered microfluidic channel layout, utilizing a single meandered channel 

presents potential reliability issues due to the synchronous movement needed from all the plates. 

As an alternative, in contrast to our previous work [53], two novel microfluidic channel layouts 

designed to operate with a selectively metalized plate were pursued for the device 

implementation as shown in Fig. 24. Specifically, a rectangular wide microfluidic channel was 

placed over the filter footprint consisting of linearly arranged resonators. The microfluidic   

channel hosted a single 14 mm wide dielectric plate. This plate was selectively metallized on the 

areas that will overlap with the resonators. Having the microfluidic channel as the same width of 

the metallized plate, would not allow a continuous plate movement due to friction generated 

between the channel walls and the plate walls. Also, as the plate area increase, the separation 

between the microchannel walls and the selectively metallized plate needs to be increased to 

reduce the friction. However, if the gap between the selectively metallized plate and the 

microfluidic channel is too large, the fluid could flow through without moving the plate. To 

determine the appropriate channel width, microfluidic channels presenting width of 20 μm, 30 

μm, 40 μm, 50 μm, and 60 μm wider than the selectively metallized plate were fabricated. It was 

determined that keeping the channel width 50 μm wider than the metallized plate would 

minimize the friction generated between the channel walls and selectively metallized plate. 

Therefore, the dimensions of the wide rectangular microfluidic channel were set to 14.05 x 30.4 
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μm
2
. The initially selected dielectric fluid was Teflon solution obtained from DuPont (400S2-

100-1) which is made out of 1% Teflon dissolved in 3M FC-40 solution (FC-40 density = 1.855 

g/cm
3
). However, it was found that utilizing only 3M FC-40 solution provided a higher speed 

due to its lower viscosity. Initial experiments were carried out utilizing glass to implement the 

metallized plates. However, glass plates required an extra step for the metal deposition and its 

mobility inside the channel was found to be limited possibly due to its higher density (2.33 

g/cm
3
). To ease the plate movement inside the channel, the later plate implementations were 

carried out with readily available 0.254 mm thick Rogers 5880LZ (1.4 g/cm
3
) substrates 

exhibiting 17 µm copper cladding. Several microfluidic channels having various heights (0.25 

mm, 0.3 mm, and 0.35 mm) were fabricated to determine a height that will enable plate 

movement. Out of these, 0.3 mm was selected for the microfluidic channel depth. 

Since using a larger dielectric plate also required a larger liquid volume displacement, the 

tuning speed was expected to be lower in the new widened microfluidic channel implementation. 

To improve the speed, the channel layout and the plate shape was modified as shown in Fig. 

24(b) to take a “Z” shape. This way, the pressure point would be the same as with the meandered 

channel even though the plate is bigger. This allowed for having the metallized areas in one 

common dielectric plate and required the same volume displacement as the meandered channel 

implementation. The width of the microfluidic channel was still kept 50 μm wider than the 

metallized plate. During the experiments, the tuning time of the filter in Fig. 24(a) was measured 

to be 2.1 s for the required 6 mm full motion range. As expected, the Z shaped channel and plate 

implementation decreased this time by a factor of 6.4 times to 0.33 s. Due to the success with the 

Z shaped channel and plate implementation, the filter design with the diagonal resonator 
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arrangement was pursued only with this technique. Fig. 24(c) depicts the channel and plate 

dimensions. The measured tuning time was 0.38 s per 6 mm of full range movement.  

5.3 Fabrication 

 The microfluidic channels were fabricated in PDMS utilizing the micromolding 

technique explained in [56]-[58]. Metallized plates were manually positioned inside the 

channels. The PDMS and LCP bond was then aligned with the PCB board using the alignment 

holes. Plastic screws were utilized to hold the PCB and microchannel layers together.  Cubic 

pieces of PDMS were utilized as microfluidic connectors to interface PTFE tubes with the 

microchannel. To move the plates inside the microchannels, a two syringe system was 

implemented to flow 3M FC-40 solution. The fabricated filter exhibiting the Z shape 

microfluidic channel shape is shown in Fig. 25. It consisted of 1.27 mm thick PCB board, 25.4 

μm thick LCP layer, and 2 mm thick PDMS substrate with 0.3 mm deep microchannel carrying 

the 0.25 mm thick metalized plate. 6.0 nH Coilcraft inductors from the 0302CS series were 

utilized at the input and output of the filter. To electronically control the filters, the syringes were 

substituted with two piezo-pumps, with dimensions of 30 x 15 x 3.8 mm
3
 from Bartels® (mp-6). 

These micropumps were chosen due to their piezo actuation mechanism that allows for an 

accurate control of the liquid displacement via supply voltages. Two of these pumps were 

connected in series to generate bi-directional flow capability. The pumps were operated with the 

manufacturer supplied driver circuit that converts 5 V DC current to a 100 MHz 235 V peak to 

peak sinusoidal wave according to the highest flow rate specifications given for water [61]. The 

power consumption of the pumps is less than 200 mW.  
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Figure 25: Experimental characterization of the 4
th

 order bandpass filter with linear resonator 

arrangement. (a) Fabricated filter board; (b) Complete system assembly including pump and 

control units; (c) Simulated S21 and S11 performance with 58 µm thickness; (d) Measured 

S
21

 and S
11 

performances; (e) Measured frequency response up to third harmonic. 
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5.4 Experimental Verification 

5.4.1 4
th

 Order Filter with Linear Resonator Arrangement 

Fig. 25(a) and (b) depict the fabricated filter and the microfluidic control assembly. The 

measured frequency tuning range was from 0.8 GHz to 1.5 GHz, close to being 2:1. Based on 

simulation studies, this frequency tuning range was identified to correspond to a physical gap of 

54 µm between the plate metallization and the printed loop. Hence, it was concluded that the 

0.254 mm thick plate with 17 µm thick metallization floated on the top of the channel due to the 

density difference of the dielectric fluid and the plate material. Future device fabrications should 

consider the possible location of the plate within the channel and try to minimize the difference 

between channel height and plate thickness through more finely sampled channel height 

characterizations. Optimizing channel height and matching the densities of the plate with the 

fluid will also minimize the orientation dependent tuning variation due to gravity.  Simulated S21 

and S11 data with the 54 μm gap is shown in Fig. 25(c) and agrees well with the measured data 

shown in Fig. 25(d). The worst case IL is 4.5 dB at the lowest frequency. 0.2 dB difference 

between simulations and measurements can potentially be due to the lower Q of the inductors 

(which was modeled as 80 in ADS simulations) and losses added due to dielectric solution. The 

FBW is measured to vary between 5% and 4% from 1.5 GHz to 0.8 GHz. Less variation in Qe 

and K due to the smaller frequency tuning range results in a more stable FBW performance. The 

overall footprint of the filter (excluding the pumps) is 51.54 × 14 mm
2
, which is 0.14259 × 

0.0387 λ0
2
 (λ0 = free space wavelength) at the lowest frequency. Fig. 25(e) shows the wideband 

frequency response. An out of band rejection >40 dB is realized up to the 2.6 GHz that is within 

the vicinity of the second harmonic of the unloaded open loop resonator. The frequency tuning 

time is 0.33 s, for the entire frequency range, with the “Z” shaped microfluidic channel and plate. 
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Figure 26: Experimental characterization of the 4
th

 order bandpass filter with diagonal 

resonator arrangement. (a) Fabricated filter board for the diagonal topology; (b) Complete 

system assembly including pump and control units; (c) Simulated S21 and S11 performance 

with 58 µm thickness; (d) Measured S
21

 and S
11 

performances; (e) Measured frequency 

response up to third harmonic. 
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The measured S21 and S11 performances for different channel implementations are identical and 

therefore not shown for brevity. 

5.4.2 4
th

 Order Filter with Diagonal Resonator Arrangement 

Fig. 26(a) and (b) show the filter implementation for the diagonal configuration. 

Simulated (with 54 µm plate and loop metallization separation) and measured results are in very 

good agreement as can be seen in Fig. 26(c) and (d). The worst case IL is 4.5 dB and identical to 

the filter with linear resonator arrangement. The tuning range is also identical and from 1.5 GHz 

down to 0.8 GHz. The measured FBW varies between 5% and 4% over the entire frequency 

tuning range. The overall footprint of the filter (excluding the pumps) is 37.58 × 34.2 mm
2
, 

which is 0.10397 × 0.094612 λ0
2
 at the lowest frequency. Fig. 26(e) shows the wideband 

frequency response. An out of band rejection >40 dB is realized up to the 2.5 GHz that is within 

the vicinity of the second harmonic of the unloaded open loop resonator. The tuning time is 

slightly larger and 0.38 s for entire 6 mm plate motion. This is likely to be due to the 

implementation with a larger plate mass. 

5.5 Concluding Remarks of Chapter 5 

 A novel approach for realizing a compact, low-loss, and highly tunable high order 

bandpass filter was presented by utilizing microfluidically controlled metalized plates. A thin 

film based fabrication technique was employed to increase the capacitive loading and associated 

frequency tuning range. The shape of the microfluidic channel and resonators are designed to 

operate the filter with a single micropump unit with near constant fractional bandwidth 

performance. Specifically, the presented bandpass filter example provided 60% tuning range 

with almost constant 5% FBW. The tuning range of the filter can be further improved by 

resorting to thinner insulators. However, this would generate a further decrease in the resonator’s 
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unloaded quality factor and, therefore, increase the insertion loss performance of the filter. As a 

solution, in chapter 6, a novel resonator will be presented, and utilized to realize a 4
th

 order 

bandpass filter. The resonator explained in chapter 6 will be capable of exhibiting constant 

unloaded quality factor while providing a 90% (3:1) tuning range.  Experimental 

characterizations showed that the plate location within the depth of the microfluidic channel 

must be accounted for in accurate modeling of these devices due to the use of thin insulators as 

microfluidic channel walls. Therefore, in chapter 6, a more detailed fabrication of the 

microchannel is presented. By utilizing a selectively metalized single plate to simultaneously 

tune entire resonators of the filter, the issue of synchronization was solved and the reliability of 

the filters were improved. Electronically controllable micropumps were also successfully added 

into the system. The filter presented in this chapter provides a low-cost and compact alternative 

to linear actuator based mechanically tuned filters.  
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CHAPTER 6: WIDELY TUNABLE, LOW LOSS FILTERS USING 

 

MICROFLUIDICALLY CONTROLLED VARIABLE LENGTH RESONATORS 

 

 The capacitively loaded open loop resonator based microfluidic reconfigurable filters 

have been shown to operate with ~2:1 tuning range and unloaded resonator quality factors (Qu) 

ranging from 150 to 90. This performance is already better than varactor loaded reconfigurable 

filters and scalable to higher operational frequencies. Extending the frequency tuning range of 

the open loop resonator based filters is possible by resorting to thinner insulators for higher 

capacitive loading. However, high level of capacitive loading that lowers the operational 

frequency of the resonator also significantly reduces the unloaded quality factor (Qu) and 

therefore the filter’s insertion loss performance. In this chapter, we investigate a new technique 

for designing microfluidically reconfigurable filters that can simultaneously operate over a very 

wide frequency tuning range and exhibit low insertion loss performance. In order to improve the 

frequency tuning range and keep the unloaded quality factor of the resonators relatively stable, 

the microfluidic reconfiguration approach is utilized for redefining the length of half wavelength 

open ended microstrip resonators. These resonators typically present an unloaded quality factor 

on the order of 200 and this is also considerably higher than the resonators investigated in the 

previous chapters.  

6.1 Resonator Design 

 A variable length half wavelength open ended microstrip resonator was designed by 

resorting to microfluidics as the tuning mechanism. Tunable filters based on this type of 
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resonators have been previously proposed [62]-[63]. However, in this chapter a novel 

reconfigurable resonator is proposed as shown in Fig. 27. The proposed resonator consists of two 

sections: a half wavelength open ended printed resonator (see Fig. 27(a)) and a microfluidically 

repositionable selectively metalized plate (PlateR). The printed resonator and PlateR are separated 
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by a 6 µm thick insulator. At the highest operational frequency, PlateR completely overlaps with 

the printed resonator (see Fig. 27(b)). When PlateR is microfluidically moved in the X direction, 

as shown in Fig. 27(b), the length of the resonator is enlarged and its resonance frequency is 

decreased. Extending the physical length by a factor of 2 would reduce the resonance frequency 

by half (2:1 tunability). However, since a small overlap needs to exist between the printed 

resonator and PlateR to achieve an RF short based connection, extending the physical length of 

the resonator provides a 1.7:1 frequency tuning range (As shown in Fig. 27 (c)). To further 

enhance the frequency tuning range, a ground pad is positioned to be 9.875 mm away from the 

bottom open end of the printed resonator (Fig. 27(a)). The pad to ground has been strategically 

placed to cause an overlapping area with PlateR as the plate approaches its maximum 

displacement. Thanks to the strong coupling between PlateR and the printed resonator, the overall 

resonator transitions from an open ended half wavelength resonator into a short ended resonator. 

Due to the capacitive nature of the overlapping area, the resonance frequency gets lowered by a 

factor less than 2 (i.e. 1.6 as in Fig. 27(c)). The unloaded quality factor remains relatively the 

same. Consequently, this novel reconfigurable resonator presents a frequency tuning range of 

2.7:1 with close to constant unloaded quality factor.  

 Fig. 27(a) and (b) provide substrate stack-up and dimensions of the resonator, 

respectively. For the filter design, the upper operational frequency is selected to be at 4 GHz. 

Hence, the printed section of this resonator is a conventional half wavelength open ended 

microstrip line designed to operate at a frequency of 4 GHz. Using a Rogers 6010.2 (εr = 10.2 

tanδ = 0.0025) board, at 4 GHz (λg = 23.48 mm) the length of the resonator should be around 

11.74 mm. However, the resonator is also loaded with microfluidic channel and plate. Hence, 

full wave simulations in Momentum suite of the Agilent’s Advanced Design System (ADS) was 
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utilized to fine tune the length of the resonator to operate at the desired frequency of 4 GHz. The 

length was determined to be 12.575 mm. The width of the resonator was set to 2 mm which 

represents a low impedance microstrip line of 37.9 ohms. Using a low impedance line for the 

resonator helps to keep a high unloaded quality factor of the resonators. Making the resonator 

wider would increase the capacitance value between the top and bottom layers, however, at high 

frequencies a wider resonator could radiate. As explained in previous chapters, PlateR is realized 

on a 0.254 mm Rogers 5880LZ board (εr = 1.96 tanδ = 0.0009). A microfluidic channel was 

made on the bottom face of a 2 mm thick PDMS layer to host PlateR. To seal the microfluidic 

channel, once PlateR has been manually positioned inside, a 6 µm thick BCB insulator layer 

(selected based on readily available materials) is utilized. The BCB layer is also utilized to bond 

the top layer (Microfluidic channel + PlateR) to the bottom layer (Rogers 6010.2 board with 

printed resonator). The BCB thickness defines the separation between the metalized plate and the 

printed resonator. Fig. 27(b) depicts the plate movement over the resonator. From simulations it 
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Figure 28: External Qe extraction with tapping approach. a) Resonator layout (TL = 3 mm); 

b) Resonator circuit (transmission line) model 
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was determined that for the specified 6 µm BCB thickness the minimum overlap area needed to 

generate a capacitance value enough to represent an RF short (insertion loss < 0.5 dB) between 

PlateR and the printed resonator is 0.8 × 2 mm
2
. In the design, the minimum overlapping area 

was kept as 1 × 2 mm
2
 to have a safety margin for this calculation. As shown in Fig. 27(c), for 

the specified minimum overlapping area, the frequency tuning range goes from 4 GHz to 1.5 

GHz as PlateR is displaced by 11.575 mm. The unloaded quality factor of the resonator is 

calculated to be 250 at the center frequency of the entire frequency tuning range (e.g. 2.75 GHz) 

and remains relatively stable (+/- 15). Hence, the proposed resonator can be utilized to design 

highly tunable filters exhibiting constant and low insertion loss performances. Thanks to its 

narrow footprint, increasing the order of the filter would not generate a significant grow in the 

overall area of the filter. Therefore, higher order filters can also be implemented. 

6.2 Filter Design 

 To be able to compare with the previously presented work in chapter 5, a 4
th

 order 

Chebyshev filter with 5% FBW has been designed. However, due to the higher frequency tuning 

range and also to demonstrate that microfluidics approach can be applied at higher operational 

frequencies, the filter’s highest frequency of operation was selected as 4 GHz. As in chapter 5, 

the required external quality factor (Qe) and coupling coefficient (K) values were calculated from 

the corresponding low pass lumped element circuit prototype (g0=1, g1=0.7654, g2=1.8478, 

g3=1.8478, g4=0.7654, g5=1) as 15.308, K1,2 = K3,4 = 0.04204 and K2,3 = 0.02706, respectively 

[55] (where a subscript integer i represents the resonator number). These two parameters dictate 

the FBW of the filter. Therefore, to be able to obtain a stable FBW over the wide frequency 

tuning range, it is necessary to maintain stable external quality factor and coupling coefficients, 

as explained in Chapter 5. The value of Qe can be controlled by keeping the input admittance 
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seen by the source close to constant. In chapter 5, this was controlled by changing the tapping 

location of the resonator. However, resorting to the taping approach utilized in chapters III, IV, 

and V did not present a viable option for these novel resonators. This can be explained through 

the circuit models. As seen in Fig. 28(a) and (b), the impedance seen by the source varies with L3 

as operational frequency of the resonator is reduced by increasing L3. Consequently, Qe is not 

stable over the frequency range and also tends to be small for the desired filter specifications (see 

Fig. 31 – red curve). By resorting to a capacitive coupling between the input and the first 

resonator (see Fig. 29(a) and (b)), the Qe value grows and gets stabilized at high frequency band. 

In this capacitive coupling approach, the input TL is positioned to be parallel with respect to the 

adjacent resonators and brought in close proximity of the resonator (e.g. 0.05 mm) to achieve a 

high capacitive coupling. This separation represents a capacitance value of 0.6 pF in the 

equivalent circuit model. With this configuration, the input impedance seeing by the source can 

be expressed as 𝑍𝑖𝑛 =  𝑍0 +  𝑍𝑔 + 𝑍2. The resulting Qe obtained with this 

C
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Figure 29: External Qe extraction for capacitive coupling approach. a) Resonator layout (CL 

= 8.75 mm); b) Resonator circuit (transmission line) model 

(a) (b) 

𝑍𝑖𝑛 =  𝑍0 +  𝑍𝑔 + 𝑍2 

ResonatorInput TL
Gap 

Capacitance (cg)

50 ohm 

Source

Input
L2

Z0 Z2

Zg



64 
 

arrangement can be seen in Fig. 31 (green curve). CL was selected as 8.575 mm to obtain the 

desired Qe at 4 GHz. This approach is better than the tapping, but still presents drastic variation 

in Qe at lower frequency range as the series capacitance in the circuit model implies a high series 

impedance as frequency is lowered. To stabilize the input impedance a high impedance shorted 

quarter wavelength stub was designed at the highest operational frequency (e.g. 4 GHz) and was 

added to the input TL as shown in Fig. 30(a) and (b). From Fig. 30(b), the input impedance can 

be found as 𝑍𝑖𝑛 = 𝑍0 +  (𝑍𝑔 + 𝑍2)//𝑍3. At the designed operational frequency, the stub will act 

as an RF open, and ideally, it will not affect the Qe. While as the frequency is shifted down, it 

will act as an impedance in parallel with the series C and resonator and effectively reduce the 

total impedance causing the stabilization of the Qe value. The length of the stub was determined 

as SL = 9 mm (i.e. quarter wavelength at 4 GHz for the given substrate stack-up). The impedance 

of the shorted stub section was selected as 108 at 1.5 GHz, which resulted in a line width of 0.6 

mm. The shorted stub was placed out of the resonators area. The resulting Qe can be seen in Fig. 

𝑍𝑖𝑛 =  𝑍1 +  (𝑍𝑔 + 𝑍2)//𝑍3 

Input

ResonatorInput TL

Short Tuning 

Stub50 ohm 

Source

L2
Zg

L3

Z0 Z2

Z3

Gap 

Capacitance (cg)

R
L

SL

C
L

RF Input

O
p

en
S

h
o

rt

 

Figure 30: External Qe extraction for capacitive coupling approach with added tuning stub. a) 

Resonator layout (CL = 8.75 mm, SL = 9 mm, and RL = 12.575 mm); b) Resonator circuit 

(transmission line) model. 
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31 (blue curve) and it is kept constant (+/- 1) over the entire frequency tuning range of the 

resonator. The dimensions of the input network are shown in Fig. 30(a).  

 As explained in the previous chapters, coupling coefficient (K) also needs to be relatively 

Figure 31: External Qe performance for three different approaches. The different curves 

represent the tapping (red), no tapping (green), and no tapping with tuning stub (blue) 

approaches. 
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constant over the entire frequency tuning range in order to maintain a constant FBW. Placing the 

resonators in a parallel manner (Fig. 32(a)) provides a K relatively stable over the entire 

frequency tuning range. The lower value for K was found to occur at the highest operation 

frequency. Therefore, the required K12, K23, and K34 were determined at the highest frequency to 

ensure the value of K will be sufficient at every other frequency to obtain the desired filter 

response. The separations that resulted in the required K12 = K34 = 0.04204 and K23 = 0.02706, 

were found to be 2.75 mm and 3.95 mm respectively. As the operation frequency decreases, the 

separation between adjacent resonators becomes electrically smaller, which generates an increase 

in K. Fig. 32(b) shows the variation of K as the resonator is tuned down from 4 GHz to 1.5 GHz. 

From this variation we can expect a 3% change in FBW (from 4% to 7%, at the highest and 

lowest frequencies, respectively). 

 Fig. 33(a) shows the 4
th

 order reconfigurable bandpass filter layout. As explained in 

Figure 33: Microfluidically reconfigurable half wavelength resonator filter. (a) Filter layout 

dimensions: TLL = 12 mm, TLW = 1.2 mm, O = 8.575 mm, RL = 12.575 mm, RW = 2 mm, K1 

= 3.95 mm, K2 = 2.75 mm, PW = PL = 2 mm, S = 0.05 mm, and Go = 9.875 mm. (b) 

Simulated S11 & S21 response for five different plate positions. 
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chapters 4 and 5, all the resonators have to be tuned synchronously for the filter to function 

properly. Therefore, a selectively metallized plate was utilized to place PlateR of all the 

resonators. The total footprint of the filter is 33.95 × 24.45 mm
2
. The dimensions of the filter can 

be found in Fig. 33(a). The simulated S21 and S11 performances can be seen in Fig. 33 (b). As 

expected, the filter presents a tuning range of 90% (from 4 GHz to 1.5 GHz), with 5% (+/- 2%) 

constant FBW, and IL < 2.7 dB, and RL > 8.5 dB for a maximum displacement of 11 mm.  

6.3 Fabrication 

 Due to the tight separation between input/output TL and the first/last resonator, and the 

thin width of the high impedance, shorted stubs, the printed, bottom, layer of the microfluidically 

reconfigurable resonator was fabricated over a 1.27 mm thick Roger 6010.2 board using 

conventional photolithography techniques. To accomplish the desired 6 µm layer of 

Benzocyclobutene (BCB) on top of the printed resonators, the spin coating guidelines provided 

by the manufacturer [64] was utilized. However, due to the thickness of the copper, the BCB was 

spun at 3500 RPM to obtain a 7 µm thick layer, which resulted in a ~6 µm layer on top of the 

resonators (characterized with profilometer measurments). To be able to place SMA connectors 

at the input and output ports, the end of each was covered with a high temperature resistant tape 

prior to the BCB spinning and curing. The BCB was cure at a ramping temperature starting at 0
o
 

C and ending at 250
o
 C for a period of 4 hours. 

Using the micromolding technique explained in [56]-[58], the microfluidic channel was 

fabricated. The detailed steps can be seen in Fig. 34(a). This time, an extra step was added to the 

molding fabrication to obtain a more accurate thickness. Two layers of photo resist were spun to 

obtain the desired 275 µm thick channel. To maintain the desired synchronization among all the 

resonators, a 0.25 mm thick selectively metallized plate was utilized as explained in Chapter 5. 
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Silicon 

1. Clean a silicon wafer 

 

 

2. Spread coat two layers of SU-8 negative 

photoresist 

 

 

3. Using conventional photo lithography 

techniques, obtain the desired microfluidic 

channel pattern 

 

 

4. Poor a, previously mixed, layer of PDMS 

 

 

5. Let it dry (70
o
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layer through an APTES (3-Aminopropyl- 

triethoxylsilane) process 
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Figure 34: Microfluidic channel fabrication. a) Microchannel fabrication steps; b) Picture of 

a fabricated microfluidic channel in PDMS 
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The dimensions of the selectively metallized plate, as well as the microfluidic channel, can be 

seen in Fig. 35. To keep a relatively fast tuning speed, input and output channels were kept to 2 

mm wide, and an extra section of the selectively metallized plate were added in the top and 

bottom of the plate (Fig. 35(b)). To alleviate the fabrication process, the selectively metallized 

plate was made in a 0.254 Rogers 5880LZ board (εr = 1.96, tanδ = 0.0009) using conventional 

photolithography techniques, and it was placed inside the microfluidic channel manually prior to 

sealing it. The microfluidic channel was sealed by bonding it with the BCB layer using an 
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Figure 35: Separated layers. a) Microfluidic channel and selectively metallized plate (PW = 

7.25 mm, PL = 24 mm, PI = 2 mm, PO = 5 mm, CW = 7.3 mm, CL = 24.1 mm, CI = 2.1 mm, 

and CO = 8 mm); b) Selectively metallized plate; c) Bottom plate with printed resonators.  
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APTES (3-Aminopropyltriethoxysilane) treatment [59]. To electronically control the filters, two 

piezo-pumps, with dimensions of 30 x 15 x 3.8mm
3
 from Bartels® (mp-6) [61] were utilized. 

These micropumps were chosen due to their piezo actuation mechanism that allows for an 

accurate control of the liquid displacement via supply voltages. Two of these pumps were 

connected in parallel to generate bi-directional flow capability. The pumps were operated with 

the manufacturer supplied driver circuit that converts 5V DC current to a 100MHz 235V peak to 

peak sinusoidal wave according to the highest flow rate specifications given for water [61]. The 

power consumption of the pumps is less than 200 mW. 

6.4 Experimental Verification 

 The fabricated prototype integrated with the pumping system can be seen in Fig. 36(a). 

As expected, the tuning range of the filter was measured to be 2.7:1 from 4 GHz to 1.5 GHz. 

Measured S11 and S21 performances can be seen in Fig. 36(b) and (c) and are in good agreement 

with simulation results. The insertion loss was kept to be less than 3 dB over the entire frequency 

tuning range with a return loss better than 9.7 dB. This represents an improvement of >1.5 dB in 

insertion loss with respect to the open loop resonator filter presented in Chapter 5. A constant 5% 

(+/- 2%) FBW was measured over the entire operational range of the filter. The out of band 

rejection was >35 dB. However, since the half wavelength structure is kept over the entire 

frequency range, the second harmonic of the filter is not suppressed, but it is shifted up in 

frequency due to the shorting effect after a displacement > 9 mm. The overall dimensions of the 

filter were measured as 34.975 x 38.01 mm
2
 excluding the pumping mechanism. The input and 

output TL were extended by 11 mm to alleviate the measurement process. The tuning speed of 

the filter was found to be, as expected, very close to the filter presented in chapter 5, thanks to 

the selectively metallized plate approach, and it was measured as 2.5 MHz per ms. The slight 
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improvement in tuning speed is caused by the smaller size of the plate, which represents less 

friction from the channel walls. 
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Figure 36: Experimental verification. a) Fabricated filter; b) Measured S11 and S21 
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6.5 Power Handling Characterization 

 In reference [65], it has been demonstrated that half wavelength microstrip resonators are 

capable of handling power levels above 100 W, making them a great alternative to design filters 

for high power applications. Microfluidically based reconfigurable filters are suitable for 

handling high power thanks to absence of nonlinear devices, as shown in [66]. As shown in 

Reference [48] a microfluidically reconfigurable filter utilizing liquid metal can handle above 10 

W of power, and it is only limited by the temperature raising of the materials selected for the 

substrate stack-up. Therefore, combining half wavelength microstrip resonators with the 

microfluidically reconfigurable approach presents an interesting solution for high power 

applications.  

Since no active devices are used in the 4
th

 order filter designed in this chapter, and also, 

as compared with the filter presented in Chapter 5, no lumped components are present in the 

overall filter, the temperature rising of the substrate stack-up materials would be the limiting 

factor in terms of power handling capability. Using the Ansys workbench, the filter was tested 

under high power signal conditions. For an input signal of 1 W of power (Fig. 37(a)), the 

maximum temperature raise of the filter was found to be 21
o
 C at the center of the microstrip 

resonators. This represents a small signal condition, and, as expected, the simulated temperature 

value resides inside the safety range for all the materials utilized (Table 1). Further increasing the 

input power to 15 W (Fig. 37(b)) raised the steady-state temperature of the filter to a maximum 

value of 48.6
o
 C, and the maximum temperature is found in among the resonator area. Again, this 

maximum temperature resides inside the safety operating region for all the materials utilized. To 

experimentally verify the temperature capabilities of the filter, the setup shown in Fig. 38(a) was 

utilized. The setup consisted on a high frequency oscillator (e.g. 2.5 GHz), connected to the input 
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Figure 37: Thermal simulations of the 4
th

 order bandpass filter with half wavelength 

resonators for different input power levels at 2.5 GHz. a) 1 W; b) 15 W; c) 30 W. 
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of a high power amplifier (Mini-Circuits ZHL-16W-43-S+) [67]. The output of the power 

amplifier is connected to a unidirectional circulator from Trak Microwave Corp. as a safety 

precaution to protect the high power amplifier. The filter is connected after the isolator and a 

high power attenuator is place between the output of the filter and the measurement equipment to 

protect the ENA. A ENA E5063A was used to measure frequencies up to 4 GHz. It was found 

that at >15 W of input power, and at 2.5 GHz where the resonators presented their lower Qu, the 

temperature rose up to 46
o
 C (Fig. 38(b)), this is 2

o
 lower than simulated results, and the 

difference is probably due to unknown ambient temperature of the laboratory. As expected, the 

entire filter area remained inside the safety range of the materials utilized. Due to the limitation 

in the power amplifier output power, it was not possible to test for higher input power levels. 

However, according to simulations with Ansys Workbench, the proposed microfluidically based 

Mini-circuit

High Power Amp

ZHL-16W-43-S+

Attenuator

Isolator

ENA 

Figure 38: Power handling characterization of the 4
th

 order bandpass filter utilizing half-

wavelength resonators at the lowest resonator’s Qu frequency of 2.5 GHz. a) Experimental 

set up consisting on: ENA E5063A, Trak 60A3001 Isolator, proposed filter prototype, and a 

high power attenuator; c) Thermal image after steady state condition have been reached 

(Image taken with Keysight ). 

(a) (b) 
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reconfigurable filter is capable of handling >30 W of input power without the addition of 

external heat sinks. The maximum temperature for 30 W of input power was found to be 78
o
 C 

(Fig. 37(c)). 

 

6.6 Concluding Remarks of Chapter 6 

 It has been demonstrated that microfluidic reconfiguration can be combined with 

conventional half wavelength open ended microstrip resonators to accomplish a very low loss, 

highly tunable, and high power handling bandpass filter. The proposed novel filter presents a 

frequency tuning range of 90%, more specifically, from 4 GHz to 1.5 GHz, which represent an 

improvement of more than 50% as compared to the capacitively loaded open loop resonator 

based reconfigurable filter of Chapter 5. To the best of our knowledge, this is the first time that a 

2.7:1 continuously tunable filter has been demonstrated. Due to the high unloaded quality factor 

of the resonators, the filter presents a low, and almost constant, insertion loss of less than 3 dB 

over the entire frequency tunable range. Power handling characterization was carried out and it 

Material Thermal

Conductivity

Specific Heat Maximum 

Temperature

PDMS 0.27 W/mK 1.46 kJ/kgK 200o C

BCB 0.293 W/mC 2.4 kJ/kgK 165o C

FC-40 0.065 W/mC 1.1 kJ/kgC 165o C

Rogers 

6010.2

0.86 W/mK 1 kJ/kgK N/A

LCP 0.2 W/mK N/A 330o C

Alumina 37 W/mK 0.9 kJ/kgC 1550o C

Glass 1710o C

Table 1: Thermal properties of materials utilized  

1.38 W/mK 0.7 kJ/kgC 1100
o
 C 

380
o

 C 
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was found that the power handling of the filter is above 15 W. Table 2 provides a summary of all 

the filters presented in this dissertation.  

 

 

 

  

Table 2: Summary of filters realized through this dissertation 

120 – 50
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CHAPTER 7: FUTURE WORK 

 

 To further enhance the power handling capabilities resorting to a hard substrate based 

configuration would be vital. As explained in Chapter 6, the temperature rising and thermal 

conductivity of the materials is the limiting factor in terms of power handling capability of 

microfluidics based reconfigurable filters. Most reconfigurable filters are limited, in their power 

handling capability, by the third order intermodulation (TOI) point. Since no active devices are 

utilized in microfluidically based RF reconfigurable filters, there is not TOI. The materials 

utilized in the previous chapters present a poor temperature handling characteristic (e.g. 

coefficient of thermal conductivity). In Table 2 the thermal characteristics of these materials 

(Rogers 6010.2, BCB, and PDMS) are presented. As explained in chapter 6, the poorest thermal 

conductor from this materials is the carrier fluid utilized (FC-40). However, improving the 

thermal capacity of the material surrounding the fluid would help increase the maximum 

temperature of operation of the filter. Therefore, replacing the PDMS with a material presenting 

a higher thermal conductivity would be vital for very high power applications. Also, at high 

temperatures, PDMS starts absorbing liquid, which would represent a major issue due to the 

small volume of fluid required inside the channels. A solution to the above mentioned problems 

could be replacing PDMS with glass, and therefore, preliminary studies have been done in this 

aspect. However, the fabrication process time increase considerably due to the lengthy process of 

etching glass. From preliminary studies, the etching rate of glass is ~10 µm per hour. At this rate, 

it would take at least 25 hours to etch the desired channel. Also, most available photoresists 
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would be etched faster than the glass. One possible alternative would be using laser to etch the 

glass, but the expensive pricing make it a not viable solution at this point. The addition of an 

external heat sink could be valuable in terms of power handling capability of the filter since, 

once again, its main limitation is only the temperature raising of the components, and the 

dimensions of the filter are very small when compare to other available technologies.  

Different type of resonators needs to be investigated to further expand the broad range of 

possibilities that microfluidics have to offer toward obtaining RF bandpass reconfigurable filters. 

Utilizing resonators with higher unloaded quality factor would provide a significant 

improvement in terms of insertion loss (lower insertion loss) and power handling capability 

(higher power handling), and therefore, should be investigated. Suspended line based resonators 

have been known for providing a high unloaded quality factor. Therefore, the transition into 

suspended line resonators would be vital to further decrease the insertion loss and increase the 

power handling capability of microfluidically reconfigurable filters.  

 When comparing microfluidics to other available technologies, proposed reconfigurable 

filters lack in terms of their tuning speed. So far, the studies carried out with microfluidic 

reconfigurable filters presented a tuning speed of 2.12 MHz per ms, as compare to the tuning 

speed presented by ferroelectric varactors (for example 2 MHz per µs). So far, the experiments 

conducted on microfluidic reconfigurable devices have been done utilizing external micropumps 

units, and therefore, the tuning speed of the filters is directly related to the micropump 

capabilities in terms of flow rate. A detailed study on the micropumps could help to improve the 

tuning speed significantly. In addition, the viscosity of the fluid utilized to move the metallized 

plate inside the channel has a direct impact on the micropump functionality. So far the only 

fluids studied have been Teflon solution and FC-40. Different carrier fluids could be further 
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investigated in parallel with a variety of micropumps to determine the fastest tuning speed that 

can be obtained.  

 However, replacing the externally added micropumps with on-board actuators would be 

the ideal solution. One of the most popular alternatives that has been investigated so far is 

utilizing electrowetting as the actuation mechanism. Electrowetting consist on modifying the 

surface tension of dielectrics, utilizing a voltage, for the microfluidics actuation [68]. And the 

most common method for electrowetting have been Electrowetting on Dielectric (EWOD) [69]. 

However, another approach that has been investigated is resorting to pressure based actuation  

[70]. Therefore, another approach that is currently been investigated, by our research group, to 

Deflection

Increase

Voltage 

Increased

Figure 39: Piezo electric disk actuation proposed for future work. a) Operational principle of 

the actuation mechanism based on piezoelectric disk; b) Fabricated prototype of 10GHz 

open loop resonator loaded with a metalized plate. This picture is courtesy of Enrique 

Gonzales (Ph.D. student in Dr. Mumcu’s research group) 

(a) 

(b) 



80 
 

replace the micropumps with in-chip actuators, and therefore, increase the tuning speed of 

microfluidic based reconfigurable filters, is the utilization of a piezoelectric disks to provide 

metallized plates backwards and forward motion capabilities. By making use of a sealed 

microfluidic channel, it is possible to transfer the small deflection generated by a piezo electric 

disk into motion. As shown in Fig. 39(a), as the voltage increases, the piezoelectric disk bends 

downwards and push the plate inside the channel. A second reservoir is place in the opposite end 

of the channel to absorb the motion (Fig. 39(a)). The proposed mechanism has been 

experimentally verified to provide a short moving range of 3 mm with a <10 mm in diameter 

piezo electric disk. Preliminary studies were carried out through a resonator at high frequencies 

(10 GHz) to maintain the required motion range under the 3 mm range provided by the piezo 

disk (Fig. 39(b)). Furthermore, the piezo electric disk could be positioned under the ground plane 

(below the filter area) to maintain the footprint to that of the individual reconfigurable filter. 

Since piezo-electric based actuation has been demonstrated to be fast, require low DC power and 

the displacement range required by the microfluidic based filters has been shown to be small, 

they present an interesting alternative for the necessary actuation mechanism.   
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APPENDIX A: MICROFLUIDIC CHANNEL FABRICATION 

 

 Microfluidic channel fabrication has been previously presented in [56]-[58]. The overall 

technique consist on fabricating a mold with the desire microchannel specification, to later pour 

a commercially available elastomer (Polydimethylsiloxane) in its liquid form, and cure to 

transition it into its solid state. After pilling of the solid elastomer, the desired microchannels will 

be in the bottom face. The face containing the microchannels will be sealed with a commercially 

available thin-film insulator to form the finalized microfluidic channel. In the following, a 

detailed explanation on each of the steps of the microchannel fabrication is provided. 

A.1 Microfluidic Channel Design 

 Initially, individual metallized plates were utilized and a meandered channel was 

designed to host all the plates (e.g. 2 plates were used in chapter 4). At the beginning of this 

dissertation, microfluidic channels were designed to have the same width as the metallized 

plates. However, it was quickly learned that the plate would not move inside these channels due 

to the high friction between the walls of the channel and the plate (e.g. channel got stuck). To 

overcome this issue, a detailed characterization of the channel width was performed by our group 

[71] by fabricating channels with widths slightly wider than the width of the metallized plates. 

From these studies, it was found that if the microfluidic channel was too wide, the plate could tilt 

inside of it causing it to get stuck and/or corrupt the performance of the filter. After fabricating 

channels with 100 µm, 200 µm, 300 µm, 400 µm, and 500 µm wider than the metallized plate, it 

was found that, with a 100 µm wider channel, the plate movement was smooth and repeatable.  



89 
 

A.2 Micromold Fabrication 

 The micromold design follows conventional photolithography techniques. To start a 5 

inch diameter silicon wafer is cleaned by submerging it in acetone, isopropanol, and methanol. 

After submerging it in methanol, it is necessary to rinse with deionized water and dry with 

nitrogen, quickly after it has been rinsed. To remove any water drops left on the surface, the 

wafer is placed in a hot plate at a high temperature (~160
o
) for at least 5 min. Once the wafer is 

cleaned, the photo resist that will be utilized for the mold is spin coated. Originally, SU-8 2150 

negative photoresist was selected as the mold material thanks to its thickness and sharp edge 

profile. After placing the silicon wafer in the center of the spinner, the photo resist was added 

starting at the center of the wafer, and progressively moving towards the edge. Adding between 3 

to 4 cubic inches is enough to cover the entire wafer. The spinning recipe utilized to uniformly 

coat the SU-8 2150 negative resist consisted on: 

A) Spreading the photoresist over the silicon wafer (Step #1):  

 Spin for 10 seconds 

 Rate of 500 rpm 

 Acceleration rate of 100 rpm/s 

B) Obtaining the desired thickness (Step #2): 

 Spin for 30 seconds 

 Spinning rate of 2000 rpm 

 Acceleration rate of 300 rpm/s 

After the spinning process is finished, a soft bake on a level hot plate at a temperature of ~100
o
 C 

needs to be performed for about 60 min (may require longer time). To determine that the soft 

baking time is satisfactory, the wafer is removed from the hot plate, cooled down to room 
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temperature, and replaced back on to the hot plate. In this second replacement, if wrinkles are 

observed at the photoresist surface, the wafer needs to be left on the hot plate; otherwise it can be 

utilized for the next step. In general, cool-down and heat-up process can be repeated frequently 

until no wrinkles are observed when the wafer is on the hot plate. Utilizing this recipe, the 

resultant SU-8 layer would be ~300 µm thick. For other thicknesses, the data sheet of SU-8 2000 

can be referred to [72].  

 After the photoresist has been coated and soft baked, it can be defined by exposing the 

unwanted area to UV light for a total energy of 800 mJ/cm
2
. Different thicknesses might require 

different exposure energy (refer to [72] for the specific exposure dose). A post exposure bake of 

30 min at 95
o
 C is necessary. After one minute of post exposure bake, the image of the mask 

should be visible on the wafer.  

 Later in our research, we determined that the microfluidic channel height was a crucial 

parameter for the performance of the filters. Therefore, a more detailed study of the reversed 

mold height (or microchannel depth) was performed. By resorting to a thinner, less viscous, SU-

8 resist (SU-8 2075) a more detailed characterization was possible by coating the SU-8 in two 

layers instead of one. A first layer was coated at a low speed to obtain a thickness of ~200 µm. 

On top of this layer, a second layer was coated at a high speed to obtain a thickness of ~75 µm. 

The thickness of the second layer can be changed in steps as small as 5 µm. The procedure for 

obtaining a 275 µm thick channel is as follows: 

A) Layer #1  

1) Spreading the photoresist on the silicon wafer (Step #1): 

 Spin for 10 s 

 Spinning at a rate of 500 rpm 
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 Acceleration of 100 rpm/s 

2) Obtaining the desired thickness (Step #2): 

 Spin for 40 s 

 Spinning at a rate of 1500 rpm 

 Acceleration of 500 rpm/s 

After the first layer has been coated, wafer is soft baked on a hot plate for about 60 min. In order 

to determine the baking time, follow the heat-up/cool-down procedure explained above.  

B) Layer #2 

1) Spreading the photoresist on the silicon wafer (Step #1): 

 Spin for 10 s 

 Spinning at a rate of 500 rpm 

 Acceleration of 100 rpm/s 

2) Obtaining the desired thickness (Step #2): 

 Spin for 40 s 

 Spinning at a rate of 3000 rpm 

 Acceleration of 500 rpm/s 

After the second layer has been coated, a shorter bake time of 10 min at 100
o
 C is required. 

However, the procedure of cooling down the wafer, and putting it back into the hot plate needs to 

be performed to ensure the baking process is completed.  

 The final step in the reverse micromold fabrication is to immerse the wafer in an SU-8 

developer to remove the unwanted (unexposed) photoresist. The developing time for the 

specified thickness of ~300 µm was found to be 25 min. However, by using a Q-tip to peel off 

the unwanted (unexposed) photoresist, the process could be speed up to under 20 min. It is 
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recommended to always use a Q-tip to clean up the edges of the mold towards the end of the 

developing process.  

A.3 Polydimethylsiloxane (PDMS) Preparation 

 To continue with the microchannel fabrication, the PDMS (SYLGARD® 184 silicone 

elastomer kit) was mixed in a ratio of 10:1 with its curing agent. To obtain the desired 2 mm 

thick PDMS layer, 20 g of PDMS were mixed with 2 g of the curing agent. To remove all the 

trapped air bubbles, a degassed process was done. The degassed process consist on placing the 

mixed PDMS under vacuum and bringing it back to atmosphere pressure several times, until no 

bubbles are left in the mixing. The wafer, with the reverse micromold, needs to be placed inside 

a 5 inch diameter petri dish, and the area surrounding the molded structure needs to be delimited 

with aluminum foil. For larger molds, more grams of PMDS might be required. The mixed 

PDMS was poured carefully on top of the reversed mold to avoid the generation of new air 

bubbles. The petri dish was placed in the oven at 70
o
 C for 25 min. It is also possible to cure the 

PDMS at room temperature, but the curing time might take up to 48 hours.  

 Once the PDMS have been cured, it can be peeled off from the silicon wafer and the 

resultant microchannel will be in the bottom surface. An X-ACTO knife can be used to remove 

the extra unwanted PDMS.  

A.4 Sealing the Channel (Bonding) 

 To complete the microchannel fabrication, it needs to be completely sealed with a thin-

film insulator. Early experiments were carried out by sealing the microfluidic channel with 

readily available pregrep LCP (Rogers Corp), but later a thinner insulator Benzocyclobutene 

(BCB) was utilized to replace the LCP. These materials are thermoplastic and therefore a 

customized APTES (3-Aminopropyltriethoxysilane) based treatment that was previously used 
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for other thermoplastic material-PDMS bonding was utilized for the LCP/BCB-PDMS bonding 

process. First, the general process will be outlined, and then specific details will be given for 

each insulator. 

 The insulator substrate was treated with oxygen plasma for 30 s at a power level of ~60 

W, and then merged in an aqueous solution of 2% v/v APTES for 20 min. The solution was 

placed on a hot plate to increase its temperature up to 80
o
 C. Parallel to this process, the PDMS 

was treated with oxygen plasma at a power level of ~60 W. The activated insulator and the 

PDMS were kept in conformal contact inside the oven at a temperature of 70
o
 C for 10 min. It is 

possible to seal the bond at room temperature, but high temperatures can help to strengthen it. A 

more detailed explanation of this procedure can be found in [73]. 

  LCP is a commercially available substrate with predefined thickness (Ultralam 3880 (εr 

= 2.4, tanδ = 0.0025)). The pregrep form of LCP helps to obtain stronger bonds due to the 

smooth surface. The thickness of the BCB (Cyclotene 3022-57, Dow Chemical Company) can be 

customized through spin coating procedures. For this, BCB is spin coated over the desired 

substrate (e.g. Rogers 6010.2). To obtain the required 6 µm layer of BCB, the recipe utilized 

was: 

 Step 1 (Spreading the BCB): 

 Spin for 7 s 

 Spinning rate of 500 rpm 

 Acceleration rate of 200 rpm/s 

Step 2 (Obtaining the desired thickness) 

 Spin for 40 s 

 Spinning rate of 4000 rpm 
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 Acceleration rate of 1000 rpm/s 

The input and output microstrip lines of the circuit should be covered with a high temperature 

resistant tape to be able to make electrical connection to them afterwards and to avoid an extra 

etching step at the end of the fabrication procedure. After spinning the BCB, it is necessary to 

bake it for a period of 60 s at a temperature that can range from 80
o
 C to 150

o
 C. After baking, 

the thermal curing process requires a ramping temperature increase from 100
o
 C to 250

o
 C for a 

period of 3 hours. For more detail on BCB processing and thicknesses, manufacturer supplied 

data sheet can be seen [74]. Once the BCB is cured (completely polymerized), the bonding 

procedures explained above can be followed. 

 It is important to remember to open the inlet and outlet holes in the PDMS, and manually 

insert the selectively metallized plate inside the microchannel prior to the bonding. 

A.5 Selectively Metallized Plate Fabrication 

 Different substrates were originally tested to fabricate the selectively metallized plate. 

Since the selected fluid was Teflon solution from DuPont (400S2-100-1), which consists of 1% 

Teflon powder dissolved in 3M FC-40 solution, with a density of 1.855 g/cm
3
, the selectively 

metallized plate was preferably fabricated in a substrate with a density value close to 1.855 

g/cm
3
. Studies were carried out with silicon (2.33 g/cm

3
) and quartz (2.65 g/cm

3
) with little 

successful movement due to their high density difference. Therefore, substrates such as PMMA 

(1.18 g/cm
3
) and Rogers 5880LZ (1.4 g/cm

3
) were investigated. Initial filter prototypes were 

fabricated using PMMA, however, this required an extra step of metallization, which led us to 

select 254 µm thick Rogers 5880LZ readily available with a 17 µm thick metallized layer. 

Resorting to conventional photolithography techniques, the unwanted metal was removed. 
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Below is permission for the use of the images in Figure 1 
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Below is permission for the use of images in Figure 2 
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Below is permission for the use of images in figure 3. 
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Below is permission for the use of images in figure 4. 
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Below is permission for the use of images in figure 5. 
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Below are permissions for the use of images in figure 6. 
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Below is permission for the use of images in figure 7 
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Below is permission for the use of images in figure 8. 
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Below is permission for the use of images in figure 9. 
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Below is permission for the use of material in Chapter 2. 
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Below is permission for the use of material in Chapter 3. 
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Below is permission for the use of material in Chapter 4. 
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Below is permission for the use of material in Chapter 5. 
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